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ABSTRACT

Due to the complexity of the processes, it has become very difficult to control them on

the base of traditional methods. In such condition it is necessary to use modem methods for

solving these problems. One of such method is global optimization algorithm based on

mechanics of natural selection and natural genetics, which is called Genetic Algorithms. In

this project the application problems of genetic algorithms for optimization problems, its

specific characters and structures are given. The Basic Genetic operations, Selection,

Reproduction, Crossover, Encoding and Mutation operations are widely described. The

affectivity of genetic algorithms for solving the genetic algorithms is shown in the following

chapters. After the representation of optimization problems, structural optimization and the

findingof optimal solution of quadratic equation are given.

The practical application for selection, reproduction, Crossover and mutation operation

are shown. The functional implementation of GA based optimization in MATLAB Toolbox is

considered.
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INTRODUCTION

The GENETIC ALGORITHMS is a model of machine learning, which derives its

behavior from a metaphor of the processes of EVOLUTION in nature. This is done by the

creation within a machine of a POPULATION of INDIVIDUALS represented by

CHROMOSOMES, in essence of a set of character strings that are analogous to the base-4

chromosomes that we see in our own DNA. The individualsin the population then go through

a process of evolution.

Genetic algorithms (GA) seek to solve optimization problems using the methods of

evolution, specifically survival of the fittest. In a typical optimization problem, there are a

number of variables, which control the process, and a formula or algorithm, which combines

the variables to fully model the process. The problem is then to find the values of the

variables, which optimize the model in some way. If the model is a formula, then we will

usually be seeking the maximum or minimum value of the· formula. There are many

mathematical methods, which can optimize problems of this nature (and very quickly) for

fairly "well-behaved" problems. These traditional methods tend to break down when the

problem is not so "well-behaved." We should note that EVOLUTION (in nature or anywhere

else) is not a purposive or directed process. That is, there is no evidence to support the

assertion that the goal of evolution is to produce Mankind. Indeed, the processes of nature

seem to boil down to different Individuals competing for resources in the ENVIRONMENT.

Some are better than others, those t4,at are better are more likelyto survive and propagate their

genetic material. In nature, we see that the encoding for our genetic information (GENOME)

is done in a way that admits asexual REPRODUCTION (such as by budding) typically results•
in OFFSPRING that are genetically identical to the PARENT. Sexual REPRODUCTION

allows the creation of genetically radically different offspring that are still having the same

general flavor (SPECIES). At the molecular level what occurs (wild over simplificationalert)

is that a pair of Chromosomes bump into one another, exchange chunks of genetic information

and drift apart. This is the RECOMBINATION operation, which GA errors generally refer to

as CROSSOVER because of the way that genetic material crosses over from one chromosome

to another,
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The CROSSOVER operation happens in an ENVIRONMENT where the ELECTION

of who gets to mate is a function of the. FITNESS of the INDIVIDUAL, i.e. how good the

individual is at competing in its environment-Some GENETIC ALGORilHMS use a simple

function of the fitness measure to, select individuals (probabilistically) to undergo genetic

operations such as crossover or: asexual REPRODUCTION (the propagation of genetic

material unaltered). This is fitness-proportionate selection. Other implementations use a

model in which certain randomly selected individuals in a subgroup compete and the fittest is

selected. This is called tournament selection and is the form of selection we see in nature

when stags rut to vie for the privilege of mating with a herd of hinds. The two processes that

most contribute to evolution are crossover and fitness based on reproduction.

As it turns out, there are mathematical proofs that indicate that the process of

FITNESS proportionate REPRODUCTION is, in fact, near optimal in some senses,

MUTATION also plays a role in this process, although how important its role is continues to

be a matter of debate (some refer to it as a background operator, while others view it as

playing the dominant role in the evolutionary process). It cannot be stressed too strongly that

the GENETIC ALGORITHM (as a SIMULATION of a genetic process) is not a random

search for a solution to a problem (highly fit INDIVIDUAL), The genetic algorithm uses

stochastic processes, but the result is distinctly non-random (better than random) GENETIC

ALGORilHMS are used for a number of different application areas.

An example of this would be multidimensional OPTUvfIZATIONproblems in which

the character string of the CHROMOSOME can be used to encode the values for the different

parameters being optimized. In practice, therefore, we can implement this genetic model of
~

computation by having arrays of bits or characters to represent the CHROMOSOME, Simple

bit manipulation operations allow the implementation of CROSSOVER..MUTATION and
•

other operations. Although a substantial amount of research has been performed on variable-

length strings and other structures, the majority of work with GENETIC ALGORITHM is

focused on fixed-length character strings. We should focus on both this aspect of fixed­

lengthiness and the need to encode the representation of the solution being sought as a

character string, since these are crucial aspects that distinguish GENETIC PROGRAMMING,

which does not have a fixed length representation and there is typically no encoding of the

problem,
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When the GENETIC ALGORITHM is implemented it is usually done in a manner that

involves the following cycle: Evaluate the FITNESS of all of the . INDIVIDUALS in the

POPULATION. Create a new population by performing operations such as CROSSOVER,

fitness-proportionate REPRODUCTION and MUTATION on the individuals whose fitness
'

has just been measured. Discard the old population and iterate using the new population.

One iteration of this loop is referred to as a GENERATION. There is no theoretical

reason for this as an implementationmodel. Indeed, we do not see this punctuated behavior in

POPULATIONS in nature as a whole, but it is a convenient implementationmodel.

The first GENERATION (generation O) of this process operates on a POPULATION of

randomly generated INDIVIDUALS. From there on, the genetic operations, in concert with

the FITNESS measure, operate to improve the population.

•• •
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CHAPTER ONE

STATE OF ART UNDERSTANDING PROBLEM OF
GENETIC ALGORITHM FOR SOLVING OPTIMIZATION
PROBLEMS

1. GENETIC ALGORITHM

Genetic algorithms use a vocabulary borrowed from natural genetics, a

candidate solution is called an individual. Quite often this individual called also truing

or chromosome. This might be a little bit misleading; each cell of every organism of a

given species carries a certain number of chromosomes, however, we talk about one­

chromosome individualsonly. Chromosomes are made of units genes arranged in linear

succession: eve.J,Y gene controls the iabcdumoc of one or several characters.

Each g,en.e can assum.e a fuu."t.en.um.be~ 01 va\u.es, ca\\eo. a\\e;ıs (,__featu-re'1a\u.e'5).

representation chromosome is a vector, consisting of the bits succession, i.e.

succession of zeroes and ones. A set of chromosomes makes a population. A number

mosomes in population define a population size. The genetic algorithm evaluates

population and generates a new one iteratively, with each successive population

-retene(\ \o as a g,en.eıat\.on. Tue --po--pu\at\.on. \ID.(letg,c:ıes a swu\a\e(\ e'lc:ı\ut\.c:ı~ a\ eacb.

generation the relatively "good" solutions reproduce while the relatively "bad" solutions

die. To distinguish between different solutions we use an objective (evaluation)

function, which plays the role of an environment. Quite often the objective function is
\

"called also fitness function.

Due to universe searching ability of genetic algorithm, it is Üsed to solve global

external through this chapter. For this reason Genetic Algorithm is widely used to solve

differentoptimization, constructing, predicting and searching problems.

In this chapter I have included the following researches.
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1.1. Technological Processes Control By Using Soft Computing

The development of deterministic and fuzzy controllers for technological

processes control by using soft computing elements such as Neural, genetic and fuzzy

technologies are considered: The learning problems of neural control systems are

discussed. The learning algorithm of the recurrent neural network is described. Using

learning algorithm and desired time response characteristics of the system the synthesis

of neural controller for technological process control is carried out. The results of the

simulationof neural control system are described.

Using fuzzy models of control objects and desired time response characteristic

of system the synthesis of fuzzy neural controller is carried out. The learning of fuzzy

neural controller is performed by using- level procedure and internal arithmetic. The

simulation of fuzzy control system is performed and results

described.

Also the development of the PID controller by using genetic algorithm (GA) is

of simulation are

considered. The synthesis of PID controller by the traditional methods requires to

posses a great deal of control system knowledge; tuning experience, full information

about control object. The use of genetic algorithm (GA) allows automating the tuning

process, and does not require having much domain knowledge. Using genetic operators

- selection, crossover and mutation operators the tuning of PID controller's coefficients

is carried out. The synthesis procedure and result of simulation of control system with

PID controller are described.

1.2. Genetic Algorithms As ı\,Searching Algorithms

The theory of natural selection offers some compelling arguments that
• •

individuals with certain characteristics are better able to survive and pass on those

characteristics to their offspring. A genetic algorithm is a general search procedure

based on the ideas of genetics and natural selection, and its power lies in the fact that as

members of the population mate, they produce offspring that have a significant chance

of retaining the desirable characteristics of their parents, perhaps even combining the

best characteristics of both parents. In this manner, the overall fitness of the population

can potentially increase from generation to generation as we discover better solutions to

our problem.
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When applied to the optimization of ANNs for forecasting and classification

problems, GAs can be used to search for the right combination of input data, the most

suitable forecast horizon, the optimal or near optimal network interconnection patterns

and weights among the neurons, and the control parameters (learning rate, momentum

rate, tolerance level, etc.), based on the training data used and the pre-set criteria. Like

ANNs, GAs do not always guarantee you a perfect solution, but in many cases, it can

arrive at an acceptable solution without the time and expense of an exhaustive search.

1.3. Application ofNeurofu.zzy

NeuroFuzzy systems offer the precision and learning capability of neural

networks, and yet are easy to understand like fuzzy systems. Explicit knowledge

. acquired from experts can be easily incorporated into such a system, and implicit

knowledge can be learned from training samples to enhance the accuracy of the output.

Furthermore, the modified and new rules can be extracted from a properly trained

NeuroFuzzy system, to explain how the results are derived. There are also many other

ways to combine neural and fuzzy techniques, to improve the learning speed, adjust

learning and momentum rates, etc. Also, newer technologies such as genetic algorithm

can be integrated to further enhance the performance of the hybrid systems.

1.4. Binary Search Tree

Searching is a very common operation in most of the management information

systems. This can be done efficiently using the binary search technique, which requires
f!ı

an optimal Binary Search Tree (BST) to store the information. The optimality of a BST

is determined by the average time taken to search for the information stored in the tree .
•

The failure in search is also to be taken into cônsideration for optimization. The best

known existing solution for optimizing a BST uses the Dynamic Programming

technique (DP). DP tries almost all possible binary search trees before finding the

optimal BST. This consumes such a vast amount of time even for a moderate sized

problem. This urges the necessity for the development of a heuristic algorithm, which

would take less time when, compared to DP technique. Genetic Algorithms (GA) are

well suited for this task. A Genetic Algorithm use randomness as a tool to guide the

search for global optima. This helps it converge in very few iterations when compared

to traditional optimization techniques. This paper discusses an implementation of a

3



genetic algorithm for the construction of an optimal BST. The results obtained are

compared with the optimum results found by DP. It is found that the GA outperforms

DP for moderate and large sized problems.

1.6. GA Overview

The genetic algorithm performs a parallel, non-comprehensive search for the

global maximum of the graph. The search is not precise meaning that there is no

guarantee that the global maximum will be found. However, the result should be a good

approximation of the maximumvalue.

Each agent in the population has genes that are represented by bits. In my

example, the genes are used to represent a binary number which is translated to an X

position on the graph by multiplying the number with an increment value and then

adding a base value to the result. In this example the domain is -1.0 <= X <= 2.0. The

increment value is determined by calculating the range of X values (ending value minus

starting value) and then dividing this by the maximum value of the genes. For example,

assuming that the number of genes used by the agents is 22, then the maximum value of

the genes is 2/\22 - 1. The range of X values, 3.0, is then divided by this number,

4194303, to get the increment, 0.000000715. The base value added to get the X position

is simplythe starting X value, -1.0.

Four operations are applied to every generation of agents - evaluation, selection,

crossover, and mutation. These operations are modeled after the evolutionary process of

organisms in nature.

Initially,when the genetic algorithm program is started for the first time or reset,••
all the agents in the population are given random values for their genes which results in

random X valuesbeing represented since the genes determine the X position.
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CHAPTER TWO

BASIC OF GENETIC ALGORITHMS

2. Basics of Genetic Algorithms

2.1. Basics Of Genetic Algorithms

The three most important aspects of using genetic algorithms are:

(1) Definition of the objective function.

(2) Definition and implementation of the genetic representation.

(3) Definition and implementation of the genetic operators.

Once these three have been defined.

The generic genetic algorithm should work fairly well. Beyond that you can try

many different variations to improve performance, find multiple optima (species -if they

exist, or parallels the algorithms.

Algorithm GA is

II Start with an initial time

T:=O;

II Initialize a usually random population of individuals
•

Initpopulation P (t);

II Evaluate fitness of all initial individuals ofpopulation

Evaluate P (t);

II Test for termination criterion (time, fitness, etc.)

While not done do

II Increase the time counter

5



T:=t+_1,

II Select a sub-population for offspring production

P': = select parents P (t);

II Recombine the "genes" ofselected parents

RecombineP; (t);

I I Perturb the mated population stochastically

Mutate P' (t),

II Evaluate it's new fitness evaluate P' (t);

I I Select the survivors from actual fitness

P: = surviveP,P'(t);

od

End GA.

Generate Initial Poouetion

Assess Initial Population

Select Population

Recombine New Population

Mutate New Population

Assess New Population

•
No

Terminate S carch?

Stop?
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2.2. The Genetic Operators

The initial population is chosen at random. GA simulates genetic evolution of a

population of tentative solutions (individuals) by means of selection and survival of the
i

fittest, crossover and mutations. Every individual is typically represented as a bit

sequence, which makes up its "genetic code". The function to be optimized provides

"fitness" values. The structure of a simple genetic algorithm is the same as the structure

of any convolution program. During iteration t, a genetic algorithm maintains a

population of potential solutions (chromosomes, vectors), G (t)= {x; , ..... ,x~ }, each

solution x: is evaluated to give some measure of its'" fitness'" Then, a new population

(iteration t+1) is formed by selecting the more fit individuals. Some members of this

new population undergo reproduction by means of crossover and mutation, to form new

solutions. Crossover combines the features of two parent chromosomes to form two

similar offspring by swapping corresponding segments of the parents- For example, if

the parents are represented by five-dimensional vectors ( aı, ı., cı, d., e1 ) and

( a2 , b2 , c2 , d 2 , e2 ) , then crossing the chromosomes after the second gene would

produce the offspring ( aı,bı,c2,d2,e2 )and ( a2,b2,cı,dı,e1 ). Mutation arbitrarily

after one or more genes of a selected chromosome, by a random change with a

probability equal to the mutation rate.

For concrete problem GA has the following block-schema .We discuss the

actions of a genetic algorithm for a simple parameter optimization problem. Now

suppose we wish to maximize a function of k variables, J(xı,····.xk): R'>-> R. If the~
optimization problem is to minimize a function f, this is equivalent to maximizing a

function g, where g=-f, i.e.
" •

min{J(x )} = max{g(x )} = {- f {x}}

Suppose further that each variable x can take values from a domain D; =[a;, b;] ç; 9ı

and J(x) >- O for all X;. We wish to optimize the function f with some required

precision; suppose sex decimalplaces for the variables' values are desirable,

7



It is clear that to achieve such precısıon each domain D,, should be cut into

( b, -a, )* 106 equal size ranges. Let us denote by mi the smallest integer such us

( b, - a, )* 106 s Zm, -1. Then a representation having each variable X; coded as a

binary string of length m, clearly satisfies the precision requirement. Additionally, the

following formula interprets each such string: x, = a1+decima/(100110012) .Where

decimal ( string 2 )represents the decimal value of that binary string. Now, each

chromosome (as a potential solution) is represented by a binary string of length
k

m = Lm;, the first ml bits map into a value from the range [aı,bJ the next group of
i=I

m2 bits map into a value from the range [a3,bJand so on, the last group of m; bits

map into a value from the range [ak,bk ].To initialize a population, we can simply set

some p s number of chromosomes randomly in a bit wise fashion. However, if we have

some knowledge about the distribution of potential optima, we may use such

information in arranging the set of initial (potential) solutions. The rest of the algorithm

is straightforward, in each generation we evaluate each chromosome (using the function

f on the decoded sequences of variables), select new population with respect to the

probability distribution based on fitness values, and recombine the chromosomes in the

new population by mutation and crossover operators. After some number of

generations, when no further improvement is observed, the best chromosome represents

an (possibly the global) optimal solution. Often we stop the algorithm after a fixed

number of iterations depending on speed and resource criteria. For the selection process

(selection of a new population with respect to the probability distribution based on

fitness values), we must implement the following actions at first, Calculate the fitness

value ~va/(v;}for each chromosome v,(i = l, ....,p,). •

• Find the total fitnessof the population

P,

F = Leval(v,)
i=l

• Calculate the probabilityof a selection p~ for each chromosome v, (i = l, ....,p s):

8



p~ = eval(v){.,

• Calculate a cumulative probability P~m for each chromosome vi (i = I, .... ,ps):

l

l -"' JPcum - L,Pn
}=!

The selection process is implemented p s times; each time we select a single

. chromosome for a new population in the following way:

• Generate a random (float) number r from the range [0,1],

i• If r < Pcum then select the first chromosome (v1} otherwise select the I - t1

chromosome vi (2 :s;; i :s;; p .) such that

i-1 iPcum < r < Pcum

Obviously, some chromosomes would be selected more than once; the best

chromosomes get more copies; the average stay even, and the worst die off. Now we are

ready to apply the first recombination operator, crossover, to the individuals in the new
@I

population. One of the parameters of a genetic system is probability of crossover pc.

This probability gives us the expected number PcPs of chromosomesswhich undergo the

crossover operation. We proceed in the following way:

For each chromosome in the (new) population:

• Generate a random (float) number r from the range [0,1];

• If r < pc , select given chromosome for crossover;

9



Now we mate selected chromosomes randomly: for each pair of coupled chromosomes

we generate random integer number pos from the range [Lm-1] (mis the total length­

number of bits - in a chromosome)- The number pos indicate the position of the

crossing point. Two chromosomes

are replaced by a pair of their offspring:

The intuition behind the applicability of the crossover operator is information exchange

between different potential solutions.

The next recombination operator, mutation, is performed on a bit-by- bit basis.

Another parameter of the genetic system, probability of mutation Pm, gives us

the expected number of mutated bits Pm · m · P, .Every bit (in all chromosomes in the

whole population) has an equal chance to undergo mutation i.e. change from O to Id of

vice versa. So we proceed in the followingway.

For each chromosome in the current (i.e., after crossover) population and for

each bit within the chromosome, •

• Generate a random (float) number r from the range [0,1];

• If r < pm mutate the bit.

The intuition behind the mutation operator is the introduction of some extra

variabilityinto the population.

· 10



Following selection, crossover, and mutation, the new population is ready for its next

evaluation. This evaluation is used to build the probability distribution (for the next

selection process). The rest of evolution is just cyclic repetition of the above steps.

However, as it frequently occurs, in earlier generations the fitness values of

some chromosomes are better than the value of the best chromosome after a finite

number of generations.

It is necessary to note, that classical GA may employ roulette wheel method for

selection, which is a stochastic version of the survival of the :fittest mechanism. In this

method of selection, candidate strings from the current generation G(t) are selected to

survive to the next generation G(t=l) by designing a roulette wheel where each string in

the population is represented on the wheel in proportion to its fitness value. Thus those

strings, which have a high fitness, are given a large share of the wheel, while those

strings with low :fitness are given a relatively small portion of the roulette wheel.

Finally, spinning the roulette wheel p s times and accepting as candidates those strings,

which are indicated at the completion of the spin, make selections,

Example 2.1: As an example, Suppose P, =5, and consider the following initial

population of strings;

G (O)= {(10110),(11000),(11110),(0lOOI),(00110)}, For each string v,, in the

population, the fitness may be evaluated: eval(v;). The appropriate share of the roulette

wheel to allot the i-th string issobtained by dividing the fitness of the i-th string by the

sum of the fatnesses of the entire population:

•

ı
I

eval(v;~

_ r / teval(v;)

Figure (1.5) shows a listing of the population with associated :fitness values and the

corresponding roulette wheel.
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To compute the next population of strings, the roulette wheel is spun five times

[3], The strings chosen by this method of selection, though, are only candidate strings

fo1 \\\e. n.e'i,.\ \')\)\'J\l\a\\.()l\. ~e\.()"te &..\~'j \)em.ı C()\')\~~'1\\() \\\.~ l\~'N ~()~\l\a\\()~ \.\\.~~~

strings must unôergo crossover anı.\ mutation..

String Fitness Relative ( A)

V; eval(v;) Fitness

~ 10110 2.23 0.14

v2 11000 7.27 0.47

V3 11110 1.05 0.07

v, ()\ ()()\ ?ı ,?ıs ().2\

Vs 00\lO l.69 O.ll 

(B)

In figure (A) listing of the five-string population and the associated fitness values,

(b) Corresponding roulette wheel for string selection.

The integers shown on the roulette wheel correspond to string labels,

110101 1101101

1001100

(b) (c)

110100

100101•100100 •
(a)

An example (figure) of a crossover for two 6-bit strings,

(a) Two strings are selected for crossover.

(b) A crossover site is selected at random. In this case, k =4,

(c) Now swap the two strings after the k-th bit.

12



Pairs of the Ps (assume Ps even) candidate strings, which have survived selection,

are next chosen for crossover, which is a recombination mechanism. The probability

that the crossover operator is applied will be denoted by pc . Pairs of string are selected
;

randomly from G (t), withoutreplacement, for crossover. A random integer k, called the

crossing site, is chosen from { 1 ,2, ... m-1}, and then the tits from the two chosen strings

are swapped after the k-th bit with a probability Pc. This process is repeated until G (t)

is empty. For example. Figure 11.3. Illustrates a crossover for two ô-bit strings. In this

case, the crossing site k is 4, so the bits from the two strings are swapped after the fourth
bit.

Finally, after crossover, mutation is applied to the candidate strings. The

mutation operator is a stochastic bit-wise complementation applied with uniform

probability Pm. That is, for each single bit in the population, the value of the bit is

nipped from O to 1 or from 1 to O with probability Pm. As an example, suppose pm=O.

1, and the string v=1 1 100 is to undergo mutation. The easiest way to determine which

bits, if any, to flip is to choose a uniform random number re [0,1] for each bit in the

string. If r ~ pm ' then the bit is flipped; otherwise, no action is taken. For the string V

above, suppose the random numbers (0.91, 0.43, 0.03,0.67,0,29) were generated, and

then the resulting mutation is shown bellow. In this case, the third bit was flipped,

Before mutation: 11100

After mutation: 1 1000

After mutation, the candidate strings are copied into the new population of strings G

(t+ 1 ), and the whole process is repeated 141. " •

~
I

2.3. Genetic Algorithm

2.3.1. Basic Description

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to

a problem solved by genetic algorithms is evolved.
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Algorithm is started with a set of solutions (represented by chromosomes)

called population. Solutions from one population are taken and ·used to form a new

population. This is motivated by a hope, that the new population will be better than the

old one. Solutions which are, selected to form new solutions (offspring) are selected

according to their fitness ,the more suitabl~ they are the more chances they have to

reproduce.

This is repeated until some condition (for example number of populations or

improvementof the best solution) is satisfied.

2.3.2. Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (suitable solutions for the

problem)

2. [Fitness] Evaluate the fitnessf(x) of each chromosomex .in the population

3. [New population] Create a new population by repeating following steps until the

new population is complete

a. [Selection] Select two parent chromosomes from a population

according to their fitness (the better fitness, the bigger chance to be

selected)

b. [Crossover] With a crossover probability cross over the parents to

form a new offspring (children). If no crossover was performed,

offspring is an exact copy of parents.

c. [Mutation] WJth a mutation probability mutate new offspring at each

locus (position in chromosome).

d. [Accepting] Place new offspring in a new population•

. 4. [Replace]Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in

current population

6. [Loop] Go to step 2

14



Some Comments:

As we can see, the outline of Basic GA is very general. There are many things

that can be implementeddifferently İİıvarious problems.

First question is how to create chromosomes, what type of encoding choose.

With this is connected crossover and mutation; the two basic operators of GA.

Encoding, crossover and mutation are introduced iİ1 next chapter.

Next questions are how to select parents for crossover. This can be done in many

ways, but the main idea is to select the better parents (in hope that the better parents will

produce better offspring). Also you may think, that making new population only by new

offspring can cause lost of the best chromosome from the last population. This is true,

so so called elitism is often used. This means, that at least one best solution is copied

without changes to a new population, so the best solution found can survive to end of
run.

Maybe you are wandering, why genetic algorithms do work. It can be partially

explained by Schema Theorem (Holland), however, this theorem has been criticized in

recent time. If you want to know more, check other resources.

2.4. Operators ofGA

As you can see from the genetic algorithm, the crossover and mutation are the most

important part of the genetic algorithm. The performance is influenced mainly by these

two operators. Before we can" explain more about crossover and mutation, some

informationabout chromosomes will be given.
•

2.4.1. Encoding of a Chromosome

The chromosome should in some way contain information about solution that it

represents. The most used way of encoding is a binary string. The chromosome then
could look like this:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110
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Each chromosome has one binary string. Each bit in this string can represent

some characteristic of the solution. Or the whole string can represent a number - this has

been used in the basic GA.

Of course, there are many other ways of encoding. This depends mainly on the

solved problem. For example: one can encode directly integer or real numbers,

sometimes it is useful to encode some permutations and so on.

2.4.2. Crossover

After we have decided what encoding we will use, we can make a step to

crossover. Crossover selects genes from parent chromosomes and creates a new

offspring. The simplest way how to do this is to choose randomly some crossover point ·

and everything before this point copy from a first parent and then everything after a

crossover point copy from the second parent.

Crossover can then look like this ( I is the crossover point):

Chromosome 1 11011 I 0010011O 11 O

Chromosome 2 11011 I 110000111 10

Offspring 1 11011 I 11000011110

Offspring 2 11011 I 00100110110

There are other ways to make crossover, for example we can choose more

crossover points. Crossover can be rather complicated and very depends on encoding of

the encoding of chromosome. Specific crossovçr made for a specific problem can

improve performance of the genetic algorithm.
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~~~~~~~~~~~~~~- 

CHAPTER THREE

OPTIMIZATION PROBLEM

3. What Is Optimization'

Optimizationproblems are made up of three basic ingredients:

o An objective function which we want to minimize or maxımıze. For

instance, in a manufacturing process, we might want to maximize the profit

or minimize the cost. In fitting experimental data to a user-defined model, we

might minimize the total deviation of observed data from predictions based

on the model. In designing an automobile panel, we might want to maximize

the strength.

o A set of unknowns or variables which affect the value of the objective

function. In the manufacturing problem, the variables might include the

amounts of different resources used or the time spent on each activity. In

fitting-the-data problem, the unknowns are the parameters that define the

model. In the panel design problem, the variables used define the shape and

dimensions of the panel.

o A set of constraints that allow the unknowns to take on certain values but

exclude others. For the manufacturing problem, it does not make sense to

spend a negative amount of time on any activity, so we constrain all the

"time" variables to he non-negative. In the panel design problem, we would

probably want to limit the weight of the product and to constrain its shape.

•·ı,

The Optimization Tree is an online guide to the field of numerical optimization.

It introduces the different subfields of optimization and includes outlines of the major

algorithms in each area, with pointers to software packages where appropriate. The

connections between the Tree's web pages mirrors the relationships between these

different areas. Follow the pathways through the tree to see how everything hangs

together!
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3.1. Multi-Objective Optimization

3.1.1. Introduction

Most realistic optimization problems, particularly those in design, require the

simultaneousoptimizationofmore than one objective function. Some examples:

• In bridge construction, a good design is characterized by low total mass and high

stiffness.
• Aircraft design requires, simultaneous optimization of fuel efficiency, payload,

and weight. •

• In chemical plant design, or in design of a groundwater remediation facility,

objectives to be considered include total investment and net operating costs.

• A good sunroof design in a car could aim to minimize the noise the driver hears

and maximizethe ventilation.
• The traditional portfolio optimization problem attempts to simultaneously

minimizethe risk and maximize the fiscal return.
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In these and most other cases, it is unlikely that the different objectives would be

optimized by the same alternative parameter choices. Hence, some trade-off between

the criteria is needed to ensure a satisfactory design.

Multicriteria optimization has its roots in late-nineteenth-century welfare

economics, in the works of Edgeworth and Pareto. A mathematical description is as

follows:

min F(x) =rec

/ı(x)
fa(x)

... (MOP)

fil.(x)

where n >= 2 and

C = { x : h(x) = 07 g(x) < 07 a< x < b}

denotes the feasible set constrained by equality and inequality constraints and explicit

variable bounds. The space in which the objective vector belongs is called the objective

space and image of the feasible set under F is called the attained set.

The scalar concept of "optimality" does not apply directly in the multiobjective

setting. A useful replacement is the notion of Pareto optimality. Essentially, a vector
x* EC x EC

is said to be Pareto optimal for (MOP) if all other vectors have a higher

value for at least one of the objective functions fi ( • )' or else have the same value for all

objectives. Formallyspeaking, we have the followingdefinition;

•
x*EC

A point is said to be (glob ally) Pareto optimal or a (globally)

efficient solution or a non-dominated or a non-inferior point for (MOP) if and

. . x EC fi(x) < fi(x*) z E {17 27. ··7 "}
only if there ıs no such that for all ,

with at least one strict inequality.

Pareto optimal points are also known as efficient, non-dominated, or non-inferior

points.
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We can also speak of locally Pareto optimal points, for which the definition is

the same as the one just given, except that we restrict attention to a feasible

neighborhood ofx*. That is, ifB ( x\ o)denotes a ball of radius ıi'aroundthe point

We can also speak of locally Pareto optimal points, for which the definition is

the same as the one just given, except that we restrict attention to a feasible

neighborhood of x*. That is, if B ( x*, o)denotes a ball of radius ıi'aroundthe point x*,
o > o X E C n B ( x*, fi)

we require that for some , there is no such that

.h (x) < .fi (x*), for all i = {1, 2, ... , n}

with at least one strict inequality.

Typically, there is an entire curve or surface of Pareto points, whose shape

indicates the nature of the tradeoffbetween different objectives.

3.2. Stochastic Programming

3.2.1. Introduction

All of the model formulations that you have · encountered thus far in the

Optimization Tree have assumed that the data for the given problem are known

accurately. However, for many actual problems, the problem data cannot be known

accurately for a variety of reasons. The first reason is due to simple measurement error
@I

The second and more fundamental reason is that some data represent information about

the future (e.g., product demand or price for a future time period) and simply cannot be
·~ .

known with certainty. We will discuss a few ways of taking this uncertainty into

account and, specifically, illustrate how stochastic programming can be used to make

some optimal decisions;

3.2.2. Recourse

The fundamental idea behind stochastic linear programming is the concept of

recourse. Recourse is the ability to take corrective action after a random event has taken

place. A simple example of two-stage recourse is the following:
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• Choose some variables, x, to control what happens today.

• Overnight, a random event happens.

• Tomorrow, take some recourse action, y, to correct what may have gotten

messed up by the random event.

We can formulate optimization problems to choose x andy in an optimal way. In

this example, there are two periods; the data for the first period are known with certainty

and some data for the future periods are stochastic, that is, random.

Example

You are in charge of a local gas company. When you buy gas, you typically

deliver some to your customers right away and put the rest in storage. When you sell

gas, you take it either from storage or from newly-arrived supplies. Hence, your

decision variables are 1) how much gas to purchase and deliver, 2) how much gas to

purchase and store, and 3) how much gas to take from storage and deliver to customers.

Your decision will depend on the price of gas both now and in future time periods, the

storage cost, the size of your storage facility, and the demand in each period. You will

decide these variables for each time period considered in the problem. This problem can

be modelled as a simple linear program with the objective to minimizeoverall cost. The

solution is valid if the problem data are known with certainty, that is, if the future events

unfold as planned.

More than likely, the future will not be precisely as you have planned; you don't

know for sure what the price o, demand will be in future periods though you can make

good guesses. For example, if you deliver gas to your customers for heating purposes,

the demand for gas and its purchase price will be strongly dependent on the weather.

Predicting the weather is rarely an exact science; therefore, not taking this uncertainty

into account may invalidate the results from your model. Your '' optimal" decision for

one set of data may not be optimal for the actual situation.

3.2.3. Scenarios

Suppose in our example that we are experiencing a normal winter and that the

next winter can be one of three scenarios: normal, cold, or very cold. To formulate this

problem as a stochastic linear program, we must first characterize the uncertainty in the
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model. The most common method is to formulate scenarios and assign a probability to

each scenario. Each of these scenarios has different data as shown in the following

table:

Scenario I Probability Gas Cost($) j Demand (units) ı
Normal I 1/3 I 5.0

I
100

I
Cold I 1/3 6.0

I
150

I
Very Cold I 1/3 I 7.5

I
180

I

Both the demand for gas and its cost increase as the the weather becomes colder.

The storage cost is constant, say, 1 unit of gas is $ 1 per year. If we solve the linear

program for each scenario separately, we arrive at three purchase/storage strategies:

• Normal - Normal

Year Purchase to Use Purchase to Store Storage Cost

1 100 o o 500

2 100 o o 500

• Total Cost= $1000

• Normal - Cold

Year Purchase to Use Purchase to Store Storage Cost

1 100 o o 500
• •

2 150 o o 900

• Total Cost= $1400

• Normal - Very Cold
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Year Purchase to Use Purchase to Store Storage Cost

1 100 180 180 1580

2 o o o o

• Total Cost= $1580

We do not know which of the three scenarios will actually occur next year, but

we would like our current purchasing decision to put is in the best position to minimize

our expected cost. Bear in mind that by the time we make our second purchasing

decision, we will know which of the three scenarios has actually happened.

3.3. Formulating a Stochastic Linear Program

Stochastic programs seek to minimize the cost of the first-period decision plus

the expected cost of the second-period recourse decision.

••
Subject to Ax = b

x~O 

where

Q(x, w) = Mind(w)Ty •

Subject to T(w)x+W(w)y(w) = h(w)

The first linear program minimizes the first-period direct costs, cTx plus the expected

recourse cost, Q(x, w) over all of the possible scenarios while meeting the first-period

constraints,Ax = b
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The recourse cost Q depends both on x, the first-period decision, and on the

random event, w. The second LP describes how to choose y(w) (a 'different decision for

each random scenario ). It minimizes the cost dry subject to some recourse function,

Tx + Wy = h. This constraint can be thought of as requiring some action to correct the

system after the random event occurs. In our example, this constraint would require the

purchase of enough gas to supplement the original amount on hand in order to meet the

demand.

One important thing to notice in stochastic programs is that the first-period

decision, x, is independent of which second-period scenario actually occurs. This is

called the nonanticipativity property. The future is uncertain and so today's decision

cannot take advantage ofknowledge of the future.

3.4. Deterministic Equivalent

The formulation above looks a lot messier than the deterministic LP formulation

that we discuss elsewhere. However, we can express this problem in a deterministic for

by introducing a different second-period y variable for each scenario. This formulation

is called the deterministic equivalent.

Subject to Ax = b

Ta+ w;y; = h;,i = l, ..... ,N
x~O 
Y; ~O •• •

where N is the number of scenarios and is the probability of the scenario's occurrence.

For our three-scenario problem, we have
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S.t. Ax= b

J'ıx + WıYı = h;
Tıx + WıYı = hı
T3X + W3y3 = h3
x.y, :?:0

Notice that the nonanticipativity constraint is met. There is only one first-period

decision; x, whereas there are N second-period decisions, one for each scenario. The

first-period decision cannot anticipate one scenario over another and must be feasible

for each scenario. That is, Ax= band T; x + W; yı = h, for i = J,••• ,N Because we solve

for all the decisions, x and yı simultaneously, we are choosing x to be (in some sense)

optimal over all the scenarios.

Another feature of the deterministic equivalent is worth noting. Because the T

and W matrices are repeated for every scenario in the model, the size of the problem

increases linearly with the number of scenarios. Since the structure of the matrices

remains the same and because the constraint matrix has a special shape, solution

algorithms can take advantage of these properties. Taking uncertainty into account leads

to more robust solutions but also requires more computational effort to obtain the

solution.

3.5. Comparisons with Other Formulations

Because stochastic programs require more data and computation to solve, most
• •

people have opted for simpler solution strategies. One method requires the solution of

the problem for each scenario. The solutions to- these problems are then examined to

find where the solutions are similar and where they are different. Based on this

information;subjective decisions can be made to decide the best strategy.

3.5.1. Expected-Value Formulation

A more quantifiable approach is to solve the original LP where all the random

data have been replaced with their expected values. Hopefully in this approach we will
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do all right on average. For our example then, we consider the (expected value)

problem data to be,

Year Gas cost($) Demand

1 5.0 100

2 6.167 143.33

Solvingthis problem gives the following result,

Year Purchase to Use Purchase to Store Storage Cost

1 100 143.33 143.33 1360

2 o o o o

Cost= $1360.00

Let's compute what happens in each scenario if we implement the expected value

solution:

Scenario Recourse Action Recourse Cost Total Cost

Normal Store 43.33 excess@ $1 per unit 43.33 1403.33

Cold Buy 6.67 units @ $6 per unit 40 1400

Very Cold Buy 36.67 units@ $7.5 per unit 275 1635

_!_ 1403.33+ _!_ 1400+ _!_ 1635 = $1'479.44
3 3 3 •.

" •
The expected total cost over all scenarios is

3.5.2 - Stochastic Programming Solution

Forming and solvingthe stochastic linear program gives the following solution:

Year Purchase to Use Purchase to Store Storage Cost

INormal 100 100 100 1100
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. 2Normal o o o o
2 Cold 50 o .O 300

2 Normal 80 o o 600

1 1Cost= 1100+-300 +-600= $1400
3 3

Similarly we can compute the costs for the stochastic programming solution for each

scenario:

Scenario Recourse Action Recourse Cost Total Cost

Normal None o 1100

Cold Buy 50 units @ $6 per unit 300 1400

Very Cold Buy 80 units@ $7.5 per unit 600 1700

The expected total cost over all scenarios is .!.1100+ .!.1400+ .!.1100= $1400
3 3 3

The difference in these average costs ($79.44) is the value of the stochastic

solution over the expected-value solution. Also notice that the cost of the stochastic

solution is greater than or equal to the optimal solution for each scenario solved

separately 1100 ~ 1000,1400~ 1400 andl635 ~ 1580. By solving each scenario alone,

one assumes perfect information about the future to obtain a minimum cost. The

stochastic solution is minimizingover a number of scenarios and, as a result, sacrifices

the minimum cost for each scenario in order to obtain a robust solution over all the

scenarıos. •

Conclusion

Randomness in problem data poses a serious challenge for solving many linear

programming problems. The solutions obtained are optimal for the specific problem but

may not be optimal for the situation that actually occurs. Being able to take this

randomness into account is critical for many problems where the essence of the problem
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is dealing with the randomness in some optimal way. Stochastic programming enables

the modeller to create a solution that is optimal over a set of scenarios.

3.5.3. Solution Techniques

The multiobjective problem is almost always solved by combining the multiple

objectives into one scalar objective whose solution is a Pareto optimal point for the

original MOP. Most algorithms have been developed in the linear framework (i.e. linear

objectives and linear constraints), but the techniques described below are also applicable

to nonlinearproblems.

3.6. Minimizing Weighted Sums of Functions

A standard technique for MOP is to minimize a positively weighted convex sum

of the objectives, that is,

fl.E~,ı,(x)?
i=l

It is easy to prove that the minimizer of this combined function is Pareto

optimal. It is up to the user to choose appropriate weights. Until recently, considerations

of computational expense forced users to restrict themselves to performing only one

such minimization.Newer, more ambitious approaches aim to minimizeconvex sums of

the objectives for various settings of the convex weights, therefore generating various

points in the Pareto set. Though computationally more expensive, this approach gives an
"'idea of the shape of the Pareto surface and provides the user with more information

about the trade-off among the various objectives. However, this method suffers from
- .

two drawbacks. First, the relationship between the vector of weights and the Pareto

curve is such that a uniform spread of weight parameters rarely produces a uniform

spread of points on the Pareto set. Often, all the points found are clustered in certain

parts of the Pareto set with no point in the interesting "middle part" of the set, thereby

providing little insight into the shape of the trade-off curve. The second drawback is that

non-convex parts of the Pareto set cannot be obtained by minimizing convex

combinations of the objectives (note though that non-convex Pareto sets are seldom

found in actual applications).
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3.7. Homotopy Techniques

Homotopy techniques aim to trace the complete Pareto curve in the bi-objective

case (n=2). By tracing the full curve, they overcome the sampling deficiencies of the

weighted-sum approach. Themain drawback is that this approach does not generalize to

the case of more than two obje'ctives.For more information, see Rao and Papalambros

and Rakowska, Ha:ftka, and Watson.

3.8. Goal Programming

In the goal programming approach, we minimize one objective while

constraining the remaining objectives to be less than given target values. This method is

especiallyuseful if the user can afford to solve just one optimization problem. However,

it is not always easy to choose appropriate '' goals" for the constraints. Goal

programming cannot be used to generate the Pareto set effectively, particularly if the

number of objectives is greater than two.

3.9. Normal-Boundary Intersection (NBI)

The · normal-boundary intersection method uses a geometrically intuitive

parametrization to produce an even spread of points on the Pareto surface, giving an

accurate picture of the whole surface. Even for poorly scaled problems (for which the

relative scalings on the objectives are vastly different), the spread of Pareto points

remains uniform. Given any point generated by NBI, it is usually possible to find a set

"of weights such that this point minimizes a weighted sum of objectives, as described

above. Similarly, it is usually possible to define a goal programming problem for which

the NBI point is a solution. NBI can also handle problems where the'Parete surface is

discontinuous or non-smooth, unlike homotopy techniques. Unfortunately, a point

generated by NBI may not be a Pareto point if the boundary of the attained set in the

objective space containing the Pareto points is nonconvex or 'folded' (which happens

rarely in problems arising from actual applications).

NBI requires the individual minimizers of the individual :functions at the outset,

which can also be viewed as a drawback.



3.10. Multilevel Programming

Multilevel programming is a one-shot optimization technique and is intended to

find just one '' optimal" point as opposed to the entire Pareto surface. The first step in

multilevel programming involves ordering the objectives in terms of importance. Next,
xEC 

we find the set of points for which the minimum value of the first objective

function is attained. We then find the points in this set that minimize the second most

important objective. The method proceeds recursively until all objectives have been

optimized on successivelysmaller sets.

Multilevel programming is a useful approach if the hierarchical order among the

objectives is of prime importance and the user is not interested in the continuous trade­

off among the functions. However, problems lower down in the hierarchy become very

tightly constrained- and often become numerically infeasible, so that the less important

objectives have no influence on the final result. Hence, multilevel programming should

surely be avoided by users who desire a sensible compromise solution among the

various objectives.

3.11. Objective Function

Almost all optimization problems have a single objective function. (When they don't

they can often be reformulated so that they do!) The two interesting exceptions are:

• No objective function. In some cases (for example, design of integrated circuit

layouts), the goal is to find a set of variables that satisfies the constraints of the

model. The user does not particularly want to optimize anything so there is no

reason to define an objective function. This type of problems'is usually called a

feasibility problem.

• Multiple objective functions. Often, the user would actually like to optimize a

number of different objectives at once. For instance, in the panel design

problem, it would be nice to minimize weight and maximize strength ·

simultaneously. Usually, the different objectives are not compatible; the

variables that optimize one objective may be far from optimal for the others. In

practice, problems with multiple objectives are reformulated as single-objective

problems by either forming a weighted combination of the different objectives
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or else replacing some of the objectives by constraints. These approaches and

others are described in our section on multi-objectiveoptimization.

3.12. Unconstrained Optimization
j

The unconstrained optimization problem is central to the development of

optimization software. Constrained optimization algorithms are often extensions of

unconstrained algorithms, while nonlinear least squares and nonlinear equation

algorithms tend to be specializations. In the unconstrained optimization problem, we

seek a local minimizer of a real-valued function, f(x), where x is a vector of real

variables. In other words, we seek a vector, x*, such that

f(x*)<= f(x) for all x close to x*.

Global optimization algorithms try to find an x* that minimizes f over all

possible vectors x. This is a much harder problem to solve. We do not discuss it here

because, at present, no efficient algorithm is known for performing this task. For many

applications, local minima are good enough, particularly when the user can draw on

his/her own experience and provide a good starting point for the algorithm.

Newton's method gives rise to a wide and important class of algorithms that

require computation of the gradient vector

v'J(x) =

and the Hessian matrix, •

v'2 f(x) = (a 1oJ(x))

Although the computation or approximation of the Hessian can be a time-consuming

operation, there are many problems for which this computation is justified. We describe

algorithms in which the user supplies the Hessian explicitly before moving on to a

discussionof algorithms that don't require the Hessian.
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Newton's method forms a quadratic model of the objective function around the

current iterate x k • The model function is defined by

In the basic Newton method, the next iterate is obtained from the minimizer

ofqk . When the Hessian matrix, v'2 f(xk), is positive definite, the quadratic model

has a unique minimizer that can be obtained by solving the symmetric n x n linear

system:

The next iterate is then

Convergence is guaranteed if the starting point is sufficiently close to a local

minimizer x* at which the Hessian is positive definite. Moreover, the rate of

convergence is quadratic, that is,

for some positive constant f3

"In most circumstances, however, the basic Newton method has to be modified to

achieve convergence.
•

These codes obtain convergence when the starting point is not close to a

minimizerby using either a line-search or a trust-region approach.

The line-search variant modifies the search direction to obtain another a

downhill, or descent direction for f It then tries different step lengths along this

direction until it finds a step that not only decreases f, but also achieves at least a small

fraction of this direction's potential.
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The trust-region variant uses the original quadratic model function, but they

constrain the new iterate to stay in. a local neighborhood of the current iterate. To find

the step, then, we have to minimize the quadratic subject to staying in this

neighborhood, which is generally ellipsoidal in shape.

Line-search and trust-region techniques are suitable if the number of variables

is not too large, because the cost per iteration is of order . Codes for problems with a

large number of variables tend to use truncated Newton methods, which usually settle

for an approximate minimizer of the quadratic model.

So far, we have assumed that the Hessian matrix is available, but the algorithms

are unchanged if the Hessian matrix is replaced by a reasonable approximation. Two

kinds of methods use approximate Hessians in place of the real thing:

The first possibility is to use difference approximations to the exact Hessian. We.

exploit the fact that each column of the Hessian can be approximated by taking the

difference between two instances of the gradient vector evaluated at two nearby points.

For sparse Hessians, we can often approximate many columns of the Hessian with a

single gradient evaluation by choosing the evaluation points judiciously.

Quasi-Newton Methods build up an approximation to the Hessian by keeping

track of the gradient differences along each step taken by the algorithm. Various

conditions are imposed on the approximate Hessian. For example, its behavior along the

step just taken is forced to mimic the behavior of the exact Hessian, and it is usually

kept positive definite. @I

Finally, we mention two other approaches for unconstrained.problems that are•
not so closely related to Newton's method:

Nonlinear conjugate gradient methodsare motivated by the success of the linear

conjugate gradient method in minimizing quadratic. functions with positive definite

Hessians. They use search directions that combine the negative gradient direction with

another direction, chosen so that the search will take place along a direction not

previously explored by the algorithm. At least, this property holds for the quadratic
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case, for which the minimizer is found exactly within just n iterations. For nonlinear

problems, performance is problematic, but these methods do have the advantage that

they require only gradient evaluations and do not use much storage.

,
The nonlinear Simplex method (not to be confused with the simplex method for

linear programming) requires neither gradient nor Hessian evaluations. Instead, it

performs a pattern search based only on function values. Because it makes little use of

information about f it typically requires a great many iterations to find a solution that is

even in the ballpark. It can be useful when f is non smooth or when derivatives are

impossible to find, but it is unfortunately often used when one of the algorithms above

would be more appropriate.

3.13. NON,.LINEAR OPTIMIZATION

3.13.1. Non-linear optimization

The general constrained optimization problem is to minimize a nonlinear

function subject to nonlinear constraints. Two equivalent formulations of this problem

are useful for describing algorithms. They are

min{J(x): c, (x):s; O,i e T,c;(x) = O,i es}

Where each c, is a mapping from st" tom, and T and e are index sets for

, inequality and equality constraints, respectively; and

"min {J(x },c(x) = 0,/ :s; x :s; u}

• •Where c maps mn to mm, and the lower- and upper-bound vectors, 1 and u ,

may contain some infinite components.

The main techniques that have been proposed for solving constrained

optimization problems are reduced-gradient methods, sequential linear and quadratic

programming methods, and methods based on augmented Lagrangians and exact

penalty functions. Fundamental to the understanding of these algorithms is the

Lagrangian function, which for formulation (3. 1) is defined as:
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lE'(UE

The Lagrange is used to express first-order and second-order conditions for a

local minimizer. We simplify matters by stating just first-order necessary and second­

order sufficiencyconditions without trying to make the weakest possible assumptions.

The first-order necessary conditions for the existence of a local minimizer x• of

the constrained optimization problem (3. I) require the existence of Lagrange

multipliersA; , such that

y' xL(x· ,A·)= vı~· )+ L..ı;vc;(x· )= o
ieA• 

Where,

Is the active set at x • , and A; ~ O if i e A· n I . This result requires a

constraint qualification to ensure that the geometry of the feasible set is adequately

captured by a linearization of the constraints about x * . A standard constraint

qualification requires the constraint normal,v'c, (x · ) for i e A· , to be linearly

independent.

The second-order sufficiency condition requires that (x ·, J*) satisfies the first­

order condition and that the Hessian of the Lagrangian

v'2xxl~·,x)=V2 J(x·)+ LA~'v2c;(x·)
ieA'

•
Satisfiesthe condition

For all nonzero cu in the set

J n (•)T • (•)T •llwe9ı :Ve; x m=O,i&T +U&1v'c; x m'5:.0,ieT0 ~
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Where

The previous condition guarantees that the optimization problem is well behaved

near x • ; in particular, if the second-order sufficiencycondition holds, then x • is a strict

local minimizerof the constrained problem. An important ingredient in the convergence

analysis of a constrained algorithm is its behavior in the vicinity of a point

(x',,ı*) that satisfies the second-order sufficiencycondition.

3.13.2. The sequential quadratic programming algorithm

It is a generalization of Newton's method for unconstrained optimization in that

it finds a step away from the current point by minimizing a quadratic model of the

problem. A number of packages, including NPSOL, NLPQL, OPSYC, OPTIMA,

MATLAB, and SQP, are founded on this approach. In its purest form, the sequential QP

algorithmreplaces the objective function with the quadratic approximation

and replaces the constraint functions by linear approximations. For the formulation

(3. 1 ), the step dk is calculated by solving the quadratic subprogram

•

The local convergence properties of the sequential QP approach are well

understood when (x' ,ıl°) satisfies the second-order sufficiency conditions. If the

starting point x0 is sufficiently close to x • , and the Lagrange multiplier estimates

{lk} remain sufficiently close to X , then the sequence generated by setting

xk+ı = xk + dk converges to x· at a second-order rate. These assurances cannot be made
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(x, ,,ı) L = J(x) + L A;Ci (x)
ierue

The Lagrange is used to express first-order and second-order conditions for a

local minimizer. We simplifymatters by stating just first-order necessary and second­

order sufficiencyconditions without trying to make the weakest possible assumptions.

The first-order necessary conditions for the existence of a local minimizer x• of

the constrained optimization problem (3. 1) require the existence of Lagrange

multipliers,,ı; , such that

V xL(x· .r )= Vf(x· )+ L,,ı;vc;(x· )= O
ieA"

Where,

Is the active set at x • , and { ~ O if i e A· n I . This result requires a

constraint qualification to ensure that the geometry of the feasible set is adequately

captured by a linearization of the constraints about x * . A standard constraint

qualification requires the constraint normal, VC; (x ·) for i e A· , to be linearly

independent.

The second-order sufficiency condition requires that (x ·, .r ) satisfies the first­

order condition and that the Hessian of the Lagrangian

V2xxL(x·,,,ı·)=V2 J(x·)+ 11;v2c;(x·)
ieA• 

•
Satisfiesthe condition

For all nonzero OJ in the set

j n (•)T • (•)T .ılw E 9l : Ve, x OJ= O,icT + uc1Vc; x OJ:$ O,i E T0}
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Where

The previous condition guarantees that the optimization problem is well behaved

near x ·; in particular, if the second-order sufficiency condition holds, then x • is a strict

local minimizer of the constrained problem. An important ingredient in the convergence

analysis of a constrained algorithm is its behavior in the vicinity of a point

that satisfies the second-order sufficiencycondition.

3.13.2. The sequential quadratic programming algorithm

It is a generalization of Newton's method for unconstrained optimization in that

it finds a step away from the current point by minimizing a quadratic model of the

problem. A number of packages, including NPSOL, NLPQL, OPSYC, OPTIMA,

MATLAB, and SQP, are founded on this approach. In its purest form, the sequential QP

algorithm replaces the objective function with the quadratic approximation

and replaces the constraint functions by ~ear approximations. For the formulation

(3.1 ), the step dk is calculated by solving the quadratic subprogram

"'
•

The local convergence properties of the sequential QP approach are well

understood when (x' ,,ı*) satisfies the second-order sufficiency conditions. If the

starting point x0 is sufficiently close to x • , and the Lagrange multiplier estimates

{,.ık} remain sufficiently close to ,.ı•, then the sequence generated by setting

xk+ı = xk + dk converges to x· at a second-order rate. These assurances cannot be made
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in other cases. Indeed, codes based on this approach must modify the sub-problem

when the quadratic qk is unbounded below on the feasible set or when the feasible

region is empty.

The Lagrange multiplier estimates that are needed to set up the second-order

term in qk can be obtained by solving an auxiliary problem or by simply using the

optimal multipliers for the quadratic sub-problem at the previous iteration. Although the

first approach can lead to more accurate estimates, most codes use the second approach.

The strategy based on makes the decision about which of the inequality

constraints appear to be active at the solution internally during the solution of the

quadratic program. A somewhat different algorithm is obtain,edby making this decision

prior to formulating the quadratic program. This variant explicitly maintains a working

set Wk of apparently active indices and solves the quadratic programming problem

To find the step dk. The contents of Wk updated at each iteration by examining

the Lagrange multipliers for the sub-problem and by examining the values of

c, (x, + l)at the new iterate xk + 1 for i e Wk. This approach is usually called the EQP

(equality-based QP) variant of sequential QP, to distinguish it from the IQP (inequality­

based QP) variant described above.

The sequential QP approach outlined above requires the computation of

V2xxL(xk,).,k ). Most codes replace this matrix with the BFGS approximation Bk,
•which is updated at each iteration. An obvious update strategy (consistent with the

BFGS update for unconstrained optimization) would be to define

and update the matrix Bk by using the BFGS formula

37



However, one of the properties that make Broyden-class methods appealing for

unconstrained problems-its maintenance of positive definiteness in Bk is no longer

assured, since V!xL(x ·, ,f) is usually positive definite only in a subspace. This difficulty

may be overcome by modifying Yk . Whenever Y/ 8 k is not sufficiently positive, Yk is

reset to

Where Bk e[O,l)is the number closest to 1 such that Y/8k ~a8IBk8kfor some

a E (o,ı). The SQP and NLPQL codes use an approach of this type.

The convergence properties of the basic sequential QP. algorithm can be

improved by using a line search. The choice of distance to move along the direction

generated by the sub-problem is not as clear as in the unconstrained case, where we

simply choose a step length that approximately minimizesf along the search direction.

For constrained problems we would like the next iterate not only to decrease f but also

to come closer to satisfying the constraints. Often these two aims conflict, so it is

necessary to weigh their relative importance and define a merit or penalty function,

which we can use as a criterion for determining whether or not one point is better than

another. The /1 merit function

Pı(x;v) = f(x) + z>J;(x)I + :~:::vi max(c;(x),O),
iee ieT

Where vi )O are penalty parameters, is used in the NLPQL, MATLAB, and SQP codes,

while the augmented Lagrangian merit function •

Where
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ls used in the NLPQL, NPSOL, and OPTIMA codes. The OPSYC code for

equality-constrained problems (for which T = <l>) uses the merit function

I

f(x)+ Lıtici(x) +( Iv;c;(x) )2
tes ies

Which combines features of P., and LA .

An important property Of the /1 merit function is that if (x' ,,f) satisfies the

second-order sufficiency condition, then x • is a local minimizer of P., , provided the

penalty parameters are chosen so that v, )jıı; j . Although this is an attractive property, the

use ofP., requires care. The main difficulty is that P., is not differentiable at any

x withe; (x) =O. Another difficulty is that although x • is a local minimizer of P.,, it is

still possible for the function to be unbounded below. Thus, minimizing P., does not

always lead to a solution of the constrained problem.

The merit function LA has similar properties. If (x ·, X) satisfies the second­

order sufficiency condition and A= ,ı•, then x is a local minimizer of P.,, provided

the penalty parameters vi are sufficiently large. If A"# 2°, then we can say only that

LAhas a minimizer x(ıt)near x·and that x(A)approaches x·as ııconverges to ıı·.
Note that in contrast to P., , the merit function LA is differentiable. The Hessian matrix

of LA is discontinuous at any x with Ai + v.c, (x) = O for i e T, but, at least in the case

1; = <l>, these points tend to occur far from the solution.

•
The use of these merit functions by NLPQL is typical of other codes. Given an

iterate xk and the search direction dk, NLPQL sets xk+ı = xk + akdk, where the step

length ak approximately minimizes (xk + adi; v). If the merit function LA is selected,

the length chosenstep approximatelyto mınımıze

LA (x, + ad, ,Ak+ a(lk+ı -Ak );v), where dk is a solution of the quadratic programming

sub-problem and lk+ı is the associated Lagrange multiplier.
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Where the mapping h is defined implicitlyby the equation

(We have assumed that the' components of have been arranged so that the basic

variables come first.) In practice, x8 = h(xN )

Can be recalculated using Newton's method whenever xN changes. Each Newton

iteration has the form

Where o8c is the Jacobian matrix of c with respect to the basic variables. The

original constrained problem is now transformed into the bound-constrained problem.

Algorithms for this reduced sub-problem subdivide the no basic variables into

two categories. These are the fixed variables xF , which usually include most of the

variables that are at either their upper or lower bounds and that are to be held constant

on the current iteration, and the super basic variables xs , which are free to move on

this iteration. The standard reduced-gradient algorithm, implemented in CONOPT,

searches along the steepest-descent direction in the super basic variables. The

generalized reduced-gradient codes GRG2 and LSGRG2 use more sophisticated
"approaches. They either maintain a dense BFGS approximation of the Hessian of f

with respect to Xs or use limited-memory conjugate gradient technicı.ues. MINOS also
•

uses a dense approximation to the super basic Hessian matrix. The main difference

between MINOS and the other three codes is that MINOS does not apply the reduced­

gradient algorithm directly to problem, but rather uses it to solve a linearly constrained

sub-problem to find the next step. The overall technique is known as a projected

augmented Lagrangian algorithm.

Operations involving the inverse of o 8c(x 8, x N) are frequently required ın

reduced-gradient algorithms. These operations are facilitated by an LU factorization of
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the matrix. GRG2 performs a dense factorization, while CONOPT, MINOS, and

LSGRG2 use sparse factorization techniques, making them more suitable for large-scale

problems.

When some of the components of the constraint functions are linear, most

algorithms aim to retain feasibility of all iterates with respect to these constraints. The

optimization problem becomes easier in the sense that there is no curvature term

corresponding to these constraints that must be accounted for and, because of

feasibility; these constraints make no contribution to the merit function. Numerous

codes, such as NPSOL, MINOS and some routines from the NAG (NAG Fortran or

NAG C) library, are able to take advantage of linearity in the constraint set. Other

codes, such as those in the IMSL, PORT 3, and PROC NLP libraries, are specifically

designed for linearly constrained problems. -The IMSL codes are based on a sequential

quadratic programming algorithm that combines features of the EQP and IQP variants.

At each iteration, this algorithm determines a set Nkof near-active indices.defined by:

Where the tolerances r, tend to decrease on later iterations. The step dK ıs

obtained by solving the sub-problem.

Where

And BK is a BFGS approximation to v'2 f(xK). This algorithm is designed to avoid the

short steps that EQP methods sometimes produce, without taking many unnecessary

constraints into account, as IQP methods do.

3.13.5. Feasible sequential quadratic programming algorithms

Finally, we mention feasible sequential quadratic programming algorithms,

which, as their name suggests, constrain all iterates to be feasible. They are more
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expensive than standard sequential QP algorithms, but they are useful when the

objective function f is difficult or impossible to calculate outside the feasible set, or

when termination of the algorithm at an infeasible point (which may happen with most

algorithms) is undesirable. Th~ code FSQP solves problems of the form

min{/(x): c(x) :S O,Ax = b}

In this algorithm, the step is defined as a combination of the sequential QP

direction, a strictly feasible direction (which points into the interior of the feasible set)

and, possibly, a second-order correction direction. This mix of directions is adjusted to

ensure feasibilitywhile retaining fast local convergence properties. Feasible algorithms

have the additional advantage that the objective function f can be used as a merit

function, since, by definition, the constraints are always satisfied. FSQP also solves

problems in which f is not itself smooth, but is rather the maximum of a finite set of

smooth functions

•

43



CHAPTER FOUR

GENETIC ALGORITHMS BASED ON OPTIMIZATION

4. Optimization based on Genetic Algorithms

Genetic algorithms were formally introduced in the United States in the 1970s

by John Holland at University of Michigan. The continuing price/performance

improvements of computational systems have made them attractive for some types of

optimization. In particular, genetic algorithms work very well on mixed (continuous and

discrete), combinatorial problems. They are less susceptible to getting 'stuck' at local

optima than gradient search methods. But they tend to be computationally expensive.

To use a genetic algorithm, you must represent a solution to your problem as a

genome (or chromosome). The genetic algorithm then creates a population of solutions

and applies genetic operators such as mutation and crossover to evolve the solutions in

order to find the best one.

This presentation outlines some of the basics of genetic algorithms. The three

. most important aspects of using genetic algorithms are:

(1) Definitionof the objective function.

(2) Definitionand implementation of the genetic representation.

(3) Definitionand implementation of tl\e genetic operators

•••Once these three have been defined, the generic genetic algorithm should work

fairly well. Beyond that you can try many different variations to improve performance,

find multipleoptima (species - if they exist), or parallelismthe algorithms,

Genetic algorithm (GA) uses the principles of evolution, natural selection, and

genetics from natural biological systems in a computer algorithm to simulate evolution.

Essentially, the genetic algorithm is an optimization technique that performs a parallel,

stochastic, but directed search to evolve the most fit population. In this section we will

introduce the genetic algorithm and explain how it can be used for design of fuzzy
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systems. The genetic algorithm borrows ideas from and attempts to simulate Darwin's

theory on natural selection and Mendel's work in genetics on inheritance. The genetic

algorithm is an optimization technique that evaluates more than one area of the search

space and can discover more than one solution to a problem In particular, it provides a

stochastic optimization method where if it "gets stuck" at a local optimum, it tries to

simultaneously find other parts of the search space and jump out" of the local optimum

to a global one.

startı
~ analysis program

\ meıit tuncJn evaluation
(loop) ı
L convergen1 test---+ end

modification algorithm

Figure 4.1 Characteristics common to all optimizers

4.1. Genetic Algorithm Structural Optimization

Atomistic models of materials can provide accurate total energies. For problems

where the structures are not known, however, discovering the lowest energy geometry is

difficult. This is particularly true for atomic clusters, whose structure may vary

dramatically with a small change in the number of atoms. For this type of problem, the

number of possible stable structures increases exponentially fast with the number of

atoms. Furthermore, there is considerable experimental difficulty in determining the

structure of an atomic cluster. We have been able.to address this problem using a novel

approach to applying genetic algorithms. The Darwinian evolution process inspires

these algorithms. A population of structures is maintained, and "mating" structures and

selecting out the lowest energy geometries produce new generations,

The key to a successful genetic algorithm is to design a mating process that

allows for the good parts of the parent structures to be inherited by the next generation.

Such a process allows for efficient searching of the possible stable structures. A poor

mating algorithm is no better than a random search. We have designed a new mating
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process, depicted at left. Two structures are chosen as "parent" structures, Each one is

divided into two halves by a cleavage plane. A new structure is generated by connecting

half of each parent into a new cluster, followed by atomic relaxation to a local

minimum.

4.2. Genetic Algorithm

4.2.1. Basic Description

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to

a problem solved by genetic algorithms is evolved.

Algorithm is started with a set of solutions (represented by chromosomes) called

population. Solutions from one population are taken and used to form a new population.

This is motivated by a hope, that the new population will be better than the old one.

Solutions which are selected to form new solutions (offspring) are selected according to

their fitness ,the more suitable they are the more chances they have to reproduce.

This is repeated until some condition (for example number of populations or

improvement of the best solution) is satisfied.

4.2.2. Outline of the Basic Genetic A1gorithm •

1. [Start] Generate random population of n chromosomes (suitable solutions for the
problem)

2. [Fitness] Evaluate the fitnessf(x) of each chromosomex in the population

3. [New population] Create a new population by repeating following steps until the

new population is complete

4. [Selection] Select two parent chromosomes from a population according to their

fitness (the better fitness, the bigger chance to be selected)
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5. [Crossover] With a crossover probability cross over the parents to form a new

offspring (children). If no crossover was performed, offspring is an exact copy

of parents.

6. [Mutation] With a nıntation probability mutate new offspring at each locus

(position in chromosome).

7. [Accepting] Place new offspring in a new population

8. [Replace] Use new generated population for a further run of algorithm

9. [Test] If the end condition is satisfied, stop, and return the best solution in

current population

10. [Loop] Go to step 2

Some Comments:

As you can see, the outline of Basic GA is very general. There are many things

that can be implementeddifferently in various problems.

First question is how to create chromosomes, what type of encoding choose.

With this is connected crossover and mutation; the two basic operators of GA.

Encoding, crossover and mutation are introduced in next chapter.

Next questions are how to select parents for crossover. This can be done in many

ways, but the main idea is to select the better parents (in hope that the better parents will

produce better offspring). Also you may think, that making new population only by new

offspring can cause lost of the pest chromosome from the last population. This is true,

so so called elitism is often used. This means, that at least one best solution is copied

without changes to a new population, so the bestsolution found can-survive to end of

run.

Maybe you are wandering, why genetic algorithms do work. It can be partially

explained by Schema Theorem (Holland), however, this theorem has been criticized in

recent time. If you want to know more, check other resources.
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4.3. Operators of GA

As you can see from the genetic algorithm, the crossover and mutation are the

most important part of the genetic algorithm. The performance is influenced mainly by
I

these two operators. Before we can explain more about crossover and mutation, some

informationabout chromosomes will be given.

4.3.1. Encoding of a Chromosome

The chromosome should in some way contain information about solution that it

represents. The most used way of encoding is a binary string. The chromosome then

could look like this:

Chromosome 1 11O110010011011O

Chromosome 2 1101111000011110

Each chromosome has one binary string. Each bit in this string can represent

some characteristic of the solution. Or the whole string can represent a number - this has

been used in the basic GA.

Of course, there are many other ways of encoding. This depends mainly on the

solved problem. For example, one can encode directly integer or real numbers,

sometimes it is useful to encode some permutations and so on.

4.3.2. Crossover

••
After we have decided what encoding we will use, we can make a step to

crossover. Crossover selects genes from parent chromosomes and creates a new
••~ offspring. The simplest way how to do this is to choose randomly some crossover point

and everything before this point copy from a first parent and then everything after a

crossover point copy from the second parent.

Crossover can then look like this ( I is the crossover point):

Chromosome 1 11011 I 00100110110

Chromosome 2 11011 I 11000011110
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Offspring 1 11011 I 11000011110

Offspring 2: 11011 1 00100110110

There are other ways to make crossover, for example we can choose more

crossover points. Crossover can be rather complicated and very depends on encoding of

the encoding of chromosome. Specific crossover made for a specific problem can

improveperformance of the genetic algorithm.

••
•
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CHAPTER FIVE

GENETIC

PROBLEMS

ALGORITHM FOR FORECASTING

5. Forecasting Approach

Nodes has implemented an efficient predictive tool to be used for financial

applications, combining up-to-date artificial intelligence technologies such as genetic

algorithms and neural networks. It integrates a wide variety of data preprocessing,

visualizationand control facilities in a modular, user-friendly environment.

It is ideally suited for financial time series prediction, allowing automatic input

data selection, multiple neural forecasting approaches, and various output data charting

styles. Statistical analysis enables the computation of specific performance measures for

the predicted values and the estimation of their associated confidence intervals. The

system logs on disk all important information related to the current experiment.

DATA CONDITIONING NEURAL EXPERTS

DATA
SOURCE

Time Series
Processor

Neuro­
Genetic

Predictor
(NGP)

: FORECASTHistorical
Series
Pool

REAL-TNE DATA

The general structure of the system in the figure above includes the following
modules:

• historical database:it consists of a pool of economical and technical indicators

time series, obtained from a high quality data source like Datastream, VWD.
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• Time Series Processor (TSP):it provides input/target series management, basic

pre/post-processing facilities, suitable temporal synchronization.

• time series selection module (IPGA): significant input data for the forecasting

module is selected using a perform ant artificial intelligence approach based on

genetic algorithms and neural networks. The module extracts from the overall

pool a particular subset of properly processed series.

• Neuro-Genetic Predictor (NGP): it uses a hybrid neuro-genetic learning strategy

to model the complicated relationships that may exist between the input data

provided by the selection module and the specific target series. Up-to-date

techniques are employed in order to asses the generalization capability of the

resulting networks, and the performances are reported in terms of consecrated

figures of merit.

The main features of the nodes forecasting system are:

• multiple data source import: Datastream, VWD

• simple and flexible interface with the primary data source: individual time series

may be loaded and removed, temporally synchronized by means of custom

defined lags, and saved on disk along with temporal information

• data pre- and post-processing facilities: detrendization, normalization, outlier

suppression, Fourier and wavelet filtering

• enhanced fundamental and technical analysis: the system uses 68 primary

economical time series and 35 technical indicators, to be processed by 34

distinct operations

• significant input data selection through genetic search: flexible GA parameters

setting, custom defined fitness function, multiple evaluation schemes, definable
•constraints

• performant forecasting using multiple neural networks architectures (MLP,

Elman, modular and generalized feedforward)

• easy run-time control: suspend/resume button, auto-resume

• off-line statistical analysis of experiments: estimation of the confidence intervals

of predicted values, input pruning, "sanity check" of networks used (model

validation tests, weights histogram)
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• important info saved on disk: genetically selected series, the main performance

measures (MSE, directional change, path) and the parameters of the experiment

are saved on separate files enabling easy startup configuring and repeatability.

5.1. Genetic Algorithms and Genetically Evolved Neural Networks

5.1.1. An Introduction to Genetic Algorithms

Many studies have shown that ANNs have the capability to learn the underlying

mechanics of time series, or, in the case of trading applications, the market dynamics.

However, it is often difficult to design good ANNs, because many of the basic

principles governing information processing in ANNs are hard to understand, and the

complex interactions among network units usually makes engineering techniques like

divide and conquer inapplicable. When complex combinations of performance criteria

(such as learning speed, compactness, generalization ability, and noise resistance) are

given, and as network applications continue to grow in size and complexity, the human

engineering approach will not work and a more efficient, automated solution will be

needed.

GA is reminiscent of sexual reproduction in which the genes of two parents

combine to form those of their children. When it is applied to problem solving, the basic

premise is that we can create an initial population of individuals representing possible

solutions to a problem we are trying to solve. Each of these individual has certain

characteristics that make them more or less fit as members of the population. The most

fit members will have a higher probability of mating than the less fit members, to

produce offspring that have a significant chance of retaining the desirable characteristics

of their parents. This method is very effective. at finding optimai or near optimal

solutions to a wide variety of problems, because it does not impose many of the

limitations required by traditional methods. It is an elegant generate and test strategy

that can identify and exploit regularities in the environment, and converges on solutions

that were globallyoptimal or nearly so.

GA have been increasingly applied in ANN design in several ways: topology

optimization, genetic training algorithms and control parameter optimization. In

topology optimization, GA is used to select a topology (number of hidden layers,
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number of hidden nodes, interconnection pattern) for the ANN which in turn is trained

using some training scheme, most commonly back propagation. In genetic training

algorithms, the learning of a ANN is formulated as a weights optimization problem,

usually using the inverse mean squared error as a fitness measure. Many of the control

parameters such as learning rate, momentum rate, tolerance level, etc., can also be

optimized using GA. In addition, GA have been used in many other innovative ways,

for instance, creating new indicators based on existing ones, selecting good indicators,

to evolve optimal trading systems and to complement other techniques such as fuzzy

logic.

There are four stages in the genetic search process: initialization, evaluation and

selection, crossover and mutation. In the initialization stage, a population of genetic

structures which are randomly distributed in the solution space is selected as the starting

point of the search.

In the second stage, each structure is evaluated using a fitness function and

assigned a fitness value. On the basis of their relative fitness values, structures in the

current population are selected for reproduction. A stochastic procedure ensures that the

expected number of offspring associated with a given structure sis u(s)/u(P), where u(s)

is the observed performance of s and u(P) is the average performance of all structures in

the current population. Thus structures with high performance are more likely to be

chosen for replication while poor performing structures are eventually removed from

the population. In the absence of other mechanisms, such a selective process would

cause the best performing structures in the initial population to occupy an increasingly

larger proportion of the population over time.

The selected structures are recombined using crossover, with two

complementary search functions. First, it provides new points for further testing of

structures already present in the population; Secondly, it introduces instances of new

structures into the population.

Generally, crossover draws only on the information present in the solutions of

the current population in generating new solutions for evaluation. If specific information

is missing (due to storage limitation or loss incurred during the selection process of a

previous generation), then crossover is unable to produce new structures that contain
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this piece of information. A mutation operator, which arbitrarily alters one or more

components of a selected structure, provides the means for introducing new information

into the population. However, mutation :functions as a background operator with a very

low probability of application. The presence of mutation ensures that the probability of. ;

reaching any point in the search space is never zero.

5.2. Genetically Evolved Neural Networks

One method of automating ANN architecture design using GA is described

below. It comprises two adaptive processes: genetic search through input data window,

forecast horizon, network architecture space and control parameters to select the best

performers, and backpropagation learning in individual networks to evaluate the

selected architectures.

The method begins with an initial population of randomly generated networks

which are represented by overlapped tree structures as illustrated in Fig. 1. and 2 below.

Figure 5.1: An initialpopulation of networks.

•

Figure 5.2: One of the randomly generated network.
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In· Fig. 5. 1 and 5 .2, each rectangle represents an input node and the triangle

represents an output node. The networks will grow and their hidden nodes will be

inserted into the networks as the population evolves. The input nodes take a random

combination of input data from an input data window which picks up data items from

the training data file and supplies them to the network. The output node randomly

selects a forecast horizon from an output window and uses the associated data item as

target value. Both windows slide down the training data file sequentially or randomly.

Fig. 3 illustrates an input window of size 3, and an output window with forecast

horizons ranging from 1 to 3 steps ahead.

Input Data Window - CJ CJ CJ Cl Cl - Cl Cl -
Window Size = 3 - Cl Cl Cl Cl Cl Cl Cl Cl Cl

--Cl C]C] CJCl Cl Cl Cl

Output Window ıa - - - - - -- - -
Forecast Horizon: U - - - - - - - - -
1 to 3 Steps Ahead U---------

Figure 5.3: The initialsetting of the input and output windows used by all the networks.

The initialpopulation of networks then goes through the first evolution cycle. As

in real biological systems, learning cycles are nested within cycles of evolution in

populations. Each learning cycle involves the entire population of networks with the set

of input output pairs provided by the input and output windows. The networks' outputs

are compared with the desired target, and the connection weights are adjusted to achieve

the desired input output mapping by minimizingthe errors.
Ii

At the end of each learning cycle, the networks are ranked according to some
•pre-determined criteria such as their generalization capability. The poor-performing

networks will be removed from the population, while the fitter ones are retained and

selected for the crossover process to reproduce the offspring for the next generation.
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Psrent1 R.Jrged Psrent2

Figure 5.4: Mating of two fittest parent networks to produce new offspring.

There are several ways to cross the parent nets. One way is to produce new

offspring by mating two most fit parents as illustrated in Fig. 4. The output nodes of the

parents are used as the hidden nodes of the offspring which will then inherit the

knowledge already acquired by their parents.

Occasionally mutation is introduced to ensure that networks will not be trapped

in local minima during the learning process. One way to mutate is to randomize the

weights of those lowly ranked networks, change their input combination in the input

data window and/or their forecast horizon.
)

After each evolution cycle, an image of the fittest network is kept. The image

includes the current input data combination, forecast horizon, interconnection patterns

and weights of the fittest network, such that the fittest network can go through the next

evolution and training cycles together with the rest of the newly formed population.

5.3. Training Cycle

o Increment Iteration Count •
o Neural Net Learning

o Check Criteria To Stop? If Yes--> Stop

• Evaluate Network Population

• Rank Network Population

• Store Image ofFittest Network

• Select Most Fit Parents

• Crossover & Mutation
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• Increment Generation Count

• Update Network Population

• Continue training cycle

Fig. 5. The training cycle with the nested evolution cycle.

The image will remain intact during subsequent evolution cycles until another

fittest network emerges. A complete evolution cycle, with the nested training cycle, is

illustrated in Fig. 5.

5.4. An Application Example

In this example, the following fundamental data of a stock were used as training

data to forecast its future average price per share. The input data window size is 3 and

the range of the forecast horizon is 1 to 3 steps.

Year Avg$/Sb Sis/Sb CF/Sb Ero/Sb Div/Sb% Cap$/Sb BV/Sb Avg PIE RelP/E Div

1979 4.61 9.21 0.69 0.53 0.23 0.48 2.68 4.4 15.8 1.2

1980 6.53 9.27 0.7 0.51 0.25 0.51 2.94 8.7 1.26 5.1

1981 7.44 10.29 0.84 0.61 0.26 0.38 3.29 12.8 1.7 3.9

1982 7.37 9.66 0.92 0.63 0.3 0.39 3.63 12.2 1.48 3.5

1983 11.03 10.32 1.05 0.74 0.35 0.25 4.05 11.7 1.29 4.1

1984 12.46 11.52 1.22 0.89 0.4 0.41 4.59 14.9 1.26 3.2

1985 12.72 11.42 1.13 0.8 0.43 0.39 ·4.99 14 1.3 3.2

1986 13.78 12.98 1.3 0.83 0.5 0.55 5.27 15.9 1.29 3.4
'1987 15.79 14.12 1.36 0.94 0.53 0.7 5.76 16.6 1.13 3.6A

1988 14.72 11.82 1.14 0.8 0.6 0.7 4.11 16.8 1.12 3.4

1989 13.75 13.28 1.26 0.87 0.62 0.58 4.1 18.4 1.53 4.5

After 30 generations, the fittest network, as shown in Fig. 6, emerged. The

number of input nodes shown in Fig. 5.7 was less than that of Fig. 5.6, because some of ·

those in Fig. 6 referred to the same input nodes in Fig. 5.7.

57



The result, as shown in Fig. 5. 7, indicated that a window size of 2 is sufficient,

and that the best forecast can be achieved with a forecast horizon of 1 step ahead. The

output of the fittest network is shown in Fig. 5.8. The downward turn detected at the end

of the training data indicates a strong sell signal which was confirmed by the actual

target values.

Figure 5.6. The best network after 30 generations ofevolution.

- - - -- - - -t.J

Figure 5.7. The input data combination of the fittest network with forecast horizon of 1

step ahead.

•
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İ Date/Serial 1 989
I Target 1 3. 7500
'I Forecast 1 13. 7506

15.7900
~-

~

, /
'

/'ı•ı•,,ı(
,.,ıt--'_ J/....---;/

/ •........ 

_.,...'f5100 Training Data Forecasts

Figure 5.8. Output of the fittest network.

One can also fix the desired forecast horizon to say, 2 or 3 steps ahead, but the forecast

will not be as good as that of 1 step in this problem.

•
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CONCLUSION

First of all in this project the state of understanding the art of genetic algorithms

for solving genetic algorithms is considered .The Crossover and Mutation are the two

basic parameters of genetic algorithms .In Encoding the crossover these parameters are
used.

The other parameters of genetic algorithms are Selection, Encoding and
Population-size.

The applications of genetic algorithms are used to solve the NP-hard problems

for machine learning and also for evolving simple problems. The main features of the

genetic algorithms are based on optimization and they are represented by Multiınodal

functions and Simpletrading models.

The problems are also solved by using the Non-linear optimization. Solving the

non-linear optimization the algorithms were used that are as follows:

a) The Sequential Quadratic programming algorithm.

b) Augmented Langragian algorithm.

c) Reduced-gradient algorithm.

d) FeasibleSequential Quadratic Programming algorithm.

The main techniques used for solving constrained optimization problems are

written above. By using these algorithms we solved the optimization problems.
•

The Appendiceswere used in these algorithms that are as follows:

1) Conopt

2) GRG2

3) Lancelot

4) Mat-lab Optimization Toolbox

5) Minos etc.
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APPENDICES

CONOPT

General non-linear programming models with sparse non-linear constraints

The algorithm in CONOPT is based on the generalized reduced gradient (GRG)

· algorithm. All matrix operations are implemented by using sparse matrix techniques to

, allow very large models. Without compromising the reliability of the GRG approach,

the overhead of the GRG algorithm is minimized by, for example, using dynamic

feasibility tolerances, reusing Jacobians whenever possible, and using an efficient re­

inversion routine. The algorithm uses many dynamically set tolerances and therefore

runs, in most cases, with default parameters.

CONOPT is available as a subroutine library and as a subsystem under the

modeling systems AIMMS, AMPL, GAMS, and LINGO. CONOPT is available for PCs

and most workstations. All versions are distributed in compiled form. The system is

continuously being updated, mainly to improve reliability and efficiency on large

models. The latest additions are options for SLP and steepest edge.

GRG2

Non-linear programming

GRG2 uses an implementation of the generalized reduced gradient
8 . 

(GRG) algorithm. It seeks a feasible solution first (if one is not provided) and then

retains feasibility as the objective is improved. It uses a robust implementation of the
•

A BFGS quasi-Newton algorithm as its default choice for determining a search direction.

A· limited-memory conjugate gradient method is also available, permitting solutions of

problems with hundreds or thousands of variables. The problem Jacobian is stored and

manipulated as a dense matrix, so the effective size limit is one to two hundred active

constraints (excluding simplebounds on the variables, which are handled implicitly).

The GRG2 software may be used as a stand-alone system or called as a

subroutine. The user is not required to supply code for first partial derivatives of

problem functions; forward or central difference approximations may be used instead.
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Documentation includes a 60-page user's guide, in-line documentation for the

subroutine interface, and complete installation instructions.

GRG2 is written in ANSI FORTRAN. A C version is also available. Machine

dependencies are relegated to the subroutine INITLZ, which defines three machine­

dependent constants.

Lancelot

Unconstrained Optimization Problem

The LANCELOT package uses an augmented Lagrangian approach to handle all

constraints other than simple bounds. The bounds are dealt with explicitly at the level of

an outer-iteration sub problem, where a bound-constrained nonlinear optimization

problem is approximately solved at each iteration.

The algorithm for solving the bounded problem combines a trust region

approach adapted to handle the bound constraints, projected gradient techniques, and

special data structures to exploit the (group partially separable) structure of the

underlyingproblem.

The software additionally provides direct and iterative linear solvers (for

Newton equations), a variety of preconditioning and scaling algorithms for more

difficult problems, quasi-Newton and Newton methods, provision for analytical and

finite-difference gradients, and an automatic decoder capable of reading problems

expressed in Standard Input Format (SIF).

LANCELOT A is written is standard ANSI Fortran 77. Single- and double-
•

• precısıon versions are available. Machine dependencies are isolated and easily

adaptable. Automatic installation procedures are available for DEC VMS, DEC

ULTRIX, Sun UNIX, Cray UNICOS, IBM VM/CMS, and IBM AIX.
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Mat~labOptimization Toolbox

Linear programming, quadratic programming, unconstrained and

constrained optimiı:ation of nonlinear functions, nonlinear equations, nonlinear

least squares, minimax, multi objective optimiı:ation,semi-infinite programming.

Linear programming --- a variant of the simplex method. An initial phase is

needed to identifya feasiblepoint

Quadratic programming --- an active set method. A linear programming

problem is solved to determine an initial feasiblepoint.

Unconstrained minimiı:ation --- two routines are supplied. One implements a

quasi-Newton algorithm, using either DFP or BFGS to update an approximate inverse

Hessian, according to a switch selected by the user. Gradients may be supplied by the

user; if they are not, finite differencing is used. The second routine uses the Nelder­

Mead simplexalgorithm, for which derivatives are not needed.

Constrained minimizatien --- sequential quadratic programming. The BFGS

formula is used to maintain an approximation to the Hessian. Han's merit function is

used to determine the step length at each iteration.

Nonlinear equations --- Newton's method and the Levenberg-Marquardt

algorithm are supplied. The user chooses the algorithm by setting a switch.

Nonlinear least squares --- the Gauss-Newton method and the Levenberg-
'!I

Marquardt method are supplied. The user makes the choice.

Minimax --- these problems can be formulated as constrained optimization

problems, and a sequential quadratic programming algorithm is used to solve them here.

Advantage is taken of the structure of the problem in the choice of approximate

Hessian.

Multi objective optimization --- The problem is formulated as one of

decreasing.a number of objective functions below a certain threshold simultaneously, so

it is viewed as a constrained optimization problem. Again, sequential quadratic

programming is used to solve it.
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Semi-infinite programming --- Cubic and quadratic interpolation is used to

locate peaks in the infinite constraint set and therefore to reduce the problem to a

constrained optimization problem.

Minos

Linear programming, unconstrained and constrained nonlinear optimi2ation

Linear programming: A primal simplex method is used. A sparse LU

factorization of the basis is maintained, using a Markowitz ordering scheme and

Bartels-Golub updates as implemented in the LUSOL package of Gill, Murray,

Saunders, and Wright.

Nonlinear objective, linear constraints: A reduced-gradient algorithm is used.

This is an active-set method (a natural extension of the simplex method). The variables

are classifiedas-, super basic, and non-basic, with the number of super basics indicating

the effective non-linearity of the objective. The constraints are satisfied before the

objective is evaluated. Feasibility is maintained thereafter. Search directions are

generated using a quasi-Newton approximation to the reduced Hessian.

Nonlinear constraints: A projected augmented Lagrangian algorithm is used.

As in Robinson's method, each major iteration solves a linearlyconstrained sub problem

to generate a search direction. The sub problem objective is an augmented Lagrangian

function. The sub problem constraints are the true linear constraints plus linearizations

of the nonlinear constraints. Convergence is usually achieved, although the step length

choice is heuristic. (A reliable merit function is not-yet known.) •

MINOS is designed to handle thousands of constraints and variables. Constraint data

may be input from MPS files or via subroutine parameters. Non-linearities are specified

by Fortran subroutines. (Ideally these should provide both functions and gradients.

Missing gradients are estimated by finite differences.) The GAMS and AMPL systems

may be used as alternative user interfaces. See their entries for details.
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MINOS is distributed on floppy disk. Fortran 77 source code is provided, along

with test problems and makes files for Unix, VMS and DOS systems.

Nag C Library

Linear programming, quadratic programming, minimization of a nonlinear

function (unconstrained, bound-constrained, linearly constrained, and nonlinearly

constrained), and minimization of a sum of squares.

For problems with nonlinear constraints, a sequential QP algorithm is used. For

unconstrained problems and problems with simple bounds, quasi-Newton and conjugate

gradient methods are provided. The Nelder-Mead simplex method is provided for

unconstrained problems. For minimizing a sum of squares, a Gauss-Newton method is

used. The LP and QP routines use a numerically stable active-set strategy.

An option-setting mechanism is provided in all routines, in order to keep the

basic parameter-list to a minimum, while allowing a large degree of flexibility in

controlling the algorithm. The routines have the ability to print the solution, as well as
"

various amounts of intermediate output to monitor the computation.

•
Service routines are provided for . checking user-supplied routines for first

derivatives and for computing a covariance matrix for nonlinear least squares problems.

The NAG C Library is available in tested, compiled form for several

hardware/software-computing environments.
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Nag Fortran Library

Linear programming, mixed-integer linear programming, quadratic

programming, minimization of a nonlinear function (unconstrained, bound
t,

I

constrained, linearly constrained, and nonlinearly constrained), and minimization

of a sum of squares (unconstrained, bound constrained, linearly constrained, and

nonlinearly constrained).

For problems with nonlinear constraints, a sequential QP algorithm is used. For

unconstrained problems and problems with simple bounds, quasi-Newton, modified

Newton, and conjugate gradient methods are provided. The Nelder-Mead simplex

method is provided for unconstrained problems. For minimizing a sum of squares, a

Gauss-Newton method is used. The LP and QP routines use a numerically stable active

set strategy in which the linear constraint matrix may be dense or sparse. Problem data

may be supplied in MPSX format.

An option-setting mechanism is provided in the more recent routines, in order to

keep the basic parameter list to a minimum, while allowing a large degree of flexibility

in controlling the algorithm. These routines also have the ability to print the solution, as

well as various amounts of intermediateoutput to monitor the computation.

Service routines are provided for approximating first or second·derivatives by

finite differences, for checking user-supplied routines for first or second derivatives, and

for computing a covariance matrix for nonlinear least squares problems.

The NAG Fortran Library is available in tested, compiled form for a large

number of different hardware and software computing environments.
•
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NLPQL

Smooth nonlinear programming.with equality and inequality constraints

NLPQL solves smooth nonlinear programming problems, i.e. minimizes a

nonlinear objective function subject to nonlinear equality and inequality constraints. It is~ '

assumed that all model functions are continuously differentiable.

The internal algorithm is a sequential quadratic programming (SQP) method.

Proceeding from a quadratic approximation of the Lagrangian function and a

linearization of the constraints, a quadratic sub problem is formulated and solved to get

a search direction. Subsequently a line search is performed with respect to two

alternative merit functions, and the Hessian approximation is updated by the modified

BFGS formula.

Special features ofNLPQL are

• Separate handlingof upper and lower bounds on the variables,

• Reverse communication,

• Internal scaling,

• Initial multiplierand Hessian app~oximation,

• Feasibilitywith respect to bounds and linear constraints,

• Full documentation by initialcomments.

NLPQL is written in double-precision Fortran 77 and organized in the form of a

subroutine. Nonlinear problem=fiınctions and analytical gradients must be provided by

the user within special subroutines or the calling program.
•
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Optima Library

Unconstrained optimization, constrained optimization, sensitivity analysis

OPVM --- Unconstrained optimization, unstructured objective function; suitable for

small problems.

OPVMB --- Optimization subject to simple bounds.

OPLS --- Unconstrained nonlinear least squares.

OPNL --- Nonlinear equations, by minimizing sum of squares of the residuals.

OPCG --- Nonlinear conjugate gradient method.

OPODEU --- Unconstrained optimization problems by tracing the solution curve of a

system ofODEs (homotopy method).

OPTNHP --- Unconstrained optimization using the truncated Newton method; no

Hessian storage or calculation required.

OPRQP --- Sequential quadratic programming, but superseded by the OPXRQP routine.

OPXRQP --- A more efficient implementation of sequential quadratic programming;

uses the EQP variant.

OPSQP --- Another implementation of sequential quadratic programming, but uses the

"IQP variant, which gives rise to inequality-constrained sub problems.

OPALQP --- Similar to OPSQP, but uses an augmented Lagrangian line search

function.

OPSMT --- Nonlinear programming, using a SUMT technique.

OPIPF --- Sequential minimization of a sequence of augmented Lagrangians.

OPODEC --- Homotopy method: traces the solution curve of a system of ODEs.
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OPSEN --- Tests the sensitivity of the objective function around the optimal point of

an unconstrained problem.

OPSEC --- Like OPSEN, but for the solution of a constrained problem.
'

Software is written in Fortran 77.

Optpack

Unconstrained optimization and nonlinear constrained optimization with special

software to handle bound constraints, linear equality constraints, and general

nonlinear constraints·

Unconstrained optimization is performed using the conjugate gradient algorithm.

Constrained optimization is performed using a new scheme that combines multiplier

methods with preconditioning and linearization techniques to accelerate convergence.

The software is written in double precision Fortran. The code is documented by

internal comments. Research reports providing the theoretical basis for the algorithms

are availableon request. User feedback is much appreciated.

Port

General minimization, nonlinear least squares, separable nonlinear least squares,

linear inequalities, linear programming, and quadratic programming.
>.

The nonlinear optimizers have unconstrained and bound-constrained variants,

and use trust region algorithms. Gradients and Jacobians can be provided by the caller

or approximated automatically by finite differences. The general minimization routines

use either a quasi-Newton approximation to the Hessian matrix or a Hessian provided

by the caller; the nonlinear least squares routines adaptively switch between the Gauss­

Newton Hessian approximation and an "augmented" approximation that uses a quasi­

Newton update. Function and, if necessary, gradient values may be provided either by

subroutines or by reverse communication.
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There is a special separable nonlinear least squares solver for the case of one

nonlinear variable; it uses Brent's one-dimensional minimization algorithm for the

nonlinear variable. Brent's algorithm is also available by itself, as is an implementation

of the Nelder-Mead simplex method,

The feasible point (linear inequalities) and linear and quadratic programming
Q

routines start by taking steps through the interior and end with an active set strategy.

The quadratic programming solvers use the Bunch-Kau:fınanfactorization and thus can

find local minimizesof indefiniteproblems.

None of the solvers is meant for large numbers of variables. When there are n

variables and m equations (where m = 1 for general minimization), the nonlinear solvers

require O( n A 2 m ) or O( n A 3 ) arithmetic operations per iteration. The linear and

quadratic solvers use dense-matrix techniques.

Software is written in ANSI Fortran 77, with single- and double-precision

versions of all solvers. Machine-dependent constants are provided by subroutines

IlMACH, RlMACH, and DlMACH.

PROC NLP (SAS/OR Softwşre)

General and specialized nonlinear oprimization
•

The NLP procedure offers a set of optimization techniques for minimizing or

maximizing a continuous nonlinear functionf(x) of n decision variables with boundary,

general linear, and nonlinear equality and inequality constraints. PROC NLP supports a

number of algorithms for solving this problem that take advantage of the special

structure of the objective and constraint functions. Two algorithms are especially

designed for quadratic optimization problems, and two other algorithms are provided for

the efficient solution of nonlinear least-squares problems.
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PROC NLP is part of SAS/OR Software, a fully integrated component of the

SAS System Along with its programming statements, PROC NLP uses SAS data sets

(proprietary format) for input and for output. By taking advantage of the SAS System's

Multiple Engine Architecture, PROC NLP can in effect read from and write to over fifty
I

different database formats.

In addition to producing output SAS data sets, PROC NLP can print text output

detailing the initial decision variable values, the search for an initial feasible solution,

the optimization history, and the values of decision variables, derivatives, and

covariance matrices at optimality.

Input Data

• Objective function and the constraints are specified using the programming

statements ofPROC NLP
• Additional data sets can be used to generate constraints and objectives

o DATA= data set specifies an objective function that is a combination of

n other functions
o INQUAD= data set (sparse-Or dense format) specifies the objective of a

quadratic programming problem

o INEST= or INVAR= data set specifies initial values for the decision

variables, the values of constants that are referred to in the program

statements, as well as simpleboundary and general linear constraints

o MODEL= data set specifies a model saved from a previous execution of

the NLP·prosedure

..
•

Output Data

• OUT= output data set contains variables generated in the program statements

defining the objective function (and perhaps derivatives) plus any variables used

in a DATA= input data set
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• OUTEST= data set contains values of decision variables, derivatives, and

covariance matrices at optimality, and can be used in subsequent PROC NLP

calls as an INEST= input data set
"'

• OUTMOD= data set contains the programming statements and can be used in

subsequent PROC NLP calls as a MODEL= input data set

Optimizers

The following algorithms are available via PROC NLP for use with these categories

of nonlinear programs:

• Nonlinear min/mari:mizırion with linear constraints

o A trust-region algorithm (Dennis, Gay, & Welch, 1981, Gay, 1983, and

More and Sorensen, 1983)
o Two di:fferem ~ewton-Raphson algorithms using line search or ridging

o Quasi-Newton algorithms updating either an approximation of the

inverseHessian or the Cholesky factor of an approximate Hessian

o A double dogleg algorithm (Gay, 1983 and Dennis and Mei, 1979)

o Various gradient algorithms with the Powell and Beale

update (Powell, 1977, and Beale, 1972), Fletcher­

Poliak-Rıbiere update, or conjugant-descent updateReeves

(Fletcher '
o The Nelder-Mead simplex algorithm with a modification of Powell's

COBYLA ~iemeotation (Powell, 1992)

o Any of the a.:gm~ listed above, substituting the originalNelder-Mead

simplexalgoraem fur the COBYLA version

• Nonlinear minfm,ı:riwi:ntioıı with nonlinear constraints

Metric

gorithm that is a modification of Powell's Variable

Watch Dog (VMCWD) algorithm (Powell, 1978

1982)
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o The Nelder-Mead simplex algorithm with a modification of Powell's

COBYLA implementation (Powell, 1992)~

• Nonlinear least squares with linear constraints

o The Levenberg-Marquardt algorithm (More, 1978)

o a hybrid quasi-Newton algorithm (Fletcher & Xu, 1987, Lindstrom &

Wedin, 1984, and Al-Baali & Fletcher, 1986)

• Quadratic min/maximization with linear or boundary constraints

o Solve as a linear complementarily problem (if the symmetric matrix is

positive/negative semi-definite for a min/maximization and the variables

are restricted to be positive)

o Use a general quadratic optimization active set algorithm (Gill, Murray,

Saunders, & Wright, 1984

Derivatives

PROC NLP may require derivatives of the objective function and the constraints.

Thesecan be obtained

• Analytically(using a special derivative compiler), the default method

• Vıa finite differenceapproximations

• Via user-supplied exact or approximate numerical functions

..

•

Problem SizeLimitations

The size of a problem

the available memory, and the

not place any additional limitso

PROC ~ll can solve depends on the host plarform.

-=ı-1..~- -- for utility data sets. PROC NLP

SIZe.



Available Platforms

The s.ı{s System is supported on all major personal computer, workstation, and

mainframe operating systems.

SQP

Nonlinear programming

SQP uses an implementation of Powell's successive quadratic programming

algorithm and is aimed specifically at large, sparse nonlinear programs. It solves the

quadratic programming sub-problems by using a sparsest-exploiting reduced gradient

method. Sparse data structures are used for the constraint Jacobian, and there is an

option to represent the approximate Hessian as a small set of vectors using a limited

memory-updatingscheme.

SQP requires the same user-supplied subroutines as GRG2 and has similar

subroutine and data file interfaces. The entry describing GRG2 contains more details.

SQP is written in ANSI FORTRAN. Machine dependencies are relegated to the

subroutine INITLZ, which defines three machine-dependent constants.

•

•• •
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