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ABSTRACT

The radar cross section a is the property of a scattering object, or target, that is

included in the radar equation to represent the magnitude of the echo signal returned to the

radar by the target.

Sometimes radar cross section a is said to be a (functional) area that intercepts a part of

power incident at the target at which, if scattered uniformly in all directions, produces an echo

power at the radar equal to that produced by the radar produced at the real target.

Radar cross section depends on the characteristic dimensions of the object compared to

the radar wavelength. When the wavelength is large compared to objects dimensions, the

scattering is said to be in Rayleigh region. It is named after Lord Rayleigh who first observed

this type of scattering in1981, Jong before the existence of the radar, when investigating the

scattering of light by microscopic particles. The radar cross section in Rayleigh region is

proportional to the fourth power of frequency, and is determined more by the volume of the

scattering than its shape. At radar frequencies, the echo from rain is usually described by

Rayleigh scattering.

The spherical, cylindrical, flat plate, rod, ogive and cone are examples of simple targets.
"Analytically expressions exist for the radar cross section of some of these objects. Sometimes

the radar cross section of complex targets can be calculated by describing the target as a
•••collection of simple objects whose cross sections are known. The total cross section is

obtained by summing vectorially the contributions from the individual simple shapes.

The cross section of complex targets such as aircrafts, missiles, ships, ground vehicles,

fabricated structures, buildings and terrain can vary considerably depending on the view

aspect and frequency. The variability results from the multiple individual scatterers that

constitute the object. Each individual scatterer of a complex target produces an echo signal

characterized by the amplitude and a phase. These echo signals combine at the radar to

ii



produce the resultant signal. A change in the relative phase of the echo signal from the

individual scatterer will occur if the relative position of the scatterer change with viewing

aspect or there is a change in radar frequency.

It has been seen that the radar cross section of radar targets can vary with aspect,

frequency and polarization. A single number is not a complete measure of radar cross section.

There is no standard agreed upon methods for specifying the single value radar cross section

of a target (probably because a single by itself is seldom used to describe a target). The

average (mean) value or the median value might be taken. These depend on the probability

density function that describes the fluctuations of the cross section.

•
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INTRODUCTION

The importance of scattering of electromagnetic waves in the explanation of certain

natural phenomenon was appreciated almost a century ago. During the past few decades,

research in electromagnetic scattering by a variety of objects or targets assumed added

importance because of its direct relevance to all radar applications and, in particular, to radars

used for military and space explorations where the main objectives are to locate, identify, and

classify various objects. The typical radar accomplishes these objectives by the processing of

the received signals, which generally consists of the desired signal scattered by the target and

the undesired noise or clutter signals, the former contains the information characteristics of

the target. The receiver scattered signal power is directly proportional to the scattering of

radar cross section (RCS) of the targets, hence the importance of the RCS of objects.

During the early years of the radar any acceptable methodology for calculation

and on the analysis, computation, and measurement ofRCS was considered adequate for radar

engineering. Literature on the analysis, computation, and measurement of RCS is still

extensive and still growing. With better understanding of electromagnetic scattering

phenomenon it is a natural that consideration is now being given to deliberate control ofRCS

of objects for various app1ications. For example, with rapid advancements in missile and

space technology attention increasingly,is being directed towards disguising the presence of a

flying object to unfriendly radar by reducing its RCS. Also, a demand seems to be appearing

for the enhancement of RCS of communication and broadcast satellites so mat they may be

tracked better. The users of such satellites and other space objects may even request a

complicated differential radar cross section as a function of the angular rotation of the objects

or the swept of the frequency of the tracking radar. In short, the demand for the control of the

RCS of various objects is increasing continuously due to its many military and civilian
applications.
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Apart form the estimation and measurement of RCS and its control required in the

preceding applications, the RCS study finds important use in remote sensing and inverse

scattering imaging. Although in the latter two areas some inversion algorithms generally are

required, the input data are the complex scattered fields derived either from an experiment or

by a suitable analytical model.

Because modern theoretical research on the RCS depend largely on the available

compute power, it is appropriate to comment here on the role of the development of computer

storage and speed on the capability of solving electromagnetic problems in general. Although

the main frame computer power has grown at an approximately exponential rate, the prospect

is not all that good for solving problems for electromagnetic scattering by large bodies, We

cannot anticipate that the maximum target size handled would increase even in proportion

with the present rate of increase in computer size and speed. However, innovative methods of

fast processing of large matrices, parallel processing in computers, and concepts of neural

networks may lıelp the situation.

The measurement of RCS is no less important than the theoretical modeling. A modern

computerized measurement facility can always provide a deeper insight into the scattering

mechanism involved in simple as well as the complex targets. Recent advances in technology

and measurement methods would complement the theoretical investigations to a great extent.

Experimental facilities to a time-domain (wideband) measurement with windowing capability

to filter out unwanted background reflections and other sources of noise and accurate near

field sampling, and hence the far field sampling prediction, have been integrated in to a

modern measurement system. These s~ould greatly enhance the understanding of the subject

of RCS and its control.

•
Here we are concerned primarily with the ways to control of the RCS of human made

radar targets. A major difficulty in dealing with such a topic is that much of the work has not

been published. Therefore we discuss the current state of the art in this area only within the

confines of openly published literature and information.

The Radar Cross Section (RCS) is explained briefly in the five chapters.
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The first chapter is introductory and describes the basic of electromagnetic field theory, the

Maxwell's equations and the Wave equations are discussed. The Exact boundary conditions

and the Impedance boundary concepts are discussed in order to provide the reader the basic

knowledge of electromagnetic related to RCS.

The second chapter is related to the theory and its different aspects comprehensively and in

detail about RCS. Some examples of RCS are given to have a better idea about the concept of

RCS. How to predict RCS using exact methods and approximate methods are briefly

discussed followed by RCS measurement techniques.

The third chapter deals with Radar Cross Section Enhancement. Some practical applications

require enhancement of RCS; for example, when an aircraft or satellite is tracked. In this

section it has also been discussed different practical devices for RCS augmentation, including

their key design consideration.

The fourth chapter discusses the techniques ofRCS reduction. It describes models leading to

the design of low RCS targets and antennas. Case studies are represented to help the reader

design low RCS objects.

In the last chapter, the conclusion has been described briefly.

•
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CHAPTERl 

FUNDAMENTALSOFELECTROMAGNETICS 

1.1. Electromagnetic Theory Fundamentals And Introduction To Radar Cross

Section

Study of any electromagnetic scattering problem requires a sound knowledge of

basic electromagnetic theory, which may be found in many standard textbooks. For the

benefit of the reader, a brief discussion of the fundamental laws and equations of

electromagnetic including boundary conditions are discussed in this section.

1.1.1. Maxwell's Equations

Maxwell's electromagnetic field equations are mathematical descriptions of the

four basic laws of electricity and magnetism. The word statements for these laws along

with their mathematical representations follow.

(1) The electromagnetic force (emf) around a closed path Lis equal to the negative

of the magnetic displacement current through any stationary surface S enclosed

by that path L (see Figure 1.1):

I. -)> -+y,Edl=-j es .....
•r-8-ds. t ' (1.1-a)

....• -+
v').E=-öB

8t
(1.1-b)

•wher~ E and B are the time and space dependent electric field intensity and magnetic

flux density vectors, respectively. This is Faraday's Jaw, which states that the induced

emf in a closed circuit is equal to the negative of the time rate of increase of magnetic

flux linked with that circuit.

1



Fig.1.1. Surface S closed by a path L

(2) The magnefomotive force (mınt) around a closed path Lis equal to the total

current through any stationary surface enclosed by that path L (see Figure 1.1):

(1.2-a)

~ ....•
VxH=J+ôD

ôt
(1.2-b)

where J is the electric volume current density that may include the applied current

density when appropriate, and D is the electric flux density (or displacement) vector.

This is Ampere's law as amended by Maxwell for the time varying case by introducing

the displacement current density 8D/3 I to maintain the continuity of current.

(3) The total outward electric flux (or displacement) through a closed surface S,,
enclosing a volume V is equal to the total electric charge contained within V:•

•

fı: = Jvp; dç
s

{l.3-a)

...,.
V.D=pv • (L3-b)

where the subscript V is the volume density of electric charge. This is a generalization

ofGauss's law.
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(4) The total outward magnetic flux through a closed surface S is always equal to

zero:

-+
V.B=O , (1.4-b)

This indicates that there is no isolated magnetic pole or charge and that the

magnetic flux lines are always closed. Another law of considerable importance is the

law of conservation of electric charge, which states that the total electric current flowing

through a closed surface S is equal to the time rate of decrease of electric charge
contained within the stationary volume V enclosed by S:

f SJ.ds = -f;Ôlb
ôt '

(1.5-a)

V.J =- ôpv
ôt

(l.5-b)

Above equations together form the fundamental basis of electromagnetic

theory. It is important to note that among these equations only (1.1), (1.2), and (1.5)

are independent equations. All quantities in the preceding equations in general are real

functions of space and time. In the time harmonic case, using pharos notations where it
"'is assumed that all quantities are complex and space dependent and the time dependence

is of the form exp(+ i, t), we can show [ that the differential forms of the equations
•

given earlier reduce to the following time-independent forms:

-+ -+
V x E = -imB ,

-+ -+
VxE=J+io1B, (1.6-b)

-+ -+
V.D=pv , (1.6-c)

~
V.B = O , (l.6-d)
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V.J + uoov = O , (1.6-e)

In the presence of an isotropic material medium, the various field quantities are

related to each other through the following constitutive relations:

----> ----ı,

D=cE . (1.7-a)
----ı, --,
B=,LLH ' (1.7-b)

...:,.
J=CfE , (1.7-c)

Ordinarily the parameters &,µ and a characterizing a medium are real quantities.

For a lossy dielectric medium we frequently find it convenient to use the notion of

complex permittivity or (dielectric constant) represented (for e time dependence) by

(1.8)

where c; is the dielectric constant and accounts for the loss associated with the

dielectric. The term e; is related to e; through the loss tangent of the dielectric

material defined as

tan=s"/s', (1.9)

For a lossy dielectric having dielectric constant e; and conductivity a the

following relationship holds,

(1. 10)

"'

1.1.2. Wave Equations

In any electromagnetic problem the field quantities E and H must satisfy wave

equations obtained from Maxwell's equations. For simplicity let us assume a source

free case involving an isotropic and homogeneous medium characterized by =

µ = µ0 µrand&= &0 er. After taking the curl (i.e., V x) of (1.6a) and using the vector

identity V x V x E = V ·VE - V2 E and making use of (1.6b), ( 1.7a), and ( 1. 7b) we

obtain the time-independent homogeneous vector wave equation:

4



-+ 4

V2 E-y2 E=O , (1.11)

where r is the complex propagation constant in the medium given by

(1.12)

(1.13)

The solution of (1.11) and (1.16) provides mathematical representation of an

electromagnetic wave. Application of boundary conditions appropriate for a given

problem then makes the solution unique. Thus, the boundary conditions play an

important role in the solution of all electromagnetic problems. These are discussed next.

1.1.3. Exact Boundary Conditions

When an electromagnetic wave passes through an interface (or boundary) between

two dissimilar media, the electric and magnetic field quantities in the immediate

vicinity of the interface must satisfy certain identities or boundary conditions involving

the fields, the material properties of the'rnedia, and the charge or current densities on the

interface. These conditions can be obtained from the basic electromagnetic laws.

Referring to Figure 1.2, we give without proof the -boundary conditions on the

tangential components of E and H, and the normal components of D and B at the

interface between two media, where it is assumed that a surface charge density P and a

surface current density J exist on the interface:

(1.17-a)
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(1.17-b)

nx(H2-HıJ=Js

- -H »: Hu = Js • (L 17-c)

(1.17-d}

where t and n in the subscripts indicate the tangential and normal components,

respectively.

Fig.1.2. The interface between two dissimilar media.

It is important to note that in (1.10) P and J can be different from zero only when

one of the media is conducting infihitely (i.e., a perfect conductor). Thus, at the

interface of two media, neither of which is conducting infinitely, the tangential

components of E and H and the norınal components of D and B are continÜousat the

interface. The case of one of the media being perfectly conducting is of considerable

practical importance and hence merits special treatment. Assuming a = O, all field

quantities in medium 1 are then equal to zero. Under these conditions, the boundary

conditions at the interface between a perfectly conducting medium (medium 1) and a

non-conducting medium (medium 2) reduce to

4 -h x E = ts.h.D = ps

6



--+ --+

fıxH =18,n.B=O , (1.18}

where we have removed the subscript 2 from the field quantities in medium 2.

1.1.3. Impedance Boundary Conditions

Problems of electromagnetic scattering from bodies that are imperfectly

conducting, highiy absorbing, conducting but coated with absorbing material, or

conducting but with a rough surface are of considerable interest. In solving such

problems we find it convenient to use an approximate boundary condition, named the

impedance boundary condition (IBC) also known as the Leontovitch boundary

condition. At the interface between such a body and the surrounding medium, the IBC

is expressed as

(1.19)

where

n = the unit normal directed into the surrounding medium,

E, H = the fields on the surrounding medium side,

Z = the surface impedance of the body defined as the ratio of tangential components of

E and H on the surface.

As an example, for a plane wave'traveling in the negative z-direction and incident

on an imperfectly conducting material half-space defined by z is less than or equal to O,

(1.19) yields, •

~ ~ ~ ~
Ex =-Z8Hy and Er «z.ı), , (1.20)

and in this case

I+iZ,,=-Q., .s: '
<:Tug

(1.21)
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where ô, = (2/ mµ0 o-t2 is the skin depth of the material.

The advantage of using the IBC is that it enables us to evaluate the scattered

fields without knowing the fields inside the target. However, the IBC has its own

limitations and region of validity. The possible errors involved in field calculations

using the IBC depend on the assumptions made regarding the surface impedance.

Figure 1.3 shows the region of validity of the IBC. It turns out that for a smooth surface,

the exact boundary conditions can be replaced by IBC if

!Zs j)>l ,

Im(N)~ 2.3 = 2.3 J ,..ı.<(a '
k0a 2,r a

(1.22)

where N= ,/;:er is the complex refractive index of the material of the scatterer, a is the

minimum radius of curvature of its surface, and k is the free space propagation constant.

1.2. Typical Electromagnetic Scattering Problem

The geometry of a typical electromagnetic scattering problem is depicted in Figure

1 .4, where the transmitter (or source), usually located at a large distance from the

target, illuminates the target, which now acts as a secondary radiator to produce

scattered fields at the receiver or observation point P, also usually located at a long

distance from the target. Monostatic or backscattering occurs when the transmitter and

receiver are collocated, and bistatic scattering occurs when they are separated in space
••by an angle called the bistatic angel. Although the scattering results reported in the

literature are predominantly Monostatic in nature, bistatic scattering also is Important to
••

many applications. ·
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..

Fig.1.3. The electromagnetic scattering problem of radar target.

Depending on the size, shape, and the material constituent of the target, a wide

variety of analytical techniques, is available for analysis of the scattering characteristics

of a target. Generally, we try to determine the current distribution on the target induced

by the incident field and then determine the scattered field as the field due to the

induced current. For example, a smooth conducting body in free space illuminated by

an electromagnetic wave will sustain an induced surface current distribution Jstr')

where r' indicates the position vector of a point on the surface of the body. The

magnetic vector potential A due to this current distribution at an observation point P

whose position vector is denoted by r is,

A= µof J8(r')t/oir-r'i ~
s -4:r Ir _ -..'! ds ,' ı

(1.23)

where Sis the total surface of the scattering body. With an incident plane wave EH\

the high-frequency or physical optics approximation to current distribution is

•
Js (r') = 2fıx H1Is (1.24)

with n as the unit positive normal at the surface. With knowledge of A, the scattered

fields at P now can be obtained by using the following,

~ i(l)~l ~ ~1
E3 =--2 k02 A+VV.A !

ko -

9



~ ı [ ~1H8 =- VxAj ,
/,to

(1.25)

In the far zone (i.e., r~oc ), the scattered field expressions given above is simplify

as follows:

4 ...,. 

E8 = -uo A (1.25a)
...,. ...,.

Hs =E8lrJo

As we can see, the fundamental task in all scattering problems is the determination

of the induced current, which often is most difficult and cannot be obtained exactly.

Frequently we formulate the problem in terms of an integral equation for the unknown

current and then try to solve the equation either by approximate analytical methods or

by numerical techniques.

Exact analytical determination of S often is very difficult, if not impossible,

except for some simple targets. For most targets of practical interest approximate

analytical or numerical techniques are used to determine S.

1.2.1. Near-Zone and Far-Zone Considerations

Near zone and far zone concepts play an important role in scattering by objects

and in the design of measurement system for scattering. In the far zone of the target the

scattered fields are orthogonal to the direction of energy propagation and their
"amplitudes decrease inversely with the distance from the target, whereas in the near

zone there are nonzero components of the scattered fields in the direction of propagation
•••and their amplitudes fall off faster than the inverse distance. There is no clear-cut

definition for near-zone and far-zone boundaries. Customarily, an observation point is

said to be in the near or far zone of the scatterer (target) if its distance from the scatterer

is less or greater, respectively, than 2I.: I ..ı where Lis the maximum dimension of the

target; this criterion is based on the maximum allowable phase error of A I 8or 1r I 4 at

the receiving aperture.

10



During measurement, the near-zone and far-zone question is decided by the

requirements of the user and the minimum range to the target need not necessarily be

2L2 I J. Generally, the target or its model should be placed in the far zone if we want

detailed information about the target. However, this may give rise to interference due to

reflections from the floor, ground or multiple reflections from the surroundings. Using a

range less than 2L2 I A, is not of great concern if we decide to use "average" values

from the measurement.

In the area of antenna measurement, antennas with low side lobes have been found

to require ranges longer than 2£2 I ;ı which is equally applicable to targets with low

scattering side lobes. For many low- and ultra-low side lobe antennas or scatterers a

practical range distance, such as 2£2 I A still can be used to accurately measure wide

angle side lobes, but at the expense ofthe first one or two side lobes.

1.3. Radar Cross Section
The IEEE definition of radar cross section is as follows: "For a given scattering

object, upon which a plane wave is incident, that portion of the scattering cross section

corresponding to a specified polarization component of the scattered wave." Clearly if

the receiver is polarization matched to the scattered wave then the radar cross section

and scattering cross section become identical, and we define the radar or scattering

oss section in the direction ( <p, <p ), that is P (Figure 1.3) as

lf.i2~= Iim4m-2 ,
f'- 1

(1.27)

•
re r is the distance from the target to the receiver and note that a has the dimension

area, that is, in square meters, m frequently, a is expressed as dBm with receiver in

far zone of the target. E; and Es are the incident and scattered (plane waves)

ic fields respectively.

11



CHAPTER2

THEORY OF RADAR CROSS SECTION (RCS)

2.1. The Concept ofEcho Power

In order to calculate the degree of correlation and phase relation between the radar

echo power and vertical velocity with respect to time, we decided to use the cross

spectral technique which has the added advantage that the results are sorted according to

frequency.

2.1.1. Definition ofRCS.
An object exposed to an electromagnetic wave disperses incident energy in all

directions. This spatial distribution of energy is called scattering, and the object itself is

often called a scatterer. The energy scattered back to the source of the wave called

(backscattering) constitutes the radar echo of the object. The intensity of the echo is

described explicitly by the radar cross section of the object, for which the abbreviation

RCS has been generally recognized. Early papers on the subject called it the echo area

or the effective area, terms sti11 found occasionally in contemporaıy technical literature.

The formal definition of radar cross section is

•
(2.1)

where Es the electric-field strength of the incident wave impinging on the target where

Eo is the electric-field strength of the scattered wave at the radar. The derivation of the

expression assumes that a target extracts power from an incident wave and then radiates

that power uniformly in all directions. Although the vast majority of targets do not

12



scatter energy uniformly in all directions, the definition assumes that they do. This

permits one to calculate the scattered power density on the surface of sphere of radius R

centered on the scattering object. R is typically taken to be the range from the radar to

the target.

The symbol a has been widely accepted as the designation for the RCS, although

this was not so at first. The RCS is the projected area of a metal sphere which is large

compared with the wavelength and which, if substituted object would scatter identically

the same power back to the radar. The RCS of all but the simplest scatters fluctuates

greatly with the orientation of the object. As such, this imaginary sphere would have to

expand and contract with changing target orientation to represent the amplitude

fluctuations displayed by most objects.

The limiting process in Equation (2.1) is not always an absolute requirement. In

both measurement and analysis, the radar receiver and transmitter are usually taken to

be in the far field of the target (discussed in Sec. (2.4), and at that distance the scattered

field Es, decays inversely with the distance R. Thus, the R1 term in the numerator of

Equation (2.1) is canceled by an identical but implicit If term in the denominator.

Consequently the dependence of the RCS on R, and the need to form the limit, usually

disappears.

Radar cross section is therefore a comparison of the scattered power density at the

receiver with the incident power density at the target. An equally valid definition of the

RCS results when the electric-field st-t,engths in Equation (2.1) are replaced with the

incident and scattered magnetic-field strengths. It is often necessary to measure or

calculate the power scattered in some other direction t~an back to the transmitter, a

bistatic situation. A bistatic RCS may be defined for this case as well as for back

scattering, provided it is understood that the distance R is measured from the target to

the receiver. Forward scattering is a special case of bistatic scattering in which the

bistatic angle is 180°, whence the direction of interest is along the shadow zone behind

the target.

The shadow itself can be regarded as the sum of two fields of nearly equal

strength but 180° out of phase. One is the incident field, and the other is the scattered

13



field. The formation of the shadow implies that the forward scattering is large, which is

indeed the case. The fields behind the target are hardly ever precisely zero, however,

because some energy usually reaches the shadow zone via diffraction from the sides of

the target.

While there are few two-dimensional (infinite cylindrical) objects in the physical

world, analyses of the scattering from two-dimensional structures are very useful. A

two-dimensional object is, by definition, a cylinder formed by the pure translation of a

plane curve to plus and minus infinity along an axis perpendicular to the plane of that

curve. Many scattering problems become analytically tractable when there is no field

variation along the cylindrical axis, such as when the infinite structure is illuminated by

a plane wave propagating at right angles to the cylinder axis.

In this case, one defines a scattering width instead of a scattering area,

(2.2)

where p is the distance from the cylindrical body to a remove receiver, measured

perpendicularly to the cylindrical axis. We have appended the subscript 2D to

distinguish the scattering width of Equation (2.2), whose dimension is length, from the

scattering cross section ofEquation (2.1), whose dimension is the square of length.

By virtue of the linear properties of electromagnetic fields, the solutions of

two-dimensional problems may be resôlved into two cases, one each for the electric

field or the magnetic field parallel to the cylindrical axis. The ratio !Vs!liV0! thus
••

represents either the incident and scattered electric fields or the incident and scattered

magnetic fields, depending on the case at hand. These two cases are often called E and

H polarizations, respectively. They are also known as TM and TH polarizations.

Practical three-dimensional problems often involve truncated segments of two

dimensional structures, such as shown in Fig. (2.1 ). In the practical world, those

segments may be viewed at angles other than incidence perpendicular to the cylindrical

axis, as implied in the solution of two-dimensional problems. The three-dimensional

14



RCS of a truncated two-dimensional structure may be found from the approximate

relationship

a = 2/2aw lsin(klsin ı: )12
...ı I klsinr j '

where l is the length of the truncated structure, aw is its two-dimensional scattering

(2.3)

width (obtained for the infinite structure), and r is the tilt angle of the segment

measured from broadside incidence. This approximation assumes that the amplitudes of

the fields induced on the three-dimensional body are identically those induced on the

corresponding two-dimensional structure and that the tilt angle influences only the

phase of the surface fields induced on the body. The expression should not be used for

]arge tilt angles, for which the amplitudes obtained from the two-dimensional solution

no longer apply to the three-dimensional problem.

••

Fig.2.1 A three dimensional object whose profile does not vary along its length, such

as the truncated rectangular cylinder on the left, is a finite chunk of a fınite(two

dimensional) structure having the same profile, such as the one on the right. Equation

2.3 relates the RCS of the two structures.
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2.1.2. Examples of RCS Characteristics

Simple Objects. Because of its pure radial symmetry, the perfectly conducting

sphere is the simplest of all three-dimensional scatterers. Despite the simplicity of its

geometrical surface, however, and the invariance of its echo with orientation, the RCS

ofthe sphere varies considerably with electrical size. The exact solution for the

scattering by a conducting sphere is known as the Mie series, illustrated in Fig. 2.2.

~
3

{
21 I I

-·---ıAA/VVVv'
j V 

2 6 84

Fig. 2.2 RCS of a perfectly conducting sphere as a

function of its electrical size ka.

The parameter ka = 2a i ,ı is the circumference of the sphere expressed in

wavelengths, and the RCS is shown normalizes with respect to projected area of the

sphere. The RCS is shown rises quickly from a value of zero to a peak near ka = i and
l!I

then executes a series of decaying undulations as the sphere becomes electrically large.

The undulations are due to two distinct contributions
•

To the echo, one specular reflections from the front of the sphere and the other a

creeping wave that skirts the shadow side. The two go in and out of sphere because the

difference in their electrical path lengths continuously increasing ka. The undulations

become weaker with increasing ka because the creeping wave loses more energy the

longer the electrical path traveled around the shadowed side.
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The log-log plot of fig 2.3 revels the rapid rise in RCS in the region O< ka < 1,

which is know as Raleigh region. Here the normalized RCS increases with the Fourier

power of ka, a feature shared by other electrically small or thin structures. The central

region is characterized by the interference between the specular and creeping wave

contribution is known as the resonance region.

The echoes of all scattering objects, and not just the perfectly conducting sphere,

can be grouped according to the electrical-size characteristics of the object. The

dimensions of a Raleigh scatterer are much less than a wavelength, and the RCS is

proportional to the square of the volume of the body. Resonant scatterers are generally

of the order of one-half to 1 O wavelengths in size, for which neither Raleigh nor optics

approximations may be very accurate. In the optics region several approximations are

available for making estimates or pre-dictions (see Section 2.3).

ı--ı n~

-~

OPTlCAL
3

REGION ~

~

MIE OR RESONAO!CE
REGION

"'

CIRCUMFERENCE/ WAVELENGTı-1= 2mı I ;ı• •
Fig. 2.3 Log-log version of the data displayed in fig. 2.2.

The echo characteristics of permeable (dielectric) bodies can be more complicated

than those of perfect conductors because energy may enter the body and suffer several

internal bounces before emerging. An example is the dielectric sphere whose RCS is

plotted in figure (2.4). Because the dielectric material is slightly lossy, as indicated by

the nonzero imaginary component of the index of refraction, the RCS of the sphere
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decays gradually with increasing electrical size. The RCS of small dielectric bodies

does not exhibit this complexity, on the other hand, because the sources of reflection

are too close to each other to be resolvable by the incident wave. An example is the

two-dimensional Raleigh region RCS of a thin dielectric cylinder, plotted in figure (

2.5). The thin dielectric cylinder has been used to model the target support lines

sometimes employed in RCS measurements. Note that the H-polarized echo is barely 6

a13 less than that for E poiarization for this particular dielectric constant.

The thin wire (a metal dipole) can have a complicated pattern, as shown in figure

(2.6). The RCS of the wire varies with the wire length, the angel subtended by the wire

and the line of sight, and on that component of the incident electric field in the plane

containing the wire and the line of sight. The wire diameter has only a minor influence

if it is much larger than the wavelength. In addition to the prominent broadside lobe at

the center of the pattern, there are traveling wave lobes near the left and right side. The

traveling-wave lobes tend to disappear as the dipole becomes shorter and are closely

related to those excited on traveling waves antennas.

30 O ı.o 2.0 3.0 4.0 :'>.O 6.0 70 80
Cl/~

Fig.2.4. RCS of a lossy dielectric sphere with n = 2. 5 + iO. OI •
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Fig.2.5. RCS of a slender dielectric cylinder with er= 3.0
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Fig.2.6. Measured RCS pattern of a dipole Ş.221 X long •

Figure (2.7) shows the broadside resonance of a wire dipole as a function of dipole

function of dipole length. The first resonance occurs when the dipole is just under a

dipole length long. And its magnitude is very nearly ,1,2 • Other resonance occurs

odd multiple of a quarter wave length, with plateaus of nearly constant return

111..-ecn the resonant peaks. These plateaus rise as dipole becomes thicker, and the
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Fig.2.7. Measured broadside returns of a thin dipole.

Bodies considerably thicker than the thin wire also support surface traveling

waves that radiate power in the backward direction. An example is the ogive, a spindle

shaped object formed by rotating an area of a circle about its chord. Figure 2.8, is the

RCS pattern of a wavelength 15 half-angel ogive recoded for horizontal polarization

(incident ele-etricfield in the plane of the ogive axis and the line of sight). The large

lobe at the right of the pattern is a specular echo in the broadside sector, and the

sequence of peaks at the left side is the contribution of the surface traveling wave near

end-on incidence. Note the RCS is extremely smell (not measurable in this case) at

precisely end-on incidence. Theoreticai predictions in the end-on region closely match

the measured pattern for particular body.

The dominant scattering mechanisms for the right circular conducting cone are the
••tip and the base. The return from the tip is very sınan in the nose-on region and the RCS

pattern is dominated by the echo from the base. Figures (2.9) and (2.1O) are patterns of
•

the RCS of a 15° (half-angle) cone with a base circumference of 12.575X. Both patterns

were measured as the cone was rotated about a vertical axis parallel to the base of the

cone. The transmitted and received electric polarization was in the plane swept out by

the cone axis (horizontal polarization) for Figure (2.9) and was perpendicular to that

plane (vertical polarization) for figure (2.10).
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Fig.2.8. measured RCS patterns of a 39-wavelength 15 half-angle metal ogive.

Nose-on incidence lies at the center of the patterns, and the sharp peaks near the

sides are the specular returns from the slanted sides of the cone, also called specular

. ashes. The RCS formula for singly curved surfaces given in table (2.1) may be used to

predict the amplitudes of the specular flash within a fraction of a decibel. At precisely

nose-on incidence the RCS must be independent of polarization because the cone is a

body of axial symmetry. This may be verified by comparing the nose-on values in the

two figures. At this angle the entire ring of the base of the cone is excited, but as the

aspect angle swings away form nose-on,
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Fig.2.9. Measure RCS of a 15 half-angel cone (horizontal polarization), The base

circumferences 12.575 .ı1. The heavy horizontal line indicates 10 .ı12.

The scattering from the base degenerates to a pair of flash points. They lie at

site ends of a diameter across the base in the plane containing the direction of
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10, Measured RCS of a 15 halfangle cone (vertical polarization), The base

circumference is 12.75.ıl. The heavy horizontal line ındicaıestnz".
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Scattering Features Orientation Approximate RCS

Comer reflector Axis of symmetry along LOS 4JZA2 I ;felf

flat plate Surface J_ to LOS 4JZA2 I ;f
ingly curved surface Surface J_ to LOS 2J({Jf2 I A

Doubly curved surface Surface 1- to LOS mı1a2

Straight edge Edge 1- to LOS 12 I 1t

Curved edge Edge element 1. to «u:
LOS

Cone tip Axial incidence ;ı,2 sin4(a I 2)

where,

LOS= Line of sight.

Aeff' = Effective area contributing to multiple integral reflection.

A= Actual area ofthe plate.

a= Mean radius of curvature.

= Length of slanted surface.

1, a2 = Principle radii of surface curvature in orthogonal plane.

a= Half angle of the cone.

The echoes from the flash points at the sides of the base weaken as the aspect

gle moves away from nose-on incidence, and the side lobes seen at +13° are actually

to an interaction between the two flash points across the shadowed side of the base.

The side lobes disappear when a pad of absorber is cemented to the base.) The flash
••int at the far side of the base disappears when the aspect angle moves outside the

kward half cone, but the near flash point remains visible, and its echo decays with

reasing aspect angle. Trailing-edge contributions like these are excited by that

ponent of the incident electric field perpendicular to the edge; therefore they are

nger for horizontal incident polarization than for vertical polarization.

A flat plate also can support multiple diffraction from one side of the plate to the

r, as shown in figure (2.11). The axis of rotation was in the plane of the plate
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parallel to one edge; normal incidence to the incident wave is 0°, at the left side of each

chart, with edge-on incidence at 90° near the right side. The specular return from the

plate is the large peak at 0°, which is predicted with quite good accuracy by the flat

plate formula given in Sec. (2.3). The edge-on return for vertical polarization is well

predicted by the straight-edge.

Fig.2.11. RCS of a square flat plate 6.5 inch long a side; A, = 1.28 inch

These undulating patterns follow a sin xix variation quite closely for aspect angles

to about 30°, but beyond that angle the two patterns differ by progressively wider

gins. The sin x/x behavior is characteristic of a uniformly illuminated aperture, but

ike the one-way illumination function encountered in antenna work, the argument x

a flat plate includes a two-way (round-trip) illumination function. Thus, the beam
"of the echo response of a flat plate is half the beam width of an antenna aperture

the same size. The prominent lobe in the horizontal pattern at 68° is a surface
••ling-wave lobe closely related to the one appearing at nearly the same angle in the

e pattern of figure (2.7).

In contrast to the pattern of a flat plate, the RCS pattern of a comer reflector is

broad This is true because the comer reflector is a reentrant structure, and no

what its orientation (within limits, of course), internally reflected waves are

ı-cted back toward the source of the incident wave. A comer reflector is formed by

three flat plates intersecting at right angles, and waves impinging on the first face
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estimated by representing the target as a collection of feature, calculating the individual

contributions, and then summing the contributions coherently or non-coherently. More

detailed formulas are given in section for surface orientations not included.

2.2. Complex Objects

Objects like antennas, insects, birds, airplanes, and ships can be more complex

than those discussed above, either because of the multiplicity of scattered on them or

because of the complexity of their surface "Electric constants. Insects are examples of
the latter.
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Fig.2.13. Coordinate system for the RCS pattern in fig (2.11).
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Measured values for a dozen species are listed in Table (2.2), (The spider

an arachnid, not an insect, of course.). The animals were live for the measurements

had been drugged to immobilize them. figure (2.14) shows the relationship between

RCS and the mass of an insect, with the variation of a water droplet shown for

parison. Similar comparisons have been made for both birds and insects. The
wing values have been reported for the RCS of a man;

Broadside End-on
Length, Width, RCS, RCS,

ct mm mm dBsm dBsm
20 4 -30 -40

Armvworm moth 14 4 -39 -49
Alfalfa caterpillar butterfly 14 1.5 -42 - 57

oneybee worker 13 6 -40 -45
California harvester ant 13 6 -54 - 57

ge crane fly 13 1 -45 -57
een bottle flv 9 3 -46 -50
elve-spotted cucumber beetle 8 4 -49 - 53
versem Iadv beetle 5 3 -51 -60·der (unidentified) 5 3.5 - 50 - 52

TABLE 2.2 Measured insect RCS at 9.4 GHz.
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14. Sample ofmeasured RCS of insects are a function of insect mass in 9.4 GHz.

The solid trace is the calculated RCS of water droplet for comparison.
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Frequency, GHz RCS,m2

0.41 0.033-2.33
1.i2 0.098-0.997
2.89 0.140-1.05
4.80 0.368-1.88
9.375 0.495-1.22

Examples of the RCS of aircraft are shown in figures (2.14) through (2.16). The

B-26 pattern in figure (2.15) was measured at a wavelength of 1 O cm (frequency of

about 3 GHz); the polar format is useful for display purposes but is not as convenient

for detailed comparisons as a rectangular format is. The RCS levels shown in the scale

model Boeing 737 patterns of figure (2.15) are those at the measurement frequency. To

obtain the corresponding full-scale values, one must add 23.5 dB (IO log 225); the full

scale frequency is one-fifteenth of the measurement frequency in this case, or 667MHz.

The patterns shown in figure (2.16) are medians of RCS averages taken in cells 10°

square. With modern data-collecting and -recording equipment, it is feasible to plot

ured results at much finer intervals than are plotted in this figure. Note that the data

relative to 1 ft; to convert the displayed results to dBsrn, one must subtract 10.3 dB

O logl0.76.ft2 lm2).

An empirical formula for the RCS of a naval ship is,

•
(2.4)

re f İs the radar frequency is gigahertz and D is the full-load displacement of the

l in kilotons. The relationship is based on measurements of several ships at low

· g angels and represents the average of the median RCS in the port and starboard

', and quarter aspects, but excluding the broadside peaks. The statistics include data

~edat normal wavelength of 3.25, i0.7 and 23cm for ship displacement ranging
2 to 17 kilo-tones.
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Fig.2.15. charts the RCS of a ship measured at 2.8 and 9.225 GHz at

rizontal polarization. The data was collection by a shore-based radar instrumental

:omplexas the ship steamed in a large circle on Chesapeake Bay. The three traces in

these charts are 80, 50, 20 percentile levels of the signals collected over aspect angle

"windows't Z'iwide, The patterns are not symmetrical, especially at higher frequency.
"' "'iote that the RCS can exceed 1 mi: (64.1 dBm).

••
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Fig.2.16. Measure of RCS of a one-fifteenth scale model Boeing 737 commercial jet at

10 GHz and vertical polarization

Figure (2.19) summarizes the general RCS levels of the wide variety of targets

discussed in this section, with the RCS metallic sphere shown as a function of its

volume for comparison. The ordinate is the RCS levels of the wide variety of targets

discussed in this section, with the RCS of the metallic sphere shown as a function of its

volume for comparison. The ordinate is the RCS in square meters, and the abscissa is

the volume of the target in cubic feet. Because the chart is intended only to display the

wide range in RCS that may be encountered in practice, the locations of target on the

chart are approximately at best. Within given classes of target the RCS may be expected

to vary by as much as 20 or 30 dB, depending on frequency.jaspect angle, and specific

target characteristics.
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.17. Measured RCS of a C-54 aircraft in azimuth and elevation planes for linear

circular polarizations. Plotted values are the average RCS in a cell 10° in azimuth

_ 10° in elevation. Azimuth patterns a and care for a fixed elevation angle of -10°.

remaining patterns are in the elevation plane for fixed nose-on or tail-on azimuths.

first and second subscripts give transmitted and received polarizations; H and V

icate horizontal and vertical polarizations, and Rand L indicate right circular and left

RCS Prediction Techniques

Althoughthe complexity and size of most scattering objects preclude the appli

raııon of exact methods of radar cross-section prediction, exact solutions for simple

provide valuable checks for approximate methods. The exact methods are

cted to relatively simple or relatively small objects İIJ the Raleigh and resonant

gions, while most of the approximate methods have been developed for the optics

gion. There are exceptions to these genera] limitations, of course, the exact solutions

many objects can be used for large bodies in the optics region if one uses arithmetic

sufficient precision, and many of the optics approximations can be extended to

ies of modest electrical size in the resonance region. Low-frequency approximations

eloped for the Raleigh region can extend into the resonance region.

31



Fig.2.18. Measure RCS of a large naval auxiliary ship for horizontal incident

polarization. Upper pattern (a) is for 2.8 GHz and the lower (b) for 9.225 GHz.
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Fig.2.19. Summary of RCS of targets discussed in the section.
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2.3.1. Exact Methods

Differential equations. The exact methods are based on either the integral or

differential forms of Maxwell' s four differential equations constitute a succinct

statement of the relationship between electric and magnetic fields produced by currents

and charges and by each other. The Fourier equations may be manipulated for isotropic

source-free regions to generate the wave equations

(2.5)

where F represents either the electric field or the magnetic field. Equation 2.5. is a

second order differential which may be solved as a boundary value problem when the

fields on the surface of the scattering obstacle are specified. The fields are typically

represented as the sum of known and unknown components (incident and scattered

fields), and the boundary conditions are known relationship that must be satisfied

between the fields (both electric and magnetic) just inside and just outside the surface of

the obstacle exposed to the incident wave. Those boundary conditions are particularly

simple for solid conducting or dielectric objects.

The boundary conditions involve all three components of the vector fields, and

the surface of the body must coincide with a coordinate of the geometrical system in

which the body is described. The solution of the wave equation is most useful for

those system in which the equation is separable into ordinary differential equations in

each of the variables. The scattered fields are typically expressed in terms of infinite
••

series, the coefficients of which are to be determined in the actual solution of the

problem. The solution allows the field to be calculated at any point in sp\Ce, which.
in RCS problems is the limit as the distance from the obstacle becomes infinite. The

product implied in equations (2.1) and (2.2) is then formed from the solution of the

wave equation, yielding the scattering cross section or the scattering width.

An example of a solution of the wave equation is the following infinite series

for a perfectly conducting sphere:
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..!!_ =ıt (-ıt(2n+ ı) .
Jra2 n=l J,1 (kaXkaJ,1_1 (ka)- nfn (ka)

2

(2.6)

The function fn (x) is a combination of spherical Bessel functions of order n and

may be formed from the two immediately lower order functions by means of the

recursion relationship

(2.6)

An efficient computational algorithm may be developed by using the two lowest

orders as starting values,

f)x)= 1

.fı(x)= (ı;x}-i

Equation (2.6) was used to compute the RCS characteristics plotted in Figs. 2.2

2.3. The infinite summation is truncated at the point where additional terms are

negligible. The number of terms N required to compute the value of the bracketed term

equation (2.6) to six decimal places for ka < 100 is approximately

N = 8.53+ 1.21(ka)-ü.001(ka)2

~
The constants in Equations (2.8) are slightly different for ka > 100 and are lower

value for fewer decimal places in the required accuracy.
•

The solution of the wave equation for the infinite, perfectly conducting circular

• inder can be resolved into two cases, one each for the incident electric or magnetic

d parallel to the cylinder axis. The expressions are slightly simpler than Equation

6) and involve cylindrical Bessel functions of the first and second kinds. Figure

70) and (2.21) illustrates the backscattering behavior for the two principal

·zations as a function of the electrical circumference of the cylinder.
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The response for E polarization figure (2.20) is much larger than geometric optics

value, J[(1 when the cylinder is Jess than a fraction of a wavelength in circumference but

it approaches the geometric optics value within a few percent for cylinders larger than

about 2 wavelengths in circumference. The backscattering is markedly different for H 

polarization figure (2.21 ), exhibiting the same kind of undulations noted earlier in the

case of the metallic sphere. These undulations are caused by creeping waves that

propagate around the rear of the cylinder just as they do around a sphere. However, the

peaks and nulls of the sphere and cylinder interference patterns are not perfectly aligned

with each another, suggesting that are the relative angles between the creeping waves

and specular contributions are slightly different for the two geometries.

The exact expression for the RCS of the dielectric cylinder is more complicated

than for the conducting cylinder, but it accounts for the fact that energy penetrates the

interior of the body. Unless the cylinder material is a

Perfect insulator,

ıt-

o~~~~-~~~~~~~~~~~~~ 
o 8 10

ig 2.20 Normalized scattering width of an infinite, perfectly conducting cylinder for E
"polarization (incident electric field parallel to the cylinder axis). The normalization is

with respect to the geometric optics return from the cylinder.
•

Ou.....~~-•~~~-'-~~~-'-~~~~~~-' 
o 6 10
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Fig.2.21. Normalized scattering width of an infinite, perfectly conducting cylinder ofH

polarization (incident magnetic field parallel to the cylinder axis)

Its index of refraction is a complex function whose imaginary part gives rise to

ses in the material. This in turn requires the computation of Bess functions of

complex argument, not an insignificant undertaking. Quite simple formulas for the

scattering width may be obtained in the Raleigh region, however, for which the cylinder

diameter is much smaller than the incident wavelength. Figure (2.5) iIIustrates the

scatteringbehavior of very thin dielectric cylinders.

2.3.1.1. Integral Equations

Maxwell's equations may also be manipulated to generate a pair of integral

equations(known as Stratton-Chu equation's).

(2.9)

(2.10)

•where fi is the unit surface normal erected at the surface patch dS and the Green's

fınıctionIf/ is,
•

ıp = e11ı:r I 4nr, (2.11)

the distance r in Equation (2.11) is measured from the surface patch dS to the point at

which the scattered fields are desired. These expressions state that if the total electric

field and magnetic field distributions are known over a closed surface S, the scattered
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field any where in the space can be compared by summing (integrating) those surface

field distributions.

The surface field distributions may be interpreted as induced electric and magnetic

currents and charges, which become unknowns to be determined in a solution. The two

equations are coupled because the unknown appear in both. Unknown quantities also

appear in both sides of the equations because the induced fields include the unknown

field scattered intensity. The method of solution is know as method of moments

(MOM), reducing the integral equation to a collection of homogeneous linear equation

hich may be solved by matrix techniques.

The solutions of integral equations begin with the specifications of the relation

between the incident and scattered fields on the surface S, as governed by the material

which the object is made. If the body is a perfect conductor or if the electric and

magnetic fields can be related by a constant (the surface impedance boundary

ditions), then equations become decoupled, only one or the other needs to be solved.

the body is not homogeneous then the field must be sampled at intervals within its

·or volume, complicating the solution.

Once the boundary conditions have been specified, the surface S is split into a

ection of small discrete patches, as suggested in figure (2.22). The patches must be

il enough (typically less than 0.2 X) that the unknown current and charges on each
"'h are constant or one can be described as simple function. A weighing function may

assigned to each patch, and the problem is essentially solved when the amplitude and•
phase of those functions have been determined. •

The point of observation is forced down to a general surface patch, whereupon the

on the left-hand side of equation (2.9) and (2.1O) are those due to the fields on all

Iing patches, plus the incident field and "self-field". The self-field (or charge or

-.rent) is moved to the right side of the equations, leaving only the known incident

on the left side. When the process is repeated for each patch on the surface, a

of 2 n linear homogeneous equations in 2 n unknown is generated. If the
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ry conditions permit the decoupling of the equations, the number of unknown

be halved ( n equations in n unknowns ). The coefficients of the resulting matrix

e only the electrical distance (in wavelengths) between all patches taken by pairs

the orientations of the patch surface normal. The unknown fields may be found by

· g the resulting matrix and multiplying the inverted matrix by the column matrix

nting the incident at each field at each patch. The surface fields are then summed

grals like equations (2.9) and (2.10) to obtain the scattered field, which may be

,....._. in equation (2.11) to compute the RCS, Equation (2.2) and the two-dimensional

-PTnarts of equations (2.9) and (2.10) must be used for two-dimensional geometries,

22 The method of moments divides the body surface into a collection of discrete

patches.

The method of moments has become a powerful tool in the prediction and analysis

omagnetic scattering, with applications in antenna design as well as RCS

"ion. The method has three limitations, however,
.,

••
First, because computer memory and processing time both increase rapidly with

trical size of the object, MOM is economically restricted to objects not much

than a few wavelengths, or perhaps a few dozen wavelengths, in size. As such,

is not a useful tool for predicting the RCS of, say, a jet fighter in the beam of

operating at I O GHz. The second limitation is that MOM yields numbers, not

~-ııa=s, and is therefore a numerical experimental tool. Trends may be established

_ running a numerical experiment repeatedly for small parametric changes in the

or configuration of an object or in the angle of arrival or the frequency of the
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incident wave. Third, the solutions for some objects may contain spurious resonances

that do not actually exist, thereby reducing the confidence one may have in applying the

method to arbitrary structures.

Figure (2.23) traces the broadside RCS of a perfectly conducting cube computed

by means of the method of moments. Spurious resonances were suppressed in the

computations by forcing the normal surface component of the magnetic field to zero.

The surface of the cube was divided into 384 patches (64 patches per face), which was

about the limit of the central memoıy of the cyber 750 computer used in the

computations. It required more than 2 h for the cyber 750 to generate the data plotted in

the figure (2.26).

2.3.2. Approximate Methods

Approximate methods for computing scattered flelds are available in both the
igh and the optics regions. Raleigh region approximations may be derived by

· g the wave equation (2.5) power series of the wave number k. The expanı;ionh

mı-static for small wave number (long wavelengths compared with typical body

ions), a higher order terms become progressively more difficult to obtain. The K

of a Raleigh scatterer is veıy broad, especially if the object has similar

erse and IongitudinaJ dimensions. The magnitude of the echo proportional to the

of the volume of the object and varies as to the power of the frequency of the

ilident wave. Because the method of moments is well suited to the solution of the

·gh region problems, approximate methods for predicting the RCS of electrically•
objects are not represented here.

Several approximate methods have been devised for the optics region, each with

·cular advantages and illuminations. The most mature of the methods are

·c optics and physical optics, with latter methods attacking the problems of

·on from edges and shadow boundaries. While the general accuracy of the optic

approximations improves as the scattering obstacles become electrically large,

of them give reasonable accurate results (within 1 or 2 dB) for objects as small as
gth or so.
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estimated by representing the target as a collection of feature, calculating the individual

contributions, and then summing the contributions coherently or non-coherently. More

detailed formulas are given in section for surface orientations not included.

2.2. Complex Objects

Objects like antennas, insects, birds, airplanes, and ships can be more complex

than those discussed above, either because of the multiplicity of scattered on them or

because of the complexity of their surface "Electric constants. Insects are examples of
the latter.
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Fig.2.13. Coordinate system for the RCS pattern in fig (2.11).
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Measured values for a dozen species are listed in Table (2.2), (The spider

an arachnid, not an insect, of course.). The animals were live for the measurements

had been drugged to immobilize them. figure (2.14) shows the relationship between

RCS and the mass of an insect, with the variation of a water droplet shown for

parison. Similar comparisons have been made for both birds and insects. The
wing values have been reported for the RCS of a man;

Broadside End-on
Length, Width, RCS, RCS,

ct mm mm dBsm dBsm
20 4 -30 -40

Armvworm moth 14 4 -39 -49
Alfalfa caterpillar butterfly 14 1.5 -42 - 57

oneybee worker 13 6 -40 -45
California harvester ant 13 6 -54 - 57

ge crane fly 13 1 -45 -57
een bottle flv 9 3 -46 -50
elve-spotted cucumber beetle 8 4 -49 - 53
versem Iadv beetle 5 3 -51 -60·der (unidentified) 5 3.5 - 50 - 52

TABLE 2.2 Measured insect RCS at 9.4 GHz.
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The solid trace is the calculated RCS of water droplet for comparison.
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Frequency, GHz RCS,m2

0.41 0.033-2.33
1.i2 0.098-0.997
2.89 0.140-1.05
4.80 0.368-1.88
9.375 0.495-1.22

Examples of the RCS of aircraft are shown in figures (2.14) through (2.16). The

B-26 pattern in figure (2.15) was measured at a wavelength of 1 O cm (frequency of

about 3 GHz); the polar format is useful for display purposes but is not as convenient

for detailed comparisons as a rectangular format is. The RCS levels shown in the scale

model Boeing 737 patterns of figure (2.15) are those at the measurement frequency. To

obtain the corresponding full-scale values, one must add 23.5 dB (IO log 225); the full

scale frequency is one-fifteenth of the measurement frequency in this case, or 667MHz.

The patterns shown in figure (2.16) are medians of RCS averages taken in cells 10°

square. With modern data-collecting and -recording equipment, it is feasible to plot

ured results at much finer intervals than are plotted in this figure. Note that the data

relative to 1 ft; to convert the displayed results to dBsrn, one must subtract 10.3 dB

O logl0.76.ft2 lm2).

An empirical formula for the RCS of a naval ship is,

•
(2.4)

re f İs the radar frequency is gigahertz and D is the full-load displacement of the

l in kilotons. The relationship is based on measurements of several ships at low

· g angels and represents the average of the median RCS in the port and starboard

', and quarter aspects, but excluding the broadside peaks. The statistics include data

~edat normal wavelength of 3.25, i0.7 and 23cm for ship displacement ranging
2 to 17 kilo-tones.
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Fig.2.15. charts the RCS of a ship measured at 2.8 and 9.225 GHz at

rizontal polarization. The data was collection by a shore-based radar instrumental

:omplexas the ship steamed in a large circle on Chesapeake Bay. The three traces in

these charts are 80, 50, 20 percentile levels of the signals collected over aspect angle

"windows't Z'iwide, The patterns are not symmetrical, especially at higher frequency.
"' "'iote that the RCS can exceed 1 mi: (64.1 dBm).

••
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Fig.2.16. Measure of RCS of a one-fifteenth scale model Boeing 737 commercial jet at

10 GHz and vertical polarization

Figure (2.19) summarizes the general RCS levels of the wide variety of targets

discussed in this section, with the RCS metallic sphere shown as a function of its

volume for comparison. The ordinate is the RCS levels of the wide variety of targets

discussed in this section, with the RCS of the metallic sphere shown as a function of its

volume for comparison. The ordinate is the RCS in square meters, and the abscissa is

the volume of the target in cubic feet. Because the chart is intended only to display the

wide range in RCS that may be encountered in practice, the locations of target on the

chart are approximately at best. Within given classes of target the RCS may be expected

to vary by as much as 20 or 30 dB, depending on frequency.jaspect angle, and specific

target characteristics.

30



-,-·.··r-ı-r-ı;:; 4(.) r-r,-~ 40D
~ A•o• · 
- 30 · 30

" ~..,..o--?;~.,

! ~:~0"vv~~=-J! ~:l"vv ı~:. .~ •a-lit-! ~ •aH~ A:,SQo
•o··· ··· · •o· o

O '20 40 60 80 \QO120140160 \00 O -\O -20 -30 -40 O -\O-20 -30 ·40
AZIMUTH ASPECT ANGLE (degrees) ELEVATION ASPECT ANGLE (de9re~11

(o} lb)

- ;;o 

~ ~Qr I , 1 J , ı 40, I I
- A,o•
- 30
">g 20
"cg ıo

30 ••

20 

.17. Measured RCS of a C-54 aircraft in azimuth and elevation planes for linear

circular polarizations. Plotted values are the average RCS in a cell 10° in azimuth

_ 10° in elevation. Azimuth patterns a and care for a fixed elevation angle of -10°.

remaining patterns are in the elevation plane for fixed nose-on or tail-on azimuths.

first and second subscripts give transmitted and received polarizations; H and V

icate horizontal and vertical polarizations, and Rand L indicate right circular and left

RCS Prediction Techniques

Althoughthe complexity and size of most scattering objects preclude the appli

raııon of exact methods of radar cross-section prediction, exact solutions for simple

provide valuable checks for approximate methods. The exact methods are

cted to relatively simple or relatively small objects İIJ the Raleigh and resonant

gions, while most of the approximate methods have been developed for the optics

gion. There are exceptions to these genera] limitations, of course, the exact solutions

many objects can be used for large bodies in the optics region if one uses arithmetic

sufficient precision, and many of the optics approximations can be extended to

ies of modest electrical size in the resonance region. Low-frequency approximations

eloped for the Raleigh region can extend into the resonance region.
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Fig.2.18. Measure RCS of a large naval auxiliary ship for horizontal incident

polarization. Upper pattern (a) is for 2.8 GHz and the lower (b) for 9.225 GHz.

r~'"·~···
tf/.'i

. SOME RCS V.'1,l'UES

1Q4 ,

•

"'

10-2 ,,

,o-.,
INSECTS 

..__.__._.__I,,.,. ' l..,~""'--''-. __._,..__,
11rl• JO·~ ıo-:ı H)O 10' 104 10"

Fig.2.19. Summary of RCS of targets discussed in the section.
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2.3.1. Exact Methods

Differential equations. The exact methods are based on either the integral or

differential forms of Maxwell' s four differential equations constitute a succinct

statement of the relationship between electric and magnetic fields produced by currents

and charges and by each other. The Fourier equations may be manipulated for isotropic

source-free regions to generate the wave equations

(2.5)

where F represents either the electric field or the magnetic field. Equation 2.5. is a

second order differential which may be solved as a boundary value problem when the

fields on the surface of the scattering obstacle are specified. The fields are typically

represented as the sum of known and unknown components (incident and scattered

fields), and the boundary conditions are known relationship that must be satisfied

between the fields (both electric and magnetic) just inside and just outside the surface of

the obstacle exposed to the incident wave. Those boundary conditions are particularly

simple for solid conducting or dielectric objects.

The boundary conditions involve all three components of the vector fields, and

the surface of the body must coincide with a coordinate of the geometrical system in

which the body is described. The solution of the wave equation is most useful for

those system in which the equation is separable into ordinary differential equations in

each of the variables. The scattered fields are typically expressed in terms of infinite
••

series, the coefficients of which are to be determined in the actual solution of the

problem. The solution allows the field to be calculated at any point in sp\Ce, which.
in RCS problems is the limit as the distance from the obstacle becomes infinite. The

product implied in equations (2.1) and (2.2) is then formed from the solution of the

wave equation, yielding the scattering cross section or the scattering width.

An example of a solution of the wave equation is the following infinite series

for a perfectly conducting sphere:
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..!!_ =ıt (-ıt(2n+ ı) .
Jra2 n=l J,1 (kaXkaJ,1_1 (ka)- nfn (ka)

2

(2.6)

The function fn (x) is a combination of spherical Bessel functions of order n and

may be formed from the two immediately lower order functions by means of the

recursion relationship

(2.6)

An efficient computational algorithm may be developed by using the two lowest

orders as starting values,

f)x)= 1

.fı(x)= (ı;x}-i

Equation (2.6) was used to compute the RCS characteristics plotted in Figs. 2.2

2.3. The infinite summation is truncated at the point where additional terms are

negligible. The number of terms N required to compute the value of the bracketed term

equation (2.6) to six decimal places for ka < 100 is approximately

N = 8.53+ 1.21(ka)-ü.001(ka)2

~
The constants in Equations (2.8) are slightly different for ka > 100 and are lower

value for fewer decimal places in the required accuracy.
•

The solution of the wave equation for the infinite, perfectly conducting circular

• inder can be resolved into two cases, one each for the incident electric or magnetic

d parallel to the cylinder axis. The expressions are slightly simpler than Equation

6) and involve cylindrical Bessel functions of the first and second kinds. Figure

70) and (2.21) illustrates the backscattering behavior for the two principal

·zations as a function of the electrical circumference of the cylinder.
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The response for E polarization figure (2.20) is much larger than geometric optics

value, J[(1 when the cylinder is Jess than a fraction of a wavelength in circumference but

it approaches the geometric optics value within a few percent for cylinders larger than

about 2 wavelengths in circumference. The backscattering is markedly different for H

polarization figure (2.21 ), exhibiting the same kind of undulations noted earlier in the

case of the metallic sphere. These undulations are caused by creeping waves that

propagate around the rear of the cylinder just as they do around a sphere. However, the

peaks and nulls of the sphere and cylinder interference patterns are not perfectly aligned

with each another, suggesting that are the relative angles between the creeping waves

and specular contributions are slightly different for the two geometries.

The exact expression for the RCS of the dielectric cylinder is more complicated

than for the conducting cylinder, but it accounts for the fact that energy penetrates the

interior of the body. Unless the cylinder material is a

Perfect insulator,

ıt-

o~~~~-~~~~~~~~~~~~~ 
o 8 10

ig 2.20 Normalized scattering width of an infinite, perfectly conducting cylinder for E
"polarization (incident electric field parallel to the cylinder axis). The normalization is

with respect to the geometric optics return from the cylinder.
•

Ou.....~~-•~~~-'-~~~-'-~~~~~~-' 
o 6 10
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Fig.2.21. Normalized scattering width of an infinite, perfectly conducting cylinder ofH

polarization (incident magnetic field parallel to the cylinder axis)

Its index of refraction is a complex function whose imaginary part gives rise to

ses in the material. This in turn requires the computation of Bess functions of

complex argument, not an insignificant undertaking. Quite simple formulas for the

scattering width may be obtained in the Raleigh region, however, for which the cylinder

diameter is much smaller than the incident wavelength. Figure (2.5) iIIustrates the

scatteringbehavior of very thin dielectric cylinders.

2.3.1.1. Integral Equations

Maxwell's equations may also be manipulated to generate a pair of integral

equations(known as Stratton-Chu equation's).

(2.9)

(2.10)

•where fi is the unit surface normal erected at the surface patch dS and the Green's

fınıctionIf/ is,
•

ıp = e11ı:r I 4nr, (2.11)

the distance r in Equation (2.11) is measured from the surface patch dS to the point at

which the scattered fields are desired. These expressions state that if the total electric

field and magnetic field distributions are known over a closed surface S, the scattered
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field any where in the space can be compared by summing (integrating) those surface

field distributions.

The surface field distributions may be interpreted as induced electric and magnetic

currents and charges, which become unknowns to be determined in a solution. The two

equations are coupled because the unknown appear in both. Unknown quantities also

appear in both sides of the equations because the induced fields include the unknown

field scattered intensity. The method of solution is know as method of moments

(MOM), reducing the integral equation to a collection of homogeneous linear equation

hich may be solved by matrix techniques.

The solutions of integral equations begin with the specifications of the relation

between the incident and scattered fields on the surface S, as governed by the material

which the object is made. If the body is a perfect conductor or if the electric and

magnetic fields can be related by a constant (the surface impedance boundary

ditions), then equations become decoupled, only one or the other needs to be solved.

the body is not homogeneous then the field must be sampled at intervals within its

·or volume, complicating the solution.

Once the boundary conditions have been specified, the surface S is split into a

ection of small discrete patches, as suggested in figure (2.22). The patches must be

il enough (typically less than 0.2 X) that the unknown current and charges on each
"'h are constant or one can be described as simple function. A weighing function may

assigned to each patch, and the problem is essentially solved when the amplitude and•
phase of those functions have been determined. •

The point of observation is forced down to a general surface patch, whereupon the

on the left-hand side of equation (2.9) and (2.1O) are those due to the fields on all

Iing patches, plus the incident field and "self-field". The self-field (or charge or

-.rent) is moved to the right side of the equations, leaving only the known incident

on the left side. When the process is repeated for each patch on the surface, a

of 2 n linear homogeneous equations in 2 n unknown is generated. If the
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ry conditions permit the decoupling of the equations, the number of unknown

be halved ( n equations in n unknowns ). The coefficients of the resulting matrix

e only the electrical distance (in wavelengths) between all patches taken by pairs

the orientations of the patch surface normal. The unknown fields may be found by

· g the resulting matrix and multiplying the inverted matrix by the column matrix

nting the incident at each field at each patch. The surface fields are then summed

grals like equations (2.9) and (2.10) to obtain the scattered field, which may be

,....._. in equation (2.11) to compute the RCS, Equation (2.2) and the two-dimensional

-PTnarts of equations (2.9) and (2.10) must be used for two-dimensional geometries,

22 The method of moments divides the body surface into a collection of discrete

patches.

The method of moments has become a powerful tool in the prediction and analysis

omagnetic scattering, with applications in antenna design as well as RCS

"ion. The method has three limitations, however,
.,

••
First, because computer memory and processing time both increase rapidly with

trical size of the object, MOM is economically restricted to objects not much

than a few wavelengths, or perhaps a few dozen wavelengths, in size. As such,

is not a useful tool for predicting the RCS of, say, a jet fighter in the beam of

operating at I O GHz. The second limitation is that MOM yields numbers, not

~-ııa=s, and is therefore a numerical experimental tool. Trends may be established

_ running a numerical experiment repeatedly for small parametric changes in the

or configuration of an object or in the angle of arrival or the frequency of the
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incident wave. Third, the solutions for some objects may contain spurious resonances

that do not actually exist, thereby reducing the confidence one may have in applying the

method to arbitrary structures.

Figure (2.23) traces the broadside RCS of a perfectly conducting cube computed

by means of the method of moments. Spurious resonances were suppressed in the

computations by forcing the normal surface component of the magnetic field to zero.

The surface of the cube was divided into 384 patches (64 patches per face), which was

about the limit of the central memoıy of the cyber 750 computer used in the

computations. It required more than 2 h for the cyber 750 to generate the data plotted in

the figure (2.26).

2.3.2. Approximate Methods

Approximate methods for computing scattered flelds are available in both the
igh and the optics regions. Raleigh region approximations may be derived by

· g the wave equation (2.5) power series of the wave number k. The expanı;ionh

mı-static for small wave number (long wavelengths compared with typical body

ions), a higher order terms become progressively more difficult to obtain. The K

of a Raleigh scatterer is veıy broad, especially if the object has similar

erse and IongitudinaJ dimensions. The magnitude of the echo proportional to the

of the volume of the object and varies as to the power of the frequency of the

ilident wave. Because the method of moments is well suited to the solution of the

·gh region problems, approximate methods for predicting the RCS of electrically•
objects are not represented here.

Several approximate methods have been devised for the optics region, each with

·cular advantages and illuminations. The most mature of the methods are

·c optics and physical optics, with latter methods attacking the problems of

·on from edges and shadow boundaries. While the general accuracy of the optic

approximations improves as the scattering obstacles become electrically large,

of them give reasonable accurate results (within 1 or 2 dB) for objects as small as
gth or so.

39



J!;,) I I p. T'"""~~

O I 2 3 4 S ~

Fig.2.23. Broadside RCS of a perfectly conducting cube.

The theory of the geometric optics is based on the conversation of energy within a

slender fictions tube called a ray. The direction of propagation is along the tube, the

contours of equal phase are perpendicular to it. In a lossless medium, all the energy

entering a tube must come out the other, but the energy lossless within the medium may

also be accounted for. An incident wave may be represented as a collection of a large

number of rays, and when a ray strikes the face, part of energy is reflected and part of it

· absorbed by the surface. The amplitude and the phase of the reflected and transmitted

rays depend on the properties of the media on either side of the surface. The reflection is

perfect if the material is perfectly conducting, and no energy is transmitted across the
"boundary. When the energy can pass through the surface, transmitted rays are bent

towards the surface normal in crossing a surface into an electrically denser medium
••higher index of refraction) and away from the surface normal into a less denser

medium. The bending of rays is known as refraction.

'I

Depending upon surface of cuıvature and body material, reflected and transmitted

waves may be diverged from one another or they may converge towards each other.

This dependence is the basis of the design of lenses at radar wavelength as well as

optical wavelength. The variation of the refractive index of water molecules with
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wavelength is responsible for rainbow phenomenon, the result of the two refractions

near the front of the spherical droplet of water and single internal reflection from rear.

Secondary and tertiary rainbows are due to double and triple internal reflections.

The reduction in intensity as the ray diverges (spread way) from the point of

reflection can be calculated from the curvatures of the reflecting surface and the

incident wave at the specular point, the point on the surface where the angle of

reflection is equal to the angle of incidence. The principle radii of curvatures of the

surface are measured in two orthogonal planes at the specular points, as shown in figure

2.24. When the incident wave is planer and the direction of interest is back towards the

source, the geometric optics RCS is simply,

(2.12)

This formula becomes exact in the optical limit of vanishing wavelength and is

obably accurate to 1 O or 15 percent for radii of curvature as small as 2 or 3

velengths. It assumes that the specular point is not close to an edge. When app1ied to

ielectric objects, the expression should be multiplied by the square of the voltage

flection coefficient associated with the material properties of the object. Internal

reflections should also be accounted for, and the phase of internally reflected rays

tjusted according to the electrical path lengths traversed within the body material. The

RCS then should be computed as the coherent sum of the surface reflection plus all

ignificant internal reflections. Equation (2.12) fails when one or both surface radii of

ature at the specular point become infinite, yielding infinite RCS, which is obviously

ong. This occurs for flat and singly curved surfaces.
•

The theory of physical optics (PO) is a suitable alternative for bodies with flat and

singly curved surface features. The theory is based on ·two approximations in the

lication of equations (2.9) and (2.10), both of which are reasonably effective

roximations in a host of practical cases. The first is the far-field approximation,

'ch assumes that the distance from the scattering obstacle to the point of observation

large compared with any dimension of the obstacle itself This allows one to replace

gradient of Green's function with
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Fig.2.24. The geometric optics RCS of a doubly curved surface depends on the

principal radii of curvature at the spectacular points. The specular point is that point on

the surface normal points towards the radar.

·here a1 and a2 are the radii of curvature of the body surface at the specular point.

(2.13) 'l

(2.14)

where r is the position vector of integration patch dS and s is a unit vector pointing from

an origin in or near the object to the far-field observation point, usually back toward the

radar. Ro is the distance from the origin of the object to the far-field observation point.
@I.

The second is the tangent plane approximation, in which the tangential field
•

components n x E and n x H are approximated by their geometric optics values. That

is, a tangent plane is passed through the surface coordinate at the patch dS, and the total

surface fields are taken to be precisely those that would have existed had the surface at

dS been infinite and perfectly flat. Thus the unknown fields in the integrals of equations

(2.9) and (2.10) may be expressed entirely in terms of the known incident field values.

The problem then becomes one of evaluating one of the two integrals and substituting

the result into equations (2.1) to obtain the RCS.
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If the surface is a good conductor, the total tangential electric field is

ally zero and the total tangential magnetic field is twice the amplitude of

incident tangential magnetic field.

nxE=O , (2.15)

n x H = {2n x H;} , illuminated surface

(2. 16)

nxH=O shaded surface

Note that the tangential components of both the electric and the magnetic fields

set to zero over those parts of the surface shaded from the incident field by other

. surfaces. Other approximations may be devised for non-conducting surfaces; if

incident wavelength is long enough, for example, the surface of a soap bubble or the

of a tree may be modeled as a thin membrane, on which neither the electric nor the

etic fields are zero.

The integral is easy to evaluate for flat metallic plates because the phase is the

.• quantity within the integral that varies, and it varies linearly across the surface. The

ı for a rectangular plate viewed in aprincipal plane is

4 I A cos e~ sin(kl sin e)12
a= Jr •------

1 2 klsinB '
(2.17)

••

e A is the physical area of the plate, O is the angle between its surface normal and

direction to the radar, and tis the length of the plate in the principal plane containing

surface normal and the radar line of sight. A more general physical optics formula is

·•able for the bistatic scattering of a polygonal plate with an arbitrary number of

ides,
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A rectangular plate has a pair of orthogonal principal planes, and the edge in

equation (2.17) is that lying in the plane of measurement. If we designate w as the width

.~ the plate in the opposite plane, the area of the plate is A= lw . To evaluate the

maximum side lobe levels of the plate RCS in the principal plane of measurement we

:y replace the numerator of the sin (x)/x term in equation (2.17) by unit. Normalizing

· · aspect to the square of the width of the plane in the to the measurement plane, we

· the maximum side lobe levels to be

CY 1 (2.18)-- = 'w2 ;rtan2 (J

Note that this result is independent of the radar wavelength.

The frequency independence of the principal-plane side lobes is illustrated in

(2.25). For viewing angles away from normal incidence, the plate edges are the

R unant sources of echo, and the sin (x)/x pattern is the result of the individual edge

ibutions changing phase with respect to each other as the aspect angle changes.

· g from Table (2.1); that the radar echoes of straight edges perpendicular to the line

·ght are independent of frequency, the result of equation (2.18) is to be expected.

•

ıg.2.25. The amplitudes of the principle-plane side lobes ofRCS of a flat rectangular

plates are independent of frequency.
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The physical optics formula for the RCS of a circular metallic disk is

a = 16,rlAcosB • Jı(kdsinB}ı2
1 kd sin B I ' (2.19)

where A is the physical area of the disk, dis its diameter, and Jl(x) is the

sel function of the first kind of order 1. Equations (2.17) and (2. 19) both reduce to the

ue listed in Table 2.1 for normal incidence.

The integral is somewhat more complicated to evaluate when the surface is singly

doubly curved. An exact evaluation can be performed for a circular cylinder and a

erical cap viewed along the axis of symmetry, but not for a truncated cone or a

erical cap seen along other than the axis of symmetry- Even so, the exact evaluation

the cylinder includes fictitious contributions from the shadow boundaries at the sides

the cylinder that do not appear in a stationaryphase approximation.

The amplitude of the elemental surface patch contributions changes slowly over the

surface of integration while the phase changes much more rapidly-such, the net

ntribution in regions of rapid phase change is essentially zero an may be ignored. As

specular regions are approached, on the other hand, phase variation slows down and

n reverses as the specular point is crossed. This results in a nonzero specular

ntribution to the integral. The phase variation near the shadow boundaries is rapid;

nee surface contributions here are ignored in a stationary phase evaluation, but an exact

evaluation includes them because the shadow boundaries are limits of integrations.

Because the actual surface field distributions do not suddenly drop to zero as the shadow

undary is crossed, as assumed by the theory, the shadow boundaries contributions are

spurious. Therefore, a stationary phase approximation of the physical optics integrals•
over closed surface tends to be more reliable than an exact evaluation.

With this in mind, this stationary phase result for a circular cylinder is,

a= kal21sin(klsinB)j2
ı kl sin O 1 '

(2.20)
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re a is the radius of the cylinder, 1 is the length, andB is the angle off board-side

idence. Equation (2.20) includes only the contribution from the curved side of the

ylinder and not its flat ends, which may be included by using the prescription of

uation (2.19). Equation (2.20) may be used to estimate the RCS of a truncated right

ular cone if the radius a is replaced by the mean radius of the cone and 1 is replaced

the length of the slanted surface.

While the theory of physical optics offers a significant improvement over geometric

ics for tlat and singly curved surfaces, it suffers from other drawbacks. Although one

,.ıııaıns the proper result for most of the illuminated surface, the physical optics integral

ds false contributions from the shadow boundaries, as noted above. Moreover, the

shows no dependence on the polarization of the incident wave and yields different

ts when the receiver and the transmitter are interchanged. The effects contradict

ation moves farther away from the specular direction. As illustrated in figure

il), the theory is quite accurate at broadside incidence (the specular case), but the

ıı.eement between the measurement and prediction becomes progressively worse as the

ring angle moves away from the direction. Keller, s geometrical theory of

tion (GTD) offers an improvement in both polarization dependence and the

ictedvalues in the wide-angle regions.

GTD is a ray-tracing method assigns an amplitude and phase to fields diffracted at

shadow boundaries and at surface discontinuities. Because the latter are much

significant in backscattering computations than the former, we focused here on

diffraction. The theory assumes "'that a ray striking as edge excites a cone of

ted rays, as in figure (2.26). The half angle of this diffraction cone is equal to the

between the incident ray and the edge. Unless the point of observation.lies on the•
·on cone, no value is assigned the diffracted field.

The scattering direction in backscattering problems is the reverse of the direction

idence, whence the diffraction cone becomes a disk, and the scattering edge

t is perpendicular to the line of sight.
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Fig.2.26. The KeIJer cone of diffraction rays.

The amplitude of the diffracted field is given by the product of a diffraction

icient and a divergence factor, and the phase depends on the phase of the edge

tion and on the distance between the observation point and the diffracting edge

nt. Two cases are recognized, depending whether the incident fieJd is polarized

eJ or perpendicular to the edge.

The diffracted field is given by the formula,

17 reiks l1t/4
i',d = e

.J2Jfks sin p (x + Y) , (2.21)

f is a divergence factor, X and Fare diffraction coefficients, P is the angle

n the incident ray and the edge, and s is the distance to the observation point

the point of diffraction. The difference of the two diffraction coefficients is used

the incident electric field is parallel to the edge (TM -polarization) and ttıe sum

the inddent magnetic field is parallel to the edge (TE polarization)

The divergence factor accounts for the decay in amplitude as the rays spread away

- om the edge element and includes the effects of the radius of the edge if it is curved,

at the end of a truncated cylinder, and the radius of curvature of the incident phase

ont." The divergence factor for a two-dimensional edge (of infinite length)

uıninated by a plane wave is T = I Is . The diffraction coefficients are,
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X = sin(K In)! n __
cos{1r / n)- cos[(¢, - ¢.• )/n] ' (2.22)

Y= sin(JT!n)!n __
cos(1r In)-cos[({/)1 -¢JI n] ' (2.23)

where¢1 and¢ s are the angles of the planes of incidence and scattering, as measured

from one face of the wedge, and n is the exterior wedge angle normalized with respect

to s ; see Fig. 2.27. The three-dimensional result for an edge of finite length/may be

obtained by inserting equations (2.22) and (2.23) in equations (2.21), using equation

(2.21}for V,lVo in equation (2.2},and then inserting equation (2.2}in equation (2.3).

Figures (2.28) and (2.29) compare measured and Gm predicted RCS patterns of a

right circular cone frustum. The theory replicates most of the pattern features for both

polarizations but fails in three different aspect angle regions. These aspects are the

specular directions of the flat surfaces at either end of the frustum (O and 180° on the

charts) and near the specular flash from the slanted side at 80. The failure is due to a

singularity in the diffraction coefficient Y along the reflection boundary, and a similar

singularity occurs in the diffraction coefficient along the shadow boundary, a situation

encountered in forward scattering.

The singularities are overcome in thephysical theory of diffraction (PTD) by P. Ia.

Ufimtsev, (Although these publications may be difficult to find, we cite them here for

completeness.) Like Keller, Ufimtsev relied on t (exact) canonical solution of the two-

dimensional wedge problem, •
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Fig.2.27. Ang]es of incidence and scattering for wedge geometry.

But he distinguished between "uniform" and non-uniform induced surface

nts. The uniform currents are the surface currents assumed in the theory of

ıysicai optics, and the non-uniform currents are associated with the edge itself

filamentary currents). The PTD result for two-dimensional problems may be

resented as a linear combination of TM and TE polarizations,

(2.24)

tkp Jg/4e e
H l) '

H = g h'"1,-Ps "' -y.t..ı.,.,
(2.25)

re p is the distance to the far-field observation point and f and g are, •

f = {(x-Y)-(x1 -Y1)} O 5. ft(a2p

(2.26)

f = !X -Y)-(x2 -Y2)}
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g = {(x + Y)-(:X-1 -Y1)} O 5: ı; 5: a2p

(2.27)

The subscripted coefficients are known as the physical optics diffraction

(228)

(2.29)

• (2.30)

(2.31)

Because the PO diffraction coefficients depend on whether the upper face, the

wer face, or both faces of the wedge are illuminated by the incident wave, the

iffraction coefficients are combined differentiy in the three recognizable sectors

fined in equations (2.26) and (2.27). And because surface terms have been suppressed

Iicitly by the subtraction of the PO coefficients, the effects of surface currents (as

g = {(x+ r)-(x2 - rı)}

X1 = -tan[a-(¢s +¢,)12] ,

GEOMETRICAL OIFFRACT!ON THEOF!Y

<iluıoa:
u

-8 a:
c3
<(

Jr -24

-32

Fig.2.28 RCS of a cone frustum, vertical polarization

Y1 = -tanf(¢s+ ¢i)l2] ,

X2 = tan[(¢5 -¢J!2] ,

Y2 =-tan[a-(¢ s +¢J/2] ,
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· tinguished from filamentary edge currents) must be accounted for independently.

Those surface terms may be obtained, for example, by using geometrical optics or,

paradoxically, the theory of physical optics after the edge terms themselves have been

mputed.

GTD and PTD are both based on the exact solution of the two-dimensional wedge

oblem, for which the directions of incidence and scattering are perpendicular to the

edge. When extended to the case of oblique incidence, the direction of observation must

along a generator of the Keller cone depicted in figure (2.26). If the edge is straight

of finite length, as in the three-dimensional word equation (2.3) provides an

proximaıion of the RCS. If the edge is curved, it may be regarded as a collection of

nitesimally short segments butted together, and the scattered fields may be computed

vıa an integration of incremental fields diffracted by each element of the edge. This is

concept introduced by Mitzner, and the summation of the fields diffracted by the

edge elements implies an integral around the edge contour. (Although Mitzner's most

gnificant results are embedded in a government document of limited distribution, we

Iude this source in our references because of its significance.

However, Mitzner sought the fields scattered in arbitrary directions, not just those

ug the local Keller cones, and for this purpose he developed his concept

16 ~2 48 64 80 96 112 128 144
A?_ıl~UTH ASPECT ANGLO: o {de9re!S) • •

~
--AX i S Of'

--- SYMMETRY I~ MEASIJREMENT
a',/
I LIN£ OF SIGHT i

- HORIZONfAL ı

·--~ f-E POLARIZATION~

~
1--..J~ ı.......

O 176

Fig.2.29. RCS of a cone frustum, horizontal polarization
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Extending the example provided by Ufimtsev, he devised a set of diffraction

cients for arbitrary directions of incidence and scattering. Not unexpectedly, those

cients are more complicated than the X's and Y's appearing in equations (2.22)

(2.23), and (2.28) through (2.31)

Minter expressed his result as the diffracted electric-field components parallel and

ndicular to the plane of scattering in terms of the components of the incident

· c field parallel and perpendicular to the plane of incidence. As such the

:tlffraction coefficients may be expressed as three separate pairs representing parallel-

Iel, perpendicular-perpendicular, and parallel-perpendicular (or perpendicular

el) combinations. One member of each pair is due to the other surface current on

diffracting edge (including the assumed filamentary edge currents), and the other is

to the uniform physical optics currents. Mitzner subtracted one member of each pair

m the other, thereby retaining the contributions from the filamentary currents alone.

The results have identically the form of expressions, in which the PO coefficients

subtracted from the non-PO coefficients. Thus, Mitzner expression for the scattered

Id contains only the contributions from the filamentary edge currents. In applying his

ry to scattering objects, therefore, the contributions of non-filamentary induced

ace currents must be accounted for separately, just as in Ufimtsev physical theory of

ction. When the directions of incident and scattering become perpendicular to an

, the perpendicular-parallel terms disappear and Mitzner diffraction coefficients

reduce identically to Ufimtsev.

Undertaking what he called a more rigorous evaluation of the fields induced on a

e, Michaeli duplicated Mitzner result for the total surface currents, copfirming
•

er prior development, but he did not explicitly remove the PO surface-current

ibutions. Thus, like Keller X and Y, Michaeli diffraction coefficients become

ar in the transition regions of the reflection and shadow directions. Michaeli later

tigated the removal of the singularities the cleverest of which was the use of a

ed coordinate system along the wedge surfaces.

While these methods of evaluating the fields scattered by edge elements may be

icable to smooth unbounded edges, they do not account for the discontinuities at
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comers where the edges tum abruptly in other directions. An attack on the problem has

been suggested by Sikta et al.

When applying these approximate high-frequency methods of estimating the fields

ıtered by complex objects, it is necessary to represent the object as a collection of

aces having relatively simple mathematical descriptions. The actual surface profiles

.y be approximated by segments that have convenientiy simple mathematical

riptions, such as flat plates, truncated spheroids, and truncated conic sections. The

1 RCS may be formed by summing the field contributions of the individual segments

· g the methods described above or whatever other tools are available. It is important

sum the field strengths of the individual contributions, complete with phase

·onships, before squaring to obtain the total RCS as given by equation (2.1).

This is tantamount to forming the coherent sum

(2.32)

re CYP is the RCS of the pth contributor and rpP is its relative phase angle, ac

ting for the two-way propagation of energy from the radar to the scattering feature

back again. If all phase angles are equally likely, one may form instead the non

rent sum,

v "a = ,i;.J(j p ' (2.33)

The non-coherent RCS is meaningful only if a change in the aspect angle or a

p in the instantaneous radar frequency does indeed result in a uniform distribution

phase angles. It is the average RCS formed over a time interval long enough to

e the equal likelihood of all phase angles.
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.CS Measurement Techniques

RCS measurements may be required for any of several reasons, ranging from sci

inquiry to verification of compliance with product specifications. There are no

standards governing instrumentation and measurement methods, but informal

ds of good measurement practice have been recognized for decades. Depending

size of the test object, the frequencies to be used another test requirements,

ements may be made in indoor test facilities or on outdoor ranges. Because one

dom interested in the RCS of an object for only one aspect angle, aJI static test

use turntables or rotators to vary the target aspect angle. Although the purpose of

often governs how the measurements will be made.

1. General Requirements

The most important requirement for RCS measurements is that the test object be

IIIIJlıınjnated by a radar wave of acceptably uniform amplitude and phase. Good practice

that the amplitude of the incident wave deviates by no more than 0.5 dB over

transverse and longitudinal extent of the target and that the phase deviation be less

22.5°. It is standard practice at some test ranges to physically probe the incident

at the onset of a test program to verify the amplitude uniformity of the incident

The phase requirement is the basis of the far-field range criterion

(2.34)

R is the distance between the instrumentation radar -and the test object and D is

maximum target dimension transverse to the line of sight. All other error sources

fixed, compliance with the far-field requirement is generally felt to yield data

an accuracy of I dB or better. Figure 2.30 illustrates the far-field requirement for a

of frequencies and targets.
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Fig.2.30. The far-field distance.

Errors attributable to radar instrumentation should be held to 0.5 dB or less, which

uires careful design and selection of components. The drift in system sensitivity

uld exceed this value for the time it takes to record a single RCS pattern, which

etimes may approach an hour. The dynamic range of the system should be at least

dB, with 60 dB preference. Linearity over this range should be 0.5 dB or better, and

•t steps should be taken to correct measured data via calibration of the receiver

er function (gain characteristics).

RCS measurements should be calibrated by the substitution method, in which an

of known scattering characteristics is substituted fur the target under test. Given

known (measured or calibrated) receiver gain characteristics, this establishes the

ıt by which a receiver output indication may be convened to an absolute radar

section value. Common calibration targets include metal spheres, right circular

rs, flat plates, and comer reflectors. The radar cross sections of these objects

be calculated by using the expressions

in Section (2.3). •

Because residual background reflections contaminate the desired target echo

they should be minimized by careful range design and operation. Interior walls

r test chambers must be covered with high-quality radar-absorbing material, and

ce of the ground on outdoor ranges should be smooth and free of vegetation.

support structures should be designed specifically for low echo characteristics.
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Fig.2.31. Measurement error as a function of the relative background power level.

The effects of undesired background signals are iIIustrated in figure (2.31). Be

e the relative phase between the background signal and the target signal is

own, two curves are shown; they correspond to perfect in-phase and out-of-phase

itions. ff the background signal is equal to the target signal (ratio of O dB) and the

are in phase, the total received power is 4 times the power due to either one. This is

value shown at the upper left of the chart (6 dB). If the two are out of phase, they

el each other and there is no signal at all (off the lower left of the chart). The chart

ws that if the error due to background signal is to be l dB or less, the background

be at least 20 dB below the signal ene intends to measure.

Three different kinds of support structures have been, demonstrated to be' useful in

measurement. They are the low-density plastic foam column, the string suspension

s, and the slender metal pylon. The echo from a plastic foam column arises from

mechanisms. One is a coherent surface reflection, and the other is a non-coherent

e contribution from the thousands of internal cells comprising the foam material.

column should be designed so that its surfaces are never closer than 5 to 10° to the

of sight to the radar (depending on frequency), thereby minimizing the effect of the

reflection. The non-coherent volume return is irreducible, however, and is not
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influenced by the orientation of the column. The volume return of suitable foam column

support materials is of the order of -58 dBsın/ft' of material at 10 GHz.

String suspension methods are best implemented indoors, where an overhead

pport point is normally available, although one documented design was seriously

idered for outdoor use. One of three configurations may be selected, all requiring a

om made sling or harness to support the target. The first uses a single overhead

rt point and guy lines to a floor-mounted turntable to rotate the target. The second

nfiguration suspends the target from an overhead turn table, reducing the guy lines

radiation is the most costly, using a pair of turntables slaved together, one in the ceiling
one on the floor.

The echo signal from a string depends on the length and diameter of the string, its

angle with respect to the incident wave, and its dielectric constant. No matter what

tilt of the string, it will be presented normal to the line of sight twice in a complete

tion of the target and may cause spike in the RCS pattern that could be erroneously

ibuted to the target unless otherwise accounted for. The RCS of a string rises with

power of its diameter in the Religh regions (see figure 2.5), and for a given

ile strength the diameter rises onlr as the square root of the load to be supported.

, because the echo signal increases with the square of the load-caring capacity,

· g suspension techniques are best suited for measurements of light objects or at low

·"'-

The metal target support pylon w;.as first suggested in 1964, but a practical

ılementationof the concept did not appear until 1976.The configuration of the pylon

sketched in figure (2.32), and it owes its electromagnetic performance- to the

ness of its leading edge and its tilt towards the radar (to the left in the diagram).

ns as tall as 95 ft have been built, and it is customa!6 to treat them with radar
~jJ; -u ı •or ffttıırm mzır , ıemrır1J1•1ii@ı•ı1, Ji ı1Jis ·rn+erdıiwi



value of the target. Most of the rotators for these pylons are dual-axis, azimuth-over

elevation designs. When measurements are made with the azimuth rotation angle tilted

back (away from the radar), parts of the target may sweep through the shadow cast by

the top of the pylon, possibly degrading the measurements. One way to avoid this is to

invert the target and tiit the rotation axis toward the radar instead of away from it. This

requires the installation of the rotator in the top of the target as well as in the bottom.

The unused internal cavities created for such installations must be concealed by covers

or shields.

- - ·---\W§j,'f:,;(J!lJ...~~'···-------

ig.2.32. The metal support pylon. The design is for an incident wave arriving from the

left.

"
It is often necessary to measure scale models, which requires the application of

ling laws. Because non-conducting materials must be scaled differently than good
•

ductors, it is not possible to satisfy all the scaling requirements for arbitrary targets

posed of conducting and non-conducting materials. Most targets requiring scale

el testing, however, are dominantly metallic, for which the perfectly conducting
ling law is generally regarded as adequate.

When normalized with respect to the square of the wavelength, the RCS patterns

two perfectly conducting objects of identical shape but different size will be identical

the objects are the same number of wavelengths in size. If a model is one-tenth of full
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scale, for example, it should be measured at one-tenth of the full-scale wavelength (10

times the full-scale frequency). The RCS of the full-scale target may be obtained from

the scale-model measurements by multiplying the scale-model RCS by the square of the

ratio of the two frequencies. In this example, that factor is 102, or 20 dB.

2.4.1.1. Outdoor Test Ranges

Outdoor test ranges are required when test targets are too large to be measured

indoors. The far-field criterion often requires that the range to the target be several

usand feet (see Figure 2.30). Because the typical target height above the ground is a

dozen feet at best, the elevation angle to the target as seen from the radar is 1 ° at

st and often less. At such low grazing angles the ground is strongly illuminated by

antennas, and unless the ground bounce can be suppressed, the target will be

minated by a multi-path field. In the design of an outdoor test range, therefore, a

ision must be made whether to exploit the ground bounce or to attempt to defeat it. It
generally easier to exploit it than to eliminate it. ~'-··..

Test ranges designed to exploit the multi-path effect may be asphalted to improve

ground reflection, although many ranges are operated over natural soil. Paving the

:e ensures uniformity in the characteristics of the ground plane from day to day and

els its operational usefulness to higher frequencies than might otherwise be

ible. A conducting screen embedded in the asphalt may improve the reflection.
"g also reduces maintenance of the ground plane, such as might be required by

iodicalremoval of vegetation and smoothing out windblown ridges in unstable soil.
•

The angle of incidence and the dielectric properties of asphalt and natural soil are

that the phase of the voltage reflection coefficient is within a few degrees of 180°.

being the case: one can usua1Iy choose a combination of target and antenna heights

that the wave reflected by the ground arrives at the target in phase with the wave

ated directly from the antennas. The indirect path should be a half wavelength

than the direct path, resulting in the following rule for selecting the antenna and
heights:
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(2.35)

where h0 and h, are the antenna and targets heights, respectively, and R is the range to

Because most test ranges have turntables or target pylons installed at a few fixed

ations relative to a permanent radar complex, the range R is usually restricted to a

ew preset values. The target is installed at a height h, high enough to minimize

5Purious interactions with the ground, yet low enough to minimize the size and

mplexity of the target support structure. Therefore, it is the antenna height ha that is
ost easily contro1Ied and adjusted to optimize the location of the first lobe in the

vertical multi-path interference pattern. This is easily accomplished by mounting the

ıadar antennas on carriages that can be raised or lowered along the side of a building or
tower provided for that purpose.

The ideal ground plane offers a theoretical sensitivity enhancement of 12 dB over

tical measurements made in free space. The actual enhancement is usually

ignificantlyless than this, however, primarily because of the directivity of the antennas

imperfections in the ground plane. The directivity of the antennas precludes the

et ever being squarely along the bore-sight of both the real antenna and its image in

ground plane at the same time, and the reflection coefficient of typical ground

es varies from 95 percent to as low as 50 percent or less. For all except very high

very low frequencies (millimeter wavelengths and VHP), typical sensitivities are of
"order of7 to 10 dB above free space instead ofthe ideal 12 dB.

:~•.

•
When the range to the target is relatively short and tests must be performed over a

range of frequencies, it is sometimes advantageous to attempt to defeat the

d-plane effect. One option is to install a beam shaped like an inverted V running

een the radar and the target. The purpose of the slanted top of the beam is to deflect

ground-reflected wave out of the target zone. Another option is to install a series of

radar fences across the range. The design objective is to block ground-reflected

_ . from reaching the target from the radar, and vice versa, by shielding the specular
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zone on the ground from both. The near sides of the fences should be slanted to deflect

energy upward, and may be covered with absorbing material. It is difficult, however, to

prevent diffraction of radar energy from the top of the fences from reaching the target

zone or to prevent target-diffracted signals from reaching the radar receiver via the same
kind of mechanism.

Because of the large distances from the radar to the target on outdoor ranges,

mstrumentation radars typically develop peak signal powers ranging from 1 to 100 kW.

ost of them emit simple pulsed waveforms whose pulses are from 0.1 to 0.5 p s wide,

'th pulse repetition rates of a few kilohertz. The radiated pulse should be wide enough

completely bracket the target but short enough to minimize background clutter

ibutions. To reduce measurement, time and target exposure to weather or

uthorized observation, several instrumentation radars may be operated tenuously.

radars may be triggered simultaneously or may be operated simultaneously

nding on the particular requirements imposed at a given instaIJation. Stepped -or

frequency wave form may be employed to collect coherent test data for

ostic purpose, as discussed in the next subsection.
'.,

1.1.1. Test Ranges

Indoor test ranges offer protection from weather and therefore more productive

but unless a very large facility is available, maximum target sizes are limited to

feet or so, because of the proximity of the walls, floor, and ceiling, they must be

with high-quality absorbing material. The lower the intended frequency of

ion, the more expensive the absorber becomes. Absorber reflectivity ratings of -

are common among the materials used. This performance is usually achievable

·th the pyramidal design.

Early indoor chambers were rectangular in shape, and despite the installation of

absorbent materials on the walls, RCS measurements could be contaminated by

reflections. The most sensitive part of the anechoic chamber is the rear wall, which
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ives 95 to 99 percent of the power radiated by the radar; hence one's best absorber
d be reserved for the rear wall.

The floor, ceiling, and sidewalls also contribute errors, via a quadruplet of

ions not unlike those due to the ground plane of outdoor ranges. A remedy is the

~rl anechoic chamber, which eliminates most of the sidewall reflections purely by
of geometrical control.

Even targets of modest size cannot be measured at the far-field distance in indoor

ilities because most chambers are not much more than 100 ft or so in length. It is

ssible, however, to provide the necessary uniformity of illumination by collimating

radiated beam. This can be done by inserting a lens between the radar and the

et or by reflecting the radar beam off a collimating reflector. The concept is known

the compact range because a beam of parallel rays can be generated in a much

rter distance than would be possible without the collimating device.

Two successful lens designs have been documented. The surface profiles of both

truncated hyperboloids of revolution, as suggested in figure (2.33), with the vertex

· g the radar. While successful for the particuiar application they were designed for,

two lenses were too small (1.1 and 0.43 m in diameter) for most targets of interest.

FOAMED PLASTIC
LENS

COLLIMATED
BEAM

-------cs~--
TARGE"f

•

---- ..

ıJ. A compact range uses a microwave lens to collimate a beam into parallel rays.

The lens surface is hyperboloid of revolution.

Because the flat rear face of the lens is parallel with the phase fronts there, it can

ignificant source of undesired reflections. The rear-face reflections may be
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reduced by tilting the lens slightly, at the price of slight aberrations in the phase of the

incident field. (Lenses also can be made with both surfaces curved, as is routinely done

in the visible portion of the spectrum.) Lenses may be made of foamed plastic, and the

dielectric constant of the material and the desired focal length determine the profile the

iens must have. The uniformity required of material properties throughout the volume

of lens, whether made of foamed or of solid plastic, has thus far discouraged the

fabrication oflarger versions.

The reflector offers a different way to collimate a beam. In contrast to the lens,

which is placed between the radar and the test object, the radar and the test object

remain on the same side of the reflector, as shown in Fig. (2.34).The reflector is

typically an offset parabolic, meaning that the parabolic surface does not include the

vertex of the generating parabola. This permits the feed that excites the reflector to be

placed out of the beam reflected toward the target. If the test object is held within one or

two focal lengths of the reflector and if the reflector is excited by a suitably designed

teed, the reflected wave is sensibly planar.

REFLECTOR COLLIMATED
BE.AM

TARGET

PARABOLOIDAL AXIS

FEEDHORN

Fig.2.34. A compact range using an offset parabolic reflection

•However, unless the edges of the reflector are carefully designed, the incident

- Id in the target zone will be contaminated by fields diffracted from the edges of the

flector. The diffraction causes ripples in both the amplitude and the phase of the field

ribution in the target zone. In some cases the effect is smail enough to be ignored,

in high-quality instaliations the ripple may be objectionably large. Rolled-edge

nfigurations that appear to have acceptable performance have been designed and

d. The price paid for this improvement in performance is a much larger and more
mplicated reflector structure.
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Targets measured indoors are placed much closer to the radar than those measured

outdoors, and useful measurements may be made by using much less radiated power.

Early indoor instrumentation radars relied on simple CW sources, and undesired

chamber reflections were suppressed by a cancellation process. The procedure is to

prepare the chamber for a measurement in every respect except for the installation of

the target on its support fixture. A small sample of the transmitted signal is passed

through a variable attenuator and a variable phase shifter and combined with the

received signal. The amplitude and phase of the signal sample are then adjusted so as to

cancel the signal received in the absence of the target.

The availability of low-cost, phase-locked, frequency-synthesized sources now

es it attractive to collect wideband RCS data, which contains far more target

seattering information than CW measurements made at single frequencies. When

coherent RCS scattering data is suitably processed, it is possible to generate radar

imagery, two-dimensional maps of the echo sources of test objects.

Figure (2.35) is an example of such an image. The processing required to generate

this image is a double Fourier transformation, one from the frequency domain to the

· e domain and the other from the angle domain to the cross-range domain. The

frequency-time domain processing may be performed virtually in real time (a second or

o for processing and display on a video screen), but the conversion from the angle

main to the cross-range domain must be performed offline. The fast Fourier

sform (FFT) is invariably exploited to expedite the processing.
"'
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Fig.2.35. Radar image of a wedge

The resolution of the processed image in the time (range) domain is inversely

proportional to the bandwidth of the emitted waveform. The resolution in the cross

range domain is inversely proportional to the aspect angle window over which the data

collected. Thus, the operating characteristics of the instrumentation system and the

azimuthally data sampling rate must be decided before the data is collected. Because the

cross-range coordinate of the resulting image is perpendicular to the axis of rotation of

the target, it may be necessary to multiply that coordinate by a scale factor that

eftectively registers the generated image with, say, a plan view of the target.

The resulting data may be presented in the form of a contour map, as in figure

2.35), or in a gray-scale pixel format. The wedge target has been superposed in the

gure for diagnostic purposes, and the particular attitude shown is for edge on

idence. Images like this can be generated for any angle of incidence, provided the
•et has been rotated through a sector wide enough to yield the desired cross-range

Iution and has been sampled at a sufficient number of angles over that sector, say,

128, or 256 samples. In practice, the target is rotated continuously while the swept-

stepped frequency data is collected. The angular speed must be slow enough that the

e of the return at the end of a frequency sweep due to target motion be within 22.5°

m what it would have been had the target not moved.
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Note that the leading edge of the wedge is an identifiable scatterer, although much

intense than the contributions from the base. In addition to the direct echoes A and

due to single diffraction from the base, there are additional contributions due to cross

,e (multiple) diffraction. Contribution C is due to the excitation of one edge of the

base by the other, which then diffracts the energy back to the source. This involves a

single traverse across the base, and the phase delay due to the additional path length

places the apparent source of scattering behind the actual base by half the width of the

base. Contribution C appears along the centerline because the total propagation path

from the source to the first edge, then to the second edge, and then back to the source is
independent of the target rotation angle.

This is not the case for contributions D and E, which are due to double traverses of

the base. That is, diffraction from one edge reaches the other edge across the base,

which then diffracts some of the energy back toward the first edge in a second traverse.

Because the diffraction responsible for contributions D and E crosses the base twice, D

E appear precisely one base width behind the actual base. Unlike contribution C
;hich lies along the centerline, D and E are displaced to the side, appearing directly

· d the base edges. This is so because the phase of the excitation of the primary edge

·es as the edge is moved toward or away from the source by the target rotation.

,·•-

These "ghost" scatterer owe their existence to the way in which the data

ssing system sorts the range and cross-range locations of scatterers. Down-range

·ons are sorted according to their processed time delays and cross-range locations

rding to their time-delay rates, whether due to real scatterers or to interactions

n scatterers. Even though the coatributions of some scattering centers may

Ive propagation in directions other than along the line of sight from the radar, the

has no way of discerning the fact. Therefore, despite the powerful diagnostic

of images like these, one must always be aware that multiple interactions between

elements can create scattering sources that are not where they appear to be.
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CHAPTER3

RADAR CROSS SECTION ENHANCEMENT

3.1. Introduction

Some practical applications require enhancement of the RCS. For example, when

an aircraft or satellite is tracked, we want a constant return during the tracking period,

thereby necessitating augmentation of the RCS of the vehicle in some reselected range

of angles. Passive RCS augmentation devices are used to enhance the returns from small

vehicles and deception devices; for example, light aircraft, buoys, small boats, or

missile targets. For scattering and remote-sensing measurements RCS augmentation is

used for calibration targets like comer reflectors.

An RCS augmenter is an integrated device with or without a lens and a retro

reflecting surface; and it can be a mono static or a bistatic device. In general, there are

ee methods for achieving RCS enhancement. First is the proper shaping of the target

present a large echo area over the ranges of parameters of interest; this method is

useful for airborne targets. The second is the use of impedance loading at selected

ints on the target to disturb the induced current so as to achieve the goal; this method

erally is limited to the narrow band. The third is the addition of a Pre-designed RCS

entation device to the target to meet the specific requirements.

In this chapter we present different methods of RCS enhancement and describe

erent practical devices for RCS ~ augmentation, including their key design

iderations. Important characteristics of some standard devices also are presented.

"'

Corner Reflector

Comer reflectors are structures formed with two or three metal plates. Figures

a), (b) shows some dihedral and trihedral comer reflectors, respectively. Though

devices are passive, due to multiple scattering effects they have considerably large

static and bistatic RCS over a relatively wide range of aspect angles; one typical

iple scattering path ABCD is shown in figure 3.l(a). A dihedral corner reflector
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gives large RCS only in the plane perpendicular to the reflector; for example, in the x y

plane in figure 3. l(a). This can be improved, and the structure can be made 10 provide

large RCS in other planes by addition of a third plate, as shown in fıgure. l(b).

Depending on the shape of the plates, the trihedral comer reflectors are cal

square trihedral, triangular trihedral, or circular trihedral comer reflectors.

3.2.1. Dihedral Corner Reflectors

Recently, several authors reported extensive work performed on dihedral comer

reflectors. Corona et al. [discussed a mathematical model using the physical optics

nsiderations and the effects of illumination of one face by the rays diffracted by the

ge of the other face. Table (3.1) lists the key RCS formulas and angular coverage for

edral comer reflectors.

The physical optics backscattered field due to the dihedral comer reflector, shown

figure (3.1-a), illuminated by a plane wave with perpendicular polarization (i.e., E

ld in the z-direction, xy-plane being the plane of incidence) is given by

..:

ro tk e-Ü.? _, bE ;!T"' X • _ sin{kacosq.ı) ,tkawstP T"' y sin(kasinq.ı) ikaim<Jl . '"'T"' Xr- y • J_ =----~ 1. L.ı 1. sınq, · e , +.ı 1. cosı;ı, . · e +"".ı 1. .ı 1. Stn{t' ı·
4.7r r kacosrp kasınrp ..ı

(3.1)

Particulars Radar Cross Section

Dihedral reflector
Monostııtic

Dihedral reflector
Monostatic
Angular coverage ± 30°

( A~ = a\ea of projected
aperture on the
incident ray)

4--ıra2 bı1'in1( 11' /4 + tf,)
{1 =

~

•

Dihedral reflector
Bisıatie

{soo Figure3.l(a))
First-order PO formula.
Polarization effects not
accounted for.
o(fJ) = o(O)e-1:vp

fJ = bistatic angle
" = design parameter

given by Peter's
dmgn curve [l}
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where E,1. is the amplitude of the incident electric field,

I' x = Z sin ÇI) - 1
.ı Z . 1 '_, sınıp +

(3.2)

r y _ Z ços QJ - 1
J_ - Z cosıp + ı ' (3.3)

Z is the surface impedance of the reflector surface normalized to the intrinsic

pedance of free space, superscripts x and y refer to the plates y = O and x = O,

pectively. The PO field for parallel polarization (i.e., E-field in the xy-plane) is

tamed from (3.1) by replacing E11.,r·"1.and I?' .l.with EiII,r'\ı,rtII respectively;

the two reflection coefficients are given by

r x _ sinı;o-Z
n - sin ıp + Z '

(3.4)

r y _ cosı;o-Z
I1 - 'cosıp+Z

The scattered field expressions just given do not consider the effects of diffraction.

(3.5)

lı,

Detailed considerations of the diffraction effects are given in. We can show that

parallel polarization the total scattered field is given by

•

(3.6)

2Zcosa
Tn(a}= z + cosa ' (3.7)
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d Dh(J3,y1}Dı,(j31,y1) are hard diffraction coefficients for parallel polarization; the

diffraction process involved for this case is shown in Figure 3.2(a), which represent the

P or bottom view of the dihedral reflector shown in figure.

Figure 3.l(a) and (b) show the backscattered field patterns for perpendicular

parallel polarizations, respectively, for a perfectly conducting comer reflector With a/X

= 5. The fields shown are normalized with respect to the GO maximum value.

r~·1 t ,, ,, t fil jl J ~ 1

I ' r.~ .

I ~, ~I .,

J \I
I I-29.

s. 39. 50. 99.

Azimuthal angle+ - (Oegi
liı
...:::

Parııı,ı
, Polarlutıo,ı' ..\~

~t. •

-2~t...ıl'--...L.~-'-~--''--~-'-~.....___. •...•
o. 30. 60. 90.

Azimuthal angle+ - {Oeg}
(bj

ıg.3.1. Back-scatted field (dB normalized to GO maximum value) versus the azimuthal

angle <) by a perfectly conducting 90 dihedral comer with a I .ıl : (a)perpendicular

parailel ; (b) parallel polarization.
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Physical optics analyses of dihedral comer reflectors are given in; PTO analysis is

discussed in; and the effect of higher order reflections and diffraction also are described

in; Details of these considerations will not be discussed here. We shall present only a

few important experimental results and their relationship with appropriate theoretical

results. Figure (3.2) gives the experimental and theoretical RCS normalized to 1 m

patterns for a 90° dihedral comer obtained under a variety of conditions. Researchers

have found that a 90° dihedral comer has Wide beam width of RCS pattern if ripples in

excess of 5 dB only are of concern, particularly for horizontal polarization. When the

reflector angle is not 90°, the pattern splits into several beams giving rise to large

variations in the RCS with aspect angle.

Effects of the bistatic angle on the relative echo signal from a normal corner

reflector and a corner reflector with 5°-error are shown in figure 3.3(a) and (b),

respectively. The results indicate that for larger bistatic angles the reflector error

generally increases the beam width of response. Normally, for the bistatic case, a large

beam width is difficult to achieve without reduction of the cross section. However, the

results of figure (3.3) tend to indicate that it may be possible to obtain fairly large

mono-static and bistatic RCS by using a cluster of reflectors because here the

degradation of the reradiated pattern will be confined to one plane.

ı,........-

To understand this, we must briefly examine the polarization characteristics of

dihedral comer reflectors. A linearly polarized wave incident on the reflector, with the

electric vector either parailel or perpendicular to the seam of the reflector, is reflected

with the same polarization, provided that fhe wave suffers an even number of bounces at

the reflector. Similarly, a circularly polarized incident wave will also be reflected with

the same sense of circular polarization. Polarization sensitivity of the dihedral corner

reflector can be utilized for the calibration of the cross-polarization receiver of a linear

dual-polarized radar.

3.2.2 Trihedral Corner Reflectors and Wide-banding

As indicated earlier, in a plane perpendicular to the plates the dihedral comer

reflector provides maximum RCS over- a range of aspect angles. In other planes (i.e.,

:or e ,ı, 1ı I 2 ) the performance deteriorates. Use of a third plate is necessary to maintain
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nominal RCS for wide range of the aspect angle (fJ for variable8. This is how the

trihedral reflectors were developed. To the best of our knowledge, no accurate analysis

for the RCS of a trihedral reflector is currently available. However, some experiment

results and approximate expressions are available as guides for designing such

reflectors.

{a)

".;... -

These are given in Table 3.2. Figure (3.4) shows the experimental back-scattering

cross-section pattern of a triangular trihedral comer reflector for different values of O. In

igure (3.4.3) is the bistatic angle, therefore f3 = O means the case of a scattering; the

gle a. interpreted as the angle of incidence, is given by a= (q,-45°)sin6 where&

are as shown in figure (3.1) figure (3.4) indicates that peaks on the two sid~s of the

ad pattern are attributed to the scattering effects of the comers, to reduce these

ects, a compensated triangular trihedral comer reflector has been found useful; one is

etched in figure (3.6). Monostatic RCS patterns for compensated and uncompensated

flectors are shown in figure (3.7), which clearly show the effects O compensation.

Iyses of such compensated structures are not yet available. Recently some

retical results have appeared for the trihedral comer reflector
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Fig.3.2. (a) Theoretical and experimental azimuthal patterns for scattering RCS of a 90

dihedral comer reflector a= b = 5.6088A; f = 9.4 GHz; Polarization is vertical; (b)

Experimental and UTD RCS using higher-order diffraction ofthe 90 dihedral comer

reflector in (a), where a= b = 5.6088 .,ı; f= 9.4 GHz; Polarization is vertical. (c) UTD

cross section using higher-order rays for vertical polarization for the 90 dihedral, where

a= b = 5.6088;{; f= 9.6 GHz; R=200 .ı1.

..•.. ~

Figure (3.6-a) shows the trihedral comer geometry, and a comparison
'between the backscattered cross-section values obtained by using finite-difference time

domain; an the shorting and bouncing ray codes are shown in Figure (3.7-b).
••
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RCS as a
Trihedral Corner Maximum Average Angular Function of
Reflector Type RCS RCS CoYerage (J' 4>

SqUare a= l211'a4/'Ji 0.7a4 25• cone (a)
(o')= -- about symmetry~ axis

Triangular 41rd' 0.17a'' 40• cone (b)

a=T {u;= -r about symmetry
a:ı::iı

Circular l5.6a4 M = OA1a4
32° cone

u=-- about symmetry
~ 'ı,2

"O axis

3.3 DIELECTRIC LENSES

By Utilizing the properties of dielectric lenses it is possible to enhance the mono

static and bistatic RCS over a wide range of frequencies and aspect angles. Different

types of lenses_ for example, Kay's spherical lenses the Eaton-Lippman lens, and more

popularly the Luneberg lens-have been used for such Purposes; compared to metal

targets of similar size, they provide larger mono-static and bistatic RCS. The cylindrical

Eaton-Lippman lens has a normal incidence mono-static RCS equal to,

(3.8)

where a and 1 are the radius and length of the lens, respectively. A cylindrical lens has

the advantage of azimuthal symmetry without requiring a metal reflector. The

limitations of such lenses are their poor elevation plane performance and their

requirement for an infinite or very high-dielectric constant at the center. The latter

requirement is very difficult to satisfy in practice.
•

3.3.1. Luneberg Lenses

An ideal structure for antenna scanning applications and RCS augmentation is

symmetric configuration like a sphere; and the more popular Luneberg lens has this

structure,
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Fig.3.4. A trihedral reflector and (b) its RCS with respect angleB, where </> = 45.

A Luneberg lens, shown in figure (3.5), is a sphericaily symmetric inhomogeneous

smıcture with the property that parallel rays incident on it are focused at a diametrically

site point on its surface, and a point source iocated on its surface gives rise to

llel rays going out from its surface-on the other side figure (3-5)- The required

lectric constant of the lens varies according to radius from 2 at the center to unity at

surface. Typical ray paths in the lens are shown in figure (3.5). The refractive index

r) at any point, r distance from the center, is given by

(3.9)

A practical Luneberg lens consists of several concentric spherical layers, of

lectric materials with decreasing dielectric constants.

(3.10)
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Fig.3.5. Path ofthe ray inside a Luneberg lens.

As an example, with a= 12.7 cm, equation (3.10) indicatesO'ma.:max31.76 mat

Ao= 3.19 cm (9.4 Hz), whereas the measured value forcrmaxmax3i.7 m. Figure (3.6)

shows the measured backscattering cross sections versus aspect angle for a number of

commercially available Luneberg lenses at 9.375 GHz.

ti,,
~·~··

3.3.2 Luneberg Lens with a Reflector

Parallel rays incident on the Luneberg lens with a reflector, shown in figure (3.11),

generally are reflected back toward the transmitter. This then augments the

backscattered RCS. The reflector may be connected separately or metallized on the lens

surface. The RCS may be enhanced over a~large range of aspect angles by varying the

size of the reflector used. Table (3.3) gives some pertinent information about different
•lens models along with their backscattering cross sections.
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CHAPTER4

REDUCTION OF RADAR CORSS SECTION

4.1. Introduction

An important problem often encountered in many military and civilian

applications is how to reduce the radar return from a target to a specified minimum. In

certain military applications, for obvious reasons, it is necessary to reduce the RCS of

targets like aircraft, missiles, and spy satellites. In civilian applications, satisfactory

performance of air traffic control radar requires that the scattering or reflections off the

terminal buildings and aircraft hangars be reduced so that they cause less interference to

the airport radars, RCS reduction finds important application also in the indoor

measurements of antenna patterns and target scattering, where the required free space

environment generally is simulated by reducing undesirable reflections from the

surroundings.

Generally, there are four means of reducing (or controlling) the RCS of targets:

target shaping, discrete loading, distributed loading, and active loading. In target

shaping the shape of the target is modified to redirect the scattered energy from one

angular region of interest in space to another region of little or no interest for airborne

targets, any shaping subject to aerodynamic considerations may be required to satisfy

stringent requirements; however, static targets are more flexible to shaping.

In discrete loading the target is loaded at selected points with passive impedances

to reduce the overall cross section. The method relies on phase cancellations in certain

irections and, hence, it is severely limited in bandwidth. ••

In distributed loading the target is coated with lossy material, known as the radar

absorbing material (RAM). The lossy material absorbs, in the form of heat, a

Considerable amount of incident energy and thereby reduces the RCS. For narrow

bandwidths, a single coating of RAM may suffice, but broad bandwidth generally

required multiple coating.
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The active loading is similar to the discrete loading mentioned earlier, but uses

active elements to achieve the necessary phase cancellation.

None of these techniques alone will reduce the RCS of a target below a certain

minimum value under all circumstances; for example for a wide range of aspect angles,

a wide band of frequencies, and both orthogonal polarizations. In most cases a judicious

combination of two or more methods may be required to achieve the goal. For example

a ship or a vehicle may need the shaping criterion during the engineering design

followed by a properly planned local application of RAM around the possible scattering

centers like the edges and other discontinuities; generally, to coat the vehicle completely

with RAM is not necessary.

Different methods of reducing the RCS are discussed in this chapter. Theoretical

results supported by available experimental results are discussed to illustrate the status

and promise of various RCS reduction techniques. Although detailed theoretical

analysis is not given, appropriate references are cited wherever possible. A few practical

designs with numerical examples also are described.

4.2. Target Shaping
RCS of a target can be reduced by shaping it so that it does not project a large

effective area to the radar. For flying objects, aerodynamic considerations severely

restrict the choice of shapes for reduced RCS. Even for other objects, it seems

impossible to shape a target so that it has a given minimum RCS for all radar

parameters; for example, for all aspect angles. However, we can make some general•
mments. For moving objects like a ship or other vehicle, the RCS can be reduced

nsiderably by shaping the vehicle to avoid dihedral angle comers with interior angles
•

900 and so that the edges are smoothed. A mast can be designed with a polygonal

ss section, which would give it an RCS lower than one with a circular cross section.

en using foam columns for support, a square cross section can be used for low RCS.

erally, RCS reduction by shaping the target would assume some significance in

.tions where orienting the target to reduce the probability of its detection by radar is

ible.
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To help understand the effect of such shaping, we will briefly discuss the effect of

body shape on RCS. The aim here is to help the design of an object having a maximum

volume hut low (or minimum) RCS. Figure (4.1) shows the nose-on backscattering

cross sections for a class of metallic objects having identical projected areas in ail

directions, length-to-diameter ratios, and volumes within a factor of two. The results

shown in figure (4 .1) indicate that RCS of bodies can vary significantiy depending on

their shapes.

The effect of shaping the nose of a body is of considerable practical importance. A

reduction in nose-on RCS may be achieved in general by using an ogival section instead

of a spheroidal section for the nose of a body. An ogive-shaped nose cone can provide

considerably lower RCS than a spheroidal one .

. so-..~....ı~--,,ı,..~~...._ ..___,_,.._~....,----...,
o o.4 ı..a u ı... ı.o ~•

ô!Alııllftt lk WAVlUflGTMS

Fig.4.1. Nose-on backscattering cross section of a class objects

In aircraft, the use of shaping to achieve a low RCS usually involves a trade-off

with aerodynamic performance. Note that fins and wings produce large radar returns

only at normal and near-normal incidence, particularly at high frequencies. Figure (4.6)

indicates that a flat plate has a large RCS under a variety of incident conditions. Curving

the edges may cause less peak returns but the incident energy will be spread over a

larger range of aspect angles. A second modification, uses a tapered dielectric material

for a portion of the plate. A possible construction scheme for the reduction of RCS of a
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rotor blade is contributions by various components to the RCS for both polarizations. At

selected aspect angles, the curved fins produce less RCS than the straight fins. The

"good" fin design is considered superior from the point of view of the "art" of

smoothing radar returns.

RC51d&'mıı)•• ~-------.c--------,-------~
10 lı

-ıo J
\

----
l.., J••

Fig.4.2. Possible modifications in the design of the nose section of the body (with RCS

value at 3.0 GHz).
, ..,,,

4.2.1. Shaping Dihedral Corners

Conducting suıfaces on ship and ground vehicles may form corner reflectors

having increased RCS in some specified range of aspect angles. Their radar returns can

be minimized by taking due care that the surface do not meet at right angles. The

required angle between the faces is as a function of RCS reduction and the electrical

size of the corner. The geometry of the dihedral comer reflector is shown in figure (4.3).

We assume that the dimension in a directibn perpendicular to the plane of the figure (l).

The basic formula used for this purpose is the bistatic scattered field for a flat

......

••rectangular metal plate of length c and illuminated by plane wave, where we assume the

plate width is d (measured in a direction perpendicular to the incident plane). With the

geometry given, we can show that the bistatic scattering function,

S ikdcI: ; )I" ; \ w. {I-s) _. [kc{sin81 - sin eJı 2J= --,S X 11r \n X 11; f o . sın ,
2rı kc(sin B1 - sin Bs }! 2

(4.i)

where
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hi , hr = the unit vectors in the directions of the incident and reflected magnetic fields,

respectively,

r0 = the position vector of the midpoint of the plate with respect to the origin,

i, .~ = the unit vectors in the direction of incidence and scattering, respectively.

The RCS of the dihedral comer figure (4. l l) can be obtained from as,

(4.2)

ı. a r ..

Fig.4.3. The dihedral comer reflector

fın

t-,

~e,
•

Fig.4.4. Incident and scattering directions of flat plate
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where S,,_ and Sb are direct contributions from the faces having dimensions a and b are

the double bounce contributions. With the apex of the dihedral corner placed at the

origin (4. I) can be used to determine the direct contributions for

- f3 s rjJ s f3 . They are

Sa = i '7 sin(/3 + (J)}exp(- ika cos(/3 + (J)}]

sin[kacos(fi + rp)]
X ka cos(,B + f/J) ,

(4.3)

S ı, = i kbd sin{,B - f/J)exp[- ikbcos{/3 - f/J)]
.ıl

sin[kb cos{/3 - f/J)1
x kb cos(JJ - (f)) '

(4.4)

The secondary contributions can be determined after finding the illumination of

one face due to the reflection from the other face. Because this illumination changes

withe and/3, the illuminated sectors on the two faces must be determined for eache

and fJ . For E-polarization, the scattering functions for double bounce are given by,

,,
:.-

S ikb'd . ( ) · rkh' ( )lab = --sın 3p + ffJ exp[- ikb'cos2f3cos(p + ffJ)J5mı: cos2[Jcos fJ + rp_
A kn'cos2f3cos(f3+rp)' (4.5)

Sba = - ika'd sin(3/3-(fJ)exp[- ika' cos2pcos2(}3-<p)'lx sin[ka' cos2/Jcos(/J- rp)])., ~ ı , ')R(fJ ) (4.6)ta cos_,., -rp

•where a' and b' are the illuminated portions of the comer surfaces as shown in figure

4.13). The corresponding scattering functions for H-polarization are obtained from

4.5) and (4.6) after replacing sin (3 fJ ± f/J) with sin (3 f3 ::ı: f/J). The normalized RCS for

the dihedral corner can now be determined by using (4.3H4.6) in (4.2),given by,

1 I 4. 12~ = - L~ sin(PmXexp{- i2Qm)- I]!e,
d 4.11' m=l

(4.7)
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where Qm , P,11 and Rm are shown in table 4 .1.

1NC!O(.Ni.f
t,.ttRi--{ l. ,Of'.-t

Fig.4.5. Incomplete illumination of face A by wave reflected

from face Band vice versa.

'•::::...-

Pm

m s £-polarization H-polarizalion e, Rm

l ı, ,8 + ıp ~ + ¥' ka cos(e + y,} ka 

2 Sb ~ - ıp p - ıp k!Jcos(P - ı;,} kb

3 s; 3~ + '° -{fl - ıp} kb'cosıecoo(/3 + ıp) kb'

4 Sı,o 3~ - ıp -(ı3 + ıp} ka'cos 2(kos( ~ - ıp) krf

•
We can show that the amplitude of the scattered far field due to a dihedral comer

''"
with 2 f3 * ;ı 12 is less than that due to a 90° dihedral comer. The reduction R in the••
scattered field amplitude can be expressed as,

R = (kb sin rcosy0 t1 = (kasin rsiny0 t1 , (4.8)

wherer=2/3-1r/2 and ro=;ıl4+(fJ
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The reduction factor for a metallic cylindrical segment compared to a rectangular

egment shown in Figure 4.6 is given by,

e(d h.\R = - -+- ),forAB(r ,
2 h d )

= 1forö.8)r

(4.9)

Fig.4.6. Geometry of a cylindrical segment.

where 1).8 is the base interval in aspect angles, and d and hare as shown in figure (4.6).

Figure (4. 7) shows the reduction R versus h /d based on mean returns averaged over the

indicated base intervals.

The calculated RCS patterns for dihedral corners in ka = 45 and kb= 30, and 2 p =

100° and 90°, are shown in Figure (4.8), where we find that an RCS reduction of about

17.5 dB is possible around ({J= 0°; that is, when the incidence is along the line bisecting

the dihedral angle. There is a minimum reduction of about 12.7 dB in the central angular

region bounded by± 25°. Also note that reduction in RCS is not independent of the size

of the corner faces. We therefore recommend that in using the present method we must

achieve a specific amount of reduction in RCS at the lowest frequency in the band of

frequencies of interest, which will translate to more reduction at the higher frequencies

of the band. Further reduction in RCS then can be obtained by using RAM in localized

regıons.
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Fig.4.7. Approximate RCS reduction based on mean return averaged over the incident

interval.

.2.2. Plane Surface Made Cylindrical

Large specular returns from a flat metallic plate can be reduced by deforming the

e into a cylindrical plate; however, this method may not reduce the mean RCS by

ore than 1 dB. The reduction would be appreciable when the angular extent of the

ate is considerably larger than the angular sector in which the RCS reduction is

ired. The geometry of an electrically large cylindrical structure is shown in Figure 4 .

. its axial length is assumed to be 1.

...•

......•~- ,.,..,

,,ı2 . 2cr=-\SI
1r

(4.10-a)

"k21 ~ j, ı - .. ~ '; I. 'i" 
S == -:;:-Ü ns expv2kr.l 1da ,

IA ı
(4.10-b)

where

i = the unit vector in the direction of incidence,

iı = the vector normal to the surface at the point incidence,

r = the position vector for the point of incidence on the surface,

da = an elementary area on the surface A

For a flat plate of length 2d and width 1, the equations above yield the familiar

ult as below:
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afla•""" ~f_[2kdcose'in(2kdsin8)]2
1t 2kdsinB '

(4.11)

For the cylindrical configuration the equations reduces to:

(r-B)

S = ikaexp(- ika) J cosr exp[t2ka(I - cosr)}tr ,
-(r+ff)

(4.12)

which may be evaluated numerically, if r is small, cos r = 1-r2/2, and then (4.12)

assumes the following form:

'ka (r-o)
S::-1exp(-tka) Jexp(tkar2}tr ,

r -(r+e)
(4.13)

which can be expressed in terms of Fresnel integrals. The RCS for a cylindrical segment

can now be determined by using:

(4.14)

where

\ -~ ('nı1 \
F(x1= fexP[~ ıdt '

o \. - )
(4.15)

•

Figure (4.8) shows the RCS pattern for a cylindrical segment of width 2d = 30 .ıl

for a variety of h. The important conclusions that can be drawn from the results shown,
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Fig.4.8. RCS patterns of cylindrical segment of half-width a =15 X. Dashed lines

indicate segment of haif-angle r and dotted lines indicates PO return from curved

surface.

In figure (4.8) are these; as the plate becomes more and more curved, the main

lobe of the return becomes broadened and reduces in intensity, which means a

suppression of the specular echo accompanied by an enhancement for angles in the

neighborhood of the specular region. To a radar target RCS control engineer, the mean

returns rather than the details of returns are of interest. Figure (4.9a--c) show the mean

RCS values for a cylindrical segment obtained by averaging over a given aspect angle

interval. Observe from figure (4.9) that the mean RCS is approximately independent of

the increase in h until the base interval is equal to y, after which the mean cross section

decreases rapidly.

!),.8(d lı)' 111R=- -+- ,u,y
2 h d

~ 1,B)y
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R=~ h2 +d2
16h d2 (4.16)

Fig.4.9. Mean RCS obtained by averaging over indicated angular sector for differential

values of a interval.

1/ı
"

1-.

Fig.4.10. A truncated cone.

The RCS reduction is independent of wavelength when the mean RCS is used, but

this depends on the aspect angle sector over which the mean is taken. For a smali 40, the

reduction becomes wavelength dependent. Maximum reduction is possible by replacing

the flat plate by a semi-cylinder with h = d in which case R = 40. The essential

condition for a cylindrical segment to provide RCS reduction is that it should have an

angle larger than the averaging interval.
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4.2.3 Shaping of Support Columns
The question of shaping support columns for antennas and scatterers plays an

important role because they may cause unwanted reflections. This has been discussed in

several references. Wberı fabricated from low-density plastic foam, a truncated cone

model support has been found to be superior to a cylindrical column [ Geometry of a

truncated cone is shown in Figure 4. 10; experimental backscattering cross sections for

the truncated cone are shown in figure (4.11), which also shows a theoretical

backscattering cross section for a circular cylinder for comparison. In applications

where dielectric structural support rods must be placed parallel to the electric field

vector of an Incident electromagnetic wave, the scattering by such supports can be

reduced consider ably by canceling the capacitance with the help of inductive tunes.

Measured scattering patterns for the support dielectric post with and without tuning are

shown in figure (4.12).

·ı
l.ı

~;: :t-

Fig.4.11. Backscattering form a truncated cone (A=15.16cın, /J=15.32 cm, M= 39.85

cm)
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Fig.4.12. Measured scattering field patterns of support post

Average suppression of the scattered power of the support post by a typical tuning

post is shown in figure (4.13). A simple approximate formula tot the radius a of the

::::.:ı

(4.17)

where b is the radius ofthe dielectric post.

The echo widths (RCS per unit length) of dielectric cylinders made of foam

material (er = 1.035) and having circular, square, and triangular cross sections have

been investigated theoretically and experimentally. The researchers found, in general,

that a cylinder with square cross section has an echo width at least 13 dB below that of a

cylinder with circular cross section, although a circular cylinder can have low echo

width for a narrow band of frequencies. On the basis of these observations it is

recommended that dielectric support structures or pedestals used during antenna or
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scattering measurements be shaped to have a square cross section. The basis of the

recommendation is further confirmed by Figure (4.13 a, b), which gives results for the

echo widths for dielectric cylinders having triangular and square cross sections.

4.2.4 The Cone-Sphere

A metallic cone-sphere having a smooth transition between the base of the cone

and the spherical section has a low backscattering cross section for some range of aspect

angles. For this reason, such configurations have attracted attention for many possible

applications, and its scattering properties have been studied in great detail by Senior.

Fig.4.13. Average suppression of scattered power as a function of frequency for the

illustration tuned post.

••
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Fig.4.14. (a) The echo width for a cylindrical with triangular cross section multiplied by

the free-space propagation constant with frequency. (b) The echo width for a cylinder

with square cross section multiplied by the free space propagation constant with

frequency.

Physical optics approximation to the nose-on scattering function for a cone-sphere

is,

S = -~[tan2 a exp(- ikacoseca)- sec? a exp(- i2kasina )+ 1] •
4

(4. 18)
hı.,

;:f

where
2 a= the total angle of the cone,

a= the radius of the base.

In figure (4.9) the first, second, and third terms may be identified as contributions

from the tip, cone-sphere joint, and the shado!' boundary, respectively. Further details

are available. The shadow boundary contribution given by the PO expression in (4.9)

has been found to give incorrect results; analytical expression for this based on creeping

wave analysis has been obtained by Senior and Goodrich.

Knott and Senior showed that connecting fins of suitable size makes the cross

section depend critically on the roll and aspect angel. It is then possible to significantly

reduce the noise-on RCS over small angular sector. Fig (4.15) shows the normalized

nose-on RCS versus aspect angle for a cone-sphere (e = 40°) with and without fins.
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Fig.4.15. The normalized cross section as a function of aspect angle with a= 40° for a

cone sphere with and without fins.

The reduction of nose-on RCS by fins is clear from figure (4.15). Generaliy, we

can obtain some reduction in nose-on RCS for all roll angles with particular fin size and

at a particular frequency but such reduction is quite small.

..,
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CHAPTERS

CONCLUSION

The power scattered from a target in the direction ofthe radar receiver, and hence

the radar cross section, can be calculated by solving Maxwell's equations with the

proper boundary conditions applied or by computer modeling. The radar cross section

can also be measured, based on the radar Eq. using either full-size or scale models of

targets.

Radar cross section depends on the characteristics dimensions of the object

compared to the radar wavelength. When the wavelength is large compared to the

object's dimensions, scattering is said to be in the Raleigh region. It is named after Lord

Raleigh who first observed this type of scattering in 1871, long before the existence of

radar, when investigating the scattering oflight by microscopic particles.

The radar cross section is simply and shortly the back bone of radar technology

and the working principle without it the radar may not be useful.
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LIST OF SYMBOLS

A Physical area(m2)

A Magnetic vector potential (WbJ,;J
A,, Effective aperture{m2)

a Radius ofloop(m)

Radius of disk(m)

B Magnetic flux density (Wb/m2 )= T
b Length(m)

C Velocity of light in free space(,::)

D Electric flux density vectorVrn2)

dB Decibel ,,.
:~

dl Scalar length element(m)

dl Vector length element(m)

ds Scalar area element (n?)
ds Vector area element (m2)

dv Volume element(m3)

E Electric field intensity~)
"'

Ex,Ey,Ez Rectanguiar components of electric field

inıensitv vector {vI ) • •., · ım

E8,E,.,Eıp Spherical components of electric field

intensity vector(%)

En,1. Parallel and perpendicular components of the

electric field intensity~)

95



GR,GT Gain of receiving , transmitting anteenas

GTD Geometrical theory of antennas

H Magnetic field intensity (Ym)
t: Equaling electric current(A)

I"' Equaling magnetic current (v)
,ft ,r-ıi

J Volume electric current

density lfnı2)

LP Polarization loss factor

no Refractive index of free space

''n Unit positive normal vector

PR,PT Power received, transmitted

PDF Probability density function

PTD Physical theory of diffraction
,,

R Resistance between receiving antenna t~

and target

R .. Reflection coefficient at the interface between1,J

the medium iand j

Ra Antenna resistance

RAM Radar absorbing material

RAS Radar absorbing surface
"RCS Radar cross section

s Range dependent scattering function(r,O,ıp) ••
Zs Surface impedance

a Interior angle of the infinite wedge

/3 13istatic angle

rO Gamma function

r Divergence factor

s Angle
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&'

Skin depth of material

Permittivity of a medium

Real part of e
Imaginary part of e

Permittivity of free space

Intrinsic impedance of

amedium(n)

&"

1J

1Jo Intrinsic impedance of

(J

J

'

free space (n)
Angle in spherical coordinate system

Wavelength in a medium (m)

Measure of chirality

in a medium

(= 3.1416), Radius of circle

Cylindrical coordinate

Range dependent bistatic

p

Range independent or

far field bistatic RCS (m2)

If/

Angle in spherical coordinate system

(j)"<f- (j)'

(j)-ql

••
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