
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

TCP/IP AND REAL TIME SYSTEM

Graduation Project
COM-400

Student:
.•. '·1

.Nuray itlek

Supervisor: Assoc. Prof. Dr. Dogan ibrahim

Nicosia 2001

TABLE OF CONTENTS

1. ACKNOWLEDGEMENT

2. ABSTRACT

3. INTRODUCTION

3 .1 Addresses

3 .2 Subnets ,

3.3 A Uncertain Path

3.4 Undiagnosed Problems

3.5 Need to Know

4. WHAT IS TCP/IP?

5. GENERAL DESCRIPTION OF THE TCP/IP PROTOCOLS

5.1 The TCP level

5 .2 The IP level

~.2.1 The Internet Protocol

5.2.2 Background

, 5.2.3 Thoughts about, fixing problems ...

···· 5.2.4 IP Packet Format

5.2.5 IP Addressing

5.2.6 IP Address Format

5.2.7 IP Address Classes

5.2.8 IP Subnet Addressing

5.2.9 IP Subnet Mask

6. THE OSI REFERENCE MODEL

6.1 Open System Interconnection (OSI) Protocols

6.1.1 Background

6.2 Open Systems Interconnection (OSI) Routing Protocol

i

ii

1

2

2

3

4

5

8

15

17

20

21

22

23

24

25

25

26

28

28

30

31

31

32

6.2.1 Background 32

6.3 OSI Networking Terminology 32

6.4 OSI Routing Operation 33

6.5 OSI Seven-Layer Model 34

6.6 OSI Networking Protocols 36

6.7 OSI Physical and Data Link layers 36

6.8 OSI Network Layer 37

6.9 OSI-Layer Standards 37

6.10 OSI Connectionless Network Service 37

6.11 OSI Connection-Oriented Network Service 38

6.11.1 Network-Layer Addressing 38

6.11.2 NSAP Address Fields 39

6.11.3 End-System NSAPs 39

6.12 OSI Protocols Transport Layer 40

6.13 OSI Protocols Session Layer 41

6.14 OSI Protocols Presentation Layer 42

6 .. 15 OSI Protocols Application Layer 43

6.15.1 Common-Application Service Elements (CASEs) 44

6.15.2 Specific-Application Service Elements (SASEs) 44

6.15.3 OSI Protocols, ~pplication Processes 44

7. THE ETHERNET LEVEL 47

7.1 The Link Layer 50

7 .2 The Network Layer 51

7.3 The Transport Layer 53

7.4 The Application Layer 54

8. GOVERNMENT OPEN SYSTEMS INTERCONECTION PROFILE (GOSIP) 55
POLICY

8.1 Background

8.2 Implementation Guidelines

8.3 Outsourcing

8.4 Conformance And Interoperability

55

57

59

59

9. TCP/IP REAL TIME SYSTEM 61

9.1 Problem: 61

9.2 Solution: 62

9.2.1 Overview: 62

9.3 Encapsulating the 1/0 device in a GEDAEfunction box. 62

9.4 Notice there are no direct references to the Share system. 64

9 .5 The Reset Method · 64

9.6 The Apply Method

10. CONCLUSION
11. BIBLIOGRAPHY

66

71
71

f

ACKNOWLEDGMENT

Education has given success to many students throughout life. And being one of these

students must be the most honorable certificate, I could get. I believe that this honor does not

only affect us but also to the teachers who have given us the strength of education.

I would like to thank all my teachers and especially Assoc. Prof. Dr. Dogan Ibrahim for

helping me throughout my University Education. Being in the Department of Computer

Engineering has not only given me an education about computer technology but also has

given me a future that I have wanted all my life.

Thank You

Nuray t~lek

950138

ABSTARCT

TCP and IP were developed by the U.S. Department of Defense (DOD) research

project to connect a number different networks designed by different vendors into a network

of networks (the "Internet"). It was initially successful because it delivered a few basic

services that everyone needs (file transfer, electronic mail, remote logon) across a very large '

number of client.and server systems. Several computers in a small department can use TCP/IP

(along with other protocols) on a single LAN. The IP component provides routing from the

department to the enterprise network, then to regional networks, and finally to the global

Internet. On the battlefield a communications network will sustain damage, so the DOD
'

designed TCP/IP to be robust and automatically recover from any node or phone line failure.

This design allows the construction of very large networks with less central management.

However, because of the automatic recovery, network problems can go undiagnosed and

uncorrected for long periods of time.

As with all other communications protocol, TCP/IP is composed of layers: IP which is

responsible for moving packet of data from node to node. IP forwards each packet based on a

four byte destination address (the IP number). The Internet authorities assign ranges of

numbers to different organizations. The organizations assign groups of their numbers to

departments. · IP operates on gateway machines that move data from department to

organization to region and then around the world. TCP is responsible for verifying the correct

delivery of data from client to server. Data can be lost in the intermediate network. TCP adds
' I

support to detect errors or lost data and to trigger retransmission until the data is correctly and

completely received and Sockets - is a name given to the package of subroutines that provide

access.to TCP/IP on most systems.

In this project, the TCP/IP protocols have been studied and their applications to real-time

programming are discussed. It is shown that TCP/IP can be used in real-time plient-server

based applications such as factory automation and so on.

3. Introduction

The Internet Protocol was developed to create a Network of Networks (the "Internet").

Individual machines are first connected to a LAN (Ethernet or Token Ring). TCP/IP shares

the LAN with other uses (a Novell file server, Windows for Workgroups peer systems). One

device provides the'TCP/IP connection between the LAN and the rest of the world.

Department LAN

Figure-I. The connection between the LAN and the rest of the world. i

To insure that all types of systems from all vendors can communicate, TCP/IP is absolutely

standardized 'on the LAN. However, larger networks based on long distances and phone lines

are more volatile. In the US, many large corporations. would wish to reuse large internal
''

networks based on IBM's SNA. In Europe, the national phone companies traditionally

standardize on X.25. However, the sudden explosion of high speed microprocessors, fiber

; optics, and digital phone systems has created a burst of new options: ISDN, frame relay,

FDDI, Asynchronous Transfer Mode (ATM). New technologies arise and become obsolete

within a few years. With cable TV and phone companies competing to build the National

Information Superhighway, no single standard can govern citywide, nationwide, or worldwide

communications. The original design of TCP/IP as a Network of Networks fits nicely within

the current technological uncertainty. TCP/IP data can be sent across a LAN, or it can be

carried within an internal corporate SNA network, or it can piggyback on the cable TV

1

service. Furthermore, machines connected to any of these networks can communicate to any

other network through gateways supplied by the network vendor.

3 .1 Addresses

Each technology has its own convention for transmitting messages between two

machines within the same network. On a LAN, messages are sent between machines by

supplying the six byte unique identifier (the "MAC" address). In an SNA network, every

machine has Logical Units with their own network address. DECNET, Appletalk, and Novell

IPX all have a scheme for assigning numbers to each local network and to each workstation

attached to the network. On top of these local or vendor specific network addresses, TCP/IP

assigns a unique number to every workstation in the world. This "IP number" is a four byte

value that, by convention, is expressed by converting each byte into a decimal number (0 to
'

25 5) and separating the bytes with a period.

An organization begins by sending electronic mail to Hostmaster@INTERNIC.NET

requesting assignment of a network number. It is still possible for almost anyone to get

assignment of a number for a small "Class C" network in which the first three bytes identify

the network and the last byte identifies the individual computer. Larger organizations can get

a "Class B" network where the first two bytes identify the network and the last two bytes

identify each ofup to 64 thousand individual workstations.

The organization then connects to the Internet through one of a dozen regional or

specialized network suppliers. The network vendor is given the subscriber network number

and adds it to the routing configuration in its own machines and those of the other major

network suppliers. The machines that manage large regional networks or the central Internet

routers managed by the National Science Foundation can only locate these networks by

looking each network number up in a table. There are potentially thousands of Class B

networks, and millions of Class C networks, but computer memory costs are low, so the tables

are reasonable. Customers that connect to the Internet, even customers as large as IBM, do not

need to maintain any information on other networks. They send all external data to the

regional carrier to which they subscribe, and the regional carrier maintains the tables and does

the appropriate routing.

2

3.2 Subnets

Although the individual subscribers do not need to tabulate network numbers or

provide explicit routing, it is convenient for most Class B networks to be internally managed

as a much smaller and simpler version of the larger network organizations.

Internal Department

Figure 2. . It is common to subdivide the two bytes available for internal assignment

into a one byte department number and a one byte workstation ID.

The enterprise network is built using commercially available TCP/IP router boxes. Each

router has small tables with 255 entries to translate the one byte department number into

selection of a destination Ethernet connected to one of the routers. Messages to the PC Lube

and Tune server (130.132.59.234) are sent through the national and New England regional

networks based on the 130.132 part of the number. Arriving at Yale, the 59 department ID

selects an Ethernet connector in the C& IS building. The 234 selects a particular workstation

on that LAN. The Yale network must be updated as new Ethernets and departments are added,

but it is not effected by changes outside the university or the movement of machines within

the department.

3

3.3 A Uncertain Path

Every time a message arrives at an IP router, it makes an individual decision about

where to send it next. There is concept of a session with a preselected path for all traffic.

Consider a company with facilities in New York, Los Angeles, Chicago and Atlanta. It could

build a network from four phone lines forming a loop (NY to Chicago to LA to Atlanta to

NY). A message arriving at the NY router could go to LA via either Chicago or Atlanta. The

reply could come back the other way.
How does the router make a decision between routes? There is no correct answer.

Traffic could be routed by the "clockwise" algorithm (go NY to Atlanta, LA to Chicago). The

routers could alternate, sending one message to Atlanta and the next to Chicago. More

sophisticated routing measures traffic patterns and sends data through the least busy link. If

one phone line in this network breaks down, traffic can still reach its destination through a

roundabout path. After losing the NY to Chicago line, data can be sent NY to Atlanta to LA to

Chicago. This provides continued service though with degraded performance. This kind of

recovery is the primary design feature of IP. The loss of the line is immediately detected by

the routers in NY and Chicago, but somehow this information must be sent to the other nodes.

Otherwise, LA could continue to send NY messages through Chicago, where they arrive at a

"dead end." Each network adopts some Router Protocol which periodically updates the

routing tables throughout the network with information about changes in route status.

If the size of the network grows, then the complexity of the routing updates will increase as

will the cost of transmitting them. Building a single network that covers the entire US would

be unreasonably complicated. Fortunately, the Internet is designed as a Network of Networks.

This means that loops and redundancy are built into each regional carrier. The regional

network handles its own problems and reroutes messages internally. Its Router Protocol

updates the tables in its own routers, but no routing updates need to propagate from a regional

carrier to the NSF spine or to the other regions (unless, of course, a subscriber switches

permanently from one region to another).

3.4 Undiagnosed Problems
IBM designs its SNA networks to be centrally managed. If any error occurs, it is reported to

the network authorities. By design, any error is a problem that should be corrected or repaired.

IP networks, however, were designed to be robust. In battlefield conditions, the loss of a node

or line is a normal circumstance. Casualties can be sorted out later on, but the network must

stay up. So IP networks are robust. They automatically (and silently) reconfigure themselves

4

when something goes wrong. If there is enough redundancy built into the system, then

communication is maintained. In 1975 when SNA was designed, such redundancy would be

prohibitively expensive, or it might have been argued that only the Defense Department could

afford it. Today, however, simple routers cost no more than a PC. However, the TCP/IP

design that, "Errors are normal and can be largely ignored," produces problems of its own.

Data traffic is frequently organized around "hubs," much like airline traffic. One could

imagine an IP router in Atlanta routing messages for smaller cities throughout the Southeast.

The problem is that data arrives without a reservation. Airline companies experience the

problem around major events, like the Super Bowl. Just before the game, everyone wants to

fly into the city. After the game, everyone wants to fly out. Imbalance occurs on the network

when something new gets advertised. Adam Curry announced the server at "mtv.com" and his

regional carrier was swamped with traffic the next day. The problem is that messages come in

from the entire world over high speed lines, but they go out to mvt.com over what was then a

slow speed phone line.

Occasionally a snow storm cancels flights and airports fill up with stranded passengers. Many

go off to hotels in town. When data arrives at a congested router, there is no place to send the

overflow. Excess packets are simply discarded. It becomes the responsibility of the sender to

retry the data a few seconds later and to persist until it finally gets through. This recovery is

provided by the TCP component of the Internet protocol.

TCP was designed to recover from node or line failures where the network propagates routing

table changes to all router nodes. Since the update takes some time, TCP is slow to initiate

recovery. The TCP algorithms are not tuned to optimally handle packet loss due to traffic

congestion. Instead, the traditional Internet response to traffic problems has been to increase

the speed of lines and equipment in order to say ahead of growth in demand.

TCP treats the data as a stream of bytes. It logically assigns a sequence number to each byte.

The TCP packet has a header that says, in effect, "This packet starts with byte 379642 and

contains 200 bytes of data." The receiver can detect missing or incorrectly sequenced packets.

TCP acknowledges data that has been received and retransmits data that has been lost. The

TCP design means that error recovery is done end-to-end between the Client and Server

machine. There is no formal standard for tracking problems in the middle of the network,

though each network has adopted some ad hoc tools.

5

3.5 Need to Know
There are three levels of TCP/IP knowledge. Those who administer a regional or national

network must design a system of long distance phone lines, dedicated routing devices, and

very large configuration files. They must know the IP numbers and physical locations of

thousands of subscriber networks. They must also have a formal network monitor strategy to

detect problems and respond quickly.
Each large company or university that subscribes to the Internet must have an

intermediate level of network organization and expertise. A half dozen routers might be

configured to connect several dozen departmental LAN s in several buildings. All traffic

outside the organization would typically be routed to a single connection to a regional

network provider.
However, the end user can install TCP/IP on a personal computer without any knowledge of

either the corporate or regional network. Three pieces of information are required:

1. The IP address assigned to this personal computer

2. The part of the IP address (the subnet mask) that distinguishes other machines on the

same LAN (messages can be sent to them directly) from machines in other

departments or elsewhere in the world (which are sent to a router machine)

3. The IP address of the router machine that connects this LAN to the rest of the world.

In the case of the PCLT server, the IP address is 130.132.59.234. Since the first three

bytes designate this department, a "subnet mask" is defined as 255.255.255.0 (255 is the

largest byte value and represents the number with all bits turned on). It is a Yale

convention (which we recommend to everyone) that the router for each department have

station number 1 within the department network. Thus the PCLT router is 130.132.59.1.

Thus the PCL T server is configured with the values:

• My IP address: 130.132.59.234

• Subnet mask: 255.255.255.0

• Default router: 130.132.59.1

The subnet mask tells the server that any other machine with an IP address beginning

130.132.59. * is on the same department LAN, so messages are sent to it directly. Any IP

address beginning with a different value is accessed indirectly by sending the message

through the router at 130.132.59.1 (which is on the departmental LAN).

6

4. What is TCP/IP?

TCP/IP is a set of protocols developed to allow cooperating computers to share

resources across a network. It was developed by a community of researchers centered around

the ARPAnet. Certainly the ARPAnet is the best-known TCP/IP network. However as of

June, 87, at least 130 different vendors had products that support TCP/IP, and thousands of

networks of all kinds use it. First some basic definitions. The most accurate name for the set

of protocols we are describing is the "Internet protocol suite". TCP and IP are two of the

protocols in this suite. (They will be described below.) Because TCP and IP are the best

known of the protocols, it has become common to use the term TCP/IP or IP/TCP to refer to

the whole family. It is probably not worth fighting this habit. However this can lead to some

oddities. For example, I find myself talking about NFS as being based on TCP/IP, even

though it doesn't use TCP at all. (It does use IP. But it uses an alternative protocol, UDP,

instead of TCP. All of this alphabet soup will be unscrambled in the following pages.)

The Internet is a collection of networks, including the Arpanet, NSFnet, regional

networks such as NY sernet, local networks at a number of University and research

institutions, and a number of military networks. The term "Internet" applies to this entire set

of networks. The subset of them that is managed by the Department of Defense is referred to

as the "DDN" (Defense Data Network). This includes some research-oriented networks, such

as the Arpanet, as well as more strictly military ones. (Because much of the funding for

Internet protocol developments is done via the DDN organization, the terms Internet and

DDN can sometimes seem equivalent.) All of these networks are connected to each other.

Users can send messages from any of them to any other, except where there are security or

other policy restrictions on access. Officially speaking, the Internet protocol documents are

simply standards adopted by the Internet community for its own use. More recently, the

Department of Defense issued a MILSPEC definition of TCP/IP. This was intended to be a

more formal definition, appropriate for use in purchasing specifications. However most of the

TCP/IP community continues to use the Internet standards. The MILSPEC version is intended

to be consistent with it.

Whatever it is called, TCP/IP is a family of protocols. A few provide "low-level"

functions needed for many applications. These include IP, TCP, and UDP. (These will be

described in a bit more detail later.) Others are protocols for doing specific tasks, e.g.

8

transferring files between computers, sending mail, or finding out who is logged in on another

computer. Initially TCP/IP was used mostly between minicomputers or mainframes. These

machines had their own disks, and generally were self-contained. Thus the most important

"traditional" TCP/IP services are:

• file transfer. The file transfer protocol (FTP) allows a user on any computer to get

files from another computer, or to send files to another computer. Security is

handled by requiring the user to specify a user name and password for the other

computer. Provisions are made for handling file transfer between machines with

different character set, end of line conventions, etc. This is not quite the same thing

as more recent "network file system" or "netbios" protocols, which will be described

below. Rather, FTP is a utility that you run any time you want to access a file on

another system. You use it to copy the file to your own system. You then work with

the local copy. (See RFC959 for specifications for FTP.)

• remote login. The network terminal protocol (TELNET) allows a user to log in on

any other computer on the network. You start a remote session by specifying a

computer to connect to. From that time until you finish the session, anything you

type is sent to the other computer. Note that you are really still talking to your own

computer. But the telnet program effectively makes your computer invisible while it

is running. Every character you type is sent directly to the other system. Generally,

the connection to the remote computer behaves much like a dialup connection. That
I '

is, _the remote system will ask you to log in and give a password, in whatever manner

it would normally ask a user who had just dialed it up. When you log off of the other

; c;o,niputer, the telnet program exits, and you will find yourself talking to your own

computer.·. Microcomputer implementations of telnet generally include a terminal

emulator for some common type of terminal. (See RFC's 854 and 855 for

specifications for telnet. By the way, the telnet protocol should not be confused with

Telenet, a vendor of commercial network services.)

• computer mail. This allows you to send messages to users on other computers.

Originally, people tended to use only one or two specific computers. They would

maintain "mail files" on those machines. The computer mail system is simply a way

for you to add a message to another user's mail file. There are some problems with

this in an environment where microcomputers are used. The most serious is that a

micro is not well suited to receive computer mail. When you send mail, the mail

9

software expects to be able to open a connection to the addressee's computer, in

order to send the mail. If this is a microcomputer, it may be turned off, or it may be

running an application other than the mail system For this reason, mail is normally

handled by a larger system, where it is practical to have a mail server running all the

time. Microcomputer mail software then becomes a user interface that retrieves mail

from the mail server. (See RFC 821 and 822 for specifications for computer mail.

See RFC 937 for a protocol designed for microcomputers to use in reading mail

from a mail server.):

se services should be present in any implementation of TCP/IP, except that micro-oriented

lementations may not support computer mail. These traditional applications still play a

important role in TCP/IP-based networks. However more recently, the way in which

orks are used has been changing. The older model of a number of large, self-sufficient

mputers is beginning to change .. Now many installations have several kinds of computers,

· luding microcomputers, workstations, minicomputers, and mainframes. These computers

likely to be configured to perform specialized tasks. Although people are still likely to

rk with one specific computer, that computer will call on other systems on the net for

ialized services. This has led to the "server/client" model of network services. A server is

system that provides a specific service for the rest of the network. A client is another system

uses that service. (Note that the server and client need not be on different computers.

They could be different programs running on the same computer.) Here are the kinds of

servers typically present in a modern computer setup. Note that these computer services can

be provided within the framework of TCP/IP.

' .· I

• network file systems. This allows a system to access files on another computer in a

somewhat more closely integrated fashion than FTP. A network file system provides

the illusion that disks or other devices from one system are directly connected to other

systems. There is no need. to use a special network utility to access a file on another

system. Your computer simply thinks it has some extra disk drives. These extra

"virtual" drives refer to the other system's disks. This capability is useful for several

different purposes. It lets you put large disks on a few computers, but still give others

access to the disk space. Aside from the obvious economic benefits, this allows people

working on several computers to share common files. It makes system maintenance

and backup easier, because you don't have to worry about updating and backing up

10

copies on lots of different machines. A number of vendors now offer high­

performance disk.less computers. These computers have no disk drives at all. They are

entirely dependent upon disks attached to common "file servers". (See RFC's 1001 and

1002 for a description of PC-oriented NetBIOS over TCP. In the workstation and

minicomputer area, Sun's Network File System is more likely to be used. Protocol

specifications for it are available from Sun Microsystems.)

• remote printing. This allows you to access printers on other computers as if they were

directly attached· to yours. (The most commonly used protocol is the remote lineprinter

protocol from Berkeley Unix. Unfortunately, there is. no protocol document for this.

However the C code is easily obtained from Berkeley, so implementations are

common.)
• remote execution. This allows you to request that a particular program be run on a

different computer. This is useful when you can do most of your work on a small

computer, but a few tasks require the resources of a larger system. There are a number

of different kinds of remote execution. Some operate on a command by command

basis. That is, you request that a specific command or set of commands should run on

some specific computer. (More sophisticated versions will choose a system that

happens to be free.) However there are also "remote procedure call" systems that

allow a program to call a subroutine that will run on another computer. (There are

many protocols of this sort. Berkeley Unix contains two servers to execute commands

remotely: rsh and rexec. The man pages describe the protocols that they use. The user-
, I '

contributed software with Berkeley 4.3 contains a "distributed shell" that will

distribute tasks among a set of systems, depending upon load. Remote procedure call
' mechanisms have been a topic for research for a number of years, so many

organizations have implementations of such facilities. The most widespread .,

commercially-supported remote procedure call protocols seem to be Xerox's Courier

-and Sun's RPC. Protocol documents are available from Xerox and Sum There is a

public implementation of Courier over TCP as part of the user-contributed software

with Berkeley 4.3. An implementation of RPC was posted to Usenet by Sun, and also

appears as part of the user-contributed software with Berkeley 4.3.)

• name servers. In large installations, there are a number of different collections of

names that have to be managed. This includes users and their passwords, names and

network addresses for computers, and accounts. It becomes very tedious to keep this

data up to date on all of the computers. Thus the databases are kept on a small number

11

of systems. Other systems access the data over the network. (RFC 822 and 823

describe the name server protocol used to keep track of host names and Internet

addresses on the Internet. This is now a required part of any TCP/IP implementation.

JEN 116 describes an older name server protocol that is used by a few terminal servers

and other products to look up host names. Sun's Yellow Pages system is designed as a

general mechanism to handle user names, file sharing groups, and other databases

commonly used by Unix systems. It is widely available commercially. Its protocol

definition is available from Sun.)

• terminal servers. Many installations no longer connect terminals directly to computers.

Instead they connect them to terminal servers. A terminal server is simply a small

computer that only knows how to run telnet (or some other protocol to do remote

login). If your terminal is connected to one of these, you simply type the name of a

computer, and you are connected to it. Generally it is possible to have active

connections to more than 'one computer at the same time. The terminal server will

have provisions to switch between connections rapidly, and to notify you when output

is waiting for another connection. (Terminal servers use the telnet protocol, already

mentioned. However any real terminal server will also have to support name service

and a number of other protocols.)

• network-oriented window systems. Until recently, high- performance graphics

programs had to execute on a computer that had a bit-mapped graphics screen directly

attached to it. Network w'indow systems allow a program to use a display on a

different computer. Full-scale network window systems provide an interface that lets
'

you distribute jobs to the systems that are best suited to handle them, but still give you
'

a · single graphically-based user. interface. (The most widely-implemented window

system is X. A protocol description is available from MIT's Project Athena. A

reference implementation is publically available from MIT. A number of vendors are

also supporting NeWS, a window system defined by Sun. Both of these systems are
designed to use TCP/IP.)

Note that some of the protocols are not officially part of the Internet protocol suite.

wever they are implemented using TCP/IP, just as normal TCP/IP application protocols

. Since the protocol definitions are not considered proprietary, and since commercially-

rt implementations are widely available, it is reasonable to think of these protocols as

effectively part of the Internet suite. Note that the list above is simply a sample of the

12

)I- of services available through TCP/IP. However it does contain the majority of the

- - -· applications. The other commonly-used protocols tend to be specialized facilities for

•a r g information of various kinds, such as who is logged in, the time of day, etc.

Transmission Control Protocol/Internet Protocol (TCP/IP) is the main transport

: a 1 -:ol used on the Internet for connectivity and transmission of data across heterogenous

c as.. It is an open standard which is available on most Unix systems, VMS and other

- - omputer systems, many mainframe & supercomputing systems and some

mmocomputer & PC systems.

TCP/IP is a software solution for network connectivity. There is little assumption on

hardware system used for actual physical connections. The most common hardware

a sion is Ethernet, but TCP/IP will also run on Token-Ring, AT&T StarLAN, microwave &

spectrum systems , LocalTalk (needs a gateway), Serial lines (modems, serial

ctions) and other systems as well. To run TCP/IP on a system you first need a hardware

. On Macintosh systems, the hardware drivers are built into the system or is provided by

ard manufacturer. On a PC system, there are different types of hardware drivers

7 ble both commercially and via public domain/shareware including the Packet driver

•· ification by FTP Software, Inc., Microsoft's Network Device Interface Specification

~), & Novell's Open Datalink Interface (ODI). Drivers for OS/2 systems are available

IBM and/or the board manufacturer (if they support OS/2). If a driver is not available for
' I

hardware, look for a shim. This is a software device which translates between two driver

• ifcations. There are shims for ODI-on-NDIS, NDIS-on-Packet driver. ODI-on-Packet
',

etc. usually publically available.

then need a TCP /IP stack. This Js package specific usually comes with every product.

such stack has its own requirements for hardware drivers. you must find a combination

& TCP/IP stack which is compatible with your hardware & system. Macintosh's do

have a problem since most Macintosh systems use the MacTCP stack which is available

Apple and is provided with most if not all Macintosh TCP/IP packages. PC systems

something close to a standard in TCP applications called the Windows Sockets API

iWWWW>Ck). [Note: This is not specific only to TCP/IP it is a general standard for networking

PC irrelevant of the transport protocol. Hence, there may be versions for NetBEUI, IPX,

The Winsock API is avaialble in 16 bit and 32 bit versions. The 32 bit versions are for

w-lnws NT systems. Winsock is implemented in Dynamically Loaded Libraries or DLLs.

13

Currently work is under way to develop a freeware Winsock DLL but many commercial

versions are available. With the TCP/IP stack in hand, you then need all the TCP/IP

application programs such as Telnet, FTP, mail, etc. Just about every TCP/IP package has a

corresponding set of applications although some do not provide: all the different applications

available.

14

. General description of the TCP/IP protocols

CP/IP is a layered set of protocols. In order to understand what this means, it is useful to

,k at an example. A typical situation issending mail. First, there is a protocol for mail. This

s a set of commands which one machine sends to another, e.g. commands to specify

the sender of the message_ is, who it is being sent to, and then the text of the message.

wever this protocol assumes that there is a way to communicate reliably between the two

uters. Mail, like other · application protocols, simply defines a set of commands and

-=ssages to be sent. It is designed to be used together with TCP and IP. TCP is responsible

making sure that the commands get through to the other end. It keeps track of what is sent,

retransmitts anything that did hot get through. If any message is too large for one

_,IOram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure

they all arrive correctly. Since these functions are needed for many applications, they are

together into a separate protocol, rather than being part of the specifications for sending

You can think of TCP as forming a library of routines that applications can use when

need reliable network communications with another computer. Similarly, TCP calls on

services of IP. Although the services that TCP supplies are needed by many applications,

are still some kinds of applications that don't need them. However there are some

~"S that every application needs. So these services are put together into IP. As with TCP,

can think of IP as a library of routines that TCP calls on, but which is also available to

,lications that don't use TCP. This strategy of building several levels of protocol is called

~ng". ·we think of the applications programs such as mail, TCP, and IP, as being
'

.te "layers", each of which calls on the .services of the layer below it. Generally, TCP/IP ·,

IIPl)lications'use 4 layers:

• an application protocol such as mail

• a protocol such as TCP that provides services need by many applications

• IP, which provides the basic service of getting datagrams to their destination

• the protocols needed to manage a specific physical medium, such as Ethernet or a

point to point line.

15

TCP/IP is based on the "catenet model". (This is described in more detail in IEN 48.) This

model assumes that there are a large number of independent networks connected together by

gateways. The user should be able to access computers or other resources on any of these

networks. Datagrams will often pass through a dozen different networks before getting to

their final destination. The routing needed to accomplish this should be completely invisible

to the user. As far as the user is concerned, all he needs to know in order to access another

system is an "Internet address". This is an address that looks like 128.6.4.194. It is actually a

2-bit number. However it.is normally written as 4 decimal numbers, each representing 8 bits

of the address. (The term "octet" is used by Internet documentation for such 8-bit chunks. The

term "byte" is not used, because TCP/IP is supported by some computers that have byte sizes

other than 8 bits.) Generally the structure of the address gives you some information about

w to get to the system. For example, 128.6 is a network number assigned by a central

llllthority to Rutgers University. Rutgers uses the next octet to indicate which of the campus

Ethernets is involved. 128.6.4 happens to be an Ethernet used by the Computer Science

Department. The last octet allows for up to 254 systems on each Ethernet. (It is 254 because 0

255 are not allowed, for reasons that will be discussed later.) Note that 128.6.4.194 and

128.6.5.194 would be different systems. The structure of an Internet address is described in a

·· more detail later.

Of course we normally refer to systems by name, rather than by Internet address. When

specify ,a name, the network software looks it up in a database, and comes up with the

rresponding Internet address. Most of the network software deals strictly in terms of the

lddress. (RFC 882 describes the name server technology used to handle this lookup.)

TCP/IP. is built on "connectionless" technology. Information is transfered as a sequence of
·. '

'datagrams". A datagram is a collection of data that is sent as a single message. Each of these

_,.CJN'lmq is sent through the network individually. There are provisions to open connections

e, to start a conversation that will continue for some time). However at some level,

rmation from those connections is broken up into datagrams, and those datagrams are

ed by the network as completely separate. For example, suppose you want to transfer a

SOOO octet file. Most networks can't handle a 15000 octet datagram. So the protocols will

this up into something like 30 500-octet datagrams. Each of these datagrams will be

to the other end. At that point, they will be put back together into the 15000-octet file.

wever while those datagrams are in transit, the network doesn't know that there is any

16

•-:cction between them. It is perfectly possible that datagram 14 will actually arrive before

I cam 13. It is also possible that somewhere in the network, an error will occur, and some

11 I I am won't get through at all. In that case, that datagram has to be sent again.

by the way that the terms "datagram" and "packet" often seem to be nearly

- c:hangable. Technically, datagram is the right word to use when describing TCP/IP. A

ca ~acing on an Ethernet or ~ome wire. In most cases a packet simply contains a datagram, so

is very little difference. However they can differ. When TCP/IP is used on top of X.25,

X25 interface breaks the datagrams up into 128·byte packets. This is invisible to IP, '

1111 esse the packets are put back together into a single datagram at the other end before being

••• cessed by TCP/IP. So in this case, one IP datagram would be carried by several packets.

ver with most media, there are efficiency advantages to sending one datagram per

-=tet, and so the distinction tends. to vanish.

The TCP level

separate protocols are involved in handling TCP/IP datagrams. TCP (the "transmission

Clllltrol protocol") is responsible for breaking up the message into datagrams, reassembling

at the other end, resending anything that gets lost, and putting things back in the right

. IP (the "internet protocol") is responsible for routing individual datagrams. It may seem

TCP is doing all the work. And in small networks that is true. However in the Internet, . .

mnlv getting a datagram to its destination can be a complex job. A connection may require

datagram to go through several networks at Rutgers, a serial line to the John von Neuman

31i>aoortlP,uter Center, a couple of Ethernets there, a series of 56Kbaud phone lines to

mother NSFnet site, and more Ethernets on another campus. Keeping track of the routes to all
· ..

the destinations and handling incompatibilities among different transport media turns out to

a complex job. Note that the interface between TCP and IP is fairly simple. ;rep simply

IP a datagram with a destination. IP doesn't know how this datagram relates to any

~m before it or after it.

have occurred to you that something is missing here. We have talked about Internet

mdresses, but not about how you keep track of multiple connections to a given system.

-·.1 it isn't enough to get a datagram to the right destination. TCP has to know which

-.nection this datagram is part of. This task is referred to as "demultiplexing." In fact, there

ii

several levels of demultiplexing going on in TCP/IP. The information needed to do this

ltiplexing is contained in a series of "headers". A header is simply a few extra octets

ed onto the beginning of a datagram by some protocol in order to keep track of it. It's a lot

e putting a letter into an envelope and putting an address on the outside of the envelope.

:pt with modem networks it happens several times. It's like you put the letter into a little

elope, your secretary puts that into a somewhat bigger envelope, the campus mail center

that envelope into a still bigger one, etc. Here is an overview of the headers that get stuck

1n a message that passes through a typical TCP /IP network:

e start with a single data stream, say a file you are trying to send to some other' computer:

··

TCP breaks it up into manageable chunks. (In order to do this, TCP has to know how large a

datagram your network can handle. Actually, the TCP's at each end say how big a datagram

they can handle, and then they pick the smallest size.)

................................

TCP puts a header at the front of each datagram. This header actually contains at least 20

octets, but the most important ones are a source and destination "port number" and a

"sequence number". The port numbers are used to keep track of different conversations.
' I

Suppose 3 ·different people are transferring files. Your TCP might allocate port numbers 1000,

1001, and .. 1002 to these transfers. When you are sending a datagram, this becomes the

"source" port number, since you are the source of the datagram. Of course the TCP at the
.· I t

other end has assigned a port number of its own for the conversation. Your TCP has to know

the port number used by the other eno as well. (It finds out when the connection starts, as we

will explain below.) It puts this in the "destination" port field. Of course if the other end sends
i

a datagram back to you, the source and destination port numbers will be reversed, since then it

will be the source and you will be the destination. Each datagram has a sequence number.

This is used so that the other end can make sure that it gets the datagrams in the right order,

and that it hasn't missed any. (See the TCP specification for details.) TCP doesn't number the

datagrams, but the octets. So if there are 500 octets of data in each datagram, the first

datagram might be numbered 0, the second 500, the next 1000, the next 1500, etc. Finally, I

will mention the Checksum. This is a number that is computed by adding up all the octets in
the datagram (more or less - see the 'TC"P spec). The resu.h is pu.t in. the header. 'TCP at the

JR

mi computes the checksum again. If they disagree, then something bad happened to the

•• illll in transmission, and it is thrown away. So here's what the datagram looks like now.

~+-+~+-+-+-+-+-+-+

Source Port Destination Port

.-+

Sequence Number

+-+

Acknowledgment Number

+-+

Data I IUIAIPIRISIFI

Offset! Reserved IRICISISIYIII

IG\K\HITIN\N\

Window 'I

+-+

Checksum Urgent Pointer

+-+

your data ... next soc octets

abbreviate the TCP header as "T", the whole file now looks like this:

.... T.... T.... T.... T.... T.... ~

-~ ou will note that there are items in the header that I have not described above. They are

rally involved with managing the connection. In order to make sure the datagram has
. '1 ' ',

· ed at its. destination, the recipient has to send back an "acknowledgement". This is a

datagram whose "Acknowledgement number" field is filled in. For example, sending a packet

ith an acknowledgement of 1500 indicates that you have received all the data up to octet

number 1500. If the sender doesn't get an acknowledgement within a reasonable amount of
,,

time, it sends the data again. The window is used to control how much data can be in transit at

any one time, It is not practical to wait for each datagram to be acknowledged before sending

the next one. That would slow things down too much. On the other hand, you can't just keep

sending, or a fast computer might overrun the capacity of a slow one to absorb data. Thus

each end indicates how much new data it is currently prepared to absorb by putting the

number of octets in its "Window" field. As the computer receives data, the amount of space

left in its window decreases. When it goes to zero, the sender has to stop. As the receiver

processes the data, it increases its window, indicating that it is ready to accept more data.

Often the same datagram can be used to acknowledge receipt of a set of data and to give

19

IE[Jilission for additional new data (by an updated window). The "Urgent" field allows one

to tell the other to skip ahead in its processing to a particular octet. This is often useful for

•• xumg asynchronous events, for example when you type a control character or other

command that interrupts output. The other fields are beyond the scope of this document.

The IP level

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet

ess of the computerat the other end. Note that this is all IP is concerned about. It doesn't

about what is in the datagram, or even in the TCP header. IP's job is simply to find a

ute for the datagram and get it to the other end. In order to allow gateways or other

ermediate systems to forward the datagram, it adds its own header. The main things in this

der are the source and destination Internet address (32-bit addresses, like 128.6.4.194), the

tocol number, and another checksum. The source Internet address is simply the address of

__ ur machine. (This is necessary so the other end knows where the datagram came from.) The

ination Internet address is the address of the other machine. (This is necessary so any

gateways in the middle know where youwant the datagram to go.) The protocol number tells

IP at the other end to send the datagram to TCP. Although most IP traffic uses TCP, there are

other protocols that can use IP, so you have to tell IP which protocol to send the datagram to.

Finally, the checksum allows IP at the other end to verify that the header wasn't damaged in

transit. Note that TCP and IP have separate checksums. IP needs to be able to verify that the

header didn't get, damaged in transit, or it could send a message to the wrong place. For

reasons notworth discussing here, it is both more efficient and safer to have TCP compute a

separate checksum for the TCP header and data, Once IP has tacked on its header, here's what
the message looks like:

+-+~+-+~+-+-+-+-+-+-+i+~+
JVersionJ IHL !Type of Service! Total Length
+-+~+-+
I Identification !Flags! Fragment Offset
+-+
I Time to Live I Protocol I Header Checksum
+-+
I Source Address
+-+
I Destination Address
+-+
I TCP header, then your data .
I

20

represent the IP header by an "I", your file now looks like this:

IT.... IT.... IT.... IT.... IT.... IT

.nga.ui, the header contains some additional fields that have not been discussed. Most of them

beyond the scope of this document. The flags and fragment offset are used to keep track of

pieces when a datagram has to be split up. This can happen when datagrams are forwarded

ugh a network for which they are too big. (This will be discussed a bit more below.) The

to live is a number that is decremented whenever the datagram passes through a system.

When it goes to zero, the datagram is discarded. This is done in case a loop develops in the

system somehow. Of course this should be impossible, but well-designed networks are built

to cope with "impossible" conditions.

At this point, it's possible that no more headers are needed. If your computer happens

to have a direct phone line connecting it to the destination computer, or to a gateway, it may

simply send the datagrams out on the line (though likely a synchronous protocol such as

HDLC would be used, and it would add at least a few octets at the beginning and end).

5.2.1 The Internet Protocol

Internet Protocol (IP) was originally designed to operate on top of Version 2 Ethernet. The

Compendium has a separate section to discuss ETHERNET. Various components of the IP

protocol family were differentiated by Ethertype number. IP is assigned Ethertype 0800 hex.
I

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing

information and some control information that enables packets to be routed. IP is documented

in RFC 7:91 and is the primary network-layer protocol in the Internet protocol suite. Along

with the· Transmission Control Protocol (TCP), IP represents the heart of the Internet

protocols. IP has two primary responsibilities: providing connectionless, best-effort delivery

of datagrams through an internetwork; and providing fragmentation and reassembly of

datagrams to support data links with different maximum-transmission unit (MTU) sizes.
. .

When the IEEE developed the 802.3 standards for Ethernet they, essentially, replaced

the Ethertype number with a Service Access Point identifier. It was necessary to include an

option for embedding the original Ethertype inside a newer 802.3 frame in order to allow

access to an IP Subnet. This is why there is a Sub-Network Access Protocol (SNAP) header

in most IP frames that aren't using Version 2 Ethernet.

21

IP operates at OSI Layer 3 and provides the routing function in an IP network. Each

communicating device is assigned an IP address. The address identifies the network (which

may be divided into sub-networks) and the host. The term "host" refers to any

communicating device in an IP network. Originally the temi referred to a central host

computer. Today it includes any PC, printer, gateway, file server, or other device that has an

IP address and talks on an IP network.

The discussion of IP begins with a description of the addressing scheme, progresses

through the routing function, and then expands on the addressing concepts used to create sub­

networks. Troubleshooting IP is the process of troubleshooting routing on the network,

5.2.2 Background

The Internet protocols are the world's most popular open-system (nonproprietary) protocol

suite because they can be used to·communicate across any set of interconnected networks and

are equally well suited for LAN and WAN communications. The Internet protocols consist of

a suite of communication protocols, of which the two best known are the Transmission

Control Protocol (TCP) and the Internet Protocol (IP). The Internet protocol suite not only

includes lower-layer protocols (such as TCP and IP), but it also specifies common

applications such as electronic mail, terminal emulation, and file transfer. This chapter

provides a broad introduction to specifications that comprise the Internet protocols.

Discussionsinclude IP addressing and key upper-layer protocols used in the Internet.

Internet protocols were first developed in the mid-l 970s, when the Defense Advanced

Research Projects Agency (DARPA) became interested in establishing a packet-switched
, I

network that would facilitate communication between dissimi)ar computer systems at research
''

institutions. With the goal of heterogeneous connectivity in mind, DARPA funded research by

Stanford University and Bolt, Beranek, and Newman (BBN). The result of this development

effort was the Internet protocol suite, completed in the late 1970s.

TCP/IP later was included with Berkeley Software Distribution (BSD) UNIX and has since

become the foundation on which the Internet and the World Wide Web (WWW) are based.

Documentation of the Internet protocols (including new or revised protocols) and policies are

specified in technical reports called Request For Comments (RFCs), which are published and

then reviewed and analyzed by the Internet community. Protocol refinements are published in

22

new RFCs. To illustrate the scope of the Internet protocols (figure 3) maps many of the

tocols of the Internet protocol suite and their corresponding OSI layers. This chapter

esses the basic elements and operations of these and other key Internet protocols. Internet

tocols span the complete range of OSI model layers.

OSI
Ft..r•re111c• Model

NFS

f='I P·. l'eolneot.
SMTP SNMP

XOR

RPC

Transporl TCP, IJOP

Ne1work

1---------~--------~---,--·· A.RP, RAAP

~
t__._~~~~~~~~~~~~~___,i

Figure 3. O~I model layers.

5.2.3 Thoughts about fixing problems ...

The actual troubleshooting maxim is quite simple: Follow the frame from source to

destination. Each station should be forwarding the frame to a correct destination; router to

router; until the final destination is reached. If someone doesn't forward the frame correctly,

and if the destination address is valid, then that station is miscon:figured. To know what the

expected forwarding will be from router to router it is necessary to understand the underlying

subnet masking being used by the routers and by the nodes. The meaning of the dotted-

23

imal IP address can only be ascertained by applying the mask using binary arithmetic to

ermine which bits are used to represent the network, the subnet (or subnets), and the host.

.4 IP Packet Format

~------------- :3·2 bi1B . 1

~r&'>n I~::~-- -1 ·-T.:~'.-,~=~--·
-~n1ilir::..-.ti04!1 Frepment oftge,

I
Tiime-lo-Rve ! Ptolot:di I Head911" cnecksum

•••.•.••.•• .a ••••••.••••••••••••••••.•.•••.• L ···---·····--·-···- ,. ----···-- .. ---··-····

~uons (+ padcSngt

~ .::t'i
::t.

Figure 4. An IP packet contains several types of information. Fourteen fields comprise an IP
' I

packet.

• Version---Indicates the version oflP currently used.
• IP Header Length (IHL)---Indicates the datagram header length in 32-bit words.
• Type-of-Service---Specifies how an upper-layer · protocol would like 'a current

datagram to be handled, and assigns datagrams various levels of importance.

• Total Length---Specifies the length, in bytes, of the entire IP packet, including the data

and header.
• Identification---Contains an integer that identifies the current datagram. This field is

used to help piece together datagram fragments.

• Flags---Consists of a 3-bit field of which the two low-order (least-significant) bits

control :fragmentation. The low-order hit specifies whether the packet can be

24

fragmented. The middle bit specifies whether the packet is the last fragment in a series

of fragmented packets. The third or high-order bit is not used.

• Fragment Offset---Indicates the position of the fragment's data relative to the

beginning of the data in the original datagram, which allows the destination IP process

to properly reconstruct the original datagram.

• Time-to-Live---Maintains a counter that gradually decrements down to zero, at which

point the datagram is discarded. This keeps packets from looping endlessly.

• Protocol---Indicates which upper-layer protocol receives incoming packets after IP

processing is complete.

• Header Checksum---Helps ensure IP header integrity.

• Source Address---Specifies the sending node.

• Destination Address---Specifies the receiving node.

• Options---Allows IP to support various options, such as security.

• Data---Contains upper-layer information.

5.2.5 IP Addressing

As with any other network-layer protocol, the IP addressing scheme is integral to the

process of routing IP datagrams through an internetwork. Each IP address has specific

components and follows a basic format. These IP addresses can be subdivided and used to

create addresses for subnetworks, as discussed in more detail later in this chapter.
'1 '

Each host on a TCP/IP network is assigned a unique 32-bit logical address that is

divided into two main parts: the network number and the host number. The network number
I

identifies· a network and must be assigned by the Internet Network Information Center
' .

(InterNIC) if the network is to be part of the Internet. An Internet Service Provider (ISP) can

obtain blocks. of network addresses from the InterNIC and can itself assign adqress space as

necessary, The host number identifies a host on a network and is assigned by the local

network administrator.

5.2.6 IP Address Format

The 32-bit IP address is grouped eight bits at a time, separated by dots, and represented in

decimal format (known as dotted decimal notation). Each bit in the octet has a binary weight

25

(128, 64, 32, 16, 8, 4, 2, 1). The minimum value for an octet is 0, and the maximum value for

an octet is 255. An IP address consists of 32 bits, grouped into four octets.

32 Bfts

[__ ···---- -- Ne~rk J Hoel ______J

+- a Bits -i,. +- a Blls __. +- a eus -+ +- a. Bits -.

Dotted
Dt.:ihm11
Notat~on

172 • · 16 t 122 204

Figure 5. The basic format of an IP address.

5.2. 7 IP Address Classes

IP addressing supports five different address classes: A, B,C, D, and E. Only classes

A, B, and C are available for commercial use. The left-most (high-order) bits indicate the

network class. Table 1 provides reference information about the five IP address classes.
' I

Table 1: Reference Information About the Five IP Address Classes
•- - . ---·-·- - ·---·-·--·--·--·-·- --.···--·····-···· I IP' I, Format rurpose Big~- Address Range I No. Bitsl Max.

1 Address i Order J Network/Host I Hosts
j C_!as~ J. ·- . 1'"" Bit(s) , _
'IA II N.H.H.Hli Few la~ol 1.0.0.0 . ~1' 7/24 116,777,l

I ' I , I
/ I organizations j 1126.0.0.0.

1!

. / 21~ /
11

' ' I ! I I I (224 - 2) I
/
------. _, - .. ·--- .. --- .. -·!. . . . ·----- --- . . --------·-·----, ------ .. --· --- -- ------ - . - ·1 ·-·------ .. ------ I ------1 ln,N.N.H.H i Medium-size El 128.1.0.0 tol~ 65, 543j

'

'1 ... _ J __ . J_organi~~t~ons__ _/ 1 __ ~_1.2~~-~.0 _ .J _ j(~~6 2) .J

I C / N.N.N.H ! Relatively I! 1, 1, 0 192.0.1.0 to 22/8 j 245 (2B-,
I I ' I I / I small / 1223.255.254.0

1

I 2) j

! .. __ ·--·-- .J _ .. _j o!.ga~~z~ti-~ns J _ _j _ ---· _ _ _ __ ..J _j .. . _ ..!

26

-==··=··· -------- ,_,..... -------- -- .. ---- ---·--- .. ·----- -----·· --------------------- . ..

j N/A I Multicast I 1, 1, 224.0.0.0 toj N/A (not tor11 N/A \
l I I i . I
I I groups (RFCj 1, 0 239.255.255.255 \ commercial I I
I \1112) ! Juse) \ I

::=E=:==;1~__ I Experimental . ~~11240.0.0.0 . 101~___ __ _- _-_ 1JN1Al
ii _ _ __ _ _ \ 1. 1 - : 254.255.255.255 ii_ _ __ ii _ _ _ \

-----"-'-'---'---'-'........:...;...:..-..:...:. ------------------- --

---------·-·--· - -- ---

D

1N = : Network number, H = Host number.
20ne address is reserved for the broadcast address, and one address is reserved for the
network.

Ntl. Bil& 7 .•. -----------~-- 24

---~
t-to,t

\..~Mi,11 ·1,\•'-'· H ,.\J.l.l.,'1.,f -' ••.'t,•.~...'-,·•~-1'.Y-~.f.~~~~~-.. ~

14 16

ClassB ~~~'.~·-··'. L __ Network J I Host I Host

21 8

ClassC l1L1lol Net,rork Ir Network .J l Network I I Host J~
Figure 6. The format of the commercial IP address classes. (Note the high-order bits in each

class.) IP address formats A, B, and C are available for commercial use.

The class of address can be determined easily by examining the first octet of the address and

mapping that value to a class range in the following table. In an IP address of 172.31.1.2, for

example, the first octet is 172. Because 172 falls between 128 and 191, 172.31.1.2 is a Class

B address.

27

•

Adldl!'E!I&$ Frnsl! oc1-e1 ; Hig,h •O-rde~
Clase in Deci,mel ; Bite '

Class A. -r, D 1i 26 0

Class B 11 2·0 ID 191
;

110

' 1
Cli!ISS C "J 9.2 E) 223 '

1"10

I f:

Cl aas o · 2:2:-4 E) .239 -11 10

01·ess E :2-'1fJ E) 25,dl 1 1 -1 "I

Figure 7. The range of possible values for the first octet of each address class. A range of

possible values exists for the first octet of each address class.

5.2.8 IP Subnet Addressing

IP networks can be divided into smaller networks called subnetworks (or subnets). Subnetting

provides the network administrator with several benefits, including extra flexibility, more

efficient use of network addresses, and the capability to contain broadcast traffic (a broadcast

will not cross a router).

Subnets are under local administration. As such, the outside world sees an organization as a

single network and has no detailed knowledge of the organization's internal structure. -,

A given network address can be broken up into many subnetworks. For example, 172.16.1.0,

172.16.2,0, 172.16.3.0, and 172.16.4.0 are all subnets within network 171.16.0.0. (All Os in

the host portion of an address specifies the entire network.)

5.2.9 IP Subnet Mask

A subnet address is created by "borrowing" bits from the host field and designating them as

the subnet field. The number of borrowed bits varies and is specified by the subnet mask.

28

Cl••• B Addr•••~ Belore SubnelUng

Cl:aaa 8 Addrets•: After SubnetUng

Figure 8. Shows how bits are borrowed from the host address field to create the subnet

address field. Bits are borrowed from the host address field to create the subnet address field.

Subnet masks use the same format and representation technique as IP addresses. The subnet
mask, however, has binary 1 s in all bits specifying the network and subnetwork fields, and
binary Os in all bits specifying the host field.

Network I [Network J I Subnet I I Host

Binary ·i' , '

representation I 11111111 1111 n 11 I 1f 111 H 1 (00000000 I

Dolltd decimal
representation 2SS' • 0 2S5 ' •

Figure 9. A sample subnet mask. A sample subnet mask consists of all binary 1 s and Os.

Subnet mask bits should come from the high-order (left-most) bits of the host field, as Figure

l O illustrates. Details of Class B and C subnet mask types follow. Class A addresses are not

29

discussed in this chapter because they generally are sub netted on an 8-bit boundary. Subnet

mask bits come from the high-order bits of the host field.

1128 64 32 16 8 4 2 .,
l J ! i l ! l l

------------·-----
1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0

1 ·1 1 1 1 1 0 0

1 1 1 1 •• 1 •• 0

·1 1 1 1 11 •• ·~ '1

Figure 10

""

Various types of subnet masks exist for Class B and C subnets. The default subnet mask for a

Class B address that has no subnetting is 255.255.0.0, while the subnet mask for a Class B

address 171.16.0.0 that specifies eight bits of sub netting is 255.255.255.0. The reason for this

is that eight. bits of subnetting or 28 - 2 (1 for the network address and 1 for the broadcast

address)= 254 subnets possible, with 28 - 2 = 254 hosts per subnet.

6. The OSl Reference Model

The Open. Systems Interconnect (OSI) Reference Model has seven layers. Each layer defines

a function performed when data is transferred between applications across a network. These
I

layers are usually pictured as a stack of blocks, leading to the common term "protocol stack."

i[Application-L~;~f-· r~~~ii~~tion pro~r~ th~~-~~~-~h~- ~~~~~------·-----~-----~j
I ----------------·---------- """" -----" - """" -·-· ,, "•"-'"""""'"""""'"" --------. ----------------·-·-··---- ----- I

!Presentation Layer II standardizes data presented to the applications i
----- --------·--------------' ··---··--· .. ·-·. "" """ ' .. " ----- ""' '' - '""""""'""' ----·---------·-----·---------- .. ·------------_J

I I Session Layer II manages sessions between applications / r= Layer __ JI provides error detection and correction _ _J
II Network Layer __ _/Eanages_ network connections -------·--------------_/
/Jnat~_Link L~yer _ _Jiprovides dat_~_deliv~ry across the physical connection _ __J

30

Each layer of the stack defines a function that may be performed by any number of protocols.

Any given protocolmay perform multiple functions. Each protocol communicates with a peer

that is an equivalent implementation of the same protocol on a remote system. Each protocol

layer is only concerned with communication to a peer at the other end of a link. For example,

e-mail is an application level protocol that communicates with a peer e-mail application on a

remote system. The e-mail application does not care whether or not the physical layer is a

serial modem line or a twisted pair ethernet connection.

Information is passed down through the layers until it is transmitted across the network, where

it is passed back up the stack to the application at the remote end. Each layer relies on the

other layers to perform their functions. The individual layers do not care how the other layers

operate. They only need to know how to pass information up or down from one layer to

another.

6.1 Open System Interconnection (OSI) Protocols

6.1.l·Background
'· !

The Open System Interconnection (OSI) protocol suite is comprised of numerous standard

protocols that are based on the OSI reference model. These protocols are part of an

international program to develop data-networking protocols. and other standards that facilitate

multivendor equipment interoperability. The OSI program grew out of a need for international

networking standards and is designed to facilitate communication between hardware and

software systems despite differences in underlying architectures.

The OSI specifications were conceived and implemented by two international standards

organizations: the International Organization for Standardization (ISO) and the International

Telecommunication Union-Telecommunication Standardization Sector (ITU-T). This chapter

31

provides a summary of the OSI protocol suite and illustrates its mapping to the general OSI

reference model.

6.2 Open Systems Interconnection (OSI) Routing Protocol

6.2.1 Background

The International Organization for Standardization (ISO) developed a complete suite of

routing protocols for use in the Open Systems Interconnection (OSI) protocol suite. These

include Intermediate System-to-Intermediate Systems (IS-IS), End System-to-Intermediate

System (ES-IS), and Interdomain Routing Protocol (IDRP). This chapters addresses the basic
operations of each of these protocols.

IS-IS is based on work originally done at Digital Equipment Corporation for DECnet/OSI

(DECnet Phase V). IS-IS originally was developed to route in ISO Connectionless Network

Protocol (CLNP) networks. A version has since been created that supports both CLNP and

Internet Protocol (IP) networks; this version usually is referred to as Integrated IS-IS (it also
has been called Dual IS-JS).

OSI routing protocols are summarized in several ISO documents, including ISO 10589, which

defines IS-IS. The American National Standards Institute (ANSI) X3S3.3 (network and

transport layers) committee was the motivating force behind ISO standardization of IS-IS.
' I

Other ISO documents include ISO 9542 (which defines ES-IS) and ISO 10747 (which defines
IDRP).

6.3 OSI Networking Terminology

The world of OSI networking uses some specific terminology, such as end system (ES), which

refers to any nonrouting network nodes, and intermediate system (IS), which refers to a router.

These terms form the basis for the ES-IS and IS-IS OSI protocols. The ES-IS protocol enables

ESs and ISs to discover each other. The IS-IS protocol provides routing between ISs. Other

important OSI networking terms include area, domain, Level 1 routing, and Level 2 routing.

An area is a group of contiguous networks and attached hosts that is specified to be an area by

a network administrator or manager. A domain is a collection of connected areas. Routing

domains provide full connectivity to all end systems within them. Level 1 routing is routing

within a Level 1 area, while Level 2 routing is routing between Level 1 areas. Figure 11

32

illustrates the relationship between areas and domains and depicts the levels of routing

between the two. Areas exist within a larger domain and use Level 2 routing to communicate.

~
i

••• M f 1 ' O ••••• '! • • ' ' ~ ~ ' • p - ' ••. 0 r ,,, • O ' ~ • 'I ' • ' ., •• ~ I < 1"•

Domain

Figure 11

6.4 OSI Routing Operation

Each ES lives in a particular area. OSI routing begins when the ESs discovers the nearest IS

by listening to ISH packets. When an ES wants to send a packet to another ES, it sends the

packet to one of the ISs on its directly attached network. The router then looks up the

destination address and forwards the packet along the best route. If the destination ES is on

· the same subnetwork, the local IS will know this from listening to ESHs and will forward the
. ' I

packet appropriately. The IS also might provide a redirect (RD) message back to the source to

tell it that· a more direct route is available. If the destination address is an ES on another

subnetwork in the same area, the IS will know the correct route and will forward the packet

appropriately. If the destination address is an ES ~ another area, the Level 1 IS sends the

packet to the nearest Level 2 IS. Forwarding through Level 2 ISs continues until the packet

reaches a Level 2 IS in the destination area. Within the destination area, ISs forward the

packet along the best path until the destination ES is reached.

Link-state update messages help ISs learn about the network topology. First, each IS

generates an update specifying the ESs and ISs to which it is connected, as well as the

associated metrics. The update then is sent to all neighboring ISs, which forward (flood) it to

their neighbors, and so on. (Sequence numbers terminate the flood and distinguish old updates

from new ones.) Using these updates topology of the network. When the topology changes,

new updates are sent.

33

6.5 OSI Seven-Layer Model

In the 1980s, the European-dominated International Standards Organization (ISO), began to

develop its Open Systems Interconnection (OSI) networking suite. OSI has two major

components: an abstract model of networking (the Basic Reference Model, or seven-layer

model), and a set of concrete protocols. The standard documents that describe OSI are for sale
and not currently available online.

Parts of OSI have influenced Internet protocol development, but none more than the abstract

model itself, documented in OSI 7498 and its various addenda. In this model, a networking
\

system is divided into layers. Within each layer, one or more entities implement its

functionality. Each entity interacts directly only with the layer immediately beneath it, and

provides facilities for use by the layer above it. Protocols enable an entity in one host to

interact with a corresponding entity at the same layer in a remote host.

OS1. Model
~'2,y_;/i

Appl ic.a.tion
''"",-,::,., ••• ·-,<

Pt"Cac ntation

SCSEion
»:..·?~

Tea.rm port

D.a.ta. Link:

-, Physic.al

The seven layers of the OSI Basic Reference Model are (from bottom to top):

1. The Physical Layer describes the physical properties of the various communications

' media, as well as the electrical properties and interpretation of the exchanged signals.

Ex: this layer defines the size of Ethernet coaxial cable, the type of BNC connector
used, and the termination method.

2. The Data Link Layer describes the logical organization of data bits transmitted on a

particular medium. Ex: this layer defines the framing, addressing and checksumming
of Ethernet packets.

34

3. The Network Layer describes how a series of exchanges over various data links can

deliver data between any two nodes in a network. Ex: this layer defines the addressing

and routing structure of the Internet.
4. The Transport Layer describes the quality and nature of the data delivery. Ex: this

layer defines if and how retransmissions will be used to ensure data delivery.

5. The Session Layer describes the organization of data sequences larger than the

packets handled by lower layers. Ex: this layer describes how request and reply

packets are paired in a remote procedure call.
6. The Presentation Layer describes the syntax of data being transferred. Ex: this layer

describes how floating point numbers can be exchanged between hosts with different

math formats.
7. The Application Layer describes how real work actually gets done. Ex: this layer

would implement file system operations.

The original Internet protocol specifications defined a four-level model, and protocols

designed around it (like TCP) have difficulty fitting neatly into the seven-layer model. Most

newer designs use the seven-layer model.

The OSI Basic Reference Model has enjoyed a far greater acceptance than the OSI

protocols themselves. There are several reasons for this. OSI's committee-based design

process bred overgrown., unimaginative protocols that nobody ever accused of efficiency.
I

Heavy European dominance helped protect their investments in X.25 (CONS is basically

X.25 for ,datagram networks). Perhaps most importantly, X.25 data networks never caught

people's imagination like the Internet, which, with a strong history of free, downloadable
'

protocol: specifications, has been loath to embrace yet another networking scheme where you

have to pay to figure how things work.

And why should we? OSl's biggest problem is that doesn't really offer anything new.

The strongest case for its implementation comes from its status as an "international standard",

but we already have a de facto international standard - the Internet. OSI protocols will be

around, but its most significant contribution is the philosophy of networking represented by

its layered model.

If the Internet community has to worry about anything, it's the danger of IETF turning

into another ISO - a big, overgrown standards organization run by committees, churning out

35

thousands of pages of rubbish, and dominated by big business players more interested in

preserving investments than advancing the state of the art.

6.6 OSI Networking Protocols

Figure 12 illustrates the entire OSI protocol suite and its relation to the layers of the OSI

reference model. Each component of this protocol suite is discussed briefly. The OSI routing

protocols are addressed in more detail in "Open Shortest Path First (OSPF)." The OSI

protocol suite maps to all layers of the OSI reference model.

Application

OSI Protocol Suite

.... 1 .. ···c·M, p .. ., 11 ·· · · os 1.r ··- FT.AM···l. r~·-·MHS ~ .. 1.r·"-~VTPW I

[3i:]! .no••] I.nm .l [_ccRsii] L. . .J]
OS! Re1orence

Mode-I

Presi!lnlatlon

Soss&ion

·,
TPO TP1 TP2 TP3 TP4

CONP/CMP>JS CLNP/CLNS

IS-IS ES-IS
~-

IEEE IEEE 802.3
IEEE 802.5/ FOOi 802.~ T-01<en Rlng X.25

1" ,ansport

Network

Data'Lihll

1-----------f 1., .. ,.-., h,. •••••·• .• •• ,. •••••••.•••••••••••••••••• .,,. •••• - ••• .-- •••• · ··-· -.• . ., .••.• • ••••• w, ••• •-•· ='. •'•• •••"' ,

Phy5ical
IEEE 802.3
Har·dware

Token Ring
~-iaroware

FDDI
Ji ardwal"e

X.25
Hardware

•.n
· _ _J~

Figure 12

6. 7 OSI Physical and Data Link layers

The OSI protocol suite supports numerous standard media-access protocols at the physical

and data link layers. The wide variety of media-access protocols supported in the OSI

protocol suite allows other protocol suites to exist easily alongside OSI on the same network

36

media. Supported media-access protocols include IEEE 802.2 LLC, IEEE 802.3, Token

Ring/IEEE 802.5, Fiber Distributed Data Interface (FDDI), and X.25.

6.8 OSI Network Layer

The OSI protocol suite specifies two routing protocols at the network layer: End System-to­

Intermediate System (ES-IS) and Intermediate System-to-Intermediate System (IS-IS). In

addition, the OSI' suite implements two types of network services: connectionless service and

connection-oriented service.

6.9 OSI-Layer Standards

In addition to the standards specifying the OSI network-layer protocols and services, the

following documents describe other OSI network-layer specifications:

• ISO 8648---This standard defines the internal organization of the network layer

(IONL), which divides the network layer into three distinct sublayers to support

different subnetwork types.

• ISD 8348---This standard defines network-layer addressing and describes the

connection-oriented and connectionless services provided by the OSI network layer.

• ISO TR 9575---This standard describes the framework, concepts, and terminology

used in relation to OSI routing protocols.

6.10 OSI Connectionless Network Service

OSI connectionless network service is implemented by using the Connectionless Network

Protocol (CLNP) and Connectionless Network Service (CLNS). CLNP and CLNS are

described in the ISO 84 73 standard.

CLNP is an OSI network-layer protocol that carries upper-layer data and error indications

over connectionless links. CLNP provides the interface between the Connectionless Network

Service (CLNS) and upper layers.

CLNS provides network-layer services to the transport layer via CLNP.

CLNS does not perform connection setup or termination because paths are determined

independently for each packet that is transmitted through a network. This contrasts with

Connection-Mode Network Service (CMNS).

In addition, CLNS provides best-effort delivery, which means that no guarantee exists that

data will not be lost, corrupted, misordered, or duplicated. CLNS relies on transport-layer

protocols to perform error detection and correction.

37

6.11 OSI Connection-Oriented Network Service

OSI connection-oriented network service is implemented by using the Connection-Oriented

Network Protocol (CONP) and Connection-Mode Network Service (CMNS).

CONP is an OSI network-layer protocol that carries upper-layer data and error indications

over connection-oriented links. CONP is based on the X.25 Packet-Layer Protocol (PLP) and

is described in the ISO 8208 standard, "X.25 Packet-Layer Protocol for DTE."

CONP provides the interface between CMNS and upper layers. It is a network-layer service

that acts as the interface between the transport layer and CONP and is described in the ISO

8878 standard.

CMNS performs functions related to the explicit establishment of paths between

communicating transport-layer entities. These functions include connection setup,

maintenance, and termination, and CMNS also provides a mechanism for requesting a

specific quality of service (QOS). This contrasts with CLNS.

6.11.1 Network-Layer Addressing

OSI network-layer addressing is implemented by using two types of hierarchical addresses:

network service access-point addresses and network-entity titles.

A network service-access point (NSAP) is a conceptual point on the boundary between the

network and the transport layers. The NSAP is the location at which OSI network services are

provided to the transport layer. Each transport-layer entity is assigned a single NSAP, which

is individually addressed in an OSI internetwork using NSAP addresses.
l '

Figure 13 illustrates the format of the OSI NSAP address, which identifies individual NSAPs.

The OSI NSAP address is assigned to each transport-layer entity.

I
,'
'

IDP OSP
1·,,

' '
,'

;
,, '

AcJd,ess j
Administration l

ArM Station Selector
J

A.Fl IOI

38

Figure 12

6.11.2 NSAP Address Fields

Two NSAP Address fields exist: the Initial Domain Part (IDP) and the Domain-Specific Part

(DSP).

The IDP field is "divided into two parts: the Authority Format Identifier (AFI) and the Initial

Domain Identifier (IDI). The AFI provides information about the structure and content of the

IDI and DSP fields, such as whether the IDI is of variable length and whether the DSP uses

decimal or binary notation. The IDI specifies the entity that can assign values to the DSP '

portion of the NSAP address.

The DSP is subdivided into four parts by the authority responsible for its administration. The

Address Administration fields allow for the further administration of addressing by adding a

second authority identifier and by delegating address administration to subauthorities. The

Area field identifies the specific area within a domain and is used for routing purposes. The

Station field identifies a specific station within an area and also is used for routing purposes.

The Selector field provides the specific n-selector within a station and, much like the other

fields, is used for routing purposes'. The reserved n-selector 00 identifies the address as a

network entity title (NET).

6.11.3 End-System NSAPs

An OSI encl system (ES) often has multiple NSAP addresses, one for each transport entity that

it contains, If this is the case, the NSAP address for each transport entity usually differs only

in the .last byte (called the n-selector). 'Figure 13 illustrates the relationship between a

transport entity, the NSAP, and the network service. The NSAP provides a linkage between a
'

transport entity and a network service:

39

Tirenspo,-1 L.ayeiT

,i--- ·-----·----] I N,e,1;y,.,ori< S'EJl,,..,..ic·e

; ·---------·-----------·-·----·--·--------
·-------·---------

Figure 13

A network-entity title (NET) is used to identify the network layer of a system without

associating that system with a specific transport-layer entity (as an NSAP address does).

NETs are useful for addressing intermediate systems (ISs), such as routers, that do not

interface with the transport layer. An IS can have a single NET or multiple NETs, if it

participates in multiple areas or domains.

6.12 OSI Protocols Transport Layer

The OSI protocol suite implements two types of services at the transport layer: connection­

oriented transport service and connectionless transport service.

Five connection-oriented transport-layer protocols exist in the OSI suite, ranging from
, I

Transport Protocol Class O through Transport Protocol Class 4. Connectionless transport

service is supported only by Transport Protocol Class 4.
'

Transport Protocol Class O (TPO), the simplest OSI transport protocol, performs
' segmentation and reassembly functions. ,TPO requires connection-oriented network service.

' Transport Protocol Class 1 (TP 1) performs segmentation and reassembly and offers basic

error recovery. TPl sequences protocol data units (PDUs} and will retransmit PDUs or

reinitiate the connection if an excessive number of PDUs are unacknowledged, TPl requires

connection-oriented network service.

Transport Protocol Class 2 (TP2) performs segmentation and reassembly, as well as

multiplexing and demultiplexing data streams over a single virtual circuit. TP2 requires

connection-oriented network service.

Transport Protocol Class 3 (TP3) offers basic error recovery and performs segmentation and

reassembly, in addition to multiplexing and demultiplexing data streams over a single virtual

40

circuit. TP3 also sequences PDUs and retransmits them or reinitiates the connection if an

excessive number are unacknowledged. TP3 requires connection-oriented network service.

Transport Protocol Class 4 (TP4) TP4 offers basic error recovery, performs segmentation and

reassembly, and supplies multiplexing and demultiplexing of data streams over a single

virtual circuit. TP4 sequences PDUs and retransmits them or reinitiates the connection if an

excessive number. are unacknowledged. TP4 provides reliable transport service and functions

with either connection-oriented or connectionless network service. It is based on the

Transmission Control Protocol (TCP) in the Internet Protocols suite and is the only OSI

protocol class that supports connectionless network service.

6.13 OSI Protocols Session Layer

The session-layer implementation of the OSI protocol suite consists of a session protocol and

a session service. The session protocol allows session-service users (SS-users) to

communicate with the session service. An SS-user is an entity that requests the services of the

session layer. Such requests are made at Session-Service Access Points (SSAPs), and SS­

users are uniquely identified by using an SSAP address. Figure 14 shows the relationship

between the SS-user, the SSAP, the session protocol, and the session service.

Session service provides four basic services to SS-users. First, it establishes and terminates

connections between SS-users and synchronizes the data exchange between them. Second, it

performs various negotiations for the use of session-layer tokens, which must be possessed by

the SS-user Jo begin communicating. Third, it inserts synchronization points in transmitted
'1 '

data that allow the session to be recovered in the event of errors or interruptions. Finally, it

allows SS-users to interrupt a session and resume it later at a specific point. Session layer

functionsprovide service to presentation layer functions via a SSAP.

41

Presentation Layer

_____ ss u~~,- - --1
__ =i _

SS.ol\P

-------·----------

Figure 14
Session service is defined in the ISO 8326 standard and in the ITU- I X.215 recommendation.

The session protocol is defined in the ISO 8327 standard and in the ITU-I X.225

recommendation. A connectionless version of the session protocol is specified in the ISO

9548 standard.

6.14 OSI Protocols Presentation Layer

The presentation-layer implementation of the OSI protocol suite consists of a presentation

protocol and a presentation service. The presentation protocol allows presentation-service

users (PS-users) to communicate with the presentation service.

A PS-user' is an entity that requests the services of the presentation layer. Such requests are

made at Presentation-Service Access Points (PSAPs). PS-users are uniquely identified by

using psAP addresses.
Presentation service negotiates transfer syntax and translates data to and from the transfer

syntax for PS-users, which represent data using different syntaxes. The presentation service is

used by two PS-users to agree upon the transfer syntax that will be used. When a transfer
' ;

syntax is agreed upon, presentation-service entities must translate the data from the PS-user to

the correct transfer syntax.
The OSI presentation-layer service is defined in the ISO 8822 standard and in the ITU-I

X.216 recommendation. The OSI presentation protocol is defined in the ISO 8823 standard

and in the ITU- I X.226 recommendation. A connectionless version of the presentation

protocol is specified in the ISO 9576 standard.

42

6.15 OSI Protocols Application Layer

The application-layer implementation of the OSI protocol suite consists of various application

entities. An application entity is the part of an application process that is relevant to the

operation of the OSI protocol suite. An application entity is composed of the user element and

the application service element (ASE).
The user element is the part of an application entity that uses ASEs to satisfy the

communication needs of the application process. The ASE is the part of an application entity

that provides services to user elements and, therefore, to application processes. ASEs also

provide interfaces to the lower OSI layers. Figure 15 portrays the composition of a single

application process (composed of the application entity, the user element, and the AS Es) and

its relation to the PSAP and presentation service. An application process relies on the PSAP

and presentation service.

OS1
Environment

Application En1ity

[
·--·--·. -·----··-y·-·------·-··

UHf -Elt!m-,nt
----· ·----- .

. Application lnyor

I __ GA~~ I 8-ASEs I
·····-·-·-·········--·- ······--···-··-· •• ,· .••.••••••• -· .•• <-.

I I I LJ
' __ . ········ -············-···-·····[PSAP -··· -J--~-- . --- -- . - -- . . -·--·-·r·---·----

P,es0ntaH110 Layer [P,es_4'nlal~on Service ·-· ~-- __ j~
. - - - - - - - - ... - . - - - . - . - - .. - - -- - - . - - - - .. - - - - - -- - - ... - - .. - - - - . - - . - ... - . - . -

Figure 15
ASEs fall into one of the two following classifications: Common-Application Service

Elements (CASEs) and Specific-Application Service Elements (SASEs). Both of these might

be present in a single application entity.

43

6.15.1 Common-Application Service Elements (CASEs)

Common-Application Service Elements (CASEs) are ASEs that provide services used by a

wide variety of application processes. In many cases, multiple CASEs are used by a single

application entity. The following four CASEs are defined in the OSI specification:

• Association Control Service Element (ACSE)---Creates associations between two

application entities in preparation for application-to-application communication

• Remote Operations Service Element (ROSE)---Implements a request-reply mechanism

that permits various remote operations across an application association established by

theACSE

• Reliable Transfer Service Element (RTSE)---Allows ASEs to reliably transfer

messages while preserving the transparency of complex lower-layer facilities

• Commitment, Concurrence, and Recovery Service Elements (CCRSE)---Coordinates

dialogues between multiple application entities.

6.15.2 Specific-Application Service Elements (SASEs)

Specific-Application Service Elements are ASEs that provide services used only by a specific

application process, such as file transfer, database access, and order-entry, among others.

6.15.3 OSI Protocols Application Processes

An application process is the element of an application that provides the interface between the
' I

application itself and the OSI application layer. Some of the standard OSI application

processes include the following:

• Common Management-Information Protocol (CMIP)---Performs network

management functions, allowing the exchange of management information between

ESs and management stations. CMIP is specified in the ITU-T X. 700 recommendation

and is functionally similar to the Simple Network-Management Protocol (SNMP) and

' NetView.

• Directory Services (DS)---Serves as a distributed directory that is used for node

identification and addressing in OSI intemetworks. DS is specified in the ITU-T

X.500 recommendation.

• File Transfer, Access, and Management (FTAM)---Provides file-transfer service and

distributed file-access facilities.

44

• Message Handling System (MHS)---Provides a transport mechanism for electronic

messaging applications and other applications by using store-and-forward services.

• Virtual Terminal Protocol (VTP}·--Provides terminal emulation that allows a

computer system to appear to a remote ES as if it were a directly attached terminal.

1) Physical Layer

• Concerned with the transmission of bits.

• How many volts for 0, how many for 1?

• Number of bits of second to be transmitted.

• Two way or one-way transmission

• Standardized protocol dealing with electrical, mechanical and signaling interfaces.

• Many standards have been developed, e.g. RS-232 (for serial communication lines).

• Example : X.21

(2) Data Link Layer

• Handles errors in the physical layer.

• Groups bits into frames and ensures their correct delivery.
' I

• Adds some bits at the beginning and end of each frame plus the checksum.

• Receiver verifies the checksum.

• If the checksum is not correct, it asks for retransmission. (send a control message).

• Cons1st1s of two sublayers:

o Logical Link Control (LLC) defines how data is transferred over the cable and

. provides data link service to the higher layers.

o Medium Access Control (MAC) defines who can use the network when

multiple computers are trying to access it simultaneously (i.e. Token passing,

Ethernet [CSMA/CD]).

(3) Network Layer ,

• Concerned with the transmission of packets.

• Choose the best path to send a packet (routing).

45

• It may be complex in a large network (e.g. Internet).

• Shortest (distance) route vs. route with least delay.

• Static (long term average) vs. dynamic (current load) routing;

• Two protocols are most widely used.

• X.25
o Connection Oriented

o Public networks, telephone, European PTT

o Send a call request at the outset to the destination

o If destination accepts the connection, it sends an connection identifier

• IP (Internet Protocol)

o Connectionless

o Part oflnternet protocol suite.

o An IP packet can be sent without a connection being established.

o Each packet is routed to its destination independently.

(4) Transport Layer

• Network layer does not deal with lost messages.

• Transport layer ensures reliable service.

• Breaks. the message (from sessions layer) into smaller packets, assigns sequence

number and sends them.

• · Reliable transport connections are built on top ofX.25 or IP.

• In case IP, lost packets arriving out of order must be reordered.

··• TCP: (Transport Control Protocol) Internet transport protocol.
. ·. I

• TCP/IP Widely used for network/transport layer (UNIX).

• UDP (Universal Datagram Protocol) : Internet connectionless transport layer protocol.

• Application programs that do not need connection-oriented protocol generally use

UDP.

(5) Sessions Layer

• Just theory! Very few applications use it.

• Enhanced version of transport layer.

• Dialog control, synchronization facilities.

• Rarely supported (Internet suite does not).

46

(6) Presentation Layer

•

Just theory! Very few applications use it.

Concerned with the semantics of the bits .

Define records and fields in them .

Sender can tell the receiver of the format.
Makes machines with different internal representations to communicate .

If implemented, the best layer for cryptography .

•
•
•
•

•

(7) Application Layer

• Collection of miscellaneous protocols for high level applications

• Electronic mail, file transfer, connecting remote terminals, etc.

• E.g. SMTP, FTP, Telnet, HTTP, etc.

7. The Ethernet level

However most of our networks these days use Ethernet. So now we have to describe

Ethernet's headers. Unfortunately, Ethernet has its own addresses. The people \\;'ho designed

Ethernet wanted to make sure that no -two machines would end up with the same Ethernet

address. Furthermore, they didn't want the user to have to worry about assigning addresses. So

each Ethernet controller comes with an address builtin from the factory. In order to make sure

that they would never have to reuse addresses, the Ethernet designers allocated 48 bits for the

Ethern,et address. People who make Ethernet equipment have to register with a central

authority, to make sure that the numbers they assign don't overlap any other manufacturer.

Ethernet is a "broadcast medium". That is, it is in effect like an old party line telephone. When

47

you send a packet out on the Ethernet, every machine on the network sees the packet. So

something is needed to make sure that the right machine gets it. As you might guess, this

involves the Ethernet header. Every Ethernet packet has a 14-octet header that includes the

source and destination Ethernet address, and a type code. Each· machine is supposed to pay

attention only to packets with its own Ethernet address in the destination field. (It's perfectly

possible to cheat, which is one reason that Ethernet communications are not terribly secure.)

Note that there is no connection between the Ethernet address and the Internet address. Each

machine has to have a· table of what Ethernet address corresponds to what Internet address.

(We will describe how this table is constructed a bit later.) In addition to the addresses, the

header contains a type code. The type code is to allow for several different protocol families

to be used on the same network. So you can use TCP/IP, DECnet, Xerox NS, etc. at the same

time. Each of them will put a different value in the type field. Finally, there is a checksum.

The Ethernet controller computes a checksum of the entire packet. When the other end

receives the packet, it recomputes the checksum, and throws the packet away if the answer

disagrees with the original. The checksum is put on the end ofthe packet, not in the header.

The final result is that your message looks like this:

+-+

Ethernet destination address (first 32 bits)

+-+

I Ethern~t <lest (last 16 bits) [Ethernet source (first 16 bits)I
+-+-+~+-+

Ethernet source address (last 32 bits)

+-+~~-+-+-+-+~+-+
:: i

Type code

+-+

I IP header; then TCP header, then your data . I
' 1:

end of your data

+-+~+-+

Ethernet Checksum

+-+

48

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file

now looks like this:

~EIT c EIT c EIT c EIT C EIT c

When these packets are received by the other end, of course all the headers are removed. The

Ethernet interface removes the Ethernet header and the checksum. It looks at the type code.

Since the type code is the one assigned to IP, the Ethernet device driver passes the datagram

up to IP. IP removes the IP: header. It looks at the IP protocol field. Since the protocol type is

TCP, it passes the datagram up to TCP. TCP now looks at the sequence number. It uses the

sequence numbers and other information to combine all the datagrams into the original file.

The ends our initial summary of TCP/IP. There are still some crucial concepts we haven't

gotten to, so we'll now go back and add details in several areas. (For detailed descriptions of

the items discussed here see, RFC 793 for TCP, RFC 791 for IP, and RFC's 894 and 826 for

sending IP over Ethernet.)

Applicatim TelDct, FTP. RPC. etc.

Transpcrt TCP. UDP

Network IP, ICMP, IO:MP

Lmk Network iµterface and device driver

Figure 1. The Layers of the TCP/IP Protocol Suite

The first, the link layer, is responsible -for communicating with the actual network hardware

(e.g., the Ethernet card). Data it receives off the network wire it hands to the network layer;

data it receives from the network layer it puts on the network wire. This is where device

drivers for different interfaces reside.

The second, the network layer, is responsible for figuring out how to get data to its

destination. Making no guarantee about whether data will reach its destination, it just decides

where the data should be sent.

The third, the transport layer, provides data flows for the application layer. It is at the

transport layer where guarantees of reliability may be made.

49

The fourth, the application layer, is where users typically interact with the network~J!i~)s5 >,;'.;; ""'.....,~ .•. I > ~· .:.;,.,::;rj
' ---~

where telnet, ftp, email, IRC, etc. reside.

Packets are the basic unit of transmission on the Internet. They contain both data and header

information. Simply put, headers generally consist of some · combination of checksums,

protocol identifiers, destination and source addresses, and state information. Each layer may

add its own header information, so it can interpret the data the lower layer is handing it. In

Figure 2, we see a sru_nple, Ethernet frame. This is the product of a packet which has gone

from that application layer all the way to the link layer. Each layer takes the previous layer's

packet, viewing almost all of it as data, and puts its own header on it.

·~ Destination Address
Ethernet Header s ource Addresa
(Link Layer) Length of Ethernet Frame I

- - I\
i,-

Misc. Protocol Data
IP Header

, ,
Ethernet s ource IP Address

(~twork: Layer) Data
Destination Il' Address - - s ource Part Number I'

;-
TCP Header IP

Destination Port Number
(Transport Layer) ·Data

Misc. Protocol Data - - ,;-
Limx 1.0.5 (cool)(ttyp3) Login banner from telnet session TCP

Data co~l login:
(Application Layer)

I '
I V . I

Figure 2. A Sample Ethernet Frame

We will now examine each part in turn, with a particular emphasis on the network and

transport layers. In examples that follow, we'll refer to two machines: swell.cs.umass.edu and

cool.alaska.edu. swell is the machine we are on, cool is the destination compute~. We assume

cool and swell are on Ethernets at their respective organizations. Most of our examples

assume an Ethernet, but could work with any kind of network (e.g., token-ring).

7.1 The Link Layer

The link layer is the simplest layer to understand. Composed of the network hardware and the

device drivers, the link layer is the lowest level of the protocol stack. When receiving data

the network, it takes packets from the network wire, strips away any link layer header

50

information, and hands it off to the network layer. When transmitting data onto the network, it

takes packets from the network layer, sticks a link layer header on them, and send them out

over the wire.

The benefit of separating out the hardware layer is that protocol implementors only have to

write the network layer once. Then they provide a common interface to the network layer by

writing different device drivers for each kind of network interface.

7.2 The Network Layer

This is where the Internet Protocol (IP) and the Internet Control Message Protocol (ICMP),
'

among others, reside. ICMP is used both to provide network reliability information and by

utilities like ping and traceroute. IP is used for almost all other Internet communication. When

sending packets, it is figures out how to get them to their destination; when receiving packets,

it figures out where they belong. Because it does not worry about whether packets get to

where they are going nor whether they arrive in the order sent, its job is greatly simplified. If

a packet arrives with any problems (e.g., corruption), IP silently discards it. Upper layers are

responsible for insuring reliable reception of packets. We refer to IP's behavior as "stateless"

or "connectionless" because the existence of previous or future packets is irrelevant when

processing the current packet. We could unplug the network wire, wait a minute, plug it back
in, and IP would never know the difference.

IP is able to iet packets to their de~tinations because every network interface on the Internet
has a unique, numeric address. Oddly enough, these numbers are called IP addresses. Notice,

every interface has its own address. If a machine has multiple interfaces (as is the case with a
··1 ·. '

router), each one has its own IP address, The Internic is responsible for assigning sets of
addresses to organizations, thereby insuring uniqueness.

Because it's a pain to refer to machines with strings of numbers, the designers of TCP/IP

allowed network administrators to associate names with IP addresses. Although this has

nothing to do with the IP layer per se, we feel this is useful material. Originally, every host on

the Internet maintained its own complete copy of this database (on Unix systems, it's in

/etc/hosts). However, as the Internet reached its current size, this soon became unwieldly -­

both in terms of raw size and the administrative nightmare of updating it. And so was born the

domain name system (DNS). It is a distributed database of IP addresses and their natural

language names, called host names. In fact one IP address can have multiple names associated

51

with it. When a network administrator adds a new machine to her network, she is responsible

for updating her organization's nameserver table. Her changes quickly propagate. All

communication with a machine is done via IP numeric addresses, so the hostname for a

machine is only used at the beginning of a connection.

The steps IP takes to send a packet are simple: based on its IP address, figure out how to get it

there and send it on its way.

' -,

Deciding out how to get the packet there, aka routing, is the critical task for IP. Fortunately,

swell doesn't have to know how to get a packet all the way to Alaska, it just needs to figure ,
!

out which local router is responsible for getting packets to Alaska. A router differs from a

typical machine on the net because it has at least two network interfaces -- this allows it to

connect to two or more networks. For a small organization, there will typically be a local

network (e.g., Ethernet) and then a leased-line link to the Internet. The organization's router is

connected to both the local network and the Internet link. All packets bound for the Internet

are sent to the router, which then puts it on the leased line, bound for the next router.

Each router only needs to know about the routers to which it is connected. Those routers then

know about all the routers to which they are connected. This allows swell's local router to say,

"Well, all packets bound for the West go to MIT, so I'll just send it there and let MIT figure

out what to do next." MIT puts it on a T3 line to Cleveland, from there it goes to Chicago, San

Francisco, .Seattle, and into Alaska, where it goes from the organization's router to the

Ethernet interface on swell. The router at each hop is only concerned with where to send it

next. It doesn't try to determine the full path which the packet will take.
'·1

To determine where a given packet will go next, machines on the Internet maintain routing

tables. They consist of three major items: addresses of routers, addresses they c~ handle, and

the interface to which they are connected. In the case. of a machine on a local net (like

cool.cs.umass.edu), it probably has three entries: one for the loopback interface (which allows

a host to connect to itself), one for the local network and a default entry.

The local network entry lets IP know that the machine is directly connected to a certain set of

IP addresses. Rather than try and route those packets, IP figures out the hardware address of

the Ethernet interface to which the IP address corresponds and sends the packet there. With

52

this entry, cool is essentially the router, the addresses it can handle are all the IP addresses on

the local net, and the destination interface is an Ethernet card on the local net.

The default entry says "for all other addresses, send it to this, router." Instead of trying to

deliver a packet for cool.alaska.edu to a machine on the local net, cool sends it to the router's

interface, saying, "Here, I don't know where this goes, you figure it out." The router then

looks at its table, sees it doesn't have a direct connection to cool, so sends it to its default

destination, MIT. And so the process continues.

At this point, the reader should have a rough idea of how packets are transmitted on the ,

Internet. When receiving data, IP takes the packet from the link layer, checks for any blatant

corruption, and hands the packet to the proper process at the transport layer. If there is any

problem with the packet, IP silently discards it because it doesn't have to worry about whether

a packet reaches its destination.

We have left a huge amount out of this picture. Here are just some of the issues we're

ignoring: packet fragmentation, netmasks and other routing tricks, network error handling,

and the interactions between the network and transport layer.

7.3 The Transport Layer

There are two protocols at the transport layer: the transmission control protocol (TCP) and the

user datagram protocol (UDP). TCP provides end-to-end reliable communication and UDP
'1 '

doesn't. UDP is as unreliable as IP, but allows people to write user level software that creates

its own packet formats, which is particularly helpful if you want to write new protocols, don't

have the kernel sources, and don't want the overhead of TCP.

TCP -creates a "virtual circuit" between two processes. It insures that packets are received in

the order they are sent and that lost packets are retransmitted. We won't go into ,the details of

how it works, but interactive programs like ftp and telnet use it.

So far we have discussed addressing on the host level -- how to identify a particular machine.

But once at a machine, we need a way to identify a particular service (e.g., mail). This is the

function of ports -- identification numbers included with every UDP or TCP packet. TCP/IP

ports are not hardware-based. They are a just a way of labeling packets. A process on a

machine '' listens" on a particular port. When the transport layer receives a packet, it checks

53

the port number and sends the data to the corresponding process. When a process starts up, it

registers a port number with the TCP/IP stack. Only one process per protocol can listen on a

given port. So while a process using UDP and one using TCP can both listen on port 111, two

processes that both used TCP could not. There are a number of ports which are reserved for
standard services. For example, SMTP, the mail protocol, is always on port 25, and telnetd is

always on port 23. To see a list of the reserved ports on a Unix system, look at /etc/services.

We've examined how ports work on the server end -- specific ports are reserved for set tasks.

On the initiator end, port assignment is dynamic. When a telnet client on swell starts up, it

gets a new port number (e.g., I 066). This is the source port which swell's TCP, layer puts on ,

every packet. Tlus allows the telnet daemon (telnetd) on cool to responds to the correct telnet

process on swell. The combination of source/destination IP addresses and ports provides a

unique conversation identifier. Each conversation is called a flow.

UDP is essentially IP with port numbers (flows). It gives the user access to IP-style

datagrams. The network file system (NFS) and talk are two examples of UDP-based

protocols.

This has been an extremely cursory exploration of TCP and UDP. At this point, you should

have a decent understanding of how the network (IP) and transport (TCP/UDP) layers

'interact. We now turn to the final layer.

7 .4 The ~pplication Layer

This is where the user interacts with the network. All network programs like telnet, ftp, mail,

news, and WWW clients are at the application layer. They then use either TCP or UDP to

communicate with other machines. To provide a clearer picture, I'll examine telnet in a little

detail.

Telnet is used for remote login. It removes the need for hardwired terminals. A user on swell

types "telnet cool.alaska.edu" and he is rapidly connected to cool.alaska.edu, which asks him

to login. He can then interact with cool. Here's a breakdown of the process:

1. The name address is turned into a numeric one (137.229.18.103), via a domain name

server.

54

2. Telnet tells the transport layer it wants to start a TCP connection with 137.229.18.103,

at port 23

3. TCP initiates a conversation with cool. IP is used to route packets. The telnet process

on swell gets a port number of, say, 1096. TCP places the source and destination port

numbers in its packet header, IP the IP address.

4. Packets are now handed to the IP layer, which sends them to the link layer. They

proceed from the user's machine to his organization's router and out onto the Internet.

They make their way to cool, one router at a time.

5. cool's TCP layer replies in a similar fashion.

6. The telnet daemon on cool and the telnet client on swell exchange terminal

information and other parameters necessary for an interactive session. Control

messages are sent in-band, as an escape byte of 255, followed by the control byte.

Control messages include: echo, status, terminal type, terminal speed, flow control,

linemode, and environmental variables.

7. The user sees a login prompt. After logging in, data is sent back and forth.

Once the task is broken into a number of steps, we see it's relatively simply. Because the

transport layer provides a standard interface, network applications do not need to be rewritten

or even recompiled if the transport layer code changes.

8. GOVERNMENT OPEN SYSTEMS INTERCONNECTION PROFILE (GOSIP)
POLICY

Departments should migrate to OSI standards for their networks in a timely and cost effective

manner.

, 8.1 BACKGROUND
The international OSI standards, developed under the auspices of the International

Standards Organisation (ISO), were designed to provide the basis for achieving secure

universal connectivity between heterogeneous computer systems. The business advantages of

seeking to have a common system for communications between computing platforms are well

recognised and documented. There are both efficiency and cost effectiveness benefits flowing

55

from a move to a more open computing environment. This is also important in promoting the

international competitiveness of Australia's IT industry.

The Victorian Government's implementation of GOSIP is aimed at achieving

objectives of facilitating information and/or data exchange between disparate computer

systems. This is designed to promote access to and communication of information in a timely

and cost effective manner. Other agencies, including Statutory Authorities and Government

owned business enterprises were encouraged to follow the State Government's commitment to

OSI in their development of IT systems and services. The implementation of international

standards in IT will promote the achievement of greater efficiency and effectiveness in the use'

of IT to meet the needs of government programs. By introducing OSI standards the

Government is seeking to ensure that there is a common IT applications architecture linking

all its computer installations to facilitate access to, and transmission of, information within

and between Departments.

The benefits of this approach are :
• by using a common communications architecture based on GOSIP standards, there

will. be greater capability to access data and to achieve significant savings in staff

support and training costs
• departments avoid being locked-in to any particular supplier's communications

architecture and move towards greater flexibility in choosing products and creating
! '

·competition for products and services

• industry can develop software and hardware according to unambiguous specifications

that are in the public domain with global benefits for local suppliers

greater flexibility is achieved with the ability to readily move technology and skills

between installations

• assists the Victorian Government in positioning itself for a future where universal

. connectivity and controlled and secure access to information, subject to privacy and

security issues, will be the norm.

The original GOSIP policy, promulgated in 1991:

•

required all suppliers to offer products which comply with GOSIP when responding

to Victorian Government tenders from 1 October 1991

required Victorian Government departments to implement OSI standards in all aspects

of the network, unless there are compelling reasons to do otherwise

•

56

• did not seek retrospective conversion of existing networks to OSI standards

• took into account the availability and cost effectiveness of OSi compliant products in

comparison to their proprietary equivalents
• sought to continuously test the market for the availability and cost effectiveness of

products
• required all departments to develop migration plans as part of their IT plans for

conversion of their existing networks to OSI
• placed responsibility with the department for implementing the policy and being

accountable for it
• sought the conversion of all networks to OSI in a manner and time frame that is cost'

effective, taking into account the availability of products and the investment in

existing systems.
These principles and requirements remain valid for this policy revision.

8.2 IMPLEMENTATION GUIDELINES

Future acquisitions and upgrades of Victorian Government IT &T architecture should

support OSI standards for interconnectivity unless there are compelling reasons to do

otherwise.

The following factors must be considered when implementing this policy:

• timing for, and manner of, conversion of a department's network(s) to OSI is entirely

the responsibility of the department, which is accountable for the outcome
. '

• there will be no supplementation of a department's budget for the conversion process.

It is anticipated that each department will decide what is the appropriate time to

convert taking into account the functionality; cost effectiveness and availability of

OSI products versus their existing proprietary, architectures. Market forces will

influence this timing. It is expected that departments will use whole of life economic

assessment methods taking into account the longer term benefits, as well as the short

term costs, of adopting standards when making their decision

• it is recognised that cost effectiveness is an important element in determining when to

convert a department network and that this will change as the market for OSI products

develops and the technology changes. All Victorian Government tenders must seek the

57

provision of GOSIP compliant solutions, unless specific exemptions are justifiable.

Departmental heads are responsible for ensuring that major acquisitions comply with

government policies, including GOSIP, and that, where a proprietary solution is

recommended in preference to a GOSIP compliant system, the reasons are sound and

defensible
the preferred priority order for the application of standards is as follows
I. International standardised profiles and international standards including stable draft

international standards.
2. National standards including stable draft national standards.
3. Industry/de. facto standards where the specifications are publicly available and are not'

"owned" by a single supplier (eg TCP/IP, OSF and UI standards).
4. Industry/de facto standards where the specifications are publicly available and are widely

accepted and adopted by many suppliers (eg MS-DOS, Micro soft Windows, UNIX, SNA).

5. remaining standards (proprietary).
The slow implementation of OSI standards in commercial products is acknowledged

and, the widespread use of the competitive Transmission Control Protocol/Internet

Protocol (TCP/IP) is recognised. Victorian Government policy is that OSI protocols are the

preferred standard. The adoption of de facto/industry standards is recognised as providing a

viable alternative in the absence of suitable OSI conformant products but with a clear

commitment being given to migrate at a future date.
the u~e of OSI protocols for interdepartmental communication is preferred. It is

recognised that there is a legacy of interconnection between departments based on proprietary

protocols and more time must be allowed for their conversion. In addition, for the transfer of
' some· selected applications, it may be more cost effective to continue to use a proprietary

protocol in the short term. The ,tonger term objective is to realise the overall benefits of

standardisation on GOSIP protocols for all transmissions.
· The strategy to move from the current proprietary based platforms to -those based on

standards encompassed in GOSIP should be incorporated in each department's migration plan

to OSI. This plan, which should be part of the department's IT Strategic Plan is targeted at

facilitating the above objectives and realising the very significant benefits of a move to a more

open computing environment.
The timing of cost effective migration will vary from agency to agency and is

dependent on the technological (especially OSI product availability) and business

opportunities facing the organisation. Timing of the conversion will also be dependent upon

58

where the department is in the life cycle of its existing IT systems. There is a need for each

department to review the continued appropriateness of their OSI migration plan against

implementation experience.
The Commonwealth Government is examining a series of issues associated with OSI

migration through separate working parties, eg SNA to OSI, TCP/IP to OSI, the introduction

of standardised Cabling, and Naming and Addressing for inter-agency communications.

These will be provided to all departments as they are progressively released.

8.3 OUTSOURCING

Since the GOSIP policy was announced, the Victorian Government has re-emphasised its

commitment to outsourcing. Government IT policies will apply to all outsourced agreements

and projects and thus outsourcing will not justify an exemption from the use of GOSIP

standards.

8.4 CONFORMANCE AND INTEROPERABILITY

The interlinking of OSI conformant products developed by different suppliers requires

users to have additional assurance on their level of conformance to standards and ability to

interoperate. In this situation there are now risks for the user in having to take on more of the

responsibility for the initial and continuing interoperability of such products and their

integration into .the agency computing environment, a responsibility largely taken on by the
I '

supplier in the proprietary environment. These new risks need to be recognised and managed

and should be weighed against the benefits of implementation through a standards based

architecture. The work of industry organisations and other consortia such as X/OPEN, the

Open Software Foundation (Q~F), UNIX International and the Process to Support

Interoperability (PSI), shows promise in reducing this risk by collectively agreeing and

committing to the use of common standards, including OSl standards, and· in some cases,

code.
The issue of a conformance certificate for a product provides users and industry with a

\1'e'gl'e'e \)l 'a'S~\\Ya\\'Ct \\\\\.\ ~\\~\\ \\ \\\:QdlJ.~t "QufQrms to standards. This does not guarantee

interoperability of products which requires additional guarantees and/or certification.

Considerable progress is being made worldwide in the standardisation of conformance testing

and the mutual recognition of certificates issued by accredited testing authorities. There is as

59

yet no universal system of recognition in place and there are clear risks of incompatibility

when products are purchased from different suppliers.

In addition there are no third party testing centres in Australia at this time. Therefore

consideration needs to be given to approaches which would ensure that products developed by

Australian industry are not disadvantaged when competing with overseas suppliers for

Victorian Government business. At present, there is little demand for local testing.'

Interoperability remains the key factor for the successful implementation of GOSIP. To

address this issue, in the Victorian Government arena the following approach will apply in

verifying the claims of products for GOSIP compliance :

>"' if a supplier offers a certificate from an accreditation agency showing successful

completion by the product of independent interoperability tests, that will be accepted

without further documentation, including the need for conformance evidence

(recognising that conformance testing will be a prerequisite to formal interoperability

testing and certification)
>"' a product which has a conformance certificate from a recognised accreditation agency

covering testing performed at an accredited testing centre (including suppliers [1st

party] centres) will be accepted as conforming to the standard without further

documentation
>"' a product which has a manufacturer's declaration of conformance certification

covering testing performed at an accredited testing centre (including suppliers [1st

party] centre) will be accepted as conforming to the standard without further

· documentation
>"' a product which has a conformance test report from a non-accredited testing centre

; will be judged on the evidence on a case by case basis within the overall aim of

making it as easy, and as ,practicable, to accept products (this makes it equivalent with

current practices for procurement of proprietary products)
>"' if none of the conformance and interoperability certificates above apply and/or no 1st

or third party conformance certificate or a manufacturers declaration of conformance

is available, the supplier will be required to complete a Protocol Implementation

Conformance Statement (PICs) demonstrating how they comply with the standard

and contractually commit to supply product in conformance with the PICS.

Interoperability is recommended as a component of the acceptance testing procedures.

Interoperability tests should cover existing systems in addition to new systems but care needs

to be exercised in interpreting such test suites.

60

Given that the field of testing is changing rapidly, a degree of flexibility will be

maintained and the rules amended as necessary, in consultation with departments and industry

and in accord with accepted practice both in Australia and overseas. As this area matures, the

ability to have accredited certification of OSI products may become a significant advantage in

simplifying procurement as compared with the traditional individual procurement testing

normally associated with proprietary solutions. Industry initiatives on interoperability testing

through OSicom and OSlone are noted and should be of assistance.

9. TCP/IP Real Time System

Some applications use real-time data, such as those in audio, radar, and sonar
',.'"

processing. For real-time applications, blocks of data must be processed within a set amount

of time. This data must also be received from some source. To input real-time data in a
, '

GEDAE flow graph, a function box must be created which encapsulates the driver for the

appropriate I/0 device.

9.1 Problem:

For real-time applications, GEDAE has to collect and process a block of data within a certain

time constraint avoiding errors or dropping data.

61

9.2 Solution:

9.2.1 Overview:

The following solution is based on a specific application created on a Share processor

system and uses interrupts and background DMA's. When the I/0 device has an available

block of data, it sends an interrupt to the Share system. The interrupt handler starts the

background OMA, which transfers the data from the 1/0 device to memory. When the

DMA transfer is complete, another interrupt is sent to indicate that the data can now be:

processed. While processing, another block can be received from the 1/0 device. This is

illustrated in the following time line diagram:

Maximizing processor us~ge results in minimizing system cost. By overlapping DW

data transfers and processing, processor usage is kept high.

, This example works only on specific embedded systems. Slight system specific
I

changes were made. Parts of the code examples were replaced with pseudo code.

9.3 Encapsulating the 1/0 device in a GEDAE function box

An embeddable GEDAE function box that reads real-time input is defined like ~

other function box. Parameters and other data inputs can be defined to process the

real-time data. Users can build custom function boxes which provide a bindiru

between interrupts and function calls via the primitive's Reset and Apply methods

The interrupt handlers are registered in the Reset method, and the data is received iJ

the Apply method. The following is an example:

62

Name: v_dev_input
Type: static
Comment: "Receive real-time input from an device.

N_out = the vector size of the outputs.
N_input = the vector size of the 1/0 data block"

Input: {
int N_out; .
int N_input; ·

}
Local: {

int needs_to_fire; /* number of vectors of real-time data to collect */
int fired; /* current vector being collected * I

}
Output: {

stream float outl[N_out];
stream float out2[N_out];

}
Include: {
#include< e_dev_input.h >/*found in -/gedae/include/embeddable */
}
Reset: {

init_dev _input(N_input); /* register interrupt handlers */
needs_to_fire = O;
fired= O;

}
Apply: {
int progress = O;
if (needs_to_fire = 0) {
/**** BEGINNING NEW EXECUTION OF FUNCTION****/
needs_to_fire = size(outl)/N_out; /* calculate the firing granularity */
fired= O;

}

while' (needs jo fire) {

I*

** if data is available then place it in out1 and out2,

0 else return failure and try again later.
*/

float *addr1 = out1 + (N_out * fired);
float *addr2 = out2 + (N_out * fired);

',
\I

I
!

else OStaticFailed("Not enough data available from the 1/0 device yet");!
I ·--·----------·-- ... --- .. -·~--·-----·-··· ·------·--- .. •·· ---.-- -----------~-·-··--· ------·--·- ------- ·-·----·-···---------------~-----·-----·--·--·-·

if (\read_dev_input(addr1, addr2, N_out)) {

if (progress) OStaticProgressMade();

63

break;

}
fired++;

progress= 1;
if (needs_to_fire == fired) {

needs_to_fire = O;

}

}

}

9.4 Notice there are no direct references to the Share system.

Hiding all the Share specific calls in the underlying functions (init_ dev _input() and

read_dev_input()) is recommended. These functions are prototyped in the header file

e_dev_input.h (from the Include method). Also, in the Apply method the firing granularity

is checked to see if multiple real-time data sets are to be processed as one large block.

This allows for transparent scalability.

~:~:::"1i:;~~g.~::~:"tj~~;.;~ddable;;j.;;n~h-!
I -- - --
. #define _e_dev_input_h_ \ I
void init_dev _input(int' N_input); \ i

. int read_dev_input(float *out1, float *out2, int N_out);\
I\ ,, . \

#endW \ -··--···· - ·--- ...•... --~-------- ··-··
--•••••"•·•••••~•••·-· •·H --• •· ,•••·••-• .,, •• • •••••

9.5 The Reset Method

The Reset method registers the interrupt handlers and sets up any buffers and flags. The

following code is used to register the interrupt handlers, allocate a double buffer where the

data will be placed, and set a flag that represents the state of the real-time data. Global

variables are used for handles to shared buffers between the interrupt handler and the

64

Apply function. Double buffering is used so while one buffer is being processed another

may be filled with new data.

r - . . -,~ - ·- .. ~- ·---- -·------- .. -· -------- ,..... . .. - ·--··--------- - ~· ----------- - - ------·~-----
J!~•e l~cati~_!I: -=:-/ge_~_a~(sou!:c~jem_be~~~~-1~(~-~-e~ _)neut.·~---~ _
Static int BUFFER_ SIZE;
static float *CURRENT_ BUFFER; /* handle to global buffer * I
static float *DEVICE INPUT BlJFFERl; /* global bufferl */ . - -
static float *DEVICE_INPUT_BUFFER2; /* global buffer2 */
static int DATA_READY; /* used to indicate if data is ready*/

void init_dev _input(int N_input) {
/**** ALLOCATE A DOUBLE BUFFER FOR OUTPUT OF THE -INPUT

DEVICE

****/
DEVICE_INPUT _BUFFER1 = (float *)calloc(N_input, sizeof(float));

DEVICE_INPUT _BUFFER2 = (float *)calloc(N_input, sizeof(float));

CURRENT _BUFFER= DEVICE_INPUT _BUFFER1;

BUFFER_SIZE = N_input;

\..

/**** SET TO: NO DATA IS AVAILABLE YET****/

DATA_READY = O;

/**** REGISTER "1/0 HAS DATA READY" INTERRUPT HANDLER****/
I

interrupt_handler(SIG_DEV _DAT A_READY, read_iodev _handler);

/**** REGISTER "DMA COMPLETE" INTERRUPT HANDLER ****/

interrupt_handler(SIG_DMA~ COMPLETE, dma_done_handler);

}

When the "SIG_DEV _DATA_READY" interrupt occurs, "read jodev handler" gets

called. The handler starts a DMA that copies the real-time data into one of the double

buffers. Since the DMA processes in the background, the handler can exit right away,

allowing normal processing to continue. When the DMA transfers complete, the

interrupt "SIG_DMA_COMPLETE" occurs. The "dma_done_handler" sets the

"DATA_READY_FLAG". The following is the code for the interrupt handler:

r= ~~- A:~~-A_ii·~~~~-~~~ ~-~~-{;!~!~:~~TT! ~!~~-!~-*-~*-~-~<]
65

,,.,...,...,,.,_,~-·,~·-··~~ ,._....,. ~~ -~., .••.•• .,. •..•. .,..~ • .,.-~.,,.... ·r •·•--·-.,...,.,..., .. , •. .,._r.- ·= • .-,, •.• ,.__,. -.~,..,.,.,...., •• ,..,- ,.. .• _,,.,_, ,,..,.._.,,.. •• _....,,..,.,._,.,....,.
. i

static void read_iodev_handler(void) {
/**** HANDLE THE DOUBLE BUFFERING****/ I I
if (CURRENT_BUFFER = DEVICE_INPUT_BUFFERl) { j
CURRENT BUFFER= DEVICE INPUT BUFFER2; !
} else { - - - !
CURRENT BUFFER= DEVICE INPUT BUFFER!; i
} - - - 1

I
. . I
II**** GET INPUT FROM REAL TIME 10 DEVICE ****/ \

I start dmatinput devlce addr, CURRENT _BUFFER, BUFFER_SIZE);I

} I
i
i

I
I

i

/**** OMA DONE INTERRUPT HANDLER****/

static void dma_done_handler(void) {

/**** SET TO: DATA IS AVAILABLE****/

DATA_READY = 1;
}

I·
i

9.6 The Apply Method
The Apply method checks to see if the real-time data is ready. If not it returns a

failure, giving any other schedules a chance to execute. If ready, the data is moved to

the outputs. This function should be kept simple. It should just place the new data on

the outputs, and set flags to indicate that the data has peen consumed. Preliminary

processing should be minimized. The following is the code of the function called by

the Apply method:

I

r-a·- .. "······-·--····· _ .. , , ·., - - ·····- -· ,._ . .,.... .. "'" "·- ·-· ,___ . -- -·
lit**** CALLED FROM THE RESET METHOD ****/ 1

· int read_dev _input(float *outl, float *outZ, int N_out) { I
if (!DATA_READY) { I
;uu DATA NOT READY ****/ I
return O; \
} else { I
float =buffer= CURRENT BUFFER; I

- I
i

I
I
I

/**** DO ANY PRELIMINARY PROCESSING HERE ****/i -·---·---··--- ·- _ - J

/**** DATA IS READY****/

1:

1,

11

DATA_READY = O;

1,

1:

11 66
II

!
---··-- .. -·-"•--·_.,.. __ , •··- - -•·-.-•·-' --- w-• ·- ,._, . .,. _..,-•,•• s- _. _.,. •••••· ••• • ., w""•·~•-• ,.,

I < preprocessing and place in out1 and out2 >

i I return 1; I* success */

I >
I
}

List of pseudo functions:

The follow functions and data are definitions of the pseudo code used above.

interrupt _handler(SI GN AL, (*handler()));

Register an interrupt handler based on a signal.

SIG DEV DATA READY - - -
This is an interrupt signal flag indicating when the 1/0 device has data that is ready to be

transferred to memory.

SIG DMA COMPLETE - -

This is an interrupt signal value that represent when the DMA engine has finished moving

the requested data.

start_ drna(source_ addr, <lest_ addr, size);

This is like memcpy() but uses a DMA in the background that runs in parallel with the
'. I

Share processor.

input device addr
··1-".""' -

This is a handle to the 1/0 device that contains the real-time data.

Example of a real-time algorithm designed with GEDAE™:

67

'
[d~ce:,in~ut

const int Processors = .41=========== t Processors
const int N_input - 2205 { N_input
const int N~out = 4096 i N_out

J1fJf11 ~ l!le111_offset
·,·~~

Number of processors used
to handle input data.

tstatus: Constructing Trace Table

Real-Time algorithm

To see the algorithm and an explanation,
double click on this box.

To see the trace table use the File meu:
File -> Open Events ...
and double click on 'demo'.

68

FIie Edit View :}Jli !cm:,

k

onst int Processors
jconst int N_inpu~)- H .. _ •. 'f"U l'·- .. -(1
const int N_out

!range k = o •• ?j

Real-time data is collected from the real-time source and placed
in a global memory that was accessible to four Share processors.
The l/0 device handler is contained in the v_dev_input function box.
This box has 8 outputs that go to the v _task1 function box and
then the v task2 function box, which are normal function boxes that
do data processing. The data has to be processed within .625 seconds
per block or else the data has to be dropped.

Parameters:
Processors - is equal to 4 (number of processors in the system).
N_input - is the size of each real-time block. 400 of these blocks are read before
any data is placed on the 8 outputs.
N_out - is the size of each of the outputs.
mem_offset - offset into the global memory based on the processor number.

· The route box is use to avoid having to replicate the v _task1 and v _task2
boxes manualy. There are 8 family members of each of these boxes.

,status:

69

Name 2.190968
+0.621561 .!L.!.I o_~ 1sGG11

11 • • • • • • • • • • • • • • • •
• I • •
• I • •
• I • •
• I • •

10
9

1118

group([Olclevice_input.[Olv_task1)
[Oldevice_input

v_dev_in_e_ut
[6Jv_task1
C6lv_task2
[5lv_task1
[5]v_task2
[4Jv_task1
C4lv_task2
[3lv_task1
[3lv_task2
[2]v_task1
C2lv_task2
[1lv_task1
C1lv_task2
[O]v_task1
[Olv_task2
[7lv_task1
(7]v_task2

• I • •
• I • • -----. . . . • • • • • • • • • • • •

group(C 1lclevice_input. CO lv_task1) i---+---­
group(C 2]device_ input. [0]v_ task1) 1---+----

. ll '· grQup([3]clevice_input.[O]v~task1) , "·. "'
•----------• fi;,J~i\:~n fiB1lillJD111Bil:1trll8W{_.,,.1"j .. ~~

70

10. Conclusion

The project has investigated the principles of TCP/IP and also its applications to

time programming. It is shown that TCP/IP is a very versatile communications proto

it can be used in the design of client-server based real time systems. Most of the Cle

been left out deliberately. There are plenty of good book written on this subject, in n=rirnh-r

[1]. In addition, further information can be obtained from the request for Comments rRFCs

issued by the Internet engineering Task Force (IETF).

11. Bibliography

H. Gilbert -Introduction to TCP/IP

ftp.intemic.net:/rfc.

Ftp:// ftp.isiedu/in- notes

http:/ /www.cisco.com

http://tcpsat.lerc.nasa.gov/tcpsat/papers.html

Mike Coulombe,Emmett Dulaney -Inside TCP /IP

Drew Heywood - Networking with Microsoft TCP/IP

71

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	i
	ii
	5
	8

	Images
	Image 1

	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Titles
	Department LAN

	Images
	Image 1
	Image 2

	Page 8
	Titles
	2

	Page 9
	Titles
	Department
	Internal

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 19
	Page 20
	Titles
	. General description of the TCP/IP protocols

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Titles
	. .
	· ..

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 23
	Titles
	··

	JR

	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Page 28
	Titles
	1---------~--------~---,--··
	5.2.3 Thoughts about fixing problems ...

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 29
	Titles
	~r&'>n I~::~-- -1 ·-T.:~'.-,~=~--·

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 30
	Images
	Image 1

	Page 31
	Titles
	32 Bfts
	+- a Bits -i,. +- a Blls __. +- a eus -+ +- a. Bits -.
	122
	'IA II N.H.H.Hli Few la~ol 1.0.0.0 . ~1' 7/24 116,777,l
	/ I organizations j 1126.0.0.0. 1! . / 21~ /
	/------. _, - .. ·--- .. --- .. -·!. . . . ·----- --- . . --------·-·----, ------ .. --· --- -- ------ - . - ·1 ·-·------ .. ------ I ------1
	ln,N.N.H.H i Medium-size El 128.1.0.0 tol~ 65, 543j
	''1 ... _ J __ . J_organi~~t~ons__ _/ 1 __ ~_1.2~~-~.0 _ .J _ j(~~6 2) .J
	IC / N.N.N.H ! Relatively I! 1, 1, 0 192.0.1.0 to 22/8 j 245 (2B-,
	I / I small / 1223.255.254.0 1 I 2) j
	! .. __ ·--·-- .J _ .. _j o!.ga~~z~ti-~ns J _ _j _ ---· _ _ _ __ ..J _j .. . _ ..!

	Images
	Image 1
	Image 2
	Image 3

	Page 32
	Titles
	D
	j N/A I Multicast I 1, 1, 224.0.0.0 toj N/A (not tor11 N/A \
	I I groups (RFCj 1, 0 239.255.255.255 \ commercial I I
	I \1112) ! Juse) \ I
	::=E=:==;1~__ I Experimental . ~~11240.0.0.0 . 101~___ __ _- _-_ 1JN1Al
	.�. -----------~--
	---~
	t-to,t

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 33
	Titles
	-,
	�

	Tables
	Table 1

	Page 34
	Titles
	0
	�
	2SS'
	�
	'
	2S5
	Dolltd decimal
	Network I [Network J I Subnet I I Host
	Binary ·i' , '
	representation I 11111111 1111 n 11 I 1f 111 H 1 (00000000 I

	Images
	Image 1
	Image 2
	Image 3

	Page 35
	Titles
	""
	----- --------·--------------' ··---··--· .. ·-·. "" """ ' .. " ----- ""' '' - '""""""'""' ----·---------·-----·---------- .. ·------------_J

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1

	Page 38
	Images
	Image 1
	Image 2

	Page 39
	Images
	Image 1
	Image 2
	Image 3

	Page 40
	Images
	Image 1

	Page 41
	Titles
 1 .. ···c·M, p .. ., 11 ·· · · os 1.r ··- FT.AM···l. r~·-·MHS ~ .. 1.r·"-~VTPW I
	[3i:]! .no��] I.nm .l [_ccRsii] L. . .J]
	·,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 42
	Images
	Image 1

	Page 43
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 44
	Images
	Image 1

	Page 45
	Images
	Image 1
	Image 2
	Image 3

	Page 46
	Images
	Image 1

	Page 47
	Titles
	__ =i _

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 48
	Titles
	[·--·--·. -·----··-y·-·------·-··
	I I I LJ
	. --- -- . - -- . . -·--·-·r·---·----

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 49
	Images
	Image 1
	Image 2

	Page 50
	Images
	Image 1

	Page 51
	Titles
	46

	Page 52
	Titles
	�
	�
	�
	�
	�
	�

	Page 53
	Titles
	' 1:

	Images
	Image 1

	Page 54
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 55
	Titles
	' ---~

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 56
	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Titles
	�
	�

	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Titles
	9.1 Problem:

	Images
	Image 1

	Page 67
	Titles
	9.2 Solution:

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 68
	Titles
	if (progress) OStaticProgressMade();
	if (\read_dev_input(addr1, addr2, N_out)) {
	float *addr1 = out1 + (N_out * fired);
	while' (needs jo fire) {
	** if data is available then place it in out1 and out2,
	*/
	',
	I
	else OStaticFailed("Not enough data available from the 1/0 device yet");!

	Images
	Image 1
	Image 2

	Page 69
	Titles
	break;
	fired++;
	if (needs_to_fire == fired) {
	~:~:::"1i:;~~g.~::~:"tj~~;.;~ddable;;j.;;n~h-!
	I
	void init_dev _input(int' N_input); \
	. int read_dev_input(float *out1, float *out2, int N_out);\
	#endW \

	Images
	Image 1
	Image 2

	Page 70
	Titles
	r - . . -,~ - ·- .. ~- ·---- -·------- .. -· -------- ,..... . .. - ·--··--------- - ~· ----------- - - ------·~-----
	r= ~~- A:~~-A_ii·~~~~-~~~ ~-~~-{;!~!~:~~TT! ~!~~-!~-*-~*-~-~<]

	Images
	Image 1

	Page 71
	Titles
	I·
	static void dma_done_handler(void) {
	/**** OMA DONE INTERRUPT HANDLER****/
	DATA_READY = 1;
	I
	. . I
	II**** GET INPUT FROM REAL TIME 10 DEVICE ****/ \
	I start dmatinput devlce addr, CURRENT _BUFFER, BUFFER_SIZE);I
	} I
	i
	I
	i
	DATA_READY = O;
	/**** DATA IS READY****/
	r-a·- .. "······-·--····· _ .. , , ·., - - ·····- -· ,._ . .,.... .. "'" "·- ·-· ,___ . -- -·
	- I
	I
	I
	/**** DO ANY PRELIMINARY PROCESSING HERE ****/i
 -·---·---··--- ·- _ - J
	II

	Images
	Image 1
	Image 2

	Page 72
	Titles
	!---··-- .. -·-"�--·_.,.. __ , �··- - -�·-.-�·-' --- w-� ·- ,._, . .,. _..,-�,�� s- _. _.,. �����· ��� � ., w""�·~�-� ,.,
	I < preprocessing and place in out1 and out2 >
	i
	I return 1; I* success */
	I >

	Page 73
	Titles
	'

	Images
	Image 1
	Image 2
	Image 3

	Page 74
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 75
	Titles
	Name
	10
	.!L.!.I o_~ 1sGG11
	-----. . . .
	�----------� fi;,J~i\:~n fiB1lillJD111Bil:1trll8W{_.,,.1"j .. ~~
	70

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 76
	Images
	Image 1
	Image 2
	Image 3
	Image 4

