
NEAR EAST UNIVERSITY

FACULTY OF ENGINEERING

Department Of Computer Engineering

Genetic Algorithm Based Optimization

Graduation Project
COM 400

Student: Gauhar Ayub (960669)

Supervisor: Asst. Prof. Dr. Rahib Abiyev

Lefkosa-2000

Dedication:

Dedicated to my parents and teachers for their continued guidance and
prayers.

ACKNOWLEDGEMENTS

First of all I am happy to complete the task which I had given with blessing

of God and also I am grateful to all the people in my life who have, supported

me, advised me, taught me and who have always encouraged me to follow my

dreams and ambitions. My dearest parents, my brothers and sister, my friends

and my tutors. They have taught me that no dream is unachievable. As in the

words ofWalt Disney "Ifyou can dream it, you can do it."

I wish to thank my advisor, Assist. Prof Dr. Rahib Abiyev, for

intellectual support, encouragement, and enthusiasm, which made this project

possible, and his patience for correcting both my stylisticand scientificerrors.

My sincerest thanks must go to my friends, Muhammad Wajid, Mr.Tong

Zhengrong, Waqar Ahmed, Shahzad Naeem, Malik Shahbaz and Nauman

Shaukat Chaudhry who shared their suggestions and evaluations throughout the

completion of my project. The comments from these friends enabled me to

present this project successfully.

And above, I thank God for giving me stamina and courage to achieve

my objectives.

ABSTRACT

By increasing complexity of processes, it has become very difficult to control

them on the base of traditional methods. In such condition it is necessary to use

modern methods for solving these problems. One of such method is global

optimisation algorithm based on mechanics of natural selection and natural

genetics, which is called Genetic Algorithms. In this project the application

problems of genetic algorithms for optimisation problems, its specific characters

and structures are given. The basic genetic operation: Selections, reproduction,

crossover and mutation operations are widely described . The affectivity of genetic

algorithms for optimisation problem solving is shown. After the representation of

optimisation problem, structural optimisation and the finding of optimal solution

of quadratic equation are given.

The practical application for selection, reproduction, crossover, and mutation

operation are shown. The functional implementation of GA based optimisation in

MATLAB programming language is considered. Also the multi-modal

optimisation problem, some methods for global optimisation and the application

of Niching method for multi-modaloptimisation are discussed.

I

CONTENTS

Dedication

Acknowledgement

Abstract

Table Of Contents

Introduction of Genetic Algorithms

Description

I

4

1. APPLICATIONS OF GENETIC ALGORITHM

I. I GA for dynamic test data generation

1.2 Time Dependent Optimization with a Folding GA

1 .3 GA Based Test Generation for Sequential Circuits

1.4 Using Genetic Algorithms to Design Mesh Network

1.5 Dynamic Phase-Only Array Beam Control Using a GA

1. 6 Empirical study of the interdependencies of GA parameters

1. 7 Partitioning and Allocation of Objects in Heterogeneous

1. 8 A Genetic Algorithm for Register Allocation

1.9 Task scheduling in distributed computing systems with a GA

6

6

7

7

9

10

11

11

12

2. BASIC GENETIC ALGORITHM 13

2. I Basics of genetic algorithms

2.2 What does a Genetic Algorithms do and how?

2.3 Specific characters of Genetic Algorithms

2. 4 The Basic Structure Of Genetic Algorithms

2.5 Genetic Algorithm Performance

2.6 The Genetic Operators

13

14

15

16

16

18

2. 7 General properties of Genetic Algorithms 26

2.8 Control Parameters 26

2.9 Genetic Algorithms Module 27

2. 1 O Chromosome Representation In Genetic Algorithms 29

2. 11 All the 'SHUNS' - Selection, Reproduction, and Mutation 29

2. 11. 1 Selection 29

2.11.2 Reproduction 30

2.11.3 Mutation 31

2.11.4 Individuals 31

2.11.5Population 32

2.11.6 Control 32

2. 12 Summary 32

3.GENETIC ALGORITHM BASED OPTIMIZATION 34

3. 1 Optimizationbased on Genetic Algorithms 34

3.2 Main Features for Optimization 35

3.2. 1 Representation. 40

3.3 Genetic Algorithm Structural Optimization 44

3 .4 Genetic Algorithm Optimizationof Carbon Clusters 45

3. 5 MultilevelFuzzy Process Control OptimizedBy Genetic Algorithm 47

3. 5. 1 Encoding and Decoding 48

3. 6 Procedures Involved in Genetic Algorithms Optimization 48

3.7 Procedures 49

3. 7. 1 Selection/Reproduction 49

3.7.2 Crossover/Mating 49

3. 8 Genetic OptimizationMethod 50

3. 8. 1 Improvement of the algorithm

3.8.2 Mutation probability (Pm) control

3. 9 Decisive factors for Genetic Algorithms optimization

50

50

51

4. UTILIZATION,PROBLEMS AND FUNCTIONAL IMPLI-

MENTATION OF GENETIC ALGORITHMS. 52

4. 1 Optimization Stuff (Problems) 5 3

4.2 Solution Of The Problem 54

4.3 Genetic Query Optimization (GEQO) in Postgres 57

4.4 Functional Implementation 58

4.4. 1 GA function for plotting the object function in 3D 58

4.4.2 Implementation of a real-coded Genetic Algorithm 58

4.4. 3 Commands for plotting the best final population of a # of GA runs 63

4. 5 Problem solving strategies 64

4. 5. 1 Types of optimizationproblems 66

4. 6 Walsh Analysisof OptimizationProblems for GA 66

5. MUL TIM ODAL OPTIMIZATION USING GA 68

5. 1 Problem statement 68

5.2 Multi-modal optimization (Problem solvingby Niching Method) 69

5.2. 1 Using GAMS 69

5.3 Algorithms for Multi-Modal Optimization 70

5.4 About computational science 70

5.4. 1 Approaches to computational science 71

5.5 Methods for global optimization: 71

5. 6 Developing scientificsoftware 72

5.7 Review ofNiching methods

5. 7 .1 Niching methods

5. 7.2 De Jong's crowding

5. 7. 3 Deterministic crowding

5.7.4 Fitness sharing

5. 7. 5 Sequential Niching

5. 8 Hilly function

5.9 Order-five deceptive problem

5.10 Grid-TSP Problem

5.11 Guidelines For Using The Struggle GA.

Summary

Conclusion

References

Index

72

73

73

73

74

75

75

76

77

78

79

INTRODUCTION

The GENETIC ALGORITHM [I] is a model of machine learning which derives

its behavior from a metaphor of the processes of EVOLUTION in nature.This is

done by the creation within a machine of a POPULATION of INDIVIDUALs

represented by CHROMOSOMEs, in essence a set of character strings that are

analogous to the base-4 chromosomes that we see in our own DNA The

individualsin the population then go through a process of evolution.

Genetic algorithms (GAs) seek to solve optimisation problems using the methods

of evolution, specificallysurvival of the fittest. In a typical optimisation problem,

there are a number of variables which control the process, and a formula or

algorithm which combines the variables to fully model the process. The problem

is then to find the values of the variables which optimise the model in some way.

If the model is a formula, then we will usually be seeking the maximum or

minimumvalue of the formula. There are many mathematical methods which can

optimise problems of this nature (and very quickly) for fairly "well-behaved"

problems. These traditional methods tend to break down when the problem is not

so "well-behaved." We should note that EVOLUTION (in nature or anywhere

else) is not a purposive or directed process. That is, there is no evidence to

support the assertion that the goal of evolution is to produce Mankind.

Indeed, the processes of nature seem to boil down to different Individuals

competing for resources in the ENVIRONMENT. Some are better than others.

Those that are better are more likely to survive and propagate their genetic

material. In nature, we see that the encoding for our genetic information

(GENOME) is done in a way that admits asexual REPRODUCTION (such as by

1

budding) typically results in OFFSPRING that are genetically identical to the

PARENT. Sexual REPRODUCTION allows the creation of genetically radically

different offspring that are still having the same general flavour (SPECIES). At

the molecular level what occurs (wild oversimplification alert!) is that a pair of

Chromosomes bump into one another, exchange chunks of genetic information

and drift apart. This is the RECOMBINATION operation, which GA/GP errs

generally refer to as CROSSOVER because of the way that genetic material

crosses over from one chromosome to another.

The CROSSOVER operation happens in an ENVIRONMENT where the

ELECTION of who gets to mate is a function of the FITNESS of the

INDIVIDUAL,i.e. how good the individual is at competing in its environment.

Some GENETIC ALGORITHMs use a simple function of the fitness measure to

select individuals (probabilistically) to undergo genetic operations such as

crossover or asexual REPRODUCTION (the ropagation of genetic material

unaltered). This is fitness-proportionate selection. Other implementations use

a model in which certain randomly selected individuals in a subgroup compete

and the fittest is selected. This is called tournament selection and is the form of

selection we see in nature when stags rut to vie for the privilege of mating with a

herd of hinds. The two processes that most contribute to evolution are crossover

and fitness based election/reproduction.

As it turns out, there are mathematical proofs that indicate that the process of

FITNESS proportionate REPRODUCTION is, in fact, near optimal in some

senses. MUTATION also plays a role in this process, although how important

its role is continues to ba a matter of debate (some refer to it as a backgroud

operator, while others view it as playing the dominant role in the evolutionary

2

process). It cannot be stressed too strongly that the GENETIC ALGORITHM (as

a SIMULATION of a genetic process) is not a random search for a solution to a

problem (highly fit INDIVIDUAL). The genetic algorithm uses stochastic

processes, but the result is distinctly non-random (better than random).GENETIC

ALGORITHMs are used for a number of different application areas.

An example of this would be multidimensional OPTIMIZATION problems ın

which the character string of the CHROMOSOME can be used to encode the

values for the different parameters being optimized. In practice, therefore, we

can implement this genetic model of computation by having arrays of bits or

characters to represent the CHROMOSOMEs. Simple bit manipulation

operations allow the implementation of CROSSOVER, MUTATION and other

operations. Although a substantial amount of research has been performed on

variable-length strings and other structures, the majority of work with

GENETIC ALGORITHMs is focussed on fixed-length character strings. We

should focus on both this aspect of fixed-lengthness and the need to encode the

representation of the solution being sought as a character string, since these are

crucial aspects that distinguish GENETIC PROGRAMMING, which does not

have a fixed length representation and there is typically no encoding of the

problem.

When the GENETIC ALGORITHM is implemented it is usually done

in a manner that involves the following cycle: Evaluate the FITNESS of all of

the INDIVIDUALs in the POPULATION. Create a new population by

performing operations such as CROSSOVER, fitness-proportionate

REPRODUCTION and MUTATION on the individuals whose fitness has just

been measured. Discard the old population and iterate using the new population.

3

One iteration of this loop is referred to as a GENERATION. There is no

theoretical reason for this as an implementation model. Indeed, we do not see

this punctuated behavior in POPULATIONs in nature as a whole, but it is a

convenient implementation model.

The first GENERATION (generation O) of this process operates on a

POPULATION of randomly generated INDIVIDUALs. From there on, the

genetic operations, in concert with the FITNESS measure, operate to improve

the population.

Description:

Genetic algorithms use a vocabulary[1] borrowed from natural genetics. A

candidate solution is called an individual. Quite often this individual called also

truing or chromosome. This might be a little bit misleading; each cell of every

organism of a given species carries a certain number of chromosomes, however,

we talk about one-chromosome individuals only. Chromosomes are made of

units-genes-arranged in linear succession; every gene controls the inheritance of

one or several characters

Each gene can assume a finite number of values, called alleys (feature values). In

binary representation chromosome is a vector, consisting of the bits succession, ie.

the succession of zeroes and ones. A set of chromosomes makes a population. A

number of chromosomes in population define a population size. The genetic

algorithm evaluates a population and generates a new one iteratively, with each

successive population referred to as a generation. The population undergoes a

simulated evolution; at each generation the relatively "good" solutions reproduce

while the relatively "bad" solutions die. To distinguishbetween different solutions

4

we use an objective (evaluation) function, which plays the role of an environment.

Quite often the objective function is called also fitness function

5

1. APPLICATIONS OF GENETIC ALGORITHM

1.1 Genetic Algorithms For Dynamic Test Data Generation

In software testing, it is often desirable to find test inputs that exercise specific

program features. To find these inputs by hand is extremely time-consuming,

especially when the software is complex. Therefore, numerous attempts have

been made to automate the process. Random test data generation consists of

generating test inputs at random, in the hope that they will exercise the desired

software features. Often, the desired inputs must satisfy complex constraints,

and this makes a random approach seem unlikely to succeed. In contrast,

combinatorial optimisation techniques, such as those using genetic algorithms,

are meant to solve difficult problems involving the simultaneous satisfaction

of many constraints. In this paper, we discuss experiments with a test

generation problem that is harder than the ones discussed in earlier literature-

we use a larger program and more complex test adequacy criteria. We find a

widening gap between a technique based on genetic algorithms and those

based on random test generation [3].

1.2 Time Dependent Optimization with a Folding Genetic
Algorithm

Time dependent optimisation [3] has revealed to be a promising gap for the

entire Genetic Algorithms community since it has numerous applications.

This paper extends previous work related to the use of meta-genes in the so-

called Dual Genetic Algorithms (DGAs). A more generic framework,

involving a variable number of genes, Folding Genetic Algorithms are thus

6

proposed as a new class of genetic algorithms which effectiveness is

investigated on two well known models of dynamical environments and

compared to Simple Genetic Algorithms and DGAs. Eventually, further

analysis of these results enlightens the ability of FGAs to evolve a metrics

over the search space (i.e. a kind of encoding scheme) along with potential

solutions. These particularly encouraging results open us interesting

perspectives as FGAs should be applied to other fundamental problems

investigated by the GA community in order to measure the benefits of this

really meta level of evolution.

1.3 Genetic Algorithm Based Test Generation for Sequential

Circuits

In [3] a new sequential depth measure called sequential element

teachability, which may be used as one of parameters of GA is proposed.

For fitness functions, we proposed a new dynamic testability measure,

which can be evaluated in parallel for multiple individuals. The test

generation is divided to three sub-problems: initialisation, test vector

generation for a group of faults and test sequence generation for a target

fault.

1.4 Using Genetic Algorithms to Design Mesh Network

Designing mesh [3] communication networks is a complex, multi

constraint optimisation problem. The design of a network connecting 1 O

Chinese cities demonstrates the elegance and simplicity that genetic

algorithms offer in handling such problems. Designs for mesh

7

communication networks must meet conflicting, interdependent

requirements. This sets the stage for a complex problem with a solution

that targets optimal topological connections, routing, and link capacity

assignments. These assignments must minimise cost while satisfying

traffic requirements and keeping network delays within permissible

values. Since such a problem is NP-complete (one which has a solution in

polynomial time, but can only be solved by non deterministic algorithms),

we must use heuristic techniques to handle the complexity and solve

practical problems with a modest number of nodes.

The heuristic methods used to design mesh networks include branch

exchange, cut saturation, and Mentor algorithms. Another heuristic

technique, genetic algorithms, 1,2 appear ideal to design mesh networks

with capability of handling discrete values, multi objective functions, and

multi constraint problems.3 Existing applications of genetic algorithms to

this problem, 4-6 however, have only optimised the network topology.

They ignore the difficult sub problems of routing and capacity assignment,

a crucial determiner of network quality and cost. We present a total

solution to mesh network design using a genetic algorithm approach. Not

only does our method optimise network topology, it also optimises routing

and capacity assignment. In the following design for a proposed

communications network, genetic algorithms produced a solution that

costs 9 percent less and has two-thirds the delay of a typical design

method. In our method, each optimisation level uses genetic algorithms as

its core, a similarity that reduces the complexity of system design. The

8

advantages of this approach are not only its elegance and algorithmic

simplicity, but also its ability to handle complicated issues such as

continuous and discrete link capacities, linear or discrete cost structures,

additional constraints, and various constraint models. We believe our

genetic-algorithm approach to network design is novel and better than

existing methods. Our 1 O-city network demonstrates that this method can

be used for networks of reasonable size with realistic topology and traffic

requirement.

1.5 Dynamic Phase-Only Array Beam Control Using a

Genetic Algorithm

In [3] two approaches to evolvable antenna array beams are described.

The first approach uses a genetic algorithm for adaptive phase-only nulling

with phased arrays. A genetic algorithm adjusts some of the least

significantbits of the beam steering phase shifters in order to minimisethe

total output power. Using a few bits for nulling speeds convergence of the

algorithm and limits pattern distortions. Various results are presented to

show the advantages and limitations of this approach. A second problem is

a switched beam linear array in which two beams with specified shapes, a

narrow beam and a wide beam, are to be produced. The goal of the design

effort is to determine a set of complex excitation coefficients such that

switching between beams is accomplishedby changes in the phase weights

alone. Excellent results are obtained by simultaneous, multi-objective

optimisation based design using a GA instead of sequential a GA
_,,

optimisation for the narrow and wide beam cases individually

9

1.6 Empirical Study Of The İnterdependencies Of Genetic

Algorithm Parameters

It is recognised that the performance of evolutionary systems such as

genetic algorithms (GAs) is affected by the parameters that are employed

to implement them, there is hardly any work known to us that has shed

much light on the interdependencies and interactions between these

parameters. Most studies on the effects of these parameters on the

performance of GA-based systems have focused on a parameter at a time

without considering the effect of other parameters on that parameter and

vice versa. Consequently there is hardly any theory about the interactions

and interdependencies of these parameters. This paper contributes towards

correcting the situation mentioned above by examining empirically the

relationship between two parameters of genetic algorithms (GAs):

population size and replacement methods in the performance of GA-based

systems. Results are presented that appear to show a link between

replacement strategy and an appropriate population size when applying

genetic algorithms to a particular problem. It is suggested that, in the

domain of application considered in this paper one can infer that the more

individuals that are replaced during reproduction the larger the population

size that is needed for all optimum performance of GA-based systems. It is

suggested that directing our efforts towards establishing the

interdependencies and interactions between parameters of evolutionary

systemswill enhance the advancement of this new technology [3].

10

1. 7 Partitioning and Allocation of Objects in Heterogeneous

Distributed Environments Using the Niched Pareto Genetic

Algorithm

As the importance of middleware-based distributed object computing

environments (e.g. CORBA and DCOM) increases, there is considerable interest

in incorporation of object-orientation (00) and distributed systems. One

important aspect of distributed object systems is effective distribution of software

components, to achieve some performance goals, such as balancing the

workloads, maximising the degree of concurrency and minimising the entire

communication costs. Although there have been a lot of works on partitioning

and allocation for distributed system, they are not directly applicable to 00

system. We developed a partitioning and allocation model for mapping 00

applications to heterogeneous distributed environments, and evaluated it using

genetic algorithm (GA). Our model applies the graph-theoretics approach, dealing

with a lot of characteristics of 00 paradigm. The Niched Pareto GA is adopted to

experiment our model because a partitioning and allocation problem is multi

objective problem with non-commensurableobjectives.

1.8 A Genetic Algorithm for Register Allocation

In [3] a new genetic algorithm for register allocation is introduced. A

merge operator is used to generate new individual solutions. The number

of steps required examining all pairs in the population matrix to generate

n2 (n is the population matrix size). Generating an offspring from the

parents needs m steps (m number of nodes). The total number of steps

11

required by the algorithm is n2 m; that is, the genetic algorithm has a

linear time complexity in terms of number of nodes. The experimental

results show optimal solutions in many of the graphs used for testing.

1.9 Task scheduling in distributed computing systems with a

genetic algorithm

Scheduling a directed acyclic graph (DAG) that represents the precedence

relations of the tasks of a parallel program in a distributed computing

system (DCS) is known as an NP-complete problem except for some

special cases. Many heuristic-based methods have been proposed under

various models and assumptions. A DCS can be classified in two types

according to the characteristics of the processors on a network: a

distributed homogeneous system (DHOS) and a distributed heterogeneous

system (DHES). The paper defines a general model for a DHOS and a

DHES and presents a genetic algorithm (GA) to solve the task-scheduling

problem in the defined DCS. The performance of the proposed GA is

compared with the list-scheduling algorithm in a DHOS and with the one

level reach-out greedy algorithm in a DHES. The proposed GA has shown

better performance in various environments than other scheduling methods

[3].

12

2. BASIC GENETIC ALGORITHM:

2.1 Basics Of Genetic Algorithms.

The three most important aspects ofusing genetic algorithms are:

(1) Definition of the objective function.

(2) Definition and implementationof the genetic representation.

(3) Definition and implementation of the genetic operators. Once these

three have been defined.

The generic genetic algorithm should work fairly well. Beyond that you can try

many different variations to improve performance, find multiple optima (species -

if they exist), or parallels the algorithms.

Algorithm GA is

II start with an initial time

t := O;

II initializea usually random population of individuals

initpopulationP (t);

I I evaluate fitness of all initial individualsof population

evaluate P (t);

II test for termination criterion (time, fitness, etc.)

while not done do

I I increase the time counter

t:=t+l;

II select a sub-population for offspringproduction

P' := selectparents P (t);

13

II recombine the "genes" of selected parents

recombine P' (t);

II perturb the mated population stochastically

mutate P' (t);

II evaluate it's new fitness

evaluate P' (t);

I I select the survivors from actual fitness

P := survive P,P' (t);

od

End GA

2.2 What Does A Genetic Algorithms Do And How?

start
J.

initial random population
J.

~--- prepr<>cefiSor (preparation

1 J o:f new input data)
loop ana1ysls program
over .l-
popul- postprocessor (performance
ation l panmıe1er&)Lfitn:'ıı ovaluatioo

c.o.nvergence t.ea ---l and lcop maııageme;ııt
loop

aclcciion (rrurviwıl and
.l- reproduction of the fittest)

crosıing of parents to
t produce offspring

genetic
3l~oı·itlıın

over
gener
atloruJ

L J.
nm generation

GAs considers a whole population of tentative solutions and makes it evolve in a

fashion which is similar to that in which living species evolve. The population

14

thus manipulated evolves from one generation to the next, explores the solution

space in a very efficient manner and tends to cluster near its optima, with a

preference for the global optimum.

2.3 Specific Characters Of Genetic Algorithms:

Genetic algorithms (GA)[4] are global optimization algorithms based on the

mechanics of natural selection and natural genetics. GA has a number of specific

peculiarities by which they differ from the other methods of optimization. These

are the following once:

1) Genetic algorithms employ only the objective function, not the

derivative one or some other information on the object. It is very

convenient in case that the function is neither differentiablenor discrete.

2) Genetic Algorithms employ a parallel multi-point search strategy by

maintaining a population of potential solutions, which provides wide

information of the function behavior and exclude the possibility of sticking

in local extreme of the function, while the traditional search methods, such

as gradient, etc, can not cope with this problem.

3) Genetic Algorithms use probability-transitiverules instead

deterministicones.

Besides, Genetic Algorithms are very simplefor computer solution.

15

----- ------~~=======-

2. 4 The Basic Structure Of Genetic Algorithms:

Generate Initial Population

Assess Initial Population

Select Population

Recombine New Population

Mutate New Populanon

Assess New Population

No~
,__ _,-_/" Terminate Search~-

Yes

(Stop'.')

Figure 20: The basic structure of a genetic algorithm.

[5)

2.5 Genetic Algorithm Performance

Figure shows the progress [5] of a GA on the two-dimensional Rosen Brock
function,

f == (1 - xı)2 + lOO(x2 - xf)2

16

4 Fir,tG~ıınera.tion
tı. Ten1h Gener a.tion
v Tw•nti•th Generation
o Thir1ie1h Generation

Figure 21: Minımization of two-dtmensıonal Rosenbrook
function by a genetic algorithm---population distribu
tions of the first, tenth, twentieth, and thirtieth genera
tions.

This is presented purely for purposes of comparison. Each member of the 1st,

ı so.o 0.3

Avera9e fİ1n•.aa ofpopula'lion
\ - M;n;mum fitnus o!populafon

,ooo [

r-···-Alo'&rı.ı.gıı.ı \

Fi~G66 \ Fİ'tnG66

:5,0.0 \ .. O I

' \/

DJ ~
··-

.·-······ ...__ ·J o.o
bD.D ı o.o 20.0 so.o

Figure 22: Mi1"ı.in"ı.i.zationof the two dimensiot\al
Roserıbrock function by a genetic algorilhm---popu
Iarıorı distribution of the first, tenth, twentieth, and
thirtieth generations.

10th, 20th and 30th generations are shown (by a symbol). The convergence of the

population to the neighbourhood of the optimum at (1,1) is readily apparent

17

2.6 The Genetic Operators

The initial population is chosen at random. GAs simulates genetic evolution of a

population of tentative solutions (individuals) by means of selection and survival

of the fittest, crossover and mutations. Every individual is typically represented as

a bit sequence, which makes up its "genetic code". The function to be optimised

provides "fitness" values. The structure of a simple genetic algorithm is the same

as the structure of any volution program. During iteration t, a genetic algorithm

maintains a population of potential solutions (chromosomes, vectors), G (t) = { x/

, ... , Xn1 } , Each solution x{ is evaluated to give some measure of its '"'fitness""

Then, a new population (iteration t+ 1) is formed by selecting the more fit

individuals. Some members of this new population undergo reproduction by

means of crossover and mutation, to form new solutions. Crossover combines the

features of two parent chromosomes to form two similar offspring by swapping

corresponding segments of the parents. For example, if the parents are represented

by five-dimensional vectors (aı, b., cı, dı, eı) and (a2, b2, c2, d2, e2), then crossing

the chromosomes after the second gene would produce the offspring (aı, bı, c2, d2,

e2) and (a2, b2, cı, dı, eı). Mutation arbitrarily alters one or more genes of a

selected chromosome, by a random change with a probability equal to the

mutation rate.

For concrete problem GA has the following block-schema .We discuss the actions

of a genetic algorithm for a simple parameter optimization problem. Now suppose

we wish to maximize a function ofk variables, f(x1, ... , Xk): Rk ~ R.

If the optimization problem is to minimize a function f, this is equivalent to

maximizing a function g, where g=-f, i.e., min {f(x)}=max{g(x)}= {-f(x)}.

18

-----=c- -------------

INITILIZATION

EVALUATION

STOP

SELECTION

CROSS OVER

MUTATION

2-1 The structure of a simple GA

Suppose further that each variable x can take values from a domain Di =[ai,bi] cR

and f() >0 for all Xi Di. We wish to optimize the function f with some required

precision; suppose sex decimal places for the variables' values are desirable.

It is clear that to achieve such precision each domain Di, should be cut into (bi - ai

), 106 equal size ranges. Let us denote by mi the smallest integer such us (bi - a,

)· 106 ~2mi - 1 . Then, a representation having each variable xi coded as a binary

string of length mi clearly satieties the precision requirement. Additionally, the

following formula interprets each such string: Xi = a, + decimal(lOOl///0012)

Where decimal (strings) represents the decimal value of that binary string. Now,

19

each chromosome (as a potential solution) is represented by a binary string of

k

length m = Lm; the first ml bits map into a value from the range [a1, b1], the
i=l

next group of m2 bits map into a value from the range [a3, bı], and so on; the last

group of mk bits map into a value from the range [ak, bk]. To initialize a

population, we can simply set some ps number of chromosomes randomly in a bit

wise fashion. However, if we have some knowledge about the distribution of

potential optima, we may use such information in arranging the set of initial

(potential) solutions. The rest of the algorithm is straightforward, in each

generation we evaluate each chromosome (using the function f on the decoded

sequences of variables), select new population with respect to the probability

distribution based on fitness values, and recombine the chromosomes in the new

population by mutation and crossover operators. After some number of

generations, when no further improvement is observed, the best chromosome

represents an (possibly the global) optimal solution. Often we stop the algorithm

after a fixed number of iterations depending on speed and resource criteria. For

the selection process (selection of a new population with respect to the probability

distribution based on fitness values), we must implement the following actions at

first; Calculate the fitness value eval(vi) for each chromosome vi (i=1, ... , ps).

• Find the total fitness of the population

ps

F = ı::eval(vi)
i=l

• Calculate the probability of a selection p ! for each chromosome vi

(i=l, ... , ps):

p~ =eval (vi)/F

20

• Calculate a cumulative probability P~um for each chromosome vi (i=l,

... , ps):

i
i -°" jPcum - ~Pıı

j=l

The selection process is implemented ps times; each time we select a single

chromosome for a new population in the followingway:

• Generate a random (float) number r from the range [0,1].

• If r < P:um then select the first chromosome (vl); otherwise select the

I-tj chromosome vi (2::::; i::::; ps) such that

P i-I < r < pi
cum cum

Obviously, some chromosomes would be selected more than once; the best

chromosomes get more copies; the average stay even, and the worst die off

Now we are ready to apply the first recombination operator, crossover, to the

individuals in the new population. One of the parameters of a genetic system is

probability of crossover Pc This probability gives us the expected number Pc ps of

chromosomes which undergo the crossover operation. We proceed in the

followingway:

For each chromosome in the (new) population:

• Generate a random (float) number r from the range [0,1];

• If r < Pc , select given chromosome for crossover;

Now we mate selected chromosomes randomly: for each pair of coupled

chromosomes we generate random integer number pos from the range [l,m-1] (m

is the total length-number of bits - in a chromosome). The number pos indicate

the position of the crossing point. Two chromosomes

21

(b 1 b2 . . . bpos bpos+ 1 . . . bm)

(Cı C2 ... Cpos Cpos+ı ...Cm)

are replaced by a pair of their offspring:

(b 1 b2 . . . bpos Cpos+1 . . . Cm)

(C ı C2 . . . Cpos bpos+ 1 . . . bın)

The intuition behind the applicability of the crossover operator is information

exchange between different potential solutions.

The next recombination operator, mutation, is performed on a bit-by- bit basis.

Another parameter of the genetic system, probability of mutation Pm, gives us the

expected number of mutated bits Pm · m · ps. Every bit (in all chromosomes in the

whole population) has an equal chance to undergo mutation i.e. change from O to

1 d of vice versa. So we proceed in the followingway.

For each chromosome in the current (i.e., after crossover) population and for each

bit within the chromosome;

• Generate a random (float) number r from the range [0,1];

• If r < Pm mutate the bit.

The intuition behind the mutation operator is the introduction of some extra

variabilityinto the population. 1

Following selection, crossover, and mutation, the new population is ready for its

next evaluation. This evaluation is used to build the probability distribution (for

the next selection process). The rest of evolution is just cyclic repetition of the

above steps.

However, as it frequently occurs, in earlier generations the fitness values of some

çhromosomes are better than the value of the best chromosome after a finite

number of generations.

22

It is relatively easy to keep track of the best individual in the evolution process. It

is customary (in genetic algorithms implementations) to store "the best ever"

individual at a separate location; in that way, the algorithm would report the best

value found during the whole process (as opposed to the best value in the final

population).

It is necessary to note, that classical GA may employ roulette wheel method for

selection, which is a stochastic version of the survival-of-the fittest mechanism. In

this method of selection, candidate strings from the current generation G(t) are

selected to survive to the next generation G(t=l) by designing a roulette wheel

where each string in the population is represented on the wheel in proportion to its

fitness value. Thus those strings, which have a high fitness, are given a large share

of the wheel, while those strings with low fitness are given a relatively small

portion of the roulette wheel. Finally, spinning the roulette wheel ps times and

accepting as candidates those strings, which are indicated at the completion of the

spin, make selections.

Example 4.1 As an example, suppose ps=5, and consider the following initial

population of strings; G (O)= { (10110),(11000),(11110),(01001),(00110)}. For

each string Vi in the population, the fitness may be evaluated: eval (vi). The

appropriate share of the roulette wheel to allot the i-th string is obtained by

dividing the fitness of the i-th string by the sum of the fatnesses of the entire

population:

eval (vi)

ps

Leval(v;)
i=l

23

Figure 2-2 shows a listing of the population with associated fitness

values and the corresponding roulette wheel.

To compute the next population of strings, the roulette wheel is spun

five times [3]. The strings chosen by this method of selection, though, are

only candidate strings for the next population. Before actually being

copied into the new population, these strings must ungergo crossover and

mutation.

String Fitness Relative

evalıv.) Fitness

V1 10110 2.23 O. 14

11000 7.27 0.47 5

V3 11110 1.05 0.07

V4 01001 3.35 0.21

Vs 0011O 1.69 0.11

(b)
(a)

In figure A listing of the five-stringpopulation and the associated fitness values.

(b) Corresponding roulette wheel for string selection.

24

The integers shown on the roulette wheel correspond to string labels.

110101

100100

(a)

1101) 01

1001 loo

(b)

110100

100101

(c)

An example (figure) of a crossover for two 6-bit strings.

(a) Two strings are selected for crossover.

(b) A crossover site is selected at random. In this case, k =4.

(c) Now swap the two strings after the k- th bit.

Pairs of the ps (assume ps even) candidate strings, which have survived

selection, are next chosen for crossover, which is a recombination mechanism.

The probability that the crossover operator is applied will be denoted by Pc· Pairs

of string are selected randomly from G (t), without replacement, for crossover. A

random integer k, called the crossing site, is chosen from { 1,2, ... m-1}, and then

the tits from the two chosen strings are swapped after the k-th bit with a

probability pc. This process is repeated until G (t) is empty. For example, Figure

11.3. Illustrates a crossover for two 6-bit strings. In this case, the crossing site k is

4, so the bits from the two strings are swapped after the fourth bit.

Finally, after crossover, mutation is applied to the candidate strings. The

mutation operator is a stochastic bit-wise complementation applied with uniform

probability Pm· That is, for each single bit in the population, the value of the bit is

flipped from O to 1 or from 1 to O with probability Pm· As an example, suppose

Pm=O. 1, and the string v=l 1100 is to undergo mutation. The easiest way to

determine which bits, if any, to flip is to choose a uniform random number rE [O, 1]

for each bit in the string. If r s Pm, then the bit is flipped; otherwise, no action is

taken. For the string v above, suppose the random numbers (0.91, 0.43, 0.03,0.67,

25

---·---

0.29) were generated, and then the resulting mutation is shown bellow. In this

case, the third bit was flipped.

Before mutation: 11100

After mutation: 1 1000

After mutation, the candidate strings are copied into the new population of

strings G (t+1), and the whole process is repeated [4]

2.7 General Properties of Genetic Algorithms:

GAs provide an efficient, robust, non-exhaustive way of exploring virtually any

parameter space where a real single-valued function is defined, in pursuit of its

global optimum. GAs is useful in finding the "best" values of virtually any

continuous or discontinuous function defined over a set of continuous or discrete

parameters in the presence of multiple local optima. GAs process good partial bit

sequences with exponentially increasing trials in subsequent generations

(fundamental theorem). GAs explore a number of partial bit sequences which is

proportional to the cube of the population size (implicitparallelism).

There is no guarantee that the GA will actually find the global optimum (or that it

will find all global optima, if there are more than one), since the whole method is

based on probabilities. But, given enough time, it will find the global optimum in

a much shorter time than that necessary for an exhaustive search, with a very high

probability. From an engineering point of view, a GA will find the best solutions

availablethat can be found within the allotted time. [1]

2.8 Control Parameters
The efficiency of a GA is highly dependent on the values of the algorithm's

control parameters. Assuming that basic features like the selection procedure are

predetermined, the control parameters availablefor adjustment are:

26

• The population size N,

• The crossover probabilityPc , and

• The mutation probabilityPm.

De Jong made some recommendations based on his observations of the

performance of GAs on a test bed of 5 problems, which included examples with

difficult characteristics such as discontinuity's, high dimensionality, noise and

multi modality. His work suggested that settings of

(N, Pc, Pm)= (50,0.60,0.001) 2-1

Would give satisfactory performance over a wide range of problems.

Grefenstette went one stage further and used a GA to optimise these parameters

for a test bed of problems. He concluded that

(N, Pc, Pm)= (30,0.95,0.010) 2-2

Resulted in the best performance when the average fitness of each generation was

used as the indicator, while

(N, Pc, Pm)= (80,0.45,0.010) 2-3

Gave rise to the best performance when the fitness of the best individual member

in each generation was monitored. The latter is, of course, the more usual

performance measure for optimisation routines. [7]

2.9 Genetic Algorithms Module

The Genetic Algorithms Module was created for the purpose of giving beginning

students a brief introduction to genetic algorithms. It is divided into five sections:

Introduction, Advanced Topics, Research, Applications, and Resources.

We suggest that you go through the Introduction section first because this is the

section geared to familiarising you to genetic algorithms. Then as you become

27

more familiar with the terms and concepts being presented, you may proceed to

the Advanced Topics Section Genetic Algorithms (GAs) are based on the Theory

of Evolution - 'survival of the fittest'. In nature, individuals that are fit are more

likely to breed and pass their characteristics on to future generations. Genetic

Algorithms take their cue from Nature, modelling complex and difficult to solve

problems as genetic objects. Genetic Algorithms breed solutions. An initial

population is built using individuals representing random solutions. Each

subsequent population that is built (each subsequent generation) uses the previous

population as a base - taking the more fit individuals to breed better solutions.

These algorithms have been used in the past to help solve very complex problems

not easily solved using standard, problem-specificmethods.

The one advantage that GAs have over problem-specific solutions it that problem

specific solutions are... problem-specific. A solution for one problem may not

apply to another - the new and possibly completely different solution would have

to be developed. They are 'context specific'. With GAs, because they are so

generic, very little work must be done to apply a GA to a completely different

problem. [8]

28

2.10 Chromosome Representation In Genetic Algorithms:

In genetic algorithm chromosomes are represented as

To use a genetic algorithm, you must represent a solution to your problem as a

genome. The genetic algorithm then creates a population of solutions and applies

genetic operators such as mutation and crossover to evolve the solutions in order

to find the best one(s) [9].

2.11 All the 'SHUNS' - Selection, Reproduction, and Mutation

The concepts behind GAs are anythingbut complex:

2.11. 1 Selection

Selection [10] is the process of determiningwhich individualsare chosen to

reproduce from one generation to the next. A more fit individualhas a higher

probability of reproduction over a less fit one.

29

2.11.2 Reproduction

Every individual is defined by its genetic information - stored in nature using a

DNA strand. When two individuals reproduce, the resulting individual's DNA

reflects some of the information from each of its parents.

After having been selected, two individuals swap genetic material to create

'offspring'. The idea is that, through this swapping of material, even two relatively

average individuals can create even more fit offspring.

In the following example, the parents reproduce and swap genetic information to

create their offspring:

Offspring I 00000000

11

**** ****
Parent A xxxxoooo Parent B ooooxxxx

**** ****

11

Offspring 2 xxxxxxxx

2.11.3 Mutation

Over time, all of the individuals remaining in the population may have lost a

specific attribute. Mutation [10] allows for the reintroduction of attributes, by

randomly altering the characteristics of an individual.

The following individual shows the effects of mutation:

30

Before xxxxxxxx

after xxxxoxxx

, And the implementation of it, have been kept as simple as possible. Although

there are many possible ways to improve the performance of the algorithm, they

have been ignored in favour ofsimplicity. This is a gentle introduction, after all.

2.11.4 Individual

The chromosomes of an individual [10], in our implementation (as well as ın

Nature) contain all of the genetic information for it. You manipulate an individual

by altering its chromosomes, whether that be through reproduction or mutation.

In our example, a 32-character string, containing only the characters $0 and $1,

represents the chromosome. Our initial population will be seeded with random

individuals,created as follows:

GA Individualnew chromosome:

((RandomNumberGenerator between: O and: (2 raisedTo: 32) - 1)

printStringRadix: 2 padTo: 32).

Note: RandomNumberGenerator is a class provided to you if you care to

download the 'proof of concept' code. Strictly a 'class of convenience'.

The 'fitness' of an individual represents how well that individual solves the

problem at hand. This, along with how' the chromosome is built, is the variant for

different problems to which the GA can be applied.

In our case, the fitness of the individual is determined by treating the chromosome

as a binary string. The value of this binary string is the fitness of the individual.

GAindividual>>fitness

"Return the fitness of the individual."

I base anlnteger I

31

base:= 2.

anlnteger : = O.

self chromosome

doWithlndex:

[: eachCharacter : index I

anlnteger := anlnteger * base+ eachCharacter digitValue].

Aanlnteger

2.11.5 Population

A population is a collection of individuals, representing a specific 'generation'.

The population determines which individuals are to be selected for reproduction,

with an increasingprobabilityof selection going to the more fit individuals.

2.11.6 Controller

The controller guides the process - building the next generation, breeding and

mutating individualstaken from the previous generation.

2.12 Summary

It is through this interaction, between relatively simple objects, that better and

better solutions are bred.

• Random individuals (representing solutions to the problem at hand) are

created.

• An initialpopulation is created, containing these random individuals.

• The population is added to an instance of the controller, as the initial

generation.

32

The controller repeatedly builds generations, based on the previous, with each

new generation (hopefully) containing individuals that are progressively better

that the last.

33

3.GENETIC ALGORITHM BASED OPTIMIZATION

3.1 Optimisation based on Genetic Algorithms:

Genetic algorithms [11] were formally introduced in the United States in the

1970s by John Holland at University of Michigan. The continuing

price/performance improvements of computational systems have made them

attractive for some types of optimisation. In particular, genetic algorithms work

very well on mixed (continuous and discrete), combinatorial problems. They are

less susceptible to getting 'stuck' at local optima than gradient search methods. But

they tend to be computationally expensive.

To use a genetic algorithm, you must represent a solution to your problem as a

genome (or chromosome). The genetic algorithm then creates a population of

solutions and applies genetic operators such as mutation and crossover to evolve

the solutions in order to find the best one(s).

This presentation outlines some of the basics of genetic algorithms. The three

most important aspects of using genetic algorithms are:

(1) Definition of the objective function.

(2) Definition and implementationof the genetic representation.

(3) Definition and implementationof the genetic operators.

Once these three have been defined, the generic genetic algorithm should work

fairly well. Beyond that you can try many different variations to improve

performance, find multiple optima (species - if they exist), or parallelism the

algorithms.

Genetic algorithm (GA) uses the principles of evolution, natural selection, and

genetics from natural biological systems in a computer algorithm to simulate

evolution. Essentially, the genetic algorithm is an optimization technique that

34

performs a parallel, stochastic, but directed search to evolve the most fit

population. In this section we will introduce the genetic algorithm and explain

how it can be used for design and yuning of fuzzy systems.

The genetic algorithm borrows ideas from and attempts to simulate Darwin's

theory on natural selection and Mendel's work in genetics on inheritance. The

genetic algorithm is an optimisation technique that evaluates more than one area

of the search space and can discover more than one solution to a problem. In

particular, it provides a stochastic optimisation method where if it "gets stuck" at a

local optimum, it tries to simultaneously find other parts of the search space and

'tjump out" of the local optimum to a global one.

3 -1 Characteristics common to all optimisers

start
l

I analysis program
ı. . .merıt functıon evaluatıon

(loop) l

L convergence test

mo~ification algorithm

end

3.2 Main Features for Optimisation

• Probabilistic algorithms for searching and optimisation

• Mimic natural evolution process

• Capable of handlingnon-linear, non-convex problem

• Optimisationprocedure does not require differentiationoperation

35

-_ ---

• Capable of locating global and local optima within search domain

Optimisation is based on population instead of a single point.

Let's consider a simple problem of maximization of the function F (xj=x", where

xE[0,3 l] (see Fig).

F(x)
961

625
400
225
100
25

5 10 15 20 25 31 X

In order to use GA we should first code variables in to bit strings as any integer

number between O to 3 1 may be represented in binary number 5 symbols between

(00000)=0 and (11111)=31 the length of chromosomes will be five.

Lets take 4 chromosomes with random set of genes as an initial population as:

01101
11000
01000
10011

Then define their fitness inserting appropriate real values into the function as:

f(O 1000)2 = f(8)=64

Thus the fitness of all individuals in calculated then accordance with the formula

i I iP s =Uı:: j=ıF s, i= 1..4

Survival probability for each individual is calculated where as cumulative

i I iP cum =L j=l P 5 i= 1..4

Let's enter all the calculated values in table

36

Initial Population Their integer values F(x)=x2 Ps Pcum Num after

Selection

01101 13 169 0.14 0.14 1

11000 24 576 0.49 0.63 2

01000 8 64 0.06 0.69 o

10011 19 361 0.31 1 1

Average 293 0.25 1

Maximum 576 0.49 2

Sum 1170 1 4

For the selection process we generate 4 random numbers from the range [O, 1].

Suppose, that we generated 0.1; 0.25; 0.5 and 0.8.

Comparing these values with cumulative probabilities, we obtaining the

following

I 2P cum< 0.25< P cum

pl cum <0.5 < P2 cum

P3 4
cum <0.8 < P cum

Looking at the right sides of these inequalities, one can easily see, that the first

and the fourth chromosomes have passed the selection, each four taking a place in

the new generation, the second chromosome-the most highly fitted has got 2

copies, while the third one did not survive at all. These indices are written in the

right column of table 3-1.

37

Then crossover operation is applied. If the probability of crossover Pc= 1 is

given, it means that, 4 .1 =4 chromosomes will participate in crossover process.

Let's choose them at random. Suppose that the first and the second strings

mate from crossover point 4, and the third with the forth-from crossover point 2.

0110 \ 1
1100 I o
11 I ooo
oo I 011

Population Crossover New Value ofX F(x)=X2

after selection Population

01101 4 01100 12 144

11000 4 11001 25 625

11000 2 11011 27 729

10011 2 10000 16 256

Table 3-1

Average 439

Maximum 729

Sum 1754

Having compared both of the tables we see, for ourselves, that the population

fitness is improved and we have come close to the solution. The next

recombination operator, mutation, is performed on a bit-by-bit basis. If Pm=0.05

is given, it means that only one of twenty bits in population will be changed: 20·

0.05=1. Suppose, that the third bit of the fourth string undergoes mutation. I.e.

38

x4=10100. Repeating these operations in a finite number of generations we will

get the chromosome (1 1 1 1 1) corresponding to problem optimal solution. It is

necessary to mention, that GA is especially effective for multi-extreme problems

in the global solution search process. For example, if the junction is of the type

shown. It is rather difficult to find its global maximum by means of traditional

methods. Suppose that the junction is defined as [1]

f(x)=x· sinfl On- x) + 1.

The problem is to find x from the range (-1,2], which maximizes the function f,

i.e., to find xo such that

f(x0) zf(x), for all xE(-1,2].

It is relatively easy to analyze the junction f. The zeros of the first derivative f

should be determined

F (xj=sinfl On- x)+ 101t· x · cos (LOn- x)=O

The formula is equivalent to

Tan (Iün- x)= (Iün- x)

It is clear that the above equation has an infinite number of solutions,

2i-lXi=~-+q20 ı,
for i=l, 2, ... ,

Xo = O,

fori= 1, -2, ... ,

Where terms ç1 represent decreasing sequences of real numbers (for i= 1, 2, ... ,

and i=-1, -2, ...) approaching zero. Note also that the function f reaches its local

maximal for x, it i is an odd integer, and its local minima for x, if i is an even

39

integer. Since the domain of the problem is xE[-1,2], the function reaches its

maximum for

37
Xı9 = - + /;19 = 1.85 + /;19,

20

Where f(xı9) is slightly larger than

F (1.85)=1.85 · sin(l8rc+rc/2)=1.0=2.85.

Assume that we wish to construct a genetic algorithm to solve the above problem,

i.e., to maximize the function f. let us discuss the major components of such a

genetic algorithm in turn. [4]

3.2. 1 Representation.

We use a binary vector as a chromosome to represent real values of the variable x.

The length of the vector depends on the required precısıon, which, in this

example, is six places after the decimal point. The domain of the variable x has

length 3; the precision requirement implies that the range [-1,2] should be divided

into at least 3 · 1000000 equal size ranges. This means that 22 bits are required as

a binary vector (chromosome):

2097152=231 < 3000000 S: 233 = 4194304

The mapping from a binary (b21 b20 b0) string into a real number x from the range

[-1,2] is straightforward and is completed in two steps:

• Convert the binary string (b21 b20 bo) from the base 2 to base 10:

• Find a corresponding real number x:

X
3

-10 + X· 222 -1'

40

Where -1,0 is the left boundary of the domain and 3 is the length of the

domain.

For example, a chromosome

(1000101110110101000111)

Represents the number 0.637197, since

x'=(100010111011010100011 l)3 = 2288967 and

x=l.0+2288967 ·
3 = 0.637197.

4194303

Of course, the chromosomes

(0000000000000000000000) And (11111111111111l l l l l l l l)

Represent boundaries of the domain-1.0 and 2.0, respectively.

Initial population. The initializationprocess is very simple;we create a population

of chromosomes, where each chromosome is a binary vector of 22 bits. All 22 bits

for each chromosome are initializedrandomly.

Evaluation function. Evaluation function eval for binary vectors v is equivalent to

the function f:

Eval (v)=f(x),

Where the chromosome represents the real value x.

As noted earlier, the evaluation junction plays the role of the environment,

rating potential solutions in terms of their fitness. For example, three

chromosomes:

V1=(1000101110110101000111)

V2=(0000001110000000010000)

V3=(1110000000111111000101)

Correspond to values x=0.637197, x=0.958973 and x3=1.627888, respectively.

41

Consequently, the evaluation function would rate them as follows:

Eval (vı)=f(xı)=l.586345

Eval (v2)=f(x2)=0.078878

Eval (v3)=f(x3)=2.250650

Clearly, the chromosome v3 is the best of the three chromosomes, since its

evaluation returns the highest value.

During the reproduction phase of the genetic algorithm we would use two

classical genetic operators; mutation and crossover.

As mentioned earlier, mutation alters one or more genes (positions in a

chromosome) with a probability equal to the mutation rate. Assume that the fifth

gene from the vs chromosome was selected for a mutation. Since the fifth gene in

this chromosome is O, it would be flipped into 1. So the chromosome V3 after this

mutation would be

V3=(1110100000111111000101)

This chromosome represents the value x3=1.721638 and f(x3)=-0.082257. This

means that this particular mutation resulted in a significant decrease of the value

of the chromosome vs. On the other hand, if the ıo" gene was selected for

mutation in the chromosome V3 them

V3=(1110000001111111000101)

The corresponding value x3=1.630818 and f(x3)=2.343555, an improvement over

the original value of f(x3)=2.250650.

Let us illustrate the crossover operator on chromosomes v2 and V3_ Assume

that the crossover point was (randomly) selected after the 5th gene:

V2=(00000J01110000000010000)

V3=(11100Joooooııııııoooıoı)

42

The two resulting offspring are

V' 2=(00000 \ 000001111110001 O 1)

V'3=(l l lOO \ 01110000000010000)

These offspring evaluate to

F(v'2)=f(-0.998113)=0.940865.

F(v' 3)=f(l .666028)=2.459245

Note that the second offspring has a better evaluation than both of its parents.

Parameters.

For this particular problem we have used the following parameters

population size ps=50, probability of crossover Pc =0.25, probability of mutation

Pm =O.Ol. The following section presents some experimental results for such a

genetic system.

Experimental results.

we provide the generation number for which we noted

an improvement in the evaluation function together with the value of the function.

The best chromosome after 150 generations was

Ymax=(l l l 1001101000100000101),

Which corresponds to a value Xmax=l.850773

AS expected, Xmax=l.85+1; and f(Xmax) is slightly larger than 2.85.

{} ~ {f(x)} x/ [l] \ EQ · I; n

43

Generation Number Fitness Function

l 1.441942
5 2.250003
8 2.250283
9 2.250284
10 2.250363
12 2.328077
36 2.344251
40 2.345087
51 2.738930
99 2.849246
137 2.850217
145 2.850227

3.3 Genetic Algorithm Structural Optimization

Atomistic models of materials can provide accurate total energies. For problems

where the structures are not known, however, discovering the lowest energy

geometry is difficult. This is particularly true for atomic clusters, whose structure

may vary dramatically with a small change in the number of atoms. For this type

of problem, the number of possible stable structures increases exponentially fast

with the number of atoms. Furthermore, there is considerable experimental

difficulty in determining the structure of an atomic cluster. We have been able to

address this problem using a novel approach to applying genetic algorithms. The

Darwinian evolution process inspires these algorithms. A population of structures

is maintained, and "mating" structures and selecting out the lowest energy

geometries produce new generations.

The key to a successful genetic algorithm is to design a mating process that allows

for the good parts of the parent structures to be inherited by the next generation.

Such a process allows for efficient searching of the possible stable structures. A

44

poor mating algorithm is no better than a random search. We have designed a new

mating process, depicted at left. Two structures are chosen as "parent" structures.

Each one is divided into two halves by a cleavage plane. A new structure is

generated by connecting half of each parent into a new cluster, followed by

atomic relaxation to a local minimum. We have successfully applied our "cut and

paste" approach to a number of challenging problems, including: [12)

3.4 Genetic Algorithm Optimization of Carbon Clusters

The first application of our genetic algorithm was the test case of carbon clusters,

®
{ıı} {b) {c}

-8.9

{c} buckyball

1-9.01 I(,)
1{

~ -9.1 j L ı (b}
~ -9.2

~
~ -9.3

-

~-!- l - -~
-9.4 o 1000 2000 3000 4000 5000 6000

mıı.ti~ cpcraticns

45

or "Bucky balls." These structures were quite surprısıng when originally

discovered. Traditional computational approaches are unable to correctly predict

these structures without prior knowledge: from a random geometry, simulated

annealing is too inefficient to locate the ground state C6o structure.

Our first goal, therefore, was to see if the genetic algorithm could generate the

correct structure for C60 from random initial conditions. The results are shown at

left. In this figure, the lowest energy of a structure in a given generation is shown

as a solid line, and the highest energy as a dashed line. For approximately the first

1000 generations, the clusters are primarily disordered, high-energy structures.

After 1000 generations have passed, cage-like structures with large holes or other

defects dominate the population, as seen in structure (a). After 2000 generations,

the structure still contains some 7-fold rings (b). Another 2000 generations occur

before only 5- and ô-fold rings are found (c). Eventually, near 6000 generations,

the ground-state structure is observed.

Optimising the C2o structure presented some new problems. The genetic

algorithm tended to produce structures such as those shown in fig. 1 a-I c at

&UO
~~@

(2•) ' (2b)MC)

!Bw
{3a} {3tı}

46

right. Very quickly, ring-like structures dominated the population. Once this

occurred, only ring-like structures would be generated. This lack of diversity was

overcome by the use of mutation operators. Essentially, occasionally one member

of the population would be "scrambled" into an entirely new structure. This

allowed for the formation of the lowest energy, "capped" structure. Typical

progressions to this structure are shown in figs. 2 and 3 at right. [12]

3.5 Multilevel Fuzzy Process Control Optimised By Genetic

Algorithm

The new method for complex processes control with the coordinating control unit

based upon a genetic algorithm has been described. The algorithm for control of

not well-known complex processes controlled by PIO and fuzzy regulators on the

first level and coordinating unit on the second level has been theoretically laid out.

A genetic algorithm and its applicationto proposed control method have been

described in details. The idea has been verified experimentallyand by simulation

in two-stage laboratory process. Minimalenergy spent criteria restricted by given

process response limitationshas been applied, and improvement in relation to

other known optimisingmethods has been found. Independent and non

coordinating PIO and fuzzy regulator parameter tuning has been performed using

a genetic algorithm and the results achieved are the same or better than with

traditional optimisingmethods while at the same time proposed method can be

easily automated. Genetic algorithm parameters appropriate for the application

described has been defined.Multilevel coordinated control using a genetic

algorithm applied to a PIO and a fuzzy regulator has been researched. The results

ofvarious traditional optimisingmethods have been compared with an

independent non-coordinating control and multilevelcoordinating control using

47

genetic algorithm. The best results have been achieved with the multilevel

coordinating fuzzy control optimized by genetic algorithm. Process visualization

using control plane is proposed. Inherent adaptability of proposed multilevel

coordinating fuzzy control method has been found out as the consequence of

evolutionary tuning method [13].

3.5.1 Encoding and Decoding

Binary encoding, decoding strategy.

e.g. encoding:

xr = 12(dec) = 1010(bin)

x2 = S(dec) = OlOl(bin)

after one point cross-over at the middle of strings, and decoding, we get:

x', = lOOl(bin) = 9(dec)

x'2 = 01 lO(bin) = 6(dec)

3.6 Procedures Involved in Genetic Algorithms Optimization

• Production of initial population.

• 1. Individual fitness evaluation.

• 2. Genetic Operation

• Reproduction/Selection

• Crossover/Mating

• Mutation

• 3. Produce new generation.

48

• 4. Repeat from step 1. till some stop criteria is met.

3.7 Procedures

3.7.1 Selection/Reproduction

Creates new population from old population biased towards the highest

fitness.

3.7.2 Crossover/Mating

Swaps chromosome parts between individuals.

100111110
101110010

100110010
~101111110

Crossover (a) One-point crossover
Point

1100111110
1101101010

1101101110
~1100111010

(b) Two-point crossover

49

3.8 Genetic Optimization Method

Xoptirnal C

Fitness(x)
{x\y = rnax[Fitness(x)]}

(1)
(2)

y

3.8.1 Improvement of the algorithm:

1 . Mutation probability control

2. Elitism strategy

3. Termination criteria

3.8.2 Mutation probability (Pm) control

• Pm is decreased with increasing of generation numbers.

• Concept is from decreased 'temperature' in Simulated Annealing.

Figure 2: The decreasing trajectory of mutation probability

High Pm Low Pm

Stage Beginning Close to End

Effects Search diversity Stable solution

50

(START J'. \i /

Ceca! Initial Generation

Gcncrarron-t+ Fitness Evaluation

t .---'-"'-'---------l(Count= C?).o;;.----------~
{ı

-------ı~ Select Genetic Operaricn) , ••.! ' ıPc ı I
tsdcct ONE Individual Select TWO Individuals Select ONE Individual

I(I
I Rcpcoducti on l Cross Over I Mutation I

count++

l'

Coy into Insert TWO Insert Mutant into
Offsprmgs into

New Popularıorı · New Population
· New Population ·

~· - I
I COUl1t ++ 11-- __J

3.9 Decisive factors for Genetic Algorithms optimization:

1 . Encoding and decoding methods

2. Crossover probability.

3. Mutation probability.

4. Population control.

[14]

51

4.UTILIZATION AND FUNCTIONAL IMPLIMENTATION OF
GENETIC ALGORITHMS

Identification of the global Optimization for the objective function is fundamental

to the theoretical support of most econometric estimators. Numerous Optimization

techniques have been developed and are represented in literature (non-linear least

square, maximum likelihood,). It is always a problem for these methods to locate

local optima, especially in situations of multiple local optima, which limits their

usefulness. Genetic Algorithm (GAs) has the property of searching the entire

space and locates the global optimum. Genetic Algorithm has been successfully

used in biology, engineering, and other areas.

The most important property of GAs is that they don't require a well-behaved

objective function, but this function should be bounded for the solution to exist.

The Genetic Algorithms search for a solution using only values of the function to

be maximised. These algorithms iterate toward a solution through a process that in

many ways parallels the Darwinian process of natural selection. Simply, the

algorithm starts with an initial population of candidate solutions (the first

generation), and then selects a subset of the population to contribute off springs to

the next generation of candidate solutions. The choice of population number is

very important. According to the writers, a population number between 20 and 30

seemed to work best.

The GAs operators like reproduction; crossover and mutation were discussed with

simple example to illustrate these three operators. Based on the fitness of every

member in the population, only a few selected will contribute to the next

52

generation and this process will continue and eventually, the initial population

evolves to one that contains a solution to the Optimization problem.

The applicability of GAs to econometric Optimization problems was also

discussed by applying GAs to six test problems selected from the econometric

literature. Global solutions were obtained for each problem, with the accuracy

dependent on the number of generations allowed for search.

Concluding, GAs incorporates both a global search process and the ability to

focus on the optimal value once found. The algorithm is broadly applicable,

requiring not differentiability, global convexity, or even continuity. The GAs used

in this paper offer a solution to the common difficulty of obtaining the global

optimum when attempting to estimate complex econometric problems. [15]

4.1 Optimization Stuff (Problems)

Just think of an OPTIMIZATION problem as a black box. A large black box. As

large as, for example, a Coca-Cola vending machine.Now, we don't know nothing

about the inner workings of this box, but see, that there are some regulators to

play with, and of course we know,that we want to have a bottle of the real thing...

Putting this everyday problem into a mathematical model, we proceed as

follows:

(1) we label all the regulators with x and a number starting from 1; the result is

a vector x, i.e. (x_l, ... ,x_n), where n is the number ofvisible regulators.

(2) we must find an objective function, in this case it's obvious, we want to get k

bottles of the real thing, where k is equal to 1.(some might want a "greater or

equal" here, but we restricted ourselves to the visible regulators (we all know

that sometimes a "kick in the right place" gets use more than 1, but I have no

idea how to put this mathematically...)]

53

(3) thus, in the language some mathematicians prefer to speak in:

f(x) = k = 1. So, what we have here is a maximization problem

presented in a form we know from some boring calculus lessons, and we also

know that there at least a dozen utterly uninteresting techniques to solve

problems presented this way. [16]

4.2 Solution Of The Problem

We can either try to gain more knowledge or exploit what we already know

about the interior of the black box. If the objective function turns out to be

smooth and differentiable, analytical methods will produce the exact solution.

If this turns out to be impossible,we might resort to the brute force method of

enumerating the entire SEARCH SPACE. But with the number of possibilities

growıng exponentially in n, the number of dimensions (inputs), this method

becomes infeasible even for low-dimensionalspaces.

Consequently, mathematicians have developed theories for certain kinds of

problems leading to specialized OPTIMIZATION procedures.These

algorithms perform well if the black box fulfils their respective prerequisites.

For example, Dantzig's simplex algorithm(Dantzig 66) probably represents the

best known multidimensional method capable of efficiently finding the global

optimum of a linear,hence convex, objective function in a SEARCH SPACE

limited by linear constraints. Gradient strategies are no longer tied to these linear

worlds, but they smooth their world by exploiting the objective function's first

partial derivatives one has to supply in advance. Therefore, these algorithms rely

on a locally linear internal model of the black box.

54

Newton strategies additionally require the second partial derivatives, thus building

a quadratic internal model.Quasi-Newton,conjugate gradient and variable metric

strategies approximate this information during the search. The deterministic

strategies mentioned so far cannot cope with deteriorations, so the search will

stop if anticipated improvements no longer occur.In a multimodal

ENVIRONMENT these algorithms move "uphill" from their respective starting

points. Hence, they can only converge to the next local optimum.

Newton-Raphson-methods might even diverge if a discrepancy between their

internal assumptions and reality occurs. But of course,these methods turn out to be

superior if a given task matches their requirements. Not relying on derivatives,

polyeder strategy,pattern search and rotating coordinate search should also be

mentioned here because they represent robust non-linear OPTIMIZATION

algorithms.

Dealing with technical OPTil\1IZATION problems, one will rarely be able to

write down the objective function in a closed form. We often need a

SIMULATION model in order to grasp reality.In general,one cannot even expect

these models to behave smoothly. Consequently,derivatives do not exist. That is

why optimization algorithms that can successfully deal with black box-type

situations habe been developed. The increasing applicability is of course paid for

by a loss of "convergence velocity," compared to algorithms specially designed

for the given problem.Furthermore,the guarantee to find the global optimum no

longer exists! In the attempt to create tools for various purposes, mankind has

copied, more often instinctively than geniously,solutions invented by nature.

Nowadays,one can prove in some cases that certain forms or structures are not

only well adapted to their ENVIRONMENT but have even reached the optimum.

55

This is due to the fact that the laws of nature have remained stable during the last

3.5 billion years. For instance, at branching points the measured ratio of the

diameters in a system of blood-vessels comes close to the theoretical optimum

provided by the laws of fluid dynamics (2ı-'-l/3). This,of course,only represents a

limited,engineering point of view on nature. In general, nature performs

adaptation, not optimization.

The idea to imitate basic principles of natural processes for optimum seeking

procedures emerged more than three decades ago.

Although these algorithms have proven to be robust and direct OPTIMIZATION

tools, it is only in the last five years that they have caught the researchers'

attention. This is due to the fact that many people still look at organic

EVOLUTION as a giantsized game of dice,thus ignoring the fact that this model

of evolution cannot have worked:a human germ-cell comprises approximately

50,000 GENEs,each of which consists of about 300 triplets of nucleic bases.

Although the four existing bases only encode 20 different ammo

acids,20/\15,000,000,ie circa 10/\19,500,000 different GENOTYPEs had to be

tested in only circa 1QA17 seconds, the age of our planet. So,simply rolling the dice

could not have produced the diversity of today's complex living systems.

Accordingly, taking random samples from the high-dimensional

parameter space of an objective function in order to hit the global optimum must

fail (Monte-Carlo search). But by looking at organic.EVOLUTION as a

cumulative, highly parallel sieving process, the results of which pass on slightly

modified into the next sieve, the amazing diversity and efficiency on earth no

longer appears miraculous.When building a model, the point is to isolate the main

mechanisms which have led to today's world and which have been subjected to

56

evolution themselves. Inevitably,nature has come up with a mechanism allowing

INDIVIDUALs of one SPECIES to exchange parts of their genetic information

(RECOMBINATION or CROSSOVER),thus being able to meet changing

environmental conditions in a better way.

4.3 Genetic Query Optimization (GEQO) in Postgres

The GEQO (17] module is intended for the solution of the query Optimization

problem similar to a travelling salesman problem (TSP). Possible query plans are

encoded as integer strings. Each

String represents the join order from one relation of the query to the next. e. g., the

query tree

I\

I\ 2

I\ 3

4 1

is encoded by the integer string '4-1-3-2', which means, first join relation '4' and

'l', then '3', and then '2', where 1, 2, 3, 4 are reloads in Postures.

Parts of the GEQO module are adapted from D. Whitley'sGenitor algorithm.

Specific characteristics of the GEQO implementation in Postgres are:

• Usage of a steady state GA (replacement of the least fit individuals in a

population, not whole-generational replacement) allows fast convergence

towards improved query plans. This is essential for query handling with

reasonable time;

• Usage of edge recombination crossover which is especially suited to keep

edge losses low for the solution of the TSP by means of a GA;

57

• Mutation as genetic operator is deprecated so that no repair mechanisms

are needed to generate legal TSP tours.

The GEQO module gives the following benefits to the Postgres DBMS compared

to the Postgres query epitomiser implementation:

• Handling of large join queries through non-exhaustive search;

• Improved cost size approximation of query plans since no longer plan

merging is needed (the GEQO module evaluates the cost for a query plan

as an individual).

4.4 Functional Implementations

4.4.1 GA function for plotting the object function in 3D.

function gaPlot3D(fun,low,up,step)

xr = low(l):step(l):up(l);

yr = low(2): step(2):up(2);

[x y] = meshgrid(xr, yr);

% Compute the function values for the population elements.

z = eval([fun, '(x,y)']);

surface(xr,yr,z); xlabel('x'); ylabel('y');

hold on;

contour(xr,yr,z, 15,'--');

axis([low(l) up(l) low(2) up(2)]);

view(-35,25);

hold off;
[18]

4.4.2 Implementation of a real-coded Genetic Algorithm

Format long;

58

format compact;

rand('state',sum(lOO*clock));

clear

case nr = l:
- '

if (case_nr == 1)

% Griewank

fun= 'griewank';

low= [-600,-600]; up= [600,600];

nvar = 2;

genNr = 300;

result= [100,100];

llim= -O.Ol;

elseif (case_nr == 2)

fun = 'peaks';

low= [-3,-3]; up= [3, 3];

nvar = 2;

genNr = 20;

result= [-0.0106,1.5803];

llim= 18;

elseif (case_nr == 3)

fun= 'rosenbrock';

low= [-5.12,-5.12];

% Name of object function

% Box constraints

% Number ofvariables

% Number of generations

% The optimum point

% Lower limit for accepting optimum

% Peaks

% Name of object function

% Box constraints

% Number ofvariables

% Number of generations

% The optimum point

% Lower limit for accepting optimum

% Rosenbrock

% Name of object function

% Box constraints

59

up= [5.12, 5.12];

genNr = 200;

result= [1,1];

llim = -0.1;

end

% Number of variables

% Number of generations

% The optimum point

% Lower limit for accepting optimum

nvar = 2;

npop = 30;

crossProb = 0.8;

mutProb = 0.02;

p_tour = 0.7;

mut_scale = 0.1;

n = 100;

if (1)

% Parameters for genetic algorithm

% Size of the population

% Probability of crossover

% Probability of mutation

% Tournament probability

% Scale for mutations

% Number of runs

% Start testing the genetic algorithm

mytime = cputime;

low_ value = 1000;

up_value = -le8;

ga_ok = O;

initpop = zeros(npop,nvar);

for i = 1:n

% Initialize the population

for j = 1: npop

initpopıj,') =low+ (up-low).*rand(l,nvar);

end

60

[endpop endvalues stats] = gaSim(fun, low, up, ...

initpop, crossProb, mutProb, p_tour, mut_scale, genNr);

values(i) = max(endvalues);

if (values(i) <low_ value)

w_initpop = initpop;

w_pop = endpop;

w_val = endvalues;

w_stat = stats;

low_ value = values(i);

end

if (values(i) > up_value)

b_initpop = initpop;

b_pop = endpop;

b_val = endvalues;

b_stat = stats;

up_value = values(i);

end

tmp = find(values(i) == endvalues);

x = endpop(tmp(l),1);

y = endpop(tmp(l),2);

disp(['case: ', num2str(i), ', best value: ',num2str(values(i)) ...

', coord: ', num2str(x), '', num2str(y)]);

tmp = find(endvalues > Him);

x = endpop(tmp,:);

61

testres = result(ones(size(x(:,2))),:);

if (any(sqrt(sum((x-testres)'./\2)) < 0.2))

ga_ok = ga_ok + l ;

end

end

wplot % Plot worst case

bplot % Plot best case

[max(values), min(values), mean(values), median(values), std(values)]

disp(['success rate: ', num2str(lOO*ga_ok/n), '%']);

disp(['cputime: ', num2str(cputime-mytime)]);

end

% Random sampling:

if (1) % Start testing the random search

mytime = cputime;

rvalues = -500 + zeros(n,l);

r ok= o·
- '

for i = l:n

for j = 1:(npop*genNr)

x =low+ (up-low). *rand(l,2);

z = eval([fun '(x(l),x(2))']);

if (z > rvalues(i))

rvalues(i) = z;

bestx = x;

end

62

end

x = bestx;

disp(['case: ', num2str(i), ', best value: ',num2str(rvalues(i)) ...

', coord: ', num2str(x(l)), '', num2str(x(2))]);

if ((sqrt(sum((x-result)/'2)) < 0.2) & rvalues(i) > Him)

r ok= r ok+ I:
- - '

end

end

[max(rvalues), min(rvalues), mean(rvalues), median(rvalues), std(rvalues)]

disp(['success rate: ', num2str(l OO*r_ok/n), '%']);

disp(['cputime: ', num2str(cputime-mytime)]);

end

4.4.3 Commands for plotting the best final population of a number

of GA runs.

figure;
ind= 1:length(b_stat(:,1));

p = plot(ind,b _stat(:, 1),'-',ind,b _stat(:,2),'-. ');

xlabel('Iteration')

title('Best and average value')

set(gcf, 'Position', [350 500 640 250])

set(gcf,'PaperPosition', [0.2 2.5 8 4])

set(get(gcf,'Children'),'Position', [0.05 O. 15 0.9 0.720])

print -deps -loose bplot

figure;

63

set(gcf, 'Position', [350 200 640 300])

set(gcf,'PaperPosition', [0.2 2.5 8 4])

set(get(gcf,'Children'),'Position', [O.OS O.11 0.9 0.680])

subplot(l,2, 1);

endx = b_initpop(:,1);

endy = b_initpop(:,2);

endvalues = eval([fun '(endx,endy)']);

gaPlot(fun, low, up, endx, endy, endvalues);

title('Initial population');

subplot(! ,2,2);

endx = b_pop(:,1);

endy = b_pop(:,2);

endvalues = eval([fun '(endx,endy)']);

gaPlot(fun, [min(endx),min(endy)], [max(endx),max(endy)], ...

endx, endy, endvalues);

title('Final population');

print -deps -loose bplotcont

[18]

4.5 GENETIC Algorithms for Optimisation Technology transfer .
Problem solving strategies

Usual methods for solving problems, replace an infinite procedure with a finite

procedure.

• Replace a non-linear problem with a linear one: Taylor series,

Newton's method (use

64

• Of derivatives), etc.

• Use simpler forms of matrices.

• Etc.

• Heuristic methods and frameworks may speed up this process

Thus, we need

• Alternative problems, which can be solved

• Transformations into the solvable problems

4.2 A simple optimisation problem
Problem:

-x 2
minf(x)=e + x

2.2

+l

Solution with Mathematica:

In[l]:= D[Exp[-x] + x/\2, x]

-x
Out[l]= -E + 2 x

In[2]:= FindRoot[% 1, {x,O}]

Out[2]= {x-> 0.351734}

In[3]:= FindMinimum[Exp[-x] + x/\2, {x, O}]

Out[3]= {O. 827184, {x->0.351734}} [19]

65

4.5.1 Types of Optimization problems

• linear programming (LP):

min x c T x, Ax =b or Ax ~ b, x 2' O

• integer programming (IP):

minx,ycTx+dTy;sothatAx+Dy~ b;

yi, i ... 1; : : : ; r, are integer variables.

• Quadratic programming (QP):

1
min x - --- T Qx + c T x, Ax ~ b

2x
• (Unconstrained) non linear optimisation:

min f(x)

4.6 Walsh Analysis of Optimization Problems for Genetic

Algorithms[20]

Genetic Algorithms are stochastic search procedures that have borrowed

concepts from natural evolution to control the direction of search in the solution

space. GAs have proven useful in providing solutions in an industrial setting for a

variety of very difficult problems such as jet engine design, factory floor

scheduling,VLSI layout, and production parameter selection.

Bit strings that play the role of chromosomes represent the search space for GAs.

Selective pressure is applied to the "breeding" of new chromosomes based on the

"fitness" of the chromosome. It is this fitness, which the algorithm tries to

optimize. In order to understand the difficulty that various fitness functions pose

for GAs we have turned to Walsh analysis. Walsh analysis is an analogue for

66

discrete Fourier analysis but is designed for functions with a bit space domain.

This makes them ideal for studying the properties of the chromosomal search

space.

In this talk I will give some background on genetic algorithms. I will introduce

Walsh analysis focusing on some of the interesting properties of Walsh functions

and their implications. I will then show how we have been using Walsh analysis

to analyse problem difficulty for GAs and characterise completeness and

difficulty of several classes of problems. Finally, I will show that Walsh analysis

is insufficient for estimating problem difficulty.

67

5. MUL TIMODAL OPTIMIZATION USING GENETIC

ALGORITHMS

5.1 Problem statement

Genetic algorithms (GA's) have been applied successfully to optimize several

kinds of problems, where many traditional methods (such as the gradient search,

the simplex meth) are not applicable because of assumptions or requirements -

such as the need for objective function derivatives, convexity, or the linear

correlation of variables. One general problem of Optimization techniques is that

there is not always a guarantee of convergence to he globally optimal solution.

Frequently they converge to local optima. GA's may·:also· have similar problems.

One of the major problems is known aspremature convergence, which means that

all individuals in a population become nearly identical before the optima has been

located. In the worst case, the GA also becomes trapped in a suboptimal solution,

even though GA's are actually considered to be very robust. In many Optimization

problems (i.e. design problems) a technique capable oflocating multiple solutions

is often desired because humans will make the final judgment, decision or

selection between alternatives. A better understanding of the search space

structure, again revealed by finding multiple solutions can be quite helpful. If the

search space has multiple solutions, a traditional GA is only able to locate one of

them, even though the multiple solutions might be of equal quality. Additionally,

niching methods might overcome problems such as premature convergence and

being trapped in local optima. This paper explores the application of niching

methods to multimode domains, where a desire for locating multiple solutions

exists. [21]

68

5.2 Multi-modal Optimization (Problem solving by Niching

Method)
The extension of genetic algorithms to multimodal Optimization (niching

methods) is investigated. After reviewing current niching methods, a new

variation of a crowding technique, named the struggle genetic algorithm, is

introduced. Replacement occurs only between similar individuals based upon a

similarity measure if an offspring wins the competition. Using a suite of test

problems, the performance of the struggle genetic algorithm and three other

niching methods - deterministic crowding restricted tournament selection, and

fitness sharing - is empirically examined. For each test problem the struggle GA

consistently located a more complete set of optimal solutions. The struggle GA

has also performed well when compared to global methods (simple and steady

state GA). Additionally, crossover's adaptive mechanism based upon the

similarity measurement of parents is investigated for commonly used

representations. Empirical investigations suggest that real-coded parameters are

superior to the traditional binary or Gary coding of continuous variables. For real-

coded variables a newly designed crossover operator, the sphere-crossover, ıs

introduced and tested. Preliminarytest results illustrate its adaptive Power (21]

5.2.1 Using GAMS

Using GAMS (General AlgebraicModelling System) to minimizethe function

2 2
F(xl,x2)=100(x2-xl) + (1-xl)

VARIABLE F object function

POSITIVE VARIABLES Xl, X2;

EQUATION FUNC define the object function;

69

FUNC .. F =E= 100*SQR(X2 - SQR(Xl))+ SQR(l - Xl); * Feasible region

Xl.LO = -10; Xl.UP = 5;

X2.LO = -10; X2.UP = 5; * Initial guess

Xl.L = -1.2; X2.L = 1.0;

MODEL ROSE I ALL /;

SOLVE ROSE MINIMIZING F USING NLP;

5.3 Algorithms For Multi -Modal Optimisation

Select an initial guess x 1 and set k = 1.

Repeat

Solve the search direction pk from equation (1)-(3) below.

Find the next point using Eq. (4):

xk + 1 = x k+ Ak p k .

Set k=k + 1.

until llxk+xk-lii<E

Conjugate gradient methods:

p k= - V j(xk) + /Jk p k - 1

Secant methods:

Bk pk= - Vf(xk.)

Newton's method:

H(x k) pk= - Vf(x k)

Line search:

Ak =arg minj(x k+Ap k)

5.4 About computational science:

• Cross-disciplinary co-operation is increasingly important

70

• Discipline-specific knowledge

• Mathematical modelling skills

• Knowledge of numerical solution methods

• Programming skills (including code optimisation and parallelization)

• Skills for visualization and analysis of data

• Phenomenon! Model! Simplification! Solution algorithm! Implementation!

Simulation! Optimization! Analysis of results

• Bottleneck: human effort vs. computer power (21]

5.4.1 Approaches to computational science:

"Experimental approach"

''Model building"

"Algorithmic thinking"

"Theorem-based thinking"

Targets for GA research"
• Using GAs as general problem-solving tools

• Finding the "perfect GA" for a given class of problems

• Understanding the behaviour of GAs

• Using GAs for teaching/learning

• Using GAs for increasing co-operation between disciplines [21]

5.5 Methods for global optimisation:

• There are no general-purpose algorithms

• Methods based on random sampling

• Local optimisation with different starting points

• Clustering methods

• Transformation methods

71

• Simulated annealing

• Genetic algorithms

• Tabu search

• Etc.

5.6 Developing scientific software

Finnish industry is starting to invest in mathematical modelling and software

development. Industry is interested in co-operation with universities (technology

transfer works well) Education is a bottleneck: numerical methods, mathematical

modelling, software development etc. are not taught widely enough

Modelling and algorithm development are very important skills, but difficult to

teach Many engineering laboratories have developed their own software and have

extensive industrial contacts. [21 J

5. 7 Review of niching methods

Evolutionary strategies like genetic algorithms are a general optimisation/search

technique, which imitate the principles of natural evolution and molecular

genetics. Unlike other methods, genetic algorithms operate upon several solutions

(a population).

GA's to allocate and maintain multiple different optimal I suboptimal solutions in

a population are called niching methods or multimodal GA's. The inspiration for

niching again stems from nature, where different species coexist through

adaptation to different niches. [22]

72

Crowding [and fitness sharing] are the two primary approaches for preserving

diversity and maintaining multiple solutions in a population. A distance metric

defined over the search space (which can be either genotypic or phenotypic) is

used to distinguish the similarity of individuals in all niching methods. Crowding

techniques use this measurement to replace favourably similar individuals,

whereas fitness sharing uses the metric to debate an individuals' fitness by an

amount according to the number of similarindividualsin the population. [22]

5.7.2 De Jong's crowding

De Jong introduced an algorithm, which he called the crowding factor model.

Specified by the generation gap G, G · Pop Size individuals are chosen via fitness

proportionate selection to create an equal number of offspring. For each of the

offspring a random sample of CF (crowding factor) individuals is scanned from

the current population. The offspring then replaces the most similar individual of

this sample. De Jong used the Hamming-distance between two individuals as the

measurement for similarity. Typical values for the crowding factor CF are 2 or 3

and 10% for the generation gap G. However, for the goal of maintainingmultiple

solutions in a population, it has been shown that De Jong's crowding is only of

limiteduse Mash Niching. [22]

5. 7.3 Deterministic crowding

S. Mahfoud proposed this variation of De Jong's crowding. Deterministic

crowding first randomly groups all individuals in a population into parent pairs.

Each pair generates two offspring by application of the genetic operators. Every

offspring then competes against one of its parents. There are two possible parent-

5.7.1 Niching methods

73

child tournaments, decided by the sum of the distances between the parents and

the children of both possible combinations. The winner of the competitions moves

on to the next generation. The pseud code for the two possible parent-child

tournaments is given below:

IF [d(Pl, C'l) + d(P2, C'2) = d(Pl, C'2) + d(P2, C'l)]

IF f(C'l) _ f(Pl) replaceP 1 with C'l

IF f(C'2) _ f(P2) replaceP2 with C'2

ELSE

IF f(C'l) _ f(P2) replaceP2 with C'l

IF f(C'2) _ f(Pl) replaceP 1 with C'2

5. 7.4 Fitness Sharing

Goldberg and Richardson used Holland's sharing concept for niching. Every

individual in a niche shares its fitness with all others in that niche. Niches with

higher fitness values are able to support more individuals. In contrast with

crowding techniques (where the replacement strategy influences diversity by

replacing similar individuals), sharing uses fitness durations and the parental

selection mechanism to affect population diversity. In addition to requiring a

distance or similarity measure, a niche radius (threshold distance) is needed to

define the niches for individuals. The altered fitness value (shared fitness) of an

individual is computed from its individual fitness divided by its niche count. The

niche count of an individual is the sum of the sharing function values between

itself and all individuals in the population (including itself). If two elements of a

population are identical, the sharing function returns a value of 1. If two elements

in a population exceed a certain threshold distance (also called niche radius)

74

sharing function returns a value of O, implying that the individuals are in different

niches and do not share their fitness values.

The parameter alpha controls the shape of the sharing function (the sharing

function is linear for i = 1). The derated fitness f of an individual i is given by:

f(I)

f * (I)= j -~-;-~h[_d_(-;) j)]

Along with the use of simple GAs (generational replacement) for sharing,

overlapping populations may be used. In this scheme, new offspring are first

added to the current population. Shared fitness values are computed and a number

of individuals (equal to the number of children) are then eliminated from the

population. This is accomplished by removing those individuals with the worst

shared fitness values. For fitness proportionate selection to work properly on the

next generation, the shared fitness values are then recalculated. This technique

carries a higher computational overhead (distance comparisons) than fitness

sharing with non-overlapping populations. [22]

5. 7.5 Sequential Niching

This variation on fitness sharing was proposed by Beasley, Bull and Martin

Multiple solutions are found serially with sequential runs of a simple GA. The

best solution of each

run is stored. In order to prevent convergence to a previously located optima, the

fitness values of solutions near previously found solutions (within a niche radius)

are derated. [22 l

5.8 Hilly Function

75

Frequently, a wide variety of one-dimensional sinusoidal test functions with

different properties are used to test Niching methods. Here, we designed a two-

dimensional function with unequally spaced peaks of non-uniform height. In the

x-direction the height decreases much more than in the y-direction (from the

origin). Additionally, global optima are added far from the generally promising

area near the origin. For

x,y [-100;100], this function (as defined in equation 13 and shown in figure 1 O)

has 36 peaks and its global optima is located

(-))1
wiılı b = i · I 00' .

Figure JO. Graph of the hdly_fimetü.m

5-1. Graph of the hilly function [22]

5.9 Order-five deceptive problem

Another class of test problem was an order-five deceptive problem [GuD] with ten

concatenated fully deceptive five-bit sub functions, altogether forming a 50-bit

problem. Each sub function has two complementary attractors (a deceptive one at

76

00000} and a global one at 111 1 1. Sub function and function values related to the

number of l's (unitation) are shown in figure 5-2

Figure l l. Graph of the deceptive five-bit subfuncnon,

This 50-bit problem has a total of 2 1 O = 1024 optima, of which only one is the

global. Goldberg investigated this problem with a fast messy GA , where in the

evaluation only the global optima was considered. Likewise we will investigate

the ability of Niching methods to locate the global maxima .. Figure 11. Graph of

the deceptive five-bit sub function. [22]

5.10 Grid-TSP Problem

The traveling salesman problem (TSP) is representative for a class of

combinatorial optimization problems. Given n cities the task for the salesman is to

visit all cities only once so that the overall length of the tour is minimal. In order

to build a problem with multiple global optima, twenty cities were arranged on an

77

evenly spaced rectangular (5x4) grid. Since we chose the grid-distance to be 1.0

so the 14 global optima (shown in figure 12) have all tour lengths of 20.0. [22]

5.11 Guidelines For Using The Struggle GA.

Experiences using the struggle GA suggest that it is desirable to use a similarity

measure with a meaning that matches the similarity in the phenotypic search

space. Consider the binary encoding of real values. Two nearby real values could

have a quite big genotypic Hamming-distance, whereas two real values far away

from each other could have an almost negligible genotypic Hamming-distance.

This is illustrated below:

binary strings si and s2 Hamming distance dmax = 5 Euclidean distance dmax =

31

10000, 01111 5 1

10000, 00000 1 16

By using the Hamming-distance as the similaritymeasurement in this case, many

replacement errors will occur and therefore a Niching algorithm will perform

poorly. Additionally, the crossover operator should adapt its scatter according to

the phenotypic similarity of the mated parents. Even though it is not clear which

distribution form is the best for a particular problem, a discontinuous and

inconsistent form (for parents of instinct distances) appears to be disadvantageous.

Interestingly enough, this observation about crossover seems to strongly affect

traditional genetic algorithms (simple and steady state). Domain knowledge

should be incorporated into a meaningful distance metric and the design of a

crossover operator, which has the identified properties of adapting its scatter to

the parents similarity.[22]

78

Summary

In this paper we have investigated and tested Niching methods for both global

optimization and the location of multiple solutions in several domains. A new

crowding variation, the struggle GA, was proposed for multimodal optimization.

Newly generated offspring must be better than the most similar individual in a

population in order to survive. This mechanism minimizes replacement errors,

thereby reducing the algorithm's chance of being misled. Additionally, no

. problem-specific.parameters for the algorithm are required. Empirical test results

show that, on average, a- moF€" Go.mı,}ete, set-of optimal solutions is located and

maintained compared _ to other .investigated .Niching .methads. Further

improvements might be achieved if parents were also selected. based. upon

similarity. This is a subject for future work. A close relationship between

crossover's scatter and the similarity of parents was shown. Every crossover

operator examined scattered with an operator-specific distribution around the

similarity average of the parents and adapted its sampling area according to the

distance (similarity) of the parents. This adaptive mechanism of crossover seems

to support its unique capability of exploring and exploiting a search space. A

binomial-like and normal distributions of the offspring from the parental

similarity average seems to be advantageous. The traditional crossover operators

for binary and Gray-coded continuous variables exhibit characteristics quite

different to the other investigated cases. The scatter distributions of these

operators are inconsistent and discontinuous. These anomalies may contribute to

the observed superiority of real-coded chromosomes over the binary and Gray

coding of real-value parameters. An understanding of crossover's properties can

be used to design new operators. Building on observations of crossover operators

79

(in relation to the similarity measure) a new crossover operator - the sphere

crossover- was designed for real-coded variables. It adapts the scatter of children

according to the Euclidean distance of the parents. Test results demonstrate its

capabilities relative to BLX.

80

CONCLUSION

The graduation project is devoted to one of actual problem, to use of Genetic

Algorithms for solving these optimization problems to solve these problems.

To solve the problem the state of understanding optimization problems are

considered.

Specific character of GA, main genetic operations such as Selection,Mutation, and

reproduction are described. Effectiveness of the application of GA for solving

global optimization problem is shown. Main features of Genetic Algorithm based

optimization and its representation are given as an example the optimization of

Quadratic functions is discussed. Operational principles of GA methods such as

Selection, reproduction, crossover, and mutation are widely discussed.

After the fragments of utilization and functional implementation of GA for

optimization problems in MATLAB Programming. Language are given, also the

application of GA for multi-modal optimization their description methods for

global optimization and the application ofNiching method are widely described.

REFERENCES

[1] Wolfgang Banzhaf , Colin Reeves , col Reeves (1999) Foundations of

Genetic Algorithms,Morgan Kaufmann Publishers,New York.

[2] David E. Goldberg Addison,(January 1989), Optimization and Machine

Learning WesleyPub Co; ISBN: 0201157675

[3] Randy L. Haupt, Sue Ellen Haupt (January 1998) John Wiley& Sons; ISBN:

0471188735

[4] Lawrence Davis,, (1991),Handbook of Genetic Algorithms,Van Nostrand

Reinhold New York.

[5] Mitsuo Gen, Runwei Cheng (2000) Genetic Algorithms and Engineering

Optimization John Wiley& Sons, New York: ISBN:0471315311

[6] Nirwan Ansari, Edwin Hou (April 1997) Computational Intelligence for

Optimization Kluwer AcademicPublishers; ISBN: 0792398386

[7] David E. Goldberg and J. Richardson, (1987), Genetic Algorithms with

sharingformulation modal function optimization In J. J. Hillsdale,NJ.

[8] David E. Goldberg, K. Deb, H. Kargupta, and G. Harik, (1993),Rapid,

Accurate Optimization of Difficult Problems Using Fast Messy Genetic

Algorithms, In J. D. Morgan KaufmannPublishers.

[4] H.J. Antonisse and K. S. Keller, "1987",,Genetic operators for high-level

knowledge representations,"Lawrence Erlbaum Associates, Publishers.

[21] CSC Report on Scientific Computing 1997-1998, Cray T3E User's Guide,

CSC User's Guide:

[19] Textbook: Fortran 90/95 Solving optimization problems

[05] Thomas Gruninger , and David Wallace, Department of Mechanical

Engineering, Stuttgart University Massachusetts Avenue, Massachusetts Institute

of Technology.

[22] Juha Haataja, May 30 - June 3, 1999 , Using Genetic Algorithms for

Optimization ,Center for Scientific Computing Finland

[7] David H. Ackley, 1985, Genetic Algorithms and Their Applications, Lawrence

Erlbaum Associates.NJ.

[14] Thomas and Hans-Paul Schwefel ,1993",An Overview of Evolutionary

Algorithms for Parameter Optimization," NY.

WEB REFRENCES:

[17] http://www.ieee.org

[3] http://www.computer.org/abstracts

[1 O] http://www.csc.fı/math_topics/opt/

[l l] http://www.csc.fi/math_topics/opt/ohj/

[12] http://www.csc.fi/oppaat/gams/

[13] http://www.csc.fi/oppaat/symb.htrnl

[14] http://www.csc.fi/reports/cr97-98/

[l 5] http://www.mcs.anl.gov/home/otc/Guide/

http://www.netlib.org

http://lancet.mit.edu/-mbwall/presentations/IntroToGAs/POOl.htrnl

[9] http://cadlab.mit.edu/

http://www.computer.org/proceedings

[8] http://cne.gmu.edu/modules/GA/

http://www.aridolan.com/ga/gaa/SphereModel.htrnl

INDEX

A

Applications of genetic algorithms

All the "SHUNS"

Algorithms for Multi-Modal Applications

About Computational Science

Approaches to Computational Science

B

Basic Genetic Algorithms

Basics Of Genetic Algorithms

C

Control Parameters

Chromosome Presentation

Crossover

Commands for plotting best Population

D

Description

Dynamic Phase array beam control by GA

Developing Scientific Software

De Jong's Crowding

Deterministic Crowding

E

Encoding and Decoding

Empirical Study of GA parameters

F

Functional Implementation

6

29

30

70

71

13

13

26

29

49

63

4

9

72

73

73

48

10

58

Fitness Sharing 74

G

GA for dynamic test data 06

GA test for sequential circuits 07

GA Performance 16

GA Module 27

GA Structural Optimization 44

Guideline for using struggle GA 78

GA based Optimization 34

H

Hilly Function 75

I

Improvement of the Algorithm 50

Individuals 31

M

Mutation 31

Multilevel Fuzzy Process 47

Main Features for Optimization 35

Multi-modal Optimization 68

Mutation Probability Control 50

Methods for Global Optimization 71

N

Niching Method 73

o
Order-five deceptive problem 76

Optimization based GA 34

Optimization Problems 53

p

Partitioning and allocation of objects 11

Population 32

Procedures of GA 49

Problem solving strategies 64

Problem Statement 68

R

Representation 40

Reproduction 30

Review of Niching Methods 72

s
Selection 29

Summary 79

T

Types of Optimization Problems 66

u
UsingGAMS 69

Using GA for Mash Network 7

w
Walsh Analysis 66

	Page 1
	Images
	Image 1

	Page 2
	Titles
	Dedication:

	Images
	Image 1

	Page 3
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 4
	Titles
	ABSTRACT

	Page 5
	Titles
	CONTENTS
	1. APPLICATIONS OF GENETIC ALGORITHM
	2. BASIC GENETIC ALGORITHM

	Page 6
	Titles
	3.GENETIC ALGORITHM BASED OPTIMIZATION 34

	Page 7
	Titles
	4. UTILIZATION,PROBLEMS AND FUNCTIONAL IMPLI-
	MENTATION OF GENETIC ALGORITHMS. 52
	5. MUL TIM O DAL OPTIMIZATION USING GA 68

	Page 8
	Page 9
	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Titles
	Description:

	Images
	Image 1

	Page 13
	Page 14
	Titles
	1. APPLICATIONS OF GENETIC ALGORITHM
	1.1 Genetic Algorithms For Dynamic Test Data Generation
	1.2 Time Dependent Optimization with a Folding Genetic

	Page 15
	Titles
	1.3 Genetic Algorithm Based Test Generation for Sequential
	1.4 Using Genetic Algorithms to Design Mesh Network

	Page 16
	Images
	Image 1

	Page 17
	Titles
	1.5 Dynamic Phase-Only Array Beam Control Using a

	Page 18
	Titles
	1.6 Empirical Study Of The İnterdependencies Of Genetic

	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Titles
	1.9 Task scheduling in distributed computing systems with a

	Images
	Image 1

	Page 21
	Titles
	2. BASIC GENETIC ALGORITHM:
	2.1 Basics Of Genetic Algorithms.

	Images
	Image 1
	Image 2

	Page 1
	Titles
	2.2 What Does A Genetic Algorithms Do And How?
	J.
	c.o.nvergence t.ea ---�
	L

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	2.3 Specific Characters Of Genetic Algorithms:

	Images
	Image 1

	Page 3
	Titles
	2. 4 The Basic Structure Of Genetic Algorithms:
	Figure 20: The basic structure of a genetic algorithm.
	[5)
	2.5 Genetic Algorithm Performance
	Figure shows the progress [5] of a GA on the two-dimensional Rosen Brock
	f == (1 - xı)2 lOO(x2 - xf)2
	16

	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 5
	Titles
	2.6 The Genetic Operators

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Page 8
	Images
	Image 1

	Page 9
	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Images
	Image 1

	Page 13
	Titles
	2. 7 General Properties of Genetic Algorithms:
	2.8 Control Parameters

	Page 14
	Titles
	2.9 Genetic Algorithms Module

	Page 15
	Images
	Image 1

	Page 16
	Titles
	2.10 Chromosome Representation In Genetic Algorithms:
	2.11 All the 'SHUNS' - Selection, Reproduction, and Mutation
	2.11. 1 Selection

	Images
	Image 1
	Image 2

	Page 17
	Titles
	2.11.2 Reproduction
	**** ****
	**** ****

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Titles
	2.11.4 Individual

	Images
	Image 1

	Page 19
	Titles
	2.11.5 Population
	2.11.6 Controller
	2.12 Summary

	Images
	Image 1
	Image 2

	Page 20
	Page 21
	Titles
	3.GENETIC ALGORITHM BASED OPTIMIZATION
	3.1 Optimisation based on Genetic Algorithms:

	Images
	Image 1
	Image 2

	Page 22
	Titles
	end
	start
	l
	I analysis program
	ı. . .
	merıt functıon evaluatıon
	(loop) l
	Lconvergence test
	mo~ification algorithm
	3.2 Main Features for Optimisation

	Images
	Image 1
	Image 2

	Page 1
	Titles
	-_ ---

	Images
	Image 1
	Image 2

	Page 2
	Images
	Image 1

	Tables
	Table 1

	Page 3
	Tables
	Table 1

	Page 4
	Titles
	2i-l

	Images
	Image 1

	Page 5
	Titles
	3.2. 1 Representation.

	Images
	Image 1
	Image 2

	Page 6
	Page 7
	Images
	Image 1

	Page 8
	Titles
	Parameters.
	Experimental results.

	Images
	Image 1

	Page 9
	Titles
	3.3 Genetic Algorithm Structural Optimization

	Images
	Image 1

	Tables
	Table 1

	Page 10
	Titles
	3.4 Genetic Algorithm Optimization of Carbon Clusters

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 11
	Titles
	&UO
	!Bw

	Images
	Image 1

	Page 12
	Titles
	3.5 Multilevel Fuzzy Process Control Optimised By Genetic
	Algorithm

	Images
	Image 1

	Page 13
	Titles
	3.5.1 Encoding and Decoding
	3.6 Procedures Involved in Genetic Algorithms Optimization

	Images
	Image 1

	Page 14
	Titles
	(b) Two-point crossover
	1101101110
	100110010
	(a) One-point crossover
	1100111110
	100111110
	3. 7 Procedures
	3.7.2 Crossover/Mating
	3. 7.1 Selection/Reproduction

	Images
	Image 1

	Page 15
	Titles
	(1)
	3.8.2 Mutation probability (Pm) control
	3.8.1 Improvement of the algorithm:
	3.8 Genetic Optimization Method

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 16
	Titles
	[14]
	1 . Encoding and decoding methods
	3.9 Decisive factors for Genetic Algorithms optimization:
	! ' ıPc ı I
	~· - I
	t .---'-"'-
	'---------l(Count= C?).o;;.----------~
	{ı
	2. Crossover probability.
	3. Mutation probability.
	4. Population control.

	Images
	Image 1
	Image 2

	Page 17
	Titles
	4.UTILIZATION AND FUNCTIONAL IMPLIMENTATION OF

	Images
	Image 1

	Page 18
	Titles
	4.1 Optimization Stuff (Problems)

	Images
	Image 1

	Page 19
	Titles
	4.2 Solution Of The Problem

	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 1
	Titles
	4.3 Genetic Query Optimization (GEQO) in Postgres

	Images
	Image 1

	Page 2
	Titles
	4.4 Functional Implementations
	4.4.1 GA function for plotting the object function in 3D.
	[18]
	4.4.2 Implementation of a real-coded Genetic Algorithm

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	4.4.3 Commands for plotting the best final population of a number
	of GA runs.

	Images
	Image 1
	Image 2

	Page 8
	Titles
	[18]
	4.5 GENETIC Algorithms for Optimisation Technology transfer
	.
	Problem solving strategies

	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	4.5.1 Types of Optimization problems
	4.6 Walsh Analysis of Optimization Problems for Genetic
	Algorithms[20]

	Images
	Image 1

	Page 11
	Page 12
	Titles
	5. MUL TIMODAL OPTIMIZATION USING GENETIC
	5.1 Problem statement

	Images
	Image 1
	Image 2

	Page 13
	Titles
	5.2 Multi-modal Optimization (Problem solving by Niching
	5.2.1 Using GAMS

	Page 14
	Titles
	5.3 Algorithms For Multi -Modal Optimisation
	Ak =arg minj(x k+Ap k)

	Images
	Image 1
	Image 2

	Page 15
	Titles
	5.4.1 Approaches to computational science:
	5.5 Methods for global optimisation:

	Page 16
	Titles
	5.6 Developing scientific software
	5. 7 Review of niching methods

	Page 17
	Titles
	5.7.1 Niching methods
	5.7.2 De Jong's crowding
	5. 7.3 Deterministic crowding

	Images
	Image 1
	Image 2

	Page 18
	Titles
	5. 7.4 Fitness Sharing

	Page 19
	Titles
	f * (I) = j -~-;-~h[_d_(-;) j)]
	5. 7.5 Sequential Niching
	5.8 Hilly Function

	Page 20
	Titles
	(-))1
	5.9 Order-five deceptive problem

	Images
	Image 1

	Page 21
	Titles
	5.10 Grid-TSP Problem

	Images
	Image 1
	Image 2

	Page 22
	Titles
	5.11 Guidelines For Using The Struggle GA.

	Page 23
	Titles
	Summary

	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1

	Page 1
	Titles
	CONCLUSION

	Page 2
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	INDEX
	A
	E

	Page 5
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 6
	Tables
	Table 1

