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ABSTARCT 

TCP and IP were developed by the U.S. Department of Defense (DOD) research 

project to connect a number different networks designed by different vendors into a network 

of networks (the "Internet"). It was initially successful because it delivered a few basic 

services that everyone needs (file transfer, electronic mail, remote logon) across a very large ' 

number of client.and server systems. Several computers in a small department can use TCP/IP 

(along with other protocols) on a single LAN. The IP component provides routing from the 

department to the enterprise network, then to regional networks, and finally to the global 

Internet. On the battlefield a communications network will sustain damage, so the DOD 
' 

designed TCP/IP to be robust and automatically recover from any node or phone line failure. 

This design allows the construction of very large networks with less central management. 

However, because of the automatic recovery, network problems can go undiagnosed and 

uncorrected for long periods of time. 

As with all other communications protocol, TCP/IP is composed of layers: IP which is 

responsible for moving packet of data from node to node. IP forwards each packet based on a 

four byte destination address (the IP number). The Internet authorities assign ranges of 

numbers to different organizations. The organizations assign groups of their numbers to 

departments. · IP operates on gateway machines that move data from department to 

organization to region and then around the world. TCP is responsible for verifying the correct 

delivery of data from client to server. Data can be lost in the intermediate network. TCP adds 
' I 

support to detect errors or lost data and to trigger retransmission until the data is correctly and 

completely received and Sockets - is a name given to the package of subroutines that provide 

access.to TCP/IP on most systems. 

In this project, the TCP/IP protocols have been studied and their applications to real-time 

programming are discussed. It is shown that TCP/IP can be used in real-time plient-server 

based applications such as factory automation and so on. 



3. Introduction 

The Internet Protocol was developed to create a Network of Networks (the "Internet"). 

Individual machines are first connected to a LAN (Ethernet or Token Ring). TCP/IP shares 

the LAN with other uses (a Novell file server, Windows for Workgroups peer systems). One 

device provides the'TCP/IP connection between the LAN and the rest of the world. 

Department LAN 

Figure-I. The connection between the LAN and the rest of the world. i 

To insure that all types of systems from all vendors can communicate, TCP/IP is absolutely 

standardized 'on the LAN. However, larger networks based on long distances and phone lines 

are more volatile. In the US, many large corporations. would wish to reuse large internal 
'' 

networks based on IBM's SNA. In Europe, the national phone companies traditionally 

standardize on X.25. However, the sudden explosion of high speed microprocessors, fiber 

; optics, and digital phone systems has created a burst of new options: ISDN, frame relay, 

FDDI, Asynchronous Transfer Mode (ATM). New technologies arise and become obsolete 

within a few years. With cable TV and phone companies competing to build the National 

Information Superhighway, no single standard can govern citywide, nationwide, or worldwide 

communications. The original design of TCP/IP as a Network of Networks fits nicely within 

the current technological uncertainty. TCP/IP data can be sent across a LAN, or it can be 

carried within an internal corporate SNA network, or it can piggyback on the cable TV 
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service. Furthermore, machines connected to any of these networks can communicate to any 

other network through gateways supplied by the network vendor. 

3 .1 Addresses 

Each technology has its own convention for transmitting messages between two 

machines within the same network. On a LAN, messages are sent between machines by 

supplying the six byte unique identifier (the "MAC" address). In an SNA network, every 

machine has Logical Units with their own network address. DECNET, Appletalk, and Novell 

IPX all have a scheme for assigning numbers to each local network and to each workstation 

attached to the network. On top of these local or vendor specific network addresses, TCP/IP 

assigns a unique number to every workstation in the world. This "IP number" is a four byte 

value that, by convention, is expressed by converting each byte into a decimal number (0 to 
' 

25 5) and separating the bytes with a period. 

An organization begins by sending electronic mail to Hostmaster@INTERNIC.NET 

requesting assignment of a network number. It is still possible for almost anyone to get 

assignment of a number for a small "Class C" network in which the first three bytes identify 

the network and the last byte identifies the individual computer. Larger organizations can get 

a "Class B" network where the first two bytes identify the network and the last two bytes 

identify each ofup to 64 thousand individual workstations. 

The organization then connects to the Internet through one of a dozen regional or 

specialized network suppliers. The network vendor is given the subscriber network number 

and adds it to the routing configuration in its own machines and those of the other major 

network suppliers. The machines that manage large regional networks or the central Internet 

routers managed by the National Science Foundation can only locate these networks by 

looking each network number up in a table. There are potentially thousands of Class B 

networks, and millions of Class C networks, but computer memory costs are low, so the tables 

are reasonable. Customers that connect to the Internet, even customers as large as IBM, do not 

need to maintain any information on other networks. They send all external data to the 

regional carrier to which they subscribe, and the regional carrier maintains the tables and does 

the appropriate routing. 
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3.2 Subnets 

Although the individual subscribers do not need to tabulate network numbers or 

provide explicit routing, it is convenient for most Class B networks to be internally managed 

as a much smaller and simpler version of the larger network organizations. 

Internal Department 

Figure 2. . It is common to subdivide the two bytes available for internal assignment 

into a one byte department number and a one byte workstation ID. 

The enterprise network is built using commercially available TCP/IP router boxes. Each 

router has small tables with 255 entries to translate the one byte department number into 

selection of a destination Ethernet connected to one of the routers. Messages to the PC Lube 

and Tune server (130.132.59.234) are sent through the national and New England regional 

networks based on the 130.132 part of the number. Arriving at Yale, the 59 department ID 

selects an Ethernet connector in the C& IS building. The 234 selects a particular workstation 

on that LAN. The Yale network must be updated as new Ethernets and departments are added, 

but it is not effected by changes outside the university or the movement of machines within 

the department. 
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3.3 A Uncertain Path 

Every time a message arrives at an IP router, it makes an individual decision about 

where to send it next. There is concept of a session with a preselected path for all traffic. 

Consider a company with facilities in New York, Los Angeles, Chicago and Atlanta. It could 

build a network from four phone lines forming a loop (NY to Chicago to LA to Atlanta to 

NY). A message arriving at the NY router could go to LA via either Chicago or Atlanta. The 

reply could come back the other way. 
How does the router make a decision between routes? There is no correct answer. 

Traffic could be routed by the "clockwise" algorithm (go NY to Atlanta, LA to Chicago). The 

routers could alternate, sending one message to Atlanta and the next to Chicago. More 

sophisticated routing measures traffic patterns and sends data through the least busy link. If 

one phone line in this network breaks down, traffic can still reach its destination through a 

roundabout path. After losing the NY to Chicago line, data can be sent NY to Atlanta to LA to 

Chicago. This provides continued service though with degraded performance. This kind of 

recovery is the primary design feature of IP. The loss of the line is immediately detected by 

the routers in NY and Chicago, but somehow this information must be sent to the other nodes. 

Otherwise, LA could continue to send NY messages through Chicago, where they arrive at a 

"dead end." Each network adopts some Router Protocol which periodically updates the 

routing tables throughout the network with information about changes in route status. 

If the size of the network grows, then the complexity of the routing updates will increase as 

will the cost of transmitting them. Building a single network that covers the entire US would 

be unreasonably complicated. Fortunately, the Internet is designed as a Network of Networks. 

This means that loops and redundancy are built into each regional carrier. The regional 

network handles its own problems and reroutes messages internally. Its Router Protocol 

updates the tables in its own routers, but no routing updates need to propagate from a regional 

carrier to the NSF spine or to the other regions (unless, of course, a subscriber switches 

permanently from one region to another). 

3.4 Undiagnosed Problems 
IBM designs its SNA networks to be centrally managed. If any error occurs, it is reported to 

the network authorities. By design, any error is a problem that should be corrected or repaired. 

IP networks, however, were designed to be robust. In battlefield conditions, the loss of a node 

or line is a normal circumstance. Casualties can be sorted out later on, but the network must 

stay up. So IP networks are robust. They automatically (and silently) reconfigure themselves 
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when something goes wrong. If there is enough redundancy built into the system, then 

communication is maintained. In 1975 when SNA was designed, such redundancy would be 

prohibitively expensive, or it might have been argued that only the Defense Department could 

afford it. Today, however, simple routers cost no more than a PC. However, the TCP/IP 

design that, "Errors are normal and can be largely ignored," produces problems of its own. 

Data traffic is frequently organized around "hubs," much like airline traffic. One could 

imagine an IP router in Atlanta routing messages for smaller cities throughout the Southeast. 

The problem is that data arrives without a reservation. Airline companies experience the 

problem around major events, like the Super Bowl. Just before the game, everyone wants to 

fly into the city. After the game, everyone wants to fly out. Imbalance occurs on the network 

when something new gets advertised. Adam Curry announced the server at "mtv.com" and his 

regional carrier was swamped with traffic the next day. The problem is that messages come in 

from the entire world over high speed lines, but they go out to mvt.com over what was then a 

slow speed phone line. 

Occasionally a snow storm cancels flights and airports fill up with stranded passengers. Many 

go off to hotels in town. When data arrives at a congested router, there is no place to send the 

overflow. Excess packets are simply discarded. It becomes the responsibility of the sender to 

retry the data a few seconds later and to persist until it finally gets through. This recovery is 

provided by the TCP component of the Internet protocol. 

TCP was designed to recover from node or line failures where the network propagates routing 

table changes to all router nodes. Since the update takes some time, TCP is slow to initiate 

recovery. The TCP algorithms are not tuned to optimally handle packet loss due to traffic 

congestion. Instead, the traditional Internet response to traffic problems has been to increase 

the speed of lines and equipment in order to say ahead of growth in demand. 

TCP treats the data as a stream of bytes. It logically assigns a sequence number to each byte. 

The TCP packet has a header that says, in effect, "This packet starts with byte 379642 and 

contains 200 bytes of data." The receiver can detect missing or incorrectly sequenced packets. 

TCP acknowledges data that has been received and retransmits data that has been lost. The 

TCP design means that error recovery is done end-to-end between the Client and Server 

machine. There is no formal standard for tracking problems in the middle of the network, 

though each network has adopted some ad hoc tools. 
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3.5 Need to Know 
There are three levels of TCP/IP knowledge. Those who administer a regional or national 

network must design a system of long distance phone lines, dedicated routing devices, and 

very large configuration files. They must know the IP numbers and physical locations of 

thousands of subscriber networks. They must also have a formal network monitor strategy to 

detect problems and respond quickly. 
Each large company or university that subscribes to the Internet must have an 

intermediate level of network organization and expertise. A half dozen routers might be 

configured to connect several dozen departmental LAN s in several buildings. All traffic 

outside the organization would typically be routed to a single connection to a regional 

network provider. 
However, the end user can install TCP/IP on a personal computer without any knowledge of 

either the corporate or regional network. Three pieces of information are required: 

1. The IP address assigned to this personal computer 

2. The part of the IP address (the subnet mask) that distinguishes other machines on the 

same LAN (messages can be sent to them directly) from machines in other 

departments or elsewhere in the world ( which are sent to a router machine) 

3. The IP address of the router machine that connects this LAN to the rest of the world. 

In the case of the PCLT server, the IP address is 130.132.59.234. Since the first three 

bytes designate this department, a "subnet mask" is defined as 255.255.255.0 (255 is the 

largest byte value and represents the number with all bits turned on). It is a Yale 

convention (which we recommend to everyone) that the router for each department have 

station number 1 within the department network. Thus the PCLT router is 130.132.59.1. 

Thus the PCL T server is configured with the values: 

• My IP address: 130.132.59.234 

• Subnet mask: 255.255.255.0 

• Default router: 130.132.59.1 

The subnet mask tells the server that any other machine with an IP address beginning 

130.132.59. * is on the same department LAN, so messages are sent to it directly. Any IP 

address beginning with a different value is accessed indirectly by sending the message 

through the router at 130.132.59.1 (which is on the departmental LAN). 
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4. What is TCP/IP? 

TCP/IP is a set of protocols developed to allow cooperating computers to share 

resources across a network. It was developed by a community of researchers centered around 

the ARPAnet. Certainly the ARPAnet is the best-known TCP/IP network. However as of 

June, 87, at least 130 different vendors had products that support TCP/IP, and thousands of 

networks of all kinds use it. First some basic definitions. The most accurate name for the set 

of protocols we are describing is the "Internet protocol suite". TCP and IP are two of the 

protocols in this suite. (They will be described below.) Because TCP and IP are the best 

known of the protocols, it has become common to use the term TCP/IP or IP/TCP to refer to 

the whole family. It is probably not worth fighting this habit. However this can lead to some 

oddities. For example, I find myself talking about NFS as being based on TCP/IP, even 

though it doesn't use TCP at all. (It does use IP. But it uses an alternative protocol, UDP, 

instead of TCP. All of this alphabet soup will be unscrambled in the following pages.) 

The Internet is a collection of networks, including the Arpanet, NSFnet, regional 

networks such as NY sernet, local networks at a number of University and research 

institutions, and a number of military networks. The term "Internet" applies to this entire set 

of networks. The subset of them that is managed by the Department of Defense is referred to 

as the "DDN" (Defense Data Network). This includes some research-oriented networks, such 

as the Arpanet, as well as more strictly military ones. (Because much of the funding for 

Internet protocol developments is done via the DDN organization, the terms Internet and 

DDN can sometimes seem equivalent.) All of these networks are connected to each other. 

Users can send messages from any of them to any other, except where there are security or 

other policy restrictions on access. Officially speaking, the Internet protocol documents are 

simply standards adopted by the Internet community for its own use. More recently, the 

Department of Defense issued a MILSPEC definition of TCP/IP. This was intended to be a 

more formal definition, appropriate for use in purchasing specifications. However most of the 

TCP/IP community continues to use the Internet standards. The MILSPEC version is intended 

to be consistent with it. 

Whatever it is called, TCP/IP is a family of protocols. A few provide "low-level" 

functions needed for many applications. These include IP, TCP, and UDP. (These will be 

described in a bit more detail later.) Others are protocols for doing specific tasks, e.g. 
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transferring files between computers, sending mail, or finding out who is logged in on another 

computer. Initially TCP/IP was used mostly between minicomputers or mainframes. These 

machines had their own disks, and generally were self-contained. Thus the most important 

"traditional" TCP/IP services are: 

• file transfer. The file transfer protocol (FTP) allows a user on any computer to get 

files from another computer, or to send files to another computer. Security is 

handled by requiring the user to specify a user name and password for the other 

computer. Provisions are made for handling file transfer between machines with 

different character set, end of line conventions, etc. This is not quite the same thing 

as more recent "network file system" or "netbios" protocols, which will be described 

below. Rather, FTP is a utility that you run any time you want to access a file on 

another system. You use it to copy the file to your own system. You then work with 

the local copy. (See RFC959 for specifications for FTP.) 

• remote login. The network terminal protocol (TELNET) allows a user to log in on 

any other computer on the network. You start a remote session by specifying a 

computer to connect to. From that time until you finish the session, anything you 

type is sent to the other computer. Note that you are really still talking to your own 

computer. But the telnet program effectively makes your computer invisible while it 

is running. Every character you type is sent directly to the other system. Generally, 

the connection to the remote computer behaves much like a dialup connection. That 
I ' 

is, _the remote system will ask you to log in and give a password, in whatever manner 

it would normally ask a user who had just dialed it up. When you log off of the other 

; c;o,niputer, the telnet program exits, and you will find yourself talking to your own 

computer.·. Microcomputer implementations of telnet generally include a terminal 

emulator for some common type of terminal. (See RFC's 854 and 855 for 

specifications for telnet. By the way, the telnet protocol should not be confused with 

Telenet, a vendor of commercial network services.) 

• computer mail. This allows you to send messages to users on other computers. 

Originally, people tended to use only one or two specific computers. They would 

maintain "mail files" on those machines. The computer mail system is simply a way 

for you to add a message to another user's mail file. There are some problems with 

this in an environment where microcomputers are used. The most serious is that a 

micro is not well suited to receive computer mail. When you send mail, the mail 
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software expects to be able to open a connection to the addressee's computer, in 

order to send the mail. If this is a microcomputer, it may be turned off, or it may be 

running an application other than the mail system For this reason, mail is normally 

handled by a larger system, where it is practical to have a mail server running all the 

time. Microcomputer mail software then becomes a user interface that retrieves mail 

from the mail server. (See RFC 821 and 822 for specifications for computer mail. 

See RFC 937 for a protocol designed for microcomputers to use in reading mail 

from a mail server.): 

se services should be present in any implementation of TCP/IP, except that micro-oriented 

lementations may not support computer mail. These traditional applications still play a 

important role in TCP/IP-based networks. However more recently, the way in which 

orks are used has been changing. The older model of a number of large, self-sufficient 

mputers is beginning to change .. Now many installations have several kinds of computers, 

· luding microcomputers, workstations, minicomputers, and mainframes. These computers 

likely to be configured to perform specialized tasks. Although people are still likely to 

rk with one specific computer, that computer will call on other systems on the net for 

ialized services. This has led to the "server/client" model of network services. A server is 

system that provides a specific service for the rest of the network. A client is another system 

uses that service. (Note that the server and client need not be on different computers. 

They could be different programs running on the same computer.) Here are the kinds of 

servers typically present in a modern computer setup. Note that these computer services can 

be provided within the framework of TCP/IP. 

' .· I 

• network file systems. This allows a system to access files on another computer in a 

somewhat more closely integrated fashion than FTP. A network file system provides 

the illusion that disks or other devices from one system are directly connected to other 

systems. There is no need. to use a special network utility to access a file on another 

system. Your computer simply thinks it has some extra disk drives. These extra 

"virtual" drives refer to the other system's disks. This capability is useful for several 

different purposes. It lets you put large disks on a few computers, but still give others 

access to the disk space. Aside from the obvious economic benefits, this allows people 

working on several computers to share common files. It makes system maintenance 

and backup easier, because you don't have to worry about updating and backing up 
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copies on lots of different machines. A number of vendors now offer high­ 

performance disk.less computers. These computers have no disk drives at all. They are 

entirely dependent upon disks attached to common "file servers". (See RFC's 1001 and 

1002 for a description of PC-oriented NetBIOS over TCP. In the workstation and 

minicomputer area, Sun's Network File System is more likely to be used. Protocol 

specifications for it are available from Sun Microsystems.) 

• remote printing. This allows you to access printers on other computers as if they were 

directly attached· to yours. (The most commonly used protocol is the remote lineprinter 

protocol from Berkeley Unix. Unfortunately, there is. no protocol document for this. 

However the C code is easily obtained from Berkeley, so implementations are 

common.) 
• remote execution. This allows you to request that a particular program be run on a 

different computer. This is useful when you can do most of your work on a small 

computer, but a few tasks require the resources of a larger system. There are a number 

of different kinds of remote execution. Some operate on a command by command 

basis. That is, you request that a specific command or set of commands should run on 

some specific computer. (More sophisticated versions will choose a system that 

happens to be free.) However there are also "remote procedure call" systems that 

allow a program to call a subroutine that will run on another computer. (There are 

many protocols of this sort. Berkeley Unix contains two servers to execute commands 

remotely: rsh and rexec. The man pages describe the protocols that they use. The user- 
, I ' 

contributed software with Berkeley 4.3 contains a "distributed shell" that will 

distribute tasks among a set of systems, depending upon load. Remote procedure call 
' mechanisms have been a topic for research for a number of years, so many 

organizations have implementations of such facilities. The most widespread ., .... 

commercially-supported remote procedure call protocols seem to be Xerox's Courier 

-and Sun's RPC. Protocol documents are available from Xerox and Sum There is a 

public implementation of Courier over TCP as part of the user-contributed software 

with Berkeley 4.3. An implementation of RPC was posted to Usenet by Sun, and also 

appears as part of the user-contributed software with Berkeley 4.3.) 

• name servers. In large installations, there are a number of different collections of 

names that have to be managed. This includes users and their passwords, names and 

network addresses for computers, and accounts. It becomes very tedious to keep this 

data up to date on all of the computers. Thus the databases are kept on a small number 
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of systems. Other systems access the data over the network. (RFC 822 and 823 

describe the name server protocol used to keep track of host names and Internet 

addresses on the Internet. This is now a required part of any TCP/IP implementation. 

JEN 116 describes an older name server protocol that is used by a few terminal servers 

and other products to look up host names. Sun's Yellow Pages system is designed as a 

general mechanism to handle user names, file sharing groups, and other databases 

commonly used by Unix systems. It is widely available commercially. Its protocol 

definition is available from Sun.) 

• terminal servers. Many installations no longer connect terminals directly to computers. 

Instead they connect them to terminal servers. A terminal server is simply a small 

computer that only knows how to run telnet ( or some other protocol to do remote 

login). If your terminal is connected to one of these, you simply type the name of a 

computer, and you are connected to it. Generally it is possible to have active 

connections to more than 'one computer at the same time. The terminal server will 

have provisions to switch between connections rapidly, and to notify you when output 

is waiting for another connection. (Terminal servers use the telnet protocol, already 

mentioned. However any real terminal server will also have to support name service 

and a number of other protocols.) 

• network-oriented window systems. Until recently, high- performance graphics 

programs had to execute on a computer that had a bit-mapped graphics screen directly 

attached to it. Network w'indow systems allow a program to use a display on a 

different computer. Full-scale network window systems provide an interface that lets 
' 

you distribute jobs to the systems that are best suited to handle them, but still give you 
' 

a · single graphically-based user. interface. (The most widely-implemented window 

system is X. A protocol description is available from MIT's Project Athena. A 

reference implementation is publically available from MIT. A number of vendors are 

also supporting NeWS, a window system defined by Sun. Both of these systems are 
designed to use TCP/IP.) 

Note that some of the protocols are not officially part of the Internet protocol suite. 

wever they are implemented using TCP/IP, just as normal TCP/IP application protocols 

. Since the protocol definitions are not considered proprietary, and since commercially- 

rt implementations are widely available, it is reasonable to think of these protocols as 

effectively part of the Internet suite. Note that the list above is simply a sample of the 
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)I- of services available through TCP/IP. However it does contain the majority of the 

- - -· applications. The other commonly-used protocols tend to be specialized facilities for 

•a r g information of various kinds, such as who is logged in, the time of day, etc. 

Transmission Control Protocol/Internet Protocol (TCP/IP) is the main transport 

: a 1 -:ol used on the Internet for connectivity and transmission of data across heterogenous 

c as.. It is an open standard which is available on most Unix systems, VMS and other 

- - omputer systems, many mainframe & supercomputing systems and some 

mmocomputer & PC systems. 

TCP/IP is a software solution for network connectivity. There is little assumption on 

hardware system used for actual physical connections. The most common hardware 

a sion is Ethernet, but TCP/IP will also run on Token-Ring, AT&T StarLAN, microwave & 

spectrum systems , LocalTalk (needs a gateway), Serial lines (modems, serial 

ctions) and other systems as well. To run TCP/IP on a system you first need a hardware 

. On Macintosh systems, the hardware drivers are built into the system or is provided by 

ard manufacturer. On a PC system, there are different types of hardware drivers 

7 ble both commercially and via public domain/shareware including the Packet driver 

•· ification by FTP Software, Inc., Microsoft's Network Device Interface Specification 

~), & Novell's Open Datalink Interface (ODI). Drivers for OS/2 systems are available 

IBM and/or the board manufacturer (if they support OS/2). If a driver is not available for 
' I 

hardware, look for a shim. This is a software device which translates between two driver 

• ifcations. There are shims for ODI-on-NDIS, NDIS-on-Packet driver. ODI-on-Packet 
', 

etc. usually publically available. 

then need a TCP /IP stack. This Js package specific usually comes with every product. 

such stack has its own requirements for hardware drivers. you must find a combination 

& TCP/IP stack which is compatible with your hardware & system. Macintosh's do 

have a problem since most Macintosh systems use the MacTCP stack which is available 

Apple and is provided with most if not all Macintosh TCP/IP packages. PC systems 

something close to a standard in TCP applications called the Windows Sockets API 

iWWWW>Ck). [Note: This is not specific only to TCP/IP it is a general standard for networking 

PC irrelevant of the transport protocol. Hence, there may be versions for NetBEUI, IPX, 

The Winsock API is avaialble in 16 bit and 32 bit versions. The 32 bit versions are for 

w-lnws NT systems. Winsock is implemented in Dynamically Loaded Libraries or DLLs. 
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Currently work is under way to develop a freeware Winsock DLL but many commercial 

versions are available. With the TCP/IP stack in hand, you then need all the TCP/IP 

application programs such as Telnet, FTP, mail, etc. Just about every TCP/IP package has a 

corresponding set of applications although some do not provide: all the different applications 

available. 
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. General description of the TCP/IP protocols 

CP/IP is a layered set of protocols. In order to understand what this means, it is useful to 

,k at an example. A typical situation issending mail. First, there is a protocol for mail. This 

s a set of commands which one machine sends to another, e.g. commands to specify 

the sender of the message_ is, who it is being sent to, and then the text of the message. 

wever this protocol assumes that there is a way to communicate reliably between the two 

uters. Mail, like other · application protocols, simply defines a set of commands and 

-=ssages to be sent. It is designed to be used together with TCP and IP. TCP is responsible 

making sure that the commands get through to the other end. It keeps track of what is sent, 

retransmitts anything that did hot get through. If any message is too large for one 

_,IOram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure 

they all arrive correctly. Since these functions are needed for many applications, they are 

together into a separate protocol, rather than being part of the specifications for sending 

You can think of TCP as forming a library of routines that applications can use when 

need reliable network communications with another computer. Similarly, TCP calls on 

services of IP. Although the services that TCP supplies are needed by many applications, 

are still some kinds of applications that don't need them. However there are some 

~"S that every application needs. So these services are put together into IP. As with TCP, 

can think of IP as a library of routines that TCP calls on, but which is also available to 

,lications that don't use TCP. This strategy of building several levels of protocol is called 

~ng". ·we think of the applications programs such as mail, TCP, and IP, as being 
' 

.te "layers", each of which calls on the .services of the layer below it. Generally, TCP/IP ·, 

IIPl)lications'use 4 layers: 

• an application protocol such as mail 

• a protocol such as TCP that provides services need by many applications 

• IP, which provides the basic service of getting datagrams to their destination 

• the protocols needed to manage a specific physical medium, such as Ethernet or a 

point to point line. 
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TCP/IP is based on the "catenet model". (This is described in more detail in IEN 48.) This 

model assumes that there are a large number of independent networks connected together by 

gateways. The user should be able to access computers or other resources on any of these 

networks. Datagrams will often pass through a dozen different networks before getting to 

their final destination. The routing needed to accomplish this should be completely invisible 

to the user. As far as the user is concerned, all he needs to know in order to access another 

system is an "Internet address". This is an address that looks like 128.6.4.194. It is actually a 

2-bit number. However it.is normally written as 4 decimal numbers, each representing 8 bits 

of the address. (The term "octet" is used by Internet documentation for such 8-bit chunks. The 

term "byte" is not used, because TCP/IP is supported by some computers that have byte sizes 

other than 8 bits.) Generally the structure of the address gives you some information about 

w to get to the system. For example, 128.6 is a network number assigned by a central 

llllthority to Rutgers University. Rutgers uses the next octet to indicate which of the campus 

Ethernets is involved. 128.6.4 happens to be an Ethernet used by the Computer Science 

Department. The last octet allows for up to 254 systems on each Ethernet. (It is 254 because 0 

255 are not allowed, for reasons that will be discussed later.) Note that 128.6.4.194 and 

128.6.5.194 would be different systems. The structure of an Internet address is described in a 

·· more detail later. 

Of course we normally refer to systems by name, rather than by Internet address. When 

specify ,a name, the network software looks it up in a database, and comes up with the 

rresponding Internet address. Most of the network software deals strictly in terms of the 

lddress. (RFC 882 describes the name server technology used to handle this lookup.) 

TCP/IP. is built on "connectionless" technology. Information is transfered as a sequence of 
·. ' 

'datagrams". A datagram is a collection of data that is sent as a single message. Each of these 

_,.CJN'lmq is sent through the network individually. There are provisions to open connections 

e, to start a conversation that will continue for some time). However at some level, 

rmation from those connections is broken up into datagrams, and those datagrams are 

ed by the network as completely separate. For example, suppose you want to transfer a 

SOOO octet file. Most networks can't handle a 15000 octet datagram. So the protocols will 

this up into something like 30 500-octet datagrams. Each of these datagrams will be 

to the other end. At that point, they will be put back together into the 15000-octet file. 

wever while those datagrams are in transit, the network doesn't know that there is any 
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•-:cction between them. It is perfectly possible that datagram 14 will actually arrive before 

I cam 13. It is also possible that somewhere in the network, an error will occur, and some 

11 I I am won't get through at all. In that case, that datagram has to be sent again. 

by the way that the terms "datagram" and "packet" often seem to be nearly 

- c:hangable. Technically, datagram is the right word to use when describing TCP/IP. A 

ca ~acing on an Ethernet or ~ome wire. In most cases a packet simply contains a datagram, so 

is very little difference. However they can differ. When TCP/IP is used on top of X.25, 

X25 interface breaks the datagrams up into 128·byte packets. This is invisible to IP, ' 

1111 esse the packets are put back together into a single datagram at the other end before being 

••• cessed by TCP/IP. So in this case, one IP datagram would be carried by several packets. 

ver with most media, there are efficiency advantages to sending one datagram per 

-=tet, and so the distinction tends. to vanish. 

The TCP level 

separate protocols are involved in handling TCP/IP datagrams. TCP (the "transmission 

Clllltrol protocol") is responsible for breaking up the message into datagrams, reassembling 

at the other end, resending anything that gets lost, and putting things back in the right 

. IP (the "internet protocol") is responsible for routing individual datagrams. It may seem 

TCP is doing all the work. And in small networks that is true. However in the Internet, . . 

mnlv getting a datagram to its destination can be a complex job. A connection may require 

datagram to go through several networks at Rutgers, a serial line to the John von Neuman 

31i>aoortlP,uter Center, a couple of Ethernets there, a series of 56Kbaud phone lines to 

mother NSFnet site, and more Ethernets on another campus. Keeping track of the routes to all 
· .. 

the destinations and handling incompatibilities among different transport media turns out to 

a complex job. Note that the interface between TCP and IP is fairly simple. ;rep simply 

IP a datagram with a destination. IP doesn't know how this datagram relates to any 

~m before it or after it. 

have occurred to you that something is missing here. We have talked about Internet 

mdresses, but not about how you keep track of multiple connections to a given system. 

-·.1 it isn't enough to get a datagram to the right destination. TCP has to know which 

-.nection this datagram is part of. This task is referred to as "demultiplexing." In fact, there 
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several levels of demultiplexing going on in TCP/IP. The information needed to do this 

ltiplexing is contained in a series of "headers". A header is simply a few extra octets 

ed onto the beginning of a datagram by some protocol in order to keep track of it. It's a lot 

e putting a letter into an envelope and putting an address on the outside of the envelope. 

:pt with modem networks it happens several times. It's like you put the letter into a little 

elope, your secretary puts that into a somewhat bigger envelope, the campus mail center 

that envelope into a still bigger one, etc. Here is an overview of the headers that get stuck 

1n a message that passes through a typical TCP /IP network: 

e start with a single data stream, say a file you are trying to send to some other' computer: 

······················································ 

TCP breaks it up into manageable chunks. (In order to do this, TCP has to know how large a 

datagram your network can handle. Actually, the TCP's at each end say how big a datagram 

they can handle, and then they pick the smallest size.) 

................................ 

TCP puts a header at the front of each datagram. This header actually contains at least 20 

octets, but the most important ones are a source and destination "port number" and a 

"sequence number". The port numbers are used to keep track of different conversations. 
' I 

Suppose 3 ·different people are transferring files. Your TCP might allocate port numbers 1000, 

1001, and .. 1002 to these transfers. When you are sending a datagram, this becomes the 

"source" port number, since you are the source of the datagram. Of course the TCP at the 
.· I t 

other end has assigned a port number of its own for the conversation. Your TCP has to know 

the port number used by the other eno as well. (It finds out when the connection starts, as we 

will explain below.) It puts this in the "destination" port field. Of course if the other end sends 
i 

a datagram back to you, the source and destination port numbers will be reversed, since then it 

will be the source and you will be the destination. Each datagram has a sequence number. 

This is used so that the other end can make sure that it gets the datagrams in the right order, 

and that it hasn't missed any. (See the TCP specification for details.) TCP doesn't number the 

datagrams, but the octets. So if there are 500 octets of data in each datagram, the first 

datagram might be numbered 0, the second 500, the next 1000, the next 1500, etc. Finally, I 

will mention the Checksum. This is a number that is computed by adding up all the octets in 
the datagram (more or less - see the 'TC"P spec). The resu.h is pu.t in. the header. 'TCP at the 
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mi computes the checksum again. If they disagree, then something bad happened to the 

•• illll in transmission, and it is thrown away. So here's what the datagram looks like now. 

~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~+-+-+-+-+-+-+ 

Source Port Destination Port 

.-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Sequence Number 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Acknowledgment Number 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Data I IUIAIPIRISIFI 

Offset! Reserved IRICISISIYIII 

IG\K\HITIN\N\ 

Window 'I 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Checksum Urgent Pointer 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

your data ... next soc octets 

abbreviate the TCP header as "T", the whole file now looks like this: 

.... T.... T.... T.... T.... T.... ~ .... 

-~ ou will note that there are items in the header that I have not described above. They are 

rally involved with managing the connection. In order to make sure the datagram has 
. '1 ' ', 

· ed at its. destination, the recipient has to send back an "acknowledgement". This is a 

datagram whose "Acknowledgement number" field is filled in. For example, sending a packet 

ith an acknowledgement of 1500 indicates that you have received all the data up to octet 

number 1500. If the sender doesn't get an acknowledgement within a reasonable amount of 
,, 

time, it sends the data again. The window is used to control how much data can be in transit at 

any one time, It is not practical to wait for each datagram to be acknowledged before sending 

the next one. That would slow things down too much. On the other hand, you can't just keep 

sending, or a fast computer might overrun the capacity of a slow one to absorb data. Thus 

each end indicates how much new data it is currently prepared to absorb by putting the 

number of octets in its "Window" field. As the computer receives data, the amount of space 

left in its window decreases. When it goes to zero, the sender has to stop. As the receiver 

processes the data, it increases its window, indicating that it is ready to accept more data. 

Often the same datagram can be used to acknowledge receipt of a set of data and to give 
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IE[Jilission for additional new data (by an updated window). The "Urgent" field allows one 

to tell the other to skip ahead in its processing to a particular octet. This is often useful for 

•• xumg asynchronous events, for example when you type a control character or other 

command that interrupts output. The other fields are beyond the scope of this document. 

The IP level 

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet 

ess of the computerat the other end. Note that this is all IP is concerned about. It doesn't 

about what is in the datagram, or even in the TCP header. IP's job is simply to find a 

ute for the datagram and get it to the other end. In order to allow gateways or other 

ermediate systems to forward the datagram, it adds its own header. The main things in this 

der are the source and destination Internet address (32-bit addresses, like 128.6.4.194), the 

tocol number, and another checksum. The source Internet address is simply the address of 

__ ur machine. (This is necessary so the other end knows where the datagram came from.) The 

ination Internet address is the address of the other machine. (This is necessary so any 

gateways in the middle know where youwant the datagram to go.) The protocol number tells 

IP at the other end to send the datagram to TCP. Although most IP traffic uses TCP, there are 

other protocols that can use IP, so you have to tell IP which protocol to send the datagram to. 

Finally, the checksum allows IP at the other end to verify that the header wasn't damaged in 

transit. Note that TCP and IP have separate checksums. IP needs to be able to verify that the 

header didn't get, damaged in transit, or it could send a message to the wrong place. For 

reasons notworth discussing here, it is both more efficient and safer to have TCP compute a 

separate checksum for the TCP header and data, Once IP has tacked on its header, here's what 
the message looks like: 

+-+~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~+-+-+-+-+-+-+i+~+ 
JVersionJ IHL !Type of Service! Total Length 
+-+~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Identification !Flags! Fragment Offset 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Time to Live I Protocol I Header Checksum 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Source Address 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Destination Address 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I TCP header, then your data . 
I 
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represent the IP header by an "I", your file now looks like this: 

IT.... IT.... IT.... IT.... IT.... IT .... 

.nga.ui, the header contains some additional fields that have not been discussed. Most of them 

beyond the scope of this document. The flags and fragment offset are used to keep track of 

pieces when a datagram has to be split up. This can happen when datagrams are forwarded 

ugh a network for which they are too big. (This will be discussed a bit more below.) The 

to live is a number that is decremented whenever the datagram passes through a system. 

When it goes to zero, the datagram is discarded. This is done in case a loop develops in the 

system somehow. Of course this should be impossible, but well-designed networks are built 

to cope with "impossible" conditions. 

At this point, it's possible that no more headers are needed. If your computer happens 

to have a direct phone line connecting it to the destination computer, or to a gateway, it may 

simply send the datagrams out on the line (though likely a synchronous protocol such as 

HDLC would be used, and it would add at least a few octets at the beginning and end). 

5.2.1 The Internet Protocol 

Internet Protocol (IP) was originally designed to operate on top of Version 2 Ethernet. The 

Compendium has a separate section to discuss ETHERNET. Various components of the IP 

protocol family were differentiated by Ethertype number. IP is assigned Ethertype 0800 hex. 
I 

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing 

information and some control information that enables packets to be routed. IP is documented 

in RFC 7:91 and is the primary network-layer protocol in the Internet protocol suite. Along 

with the· Transmission Control Protocol (TCP), IP represents the heart of the Internet 

protocols. IP has two primary responsibilities: providing connectionless, best-effort delivery 

of datagrams through an internetwork; and providing fragmentation and reassembly of 

datagrams to support data links with different maximum-transmission unit (MTU) sizes. 
. . 

When the IEEE developed the 802.3 standards for Ethernet they, essentially, replaced 

the Ethertype number with a Service Access Point identifier. It was necessary to include an 

option for embedding the original Ethertype inside a newer 802.3 frame in order to allow 

access to an IP Subnet. This is why there is a Sub-Network Access Protocol (SNAP) header 

in most IP frames that aren't using Version 2 Ethernet. 
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IP operates at OSI Layer 3 and provides the routing function in an IP network. Each 

communicating device is assigned an IP address. The address identifies the network ( which 

may be divided into sub-networks) and the host. The term "host" refers to any 

communicating device in an IP network. Originally the temi referred to a central host 

computer. Today it includes any PC, printer, gateway, file server, or other device that has an 

IP address and talks on an IP network. 

The discussion of IP begins with a description of the addressing scheme, progresses 

through the routing function, and then expands on the addressing concepts used to create sub­ 

networks. Troubleshooting IP is the process of troubleshooting routing on the network, 

5.2.2 Background 

The Internet protocols are the world's most popular open-system (nonproprietary) protocol 

suite because they can be used to·communicate across any set of interconnected networks and 

are equally well suited for LAN and WAN communications. The Internet protocols consist of 

a suite of communication protocols, of which the two best known are the Transmission 

Control Protocol (TCP) and the Internet Protocol (IP). The Internet protocol suite not only 

includes lower-layer protocols (such as TCP and IP), but it also specifies common 

applications such as electronic mail, terminal emulation, and file transfer. This chapter 

provides a broad introduction to specifications that comprise the Internet protocols. 

Discussionsinclude IP addressing and key upper-layer protocols used in the Internet. 

Internet protocols were first developed in the mid-l 970s, when the Defense Advanced 

Research Projects Agency (DARPA) became interested in establishing a packet-switched 
, I 

network that would facilitate communication between dissimi)ar computer systems at research 
'' 

institutions. With the goal of heterogeneous connectivity in mind, DARPA funded research by 

Stanford University and Bolt, Beranek, and Newman (BBN). The result of this development 

effort was the Internet protocol suite, completed in the late 1970s. 

TCP/IP later was included with Berkeley Software Distribution (BSD) UNIX and has since 

become the foundation on which the Internet and the World Wide Web (WWW) are based. 

Documentation of the Internet protocols (including new or revised protocols) and policies are 

specified in technical reports called Request For Comments (RFCs), which are published and 

then reviewed and analyzed by the Internet community. Protocol refinements are published in 
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new RFCs. To illustrate the scope of the Internet protocols (figure 3) maps many of the 

tocols of the Internet protocol suite and their corresponding OSI layers. This chapter 

esses the basic elements and operations of these and other key Internet protocols. Internet 

tocols span the complete range of OSI model layers. 

OSI 
Ft..r•re111c• Model 

NFS 

f='I P·. l'eolneot. 
SMTP SNMP 

XOR 

RPC 

Transporl TCP, IJOP 

Ne1work 

1---------~--------~---,--·· A.RP, RAAP 

~ 
t__._~~~~~~~~~~~~~___,i 

Figure 3. O~I model layers. 

5.2.3 Thoughts about fixing problems ... 

The actual troubleshooting maxim is quite simple: Follow the frame from source to 

destination. Each station should be forwarding the frame to a correct destination; router to 

router; until the final destination is reached. If someone doesn't forward the frame correctly, 

and if the destination address is valid, then that station is miscon:figured. To know what the 

expected forwarding will be from router to router it is necessary to understand the underlying 

subnet masking being used by the routers and by the nodes. The meaning of the dotted- 
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imal IP address can only be ascertained by applying the mask using binary arithmetic to 

ermine which bits are used to represent the network, the subnet ( or subnets), and the host. 

.4 IP Packet Format 

~------------- :3·2 bi1B . 1 

~r&'>n I~::~-- -1 ·-T.:~'.-,~=~--· 
-~n1ilir::..-.ti04!1 Frepment oftge, 

I 
Tiime-lo-Rve ! Ptolot:di I Head911" cnecksum 

•••.•.••.•• .a ••••••.••••••••••••••••.•.•••.• L ···---·····--·-···- ,. ----···-- .. ---··-···· 

~uons (+ padcSngt 

~ .::t'i 
::t. 

Figure 4. An IP packet contains several types of information. Fourteen fields comprise an IP 
' I 

packet. 

• Version---Indicates the version oflP currently used. 
• IP Header Length (IHL)---Indicates the datagram header length in 32-bit words. 
• Type-of-Service---Specifies how an upper-layer · protocol would like 'a current 

datagram to be handled, and assigns datagrams various levels of importance. 

• Total Length---Specifies the length, in bytes, of the entire IP packet, including the data 

and header. 
• Identification---Contains an integer that identifies the current datagram. This field is 

used to help piece together datagram fragments. 

• Flags---Consists of a 3-bit field of which the two low-order (least-significant) bits 

control :fragmentation. The low-order hit specifies whether the packet can be 
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fragmented. The middle bit specifies whether the packet is the last fragment in a series 

of fragmented packets. The third or high-order bit is not used. 

• Fragment Offset---Indicates the position of the fragment's data relative to the 

beginning of the data in the original datagram, which allows the destination IP process 

to properly reconstruct the original datagram. 

• Time-to-Live---Maintains a counter that gradually decrements down to zero, at which 

point the datagram is discarded. This keeps packets from looping endlessly. 

• Protocol---Indicates which upper-layer protocol receives incoming packets after IP 

processing is complete. 

• Header Checksum---Helps ensure IP header integrity. 

• Source Address---Specifies the sending node. 

• Destination Address---Specifies the receiving node. 

• Options---Allows IP to support various options, such as security. 

• Data---Contains upper-layer information. 

5.2.5 IP Addressing 

As with any other network-layer protocol, the IP addressing scheme is integral to the 

process of routing IP datagrams through an internetwork. Each IP address has specific 

components and follows a basic format. These IP addresses can be subdivided and used to 

create addresses for subnetworks, as discussed in more detail later in this chapter. 
'1 ' 

Each host on a TCP/IP network is assigned a unique 32-bit logical address that is 

divided into two main parts: the network number and the host number. The network number 
I 

identifies· a network and must be assigned by the Internet Network Information Center 
' . 

(InterNIC) if the network is to be part of the Internet. An Internet Service Provider (ISP) can 

obtain blocks. of network addresses from the InterNIC and can itself assign adqress space as 

necessary, The host number identifies a host on a network and is assigned by the local 

network administrator. 

5.2.6 IP Address Format 

The 32-bit IP address is grouped eight bits at a time, separated by dots, and represented in 

decimal format (known as dotted decimal notation). Each bit in the octet has a binary weight 
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(128, 64, 32, 16, 8, 4, 2, 1). The minimum value for an octet is 0, and the maximum value for 

an octet is 255. An IP address consists of 32 bits, grouped into four octets. 

32 Bfts 

[ __ ···---- -- Ne~rk J Hoel ______J 

+- a Bits -i,. +- a Blls __. +- a eus -+ +- a. Bits -. 

Dotted 
Dt.:ihm11 
Notat~on 

172 • · 16 t 122 204 

Figure 5. The basic format of an IP address. 

5.2. 7 IP Address Classes 

IP addressing supports five different address classes: A, B,C, D, and E. Only classes 

A, B, and C are available for commercial use. The left-most (high-order) bits indicate the 

network class. Table 1 provides reference information about the five IP address classes. 
' I 

Table 1: Reference Information About the Five IP Address Classes 
•- - . ---·-·- - ·---·-·--·--·--·-·- --.···--·····-···· I IP' I, Format rurpose Big~- Address Range I No. Bitsl Max. 

1 Address i Order J Network/Host I Hosts 
j C_!as~ .... J. ·- . 1'"" Bit(s) , . . ... _ . . .. .. 
'IA II N.H.H.Hli Few la~ol 1.0.0.0 . ~1' 7/24 116,777,l 

I ' I , I 
/ I organizations j 1126.0.0.0. 

1! 

. / 21~ / 
11 

' ' I ! I I I (224 - 2) I 
/
------. _, - .. ·--- .. --- .. -·!. . . . ·----- --- . . --------·-·----, ------ .. --· --- -- ------ - . - ·1 ·-·------ .. ------ I ------1 ln,N.N.H.H i Medium-size El 128.1.0.0 tol~ 65, 543j 

'

'1 ... _ J __ . J_organi~~t~ons__ .. .. _/ 1 __ ~_1.2~~-~.0 _ .J _ ..... j(~~6 2) .J 

I C / N.N.N.H ! Relatively I! 1, 1, 0 192.0.1.0 to 22/8 j 245 (2B-, 
I I ' I I / I small / 1223.255.254.0 

1 

I 2) j 

! .. __ ·--·-- .J _ .. _j o!.ga~~z~ti-~ns J _ _j _ ---· _ _ _ __ ..J . . .. _j .. . _ ..! 
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-==··=··· -------- ,_,..... -------- -- .. ---- ---·--- .. ·----- -----·· . .. . --------------------- . .. 

j N/A I Multicast I 1, 1, 224.0.0.0 toj N/A (not tor11 N/A \ 
l I I i . I 
I I groups (RFCj 1, 0 239.255.255.255 \ commercial I I 
I \1112) ! Juse) \ I 

::=E=:==;1~__ I Experimental . ~~11240.0.0.0 . 101~___ __ _- _-_ 1JN1Al 
ii _ _ __ _ _ \ 1. 1 - : 254.255.255.255 ii_ _ __ ii _ _ _ \ 

-----"-'-'---'---'-'........:...;...:..-..:...:. ------------------- -- 

---------·-·--· - -- --- 

D 

1N = : Network number, H = Host number. 
20ne address is reserved for the broadcast address, and one address is reserved for the 
network. 

Ntl. Bil& 7 .•. -----------~-- 24 

---~ 
t-to,t 

\..~Mi,11 ·1,\•'-'· H ,.\J.l.l.,'1.,f -' ••.'t,•.~...'-,·•~-1'.Y-~.f.~~~~~-.. ~ 

14 16 

ClassB ~~~'.~·-··'. L __ Network J I Host I Host 

21 8 

ClassC l1L1lol Net,rork Ir Network .J l Network I I Host J~ 
Figure 6. The format of the commercial IP address classes. (Note the high-order bits in each 

class.) IP address formats A, B, and C are available for commercial use. 

The class of address can be determined easily by examining the first octet of the address and 

mapping that value to a class range in the following table. In an IP address of 172.31.1.2, for 

example, the first octet is 172. Because 172 falls between 128 and 191, 172.31.1.2 is a Class 

B address. 
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Figure 7. The range of possible values for the first octet of each address class. A range of 

possible values exists for the first octet of each address class. 

5.2.8 IP Subnet Addressing 

IP networks can be divided into smaller networks called subnetworks (or subnets). Subnetting 

provides the network administrator with several benefits, including extra flexibility, more 

efficient use of network addresses, and the capability to contain broadcast traffic ( a broadcast 

will not cross a router). 

Subnets are under local administration. As such, the outside world sees an organization as a 

single network and has no detailed knowledge of the organization's internal structure. -, 

A given network address can be broken up into many subnetworks. For example, 172.16.1.0, 

172.16.2,0, 172.16.3.0, and 172.16.4.0 are all subnets within network 171.16.0.0. (All Os in 

the host portion of an address specifies the entire network.) 

5.2.9 IP Subnet Mask 

A subnet address is created by "borrowing" bits from the host field and designating them as 

the subnet field. The number of borrowed bits varies and is specified by the subnet mask. 
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Figure 8. Shows how bits are borrowed from the host address field to create the subnet 

address field. Bits are borrowed from the host address field to create the subnet address field. 

Subnet masks use the same format and representation technique as IP addresses. The subnet 
mask, however, has binary 1 s in all bits specifying the network and subnetwork fields, and 
binary Os in all bits specifying the host field. 

Network I [ Network J I Subnet I I Host 

Binary ·i' , ' 

representation I 11111111 1111 n 11 I 1f 111 H 1 ( 00000000 I 

Dolltd decimal 
representation 2SS' • 0 2S5 ' • 

Figure 9. A sample subnet mask. A sample subnet mask consists of all binary 1 s and Os. 

Subnet mask bits should come from the high-order (left-most) bits of the host field, as Figure 

l O illustrates. Details of Class B and C subnet mask types follow. Class A addresses are not 
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discussed in this chapter because they generally are sub netted on an 8-bit boundary. Subnet 

mask bits come from the high-order bits of the host field. 

1128 64 32 16 8 4 2 ., 
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------------·----- 
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Figure 10 

"" 

Various types of subnet masks exist for Class B and C subnets. The default subnet mask for a 

Class B address that has no subnetting is 255.255.0.0, while the subnet mask for a Class B 

address 171.16.0.0 that specifies eight bits of sub netting is 255.255.255.0. The reason for this 

is that eight. bits of subnetting or 28 - 2 (1 for the network address and 1 for the broadcast 

address)= 254 subnets possible, with 28 - 2 = 254 hosts per subnet. 

6. The OSl Reference Model 

The Open. Systems Interconnect (OSI) Reference Model has seven layers. Each layer defines 

a function performed when data is transferred between applications across a network. These 
I 

layers are usually pictured as a stack of blocks, leading to the common term "protocol stack." 

i[Application-L~;~f-· r~~~ii~~tion pro~r~ th~~-~~~-~h~- ~~~~~------·-----~-----~j 
I ----------------·---------- """" -----" - """" -·-· ,, "•"-'"""""'"""""'"" --------. ----------------·-·-··---- ----- I 

!Presentation Layer II standardizes data presented to the applications i 
----- --------·--------------' ··---··--· .. ·-·. "" """ ' .. " ----- ""' '' - '""""""'""' ----·---------·-----·---------- .. ·------------_J 

I I Session Layer II manages sessions between applications / r= Layer __ JI provides error detection and correction _ _J 
II Network Layer __ _/Eanages_ network connections -------·--------------_/ 
/Jnat~_Link L~yer _ _Jiprovides dat_~_deliv~ry across the physical connection _ __J 
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Each layer of the stack defines a function that may be performed by any number of protocols. 

Any given protocolmay perform multiple functions. Each protocol communicates with a peer 

that is an equivalent implementation of the same protocol on a remote system. Each protocol 

layer is only concerned with communication to a peer at the other end of a link. For example, 

e-mail is an application level protocol that communicates with a peer e-mail application on a 

remote system. The e-mail application does not care whether or not the physical layer is a 

serial modem line or a twisted pair ethernet connection. 

Information is passed down through the layers until it is transmitted across the network, where 

it is passed back up the stack to the application at the remote end. Each layer relies on the 

other layers to perform their functions. The individual layers do not care how the other layers 

operate. They only need to know how to pass information up or down from one layer to 

another. 

6.1 Open System Interconnection (OSI) Protocols 

6.1.l·Background 
'· ! 

The Open System Interconnection (OSI) protocol suite is comprised of numerous standard 

protocols that are based on the OSI reference model. These protocols are part of an 

international program to develop data-networking protocols. and other standards that facilitate 

multivendor equipment interoperability. The OSI program grew out of a need for international 

networking standards and is designed to facilitate communication between hardware and 

software systems despite differences in underlying architectures. 

The OSI specifications were conceived and implemented by two international standards 

organizations: the International Organization for Standardization (ISO) and the International 

Telecommunication Union-Telecommunication Standardization Sector (ITU-T). This chapter 
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provides a summary of the OSI protocol suite and illustrates its mapping to the general OSI 

reference model. 

6.2 Open Systems Interconnection (OSI) Routing Protocol 

6.2.1 Background 

The International Organization for Standardization (ISO) developed a complete suite of 

routing protocols for use in the Open Systems Interconnection (OSI) protocol suite. These 

include Intermediate System-to-Intermediate Systems (IS-IS), End System-to-Intermediate 

System (ES-IS), and Interdomain Routing Protocol (IDRP). This chapters addresses the basic 
operations of each of these protocols. 

IS-IS is based on work originally done at Digital Equipment Corporation for DECnet/OSI 

(DECnet Phase V). IS-IS originally was developed to route in ISO Connectionless Network 

Protocol (CLNP) networks. A version has since been created that supports both CLNP and 

Internet Protocol (IP) networks; this version usually is referred to as Integrated IS-IS (it also 
has been called Dual IS-JS). 

OSI routing protocols are summarized in several ISO documents, including ISO 10589, which 

defines IS-IS. The American National Standards Institute (ANSI) X3S3.3 (network and 

transport layers) committee was the motivating force behind ISO standardization of IS-IS. 
' I 

Other ISO documents include ISO 9542 (which defines ES-IS) and ISO 10747 (which defines 
IDRP). 

6.3 OSI Networking Terminology 

The world of OSI networking uses some specific terminology, such as end system (ES), which 

refers to any nonrouting network nodes, and intermediate system (IS), which refers to a router. 

These terms form the basis for the ES-IS and IS-IS OSI protocols. The ES-IS protocol enables 

ESs and ISs to discover each other. The IS-IS protocol provides routing between ISs. Other 

important OSI networking terms include area, domain, Level 1 routing, and Level 2 routing. 

An area is a group of contiguous networks and attached hosts that is specified to be an area by 

a network administrator or manager. A domain is a collection of connected areas. Routing 

domains provide full connectivity to all end systems within them. Level 1 routing is routing 

within a Level 1 area, while Level 2 routing is routing between Level 1 areas. Figure 11 
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illustrates the relationship between areas and domains and depicts the levels of routing 

between the two. Areas exist within a larger domain and use Level 2 routing to communicate. 

~ 
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Domain 

Figure 11 

6.4 OSI Routing Operation 

Each ES lives in a particular area. OSI routing begins when the ESs discovers the nearest IS 

by listening to ISH packets. When an ES wants to send a packet to another ES, it sends the 

packet to one of the ISs on its directly attached network. The router then looks up the 

destination address and forwards the packet along the best route. If the destination ES is on 

· the same subnetwork, the local IS will know this from listening to ESHs and will forward the 
. ' I 

packet appropriately. The IS also might provide a redirect (RD) message back to the source to 

tell it that· a more direct route is available. If the destination address is an ES on another 

subnetwork in the same area, the IS will know the correct route and will forward the packet 

appropriately. If the destination address is an ES ~ another area, the Level 1 IS sends the 

packet to the nearest Level 2 IS. Forwarding through Level 2 ISs continues until the packet 

reaches a Level 2 IS in the destination area. Within the destination area, ISs forward the 

packet along the best path until the destination ES is reached. 

Link-state update messages help ISs learn about the network topology. First, each IS 

generates an update specifying the ESs and ISs to which it is connected, as well as the 

associated metrics. The update then is sent to all neighboring ISs, which forward (flood) it to 

their neighbors, and so on. (Sequence numbers terminate the flood and distinguish old updates 

from new ones.) Using these updates topology of the network. When the topology changes, 

new updates are sent. 

33 



6.5 OSI Seven-Layer Model 

In the 1980s, the European-dominated International Standards Organization (ISO), began to 

develop its Open Systems Interconnection (OSI) networking suite. OSI has two major 

components: an abstract model of networking (the Basic Reference Model, or seven-layer 

model), and a set of concrete protocols. The standard documents that describe OSI are for sale 
and not currently available online. 

Parts of OSI have influenced Internet protocol development, but none more than the abstract 

model itself, documented in OSI 7498 and its various addenda. In this model, a networking 
\ 

system is divided into layers. Within each layer, one or more entities implement its 

functionality. Each entity interacts directly only with the layer immediately beneath it, and 

provides facilities for use by the layer above it. Protocols enable an entity in one host to 

interact with a corresponding entity at the same layer in a remote host. 

OS1. Model 
~'2,y_;/i 

Appl ic.a.tion 
''"",-,::,., ••• ·-,< 

Pt"Cac ntation 

SCSEion 
»:..·?~ 

Tea.rm port 

D.a.ta. Link: 

-, Physic.al 

The seven layers of the OSI Basic Reference Model are (from bottom to top): 

1. The Physical Layer describes the physical properties of the various communications 

' media, as well as the electrical properties and interpretation of the exchanged signals. 

Ex: this layer defines the size of Ethernet coaxial cable, the type of BNC connector 
used, and the termination method. 

2. The Data Link Layer describes the logical organization of data bits transmitted on a 

particular medium. Ex: this layer defines the framing, addressing and checksumming 
of Ethernet packets. 
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3. The Network Layer describes how a series of exchanges over various data links can 

deliver data between any two nodes in a network. Ex: this layer defines the addressing 

and routing structure of the Internet. 
4. The Transport Layer describes the quality and nature of the data delivery. Ex: this 

layer defines if and how retransmissions will be used to ensure data delivery. 

5. The Session Layer describes the organization of data sequences larger than the 

packets handled by lower layers. Ex: this layer describes how request and reply 

packets are paired in a remote procedure call. 
6. The Presentation Layer describes the syntax of data being transferred. Ex: this layer 

describes how floating point numbers can be exchanged between hosts with different 

math formats. 
7. The Application Layer describes how real work actually gets done. Ex: this layer 

would implement file system operations. 

The original Internet protocol specifications defined a four-level model, and protocols 

designed around it (like TCP) have difficulty fitting neatly into the seven-layer model. Most 

newer designs use the seven-layer model. 

The OSI Basic Reference Model has enjoyed a far greater acceptance than the OSI 

protocols themselves. There are several reasons for this. OSI's committee-based design 

process bred overgrown., unimaginative protocols that nobody ever accused of efficiency. 
I 

Heavy European dominance helped protect their investments in X.25 (CONS is basically 

X.25 for ,datagram networks). Perhaps most importantly, X.25 data networks never caught 

people's imagination like the Internet, which, with a strong history of free, downloadable 
' 

protocol: specifications, has been loath to embrace yet another networking scheme where you 

have to pay to figure how things work. 

And why should we? OSl's biggest problem is that doesn't really offer anything new. 

The strongest case for its implementation comes from its status as an "international standard", 

but we already have a de facto international standard - the Internet. OSI protocols will be 

around, but its most significant contribution is the philosophy of networking represented by 

its layered model. 

If the Internet community has to worry about anything, it's the danger of IETF turning 

into another ISO - a big, overgrown standards organization run by committees, churning out 
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thousands of pages of rubbish, and dominated by big business players more interested in 

preserving investments than advancing the state of the art. 

6.6 OSI Networking Protocols 

Figure 12 illustrates the entire OSI protocol suite and its relation to the layers of the OSI 

reference model. Each component of this protocol suite is discussed briefly. The OSI routing 

protocols are addressed in more detail in "Open Shortest Path First (OSPF)." The OSI 

protocol suite maps to all layers of the OSI reference model. 
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Figure 12 

6. 7 OSI Physical and Data Link layers 

The OSI protocol suite supports numerous standard media-access protocols at the physical 

and data link layers. The wide variety of media-access protocols supported in the OSI 

protocol suite allows other protocol suites to exist easily alongside OSI on the same network 
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media. Supported media-access protocols include IEEE 802.2 LLC, IEEE 802.3, Token 

Ring/IEEE 802.5, Fiber Distributed Data Interface (FDDI), and X.25. 

6.8 OSI Network Layer 

The OSI protocol suite specifies two routing protocols at the network layer: End System-to­ 

Intermediate System (ES-IS) and Intermediate System-to-Intermediate System (IS-IS). In 

addition, the OSI' suite implements two types of network services: connectionless service and 

connection-oriented service. 

6.9 OSI-Layer Standards 

In addition to the standards specifying the OSI network-layer protocols and services, the 

following documents describe other OSI network-layer specifications: 

• ISO 8648---This standard defines the internal organization of the network layer 

(IONL), which divides the network layer into three distinct sublayers to support 

different subnetwork types. 

• ISD 8348---This standard defines network-layer addressing and describes the 

connection-oriented and connectionless services provided by the OSI network layer. 

• ISO TR 9575---This standard describes the framework, concepts, and terminology 

used in relation to OSI routing protocols. 

6.10 OSI Connectionless Network Service 

OSI connectionless network service is implemented by using the Connectionless Network 

Protocol (CLNP) and Connectionless Network Service (CLNS). CLNP and CLNS are 

described in the ISO 84 73 standard. 

CLNP is an OSI network-layer protocol that carries upper-layer data and error indications 

over connectionless links. CLNP provides the interface between the Connectionless Network 

Service (CLNS) and upper layers. 

CLNS provides network-layer services to the transport layer via CLNP. 

CLNS does not perform connection setup or termination because paths are determined 

independently for each packet that is transmitted through a network. This contrasts with 

Connection-Mode Network Service (CMNS). 

In addition, CLNS provides best-effort delivery, which means that no guarantee exists that 

data will not be lost, corrupted, misordered, or duplicated. CLNS relies on transport-layer 

protocols to perform error detection and correction. 
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6.11 OSI Connection-Oriented Network Service 

OSI connection-oriented network service is implemented by using the Connection-Oriented 

Network Protocol (CONP) and Connection-Mode Network Service (CMNS). 

CONP is an OSI network-layer protocol that carries upper-layer data and error indications 

over connection-oriented links. CONP is based on the X.25 Packet-Layer Protocol (PLP) and 

is described in the ISO 8208 standard, "X.25 Packet-Layer Protocol for DTE." 

CONP provides the interface between CMNS and upper layers. It is a network-layer service 

that acts as the interface between the transport layer and CONP and is described in the ISO 

8878 standard. 

CMNS performs functions related to the explicit establishment of paths between 

communicating transport-layer entities. These functions include connection setup, 

maintenance, and termination, and CMNS also provides a mechanism for requesting a 

specific quality of service (QOS). This contrasts with CLNS. 

6.11.1 Network-Layer Addressing 

OSI network-layer addressing is implemented by using two types of hierarchical addresses: 

network service access-point addresses and network-entity titles. 

A network service-access point (NSAP) is a conceptual point on the boundary between the 

network and the transport layers. The NSAP is the location at which OSI network services are 

provided to the transport layer. Each transport-layer entity is assigned a single NSAP, which 

is individually addressed in an OSI internetwork using NSAP addresses. 
l ' 

Figure 13 illustrates the format of the OSI NSAP address, which identifies individual NSAPs. 

The OSI NSAP address is assigned to each transport-layer entity. 
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Figure 12 

6.11.2 NSAP Address Fields 

Two NSAP Address fields exist: the Initial Domain Part (IDP) and the Domain-Specific Part 

(DSP). 

The IDP field is "divided into two parts: the Authority Format Identifier (AFI) and the Initial 

Domain Identifier (IDI). The AFI provides information about the structure and content of the 

IDI and DSP fields, such as whether the IDI is of variable length and whether the DSP uses 

decimal or binary notation. The IDI specifies the entity that can assign values to the DSP ' 

portion of the NSAP address. 

The DSP is subdivided into four parts by the authority responsible for its administration. The 

Address Administration fields allow for the further administration of addressing by adding a 

second authority identifier and by delegating address administration to subauthorities. The 

Area field identifies the specific area within a domain and is used for routing purposes. The 

Station field identifies a specific station within an area and also is used for routing purposes. 

The Selector field provides the specific n-selector within a station and, much like the other 

fields, is used for routing purposes'. The reserved n-selector 00 identifies the address as a 

network entity title (NET). 

6.11.3 End-System NSAPs 

An OSI encl system (ES) often has multiple NSAP addresses, one for each transport entity that 

it contains, If this is the case, the NSAP address for each transport entity usually differs only 

in the .last byte (called the n-selector). 'Figure 13 illustrates the relationship between a 

transport entity, the NSAP, and the network service. The NSAP provides a linkage between a 
' 

transport entity and a network service: 
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Figure 13 

A network-entity title (NET) is used to identify the network layer of a system without 

associating that system with a specific transport-layer entity (as an NSAP address does). 

NETs are useful for addressing intermediate systems (ISs), such as routers, that do not 

interface with the transport layer. An IS can have a single NET or multiple NETs, if it 

participates in multiple areas or domains. 

6.12 OSI Protocols Transport Layer 

The OSI protocol suite implements two types of services at the transport layer: connection­ 

oriented transport service and connectionless transport service. 

Five connection-oriented transport-layer protocols exist in the OSI suite, ranging from 
, I 

Transport Protocol Class O through Transport Protocol Class 4. Connectionless transport 

service is supported only by Transport Protocol Class 4. 
' 

Transport Protocol Class O (TPO), the simplest OSI transport protocol, performs 
' segmentation and reassembly functions. ,TPO requires connection-oriented network service. 

' Transport Protocol Class 1 (TP 1) performs segmentation and reassembly and offers basic 

error recovery. TPl sequences protocol data units (PDUs} and will retransmit PDUs or 

reinitiate the connection if an excessive number of PDUs are unacknowledged, TPl requires 

connection-oriented network service. 

Transport Protocol Class 2 (TP2) performs segmentation and reassembly, as well as 

multiplexing and demultiplexing data streams over a single virtual circuit. TP2 requires 

connection-oriented network service. 

Transport Protocol Class 3 (TP3) offers basic error recovery and performs segmentation and 

reassembly, in addition to multiplexing and demultiplexing data streams over a single virtual 
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circuit. TP3 also sequences PDUs and retransmits them or reinitiates the connection if an 

excessive number are unacknowledged. TP3 requires connection-oriented network service. 

Transport Protocol Class 4 (TP4) TP4 offers basic error recovery, performs segmentation and 

reassembly, and supplies multiplexing and demultiplexing of data streams over a single 

virtual circuit. TP4 sequences PDUs and retransmits them or reinitiates the connection if an 

excessive number. are unacknowledged. TP4 provides reliable transport service and functions 

with either connection-oriented or connectionless network service. It is based on the 

Transmission Control Protocol (TCP) in the Internet Protocols suite and is the only OSI 

protocol class that supports connectionless network service. 

6.13 OSI Protocols Session Layer 

The session-layer implementation of the OSI protocol suite consists of a session protocol and 

a session service. The session protocol allows session-service users (SS-users) to 

communicate with the session service. An SS-user is an entity that requests the services of the 

session layer. Such requests are made at Session-Service Access Points (SSAPs), and SS­ 

users are uniquely identified by using an SSAP address. Figure 14 shows the relationship 

between the SS-user, the SSAP, the session protocol, and the session service. 

Session service provides four basic services to SS-users. First, it establishes and terminates 

connections between SS-users and synchronizes the data exchange between them. Second, it 

performs various negotiations for the use of session-layer tokens, which must be possessed by 

the SS-user Jo begin communicating. Third, it inserts synchronization points in transmitted 
'1 ' 

data that allow the session to be recovered in the event of errors or interruptions. Finally, it 

allows SS-users to interrupt a session and resume it later at a specific point. Session layer 

functionsprovide service to presentation layer functions via a SSAP. 
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Figure 14 
Session service is defined in the ISO 8326 standard and in the ITU- I X.215 recommendation. 

The session protocol is defined in the ISO 8327 standard and in the ITU-I X.225 

recommendation. A connectionless version of the session protocol is specified in the ISO 

9548 standard. 

6.14 OSI Protocols Presentation Layer 

The presentation-layer implementation of the OSI protocol suite consists of a presentation 

protocol and a presentation service. The presentation protocol allows presentation-service 

users (PS-users) to communicate with the presentation service. 

A PS-user' is an entity that requests the services of the presentation layer. Such requests are 

made at Presentation-Service Access Points (PSAPs). PS-users are uniquely identified by 

using psAP addresses. 
Presentation service negotiates transfer syntax and translates data to and from the transfer 

syntax for PS-users, which represent data using different syntaxes. The presentation service is 

used by two PS-users to agree upon the transfer syntax that will be used. When a transfer 
' ; 

syntax is agreed upon, presentation-service entities must translate the data from the PS-user to 

the correct transfer syntax. 
The OSI presentation-layer service is defined in the ISO 8822 standard and in the ITU-I 

X.216 recommendation. The OSI presentation protocol is defined in the ISO 8823 standard 

and in the ITU- I X.226 recommendation. A connectionless version of the presentation 

protocol is specified in the ISO 9576 standard. 
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6.15 OSI Protocols Application Layer 

The application-layer implementation of the OSI protocol suite consists of various application 

entities. An application entity is the part of an application process that is relevant to the 

operation of the OSI protocol suite. An application entity is composed of the user element and 

the application service element (ASE). 
The user element is the part of an application entity that uses ASEs to satisfy the 

communication needs of the application process. The ASE is the part of an application entity 

that provides services to user elements and, therefore, to application processes. ASEs also 

provide interfaces to the lower OSI layers. Figure 15 portrays the composition of a single 

application process ( composed of the application entity, the user element, and the AS Es) and 

its relation to the PSAP and presentation service. An application process relies on the PSAP 

and presentation service. 
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Figure 15 
ASEs fall into one of the two following classifications: Common-Application Service 

Elements (CASEs) and Specific-Application Service Elements (SASEs). Both of these might 

be present in a single application entity. 

43 



6.15.1 Common-Application Service Elements (CASEs) 

Common-Application Service Elements (CASEs) are ASEs that provide services used by a 

wide variety of application processes. In many cases, multiple CASEs are used by a single 

application entity. The following four CASEs are defined in the OSI specification: 

• Association Control Service Element (ACSE)---Creates associations between two 

application entities in preparation for application-to-application communication 

• Remote Operations Service Element (ROSE)---Implements a request-reply mechanism 

that permits various remote operations across an application association established by 

theACSE 

• Reliable Transfer Service Element (RTSE)---Allows ASEs to reliably transfer 

messages while preserving the transparency of complex lower-layer facilities 

• Commitment, Concurrence, and Recovery Service Elements (CCRSE)---Coordinates 

dialogues between multiple application entities. 

6.15.2 Specific-Application Service Elements (SASEs) 

Specific-Application Service Elements are ASEs that provide services used only by a specific 

application process, such as file transfer, database access, and order-entry, among others. 

6.15.3 OSI Protocols Application Processes 

An application process is the element of an application that provides the interface between the 
' I 

application itself and the OSI application layer. Some of the standard OSI application 

processes include the following: 

• Common Management-Information Protocol (CMIP)---Performs network 

management functions, allowing the exchange of management information between 

ESs and management stations. CMIP is specified in the ITU-T X. 700 recommendation 

and is functionally similar to the Simple Network-Management Protocol (SNMP) and 

' NetView. 

• Directory Services (DS)---Serves as a distributed directory that is used for node 

identification and addressing in OSI intemetworks. DS is specified in the ITU-T 

X.500 recommendation. 

• File Transfer, Access, and Management (FTAM)---Provides file-transfer service and 

distributed file-access facilities. 
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• Message Handling System (MHS)---Provides a transport mechanism for electronic 

messaging applications and other applications by using store-and-forward services. 

• Virtual Terminal Protocol (VTP}·--Provides terminal emulation that allows a 

computer system to appear to a remote ES as if it were a directly attached terminal. 

1) Physical Layer 

• Concerned with the transmission of bits. 

• How many volts for 0, how many for 1? 

• Number of bits of second to be transmitted. 

• Two way or one-way transmission 

• Standardized protocol dealing with electrical, mechanical and signaling interfaces. 

• Many standards have been developed, e.g. RS-232 (for serial communication lines). 

• Example : X.21 

(2) Data Link Layer 

• Handles errors in the physical layer. 

• Groups bits into frames and ensures their correct delivery. 
' I 

• Adds some bits at the beginning and end of each frame plus the checksum. 

• Receiver verifies the checksum. 

• If the checksum is not correct, it asks for retransmission. ( send a control message). 

• Cons1st1s of two sublayers: 

o Logical Link Control (LLC) defines how data is transferred over the cable and 

. provides data link service to the higher layers. 

o Medium Access Control (MAC) defines who can use the network when 

multiple computers are trying to access it simultaneously (i.e. Token passing, 

Ethernet [CSMA/CD]). 

(3) Network Layer , 

• Concerned with the transmission of packets. 

• Choose the best path to send a packet (routing). 
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• It may be complex in a large network (e.g. Internet). 

• Shortest (distance) route vs. route with least delay. 

• Static (long term average) vs. dynamic ( current load) routing; 

• Two protocols are most widely used. 

• X.25 
o Connection Oriented 

o Public networks, telephone, European PTT 

o Send a call request at the outset to the destination 

o If destination accepts the connection, it sends an connection identifier 

• IP (Internet Protocol) 

o Connectionless 

o Part oflnternet protocol suite. 

o An IP packet can be sent without a connection being established. 

o Each packet is routed to its destination independently. 

( 4) Transport Layer 

• Network layer does not deal with lost messages. 

• Transport layer ensures reliable service. 

• Breaks. the message (from sessions layer) into smaller packets, assigns sequence 

number and sends them. 

• · Reliable transport connections are built on top ofX.25 or IP. 

• In case IP, lost packets arriving out of order must be reordered. 

··• TCP: (Transport Control Protocol) Internet transport protocol. 
. ·. I 

• TCP/IP Widely used for network/transport layer (UNIX). 

• UDP (Universal Datagram Protocol) : Internet connectionless transport layer protocol. 

• Application programs that do not need connection-oriented protocol generally use 

UDP. 

(5) Sessions Layer 

• Just theory! Very few applications use it. 

• Enhanced version of transport layer. 

• Dialog control, synchronization facilities. 

• Rarely supported (Internet suite does not). 

46 



(6) Presentation Layer 

• 

Just theory! Very few applications use it. 

Concerned with the semantics of the bits . 

Define records and fields in them . 

Sender can tell the receiver of the format. 
Makes machines with different internal representations to communicate . 

If implemented, the best layer for cryptography . 

• 
• 
• 
• 

• 

(7) Application Layer 

• Collection of miscellaneous protocols for high level applications 

• Electronic mail, file transfer, connecting remote terminals, etc. 

• E.g. SMTP, FTP, Telnet, HTTP, etc. 

7. The Ethernet level 

However most of our networks these days use Ethernet. So now we have to describe 

Ethernet's headers. Unfortunately, Ethernet has its own addresses. The people \\;'ho designed 

Ethernet wanted to make sure that no -two machines would end up with the same Ethernet 

address. Furthermore, they didn't want the user to have to worry about assigning addresses. So 

each Ethernet controller comes with an address builtin from the factory. In order to make sure 

that they would never have to reuse addresses, the Ethernet designers allocated 48 bits for the 

Ethern,et address. People who make Ethernet equipment have to register with a central 

authority, to make sure that the numbers they assign don't overlap any other manufacturer. 

Ethernet is a "broadcast medium". That is, it is in effect like an old party line telephone. When 
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you send a packet out on the Ethernet, every machine on the network sees the packet. So 

something is needed to make sure that the right machine gets it. As you might guess, this 

involves the Ethernet header. Every Ethernet packet has a 14-octet header that includes the 

source and destination Ethernet address, and a type code. Each· machine is supposed to pay 

attention only to packets with its own Ethernet address in the destination field. (It's perfectly 

possible to cheat, which is one reason that Ethernet communications are not terribly secure.) 

Note that there is no connection between the Ethernet address and the Internet address. Each 

machine has to have a· table of what Ethernet address corresponds to what Internet address. 

(We will describe how this table is constructed a bit later.) In addition to the addresses, the 

header contains a type code. The type code is to allow for several different protocol families 

to be used on the same network. So you can use TCP/IP, DECnet, Xerox NS, etc. at the same 

time. Each of them will put a different value in the type field. Finally, there is a checksum. 

The Ethernet controller computes a checksum of the entire packet. When the other end 

receives the packet, it recomputes the checksum, and throws the packet away if the answer 

disagrees with the original. The checksum is put on the end ofthe packet, not in the header. 

The final result is that your message looks like this: 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Ethernet destination address (first 32 bits) 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I Ethern~t <lest (last 16 bits) [Ethernet source ( first 16 bits )I 
+-+-+~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Ethernet source address (last 32 bits) 

+-+~~-+-+-+-+~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
:: i 

Type code 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I IP header; then TCP header, then your data . I 
' 1: 

end of your data 

+-+~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Ethernet Checksum 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

48 



If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file 

now looks like this: 

~EIT .... c EIT .... c EIT .... c EIT .... C EIT .... c 

When these packets are received by the other end, of course all the headers are removed. The 

Ethernet interface removes the Ethernet header and the checksum. It looks at the type code. 

Since the type code is the one assigned to IP, the Ethernet device driver passes the datagram 

up to IP. IP removes the IP: header. It looks at the IP protocol field. Since the protocol type is 

TCP, it passes the datagram up to TCP. TCP now looks at the sequence number. It uses the 

sequence numbers and other information to combine all the datagrams into the original file. 

The ends our initial summary of TCP/IP. There are still some crucial concepts we haven't 

gotten to, so we'll now go back and add details in several areas. (For detailed descriptions of 

the items discussed here see, RFC 793 for TCP, RFC 791 for IP, and RFC's 894 and 826 for 

sending IP over Ethernet.) 

Applicatim TelDct, FTP. RPC. etc. 

Transpcrt TCP. UDP 

Network IP, ICMP, IO:MP 

Lmk Network iµterface and device driver 

Figure 1. The Layers of the TCP/IP Protocol Suite 

The first, the link layer, is responsible -for communicating with the actual network hardware 

( e.g., the Ethernet card). Data it receives off the network wire it hands to the network layer; 

data it receives from the network layer it puts on the network wire. This is where device 

drivers for different interfaces reside. 

The second, the network layer, is responsible for figuring out how to get data to its 

destination. Making no guarantee about whether data will reach its destination, it just decides 

where the data should be sent. 

The third, the transport layer, provides data flows for the application layer. It is at the 

transport layer where guarantees of reliability may be made. 
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The fourth, the application layer, is where users typically interact with the network~J!i~)s5 >,;'.;; ""'.....,~ .•. I > ~· .:.;,.,::;rj 
' ---~ 

where telnet, ftp, email, IRC, etc. reside. 

Packets are the basic unit of transmission on the Internet. They contain both data and header 

information. Simply put, headers generally consist of some · combination of checksums, 

protocol identifiers, destination and source addresses, and state information. Each layer may 

add its own header information, so it can interpret the data the lower layer is handing it. In 

Figure 2, we see a sru_nple, Ethernet frame. This is the product of a packet which has gone 

from that application layer all the way to the link layer. Each layer takes the previous layer's 

packet, viewing almost all of it as data, and puts its own header on it. 

·~ Destination Address 
Ethernet Header s ource Addresa 
(Link Layer) Length of Ethernet Frame I 

- - I\ 
i,- 

Misc. Protocol Data 
IP Header 

, , 
Ethernet s ource IP Address 

(~twork: Layer) Data 
Destination Il' Address - - s ource Part Number I' 

;- 
TCP Header IP 

Destination Port Number 
(Transport Layer) ·Data 

Misc. Protocol Data - - ,;- 
Limx 1.0.5 (cool)(ttyp3) Login banner from telnet session TCP 

Data co~l login: 
(Application Layer) 

I ' 
I V . I 

Figure 2. A Sample Ethernet Frame 

We will now examine each part in turn, with a particular emphasis on the network and 

transport layers. In examples that follow, we'll refer to two machines: swell.cs.umass.edu and 

cool.alaska.edu. swell is the machine we are on, cool is the destination compute~. We assume 

cool and swell are on Ethernets at their respective organizations. Most of our examples 

assume an Ethernet, but could work with any kind of network (e.g., token-ring). 

7.1 The Link Layer 

The link layer is the simplest layer to understand. Composed of the network hardware and the 

device drivers, the link layer is the lowest level of the protocol stack. When receiving data 

the network, it takes packets from the network wire, strips away any link layer header 
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information, and hands it off to the network layer. When transmitting data onto the network, it 

takes packets from the network layer, sticks a link layer header on them, and send them out 

over the wire. 

The benefit of separating out the hardware layer is that protocol implementors only have to 

write the network layer once. Then they provide a common interface to the network layer by 

writing different device drivers for each kind of network interface. 

7.2 The Network Layer 

This is where the Internet Protocol (IP) and the Internet Control Message Protocol (ICMP), 
' 

among others, reside. ICMP is used both to provide network reliability information and by 

utilities like ping and traceroute. IP is used for almost all other Internet communication. When 

sending packets, it is figures out how to get them to their destination; when receiving packets, 

it figures out where they belong. Because it does not worry about whether packets get to 

where they are going nor whether they arrive in the order sent, its job is greatly simplified. If 

a packet arrives with any problems ( e.g., corruption), IP silently discards it. Upper layers are 

responsible for insuring reliable reception of packets. We refer to IP's behavior as "stateless" 

or "connectionless" because the existence of previous or future packets is irrelevant when 

processing the current packet. We could unplug the network wire, wait a minute, plug it back 
in, and IP would never know the difference. 

IP is able to iet packets to their de~tinations because every network interface on the Internet 
has a unique, numeric address. Oddly enough, these numbers are called IP addresses. Notice, 

every interface has its own address. If a machine has multiple interfaces (as is the case with a 
··1 ·. ' 

router), each one has its own IP address, The Internic is responsible for assigning sets of 
addresses to organizations, thereby insuring uniqueness. 

Because it's a pain to refer to machines with strings of numbers, the designers of TCP/IP 

allowed network administrators to associate names with IP addresses. Although this has 

nothing to do with the IP layer per se, we feel this is useful material. Originally, every host on 

the Internet maintained its own complete copy of this database ( on Unix systems, it's in 

/etc/hosts). However, as the Internet reached its current size, this soon became unwieldly -­ 

both in terms of raw size and the administrative nightmare of updating it. And so was born the 

domain name system (DNS). It is a distributed database of IP addresses and their natural 

language names, called host names. In fact one IP address can have multiple names associated 
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with it. When a network administrator adds a new machine to her network, she is responsible 

for updating her organization's nameserver table. Her changes quickly propagate. All 

communication with a machine is done via IP numeric addresses, so the hostname for a 

machine is only used at the beginning of a connection. 

The steps IP takes to send a packet are simple: based on its IP address, figure out how to get it 

there and send it on its way. 

' -, 

Deciding out how to get the packet there, aka routing, is the critical task for IP. Fortunately, 

swell doesn't have to know how to get a packet all the way to Alaska, it just needs to figure , 
! 

out which local router is responsible for getting packets to Alaska. A router differs from a 

typical machine on the net because it has at least two network interfaces -- this allows it to 

connect to two or more networks. For a small organization, there will typically be a local 

network (e.g., Ethernet) and then a leased-line link to the Internet. The organization's router is 

connected to both the local network and the Internet link. All packets bound for the Internet 

are sent to the router, which then puts it on the leased line, bound for the next router. 

Each router only needs to know about the routers to which it is connected. Those routers then 

know about all the routers to which they are connected. This allows swell's local router to say, 

"Well, all packets bound for the West go to MIT, so I'll just send it there and let MIT figure 

out what to do next." MIT puts it on a T3 line to Cleveland, from there it goes to Chicago, San 

Francisco, .Seattle, and into Alaska, where it goes from the organization's router to the 

Ethernet interface on swell. The router at each hop is only concerned with where to send it 

next. It doesn't try to determine the full path which the packet will take. 
'·1 

To determine where a given packet will go next, machines on the Internet maintain routing 

tables. They consist of three major items: addresses of routers, addresses they c~ handle, and 

the interface to which they are connected. In the case. of a machine on a local net (like 

cool.cs.umass.edu), it probably has three entries: one for the loopback interface (which allows 

a host to connect to itself), one for the local network and a default entry. 

The local network entry lets IP know that the machine is directly connected to a certain set of 

IP addresses. Rather than try and route those packets, IP figures out the hardware address of 

the Ethernet interface to which the IP address corresponds and sends the packet there. With 
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this entry, cool is essentially the router, the addresses it can handle are all the IP addresses on 

the local net, and the destination interface is an Ethernet card on the local net. 

The default entry says "for all other addresses, send it to this, router." Instead of trying to 

deliver a packet for cool.alaska.edu to a machine on the local net, cool sends it to the router's 

interface, saying, "Here, I don't know where this goes, you figure it out." The router then 

looks at its table, sees it doesn't have a direct connection to cool, so sends it to its default 

destination, MIT. And so the process continues. 

At this point, the reader should have a rough idea of how packets are transmitted on the , 

Internet. When receiving data, IP takes the packet from the link layer, checks for any blatant 

corruption, and hands the packet to the proper process at the transport layer. If there is any 

problem with the packet, IP silently discards it because it doesn't have to worry about whether 

a packet reaches its destination. 

We have left a huge amount out of this picture. Here are just some of the issues we're 

ignoring: packet fragmentation, netmasks and other routing tricks, network error handling, 

and the interactions between the network and transport layer. 

7.3 The Transport Layer 

There are two protocols at the transport layer: the transmission control protocol (TCP) and the 

user datagram protocol (UDP). TCP provides end-to-end reliable communication and UDP 
'1 ' 

doesn't. UDP is as unreliable as IP, but allows people to write user level software that creates 

its own packet formats, which is particularly helpful if you want to write new protocols, don't 

have the kernel sources, and don't want the overhead of TCP. 

TCP -creates a "virtual circuit" between two processes. It insures that packets are received in 

the order they are sent and that lost packets are retransmitted. We won't go into ,the details of 

how it works, but interactive programs like ftp and telnet use it. 

So far we have discussed addressing on the host level -- how to identify a particular machine. 

But once at a machine, we need a way to identify a particular service (e.g., mail). This is the 

function of ports -- identification numbers included with every UDP or TCP packet. TCP/IP 

ports are not hardware-based. They are a just a way of labeling packets. A process on a 

machine '' listens" on a particular port. When the transport layer receives a packet, it checks 
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the port number and sends the data to the corresponding process. When a process starts up, it 

registers a port number with the TCP/IP stack. Only one process per protocol can listen on a 

given port. So while a process using UDP and one using TCP can both listen on port 111, two 

processes that both used TCP could not. There are a number of ports which are reserved for 
standard services. For example, SMTP, the mail protocol, is always on port 25, and telnetd is 

always on port 23. To see a list of the reserved ports on a Unix system, look at /etc/services. 

We've examined how ports work on the server end -- specific ports are reserved for set tasks. 

On the initiator end, port assignment is dynamic. When a telnet client on swell starts up, it 

gets a new port number ( e.g., I 066). This is the source port which swell's TCP, layer puts on , 

every packet. Tlus allows the telnet daemon (telnetd) on cool to responds to the correct telnet 

process on swell. The combination of source/destination IP addresses and ports provides a 

unique conversation identifier. Each conversation is called a flow. 

UDP is essentially IP with port numbers (flows). It gives the user access to IP-style 

datagrams. The network file system (NFS) and talk are two examples of UDP-based 

protocols. 

This has been an extremely cursory exploration of TCP and UDP. At this point, you should 

have a decent understanding of how the network (IP) and transport (TCP/UDP) layers 

'interact. We now turn to the final layer. 

7 .4 The ~pplication Layer 

This is where the user interacts with the network. All network programs like telnet, ftp, mail, 

news, and WWW clients are at the application layer. They then use either TCP or UDP to 

communicate with other machines. To provide a clearer picture, I'll examine telnet in a little 

detail. 

Telnet is used for remote login. It removes the need for hardwired terminals. A user on swell 

types "telnet cool.alaska.edu" and he is rapidly connected to cool.alaska.edu, which asks him 

to login. He can then interact with cool. Here's a breakdown of the process: 

1. The name address is turned into a numeric one (137.229.18.103), via a domain name 

server. 
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2. Telnet tells the transport layer it wants to start a TCP connection with 137.229.18.103, 

at port 23 

3. TCP initiates a conversation with cool. IP is used to route packets. The telnet process 

on swell gets a port number of, say, 1096. TCP places the source and destination port 

numbers in its packet header, IP the IP address. 

4. Packets are now handed to the IP layer, which sends them to the link layer. They 

proceed from the user's machine to his organization's router and out onto the Internet. 

They make their way to cool, one router at a time. 

5. cool's TCP layer replies in a similar fashion. 

6. The telnet daemon on cool and the telnet client on swell exchange terminal 

information and other parameters necessary for an interactive session. Control 

messages are sent in-band, as an escape byte of 255, followed by the control byte. 

Control messages include: echo, status, terminal type, terminal speed, flow control, 

linemode, and environmental variables. 

7. The user sees a login prompt. After logging in, data is sent back and forth. 

Once the task is broken into a number of steps, we see it's relatively simply. Because the 

transport layer provides a standard interface, network applications do not need to be rewritten 

or even recompiled if the transport layer code changes. 

8. GOVERNMENT OPEN SYSTEMS INTERCONNECTION PROFILE (GOSIP) 
POLICY 

Departments should migrate to OSI standards for their networks in a timely and cost effective 

manner. 

, 8.1 BACKGROUND 
The international OSI standards, developed under the auspices of the International 

Standards Organisation (ISO), were designed to provide the basis for achieving secure 

universal connectivity between heterogeneous computer systems. The business advantages of 

seeking to have a common system for communications between computing platforms are well 

recognised and documented. There are both efficiency and cost effectiveness benefits flowing 
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from a move to a more open computing environment. This is also important in promoting the 

international competitiveness of Australia's IT industry. 

The Victorian Government's implementation of GOSIP is aimed at achieving 

objectives of facilitating information and/or data exchange between disparate computer 

systems. This is designed to promote access to and communication of information in a timely 

and cost effective manner. Other agencies, including Statutory Authorities and Government 

owned business enterprises were encouraged to follow the State Government's commitment to 

OSI in their development of IT systems and services. The implementation of international 

standards in IT will promote the achievement of greater efficiency and effectiveness in the use' 

of IT to meet the needs of government programs. By introducing OSI standards the 

Government is seeking to ensure that there is a common IT applications architecture linking 

all its computer installations to facilitate access to, and transmission of, information within 

and between Departments. 

The benefits of this approach are : 
• by using a common communications architecture based on GOSIP standards, there 

will. be greater capability to access data and to achieve significant savings in staff 

support and training costs 
• departments avoid being locked-in to any particular supplier's communications 

architecture and move towards greater flexibility in choosing products and creating 
! ' 

·competition for products and services 

• industry can develop software and hardware according to unambiguous specifications 

that are in the public domain with global benefits for local suppliers 

greater flexibility is achieved with the ability to readily move technology and skills 

between installations 

• assists the Victorian Government in positioning itself for a future where universal 

. connectivity and controlled and secure access to information, subject to privacy and 

security issues, will be the norm. 

The original GOSIP policy, promulgated in 1991: 

• 

required all suppliers to offer products which comply with GOSIP when responding 

to Victorian Government tenders from 1 October 1991 

required Victorian Government departments to implement OSI standards in all aspects 

of the network, unless there are compelling reasons to do otherwise 

• 
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• did not seek retrospective conversion of existing networks to OSI standards 

• took into account the availability and cost effectiveness of OSi compliant products in 

comparison to their proprietary equivalents 
• sought to continuously test the market for the availability and cost effectiveness of 

products 
• required all departments to develop migration plans as part of their IT plans for 

conversion of their existing networks to OSI 
• placed responsibility with the department for implementing the policy and being 

accountable for it 
• sought the conversion of all networks to OSI in a manner and time frame that is cost' 

effective, taking into account the availability of products and the investment in 

existing systems. 
These principles and requirements remain valid for this policy revision. 

8.2 IMPLEMENTATION GUIDELINES 

Future acquisitions and upgrades of Victorian Government IT &T architecture should 

support OSI standards for interconnectivity unless there are compelling reasons to do 

otherwise. 

The following factors must be considered when implementing this policy: 

• timing for, and manner of, conversion of a department's network(s) to OSI is entirely 

the responsibility of the department, which is accountable for the outcome 
. ' 

• there will be no supplementation of a department's budget for the conversion process. 

It is anticipated that each department will decide what is the appropriate time to 

convert taking into account the functionality; cost effectiveness and availability of 

OSI products versus their existing proprietary, architectures. Market forces will 

influence this timing. It is expected that departments will use whole of life economic 

assessment methods taking into account the longer term benefits, as well as the short 

term costs, of adopting standards when making their decision 

• it is recognised that cost effectiveness is an important element in determining when to 

convert a department network and that this will change as the market for OSI products 

develops and the technology changes. All Victorian Government tenders must seek the 
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provision of GOSIP compliant solutions, unless specific exemptions are justifiable. 

Departmental heads are responsible for ensuring that major acquisitions comply with 

government policies, including GOSIP, and that, where a proprietary solution is 

recommended in preference to a GOSIP compliant system, the reasons are sound and 

defensible 
the preferred priority order for the application of standards is as follows 
I. International standardised profiles and international standards including stable draft 

international standards. 
2. National standards including stable draft national standards. 
3. Industry/de. facto standards where the specifications are publicly available and are not' 

"owned" by a single supplier (eg TCP/IP, OSF and UI standards). 
4. Industry/de facto standards where the specifications are publicly available and are widely 

accepted and adopted by many suppliers (eg MS-DOS, Micro soft Windows, UNIX, SNA). 

5. remaining standards (proprietary). 
The slow implementation of OSI standards in commercial products is acknowledged 

and, the widespread use of the competitive Transmission Control Protocol/Internet 

Protocol (TCP/IP) is recognised. Victorian Government policy is that OSI protocols are the 

preferred standard. The adoption of de facto/industry standards is recognised as providing a 

viable alternative in the absence of suitable OSI conformant products but with a clear 

commitment being given to migrate at a future date. 
the u~e of OSI protocols for interdepartmental communication is preferred. It is 

recognised that there is a legacy of interconnection between departments based on proprietary 

protocols and more time must be allowed for their conversion. In addition, for the transfer of 
' some· selected applications, it may be more cost effective to continue to use a proprietary 

protocol in the short term. The ,tonger term objective is to realise the overall benefits of 

standardisation on GOSIP protocols for all transmissions. 
· The strategy to move from the current proprietary based platforms to -those based on 

standards encompassed in GOSIP should be incorporated in each department's migration plan 

to OSI. This plan, which should be part of the department's IT Strategic Plan is targeted at 

facilitating the above objectives and realising the very significant benefits of a move to a more 

open computing environment. 
The timing of cost effective migration will vary from agency to agency and is 

dependent on the technological ( especially OSI product availability) and business 

opportunities facing the organisation. Timing of the conversion will also be dependent upon 
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where the department is in the life cycle of its existing IT systems. There is a need for each 

department to review the continued appropriateness of their OSI migration plan against 

implementation experience. 
The Commonwealth Government is examining a series of issues associated with OSI 

migration through separate working parties, eg SNA to OSI, TCP/IP to OSI, the introduction 

of standardised Cabling, and Naming and Addressing for inter-agency communications. 

These will be provided to all departments as they are progressively released. 

8.3 OUTSOURCING 

Since the GOSIP policy was announced, the Victorian Government has re-emphasised its 

commitment to outsourcing. Government IT policies will apply to all outsourced agreements 

and projects and thus outsourcing will not justify an exemption from the use of GOSIP 

standards. 

8.4 CONFORMANCE AND INTEROPERABILITY 

The interlinking of OSI conformant products developed by different suppliers requires 

users to have additional assurance on their level of conformance to standards and ability to 

interoperate. In this situation there are now risks for the user in having to take on more of the 

responsibility for the initial and continuing interoperability of such products and their 

integration into .the agency computing environment, a responsibility largely taken on by the 
I ' 

supplier in the proprietary environment. These new risks need to be recognised and managed 

and should be weighed against the benefits of implementation through a standards based 

architecture. The work of industry organisations and other consortia such as X/OPEN, the 

Open Software Foundation (Q~F), UNIX International and the Process to Support 

Interoperability (PSI), shows promise in reducing this risk by collectively agreeing and 

committing to the use of common standards, including OSl standards, and· in some cases, 

code. 
The issue of a conformance certificate for a product provides users and industry with a 

\1'e'gl'e'e \)l 'a'S~\\Ya\\'Ct \\\\\.\ ~\\~\\ \\ \\\:QdlJ.~t "QufQrms to standards. This does not guarantee 

interoperability of products which requires additional guarantees and/or certification. 

Considerable progress is being made worldwide in the standardisation of conformance testing 

and the mutual recognition of certificates issued by accredited testing authorities. There is as 
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yet no universal system of recognition in place and there are clear risks of incompatibility 

when products are purchased from different suppliers. 

In addition there are no third party testing centres in Australia at this time. Therefore 

consideration needs to be given to approaches which would ensure that products developed by 

Australian industry are not disadvantaged when competing with overseas suppliers for 

Victorian Government business. At present, there is little demand for local testing.' 

Interoperability remains the key factor for the successful implementation of GOSIP. To 

address this issue, in the Victorian Government arena the following approach will apply in 

verifying the claims of products for GOSIP compliance : 

>"' if a supplier offers a certificate from an accreditation agency showing successful 

completion by the product of independent interoperability tests, that will be accepted 

without further documentation, including the need for conformance evidence 

(recognising that conformance testing will be a prerequisite to formal interoperability 

testing and certification) 
>"' a product which has a conformance certificate from a recognised accreditation agency 

covering testing performed at an accredited testing centre (including suppliers [1st 

party] centres) will be accepted as conforming to the standard without further 

documentation 
>"' a product which has a manufacturer's declaration of conformance certification 

covering testing performed at an accredited testing centre (including suppliers [1st 

party] centre) will be accepted as conforming to the standard without further 

· documentation 
>"' a product which has a conformance test report from a non-accredited testing centre 

; will be judged on the evidence on a case by case basis within the overall aim of 

making it as easy, and as ,practicable, to accept products (this makes it equivalent with 

current practices for procurement of proprietary products) 
>"' if none of the conformance and interoperability certificates above apply and/or no 1st 

or third party conformance certificate or a manufacturers declaration of conformance 

is available, the supplier will be required to complete a Protocol Implementation 

Conformance Statement (PICs) demonstrating how they comply with the standard 

and contractually commit to supply product in conformance with the PICS. 

Interoperability is recommended as a component of the acceptance testing procedures. 

Interoperability tests should cover existing systems in addition to new systems but care needs 

to be exercised in interpreting such test suites. 
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Given that the field of testing is changing rapidly, a degree of flexibility will be 

maintained and the rules amended as necessary, in consultation with departments and industry 

and in accord with accepted practice both in Australia and overseas. As this area matures, the 

ability to have accredited certification of OSI products may become a significant advantage in 

simplifying procurement as compared with the traditional individual procurement testing 

normally associated with proprietary solutions. Industry initiatives on interoperability testing 

through OSicom and OSlone are noted and should be of assistance. 

9. TCP/IP Real Time System 

Some applications use real-time data, such as those in audio, radar, and sonar 
',.'" 

processing. For real-time applications, blocks of data must be processed within a set amount 

of time. This data must also be received from some source. To input real-time data in a 
, ' 

GEDAE flow graph, a function box must be created which encapsulates the driver for the 

appropriate I/0 device. 

9.1 Problem: 

For real-time applications, GEDAE has to collect and process a block of data within a certain 

time constraint avoiding errors or dropping data. 
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9.2 Solution: 

9.2.1 Overview: 

The following solution is based on a specific application created on a Share processor 

system and uses interrupts and background DMA's. When the I/0 device has an available 

block of data, it sends an interrupt to the Share system. The interrupt handler starts the 

background OMA, which transfers the data from the 1/0 device to memory. When the 

DMA transfer is complete, another interrupt is sent to indicate that the data can now be: 

processed. While processing, another block can be received from the 1/0 device. This is 

illustrated in the following time line diagram: 

Maximizing processor us~ge results in minimizing system cost. By overlapping DW 

data transfers and processing, processor usage is kept high. 

, This example works only on specific embedded systems. Slight system specific 
I 

changes were made. Parts of the code examples were replaced with pseudo code. 

9.3 Encapsulating the 1/0 device in a GEDAE function box 

An embeddable GEDAE function box that reads real-time input is defined like ~ 

other function box. Parameters and other data inputs can be defined to process the 

real-time data. Users can build custom function boxes which provide a bindiru 

between interrupts and function calls via the primitive's Reset and Apply methods 

The interrupt handlers are registered in the Reset method, and the data is received iJ 

the Apply method. The following is an example: 
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Name: v_dev_input 
Type: static 
Comment: "Receive real-time input from an device. 

N_out = the vector size of the outputs. 
N_input = the vector size of the 1/0 data block" 

Input: { 
int N_out; . 
int N_input; · 

} 
Local: { 

int needs_to_fire; /* number of vectors of real-time data to collect */ 
int fired; /* current vector being collected * I 

} 
Output: { 

stream float outl[N_out]; 
stream float out2[N_out]; 

} 
Include: { 
#include< e_dev_input.h >/*found in -/gedae/include/embeddable */ 
} 
Reset: { 

init_dev _input(N_input); /* register interrupt handlers */ 
needs_to_fire = O; 
fired= O; 

} 
Apply: { 
int progress = O; 
if (needs_to_fire = 0) { 
/**** BEGINNING NEW EXECUTION OF FUNCTION****/ 
needs_to_fire = size(outl)/N_out; /* calculate the firing granularity */ 
fired= O; 

} 

while' (needs jo fire) { 

I* 

** if data is available then place it in out1 and out2, 

0 else return failure and try again later. 
*/ 

float *addr1 = out1 + (N_out * fired); 
float *addr2 = out2 + (N_out * fired); 

', 
\I 

I 
! 

else OStaticFailed("Not enough data available from the 1/0 device yet");! 
I ·--·----------·-- ... --- .. -·~--·-----·-··· ·------·--- .. •·· ... . .. ---.-- -----------~-·-··--· ------·--·- ------- ·-·----·-···---------------~-----·-----·--·--·-· 

if (\read_dev_input(addr1, addr2, N_out)) { 

if (progress) OStaticProgressMade(); 
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break; 

} 
fired++; 

progress= 1; 
if (needs_to_fire == fired) { 

needs_to_fire = O; 

} 

} 

} 

9.4 Notice there are no direct references to the Share system. 

Hiding all the Share specific calls in the underlying functions (init_ dev _input() and 

read_dev_input()) is recommended. These functions are prototyped in the header file 

e_dev_input.h (from the Include method). Also, in the Apply method the firing granularity 

is checked to see if multiple real-time data sets are to be processed as one large block. 

This allows for transparent scalability. 

~:~:::"1i:;~~g.~::~:"tj~~;.;~ddable;;j.;;n~h-! 
I -- - -- 
. #define _e_dev_input_h_ \ I 
void init_dev _input(int' N_input); \ i 

. int read_dev_input(float *out1, float *out2, int N_out);\ 
I\ ,, . \ 

#endW \ -··--···· - ·--- ...•... --~-------- ··-·· 
--•••••"•·•••••~•••·-· •·H --• •· ,•••·••-• .,, •• • ••••• 

9.5 The Reset Method 

The Reset method registers the interrupt handlers and sets up any buffers and flags. The 

following code is used to register the interrupt handlers, allocate a double buffer where the 

data will be placed, and set a flag that represents the state of the real-time data. Global 

variables are used for handles to shared buffers between the interrupt handler and the 
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Apply function. Double buffering is used so while one buffer is being processed another 

may be filled with new data. 

r - . . -,~ - ·- .. ~- ·---- -·------- .. -· -------- ,..... . .. - ·--··--------- - ~· ----------- - - ------·~----- 
J!~•e l~cati~_!I: -=:-/ge_~_a~(sou!:c~jem_be~~~~-1~(~-~-e~ _)neut.·~---~ _ ... .. 
Static int BUFFER_ SIZE; 
static float *CURRENT_ BUFFER; /* handle to global buffer * I 
static float *DEVICE INPUT BlJFFERl; /* global bufferl */ . - - 
static float *DEVICE_INPUT_BUFFER2; /* global buffer2 */ 
static int DATA_READY; /* used to indicate if data is ready*/ 

void init_dev _input(int N_input) { 
/**** ALLOCATE A DOUBLE BUFFER FOR OUTPUT OF THE -INPUT 

DEVICE 

****/ 
DEVICE_INPUT _BUFFER1 = (float *)calloc(N_input, sizeof(float)); 

DEVICE_INPUT _BUFFER2 = (float *)calloc(N_input, sizeof(float)); 

CURRENT _BUFFER= DEVICE_INPUT _BUFFER1; 

BUFFER_SIZE = N_input; 

\.. 

/**** SET TO: NO DATA IS AVAILABLE YET****/ 

DATA_READY = O; 

/**** REGISTER "1/0 HAS DATA READY" INTERRUPT HANDLER****/ 
I 

interrupt_handler(SIG_DEV _DAT A_READY, read_iodev _handler); 

/**** REGISTER "DMA COMPLETE" INTERRUPT HANDLER ****/ 

interrupt_handler(SIG_DMA~ COMPLETE, dma_done_handler); 

} 

When the "SIG_DEV _DATA_READY" interrupt occurs, "read jodev handler" gets 

called. The handler starts a DMA that copies the real-time data into one of the double 

buffers. Since the DMA processes in the background, the handler can exit right away, 

allowing normal processing to continue. When the DMA transfers complete, the 

interrupt "SIG_DMA_COMPLETE" occurs. The "dma_done_handler" sets the 

"DATA_READY_FLAG". The following is the code for the interrupt handler: 

r= ~~- A:~~-A_ii·~~~~-~~~ ~-~~-{;!~!~:~~TT! ~!~~-!~-*-~*-~-~<] 
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,,.,...,...,,.,_,~-·,~·-··~~ ,._....,. ~~ -~., .••.•• .,. •..•. .,..~ • .,.-~.,,.... ·r •·•--·-.,...,.,..., .. , •. .,._r.- ·= • .-,, •.• ,.__,. -.~ . ...,..,.,.,...., •• ,..,- ,.. .• _,,.,_, ,,..,.._.,,.. •• _....,,..,.,._,.,....,. 
. i 

static void read_iodev_handler(void) { 
/**** HANDLE THE DOUBLE BUFFERING****/ I I 
if (CURRENT_BUFFER = DEVICE_INPUT_BUFFERl) { j 
CURRENT BUFFER= DEVICE INPUT BUFFER2; ! 
} else { - - - ! 
CURRENT BUFFER= DEVICE INPUT BUFFER!; i 
} - - - 1 

I 
. . I 
II**** GET INPUT FROM REAL TIME 10 DEVICE ****/ \ 

I start dmatinput devlce addr, CURRENT _BUFFER, BUFFER_SIZE);I 

} I 
i 
i 

I 
I 

i 

/**** OMA DONE INTERRUPT HANDLER****/ 

static void dma_done_handler(void) { 

/**** SET TO: DATA IS AVAILABLE****/ 

DATA_READY = 1; 
} 

I· 
i 

9.6 The Apply Method 
The Apply method checks to see if the real-time data is ready. If not it returns a 

failure, giving any other schedules a chance to execute. If ready, the data is moved to 

the outputs. This function should be kept simple. It should just place the new data on 

the outputs, and set flags to indicate that the data has peen consumed. Preliminary 

processing should be minimized. The following is the code of the function called by 

the Apply method: 

I 

r-a·- .. "······-·--····· _ .. , , ·., - - ·····- -· ,._ . .,.... .. "'" "·- ·-· ,___ . -- -· 
lit**** CALLED FROM THE RESET METHOD ****/ 1 

· int read_dev _input(float *outl, float *outZ, int N_out) { I 
if (!DATA_READY) { I 
;uu DATA NOT READY ****/ I 
return O; \ 
} else { I 
float =buffer= CURRENT BUFFER; I 

- I 
i 

I 
I 
I 

/**** DO ANY PRELIMINARY PROCESSING HERE ****/i ........... -·---·---··--- ·- .. . .. . . _ - J 

/**** DATA IS READY****/ 

1: 

1, 

11 

DATA_READY = O; 

1, 

1: 
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!
---··-- .. -·-"•--·_.,.. __ , •··- - -•·-.-•·-' --- w-• ·- ,._, . .,. _..,-•,•• s- _. _.,. •••••· ••• • ., w""•·~•-• ,., 

I < preprocessing and place in out1 and out2 > 

i I return 1; I* success */ 

I > 
I 
} 

List of pseudo functions: 

The follow functions and data are definitions of the pseudo code used above. 

interrupt _handler(SI GN AL, (*handler())); 

Register an interrupt handler based on a signal. 

SIG DEV DATA READY - - - 
This is an interrupt signal flag indicating when the 1/0 device has data that is ready to be 

transferred to memory. 

SIG DMA COMPLETE - - 

This is an interrupt signal value that represent when the DMA engine has finished moving 

the requested data. 

start_ drna( source_ addr, <lest_ addr, size); 

This is like memcpy() but uses a DMA in the background that runs in parallel with the 
'. I 

Share processor. 

input device addr 
··1-".""' - 

This is a handle to the 1/0 device that contains the real-time data. 

Example of a real-time algorithm designed with GEDAE™: 
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' 
[d~ce:,in~ut 

const int Processors = .41=========== t Processors 
const int N_input - 2205 { N_input 
const int N~out = 4096 i N_out 

J1fJf11 ~ l!le111_offset 
·,·~~ 

Number of processors used 
to handle input data. 

tstatus: Constructing Trace Table 

Real-Time algorithm 

To see the algorithm and an explanation, 
double click on this box. 

To see the trace table use the File meu: 
File -> Open Events ... 
and double click on 'demo'. 
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FIie Edit View :}Jli !cm:, 

k 

onst int Processors 
jconst int N_inpu~)- H .. _ •. 'f"U l'·- .. -(1 
const int N_out 

!range k = o •• ?j 

Real-time data is collected from the real-time source and placed 
in a global memory that was accessible to four Share processors. 
The l/0 device handler is contained in the v_dev_input function box. 
This box has 8 outputs that go to the v _task1 function box and 
then the v task2 function box, which are normal function boxes that 
do data processing. The data has to be processed within .625 seconds 
per block or else the data has to be dropped. 

Parameters: 
Processors - is equal to 4 (number of processors in the system). 
N_input - is the size of each real-time block. 400 of these blocks are read before 
any data is placed on the 8 outputs. 
N_out - is the size of each of the outputs. 
mem_offset - offset into the global memory based on the processor number. 

· The route box is use to avoid having to replicate the v _task1 and v _task2 
boxes manualy. There are 8 family members of each of these boxes. 

,status: 
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Name 2.190968 
+0.621561 .!L.!.I o_~ 1sGG11 

11 • • • • • • • • • • • • • • • • 
• I • • 
• I • • 
• I • • 
• I • • 

10 
9 

1118 

group([Olclevice_input.[Olv_task1) 
[Oldevice_input 

v_dev_in_e_ut 
[6Jv_task1 
C6lv_task2 
[5lv_task1 
[5]v_task2 
[4Jv_task1 
C4lv_task2 
[3lv_task1 
[3lv_task2 
[2]v_task1 
C2lv_task2 
[1lv_task1 
C1lv_task2 
[O]v_task1 
[Olv_task2 
[7lv_task1 
(7]v_task2 

• I • • 
• I • • -----. . . . • • • • • • • • • • • • 

group( C 1lclevice_input. CO lv_task1) i---+---­ 
group( C 2]device_ input. [ 0 ]v_ task1) 1---+---- 

. ll '· grQup([3]clevice_input.[O]v~task1) . . . . .. , "·. . .. . "' . . .. . . 
•----------• fi;,J~i\:~n fiB1lillJD111Bil:1trll8W{_.,,.1"j .. ~~ 
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10. Conclusion 

The project has investigated the principles of TCP/IP and also its applications to 

time programming. It is shown that TCP/IP is a very versatile communications proto 

it can be used in the design of client-server based real time systems. Most of the Cle 

been left out deliberately. There are plenty of good book written on this subject, in n=rirnh-r 

[1]. In addition, further information can be obtained from the request for Comments rRFCs 

issued by the Internet engineering Task Force (IETF). 
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