
Faculty of Engineering

NEAR EAST UNIVERSITY

Department of Electrical and Electronic
Engineering

GENETIC ALGORITHMS VERSUS NERUAL
NETWORKS

Graduation Project
EE-400

Student: Atique ur Rehman (981262)

Supervisor: Asst. Prof. Dr Adnan Khashman
•

Nicosia - 2001

Acknowledgements

I am very thankful to the followingpeople:

First of all to Asst. Prof. Dr Adnan Khashman who gave me step by step guidance

through out the project, I got acquainted with an entirely new and flourishing field of

Neural Networks and Genetic Algorithms, I am thankful to my advisor, for his

intellectual support, encouragement, enthusiasmwhich made this thesis possible.

I am also very thankful to my father Khalil-Ur-Rehman and my family who have

supported, and sponsored me through out my life and encouraged me in every aspect of

my life. What I am today is because of them. The greatness of my Father is unable to be

explained in words.

I am also thankful to my friends Rihan and Jamal, who helped me a lot in getting the

material for the thesis, surely true friends are blessing.

I dedicate my project to all the people mentioned above.

..
•

Abstract

_;eural Networks and Genetic Algorithms are examples of the latest computer

applications, which are under consideration by the scientists over the world. The

ombination of neural networks and genetic algorithms can be very helpful in creation of

anificial intelligent systems. With the development of these two fields, machines that

can behave like humans can be invented.

This thesis describes an investigation of combining neural networks and genetic

algorithms into real applications.

With the passage of time and development in machine learning a Question Arises?

Will the humans be slaves of machines?

•

11

Table of Contents

--CKNOWLEDGEMENT 1

ABSTRACT 11

TABLE OF CONTENTS 111

INTRODUCTION V

1. NEURAL NETWORKS
1.1. History of Neural Networks
1.2. Knowledge-based Information Processing
1. 3. Neural Information Processing
1.4. Brain as a Neural Network
1. 5. Hybrid Intelligence

1
1
2
3
4
5

2. GENETIC ALGORITHMS
2.1 Overview
2.2 BriefHistory
2.3 Biological Terminology
2.4 Search Space
2.5 Elements of Genetic Algorithms

2.5.1 Examples of Fitness Function
2.6 GA Operators
2. 7 Application of Genetic Algorithms

7
7
8
9

10
10
11
12
12

3. BASIC NEURAL NETWORK LEARING AND
COMOPUTATIONAL MODELS
3 .1 Overview
3.2 Basic Concepts ofNeural Networks
3. 3 Node Properties •
3. 4 Inference and Learning
3. 5 Learning
3 .6 Historical Sketch

•

15
15
15
18
19
19
20

111

.., . ı Supervised Leaming
3.8 Unsupervised Leaming
3.9 Neural Network Leaming

3.9 .1 Back Propagation
3 .1 O Classification Models

. GENETIC ALGORITHM IMPLEMENTATION
4 .1 How do Genetic Algorithms works
4.2 Implementing a Genetic Algorithm
4.3 When Should a Genetic Algorithm be used?
4.4 Encoding a Problem for genetic Algorithm
4.5 Adapting the Encoding
4.6 Selection Methods
4.7 Genetic Operators
4.8 Parameters for Genetic Algorithms
4.9 Example ofGAs

5. GENETIC ALGORITHMS VERSES NEURAL
NETWORKS
5 .1 Evolving Neural Network using Genetic Algorithm
5 .2 Evolving Weights in a fixed network
5.3 Evolving Network Architecture

6. FUTURE DIRECTIONS
6.1 Incorporating Ecological Interactions
6.2 Incorporating New Ideas from Genetics
6.3 Incorporating Development and learning
6.4 Adapting Encoding and using Encoding that Permit

Hierarchy and Open-Endedness
6.5 Adapting Parameters
6.6 Extension of Statiştical Mechanics Approaches
6.7 Identifying and Overcoming Impediments to the Success of

GAs
6.8 Understanding the role of Crossover •
6.9 Theory of Gas with Endogenous Fitness

7. CONCLUSION

8. REFERENCES

IV

20
21
21
22
26

29
29
31
32
33
35
42
49
50
52

55
57
61
61

63
64
65
65

66
67
67

67
68
68

69

71

Introduction

Overview:
Neural Networks is a popular Artificial Intelligent computer systems, inspired by the

principles biological neural behavior, this technology is being applied to the computer

systems for solving difficult problems, whose solutions require human intelligence. Along

with the neural networks another interesting algorithms approach, inspired by the biological

genetic behavior, genetic algorithms is being applied in complicated computer systems,

along with neural networks.

Research Objectives:
The objectives of the work presented within the thesis are to investigate independently

neural networks and genetic algorithms.In addition the benefits that can be achieved by

integrating neural networks and genetic algorithmswill also be discussed.

Thesis Structure:
Research Objectives include the following:

~ In chapter one brief history of neural networks along with biological terminology,

with a brief discussion of hybrid intelligent systemswill be discussed.

~ In chapter two brief history of genetic algorithm along with a brief discussion of

search space, genetic operators and application of genetic algorithms will be

discussed.
~ In chapter three details about neural "networks, neural learning, supervised and

unsupervised learning, classificationof neural networks will be discussed.

~ In chapter four details about genetic algorithm, implementation, genetic encoding

and selection methods, along with a brief example of prisoner dilemma will be

discussed.

V

~ In chapter five a detail example of implementing a genetic algorithm, in a neural

network will be discussed.

};>- In chapter six future directions for implementation of neural networks and genetic

algorithmswill be discussed.

};>- Finallythe thesis will be concluded, with final remarks.

..
•

VI

Chapter One

Neural Networks

1.1 History of Neural Networks:
The progress of neurobiology has allowed researchers to build mathematical models of

neurons to simulate neural behavior. This idea dates back to the early 1940s, when one

of the first abstract models of a neuron was introduced by McCulloch and Pitts [l],

(1943). Hebb [2] in 1949 proposed a learning law that explained how a network of

neurons learned, Hebbs law stated that:

"When an axon of cell A is near enough to excite cell B and persistently takespart in

firing it some growth process or metabolic changes takes place in one or both cells such

thatAs efficiency increased".

The law proposed by Hebb formed the basis of modem neural network research. Later,

Minsky and Papet [1] (1946) pointed out theoretical limitations of single-layer neural

network modes in their landmark book Perceptrons. Due to this pessimistic projection,

research on artificial neural network lapsed into an eclipse for nearly two decades.

Despite the negative atmosphere, some researchers still continued their research and

produced meaningful results. For example, Anderson (1977) and Grossberg [l] (1980)

did important work on psychological models. Kohonen [l] (1977) developed

associative memory models.
"

In early 1980s the neural network approach was restructured, Hop Field [l] in (1982)

introduced the idea of energy minimization" in physics into neÜral networks. In the

middle of 1980s, the book Parallel Distributed Processing by Rumelhart [l] and

McClelland [l] (1986) generated great impacts on computer, cognitive and biological

sciences. The back prorogation-learning algorithm developed by Rurnelhart offers a

1

powerful solution to training a multi-layer neural network and shattered the curse

imposed on perceptrons.

1.2 Knowledge-based Information Processing:
Knowledge based information system can be defined as:

" A knowledge-based system is a computer program that acquires, represents,

and uses knowledgefor a specific purpose".

Its basic structure is as shown in fig below, which consists of a knowledge base which

stores knowledge and an inference knowledge engine which makes inference using the

knowledge. A conventional computer program is characterized by algorithmic

processing data. In this programming paradigm, the knowledge concerning how to do

things is enclosed as a bunch of procedures, which are executed step by step to deal

with the data entered. In knowledge-based programming, on the other hand, we

represent what we know in a declarative manner and knowledge in invoked under a

certain inference strategy or driven heuristically.

Another important distinction between the two programming paradigms is the feature of

separating knowledge from the control. In knowledge-based systems, knowledge is

stored in the knowledge base while control strategies reside in the separate inference

engine. This separation benefits the development and maintenance of the system

because when knowledge is updated, the inference engine can be left alone, and when

the inference process in changed; the knowledge base is not affected. Because of

separation, different inference engines can run a knowledge base and an inference
~

engine can drive different knowledge bases. As a consequence, a lot of time and effort

can be saved using the knowledge-based approach. The comparison of knowledge and

data-oriented information processing is provided'in table below. •

Knowledge-Based processing Data-Oriented processing

Declarative knowledge Procedural knowledge.

2

Separating control from knowledge.

Strategic and heuristic processing.

Symbolic processing (dominant).

I Explanation capability.

Integrating control and knowledge.

Algorithmic processing.

Numerical processing (dominant).

No explanation.

Table 1.1 Comparison of knowledge-based and data-oriented information processing.

1.3 Neural Information Processing:

Biological neurons transmit electrochemical signals over neural pathways. Each neuron

receives signals form other neurons through special junctions called syııapses. Some

inputs tend to excite neuron; other tends to inhibit it. When the cumulative effect

exceeds a threshold, the neuron fires and sends a signal down to other neurons. An

artificial neuron models these simple biological characteristics. Each artificial neuron

receives a set of inputs. Each input is multiplied by a weight analogous to a synaptic

strength. The sum of all weighted inputs determines the degree of firing called the

activation level (In neural network, connection weights and activations are sometimes

reffered to as LTM (long-term memory) and STM (short-term memory), respectively).

Notation ally, each input X; is modulated by weight W, and the total input is expressed

as,

or in vector form, X.W.

The input signal is further ~processed by an activation function to produce the output

signal, which if not zero, is transmitted along. The activation function can be a

threshold function or a smooth function like a sigmoid or a hyperbolic ;tangentfunction.
ı,

The neural network is represented by a set of nodes and arrows, which is a fundamental

concept in graph theory. A node corresponds to a neuron, and an arrow corresponds to a

connection along with the direction of signal flow between neurons. As illustrated in

3

Fig below some nodes are connected to the system input and others are connected to the

system output for information processing.

Neural networks solve problems by self-learning and self-organization. They derive

their intelligence from the collective behavior of simple computational mechanisms at

individual neurons. Computations advantages offered by neural networks include:

• Knowledge acquisition under noise and uncertainty; Neural networks can

performs generalization, abstraction, and extraction of statistical properties

form the data.

• Flexible knowledge representation: Neural networks can create their own

representation by self-organization.

• Efficient knowledge processing: Neural nets can carry out computation in

parallel. It is know as parallel-distributed processing, or PDP (Rumelhart [l]

and McClelland 1986). Special hardware devices have been manufactured

which exploit this advantage. Thus, real-time operation is feasible. Notice

that training a neural network may be time-consuming, but once it is trained,

it can operate very fast.

• Fault tolerance: Through distributed knowledge representation and redundant

information encoding, the system performance degrades gracefully in

response to faults (errors).

Neural networks can recognize, classify, convert, and learn patterns. A pattern is a

quantitative description of an object or concept or event. A pattern class is a set of

pattern sharing some common properties. Pattern recognition refers to the
Ilı

categorization of input data into identifiable classes by recognizing significant features

or attributes of the data.
•

1.4 Brain As A Neural Network:
Human brain is made up of a vast network of computing elements, called neurons,

coupled with sensory receptors (affecters) and effectors. The average human brain,

roughly three pounds in weight and 90 cubic inches in volume, is estimated to contain

4

about 100 billion cells of various types. A neuron is a special cell that conducts

electrical signal, and there are about 1 O billion neurons in the human brain. The

remaining 90 billion cells are called glial or glue cell, and these sever as support cells

for the neurons. Brain organizes the huge number of neurons (also referred to as cells

because glial cells are not of interest here) each with weak computing power, into a

massively parallel complex network in which the neurons interact with each other

dynamically to produce a powerful information processor.

1.5 Hybrid Intelligence:

Integration of symbolic AI and neural network results in a so-called Hybrid intelligent

system. Under this approach, the fundamental assumption on intelligence is as follows:

• Neither the physical symbol system nor the neural network is a necessary

means ofgeneral intelligentaction.

• The symbolic level and the connectionist level represent two different levels

of abstraction for intelligentprocess.

• Knowledge is power. Every intelligent being should have knowledge in one

form or another.

Hybrid intelligence is a biological plausible notion. Recall that humans store knowledge

in certain complex molecules such as genes and proteins, which determine what we are

and how we behave, and at the same time, we have nerve system to coordinate our

behavior.

Examples of research in this area include:
~

• Knowledge-based neural network: Neural networks are built based on
•

domain knowledge or theory. In this construct, neural networks model some

aspects such as noise and uncertainty which knowledge is not dealing with.

• Translation of neural network knowledge into symbolic knowledge: This

is important for interpreting neural network, explaining neural network

5

behavior, and learning knowledge under noise and uncertainty. The idea can

also be applied to regularize the neural network and to prevent it form over

fitting the data.
• Learning by combining knowledge and adaptation: It is concerned with

how to build a better learning system that using knowledge or adaptation

alone, how to build an incremental learning system, and how to build a useful

discovery system. The central idea is to use knowledge as the initial crystal

and then grow the crystal by adaptation.

• Connectionist Symbol processing: It bears on how to represent symbolic

information or knowledge in the framework of connectionists, how to

process the information accordingly, and how to retrieve the information.

The advantages of this approach include fault tolerance, space sharing, and

special processing strategies offered by the distributed representation of

connectionists.

• Hybrid Intelligent System: Such systems possess knowledge-based

components and neural networks, which are integrated in a certain manner so

that each component performs the tasks for which it is best, suited.

• Expert Networks: They refer to neural networks that can perform as well as

human experts. Explanation is an important issue for designing such systems.

•

6

Chapter Two

Genetic Algorithms

2.1 Overview:

Science arises from the veıy human desire to understand and control the world. Over

the course of histoıy, we humans have gradually built up the grand edifice of

knowledge that enables us to predict, to vaıying extents, the weather, the motions of the

planets, solar and lunar eclipses, the control of diseases, the rise and fall of economic

growth, the stages of language development in children, and a vast panorama of other

natural, social, and cultural phenomena. Most recently we have even come to

understand some fundamental limits to our abilities to predict. Over the eons we have

developed increasingly complex means to control many aspects of our lives and our

interactions with nature, and we have learned often the hard way, the extent to which

other aspects are uncontrollable.

The goal of creating artificial intelligence and artificial life can be traced back to the

veıy beginning of computer age. The earliest computer scientists Alan Turing, John

von Neumann, Norbert Wiener [3], and others were motivated in large part by visions

of imbuing computer programs with intelligence, with the life-like ability to self­

replicate, and with the adaptive capability to learn and to control their environments.

These pioneers of computer science were as much interested in biology and psychology

as in electronics, and they looked to natural systems as guiding metaphors for how to

Brachiates their visions. It" should be no surprise, then, that from the earliest days

computers were applied not only to calculation missile trajectories and deciphering

militaıy codes but also to modeling the brain, mimicking human learning, and

simulating biological evolutions.

7

2.2 Brief History:

Charles Darwin, 1809-1882
Genetic algorithms are appropriate for problems, which require optimization with

respect to some computable criterion. This paradigm can also be applied to data mining

problems. Here the quantity to be minimized is often the number of classification errors

on a training set. Ultragem [4) has developed proprietaıy techniques for efficiently

representing and evolving classification rules using the genetic algorithm paradigm.

Unlike natural evolution, genetic algorithms do not require millions of years to produce

results. However, the system may need to run for many hours or even days. Large,

complex problems require a fast computer in order to obtain good solutions in a

reasonable amount of time. Mining of large datasets by genetic algorithms has only

recently become practical due to the availability of affordable high-speed computers

such as the DEC Alpha.

In the 1950s and 1960s several computer scientists independently studied evolutionary

systems with the idea that evolution could be used as optimization tool for engineering

problems. The idea in all these systems was to evolve a population of candidate solution

to a given problem, using operators inspired by natural genetic variation and natural

selection.

In the 1960s, Rechenberg [3) (1965,1973) introduced "evolutionary strategies", a

method he used to optimize real valued parameters for devices such as airfoils. This

idea was further developed by Schwefel [3) (1975, 1977). The field of evolution of

strategies has remained an active area of research, mostly developing independently

from the field of genetic algorithms. •

Several other people working in 1950s and the 1960s developed evolution inspired

algorithms for optimization and machine learning. Box (1957), Friedman (1959),

Bledsoe (1962), Bremermann (1962), and Reed, Toombs, and Baricelli [3) (1967) all

worked in this area, though their work has been given little or none attention or follow

8

up that evolution strategies, evolutionary programming, and genetic algorithms have

seen.

Genetic algorithms were invented by John Holland [3] in 1960s and were developed by

Holland and his students and colleagues at the University of Michigan in 1960s and

197Os. In contrast with evolution strategies and evolutionary programming, Holland's

original goal was not to design algorithms to solve specific problems, but rather to

formally study the phenomena of adaptation as it occurs in nature and to develop ways

in which the mechanism of natural adaptation might be imported into computer

systems.

In the last several years there has been widespread interaction among researchers

studying various evolutionary computation methods, and the boundaries between

Genetic Algorithms, evolutionary strategies, evolutionary programming, and other

evolutionary approaches have been broken down to some extent.

2.3 Biological Terminology:
The evolution of Genetic Algorithms is based on analogy with real biology and can be

understood more precisely as:

All living organisms consist of cell, and each cell contains the same set of one or more

chromosomes - strings of DNA - that serves as "blueprint" for the organism. A

chromosome can be conceptually divided into genes - functional block of DNA, each of

which encodes a particular protein. Very roughly, one can think of gene as encoding a

trait, such as eye color. The different possible "settings" for a trait (e.g. blue, brown,
ı,

hazel) are called alleles. Each gene is located at a particular locus (position) on the

chromosome. •

In genetic algorithms, the term chromosome typically refers to candidate solution to a

problem, often encoded as a bit string. The "genes" are either single bits or short blocks

of adjacent bits that encode a particular element of the candidate solution (e.g. in the

context of multi-parameter function optimization the bits encoding a particular

9

parameter might be considered to be a gene). An allele in a bit string is either O or 1; for

larger alphabets more alleles are possible at each locus. Crossover typically consists of

exchanging genetic material between two single chromosome haploid parents.

2.4 Search Space:
If we are solving some problem, we are usually looking for some solution, which will

be the best among others. The space of all feasible solutions (it means objects among

those the desired solution is) is called search space (also state space). Each point in the

search space represents one feasible solution. Each feasible solution can be "marked" by

its value or fitness for the problem. We are looking for our solution, which is one point

(or more) among feasible solutions - that is one point in the search space.

The looking for a solution is then equal to a looking for some extreme (minimum or

maximum) in the search space. The search space can be whole known by the time of

solving a problem, but usually we know only a few points from it and we are generating

other points as the process of finding solution continues.

2.5 Elements of Genetic Algorithms:
It turns out that there is no rigorous definition of "genetic algorithm" accepted by all in

the evolutionary-computation community that differentiates GAs from other

evolutionary computation methods. However, it can be said that most methods called

"GAs" have at least the following elements in common: populations of chromosomes,

selection according to fitness, crossover to produce new offspring, and random mutation

of new offspring. Inversion-Holland's fourth element of GAs is rarely used in today's

implementations, and its advantages, if any, are not well established.

The chromosomes in a GA population typically take the form of bit strings. Each locus

in the chromosome has two possible alleles: O 'and 1.Each chromos'bme can be thought

of as a point in the search space of candidate solutions. The GA processes populations

of chromosomes, successively replacing one such population with another. The GA

most often requires a fitness function that assigns a score (fitness) to each chromosome

in the current population. The fitness of a chromosome depends on how well that

chromosome solves the problem at hand.

10

2.5.1 Examples of Fitness Functions:

One common application of GAs is function optimization, where the goal is to find a set

of parameter values that maximize, say, a complex multi-parameter function. As a

simple example, one might want to maximize the real-valued one-dimensional function

(Riolo [3] 1992). Here the candidate solutions are values of y, which can be encoded as

bit strings representing real numbers. The fitness calculation translates a given bit string

x into a real number y and then evaluates the function at that value. The fitness of a

string is the function value at that point.

f(y) =y + lsiıı(32.y)I, o <y < 1C

As a non-numerical example, consider the problem of finding a sequence of 50 amino

acids that will fold to a desired three-dimensional protein structure. A GA could be

applied to this problem by searching a population of candidate solutions, each encoded

as a 50-letter string such as

IHCCVASASDMJKPVFTVASYLKNWTKAKGPNFEICISGRTPYWDNFPGI,

Where each letter represents one of 20 possible amino acids. One way to define the

fitness of a candidate sequence is as the negative of the potential energy of the sequence

with respect to the desired structure. The potential energy is a measure of how much

physical resistance the sequence would put up if forced to be folded into the desired

structure the lower the potential energy, the higher the fitness. Of course one would not

want to physically force every sequence in the population into the desired structure and
~

measure its resistance this would be very difficult, if not impossible. Instead, given a

sequence and a desired structure (and knowing some of the relevant biophysics), one
•

can estimate the potential energy by calculating some of the forces acting on each

amino acid, so the whole fitness calculation can be done computationally.

These examples show two different contexts in which candidate solutions to a problem

are encoded as abstract chromosomes encoded as strings of symbols, with fitness

11

functions defined on the resulting space of strings. A genetic algorithm is a method for

searching such fitness landscapes for highly fit strings.

2.6 GA Operators:
The simplest form of genetic algorithm involves three types of operators selection,

crossover, and mutation.

1. Selection: This operator selects chromosomes ın the population for

reproduction. The fitter the chromosome, the more times it is likely to be

selected.

2. Crossover: this operator randomly chooses a locus and exchanges the

subsequences before and after that locus between two chromosomes to create

two offspring. For example, the strings 10000100 and 11111111 could be

crossed over after the third locus in each to produce the two offspring 10011111

and 11100100. The crossover operator roughly mimics biological recombination

between two single-chromosome (haploid) organisms.

3. Mutation: This operator randomly flips some of the bits in a chromosome. For

example, the string 00000100 might be mutated in its second position to yield

01000100. Mutation can occur at each bit position in a string with some

probability, usually very small (e.g. 0.001).

2.7 Applications of Genetic Algorithms:
~

Various kinds of Genetic Algorithms have been applied on different scientific and

engineering problems and models. Some examples are: •

• Optimization: GAs have been used in wide variety of optimization tasks,

including numerical optimization and such combinatorial optimization

problems as circuit layout and job-shop scheduling.

12

• Automatic Programming: GAs have been used to evolve computer programs

for specific tasks, and to design other computational structures such as cellular

automata and sorting networks.

• Machine leaming: GAs have been used for many machine learning

applications, including classification and prediction tasks, such as the

prediction of weather or protein structure. Gas have also been used to evolve

aspects of particular machine learning systems, such as weight for neural

networks, rules for learning classifier systems or symbolic production systems,

and sensors for robots.

• Economics: GAs have been used to model processes of innovation, the

development of bidding strategies, and the emergence of economic markets.

• Immune systems: GAs have been used to model various aspects of natural

immune systems, including somatic mutation during an individual's lifetime

and the discovery of multi-gene families during evolutionary time.

• Ecology: GAs have been used to model ecological phenomena such as

biological arms races, host-parasite co evolution, symbiosis, and resource flow.

• Population Genetics: GAs have been used to study how individual learning

and species evolution affect one another.

• Evolution and Learning: GAs have been used to study how individual

learning and species evolution affect one another.

•
• Social Systems : GAs have been us:d to study evolutionary aspects of social

systems, such as the evolution of social behavior in insects colonies, and more

generally, the evolution of cooperative and communication in multi-agent

systems.

13

This list gives a brief idea of the flavor of the kinds of things GAs have been used for,

both in problem solving and in scientific contexts. Because of their success in these and

other areas, interests in GAs has been growing rapidly in the last several years among

researchers in many disciplines. The field of GAs has become sub discipline of

computer science, with conferences, journals, and scientific society.

..
•

14

Chapter Three

Basic Neural Network Learning and Computational

Models

3.1 Overview:

The neural network contains a large number of simple neuron like processing elements

and large number of weighted connections between the elements. The weights on the

connection encode the knowledge of a network. Though biologically inspired, many of

the neural networks developed do not duplicate the operation of human brain. Some

computational principles in these models are not even explicable from biological

viewpoints.

In many tasks such as recognizing human faces and understanding speech, current AI

systems cannot do better than humans. It is conjectured that the structure of brain is

somehow suited to these tasks and not suited to tasks such as high-speed arithmetic

operation.

The intelligence of a neural network emerges from the collective behavior of neurons,

each of which performs only very limited operation. Even though each individual

neuron works slowly, they can still quickly find a solution by working in parallel. This

fact can explain why humans can recognize a visual scene faster than a digital

computer, while an individual brain cell responds much more slowly than a digital cell

in VLSI circuit.
..

•3.2 Basic Concepts of Neural Network:"

A neural network has a parallel-distributed architecture with a large number of nodes

and connections. Each connection points from one node to another and is associated

with a weight. A simple view of the network structure and behavior is given in fig 2. 1.

Construction of a neural network involves the following tasks.

15

Oı.tp,.i
layer

'/
I

I
J

i
, Hidden layer
I
I

''
' ' Input

layer

Fig 2.1 A neural network computational model.

• Determine the network properties: The network topology (connectivity),

types of connections, the order of connections, and the weight range.

• Determine the node properties: The activation range and the activation

(transfer) function.

• Determine the system Dynamics: The weight initialization scheme, the

activation-calculatingformula, and the learning rule.

1) Network Properties: The topology of a neural network refers to its

framework as well its interconnection schemes. The framework is often specified by

number of layers (or slabs) and the number of nodes per layer. The types of layers

include:

• The input layer: The nodes in it are called input units; which encode the

instance presented to the network for processing. For example, each input

unit may be designated by an attribute value possessed by the instance.

16

• The hidden layer: The nodes in it are called the hidden units, which are not

directly observable and hence hidden. They provide nonlinear ties for the

network.

• The output layer: The nodes in it are called output units, which encode

possible concepts, (or values) to be assigned to the instance under

consideration. For example each output unit represents a class of objects.

The Input units do not process information; they simply distribute the information to the

other units. Schematically, input units are drawn as circles as distinguished from

processing elements like hidden units and output units, which are drawn as squares.

According to interconnection scheme, a network can either be feed forward or recurrent

and its connection either symmetrical as asymmetrical, which are defined below.

• Feed forward networks: All connections point in one direction (from the

input toward the output layer), or form left to right as shown in figure2.2.

[Bottom-Top)

Fig 2.2 Single layer feedforward Perceptron. •
•

• Recurrent Networks: There are feedback connections or loops, as shown in

Fig 2.1.

17

• Symmetrical Connection: If there is a connection pointing from node 1 to

node 2, then there is also a connection from node 2 to node 1, and the

weights associated with the two connections are equal, or notationally,

• Asymmetrical Connection: If the connections are not symmetrical as

described above then they are asymmetrical.

3.3 Node Properties:

The activation levels of nodes can be discrete (e.g., O and 1) or continuous across a

range (e.g., [0,1] or unrestricted. This depends on the activation (transfer) function

chosen. If it is a hard-limiting function, then the activation level are O or (-1) and I. For

a sigmoid function, the activation levels are limited to a continuous range of reals [0,1].

Figure 2.3 shows the sigmoid function F:

1
F(x) = I+e-x

In case of a linear activation function, the activation levels are open

1.0' Output

•

o Input

Fig 2.3 The sigmoid activation Function.

18

3.4 Inference and Learning:

Building an AI system based on the neural network approach will generally involve the

following steps.

1. Select a suitable neural network based on the nature of problem.

2. Construct a neural network according to the characteristics of the application

domain.

3. Train the neural network with the learning procedure of the selected model.

4. Use the trained network for making inference or solving problems. If the

performance is not satisfactory, then go to one of the previous steps.

Familiarity with existing applications will help determine the appropriate network

architecture and select the best-suited computational model for learning and inference.

Learning is discussed in detail in supervised and unsupervised learning.

3.5 Leaming:

In as much as great variety of human experience can be described as learning, the term

machine learning is sometimes obscure. A somewhat more focused definition suggested

by Hebert Simon [5] (1983) is based on notion of change.

"Learning denotes changes in the system that are adaptive in the sense that they

enable the system to do the same task or tasks drawn from the same population more

efficiently and more effectively the next time".

-Learning can refer to either acquiring new knowledge or enhancing or refining skills.

Learning new knowledge includes acquisition of significant concepts, understanding of
•ı,

their meanings and relationships to each other and to domain concerned. The new

knowledge should be assimilated and put in mentally usable form before it can be called

"learned". Thus, knowledge acquisition is defined as learning new symbolic

information combined with the ability to use that information effectively.

19

3.6 Historical Sketch:
Research and development in machine learning have seen several major evolutionary

changes. Over the years, different paradigms with different emphasis on objectives have

been pursued. Four major periods can be distinguished, each centering around a

different paradigm:

Since 1940s and 1950s:

• Paradigms: Neural network; decision-theoretical learning.

• Objectives: Neural modeling; pattern recognition.

• Examples: McCulloch and Pitts (1943); Rosenblatt (1958); Samuel [5] (1959).

Since 1960s:

• Paradigms: Symbolic learning.

• Objectives: Concept acquisition; building knowledge-based expert systems.

• Examples: Winston (1975); Buchanan and Mitchell [5] (1978).

Since 1970s:

• Paradigms: Knowledge-intensive learning.

• Objectives: Exploration of various learning strategies.

• Examples: Mitchell, Keller, and Kedar-Cabelli [5] (1986).

Since 1980s:
• Paradigms: Neural network and connectionist learning; hybrid learning.

• Objectives: Neural eomputers; robust learning; massive parallelism.

• Examples: Rumelhart, McClelland, and PDP Group (1986); Goldberg [5]

(1989). •

3.7 Supervised Learning:
In a supervised learning process, the input data and its corresponding output are

presented to the neural network. The neural network will according to the defined law

20

change its weight in order to be able to reproduce the correct output, when an input is

applied.

Supervised learning algorithms utilize the information on the class membership of each

training instance. This information allows supervised algorithms to detect pattern

misclassification as a feedback to themselves. Error information contributes to the

learning process by rewarding accurate classification and/or rnisclassifications - a

process known as credit and blame assignment. It also helps eliminate implausible

hypothesis.

3.8 Unsupervised Learning:

Unsupervised learning process requires only input vectors to train the network. On the

input data is presented to the neural network, the weights are adjusted in an ordered way

according to some figure of merit.

Unsupervised learning algorithms use unlabeled instances. They blindly or heuristically

process them. Unsupervised learning algorithms often have less computational

complexity and less accuracy than supervised learning algorithms. Unsupervised

learning algorithms can be designed to learn rapidly. This makes unsupervised learning

practical in many high-speed, real time environments, where we may not have enough

time and information to apply supervised techniques. Unsupervised learning has also

been used for scientific discovery.

Unsupervised learning refers to how neural networks modify their parameters in

biologically plausible ways. In this learning mode, the neural network does not use the

class membership of trainilıg instances. Instead, it uses information associated with a

group of neurons to modify local parameters.
•

21

3.9 Neural Network Leaming:

The neural network has been dubbed the "connectionist". It contains large number of

simple neuron like processing elements and a large number of weighted connections

between the elements. The weights on the connections encode the knowledge of a

network. It uses a high parallel, distributed control, and can learn to adjust itself

automatically.

3.9.1 Backpropagation:
The backpropagation network is probably the most well known and widely used among

the current types of neural network systems available. The learning rule is known as

backpropagation, which is a kind of gradient decent technique with backward error

(gradient) propagation, as depicted in fig. The training instance set for the network must

be presented many times in order for correct classification of input patterns. While the

network can recognize patterns similar to those they have learned, they don't have the

ability to recognize new patterns. This is true for all supervised learning networks. In

order to recognize new patterns network needs to be retrained with these patterns along

with previously known patterns. If only new patterns are provided for retraining, then

old patterns may be forgotten. In this way, learning is not incremental over time.

hr gel
Oıiput

Backward
Enoı
P,opagation

Actual output

•0l: I O o O

He:" ı o o o
= I O O O

INPUT

Fig 2.4 The back propagation network.

The backpropagation network is essence learns a mapping from a set of input patterns

(e.g. extracted features) to a set of output patterns (e.g. class information). This network

can be designed and trained to accomplish a wide variety of mappings. This ability

comes form the nodes in hidden layer or layers of the network, which learns to respond

to features, found in the input patterns. The features recognized or extracted by hidden

units (nodes) correspond to the correlation of activity among different input units. As

the network is trained with different examples, the network has the ability to generalize

over similar features found in different patterns.

The back propagation network is capable of approximating arbitrary mappıngs.

Furthermore, it can learn to estimate posterior probabilities (p(w;fx)) for classification.

The sigmoid function guarantees that the outputs are bounded between O and 1.

The back propagation network consists of one input layer, one output layer and one or

more hidden layers. If n bits or n values describe the input pattern, then there should be

n input units to accommodate it. The number of output units is like wise determined by

how many bits or values are involved in output pattern.

The name back propagation comes from the fact that the error (gradient) or hidden units

are derived form propagation backward the errors associated with output units. In back

propagation network, the activation function chosen is the sigmoid function, which

compresses the output value into the range between O and 1. The sigmoid function is

advantageous in that it can accommodate large signals without saturation

a Back Propagation Leaming: •

The equation that describes the network training and operation can Öe divided into two

categories.

1. Feed forward Calculations: Use in both training mode and operation mode.

2. Error Back Propagation: Use in training mode only.

23

Activation Function: Any activation function that is differentiable can be used in Back

propagation algorithm.

• Linear Function with adjustable gain.

• Sigmoid Function (Squashing Function).

a) FeedfoıwardCalculations:
Normalization of the input data prior training is necessary. The value of input data into

input layer must be in the range (0-1).

Input Layer (ı): The output of each input neuron is exactly equal to the

normalized input.

Input-layer= Output

Hidden Layer (h): The signal presented to a neuron in the hidden layer is equal to the

sum of all outputs of the input layer multiplied by their associated weights.

Hidden Layer Input:

Each output of a hidden nurede is calculated using the SIGMOID function.

Output Layer (/): Similar to Hidden Layer Calculation. •

Output layer Input (/):

24

These equations describe the feedforward calculations, which can be used in both

training and running phases.

b) Error Back Propagation Calculations:
Vital elements in these calculations are:

Error Signal: The definition of network error is the difference between the output

value that an output neuron is supposed to have (Target value, Tj), and the value it

actually has as a result offeed forward calculations (01).

P: denotes what the value is for a given pattern.

The aim of training a Neural Network is to minimize this error over all training patterns.

The output of a neuron in the output layer is a function of its input 01 = f(I;). The first

derivative of this function f(f 1) is an important element in error back propagation. For

output layer neurons, a quantity called the error signal is represented by ~ 1 which is

defined as,

111 = f'(I)(T1 -0)
111 = (T1 -01)01(1-0)

The error value is propagated back and weights adjustments are made.

There are two essential parameters that affect the learning of a neural network:
•

1. Learning co-efficient 7] which defines the learning power of a neural network.

2. Momentum factor a, which defines the learning power of a neural network.

The effect of these parameters is described by the following equations.

25

Output Layer Weights Update: The weights that feed the output layer (W1h) are

updated using the following equations. This also includes the bias weights at the output

layer. However in order to prevent the network getting caught in local minima, the

momentum term is also added.

or with momentum rate

wjh(new) = wjh(old)+ rıı1.joj +al&jh(old) J

Hidden Layer Weights Update: Similar to output layer weights update but the Delta

error will be different.Error for Hidden layer is defined by the following equation.

ni

ıı h = oh cı - oh) I w1hıı 1
j=O

Weights-adjustments:

All the equations describe the mathematical foundations for Back Propagation Learning

Algorithm.

3.10 Classification Models:

Neural Networks can be classified according to the way they learn, learning can be

performed on a Supervised Or Unsupervised basis.

•
1J Supervised Learning Models:

1. The Perceptron.

2. The Back Propagation Learning Algorithm.

3. The Hop Field Algorithm.

4. The Hamming Algorithm.

26

• The Perceptron: This can be trained and can make decisions. During the

training phase, pairs of input and output vectors are used to train the network. While

each input vector, the output vector is compared with a desired output (target) as shown

in fig 2.4, and the error between the actual and desired output vectors is used to update

the weights.

• Back Propagation: A multi-layer network can be trained using the back

propagation-learning algorithm. This is done by presenting pairs of input and output

vectors. The actual output is compared with the target. If there is no difference the

weights do not change, otherwise the weights are adjusted to reduce the error difference.

This learning algorithm propagates back the error through the multi-layer to update the

weights.

• Hop Field Network: A Hop field network is essentially used with binary

numbers. Weights are initialized using training samples. In the decision making phase,

the test data is presented to the net at certain time, following initialization the Hop field

Network iterates in discrete time steps using some mathematical function, and the

network is considered to have converged when the outputs no longer change on

successive iterations.

• Hamming Network: It is similar to Hop field network, but it consists of four

layers.

LI : Input Layer.
ıı,

L2: Calculates matching scores.

L3: Feed back as in Hop field.

L4: Output Layer. •

o Unsupervised Leaming Models:

1. Kohonen's Self-OrganizingMaps.

2. Competitive Learning.

27

3. Adaptive Leaming.

• Kohonen's Learning: Kohonen [2] suggested that that one of the important

mechanism in the human brain is placement of Neurons in an orderly manner.

Kohonen's learning algorithm creates a feature map by adjusting weights from input

vectors to output vectors in a two layer network. The first layer is input. the second is

competitive layer. The tow layers are fully connected. Input vectors are presented

sequentially to layer one. Each unit computes the dot product of its weight with the

input vectors. The unit with the highest dot product is declared the winner. This and its

neighbors are the only units allowed to learn.

• Competitive Leaming: The simplest way to implement competitive learning is

where each unit in the hidden or output layers receives input from all the units in the

preceding layer. With in the layer units are broken down into a set of inhibitoıy clusters.

The units with in the cluster compete with in one another to respond to data appearing at

input layer. The more strongly and particular unit responds to incoming stimulus the

more it inhibits other units with in the cluster. The unit learns by shifting a fraction of

its weight from its inactive lines. The main disadvantage of competitive learning is the

loss of previous learning's.

• Adaptive Resonance Theory (ART): ART is divided into two methods.

1. Accepts only binaıy.

2. Accepts binaıy and continuous input.

•

28

Chapter Four

Genetic Algorithm Implementation

4.1 How do Genetic Algorithms Works?

Although genetic algorithms are simple to describe and program, their behavior can be

complicated, and many open questions exist about how they work and for what types of

problems they are best suited. Much work has been done on theoretical foundations of

GAs.

The tradition theory of GAs (first formulated in Holland 1975) assumes that, a very

general level of description, GAs work by discovering, emphasizing, and recombination

good "building blocks" of solutions in a highly parallel fashion. The idea here is that

good solutions tend to be made up of good building blocks - combination of bit values

that confer higher fitness on the strings in which they are present.

Holland [6] (1975) introduced the notion of schemas (or schemata) to formalize the

information notion of "building blocks". A schema is a set of bit strings that can be

described by a template made up of ones, zeros, and asterisks, the asterisks representing

wild cards (or "don't cares"). For example, the schema H=l ****1 represents the set of

all 6-bit strings that begin and end with 1. The strings that fit this template (e.g. 100111

and 110011) are said to be instances of H The schema H is said to have two defined

bits (non-asterisks) or, equivalent, to be or order 2. Its defining length (the distance
Ill

between its outermost defined bits) is 5. Here the term "schema" is used to donate both

a subset of strings represented by such a template itself
•

Note that not every possible subset of the set of length-I bit strings can be described as a

schema; in fact, the huge majority cannot. There are 21 possible strings of length I, and

thus 2 21 possible subsets of strings, but there are only 31 possible schemas. However, a

central tenet of traditional GA theory is that schemas are - implicitly - the building

29

blocks that the GA processes effectively under the operators of selection,/mutatio~ 3?d
. . I >- k. • ., g ı 1

sıngle-poınt crossover. '.\ ı:~. r- .
'\\J'~ ..}'\ ci- ~

H d th GA h ? An . bi . f 1 gth 1 . . ~f,,, L \• ~ ,;,ZC..'-J~'ow o e process sc emas. y gıven ıt strıng o en ıs an ınstan.c~

different schemas. For example, the string 11 is an instance of **(all four possible bit

strings of length 2), *l, 1 *, and 11 (the schema that contains only one string, 11). Thus,

any given population of n strings contains instances of between z' and n x ı1 different

schemas. If all the strings are identical, then there are instances of exactly 21 different

schemas; otherwise, the number is less than or equal to n x ı1 . This means that, at a

given generation, while the GA is explicitly evaluating the fitness of the n strings in the

population, it is actually implicitly estimating the average fitness of a much larger

number of schemas, where the average fitness of a schema is defined to be the average

fitness of possible instances of that schema. For example, in a randomly generated

population of n strings, on average half strings will be instances of 1 ***--* and half will

be instances of 0***---0. The evaluation of approximately n/2 strings that are instances

of 1 **---* give an estimate of the average fitness of that schema. Just as schemas are

not explicitly represented or evaluated by the GA, the estimates of schema average

fitness are not calculated or stored explicitly by the GA. However, as will be seen

below, the GAs behavior, in term of the population, can be described as though it

actually calculating and storing these averages.

We can calculate the approximate dynamics of this increase decrease in schema

instances by using the following equation:

E(m(H,t + 1)) = Lf(x)/](t)
xEH

= (u(H,t)/](t))m(H,t) (1.1)
•

Where H is considered as schema with at least one instance present in the population at

time t, m(H,t) be the number of instances present in the population at time t, and u(H,t)

be the observed average fitness of H at time t.

30

The disruptive effects of mutation can be quantified as follow; let Pm be the probability

of any bit being mutated. Then Sm (H), the probability that schema H will survive

under and instance of H, is equal to (1- Pm)OCH), where o(H) is order of H (i.e. the

number of defined bits in H).

The disruptive effects can be used to amend equation 1. I, and can be defined as:

This is known as Schema Theorem. It describes the growth of a schema from one

generation to the next

The Schema Theorem and some of its purported implications for the behavior of GAs

have been subjected of much critical discussion in the GA community. These criticisms

and the new approaches are discussed in detail in the coming sections.

4.2 Implementing a Genetic Algorithm:

The case studied earlier illustrated that when one wants to apply the GA to a particular

problem, one faces a huge number of choices about how to proceed, with little

theoretical guidance on how to make them.

John Holland's simple GA inspired all subsequent GAs and provided the basis for
"theoretical analysis of GAs. For real problem solving and modeling, however, it is clear

that the simple GA is limited in its power in several respects. Not all problems should
•

use bit-string encodings, fitness-proportionate selection is not always the best method,

and the simple genetic operators are not always the most effective or appropriate ones.

Furthermore, the simple GA leaves out many potentially useful ideas from real biology,

several of which were proposed for use in GAs by Holland (1975) but have not been

examined systematicallyuntil recently.

31

hı this section we will survey some implementation issues for GAs and some

sophisticated GA techniques, including self-adapting GAs. Of course, this survey is by

no means complete-although GA researchers speak informally of "the GA," anyone

who has little idea about GAs will notice that there are actually as many different GAs

as there are GA projects.

4.3 When Should a Genetic Algorithm be used?

The GA literature describes a large number of successful applications, but there are also

many cases in which GAs perform poorly. Given a particular potential application, how

do we know if a GA is good method to use? There is no rigorous answer, though many

researchers share the intuitions that if the space to be searched is large/ is known not to

be perfectly smooth and unimodal (i.e., consists of a single smooth "hill"), or is not well

understood, or if the fitness function is noisy, and if the task does not require a global

optimum to be found-i.e., if quickly finding a sufficiently good solution is enough-a

GA will have a good chance of being competitive with or surpassing other "weak"

methods (methods that do not use domain-specific knowledge in their search

procedure). If a space is not large, then it can be searched exhaustively, and one can be

sure that the best possible solution has been found, whereas a GA might converge on a

local optimum rather than on the globally best solution. If the space is smooth or

unimodal, a gradient-ascent algorithm such as steepest-ascent hill climbing will be

much more efficient than a GA in exploiting the space's smoothness. If the space is well

understood (as is the space for the well-known Traveling Salesman problem, for

example), search methods using domain-specific heuristics can often be designed to

outperform any general-purpose method such as a GA. If the fitness function is noisy

(e.g., if it involves taking error-prone measurements from a real-world process such as

the vision system of a robot), a one-candidate-solution-at-a-time search method such as•
.• simple hill climbing might be irrecoverably led astray by the noise, but GAs, since they

work by accumulating fitness statistics over many generations, are thought to perform

robustly in the presence of small amounts of noise.

32

4.4 Encoding a Problem for Genetic Algorithm:

As for any search and learning method, the way in which candidate solutions are

encoded is a central, if not the central, factor in the success of a genetic algorithm. Most

GA applications use fixed-length, fixed-order bit strings to encode candidate solutions.

However, in recent years, there have been many experiments with other kinds of

encoding.

1. Binary Encodings:

Binary encoding (i.e., bit strings) are the most common encodings for a number of

reasons. One is historical: in their earlier work, Holland and his students concentrated

on such encodings and GA practice has tended to follow this lead. Much of the existing

GA theory is based on the assumption of fixed-length, fixed-order binary encodings.

Much of that theory can be extended to apply to nonbinary encodings, but such

extensions are not as well developed as the original theory. In addition, heuristics about

appropriate parameter settings (e.g., for crossover and mutation rates) have generally

been developed in the context of binary encodings.

Holland [3] (1975) gave a theoretical justification for using binary encodings. He

compared two encodings with roughly the same information-carrying capacity, one with

a small number of alleles and long strings (e.g., bit strings of length 100) and the other

with a large number of alleles and short strings (e.g., decimal strings of length 30). He

argued that the former allows for a higher degree of implicit parallelism than the latter,

since an instance of the former contains more schemas than an instance of the latter

(2100 versus ı3°). (This schema-counting argument is relevant to GA behavior only

insofar as schema analysis isselevant, which, as I have mentioned, has been disputed).

••
In spite of these advantages, binary encodings are unnatural and -unwieldy for many

problems (e.g., evolving weights for neural networks or evolving condition sets in the

manner of Meyer and Packard), and they are prone to rather arbitrary orderings.

33

2. Many-Character and Real-Valued Encodings:

For many applications, it is most natural to use an alphabet of many characters or real

numbers to form chromosomes. Examples include Kitano's [3] many-character

representation for graph-generation grammars, Meyer and Packard's [3] real-valued

representation for condition sets, Montana and Davis's [3] real-valued representation for

neural-network weights, and Schultz-Kremer's [3] real-valued representation for torsion

angles in proteins.

Holland's schema-counting argument seems to imply that GAs should exhibit worse

performance on multiple-character encodings than on binaıy encodings. Several

empirical comparisons between binary encodings and multiple-character or real-valued

encodings have shown better performance for the latter e.g., Janikow and Michalewicz

[3]. But the performance depends very much on the problem and the details of the GA

being used, and at present there are no rigorous guidelines for predicting which

encoding will work best.

3. Tree Encodings:

Tree encoding schemes, such as John Koza's [3] scheme for representing computer

programs, have several advantages, including the fact that they allow the search space to

be open-ended (in principle, any size tree could be formed via crossover and mutation).

This open-endedness also leads to some potential pitfalls. The trees can grow large in

uncontrolled ways, preventing the formation of more structured, hierarchical candidate

solutions. (Koza's [3] (1992, 1994) "automatic definition of functions" is one way in

which GP can be encouraged to design hierarchically structured programs.) Also, the

resulting trees, being large, can be very difficult to understand and to simplify.~
Systematic experiments evaluating the usefulness of tree encodings and comparing.
them with other encodings are only just beginning in the ge~etic programming

ı,
•• community. Likewise, as yet there are only very nascent attempts at extending GA

theory to tree encodings.

These are only the most common encodings; a survey of the GA literature will tum up

experiments on several others.

34

4.5 Adapting the Encoding:

Choosing a fixed encoding ahead of time presents a paradox to the potential GA user:

for any problem that is hard enough that one would want to use a GA, one doesn't know

enough about the problem ahead of time to come up with the best encoding for the GA.

In fact, coming up with the best encoding is almost tantamount to solving the problem

itself The original lexicographic ordering of bits was arbitrary, and it probably impeded

the GA from finding better solutions quickly-to find high-fitness rules, many bits

spread throughout the string had to be co adapted. If these bits were close together on

the string, so that they were less likely to be separated under crossover, the performance

of the GA would presumably be improved. But we had no idea how best to order the

bits ahead of time for this problem. This is known in the GA literature as the "linkage

problem"-one wants to have functionally related loci be more likely to stay together

on the string under crossover, but it is not clear how this is to be done without knowing

ahead of time which loci are important in useful schemas. Faced with this problem, and

having notions of evolution and adaptation already primed in the mind, many users have

a revelation: "As long as rm using a GA to solve the problem, why not have it adapt the

encoding at the same time!"

ı. Inversion:

Holland [3] (1975) included proposals for adapting the encodings in his original

proposal for GAs. Holland, acutely aware that correct linkage is essential for single­

point crossover to work well, proposed an "inversion" operator specifically to deal with•
the linkage problem in fixed-length strings.

•.. ~
Inversion is a reordering operator inspired by a similar operator in real genetics. Unlike

simple GAs, in real genetics the function of a gene is often independent of its position

in the chromosome (though often genes in a local area work together in a regulatory

network), so inverting part of the chromosome will retain much or all of the "semantics"

of the original chromosome.

35

To use inversion in GAs, we have to find some way for the functional interpretation of

an allele to be the same no matter where it appears in the string. For example, in the

chromosome encoding a cellular automaton the leftmost bit under lexicographic

ordering is the output bit for the neighborhood of all zeros. We would want that bit to

represent that same neighborhood even if its position were changed in the string under

an inversion. Holland proposed that each allele be given an index indicating its "real"

position, to be used when evaluating a chromosome's fitness. For example, the string

00010101 would be encoded as

{(1,0) (2,0) (3, O) (4,1) (5, O) (6,1) (7, O) (8,1)},

With the first member of each pair giving the "real" position of the given allele. This is

the same string as, say,

{(l, O) (2, O) (6,1) (5, O) (4, .1) (3,0) (7,0) (8,1)}.

Inversion works by choosing two points in the string and reversing the order of the bits

between them-in the example just given, bits 3-6 were reversed. This does not change

the fitness of the chromosome, since to calculate the fitness the string is ordered by the

indices. However, it does change the linkages: the idea behind inversion is to produce

orderings in which beneficial schemas are more likely to survive. Suppose that in the

original ordering the schema 00 * *O 1 * * is very important. Under the new ordering,

that schema is 0010 * * * ~- Given that this is a high-fitness schema and will now tend

to survive better under single-point crossover, this permutation will presumably tend to

survive better than would the original string. ,, •
..

The reader may have noticed a hitch in combining inversion with single-point

crossover. Suppose, for example, that

36

{(l, O) (2, O) (6,1) (5,0) (4,1) (3,0) (7, O) (8,1)}

Crosses with

{(5,1) (2, O) (3,1) (4,1) (1,1) (8,1) (6,0) (7, O)}

After the third bit, the offspring are

{(1,0) (2,0) (6,1) (4,1) (1,1) (8,1) (6, O) (7,0)}

And

{(5,1) (2, O) (3,1) (5,0) (4,1) (3,0) (7, O) (8,1)}.

The first offspring has two copies each of bits 1 and 6 and no copies of bits 3 and 5. The

second offspring has two copies of bits 3 and 5 and no copies of bits 1 and 6. How can

we ensure that crossover will produce offspring with a full set of loci? Holland

proposed two possible solutions:

• Permit crossover only between chromosomes with the same permutation of

the loci. This would work, but it severely limits the way in which crossover

can be done.

.. • Employ a "master/slave" approach: choose one parent to be the master, and

temporarily reorder the other parent to have the same ordering as the master.

Use this ordering to produce offspring, returning the second parent to its

original ordering once crossover has been performed. Both methods have

been used in experiments on inversion.

37

Inversion was included in some early work on GAs but did not produce any stunning

improvements in performance (Goldberg 1989a). More recently, forms of inversion

have been incorporated with some success into GAs applied to "ordering problems"

such as the DNA fragment assembly problem (Parsons, Forrest, and Burks, in press).

However, the verdict on the benefits of inversion to GAs is not yet in; more systematic

experimental and theoretical studies are needed. In addition, any performance benefit

conferred by inversion must be weighed against the additional space (to store indices

for eveıy bit) and additional computation time (e.g., to reorder one parent before

crossover) that inversion requires.

2. Evolving Crossover "Hot Spots":

A different approach, also inspired by nature, was taken by Schaffer and Morishima [3]

(1987). Their idea was to evolve not the order of bits in the string but rather the

positions at which crossover was allowed to occur (crossover "hot spots"). Attached to

each candidate solution in the population was a second string-a "crossover

template"-that had a 1 at each locus at which crossover was to take place and a O at

each locus at which crossover was not to take place. For example, 10011111:00010010

(with the chromosome preceding-and the crossover template following the colon) meant

that crossover should take place after the fourth and seventh loci in that string. Using an

exclamation point to denote the crossover markers (each attached to the bit on its left),

we can write this as 1001!11l!l. Now, to perform multi-point crossover on two parents

(say 1001!111!1 and 000000'00), the !s mark the crossover points, and they get

inherited along with the bits to which they are attached:

Parents 1 O O I! 11 I! 1

O O O O O O! O O
•..

Offspring 1 O O O! O O! I! O

00001101

38

Mutation acts on both the chromosomes and the attached crossover templates. Only the

candidate solution is used to determine fitness, but the hope is that selection, crossover,

and mutation will not only discover good solutions but also coevolve good crossover

templates. Schaffer and Morishima found that this method outperformed a version of

the simple GA on a small suite of function optimization problems. Although this

method is interesting and is inspired by real genetics (in which there are crossover hot

spots that have somehow coevolved with chromosomes), there has not been much

further investigation into why it works and to what degree it will actually improve GA

performance over a larger set of applications.

3. MessyGAs:

The goal of "messy GAs," developed by Goldberg and his colleagues, is to improve the

GA's function-optimization performance by explicitly building up increasingly longer,

highly fit strings from well-tested shorter building blocks (Goldberg, Korb, and Deb

1989; Goldberg, Deb, and Korb [3] 1990; Goldberg, Deb, Kargupta, and Harik [3]

1993). The general idea was biologically motivated: "After all, nature did not start with

strings of length 5. 9 x 109 (an estimate of the number of pairs of DNA nucleotides in the

human genome) or even of length-two million (an estimate of the number of genes in

Homo sapiens) and try to make man. Instead, simple life forms gave way to more

complex life forms, with the building blocks learned at earlier times used and reused to

good effect along the way."

Consider a particular optimization problem with candidate solutions represented as bit

strings. In a messy GA each bit is tagged with its "real" locus, but in a given

chromosome not all loci have to be specified ("under specification") and some loci can

be specified more than onee, even with conflicting alleles ("over specification"). For

example, in a four-bit problem, the following two messy chromosomes might be found

in the population: •..

{(1,0) (2,0) (4,1) (4,0)}

and

39

{(3,1) (3, O) (3,1) (4, O) (4,1) (3,1)}.

The first specifies no value for locus 3 and two values for locus 4. The second specifies

no values for loci 1 and 2, two values for locus 4 and a whopping four values for locus

3. (The term "messy GA" is meant to be contrasted with standard "neat" fixed-length,

fixed-population-size GAs.)

Given all this under- and over specification, how is the fitness function to be evaluated?

Over specification is easy: Goldberg and his colleagues simply used a left-to-right, first­

come-first-served scheme. (e.g., the chosen value for locus 4 in the first chromosome is

1.) Once over specification has been taken care of, the specified bits in the chromosome

can be thought of as a "candidate schema" rather than as a candidate solution. For

example, the first chromosome above is the schema 00*1. The purpose of messy GAs is

to evolve such candidate schemas, gradually building up longer and longer ones until a

solution is formed. This requires a way to evaluate a candidate schema under a given

fitness function. However, under most fitness functions of interest, it is difficult if not

impossible to compute the "fitness" of a partial string. Many loci typically interact non­

independently to determine a string's fitness, and in an under specified string the

missing loci might be crucial. Goldberg and his colleagues first proposed and then

rejected an "averaging" method: for a given under specified string, randomly generate

values for the missing loci over a number of trials and take the average fitness

computed with these random samples. The idea is to estimate the average fitness of the

candidate schema. But, as was pointed out earlier, the variance of this average fitness

will often be too high for a meaningful average to be gained from such sampling.

Instead, Goldberg [3] and his colleagues used a method they called "competitive
'&

templates." The idea was not to estimate the average fitness of the candidate schema but
•

to see if the candidate schema yields an improvement over a local optimum. The
•• •

method works by finding a local optimum at the beginning of a run by a hill-climbing

technique, and then, when running the messy GA, evaluating under specified strings by

filling in missing bits from the local optimum and then applying the fitness function. A

local optimum is, by definition, a string that cannot be improved by a single-bit change;

40

thus, if a candidate schema's defined bits improve the local optimum, it is worth further

exploration.

The messy GA proceeds in two phases: the "primordial phase" and the "juxtapositional

phase." The purpose of the primordial phase is to enrich the population with small,

promising candidate schemas, and the purpose of the juxtapositional phase is to put

them together in useful ways. Goldberg and his colleagues' first method was to guess at

the order k of the smallest relevant schemas and to form the initial population by

completely enumerating all schemas of that order. For example, if the size of solutions

is l = 8 and the guessed k is 3, the initial population will be,

{(1,0) (2,0) (3,0)}

{(1,0) (2,0) (3,1)}

{(1,1) (2,1) (3,1)} {(1,0) (2,0) (4,0)}

{(1,0) (2,0) (4,1)}

{(6,1) (7,1) (8,1)}.

..

After the initial population has been formed and the initial fitnesses evaluated (using

competitive templates), the primordial phase continues by selection only (making

copies of strings in proportion to their fitnesses with no crossover or mutation) and by

culling the population by hc!ıf at regular intervals. At some generation (a parameter of

the algorithm), the primordial phase comes to an end and the juxtapositional phase is in­

voked. The population size stays fixed, selection continues, and \wo juxtapositional

operators-"cut" and "splice"-are introduced. The cut operator cuts a string at a

random point. For example,

{(2,0) (3,0) (1,1) (4,1) (6,0)}

41

Could be cut after the second locus to yield two strings: {(2, O) (3,0)} and {(1,1) (4,1)

(6, O)}. The splice operator takes two strings and splices them together. For example,

{(1.1) (2,1) (3,1)} and {(l, O) (4,1) (3, O)}

Could be spliced together to form

{(1,1) (2,1) (3,1) (1,0) (4,1) (3,0)}.

Under the messy encoding, cut and splice always produce perfectly legal strings. The

hope is that the primordial phase will have produced all the building blocks needed to

create an optimal string, and in sufficient numbers so that cut and splice will be likely to

create that optimal string before too long. Goldberg and his colleagues did not use

mutation in the experiments they reported.

Unfortunately, even with probabilistically complete initialization, the necessary initial

population size still grows exponentially with k, so messy GAs will be feasible only on

problems in which k is small. Goldberg and his colleagues seem to assume that most

problems of interest will have small k, but this has never been demonstrated. It remains

to be seen whether the promising results they have found on specially designed fitness

functions will hold when messy GAs are applied to real-world problems. Goldberg,

Deb, and Korb [3] have already announced that messy GAs are "ready for real-world

applications" and recommended their "immediate application . .. to difficult,

combinatorial problems of practical import." To my knowledge, they have not yet been

tried on such problems.

•.. 4.6 Selection Methods:
After deciding on an encoding, the second decision to make in using a genetic algorithm

is how to perform selection-that is, how to choose the individuals in the population

that will create offspring for the next generation, and how many offspring each will

create. The purpose of selection is, of course, to emphasize the fitter individuals in the

42

population in hopes that their offspring will in turn have even higher fitness. Selection

has to be balanced with variation from crossover and mutation (the "exploita­

tion/exploration balance"): too-strong selection means that suboptimal highly fit

individuals will take over the population, reducing the diversity needed for further

change and progress; too-weak selection will result in too-slow evolution. As was the

case for encodings, numerous selection schemes have been proposed in the GA

literature. In the following section are described some of the most common methods.

1. Fitness-Proportionate Selection with "Roulette Wheel" and

"Stochastic Universal" Sampling:
Holland's original GA used fitness-proportionate selection, in which the "expected

value" of an individual (i.e., the expected number of times an individual will be selected

to reproduce) is that individual's fitness divided by the average fitness of the population.

The most common method for implementing this is "roulette wheel" sampling, each

individual is assigned a slice of a circular "roulette wheel," the size of the slice being

proportional to the individual's fitness. The wheel is spun N times, where N is the

number of individuals in the population. On each spin, the individual under the wheel's

marker is selected to be in the pool of parents for the next generation. This method can

be implemented as follows:

1. Sum the total expected value of individuals in the population. Call this sumT.

2. Repeat N times

Choose a random integer r between O and T '. Loop through the individuals in the

population, summing the eıPected values, until the sum is greater than or equal to r.

The individual whose expected value puts the sum over this limit is the one selected.

•.. •
This stochastic method statistically results in the expected number of offspring for each

individual. However, with the relatively small populations typically used in GAs, the

actual number of offspring allocated to an individual is often far from its expected value

(an extremely unlikely series of spins of the roulette wheel could even allocate all

offspring to the worst individual in the population). James Baker (1987) proposed a

43

different sampling method-"stochastic universal sampling" (SUS)-to minimize this

"spread" (the range of possible actual values, given an expected value). Rather than spin

the roulette wheel N times to select N parents, SUS spins the wheel once-but with N

equally spaced pointers, which are used to selected the N parents. Baker (1987) gives

the following code fragment for SUS (in C).

SUS does not solve the major problems with fitness-proportionate selection. Typically,

early in the search the fitness variance in the population is high and a small number of

individuals are much fitter than the others. Under fitness-proportionate selection, they

and their descendents will multiply quickly in the population, in effect preventing the

GA from doing any further exploration. This is known as "premature convergence." In

other words, fitness-proportionate selection early on often puts too much emphasis on

"exploitation" of highly fit strings at the expense of exploration of other regions of the

search space. Later in the search, when all individuals in the population are veıy similar

(the fitness variance is low), there are no real fitness differences for selection to exploit,

and evolution grinds to a near halt. Thus, the rate of evolution depends on the variance

of fitnesses in the population.

2. SigmaScaling:

To address such problems, GA researchers have experimented with several "scaling"

methods-methods for mapping "raw" fitness values to expected values so as to make

the GA less susceptible to premature convergence. One example is "sigma scaling"

(Forrest [3] 1985; it was called "sigma truncation" in Goldberg 1989a), which keeps the

selection pressure (i.e., the degree to which highly fit individuals are allowed many

offspring) relatively constant over the course of the run rather than depending on the

-fitness variances in the population. Under sigma scaling, an individual's expected value

is a function of its fitness, the population mean, and the population standard deviation.
•.. An example of sigma scalingwould be

44

ExpVal(i,t)=~l+ f(i)- f(t)
2c,(t)

1.0 ~ otherwise

ifc,(t) * o

where ExpVal (i, t) is the expected value of individual i at time t, f(i) is the fitness of i,

f(t) is the mean fitness of the population at time t, and c,(t) is the standard deviation of

the population fitnesses at time t. This function, used in the work of Tanese (1989),

gives an individual with fitness one standard deviation above the mean 1.5 expected

offspring. If ExpVal(i,t) was less than O, Tanese arbitrarily reset it to 0.1, so that

individuals with very low fitness had some small chance of reproducing.
\

At the beginning of a run, when the standard deviation of fitnesses is typically high, the

fitter individuals will not be many standard deviations above the mean, and so they will

not be allocated the lion's share of offspring. Likewise, later in the run, when the

population is typically more converged and the standard deviation is typically lower, the

fitter individuals will stand out more, allowing evolution to continue.

3. Elitism:

"Elitism," first introduced by Kenneth De Jong [3] (1975), is an addition to many

selection methods that forces the GA to retain some number of the best individuals at

each generation. Such individuals can be lost if they are not selected to reproduce or if

they are destroyed by crossover or mutation. Many researchers have found that elitism

significantlyimproves the GA's performance .

..
4. Boltzmann Selection: •
Sigma scaling keeps the selection pressure more constant over a run. But often different

amounts of selection pressure are needed at different times in a run-for example, early

on it might be good to be liberal, allowing less fit individuals to reproduce at close to

the rate of fitter individuals, and having selection occur slowly while maintaining a lot

of variation in the population. Later it might be good to have selection be stronger in

45

order to strongly emphasize highly fit individuals, assuming that the early diversity with

slow selection has allowed the population to find the right part of the search space.

One approach to this is "Boltzmann selection" (an approach similar to simulated

annealing), in which a continuously varying "temperature" controls the rate of selection

according to a preset schedule. The temperature starts out high, which means that

selection pressure is low (i.e., every individual has some reasonable probability of

reproducing). The temperature is gradually lowered, which gradually increases the

selection pressure, thereby allowing the GA to narrow in ever more closely to the best

part of the search space while maintaining the "appropriate" degree of diversity. For

examples of this approach, see Goldberg 1990, de la Maza and Tidor [3] 1991 and

1993, and Prugel-Bennett and Shapiro [3] 1994. A typical implementation is to assign

to each individual; an expected value,

ExpVal(i,t) ~ (/''Y,)r
f(i)/

e IT

where T is temperature and ()t denotes the average over the population at time t.

Experimenting with this formula will show that, as T decreases, the difference in

ExpVal(i, t) between high and low fitnesses increases. The desire is to have this happen

gradually over the course of the search, so temperature is gradually decreased according

to a predefined schedule. De la Maza and Tidor [3] (1991) found that this method

outperformed fitness-proportionate selection on a small set of test problems. They also

(1993) compared some theoretical properties of the two methods .

..
•

5. Rank Selection:

Rank selection is an alternative method whose purpose is also to prevent too-quick

convergence. In the version proposed by Baker (1985), the individuals in the population

are ranked according to fitness, and the expected value of each individual depends on its

rank rather than on its absolute fitness. There is no need to scale fitnesses in this case,

46

sınce absolute differences in fitness are obscured. This discarding of absolute fitness

information can have advantages (using absolute fitness can lead to convergence

problems) and disadvantages (in some cases it might be important to know that one

individual is far fitter than its nearest competitor). Ranking avoids giving the far largest

share of offspring to a small group of highly fit individuals, and thus reduces the

selection pressure when the fitness variance is high. It also keeps up selection pressure

when the fitness variance is low: the ratio of expected values of individuals ranked i

and, i+ 1 will be the same whether their absolute fitness differences are high or low.

6. Tournament Selection:

The fitness-proportionate methods described above require two passes through the

population at each generation: one pass to compute the mean fitness (and, for sigma

scaling, the standard deviation) and one pass to compute the expected value of each

individual. Rank scaling requires sorting the entire population by rank-a potentially

time-consuming procedure. Tournament selection is similar to rank selection in terms of

selection pressure, but it is computationally more efficient and more amenable to

parallel implementation. Two individuals are chosen at random from the population. A

random number r is then chosen between O and 1. If r < k (where k is a parameter, for

example 0.75), the fitter cif the two individuals is selected to be a parent; otherwise the

less fit individual is selected. The two are then returned to the original population and

can be selected again.

7. Evolving a Learning Rule:

David Chalmers [3] (1990) took the idea of applying genetic algorithms to neural

networks in a different direçtion: he used GAs to evolve a good learning rule for neural

networks. Chalmers limited his initial study to fully connected feedforward networks.
with input and output layers only, no hidden layers. In general a learning rule is used

•• •
" during the training procedure for modifying network weights in response to the

network's performance on the training data At each training cycle, one training pair is

given to the network, which then produces an output At this point the learning rule is

invoked to modify weights. A learning rule for a single-layer, fully connected

47

feedforward network might use the following local information for a given training

cycle to modify the weight on the link from input unit i to output unit j:

a; : the activation of input unit i.

o1 : the activation of output unit}.

t1 :the training signal (i.e., correct activation, provided by a teacher) on output unitj.

wif : the current weight on the link from i to j.

The change to make in weight w if , ~w ii, is a function of these values:

The chromosomes in the GA population encoded such functions.

Chalmers [3] made the assumption that the learning rule should be a linear function of

these variables and all their pair wise products. That is, the general form of the learning

rule was

The km (1 ~ m ~ 1 O) are constant coefficients, and kO is a scale parameter that affects

how much the weights can change on any one cycle, (k0 is called the "learningrate.")

Chalmers's assumption about the form ofthe learning rule came in part from the fact

that a known good learning rule for such networks the "Widrow-Hoff" or "delta" rule­

has the form

•..

(where 1J) is a constant representing the learning rate. One goal of Chalmers's work

was to see if the GA could evolve a rule that performs as well as the delta rule.

48

4.7 Genetic Operators:
The third decision to make in implementing a genetic algorithm is what genetic

operators to use. This decision depends greatly on the encoding strategy. Where we will

discuss crossover and mutation mostly in the context of bit-string encodings, and

mention a number of other operators that have been proposed in the GA literature.

1. Crossover: It could be said that the main distinguishing feature of a GA is the

use of crossover. Single-point crossover is the simplest form: a single cross-over

position is chosen at random and the parts of two parents after the crossover position are

exchanged to form two offspring. The idea here is, of course, to recombine building

blocks (schemas) on different strings. Single-point crossover has some shortcomings,

though. For one thing, it cannot combine all possible schemas. For example, it cannot in

general combine instances of 11 *****l and ****11** to form an instance of ll**ll *1.

Likewise, schemas with long defining lengths are likely to be destroyed under single­

point crossover. Eshelman, Caruana, and Schaffer [3] (1989) call this "positional bias":

the schemas that can be created or destroyed by a crossover depend strongly on the

location of the bits in the chromosome. Single-point crossover assumes that short, low­

order schemas are the functional building blocks of strings, but one generally does not

know in advance what ordering of bits will group functionally related bits together­

this was the purpose of the inversion operator and other adaptive operators described

above. Eshelman, Caruana, and Schaffer also point out that there may not be any way to

put all functionally related bits close together on a string, since particular bits might be

crucial in more than one schema. They point out further that the tendency of single­

point crossover to keep short schemas intact can lead. to the preservation of

hitchhikers-bits that are not part of a desired schema but which, by being close on the

string, hitchhike along with=the beneficial schema as it reproduces. Many people have

also noted that single-point crossover treats some loci preferentially, the segments

exchanged between the two parents always contain the endpoints of the strings.

Most of the comments above also assume that crossover's ability to re-combine highly

fit schemas is the reason it should be useful. Given some of the challenges we have seen

to the relevance of schemas as a analysis tool for understanding GAs, one might ask if

we should not consider the possibility that crossover is actually useful for some entirely

49

different reason (e.g., it is in essence a "macro-mutation" operator that simply allows for

large jumps in the search space). I must leave this question as an open area of GA

research for interested readers to explore. (Terry Jones [3] (1995) has performed some

interesting, though preliminary, experiments attempting to tease out the different

possible roles of crossover in GAs.) Its answer might also shed light on the question of

why recombination is useful for real organisms (if indeed it is)-a controversial and

still open question in evolutionary biology.

2. Mutation: A common view in the GA community, dating back to Holland's

book Adaptation in Natural and Artificial Systems, is that crossover is the major in­

strument of variation and innovation in GAs, with mutation insuring the population

against permanent fixation at any particular locus and thus playing more of a

background role. This differs from the traditional positions of other evolutionary

computation methods, such as evolutionary programming and early versions of

evolution strategies, in which random mutation is the only source of variation. (Later

versions of evolution strategies have included a form of crossover.)

4.8 Parameters for Genetic Algorithms:

..

The fourth decision to make in implementing a genetic algorithm is how to set the

values for the various parameters, such as population size, crossover rate, and mutation

rate. These parameters typically interact with one another nonlinearly, so they cannot be

optimized one at a time. There is a great deal of discussion of parameter settings and

approaches to parameter adaptation in the evolutionary computation literature--too

-much to survey or even list here. There are no conclusive results on what is best; most

people use what has worked well in previously reported cases. Some of the
•experimental approaches people have taken to' find the "best" parameter settings, are

discussed below.

De Jong [3] (1975) performed an early systematic study of how varying parameters

affected the GA's on-line and off-line search performance on a small suite of test

50

functions. Recall from chapter 4 that "on-line" performance at time t is the average

fitness of all the individuals that have been evaluated over t evaluation steps. The off­

line performance at time t is the average value, over t evaluation steps, of the best

fitness that has been seen up to each evaluation step. De Jong's experiments indicated

that the best population size was 50-100 individuals, the best single-point crossover rate

was - 0.6 per pair of parents, and the best mutation rate was 0.001 per bit. These

settings (along with De Jong's test suite) became widely used in the GA community,

even though it was not clear how well the GA would perform with these settings on

problems outside De Jong's test suite. Any guidance was gratefully accepted.

Somewhat later, Grefenstette [3) (1986) noted that, since the GA could be used as an

optimization procedure, it could be used to optimize the parameters for another GA! (A

similar study was done by Bramlette [3] (1991).) In Grefenstette's experiments, the

"meta-level GA" evolved a population of 50 GA parameter sets for the problems in De

Jong's test suite. Each individual encoded six GA parameters: population size, crossover

rate, mutation rate, generation gap, scaling window (a particular scaling technique that I

won't discuss here), and selection strategy (elitist or nonelitist). The fitness of an

individual was a function of the on-line or off-line performance of a GA using the

parameters encoded by that individual. The meta-level GA itself used De Jong's

parameter settings. The fittest individual for on-line performance set the population size

to 30, the crossover rate to 0.95, the mutation rate to O.Ol, and the generation gap to 1,

and used elitist selection. These parameters gave a small but significant improvement in

on-line performance over De Jong's settings. Notice that Grefenstette's results call for a

smaller population and higher crossover and mutation rates than De Jong's. The meta­

level GA was not able to find a parameter set that beat De Jong's for off-line

performance. This was an interesting experiment, but again, in view of the specialized

test suite, it is not clear how generally these recommendations hold. Others have shown

that there are many fitness functions for which these parameter settings are not optimal.

A big question, then, for any adaptive approach to setting parameters- including

Davis's-is this: How well does the rate of adaptation of parameter settings match the

rate of adaptation in the GA population? The feedback for setting parameters comes

from the population's success or failure on the fitness function, but it might be difficult

51

for this information to travel fast enough for the parameter settings to stay up to date

with the population's current state. Very little work has been done on measuring these

different rates of adaptation and how well they match in different parameter-adaptation

experiments. This seems to me to be the most important research to be done in order to

get self-adaptation methods to work well.

4.9 Example of GAs :
As warmups to more extensive discussions of GA applications, here are brief examples

ofGAs in action on two particularly interesting projects.

1. Using GAs to Evolve Strategies for the Prisoner's Dilemma:

The Prisoner's Dilemma, a simple two-person game invented by Merrill Flood and

Melvin Dresher [7] in the 1950s, has been studied extensively in game theory,

economics, and political science because it can be seen as an idealized model for real­

world phenomena such as arms races (Axelrod 1984; Axelrod and Dion [7] 1988). It

can be formulated as follows: Two individuals (call them Alice and Bob) are arrested

for committing a crime together and are held in separate cells, with no communication

possible between them. Alice is offered the following deal: If she confesses and agrees

to testify against Bob, she will receive a suspended sentence with probation, and Bob

will be put away for 5 years. However, if at the same time Bob confesses and agrees to

testify against Alice, her testimony will be discredited, and each will receive 4 years for

pleading guilty. Alice is told that Bob is being offered precisely the same deal. Both

Alice and Bob know that if neither testifies against the other they can be convicted only

on a lesser charge for whichjhey will each get 2 years in jail.

Should Alice "defect" against Bob and hope for the suspended s~ntence, risking a 4-
••.. year sentence if Bob defects? Or should she "cooperate" with Bob (even though they

cannot communicate), in the hope that he will also cooperate so each will get only 2

years, thereby risking a defection by Bob that will send her away for 5 years?

52

~~"b~~~"~~~~~"s,~~~"'\..~~~~~~~~~~~~~~~~~

move to make-vi.e., whether to cooperate or defect. A "game" consists of each player's

making a decision (a "move"). The possible results of a single game are summarized in

a payoff matrix like the one shown in figure 1.3. Here the goal is to get as many points

(as opposed to as few years in prison) as possible. (In figure 1.3, the payoff in each case

can be interpreted as 5 minus the number of years in prison.) If both players cooperate,

each gets 3 points. If player A defects and player B cooperates, then player A gets 5

points and player B gets O points, and vice versa if the situation is reversed. If both

players defect, each gets 1 point. What is the best strategy to use in order to maximize

one's own payoff? If you suspect that your opponent is going to cooperate, then you

should surely defect. If you suspect that your opponent is going to defect, then you

should defect too. No matter what the other player does, it is always better to defect.

The dilemma is that if both players defect each gets a worse score than if they

cooperate. If the game is iterated (that is, if the two players play several games in a

row), both players' always defecting will lead to a much lower total payoff than the

players would get if they cooperated. How can reciprocal cooperation be induced? This

question takes on special significance when the notions of cooperating and defecting

correspond to actions in, say, a real-world arms race (e.g., reducing or increasing one's

arsenal).

PlayerB

Player A

Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

..
Figure 1 .3 The payoff matrix for the Prisoner's Dilemma (adapted from Axelrod [7]
1987). The two numbers given in each box are the payoffs for players A and B in the
given situation, with player A's payoff listed first in each pair. •

Robert Axelrod [7] of the University of Michigan has studied the Prisoner's Dilemma

and related games extensively. His interest in determining what makes for a good

strategy led him to organize two Prisoner's Dilemma tournaments (described in Axelrod

1984). He solicited strategies from researchers in a number of disciplines. Each

53

participant submitted a computer program that implemented a particular strategy, and

the various programs played iterated games with each other. During each game, each

program remembered what move (i.e., cooperate or defect) both it and its opponent had

made in each of the three previous games that they had played with each other, and its

strategy was based on this memory. The programs were paired in a round-robin

tournament in which each played with all the other programs over a number of games.

The first tournament consisted of 14 different programs; the second consisted of 63

programs (including one that made random moves). Some of the strategies submitted

were rather complicated, using techniques such as Markov processes and Bayesian

inference to model the other players in order to determine the best move. However, in

both tournaments the winner (the strategy with the highest average score) was the

simplest of the submitted strategies: TIT FOR TAT. This strategy, submitted by Anatol

Rapoport [7], cooperates in the first game and then, in subsequent games, does whatever

the other player did in its move in the previous game with TIT FOR TAT. That is, it

offers cooperation and reciprocates it. But if the other player defects, TIT FOR TAT

punishes that defection with a defection of its own, and continues the punishment until

the other player begins cooperating again.

..
•

54

Chapter Five

Genetic Algorithms Versus Neural Network

5.1 Evolving Neural Network using Genetic Algorithm:

Neural networks are biologically motivated approaches to machine learning, inspired by

ideas from neuroscience. Recently some efforts have been made to use genetic

algorithms to evolve aspects ofneural networks.

In its simplest "feed forward" form figure 5.1 shown, a neural network is a collection of

connected activatable units ("neurons") in which the connections are weighted, usually

with real-valued weights. The network is presented with an activation pattern on its

input units, such a set of numbers representing features of an image to be classified

(e.g., the pixels in an image of a handwritten letter of the alphabet). Activation spreads

in a forward direction from the input units through one or more layers of middle

("hidden") units to the output units over the weighted connections. Typically, the

activation coming into a unit from other units is multiplied by the weights on the links

over which it spreads, and then is added together with other incoming activation. The

result is typically thresholded (i.e., the unit "turns on" if the resulting activation is above

that unit's threshold). This process is meant to roughly mimic the way activation spreads

through networks of neurons in the brain. In a feed forward network, activation spreads

only in a forward direction, from the input layer through the hidden layers to the output

layer. Many people have also experimented with "recurrent" networks, in which there

"are feedback connections as well as feed forward connections between layers.

•

55

Output Pattem

Fig 5.1. A schematic diagram of a simple feed forward neural network and the back­
propagation process by which weight values are adjusted.

After activation has spread through a feedforward network, the resulting activation

pattern on the output units encodes the network's "answer" to the input (e.g., a

classification of the input pattern as the letter A). In most applications, the network

learns a correct mapping between input and output patterns via a learning algorithm.

Typically the weights are initially set to small random values. Then a set of training

inputs is presented sequentially to the network. In the back-propagation learning

procedure (Rumelhart, Hinton, [3] and Williams 1986), after each input has propagated

through the network and an output has been produced, a "teacher" compares the

activation value at each output unit with the correct values, and the weights in the

network are adjusted in order to reduce the difference between the network's output and

the correct output. Each iteration of this procedure is called a "training cycle," and a

complete pass of training c.ycles through the set of training inputs is called a "training

epoch." (Typically many training epochs are needed for a network to learn to

successfully classify a given set of training inputs.) This type of procedure is known as
lt

"supervised learning," since a teacher supervises the learning by providing correct

output values to guide the learning process. In "unsupervised learning" there is no

teacher, and the learning system must learn on its own using less detailed (and

sometimes less reliable) environmental feedback on its performance.

V56

There are many ways to apply GAs to neural networks. Some aspects that can be

evolved are the weights in a fixed network, the network architecture (i.e., the number of

units and their interconnections can change), and the learning rule used by the network.

Here some different projects, each of which uses a genetic algorithm to evolve one of

these aspects. (Two approaches to evolving network architecture will be described.)

5.2 Evolving Weights in a Fixed Network:

David Montana and Lawrence Davis [3] (1989) took the first approach- evolving the

weights in a fixed network. That is, Montana and Davis were using the GA instead of

back-propagation as a way of finding a good set of weights for a fixed set of

connections. Several problems associated with the back-propagation algorithm (e.g., the

tendency to get stuck at local optima in weight space, or the unavailability of a

"teacher" to supervise learning in some tasks) often make it desirable to find alternative
weight-trainingschemes.

Montana and Davis were interested in using neural networks to classify underwater

sonic "lofargrams" (similar to spectrograms) into two classes: "interesting" and "not

interesting." The overall goal was to "detect and reason about interesting signals in the

midst of the wide variety of acoustic noise and interference which exist in the ocean."

The networks were to be trained from a database containing lofargrams and

classifications made by experts as to whether or not a given lofargram is "interesting."

Each network had four input units, representing four parameters used by an expert

system that performed the same classification. Each network had one output unit and

two layers of hidden units (the first with seven units and the second with ten units). The

networks were fully connected feed forward neıworks=-that is, each unit was connected

to every unit in the next higher layer. In total. there were 108 weighted connections

between units. In addition, there were 18 weighted connections between the non-input

units and a "threshold unit" whose outgoing links implemented the thresholding for

each of the non-input units, for a total of 126 weights to evolve.

57

The GA was used as follows. Each chromosome was a list (or "vector") of 126 weights.

Figure 5.2 shows (for a much smaller network) how the encoding was done: the weights

were read off the network in a fixed order (from left to right and from top to bottom)

and placed in a list. Notice that each "gene" in the chromosome is a real number rather

than a bit. To calculate the fitness of a given chromosome, the weights in the chro­

mosome were assigned to the links in the corresponding network, the network was run

on the training set (here 236 examples from the database of lofargrams), and the sum of

the squares of the errors (collected over all the training cycles) was returned. Here, an

"error" was the difference between the desired output activation value and the actual

output activation value. Low error meant high fitness.

Network

Chromosome: (0.3 -0.4 0.2 0.8 --0.3 --0.1 O.7 --0.3)

Figure 5.2 illustration of Montana and Davis's encoding of network weights into a list
that serves as a chromosome for the GA. The units in the network are numbered for
later reference. The real-valued numbers on the links are the weights.

Before mutation After mutation

..

(0.3 --0.4 0.2 0.8 --0.3 --0.1 0.7 --0.3) (0.3 --0.4 0.2 0.6 --0.3 -0.9 0.7 -0.1)

Figure 5.3 illustration of Montana and Davis's mutation method. Here the weights on
incoming links to unit 5 are mutated.

An initial population of 50 weight vectors was chosen randomly, with each weight

being between -1. O and + 1. O. Montana and Davis tried a number of different genetic

operators in various experiments. The mutation and crossover operators they used for

their comparison of the GA with back-propagation are illustrated in figures 5.3 and 5.4.

The mutation operator selects n non-input units and, for each incoming link to those

units, adds a random value between - 1. O and + 1. O to the weight on the link. The

crossover operator takes two parent weight vectors and, for each non-input unit in the

offspring vector, selects one of the parents at random and copies the weights on the

ıncomıng links from that parent to the offspring. Notice that only one offspring is

created.

The performance of a GA using these operators was compared with the performance of

a back-propagation algorithm. The GA had a population of 50 weight vectors, and a

rank-selection method was used. The GA was allowed to run for 200 generations (i.e.,

10,000 network evaluations). The back-propagation algorithm was allowed to run for

5000 iterations, where iteration is a complete epoch (a complete pass through the

training data). Montana and Davis reasoned that two network evaluations under the GA

are equivalent to one back-propagation iteration, since back-propagation on a given

training example consists of two parts-the forward propagation of activation (and the

calculation of errors at the output units) and the backward error propagation (and

adjusting of the weights). The GA performs only the first part. Since the second part re­

quires more computation, two GA evaluations takes less than half the computation of a

single back-propagation iteration.

..

(0.3 -0.4 0.2 0.8 -0.3 -0.1 o.7 -0.3)

59

(0.7 -0.9 0.3 0.4 0.8 -0.2 O.I 0.5)

(0.7 -0.9 0.2 0.4 -0.3 -0.2 0.7 0.5)
Figure 5.4 illustration of Montana and Davis's crossover method.

The results of the comparison are displayed in figure 5.5. Here one backpropagation

iteration is plotted for every two GA evaluations. The x axis gives the number of

iterations, and the y axis gives the best evaluation (lowest sum of squares of errors)

found by that time. It can be seen that the GA significantly outperforms back­

propagation on this task, obtaining better weight vectors more quickly.

This experiment shows that in some situations the GA is a better training method for

networks than simple back-propagation. This does not mean that the GA will

outperform back-propagation in all cases. It is also possible that enhancements of back­

propagation might help it overcome some of the problems that prevented it from

performing as well as the GA in this experiment. Schaffer, Whitley, and Eshelman

(1992) point out that the GA has not been found to outperform the best weight­

adjustment methods (e.g., "quickprop") on supervised learning tasks, but they predict

that the GA will be most useful in finding weights in tasks where back-propagation and

its relatives cannot be used, such as in unsupervised learning tasks, in which the error at

each output unit is not available to the learning system, or in situations in which only

sparse reinforcement is available. This is often the case for "neurocontrol" tasks, in

which neural networks are, used to control complicated systems such as robots
navigating in unfamiliar environments. •.

•

60

tÜıR~J l t I ~
O 2e+03 4e-+03 6e+03 8e+03 le+04 Iterations

Figure 5.5 Montana and Davis's results comparing the peıformance of the GA with
back-propagation.

5.3 Evolving Network Architectures:

Montana and Davis's [3] GA evolved the weights in a fixed network. As in most neural

network applications, the architecture of the network-the number of units and their

interconnections-is decided ahead of time by the programmer by guesswork, often

aided by some heuristics (e.g., "more hidden units are required for more difficult

problems") and by trial and error. Neural network researchers know all too well that the

particular architecture chosen can determine the success or failure of the application, so

they would like veıy much to be able to automatically optimize the procedure of

designing an architecture for a particular application. Many believe that GAs are well

suited for this task There have been several efforts along these lines, most of which fall

into one of two categories: direct encoding and grammatical encoding. Under direct

encoding, network architecture is directly encoded into a GA chromosome. Under

grammatical encoding, the GA does not evolve network architectures; rather, it evolves

grammars that can be used to develop network architectures.

••
•..

61

Form unit 1 2 3 4 5
to unit 1 O O O O O

2 00000
3 LLOOO
4 LLOOO
5 OOLLO

chromosome: O O O O O O O O O O 11 O O O 1 1 O O O O O 11 O

Figure 5.6 An illustration of Miller, Todd, and Hegde's representation scheme. Each
entıy in the matrix represents the type of connection on the link between the "from
unit" (column) and the "to unit" (row). The rows of the matrix are strung together to
make the bit-string encoding of the network, given at the bottom of the figure.

..
•..

62

Chapter Six

Future Directions

As we have seen that genetic algorithms and neural networks can be a powerful tool for

solving problems and for simulating natural systems in a wide variety of scientific

fields. In examining the accomplishments of these algorithms, we have also seen that

many unanswered questions remain. Finally we, summarize what the field of neural

networks and genetic algorithms has achieved, and what are the most interesting and
important directions for future research.

From the knowledge of problem-solving, scientific modeling, and theory we come to
the following conclusions:

GAs and neural networks are promısıng methods for solving difficult technological

problems, and for machine learning. More generally, they are a part of a new movement

in computer science that is exploring biologically inspired approaches to computation.

Advocates of this movement believe that in order to create the kinds of computing

systems we need systems that are adaptable, massively parallel, able to deal with

complexity, able to learn, and even creative-we should copy natural systems with

these qualities.Natural evolution is a particularly appealing source of inspiration.

..

Genetic algorithms and neural networks are also promising approaches for modeling the

natural systems that inspired their design. Most models using GAs are meant to be

"gedanken experiments" or "idea models" (Roughgarden et al. [3] 1995) rather thanto

precise simulations attempting to match real-world data The purposes of these idea
•

models are to make ideas precise and to test their plausibility by implementing them as
"computer programs (e.g., Hinton and Nowlan's [3] model of the Baldwin effect), to

understand and predict general tendencies of natural systems (e.g.. Echo), and to see

how these tendencies are affected by changes in details of the model (e.g., Collins and

Jefferson's variations on Kirkpatrick's [3] sexual selection model). These models can

allow scientists to perform experiments that would not be possible in the real world, and

63

Faculty of Engineering

NEAR EAST UNIVERSITY

Department of Electrical and Electronic
Engineering

GENETIC ALGORITHMS VERSUS NERUAL
NETWORKS

Graduation Project
EE-400

Student: Atique ur Rehman (981262)

Supervisor: Asst. Prof. Dr Adnan Khashman
•

Nicosia - 2001

Acknowledgements

I am very thankful to the followingpeople:

First of all to Asst. Prof. Dr Adnan Khashman who gave me step by step guidance

through out the project, I got acquainted with an entirely new and flourishing field of

Neural Networks and Genetic Algorithms, I am thankful to my advisor, for his

intellectual support, encouragement, enthusiasmwhich made this thesis possible.

I am also very thankful to my father Khalil-Ur-Rehman and my family who have

supported, and sponsored me through out my life and encouraged me in every aspect of

my life. What I am today is because of them. The greatness of my Father is unable to be

explained in words.

I am also thankful to my friends Rihan and Jamal, who helped me a lot in getting the

material for the thesis, surely true friends are blessing.

I dedicate my project to all the people mentioned above.

..
•

Abstract

_;eural Networks and Genetic Algorithms are examples of the latest computer

applications, which are under consideration by the scientists over the world. The

ombination of neural networks and genetic algorithms can be very helpful in creation of

anificial intelligent systems. With the development of these two fields, machines that

can behave like humans can be invented.

This thesis describes an investigation of combining neural networks and genetic

algorithms into real applications.

With the passage of time and development in machine learning a Question Arises?

Will the humans be slaves of machines?

•

11

Table of Contents

--CKNOWLEDGEMENT 1

ABSTRACT 11

TABLE OF CONTENTS 111

INTRODUCTION V

1. NEURAL NETWORKS
1.1. History of Neural Networks
1.2. Knowledge-based Information Processing
1. 3. Neural Information Processing
1.4. Brain as a Neural Network
1. 5. Hybrid Intelligence

1
1
2
3
4
5

2. GENETIC ALGORITHMS
2.1 Overview
2.2 BriefHistory
2.3 Biological Terminology
2.4 Search Space
2.5 Elements of Genetic Algorithms

2.5.1 Examples of Fitness Function
2.6 GA Operators
2. 7 Application of Genetic Algorithms

7
7
8
9

10
10
11
12
12

3. BASIC NEURAL NETWORK LEARING AND
COMOPUTATIONAL MODELS
3 .1 Overview
3.2 Basic Concepts ofNeural Networks
3. 3 Node Properties •
3. 4 Inference and Learning
3. 5 Learning
3 .6 Historical Sketch

•

15
15
15
18
19
19
20

111

.., . ı Supervised Leaming
3.8 Unsupervised Leaming
3.9 Neural Network Leaming

3.9 .1 Back Propagation
3 .1 O Classification Models

. GENETIC ALGORITHM IMPLEMENTATION
4 .1 How do Genetic Algorithms works
4.2 Implementing a Genetic Algorithm
4.3 When Should a Genetic Algorithm be used?
4.4 Encoding a Problem for genetic Algorithm
4.5 Adapting the Encoding
4.6 Selection Methods
4.7 Genetic Operators
4.8 Parameters for Genetic Algorithms
4.9 Example ofGAs

5. GENETIC ALGORITHMS VERSES NEURAL
NETWORKS
5 .1 Evolving Neural Network using Genetic Algorithm
5 .2 Evolving Weights in a fixed network
5.3 Evolving Network Architecture

6. FUTURE DIRECTIONS
6.1 Incorporating Ecological Interactions
6.2 Incorporating New Ideas from Genetics
6.3 Incorporating Development and learning
6.4 Adapting Encoding and using Encoding that Permit

Hierarchy and Open-Endedness
6.5 Adapting Parameters
6.6 Extension of Statiştical Mechanics Approaches
6.7 Identifying and Overcoming Impediments to the Success of

GAs
6.8 Understanding the role of Crossover •
6.9 Theory of Gas with Endogenous Fitness

7. CONCLUSION

8. REFERENCES

IV

20
21
21
22
26

29
29
31
32
33
35
42
49
50
52

55
57
61
61

63
64
65
65

66
67
67

67
68
68

69

71

Introduction

Overview:
Neural Networks is a popular Artificial Intelligent computer systems, inspired by the

principles biological neural behavior, this technology is being applied to the computer

systems for solving difficult problems, whose solutions require human intelligence. Along

with the neural networks another interesting algorithms approach, inspired by the biological

genetic behavior, genetic algorithms is being applied in complicated computer systems,

along with neural networks.

Research Objectives:
The objectives of the work presented within the thesis are to investigate independently

neural networks and genetic algorithms.In addition the benefits that can be achieved by

integrating neural networks and genetic algorithmswill also be discussed.

Thesis Structure:
Research Objectives include the following:

~ In chapter one brief history of neural networks along with biological terminology,

with a brief discussion of hybrid intelligent systemswill be discussed.

~ In chapter two brief history of genetic algorithm along with a brief discussion of

search space, genetic operators and application of genetic algorithms will be

discussed.
~ In chapter three details about neural "networks, neural learning, supervised and

unsupervised learning, classificationof neural networks will be discussed.

~ In chapter four details about genetic algorithm, implementation, genetic encoding

and selection methods, along with a brief example of prisoner dilemma will be

discussed.

V

~ In chapter five a detail example of implementing a genetic algorithm, in a neural

network will be discussed.

};>- In chapter six future directions for implementation of neural networks and genetic

algorithmswill be discussed.

};>- Finallythe thesis will be concluded, with final remarks.

..
•

VI

Chapter One

Neural Networks

1.1 History of Neural Networks:
The progress of neurobiology has allowed researchers to build mathematical models of

neurons to simulate neural behavior. This idea dates back to the early 1940s, when one

of the first abstract models of a neuron was introduced by McCulloch and Pitts [l],

(1943). Hebb [2] in 1949 proposed a learning law that explained how a network of

neurons learned, Hebbs law stated that:

"When an axon of cell A is near enough to excite cell B and persistently takespart in

firing it some growth process or metabolic changes takes place in one or both cells such

thatAs efficiency increased".

The law proposed by Hebb formed the basis of modem neural network research. Later,

Minsky and Papet [1] (1946) pointed out theoretical limitations of single-layer neural

network modes in their landmark book Perceptrons. Due to this pessimistic projection,

research on artificial neural network lapsed into an eclipse for nearly two decades.

Despite the negative atmosphere, some researchers still continued their research and

produced meaningful results. For example, Anderson (1977) and Grossberg [l] (1980)

did important work on psychological models. Kohonen [l] (1977) developed

associative memory models.
"

In early 1980s the neural network approach was restructured, Hop Field [l] in (1982)

introduced the idea of energy minimization" in physics into neÜral networks. In the

middle of 1980s, the book Parallel Distributed Processing by Rumelhart [l] and

McClelland [l] (1986) generated great impacts on computer, cognitive and biological

sciences. The back prorogation-learning algorithm developed by Rurnelhart offers a

1

powerful solution to training a multi-layer neural network and shattered the curse

imposed on perceptrons.

1.2 Knowledge-based Information Processing:
Knowledge based information system can be defined as:

" A knowledge-based system is a computer program that acquires, represents,

and uses knowledgefor a specific purpose".

Its basic structure is as shown in fig below, which consists of a knowledge base which

stores knowledge and an inference knowledge engine which makes inference using the

knowledge. A conventional computer program is characterized by algorithmic

processing data. In this programming paradigm, the knowledge concerning how to do

things is enclosed as a bunch of procedures, which are executed step by step to deal

with the data entered. In knowledge-based programming, on the other hand, we

represent what we know in a declarative manner and knowledge in invoked under a

certain inference strategy or driven heuristically.

Another important distinction between the two programming paradigms is the feature of

separating knowledge from the control. In knowledge-based systems, knowledge is

stored in the knowledge base while control strategies reside in the separate inference

engine. This separation benefits the development and maintenance of the system

because when knowledge is updated, the inference engine can be left alone, and when

the inference process in changed; the knowledge base is not affected. Because of

separation, different inference engines can run a knowledge base and an inference
~

engine can drive different knowledge bases. As a consequence, a lot of time and effort

can be saved using the knowledge-based approach. The comparison of knowledge and

data-oriented information processing is provided'in table below. •

Knowledge-Based processing Data-Oriented processing

Declarative knowledge Procedural knowledge.

2

Separating control from knowledge.

Strategic and heuristic processing.

Symbolic processing (dominant).

I Explanation capability.

Integrating control and knowledge.

Algorithmic processing.

Numerical processing (dominant).

No explanation.

Table 1.1 Comparison of knowledge-based and data-oriented information processing.

1.3 Neural Information Processing:

Biological neurons transmit electrochemical signals over neural pathways. Each neuron

receives signals form other neurons through special junctions called syııapses. Some

inputs tend to excite neuron; other tends to inhibit it. When the cumulative effect

exceeds a threshold, the neuron fires and sends a signal down to other neurons. An

artificial neuron models these simple biological characteristics. Each artificial neuron

receives a set of inputs. Each input is multiplied by a weight analogous to a synaptic

strength. The sum of all weighted inputs determines the degree of firing called the

activation level (In neural network, connection weights and activations are sometimes

reffered to as LTM (long-term memory) and STM (short-term memory), respectively).

Notation ally, each input X; is modulated by weight W, and the total input is expressed

as,

or in vector form, X.W.

The input signal is further ~processed by an activation function to produce the output

signal, which if not zero, is transmitted along. The activation function can be a

threshold function or a smooth function like a sigmoid or a hyperbolic ;tangentfunction.
ı,

The neural network is represented by a set of nodes and arrows, which is a fundamental

concept in graph theory. A node corresponds to a neuron, and an arrow corresponds to a

connection along with the direction of signal flow between neurons. As illustrated in

3

Fig below some nodes are connected to the system input and others are connected to the

system output for information processing.

Neural networks solve problems by self-learning and self-organization. They derive

their intelligence from the collective behavior of simple computational mechanisms at

individual neurons. Computations advantages offered by neural networks include:

• Knowledge acquisition under noise and uncertainty; Neural networks can

performs generalization, abstraction, and extraction of statistical properties

form the data.

• Flexible knowledge representation: Neural networks can create their own

representation by self-organization.

• Efficient knowledge processing: Neural nets can carry out computation in

parallel. It is know as parallel-distributed processing, or PDP (Rumelhart [l]

and McClelland 1986). Special hardware devices have been manufactured

which exploit this advantage. Thus, real-time operation is feasible. Notice

that training a neural network may be time-consuming, but once it is trained,

it can operate very fast.

• Fault tolerance: Through distributed knowledge representation and redundant

information encoding, the system performance degrades gracefully in

response to faults (errors).

Neural networks can recognize, classify, convert, and learn patterns. A pattern is a

quantitative description of an object or concept or event. A pattern class is a set of

pattern sharing some common properties. Pattern recognition refers to the
Ilı

categorization of input data into identifiable classes by recognizing significant features

or attributes of the data.
•

1.4 Brain As A Neural Network:
Human brain is made up of a vast network of computing elements, called neurons,

coupled with sensory receptors (affecters) and effectors. The average human brain,

roughly three pounds in weight and 90 cubic inches in volume, is estimated to contain

4

about 100 billion cells of various types. A neuron is a special cell that conducts

electrical signal, and there are about 1 O billion neurons in the human brain. The

remaining 90 billion cells are called glial or glue cell, and these sever as support cells

for the neurons. Brain organizes the huge number of neurons (also referred to as cells

because glial cells are not of interest here) each with weak computing power, into a

massively parallel complex network in which the neurons interact with each other

dynamically to produce a powerful information processor.

1.5 Hybrid Intelligence:

Integration of symbolic AI and neural network results in a so-called Hybrid intelligent

system. Under this approach, the fundamental assumption on intelligence is as follows:

• Neither the physical symbol system nor the neural network is a necessary

means ofgeneral intelligentaction.

• The symbolic level and the connectionist level represent two different levels

of abstraction for intelligentprocess.

• Knowledge is power. Every intelligent being should have knowledge in one

form or another.

Hybrid intelligence is a biological plausible notion. Recall that humans store knowledge

in certain complex molecules such as genes and proteins, which determine what we are

and how we behave, and at the same time, we have nerve system to coordinate our

behavior.

Examples of research in this area include:
~

• Knowledge-based neural network: Neural networks are built based on
•

domain knowledge or theory. In this construct, neural networks model some

aspects such as noise and uncertainty which knowledge is not dealing with.

• Translation of neural network knowledge into symbolic knowledge: This

is important for interpreting neural network, explaining neural network

5

behavior, and learning knowledge under noise and uncertainty. The idea can

also be applied to regularize the neural network and to prevent it form over

fitting the data.
• Learning by combining knowledge and adaptation: It is concerned with

how to build a better learning system that using knowledge or adaptation

alone, how to build an incremental learning system, and how to build a useful

discovery system. The central idea is to use knowledge as the initial crystal

and then grow the crystal by adaptation.

• Connectionist Symbol processing: It bears on how to represent symbolic

information or knowledge in the framework of connectionists, how to

process the information accordingly, and how to retrieve the information.

The advantages of this approach include fault tolerance, space sharing, and

special processing strategies offered by the distributed representation of

connectionists.

• Hybrid Intelligent System: Such systems possess knowledge-based

components and neural networks, which are integrated in a certain manner so

that each component performs the tasks for which it is best, suited.

• Expert Networks: They refer to neural networks that can perform as well as

human experts. Explanation is an important issue for designing such systems.

•

6

Chapter Two

Genetic Algorithms

2.1 Overview:

Science arises from the veıy human desire to understand and control the world. Over

the course of histoıy, we humans have gradually built up the grand edifice of

knowledge that enables us to predict, to vaıying extents, the weather, the motions of the

planets, solar and lunar eclipses, the control of diseases, the rise and fall of economic

growth, the stages of language development in children, and a vast panorama of other

natural, social, and cultural phenomena. Most recently we have even come to

understand some fundamental limits to our abilities to predict. Over the eons we have

developed increasingly complex means to control many aspects of our lives and our

interactions with nature, and we have learned often the hard way, the extent to which

other aspects are uncontrollable.

The goal of creating artificial intelligence and artificial life can be traced back to the

veıy beginning of computer age. The earliest computer scientists Alan Turing, John

von Neumann, Norbert Wiener [3], and others were motivated in large part by visions

of imbuing computer programs with intelligence, with the life-like ability to self­

replicate, and with the adaptive capability to learn and to control their environments.

These pioneers of computer science were as much interested in biology and psychology

as in electronics, and they looked to natural systems as guiding metaphors for how to

Brachiates their visions. It" should be no surprise, then, that from the earliest days

computers were applied not only to calculation missile trajectories and deciphering

militaıy codes but also to modeling the brain, mimicking human learning, and

simulating biological evolutions.

7

2.2 Brief History:

Charles Darwin, 1809-1882
Genetic algorithms are appropriate for problems, which require optimization with

respect to some computable criterion. This paradigm can also be applied to data mining

problems. Here the quantity to be minimized is often the number of classification errors

on a training set. Ultragem [4) has developed proprietaıy techniques for efficiently

representing and evolving classification rules using the genetic algorithm paradigm.

Unlike natural evolution, genetic algorithms do not require millions of years to produce

results. However, the system may need to run for many hours or even days. Large,

complex problems require a fast computer in order to obtain good solutions in a

reasonable amount of time. Mining of large datasets by genetic algorithms has only

recently become practical due to the availability of affordable high-speed computers

such as the DEC Alpha.

In the 1950s and 1960s several computer scientists independently studied evolutionary

systems with the idea that evolution could be used as optimization tool for engineering

problems. The idea in all these systems was to evolve a population of candidate solution

to a given problem, using operators inspired by natural genetic variation and natural

selection.

In the 1960s, Rechenberg [3) (1965,1973) introduced "evolutionary strategies", a

method he used to optimize real valued parameters for devices such as airfoils. This

idea was further developed by Schwefel [3) (1975, 1977). The field of evolution of

strategies has remained an active area of research, mostly developing independently

from the field of genetic algorithms. •

Several other people working in 1950s and the 1960s developed evolution inspired

algorithms for optimization and machine learning. Box (1957), Friedman (1959),

Bledsoe (1962), Bremermann (1962), and Reed, Toombs, and Baricelli [3) (1967) all

worked in this area, though their work has been given little or none attention or follow

8

up that evolution strategies, evolutionary programming, and genetic algorithms have

seen.

Genetic algorithms were invented by John Holland [3] in 1960s and were developed by

Holland and his students and colleagues at the University of Michigan in 1960s and

197Os. In contrast with evolution strategies and evolutionary programming, Holland's

original goal was not to design algorithms to solve specific problems, but rather to

formally study the phenomena of adaptation as it occurs in nature and to develop ways

in which the mechanism of natural adaptation might be imported into computer

systems.

In the last several years there has been widespread interaction among researchers

studying various evolutionary computation methods, and the boundaries between

Genetic Algorithms, evolutionary strategies, evolutionary programming, and other

evolutionary approaches have been broken down to some extent.

2.3 Biological Terminology:
The evolution of Genetic Algorithms is based on analogy with real biology and can be

understood more precisely as:

All living organisms consist of cell, and each cell contains the same set of one or more

chromosomes - strings of DNA - that serves as "blueprint" for the organism. A

chromosome can be conceptually divided into genes - functional block of DNA, each of

which encodes a particular protein. Very roughly, one can think of gene as encoding a

trait, such as eye color. The different possible "settings" for a trait (e.g. blue, brown,
ı,

hazel) are called alleles. Each gene is located at a particular locus (position) on the

chromosome. •

In genetic algorithms, the term chromosome typically refers to candidate solution to a

problem, often encoded as a bit string. The "genes" are either single bits or short blocks

of adjacent bits that encode a particular element of the candidate solution (e.g. in the

context of multi-parameter function optimization the bits encoding a particular

9

parameter might be considered to be a gene). An allele in a bit string is either O or 1; for

larger alphabets more alleles are possible at each locus. Crossover typically consists of

exchanging genetic material between two single chromosome haploid parents.

2.4 Search Space:
If we are solving some problem, we are usually looking for some solution, which will

be the best among others. The space of all feasible solutions (it means objects among

those the desired solution is) is called search space (also state space). Each point in the

search space represents one feasible solution. Each feasible solution can be "marked" by

its value or fitness for the problem. We are looking for our solution, which is one point

(or more) among feasible solutions - that is one point in the search space.

The looking for a solution is then equal to a looking for some extreme (minimum or

maximum) in the search space. The search space can be whole known by the time of

solving a problem, but usually we know only a few points from it and we are generating

other points as the process of finding solution continues.

2.5 Elements of Genetic Algorithms:
It turns out that there is no rigorous definition of "genetic algorithm" accepted by all in

the evolutionary-computation community that differentiates GAs from other

evolutionary computation methods. However, it can be said that most methods called

"GAs" have at least the following elements in common: populations of chromosomes,

selection according to fitness, crossover to produce new offspring, and random mutation

of new offspring. Inversion-Holland's fourth element of GAs is rarely used in today's

implementations, and its advantages, if any, are not well established.

The chromosomes in a GA population typically take the form of bit strings. Each locus

in the chromosome has two possible alleles: O 'and 1.Each chromos'bme can be thought

of as a point in the search space of candidate solutions. The GA processes populations

of chromosomes, successively replacing one such population with another. The GA

most often requires a fitness function that assigns a score (fitness) to each chromosome

in the current population. The fitness of a chromosome depends on how well that

chromosome solves the problem at hand.

10

2.5.1 Examples of Fitness Functions:

One common application of GAs is function optimization, where the goal is to find a set

of parameter values that maximize, say, a complex multi-parameter function. As a

simple example, one might want to maximize the real-valued one-dimensional function

(Riolo [3] 1992). Here the candidate solutions are values of y, which can be encoded as

bit strings representing real numbers. The fitness calculation translates a given bit string

x into a real number y and then evaluates the function at that value. The fitness of a

string is the function value at that point.

f(y) =y + lsiıı(32.y)I, o <y < 1C

As a non-numerical example, consider the problem of finding a sequence of 50 amino

acids that will fold to a desired three-dimensional protein structure. A GA could be

applied to this problem by searching a population of candidate solutions, each encoded

as a 50-letter string such as

IHCCVASASDMJKPVFTVASYLKNWTKAKGPNFEICISGRTPYWDNFPGI,

Where each letter represents one of 20 possible amino acids. One way to define the

fitness of a candidate sequence is as the negative of the potential energy of the sequence

with respect to the desired structure. The potential energy is a measure of how much

physical resistance the sequence would put up if forced to be folded into the desired

structure the lower the potential energy, the higher the fitness. Of course one would not

want to physically force every sequence in the population into the desired structure and
~

measure its resistance this would be very difficult, if not impossible. Instead, given a

sequence and a desired structure (and knowing some of the relevant biophysics), one
•

can estimate the potential energy by calculating some of the forces acting on each

amino acid, so the whole fitness calculation can be done computationally.

These examples show two different contexts in which candidate solutions to a problem

are encoded as abstract chromosomes encoded as strings of symbols, with fitness

11

functions defined on the resulting space of strings. A genetic algorithm is a method for

searching such fitness landscapes for highly fit strings.

2.6 GA Operators:
The simplest form of genetic algorithm involves three types of operators selection,

crossover, and mutation.

1. Selection: This operator selects chromosomes ın the population for

reproduction. The fitter the chromosome, the more times it is likely to be

selected.

2. Crossover: this operator randomly chooses a locus and exchanges the

subsequences before and after that locus between two chromosomes to create

two offspring. For example, the strings 10000100 and 11111111 could be

crossed over after the third locus in each to produce the two offspring 10011111

and 11100100. The crossover operator roughly mimics biological recombination

between two single-chromosome (haploid) organisms.

3. Mutation: This operator randomly flips some of the bits in a chromosome. For

example, the string 00000100 might be mutated in its second position to yield

01000100. Mutation can occur at each bit position in a string with some

probability, usually very small (e.g. 0.001).

2.7 Applications of Genetic Algorithms:
~

Various kinds of Genetic Algorithms have been applied on different scientific and

engineering problems and models. Some examples are: •

• Optimization: GAs have been used in wide variety of optimization tasks,

including numerical optimization and such combinatorial optimization

problems as circuit layout and job-shop scheduling.

12

• Automatic Programming: GAs have been used to evolve computer programs

for specific tasks, and to design other computational structures such as cellular

automata and sorting networks.

• Machine leaming: GAs have been used for many machine learning

applications, including classification and prediction tasks, such as the

prediction of weather or protein structure. Gas have also been used to evolve

aspects of particular machine learning systems, such as weight for neural

networks, rules for learning classifier systems or symbolic production systems,

and sensors for robots.

• Economics: GAs have been used to model processes of innovation, the

development of bidding strategies, and the emergence of economic markets.

• Immune systems: GAs have been used to model various aspects of natural

immune systems, including somatic mutation during an individual's lifetime

and the discovery of multi-gene families during evolutionary time.

• Ecology: GAs have been used to model ecological phenomena such as

biological arms races, host-parasite co evolution, symbiosis, and resource flow.

• Population Genetics: GAs have been used to study how individual learning

and species evolution affect one another.

• Evolution and Learning: GAs have been used to study how individual

learning and species evolution affect one another.

•
• Social Systems : GAs have been us:d to study evolutionary aspects of social

systems, such as the evolution of social behavior in insects colonies, and more

generally, the evolution of cooperative and communication in multi-agent

systems.

13

This list gives a brief idea of the flavor of the kinds of things GAs have been used for,

both in problem solving and in scientific contexts. Because of their success in these and

other areas, interests in GAs has been growing rapidly in the last several years among

researchers in many disciplines. The field of GAs has become sub discipline of

computer science, with conferences, journals, and scientific society.

..
•

14

Chapter Three

Basic Neural Network Learning and Computational

Models

3.1 Overview:

The neural network contains a large number of simple neuron like processing elements

and large number of weighted connections between the elements. The weights on the

connection encode the knowledge of a network. Though biologically inspired, many of

the neural networks developed do not duplicate the operation of human brain. Some

computational principles in these models are not even explicable from biological

viewpoints.

In many tasks such as recognizing human faces and understanding speech, current AI

systems cannot do better than humans. It is conjectured that the structure of brain is

somehow suited to these tasks and not suited to tasks such as high-speed arithmetic

operation.

The intelligence of a neural network emerges from the collective behavior of neurons,

each of which performs only very limited operation. Even though each individual

neuron works slowly, they can still quickly find a solution by working in parallel. This

fact can explain why humans can recognize a visual scene faster than a digital

computer, while an individual brain cell responds much more slowly than a digital cell

in VLSI circuit.
..

•3.2 Basic Concepts of Neural Network:"

A neural network has a parallel-distributed architecture with a large number of nodes

and connections. Each connection points from one node to another and is associated

with a weight. A simple view of the network structure and behavior is given in fig 2. 1.

Construction of a neural network involves the following tasks.

15

Oı.tp,.i
layer

'/
I

I
J

i
, Hidden layer
I
I

''
' ' Input

layer

Fig 2.1 A neural network computational model.

• Determine the network properties: The network topology (connectivity),

types of connections, the order of connections, and the weight range.

• Determine the node properties: The activation range and the activation

(transfer) function.

• Determine the system Dynamics: The weight initialization scheme, the

activation-calculatingformula, and the learning rule.

1) Network Properties: The topology of a neural network refers to its

framework as well its interconnection schemes. The framework is often specified by

number of layers (or slabs) and the number of nodes per layer. The types of layers

include:

• The input layer: The nodes in it are called input units; which encode the

instance presented to the network for processing. For example, each input

unit may be designated by an attribute value possessed by the instance.

16

• The hidden layer: The nodes in it are called the hidden units, which are not

directly observable and hence hidden. They provide nonlinear ties for the

network.

• The output layer: The nodes in it are called output units, which encode

possible concepts, (or values) to be assigned to the instance under

consideration. For example each output unit represents a class of objects.

The Input units do not process information; they simply distribute the information to the

other units. Schematically, input units are drawn as circles as distinguished from

processing elements like hidden units and output units, which are drawn as squares.

According to interconnection scheme, a network can either be feed forward or recurrent

and its connection either symmetrical as asymmetrical, which are defined below.

• Feed forward networks: All connections point in one direction (from the

input toward the output layer), or form left to right as shown in figure2.2.

[Bottom-Top)

Fig 2.2 Single layer feedforward Perceptron. •
•

• Recurrent Networks: There are feedback connections or loops, as shown in

Fig 2.1.

17

• Symmetrical Connection: If there is a connection pointing from node 1 to

node 2, then there is also a connection from node 2 to node 1, and the

weights associated with the two connections are equal, or notationally,

• Asymmetrical Connection: If the connections are not symmetrical as

described above then they are asymmetrical.

3.3 Node Properties:

The activation levels of nodes can be discrete (e.g., O and 1) or continuous across a

range (e.g., [0,1] or unrestricted. This depends on the activation (transfer) function

chosen. If it is a hard-limiting function, then the activation level are O or (-1) and I. For

a sigmoid function, the activation levels are limited to a continuous range of reals [0,1].

Figure 2.3 shows the sigmoid function F:

1
F(x) = I+e-x

In case of a linear activation function, the activation levels are open

1.0' Output

•

o Input

Fig 2.3 The sigmoid activation Function.

18

3.4 Inference and Learning:

Building an AI system based on the neural network approach will generally involve the

following steps.

1. Select a suitable neural network based on the nature of problem.

2. Construct a neural network according to the characteristics of the application

domain.

3. Train the neural network with the learning procedure of the selected model.

4. Use the trained network for making inference or solving problems. If the

performance is not satisfactory, then go to one of the previous steps.

Familiarity with existing applications will help determine the appropriate network

architecture and select the best-suited computational model for learning and inference.

Learning is discussed in detail in supervised and unsupervised learning.

3.5 Leaming:

In as much as great variety of human experience can be described as learning, the term

machine learning is sometimes obscure. A somewhat more focused definition suggested

by Hebert Simon [5] (1983) is based on notion of change.

"Learning denotes changes in the system that are adaptive in the sense that they

enable the system to do the same task or tasks drawn from the same population more

efficiently and more effectively the next time".

-Learning can refer to either acquiring new knowledge or enhancing or refining skills.

Learning new knowledge includes acquisition of significant concepts, understanding of
•ı,

their meanings and relationships to each other and to domain concerned. The new

knowledge should be assimilated and put in mentally usable form before it can be called

"learned". Thus, knowledge acquisition is defined as learning new symbolic

information combined with the ability to use that information effectively.

19

3.6 Historical Sketch:
Research and development in machine learning have seen several major evolutionary

changes. Over the years, different paradigms with different emphasis on objectives have

been pursued. Four major periods can be distinguished, each centering around a

different paradigm:

Since 1940s and 1950s:

• Paradigms: Neural network; decision-theoretical learning.

• Objectives: Neural modeling; pattern recognition.

• Examples: McCulloch and Pitts (1943); Rosenblatt (1958); Samuel [5] (1959).

Since 1960s:

• Paradigms: Symbolic learning.

• Objectives: Concept acquisition; building knowledge-based expert systems.

• Examples: Winston (1975); Buchanan and Mitchell [5] (1978).

Since 1970s:

• Paradigms: Knowledge-intensive learning.

• Objectives: Exploration of various learning strategies.

• Examples: Mitchell, Keller, and Kedar-Cabelli [5] (1986).

Since 1980s:
• Paradigms: Neural network and connectionist learning; hybrid learning.

• Objectives: Neural eomputers; robust learning; massive parallelism.

• Examples: Rumelhart, McClelland, and PDP Group (1986); Goldberg [5]

(1989). •

3.7 Supervised Learning:
In a supervised learning process, the input data and its corresponding output are

presented to the neural network. The neural network will according to the defined law

20

change its weight in order to be able to reproduce the correct output, when an input is

applied.

Supervised learning algorithms utilize the information on the class membership of each

training instance. This information allows supervised algorithms to detect pattern

misclassification as a feedback to themselves. Error information contributes to the

learning process by rewarding accurate classification and/or rnisclassifications - a

process known as credit and blame assignment. It also helps eliminate implausible

hypothesis.

3.8 Unsupervised Learning:

Unsupervised learning process requires only input vectors to train the network. On the

input data is presented to the neural network, the weights are adjusted in an ordered way

according to some figure of merit.

Unsupervised learning algorithms use unlabeled instances. They blindly or heuristically

process them. Unsupervised learning algorithms often have less computational

complexity and less accuracy than supervised learning algorithms. Unsupervised

learning algorithms can be designed to learn rapidly. This makes unsupervised learning

practical in many high-speed, real time environments, where we may not have enough

time and information to apply supervised techniques. Unsupervised learning has also

been used for scientific discovery.

Unsupervised learning refers to how neural networks modify their parameters in

biologically plausible ways. In this learning mode, the neural network does not use the

class membership of trainilıg instances. Instead, it uses information associated with a

group of neurons to modify local parameters.
•

21

3.9 Neural Network Leaming:

The neural network has been dubbed the "connectionist". It contains large number of

simple neuron like processing elements and a large number of weighted connections

between the elements. The weights on the connections encode the knowledge of a

network. It uses a high parallel, distributed control, and can learn to adjust itself

automatically.

3.9.1 Backpropagation:
The backpropagation network is probably the most well known and widely used among

the current types of neural network systems available. The learning rule is known as

backpropagation, which is a kind of gradient decent technique with backward error

(gradient) propagation, as depicted in fig. The training instance set for the network must

be presented many times in order for correct classification of input patterns. While the

network can recognize patterns similar to those they have learned, they don't have the

ability to recognize new patterns. This is true for all supervised learning networks. In

order to recognize new patterns network needs to be retrained with these patterns along

with previously known patterns. If only new patterns are provided for retraining, then

old patterns may be forgotten. In this way, learning is not incremental over time.

hr gel
Oıiput

Backward
Enoı
P,opagation

Actual output

•0l: I O o O

He:" ı o o o
= I O O O

INPUT

Fig 2.4 The back propagation network.

The backpropagation network is essence learns a mapping from a set of input patterns

(e.g. extracted features) to a set of output patterns (e.g. class information). This network

can be designed and trained to accomplish a wide variety of mappings. This ability

comes form the nodes in hidden layer or layers of the network, which learns to respond

to features, found in the input patterns. The features recognized or extracted by hidden

units (nodes) correspond to the correlation of activity among different input units. As

the network is trained with different examples, the network has the ability to generalize

over similar features found in different patterns.

The back propagation network is capable of approximating arbitrary mappıngs.

Furthermore, it can learn to estimate posterior probabilities (p(w;fx)) for classification.

The sigmoid function guarantees that the outputs are bounded between O and 1.

The back propagation network consists of one input layer, one output layer and one or

more hidden layers. If n bits or n values describe the input pattern, then there should be

n input units to accommodate it. The number of output units is like wise determined by

how many bits or values are involved in output pattern.

The name back propagation comes from the fact that the error (gradient) or hidden units

are derived form propagation backward the errors associated with output units. In back

propagation network, the activation function chosen is the sigmoid function, which

compresses the output value into the range between O and 1. The sigmoid function is

advantageous in that it can accommodate large signals without saturation

a Back Propagation Leaming: •

The equation that describes the network training and operation can Öe divided into two

categories.

1. Feed forward Calculations: Use in both training mode and operation mode.

2. Error Back Propagation: Use in training mode only.

23

Activation Function: Any activation function that is differentiable can be used in Back

propagation algorithm.

• Linear Function with adjustable gain.

• Sigmoid Function (Squashing Function).

a) FeedfoıwardCalculations:
Normalization of the input data prior training is necessary. The value of input data into

input layer must be in the range (0-1).

Input Layer (ı): The output of each input neuron is exactly equal to the

normalized input.

Input-layer= Output

Hidden Layer (h): The signal presented to a neuron in the hidden layer is equal to the

sum of all outputs of the input layer multiplied by their associated weights.

Hidden Layer Input:

Each output of a hidden nurede is calculated using the SIGMOID function.

Output Layer (/): Similar to Hidden Layer Calculation. •

Output layer Input (/):

24

These equations describe the feedforward calculations, which can be used in both

training and running phases.

b) Error Back Propagation Calculations:
Vital elements in these calculations are:

Error Signal: The definition of network error is the difference between the output

value that an output neuron is supposed to have (Target value, Tj), and the value it

actually has as a result offeed forward calculations (01).

P: denotes what the value is for a given pattern.

The aim of training a Neural Network is to minimize this error over all training patterns.

The output of a neuron in the output layer is a function of its input 01 = f(I;). The first

derivative of this function f(f 1) is an important element in error back propagation. For

output layer neurons, a quantity called the error signal is represented by ~ 1 which is

defined as,

111 = f'(I)(T1 -0)
111 = (T1 -01)01(1-0)

The error value is propagated back and weights adjustments are made.

There are two essential parameters that affect the learning of a neural network:
•

1. Learning co-efficient 7] which defines the learning power of a neural network.

2. Momentum factor a, which defines the learning power of a neural network.

The effect of these parameters is described by the following equations.

25

Output Layer Weights Update: The weights that feed the output layer (W1h) are

updated using the following equations. This also includes the bias weights at the output

layer. However in order to prevent the network getting caught in local minima, the

momentum term is also added.

or with momentum rate

wjh(new) = wjh(old)+ rıı1.joj +al&jh(old) J

Hidden Layer Weights Update: Similar to output layer weights update but the Delta

error will be different.Error for Hidden layer is defined by the following equation.

ni

ıı h = oh cı - oh) I w1hıı 1
j=O

Weights-adjustments:

All the equations describe the mathematical foundations for Back Propagation Learning

Algorithm.

3.10 Classification Models:

Neural Networks can be classified according to the way they learn, learning can be

performed on a Supervised Or Unsupervised basis.

•
1J Supervised Learning Models:

1. The Perceptron.

2. The Back Propagation Learning Algorithm.

3. The Hop Field Algorithm.

4. The Hamming Algorithm.

26

• The Perceptron: This can be trained and can make decisions. During the

training phase, pairs of input and output vectors are used to train the network. While

each input vector, the output vector is compared with a desired output (target) as shown

in fig 2.4, and the error between the actual and desired output vectors is used to update

the weights.

• Back Propagation: A multi-layer network can be trained using the back

propagation-learning algorithm. This is done by presenting pairs of input and output

vectors. The actual output is compared with the target. If there is no difference the

weights do not change, otherwise the weights are adjusted to reduce the error difference.

This learning algorithm propagates back the error through the multi-layer to update the

weights.

• Hop Field Network: A Hop field network is essentially used with binary

numbers. Weights are initialized using training samples. In the decision making phase,

the test data is presented to the net at certain time, following initialization the Hop field

Network iterates in discrete time steps using some mathematical function, and the

network is considered to have converged when the outputs no longer change on

successive iterations.

• Hamming Network: It is similar to Hop field network, but it consists of four

layers.

LI : Input Layer.
ıı,

L2: Calculates matching scores.

L3: Feed back as in Hop field.

L4: Output Layer. •

o Unsupervised Leaming Models:

1. Kohonen's Self-OrganizingMaps.

2. Competitive Learning.

27

3. Adaptive Leaming.

• Kohonen's Learning: Kohonen [2] suggested that that one of the important

mechanism in the human brain is placement of Neurons in an orderly manner.

Kohonen's learning algorithm creates a feature map by adjusting weights from input

vectors to output vectors in a two layer network. The first layer is input. the second is

competitive layer. The tow layers are fully connected. Input vectors are presented

sequentially to layer one. Each unit computes the dot product of its weight with the

input vectors. The unit with the highest dot product is declared the winner. This and its

neighbors are the only units allowed to learn.

• Competitive Leaming: The simplest way to implement competitive learning is

where each unit in the hidden or output layers receives input from all the units in the

preceding layer. With in the layer units are broken down into a set of inhibitoıy clusters.

The units with in the cluster compete with in one another to respond to data appearing at

input layer. The more strongly and particular unit responds to incoming stimulus the

more it inhibits other units with in the cluster. The unit learns by shifting a fraction of

its weight from its inactive lines. The main disadvantage of competitive learning is the

loss of previous learning's.

• Adaptive Resonance Theory (ART): ART is divided into two methods.

1. Accepts only binaıy.

2. Accepts binaıy and continuous input.

•

28

Chapter Four

Genetic Algorithm Implementation

4.1 How do Genetic Algorithms Works?

Although genetic algorithms are simple to describe and program, their behavior can be

complicated, and many open questions exist about how they work and for what types of

problems they are best suited. Much work has been done on theoretical foundations of

GAs.

The tradition theory of GAs (first formulated in Holland 1975) assumes that, a very

general level of description, GAs work by discovering, emphasizing, and recombination

good "building blocks" of solutions in a highly parallel fashion. The idea here is that

good solutions tend to be made up of good building blocks - combination of bit values

that confer higher fitness on the strings in which they are present.

Holland [6] (1975) introduced the notion of schemas (or schemata) to formalize the

information notion of "building blocks". A schema is a set of bit strings that can be

described by a template made up of ones, zeros, and asterisks, the asterisks representing

wild cards (or "don't cares"). For example, the schema H=l ****1 represents the set of

all 6-bit strings that begin and end with 1. The strings that fit this template (e.g. 100111

and 110011) are said to be instances of H The schema H is said to have two defined

bits (non-asterisks) or, equivalent, to be or order 2. Its defining length (the distance
Ill

between its outermost defined bits) is 5. Here the term "schema" is used to donate both

a subset of strings represented by such a template itself
•

Note that not every possible subset of the set of length-I bit strings can be described as a

schema; in fact, the huge majority cannot. There are 21 possible strings of length I, and

thus 2 21 possible subsets of strings, but there are only 31 possible schemas. However, a

central tenet of traditional GA theory is that schemas are - implicitly - the building

29

blocks that the GA processes effectively under the operators of selection,/mutatio~ 3?d
. . I >- k. • ., g ı 1

sıngle-poınt crossover. '.\ ı:~. r- .
'\\J'~ ..}'\ ci- ~

H d th GA h ? An . bi . f 1 gth 1 . . ~f,,, L \• ~ ,;,ZC..'-J~'ow o e process sc emas. y gıven ıt strıng o en ıs an ınstan.c~

different schemas. For example, the string 11 is an instance of **(all four possible bit

strings of length 2), *l, 1 *, and 11 (the schema that contains only one string, 11). Thus,

any given population of n strings contains instances of between z' and n x ı1 different

schemas. If all the strings are identical, then there are instances of exactly 21 different

schemas; otherwise, the number is less than or equal to n x ı1 . This means that, at a

given generation, while the GA is explicitly evaluating the fitness of the n strings in the

population, it is actually implicitly estimating the average fitness of a much larger

number of schemas, where the average fitness of a schema is defined to be the average

fitness of possible instances of that schema. For example, in a randomly generated

population of n strings, on average half strings will be instances of 1 ***--* and half will

be instances of 0***---0. The evaluation of approximately n/2 strings that are instances

of 1 **---* give an estimate of the average fitness of that schema. Just as schemas are

not explicitly represented or evaluated by the GA, the estimates of schema average

fitness are not calculated or stored explicitly by the GA. However, as will be seen

below, the GAs behavior, in term of the population, can be described as though it

actually calculating and storing these averages.

We can calculate the approximate dynamics of this increase decrease in schema

instances by using the following equation:

E(m(H,t + 1)) = Lf(x)/](t)
xEH

= (u(H,t)/](t))m(H,t) (1.1)
•

Where H is considered as schema with at least one instance present in the population at

time t, m(H,t) be the number of instances present in the population at time t, and u(H,t)

be the observed average fitness of H at time t.

30

The disruptive effects of mutation can be quantified as follow; let Pm be the probability

of any bit being mutated. Then Sm (H), the probability that schema H will survive

under and instance of H, is equal to (1- Pm)OCH), where o(H) is order of H (i.e. the

number of defined bits in H).

The disruptive effects can be used to amend equation 1. I, and can be defined as:

This is known as Schema Theorem. It describes the growth of a schema from one

generation to the next

The Schema Theorem and some of its purported implications for the behavior of GAs

have been subjected of much critical discussion in the GA community. These criticisms

and the new approaches are discussed in detail in the coming sections.

4.2 Implementing a Genetic Algorithm:

The case studied earlier illustrated that when one wants to apply the GA to a particular

problem, one faces a huge number of choices about how to proceed, with little

theoretical guidance on how to make them.

John Holland's simple GA inspired all subsequent GAs and provided the basis for
"theoretical analysis of GAs. For real problem solving and modeling, however, it is clear

that the simple GA is limited in its power in several respects. Not all problems should
•

use bit-string encodings, fitness-proportionate selection is not always the best method,

and the simple genetic operators are not always the most effective or appropriate ones.

Furthermore, the simple GA leaves out many potentially useful ideas from real biology,

several of which were proposed for use in GAs by Holland (1975) but have not been

examined systematicallyuntil recently.

31

hı this section we will survey some implementation issues for GAs and some

sophisticated GA techniques, including self-adapting GAs. Of course, this survey is by

no means complete-although GA researchers speak informally of "the GA," anyone

who has little idea about GAs will notice that there are actually as many different GAs

as there are GA projects.

4.3 When Should a Genetic Algorithm be used?

The GA literature describes a large number of successful applications, but there are also

many cases in which GAs perform poorly. Given a particular potential application, how

do we know if a GA is good method to use? There is no rigorous answer, though many

researchers share the intuitions that if the space to be searched is large/ is known not to

be perfectly smooth and unimodal (i.e., consists of a single smooth "hill"), or is not well

understood, or if the fitness function is noisy, and if the task does not require a global

optimum to be found-i.e., if quickly finding a sufficiently good solution is enough-a

GA will have a good chance of being competitive with or surpassing other "weak"

methods (methods that do not use domain-specific knowledge in their search

procedure). If a space is not large, then it can be searched exhaustively, and one can be

sure that the best possible solution has been found, whereas a GA might converge on a

local optimum rather than on the globally best solution. If the space is smooth or

unimodal, a gradient-ascent algorithm such as steepest-ascent hill climbing will be

much more efficient than a GA in exploiting the space's smoothness. If the space is well

understood (as is the space for the well-known Traveling Salesman problem, for

example), search methods using domain-specific heuristics can often be designed to

outperform any general-purpose method such as a GA. If the fitness function is noisy

(e.g., if it involves taking error-prone measurements from a real-world process such as

the vision system of a robot), a one-candidate-solution-at-a-time search method such as•
.• simple hill climbing might be irrecoverably led astray by the noise, but GAs, since they

work by accumulating fitness statistics over many generations, are thought to perform

robustly in the presence of small amounts of noise.

32

4.4 Encoding a Problem for Genetic Algorithm:

As for any search and learning method, the way in which candidate solutions are

encoded is a central, if not the central, factor in the success of a genetic algorithm. Most

GA applications use fixed-length, fixed-order bit strings to encode candidate solutions.

However, in recent years, there have been many experiments with other kinds of

encoding.

1. Binary Encodings:

Binary encoding (i.e., bit strings) are the most common encodings for a number of

reasons. One is historical: in their earlier work, Holland and his students concentrated

on such encodings and GA practice has tended to follow this lead. Much of the existing

GA theory is based on the assumption of fixed-length, fixed-order binary encodings.

Much of that theory can be extended to apply to nonbinary encodings, but such

extensions are not as well developed as the original theory. In addition, heuristics about

appropriate parameter settings (e.g., for crossover and mutation rates) have generally

been developed in the context of binary encodings.

Holland [3] (1975) gave a theoretical justification for using binary encodings. He

compared two encodings with roughly the same information-carrying capacity, one with

a small number of alleles and long strings (e.g., bit strings of length 100) and the other

with a large number of alleles and short strings (e.g., decimal strings of length 30). He

argued that the former allows for a higher degree of implicit parallelism than the latter,

since an instance of the former contains more schemas than an instance of the latter

(2100 versus ı3°). (This schema-counting argument is relevant to GA behavior only

insofar as schema analysis isselevant, which, as I have mentioned, has been disputed).

••
In spite of these advantages, binary encodings are unnatural and -unwieldy for many

problems (e.g., evolving weights for neural networks or evolving condition sets in the

manner of Meyer and Packard), and they are prone to rather arbitrary orderings.

33

2. Many-Character and Real-Valued Encodings:

For many applications, it is most natural to use an alphabet of many characters or real

numbers to form chromosomes. Examples include Kitano's [3] many-character

representation for graph-generation grammars, Meyer and Packard's [3] real-valued

representation for condition sets, Montana and Davis's [3] real-valued representation for

neural-network weights, and Schultz-Kremer's [3] real-valued representation for torsion

angles in proteins.

Holland's schema-counting argument seems to imply that GAs should exhibit worse

performance on multiple-character encodings than on binaıy encodings. Several

empirical comparisons between binary encodings and multiple-character or real-valued

encodings have shown better performance for the latter e.g., Janikow and Michalewicz

[3]. But the performance depends very much on the problem and the details of the GA

being used, and at present there are no rigorous guidelines for predicting which

encoding will work best.

3. Tree Encodings:

Tree encoding schemes, such as John Koza's [3] scheme for representing computer

programs, have several advantages, including the fact that they allow the search space to

be open-ended (in principle, any size tree could be formed via crossover and mutation).

This open-endedness also leads to some potential pitfalls. The trees can grow large in

uncontrolled ways, preventing the formation of more structured, hierarchical candidate

solutions. (Koza's [3] (1992, 1994) "automatic definition of functions" is one way in

which GP can be encouraged to design hierarchically structured programs.) Also, the

resulting trees, being large, can be very difficult to understand and to simplify.~
Systematic experiments evaluating the usefulness of tree encodings and comparing.
them with other encodings are only just beginning in the ge~etic programming

ı,
•• community. Likewise, as yet there are only very nascent attempts at extending GA

theory to tree encodings.

These are only the most common encodings; a survey of the GA literature will tum up

experiments on several others.

34

4.5 Adapting the Encoding:

Choosing a fixed encoding ahead of time presents a paradox to the potential GA user:

for any problem that is hard enough that one would want to use a GA, one doesn't know

enough about the problem ahead of time to come up with the best encoding for the GA.

In fact, coming up with the best encoding is almost tantamount to solving the problem

itself The original lexicographic ordering of bits was arbitrary, and it probably impeded

the GA from finding better solutions quickly-to find high-fitness rules, many bits

spread throughout the string had to be co adapted. If these bits were close together on

the string, so that they were less likely to be separated under crossover, the performance

of the GA would presumably be improved. But we had no idea how best to order the

bits ahead of time for this problem. This is known in the GA literature as the "linkage

problem"-one wants to have functionally related loci be more likely to stay together

on the string under crossover, but it is not clear how this is to be done without knowing

ahead of time which loci are important in useful schemas. Faced with this problem, and

having notions of evolution and adaptation already primed in the mind, many users have

a revelation: "As long as rm using a GA to solve the problem, why not have it adapt the

encoding at the same time!"

ı. Inversion:

Holland [3] (1975) included proposals for adapting the encodings in his original

proposal for GAs. Holland, acutely aware that correct linkage is essential for single­

point crossover to work well, proposed an "inversion" operator specifically to deal with•
the linkage problem in fixed-length strings.

•.. ~
Inversion is a reordering operator inspired by a similar operator in real genetics. Unlike

simple GAs, in real genetics the function of a gene is often independent of its position

in the chromosome (though often genes in a local area work together in a regulatory

network), so inverting part of the chromosome will retain much or all of the "semantics"

of the original chromosome.

35

To use inversion in GAs, we have to find some way for the functional interpretation of

an allele to be the same no matter where it appears in the string. For example, in the

chromosome encoding a cellular automaton the leftmost bit under lexicographic

ordering is the output bit for the neighborhood of all zeros. We would want that bit to

represent that same neighborhood even if its position were changed in the string under

an inversion. Holland proposed that each allele be given an index indicating its "real"

position, to be used when evaluating a chromosome's fitness. For example, the string

00010101 would be encoded as

{(1,0) (2,0) (3, O) (4,1) (5, O) (6,1) (7, O) (8,1)},

With the first member of each pair giving the "real" position of the given allele. This is

the same string as, say,

{(l, O) (2, O) (6,1) (5, O) (4, .1) (3,0) (7,0) (8,1)}.

Inversion works by choosing two points in the string and reversing the order of the bits

between them-in the example just given, bits 3-6 were reversed. This does not change

the fitness of the chromosome, since to calculate the fitness the string is ordered by the

indices. However, it does change the linkages: the idea behind inversion is to produce

orderings in which beneficial schemas are more likely to survive. Suppose that in the

original ordering the schema 00 * *O 1 * * is very important. Under the new ordering,

that schema is 0010 * * * ~- Given that this is a high-fitness schema and will now tend

to survive better under single-point crossover, this permutation will presumably tend to

survive better than would the original string. ,, •
..

The reader may have noticed a hitch in combining inversion with single-point

crossover. Suppose, for example, that

36

{(l, O) (2, O) (6,1) (5,0) (4,1) (3,0) (7, O) (8,1)}

Crosses with

{(5,1) (2, O) (3,1) (4,1) (1,1) (8,1) (6,0) (7, O)}

After the third bit, the offspring are

{(1,0) (2,0) (6,1) (4,1) (1,1) (8,1) (6, O) (7,0)}

And

{(5,1) (2, O) (3,1) (5,0) (4,1) (3,0) (7, O) (8,1)}.

The first offspring has two copies each of bits 1 and 6 and no copies of bits 3 and 5. The

second offspring has two copies of bits 3 and 5 and no copies of bits 1 and 6. How can

we ensure that crossover will produce offspring with a full set of loci? Holland

proposed two possible solutions:

• Permit crossover only between chromosomes with the same permutation of

the loci. This would work, but it severely limits the way in which crossover

can be done.

.. • Employ a "master/slave" approach: choose one parent to be the master, and

temporarily reorder the other parent to have the same ordering as the master.

Use this ordering to produce offspring, returning the second parent to its

original ordering once crossover has been performed. Both methods have

been used in experiments on inversion.

37

Inversion was included in some early work on GAs but did not produce any stunning

improvements in performance (Goldberg 1989a). More recently, forms of inversion

have been incorporated with some success into GAs applied to "ordering problems"

such as the DNA fragment assembly problem (Parsons, Forrest, and Burks, in press).

However, the verdict on the benefits of inversion to GAs is not yet in; more systematic

experimental and theoretical studies are needed. In addition, any performance benefit

conferred by inversion must be weighed against the additional space (to store indices

for eveıy bit) and additional computation time (e.g., to reorder one parent before

crossover) that inversion requires.

2. Evolving Crossover "Hot Spots":

A different approach, also inspired by nature, was taken by Schaffer and Morishima [3]

(1987). Their idea was to evolve not the order of bits in the string but rather the

positions at which crossover was allowed to occur (crossover "hot spots"). Attached to

each candidate solution in the population was a second string-a "crossover

template"-that had a 1 at each locus at which crossover was to take place and a O at

each locus at which crossover was not to take place. For example, 10011111:00010010

(with the chromosome preceding-and the crossover template following the colon) meant

that crossover should take place after the fourth and seventh loci in that string. Using an

exclamation point to denote the crossover markers (each attached to the bit on its left),

we can write this as 1001!11l!l. Now, to perform multi-point crossover on two parents

(say 1001!111!1 and 000000'00), the !s mark the crossover points, and they get

inherited along with the bits to which they are attached:

Parents 1 O O I! 11 I! 1

O O O O O O! O O
•..

Offspring 1 O O O! O O! I! O

00001101

38

Mutation acts on both the chromosomes and the attached crossover templates. Only the

candidate solution is used to determine fitness, but the hope is that selection, crossover,

and mutation will not only discover good solutions but also coevolve good crossover

templates. Schaffer and Morishima found that this method outperformed a version of

the simple GA on a small suite of function optimization problems. Although this

method is interesting and is inspired by real genetics (in which there are crossover hot

spots that have somehow coevolved with chromosomes), there has not been much

further investigation into why it works and to what degree it will actually improve GA

performance over a larger set of applications.

3. MessyGAs:

The goal of "messy GAs," developed by Goldberg and his colleagues, is to improve the

GA's function-optimization performance by explicitly building up increasingly longer,

highly fit strings from well-tested shorter building blocks (Goldberg, Korb, and Deb

1989; Goldberg, Deb, and Korb [3] 1990; Goldberg, Deb, Kargupta, and Harik [3]

1993). The general idea was biologically motivated: "After all, nature did not start with

strings of length 5. 9 x 109 (an estimate of the number of pairs of DNA nucleotides in the

human genome) or even of length-two million (an estimate of the number of genes in

Homo sapiens) and try to make man. Instead, simple life forms gave way to more

complex life forms, with the building blocks learned at earlier times used and reused to

good effect along the way."

Consider a particular optimization problem with candidate solutions represented as bit

strings. In a messy GA each bit is tagged with its "real" locus, but in a given

chromosome not all loci have to be specified ("under specification") and some loci can

be specified more than onee, even with conflicting alleles ("over specification"). For

example, in a four-bit problem, the following two messy chromosomes might be found

in the population: •..

{(1,0) (2,0) (4,1) (4,0)}

and

39

{(3,1) (3, O) (3,1) (4, O) (4,1) (3,1)}.

The first specifies no value for locus 3 and two values for locus 4. The second specifies

no values for loci 1 and 2, two values for locus 4 and a whopping four values for locus

3. (The term "messy GA" is meant to be contrasted with standard "neat" fixed-length,

fixed-population-size GAs.)

Given all this under- and over specification, how is the fitness function to be evaluated?

Over specification is easy: Goldberg and his colleagues simply used a left-to-right, first­

come-first-served scheme. (e.g., the chosen value for locus 4 in the first chromosome is

1.) Once over specification has been taken care of, the specified bits in the chromosome

can be thought of as a "candidate schema" rather than as a candidate solution. For

example, the first chromosome above is the schema 00*1. The purpose of messy GAs is

to evolve such candidate schemas, gradually building up longer and longer ones until a

solution is formed. This requires a way to evaluate a candidate schema under a given

fitness function. However, under most fitness functions of interest, it is difficult if not

impossible to compute the "fitness" of a partial string. Many loci typically interact non­

independently to determine a string's fitness, and in an under specified string the

missing loci might be crucial. Goldberg and his colleagues first proposed and then

rejected an "averaging" method: for a given under specified string, randomly generate

values for the missing loci over a number of trials and take the average fitness

computed with these random samples. The idea is to estimate the average fitness of the

candidate schema. But, as was pointed out earlier, the variance of this average fitness

will often be too high for a meaningful average to be gained from such sampling.

Instead, Goldberg [3] and his colleagues used a method they called "competitive
'&

templates." The idea was not to estimate the average fitness of the candidate schema but
•

to see if the candidate schema yields an improvement over a local optimum. The
•• •

method works by finding a local optimum at the beginning of a run by a hill-climbing

technique, and then, when running the messy GA, evaluating under specified strings by

filling in missing bits from the local optimum and then applying the fitness function. A

local optimum is, by definition, a string that cannot be improved by a single-bit change;

40

thus, if a candidate schema's defined bits improve the local optimum, it is worth further

exploration.

The messy GA proceeds in two phases: the "primordial phase" and the "juxtapositional

phase." The purpose of the primordial phase is to enrich the population with small,

promising candidate schemas, and the purpose of the juxtapositional phase is to put

them together in useful ways. Goldberg and his colleagues' first method was to guess at

the order k of the smallest relevant schemas and to form the initial population by

completely enumerating all schemas of that order. For example, if the size of solutions

is l = 8 and the guessed k is 3, the initial population will be,

{(1,0) (2,0) (3,0)}

{(1,0) (2,0) (3,1)}

{(1,1) (2,1) (3,1)} {(1,0) (2,0) (4,0)}

{(1,0) (2,0) (4,1)}

{(6,1) (7,1) (8,1)}.

..

After the initial population has been formed and the initial fitnesses evaluated (using

competitive templates), the primordial phase continues by selection only (making

copies of strings in proportion to their fitnesses with no crossover or mutation) and by

culling the population by hc!ıf at regular intervals. At some generation (a parameter of

the algorithm), the primordial phase comes to an end and the juxtapositional phase is in­

voked. The population size stays fixed, selection continues, and \wo juxtapositional

operators-"cut" and "splice"-are introduced. The cut operator cuts a string at a

random point. For example,

{(2,0) (3,0) (1,1) (4,1) (6,0)}

41

Could be cut after the second locus to yield two strings: {(2, O) (3,0)} and {(1,1) (4,1)

(6, O)}. The splice operator takes two strings and splices them together. For example,

{(1.1) (2,1) (3,1)} and {(l, O) (4,1) (3, O)}

Could be spliced together to form

{(1,1) (2,1) (3,1) (1,0) (4,1) (3,0)}.

Under the messy encoding, cut and splice always produce perfectly legal strings. The

hope is that the primordial phase will have produced all the building blocks needed to

create an optimal string, and in sufficient numbers so that cut and splice will be likely to

create that optimal string before too long. Goldberg and his colleagues did not use

mutation in the experiments they reported.

Unfortunately, even with probabilistically complete initialization, the necessary initial

population size still grows exponentially with k, so messy GAs will be feasible only on

problems in which k is small. Goldberg and his colleagues seem to assume that most

problems of interest will have small k, but this has never been demonstrated. It remains

to be seen whether the promising results they have found on specially designed fitness

functions will hold when messy GAs are applied to real-world problems. Goldberg,

Deb, and Korb [3] have already announced that messy GAs are "ready for real-world

applications" and recommended their "immediate application . .. to difficult,

combinatorial problems of practical import." To my knowledge, they have not yet been

tried on such problems.

•.. 4.6 Selection Methods:
After deciding on an encoding, the second decision to make in using a genetic algorithm

is how to perform selection-that is, how to choose the individuals in the population

that will create offspring for the next generation, and how many offspring each will

create. The purpose of selection is, of course, to emphasize the fitter individuals in the

42

population in hopes that their offspring will in turn have even higher fitness. Selection

has to be balanced with variation from crossover and mutation (the "exploita­

tion/exploration balance"): too-strong selection means that suboptimal highly fit

individuals will take over the population, reducing the diversity needed for further

change and progress; too-weak selection will result in too-slow evolution. As was the

case for encodings, numerous selection schemes have been proposed in the GA

literature. In the following section are described some of the most common methods.

1. Fitness-Proportionate Selection with "Roulette Wheel" and

"Stochastic Universal" Sampling:
Holland's original GA used fitness-proportionate selection, in which the "expected

value" of an individual (i.e., the expected number of times an individual will be selected

to reproduce) is that individual's fitness divided by the average fitness of the population.

The most common method for implementing this is "roulette wheel" sampling, each

individual is assigned a slice of a circular "roulette wheel," the size of the slice being

proportional to the individual's fitness. The wheel is spun N times, where N is the

number of individuals in the population. On each spin, the individual under the wheel's

marker is selected to be in the pool of parents for the next generation. This method can

be implemented as follows:

1. Sum the total expected value of individuals in the population. Call this sumT.

2. Repeat N times

Choose a random integer r between O and T '. Loop through the individuals in the

population, summing the eıPected values, until the sum is greater than or equal to r.

The individual whose expected value puts the sum over this limit is the one selected.

•.. •
This stochastic method statistically results in the expected number of offspring for each

individual. However, with the relatively small populations typically used in GAs, the

actual number of offspring allocated to an individual is often far from its expected value

(an extremely unlikely series of spins of the roulette wheel could even allocate all

offspring to the worst individual in the population). James Baker (1987) proposed a

43

different sampling method-"stochastic universal sampling" (SUS)-to minimize this

"spread" (the range of possible actual values, given an expected value). Rather than spin

the roulette wheel N times to select N parents, SUS spins the wheel once-but with N

equally spaced pointers, which are used to selected the N parents. Baker (1987) gives

the following code fragment for SUS (in C).

SUS does not solve the major problems with fitness-proportionate selection. Typically,

early in the search the fitness variance in the population is high and a small number of

individuals are much fitter than the others. Under fitness-proportionate selection, they

and their descendents will multiply quickly in the population, in effect preventing the

GA from doing any further exploration. This is known as "premature convergence." In

other words, fitness-proportionate selection early on often puts too much emphasis on

"exploitation" of highly fit strings at the expense of exploration of other regions of the

search space. Later in the search, when all individuals in the population are veıy similar

(the fitness variance is low), there are no real fitness differences for selection to exploit,

and evolution grinds to a near halt. Thus, the rate of evolution depends on the variance

of fitnesses in the population.

2. SigmaScaling:

To address such problems, GA researchers have experimented with several "scaling"

methods-methods for mapping "raw" fitness values to expected values so as to make

the GA less susceptible to premature convergence. One example is "sigma scaling"

(Forrest [3] 1985; it was called "sigma truncation" in Goldberg 1989a), which keeps the

selection pressure (i.e., the degree to which highly fit individuals are allowed many

offspring) relatively constant over the course of the run rather than depending on the

-fitness variances in the population. Under sigma scaling, an individual's expected value

is a function of its fitness, the population mean, and the population standard deviation.
•.. An example of sigma scalingwould be

44

ExpVal(i,t)=~l+ f(i)- f(t)
2c,(t)

1.0 ~ otherwise

ifc,(t) * o

where ExpVal (i, t) is the expected value of individual i at time t, f(i) is the fitness of i,

f(t) is the mean fitness of the population at time t, and c,(t) is the standard deviation of

the population fitnesses at time t. This function, used in the work of Tanese (1989),

gives an individual with fitness one standard deviation above the mean 1.5 expected

offspring. If ExpVal(i,t) was less than O, Tanese arbitrarily reset it to 0.1, so that

individuals with very low fitness had some small chance of reproducing.
\

At the beginning of a run, when the standard deviation of fitnesses is typically high, the

fitter individuals will not be many standard deviations above the mean, and so they will

not be allocated the lion's share of offspring. Likewise, later in the run, when the

population is typically more converged and the standard deviation is typically lower, the

fitter individuals will stand out more, allowing evolution to continue.

3. Elitism:

"Elitism," first introduced by Kenneth De Jong [3] (1975), is an addition to many

selection methods that forces the GA to retain some number of the best individuals at

each generation. Such individuals can be lost if they are not selected to reproduce or if

they are destroyed by crossover or mutation. Many researchers have found that elitism

significantlyimproves the GA's performance .

..
4. Boltzmann Selection: •
Sigma scaling keeps the selection pressure more constant over a run. But often different

amounts of selection pressure are needed at different times in a run-for example, early

on it might be good to be liberal, allowing less fit individuals to reproduce at close to

the rate of fitter individuals, and having selection occur slowly while maintaining a lot

of variation in the population. Later it might be good to have selection be stronger in

45

order to strongly emphasize highly fit individuals, assuming that the early diversity with

slow selection has allowed the population to find the right part of the search space.

One approach to this is "Boltzmann selection" (an approach similar to simulated

annealing), in which a continuously varying "temperature" controls the rate of selection

according to a preset schedule. The temperature starts out high, which means that

selection pressure is low (i.e., every individual has some reasonable probability of

reproducing). The temperature is gradually lowered, which gradually increases the

selection pressure, thereby allowing the GA to narrow in ever more closely to the best

part of the search space while maintaining the "appropriate" degree of diversity. For

examples of this approach, see Goldberg 1990, de la Maza and Tidor [3] 1991 and

1993, and Prugel-Bennett and Shapiro [3] 1994. A typical implementation is to assign

to each individual; an expected value,

ExpVal(i,t) ~ (/''Y,)r
f(i)/

e IT

where T is temperature and ()t denotes the average over the population at time t.

Experimenting with this formula will show that, as T decreases, the difference in

ExpVal(i, t) between high and low fitnesses increases. The desire is to have this happen

gradually over the course of the search, so temperature is gradually decreased according

to a predefined schedule. De la Maza and Tidor [3] (1991) found that this method

outperformed fitness-proportionate selection on a small set of test problems. They also

(1993) compared some theoretical properties of the two methods .

..
•

5. Rank Selection:

Rank selection is an alternative method whose purpose is also to prevent too-quick

convergence. In the version proposed by Baker (1985), the individuals in the population

are ranked according to fitness, and the expected value of each individual depends on its

rank rather than on its absolute fitness. There is no need to scale fitnesses in this case,

46

sınce absolute differences in fitness are obscured. This discarding of absolute fitness

information can have advantages (using absolute fitness can lead to convergence

problems) and disadvantages (in some cases it might be important to know that one

individual is far fitter than its nearest competitor). Ranking avoids giving the far largest

share of offspring to a small group of highly fit individuals, and thus reduces the

selection pressure when the fitness variance is high. It also keeps up selection pressure

when the fitness variance is low: the ratio of expected values of individuals ranked i

and, i+ 1 will be the same whether their absolute fitness differences are high or low.

6. Tournament Selection:

The fitness-proportionate methods described above require two passes through the

population at each generation: one pass to compute the mean fitness (and, for sigma

scaling, the standard deviation) and one pass to compute the expected value of each

individual. Rank scaling requires sorting the entire population by rank-a potentially

time-consuming procedure. Tournament selection is similar to rank selection in terms of

selection pressure, but it is computationally more efficient and more amenable to

parallel implementation. Two individuals are chosen at random from the population. A

random number r is then chosen between O and 1. If r < k (where k is a parameter, for

example 0.75), the fitter cif the two individuals is selected to be a parent; otherwise the

less fit individual is selected. The two are then returned to the original population and

can be selected again.

7. Evolving a Learning Rule:

David Chalmers [3] (1990) took the idea of applying genetic algorithms to neural

networks in a different direçtion: he used GAs to evolve a good learning rule for neural

networks. Chalmers limited his initial study to fully connected feedforward networks.
with input and output layers only, no hidden layers. In general a learning rule is used

•• •
" during the training procedure for modifying network weights in response to the

network's performance on the training data At each training cycle, one training pair is

given to the network, which then produces an output At this point the learning rule is

invoked to modify weights. A learning rule for a single-layer, fully connected

47

feedforward network might use the following local information for a given training

cycle to modify the weight on the link from input unit i to output unit j:

a; : the activation of input unit i.

o1 : the activation of output unit}.

t1 :the training signal (i.e., correct activation, provided by a teacher) on output unitj.

wif : the current weight on the link from i to j.

The change to make in weight w if , ~w ii, is a function of these values:

The chromosomes in the GA population encoded such functions.

Chalmers [3] made the assumption that the learning rule should be a linear function of

these variables and all their pair wise products. That is, the general form of the learning

rule was

The km (1 ~ m ~ 1 O) are constant coefficients, and kO is a scale parameter that affects

how much the weights can change on any one cycle, (k0 is called the "learningrate.")

Chalmers's assumption about the form ofthe learning rule came in part from the fact

that a known good learning rule for such networks the "Widrow-Hoff" or "delta" rule­

has the form

•..

(where 1J) is a constant representing the learning rate. One goal of Chalmers's work

was to see if the GA could evolve a rule that performs as well as the delta rule.

48

4.7 Genetic Operators:
The third decision to make in implementing a genetic algorithm is what genetic

operators to use. This decision depends greatly on the encoding strategy. Where we will

discuss crossover and mutation mostly in the context of bit-string encodings, and

mention a number of other operators that have been proposed in the GA literature.

1. Crossover: It could be said that the main distinguishing feature of a GA is the

use of crossover. Single-point crossover is the simplest form: a single cross-over

position is chosen at random and the parts of two parents after the crossover position are

exchanged to form two offspring. The idea here is, of course, to recombine building

blocks (schemas) on different strings. Single-point crossover has some shortcomings,

though. For one thing, it cannot combine all possible schemas. For example, it cannot in

general combine instances of 11 *****l and ****11** to form an instance of ll**ll *1.

Likewise, schemas with long defining lengths are likely to be destroyed under single­

point crossover. Eshelman, Caruana, and Schaffer [3] (1989) call this "positional bias":

the schemas that can be created or destroyed by a crossover depend strongly on the

location of the bits in the chromosome. Single-point crossover assumes that short, low­

order schemas are the functional building blocks of strings, but one generally does not

know in advance what ordering of bits will group functionally related bits together­

this was the purpose of the inversion operator and other adaptive operators described

above. Eshelman, Caruana, and Schaffer also point out that there may not be any way to

put all functionally related bits close together on a string, since particular bits might be

crucial in more than one schema. They point out further that the tendency of single­

point crossover to keep short schemas intact can lead. to the preservation of

hitchhikers-bits that are not part of a desired schema but which, by being close on the

string, hitchhike along with=the beneficial schema as it reproduces. Many people have

also noted that single-point crossover treats some loci preferentially, the segments

exchanged between the two parents always contain the endpoints of the strings.

Most of the comments above also assume that crossover's ability to re-combine highly

fit schemas is the reason it should be useful. Given some of the challenges we have seen

to the relevance of schemas as a analysis tool for understanding GAs, one might ask if

we should not consider the possibility that crossover is actually useful for some entirely

49

different reason (e.g., it is in essence a "macro-mutation" operator that simply allows for

large jumps in the search space). I must leave this question as an open area of GA

research for interested readers to explore. (Terry Jones [3] (1995) has performed some

interesting, though preliminary, experiments attempting to tease out the different

possible roles of crossover in GAs.) Its answer might also shed light on the question of

why recombination is useful for real organisms (if indeed it is)-a controversial and

still open question in evolutionary biology.

2. Mutation: A common view in the GA community, dating back to Holland's

book Adaptation in Natural and Artificial Systems, is that crossover is the major in­

strument of variation and innovation in GAs, with mutation insuring the population

against permanent fixation at any particular locus and thus playing more of a

background role. This differs from the traditional positions of other evolutionary

computation methods, such as evolutionary programming and early versions of

evolution strategies, in which random mutation is the only source of variation. (Later

versions of evolution strategies have included a form of crossover.)

4.8 Parameters for Genetic Algorithms:

..

The fourth decision to make in implementing a genetic algorithm is how to set the

values for the various parameters, such as population size, crossover rate, and mutation

rate. These parameters typically interact with one another nonlinearly, so they cannot be

optimized one at a time. There is a great deal of discussion of parameter settings and

approaches to parameter adaptation in the evolutionary computation literature--too

-much to survey or even list here. There are no conclusive results on what is best; most

people use what has worked well in previously reported cases. Some of the
•experimental approaches people have taken to' find the "best" parameter settings, are

discussed below.

De Jong [3] (1975) performed an early systematic study of how varying parameters

affected the GA's on-line and off-line search performance on a small suite of test

50

functions. Recall from chapter 4 that "on-line" performance at time t is the average

fitness of all the individuals that have been evaluated over t evaluation steps. The off­

line performance at time t is the average value, over t evaluation steps, of the best

fitness that has been seen up to each evaluation step. De Jong's experiments indicated

that the best population size was 50-100 individuals, the best single-point crossover rate

was - 0.6 per pair of parents, and the best mutation rate was 0.001 per bit. These

settings (along with De Jong's test suite) became widely used in the GA community,

even though it was not clear how well the GA would perform with these settings on

problems outside De Jong's test suite. Any guidance was gratefully accepted.

Somewhat later, Grefenstette [3) (1986) noted that, since the GA could be used as an

optimization procedure, it could be used to optimize the parameters for another GA! (A

similar study was done by Bramlette [3] (1991).) In Grefenstette's experiments, the

"meta-level GA" evolved a population of 50 GA parameter sets for the problems in De

Jong's test suite. Each individual encoded six GA parameters: population size, crossover

rate, mutation rate, generation gap, scaling window (a particular scaling technique that I

won't discuss here), and selection strategy (elitist or nonelitist). The fitness of an

individual was a function of the on-line or off-line performance of a GA using the

parameters encoded by that individual. The meta-level GA itself used De Jong's

parameter settings. The fittest individual for on-line performance set the population size

to 30, the crossover rate to 0.95, the mutation rate to O.Ol, and the generation gap to 1,

and used elitist selection. These parameters gave a small but significant improvement in

on-line performance over De Jong's settings. Notice that Grefenstette's results call for a

smaller population and higher crossover and mutation rates than De Jong's. The meta­

level GA was not able to find a parameter set that beat De Jong's for off-line

performance. This was an interesting experiment, but again, in view of the specialized

test suite, it is not clear how generally these recommendations hold. Others have shown

that there are many fitness functions for which these parameter settings are not optimal.

A big question, then, for any adaptive approach to setting parameters- including

Davis's-is this: How well does the rate of adaptation of parameter settings match the

rate of adaptation in the GA population? The feedback for setting parameters comes

from the population's success or failure on the fitness function, but it might be difficult

51

for this information to travel fast enough for the parameter settings to stay up to date

with the population's current state. Very little work has been done on measuring these

different rates of adaptation and how well they match in different parameter-adaptation

experiments. This seems to me to be the most important research to be done in order to

get self-adaptation methods to work well.

4.9 Example of GAs :
As warmups to more extensive discussions of GA applications, here are brief examples

ofGAs in action on two particularly interesting projects.

1. Using GAs to Evolve Strategies for the Prisoner's Dilemma:

The Prisoner's Dilemma, a simple two-person game invented by Merrill Flood and

Melvin Dresher [7] in the 1950s, has been studied extensively in game theory,

economics, and political science because it can be seen as an idealized model for real­

world phenomena such as arms races (Axelrod 1984; Axelrod and Dion [7] 1988). It

can be formulated as follows: Two individuals (call them Alice and Bob) are arrested

for committing a crime together and are held in separate cells, with no communication

possible between them. Alice is offered the following deal: If she confesses and agrees

to testify against Bob, she will receive a suspended sentence with probation, and Bob

will be put away for 5 years. However, if at the same time Bob confesses and agrees to

testify against Alice, her testimony will be discredited, and each will receive 4 years for

pleading guilty. Alice is told that Bob is being offered precisely the same deal. Both

Alice and Bob know that if neither testifies against the other they can be convicted only

on a lesser charge for whichjhey will each get 2 years in jail.

Should Alice "defect" against Bob and hope for the suspended s~ntence, risking a 4-
••.. year sentence if Bob defects? Or should she "cooperate" with Bob (even though they

cannot communicate), in the hope that he will also cooperate so each will get only 2

years, thereby risking a defection by Bob that will send her away for 5 years?

52

~~"b~~~"~~~~~"s,~~~"'\..~~~~~~~~~~~~~~~~~

move to make-vi.e., whether to cooperate or defect. A "game" consists of each player's

making a decision (a "move"). The possible results of a single game are summarized in

a payoff matrix like the one shown in figure 1.3. Here the goal is to get as many points

(as opposed to as few years in prison) as possible. (In figure 1.3, the payoff in each case

can be interpreted as 5 minus the number of years in prison.) If both players cooperate,

each gets 3 points. If player A defects and player B cooperates, then player A gets 5

points and player B gets O points, and vice versa if the situation is reversed. If both

players defect, each gets 1 point. What is the best strategy to use in order to maximize

one's own payoff? If you suspect that your opponent is going to cooperate, then you

should surely defect. If you suspect that your opponent is going to defect, then you

should defect too. No matter what the other player does, it is always better to defect.

The dilemma is that if both players defect each gets a worse score than if they

cooperate. If the game is iterated (that is, if the two players play several games in a

row), both players' always defecting will lead to a much lower total payoff than the

players would get if they cooperated. How can reciprocal cooperation be induced? This

question takes on special significance when the notions of cooperating and defecting

correspond to actions in, say, a real-world arms race (e.g., reducing or increasing one's

arsenal).

PlayerB

Player A

Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

..
Figure 1 .3 The payoff matrix for the Prisoner's Dilemma (adapted from Axelrod [7]
1987). The two numbers given in each box are the payoffs for players A and B in the
given situation, with player A's payoff listed first in each pair. •

Robert Axelrod [7] of the University of Michigan has studied the Prisoner's Dilemma

and related games extensively. His interest in determining what makes for a good

strategy led him to organize two Prisoner's Dilemma tournaments (described in Axelrod

1984). He solicited strategies from researchers in a number of disciplines. Each

53

participant submitted a computer program that implemented a particular strategy, and

the various programs played iterated games with each other. During each game, each

program remembered what move (i.e., cooperate or defect) both it and its opponent had

made in each of the three previous games that they had played with each other, and its

strategy was based on this memory. The programs were paired in a round-robin

tournament in which each played with all the other programs over a number of games.

The first tournament consisted of 14 different programs; the second consisted of 63

programs (including one that made random moves). Some of the strategies submitted

were rather complicated, using techniques such as Markov processes and Bayesian

inference to model the other players in order to determine the best move. However, in

both tournaments the winner (the strategy with the highest average score) was the

simplest of the submitted strategies: TIT FOR TAT. This strategy, submitted by Anatol

Rapoport [7], cooperates in the first game and then, in subsequent games, does whatever

the other player did in its move in the previous game with TIT FOR TAT. That is, it

offers cooperation and reciprocates it. But if the other player defects, TIT FOR TAT

punishes that defection with a defection of its own, and continues the punishment until

the other player begins cooperating again.

..
•

54

Chapter Five

Genetic Algorithms Versus Neural Network

5.1 Evolving Neural Network using Genetic Algorithm:

Neural networks are biologically motivated approaches to machine learning, inspired by

ideas from neuroscience. Recently some efforts have been made to use genetic

algorithms to evolve aspects ofneural networks.

In its simplest "feed forward" form figure 5.1 shown, a neural network is a collection of

connected activatable units ("neurons") in which the connections are weighted, usually

with real-valued weights. The network is presented with an activation pattern on its

input units, such a set of numbers representing features of an image to be classified

(e.g., the pixels in an image of a handwritten letter of the alphabet). Activation spreads

in a forward direction from the input units through one or more layers of middle

("hidden") units to the output units over the weighted connections. Typically, the

activation coming into a unit from other units is multiplied by the weights on the links

over which it spreads, and then is added together with other incoming activation. The

result is typically thresholded (i.e., the unit "turns on" if the resulting activation is above

that unit's threshold). This process is meant to roughly mimic the way activation spreads

through networks of neurons in the brain. In a feed forward network, activation spreads

only in a forward direction, from the input layer through the hidden layers to the output

layer. Many people have also experimented with "recurrent" networks, in which there

"are feedback connections as well as feed forward connections between layers.

•

55

Output Pattem

Fig 5.1. A schematic diagram of a simple feed forward neural network and the back­
propagation process by which weight values are adjusted.

After activation has spread through a feedforward network, the resulting activation

pattern on the output units encodes the network's "answer" to the input (e.g., a

classification of the input pattern as the letter A). In most applications, the network

learns a correct mapping between input and output patterns via a learning algorithm.

Typically the weights are initially set to small random values. Then a set of training

inputs is presented sequentially to the network. In the back-propagation learning

procedure (Rumelhart, Hinton, [3] and Williams 1986), after each input has propagated

through the network and an output has been produced, a "teacher" compares the

activation value at each output unit with the correct values, and the weights in the

network are adjusted in order to reduce the difference between the network's output and

the correct output. Each iteration of this procedure is called a "training cycle," and a

complete pass of training c.ycles through the set of training inputs is called a "training

epoch." (Typically many training epochs are needed for a network to learn to

successfully classify a given set of training inputs.) This type of procedure is known as
lt

"supervised learning," since a teacher supervises the learning by providing correct

output values to guide the learning process. In "unsupervised learning" there is no

teacher, and the learning system must learn on its own using less detailed (and

sometimes less reliable) environmental feedback on its performance.

V56

There are many ways to apply GAs to neural networks. Some aspects that can be

evolved are the weights in a fixed network, the network architecture (i.e., the number of

units and their interconnections can change), and the learning rule used by the network.

Here some different projects, each of which uses a genetic algorithm to evolve one of

these aspects. (Two approaches to evolving network architecture will be described.)

5.2 Evolving Weights in a Fixed Network:

David Montana and Lawrence Davis [3] (1989) took the first approach- evolving the

weights in a fixed network. That is, Montana and Davis were using the GA instead of

back-propagation as a way of finding a good set of weights for a fixed set of

connections. Several problems associated with the back-propagation algorithm (e.g., the

tendency to get stuck at local optima in weight space, or the unavailability of a

"teacher" to supervise learning in some tasks) often make it desirable to find alternative
weight-trainingschemes.

Montana and Davis were interested in using neural networks to classify underwater

sonic "lofargrams" (similar to spectrograms) into two classes: "interesting" and "not

interesting." The overall goal was to "detect and reason about interesting signals in the

midst of the wide variety of acoustic noise and interference which exist in the ocean."

The networks were to be trained from a database containing lofargrams and

classifications made by experts as to whether or not a given lofargram is "interesting."

Each network had four input units, representing four parameters used by an expert

system that performed the same classification. Each network had one output unit and

two layers of hidden units (the first with seven units and the second with ten units). The

networks were fully connected feed forward neıworks=-that is, each unit was connected

to every unit in the next higher layer. In total. there were 108 weighted connections

between units. In addition, there were 18 weighted connections between the non-input

units and a "threshold unit" whose outgoing links implemented the thresholding for

each of the non-input units, for a total of 126 weights to evolve.

57

The GA was used as follows. Each chromosome was a list (or "vector") of 126 weights.

Figure 5.2 shows (for a much smaller network) how the encoding was done: the weights

were read off the network in a fixed order (from left to right and from top to bottom)

and placed in a list. Notice that each "gene" in the chromosome is a real number rather

than a bit. To calculate the fitness of a given chromosome, the weights in the chro­

mosome were assigned to the links in the corresponding network, the network was run

on the training set (here 236 examples from the database of lofargrams), and the sum of

the squares of the errors (collected over all the training cycles) was returned. Here, an

"error" was the difference between the desired output activation value and the actual

output activation value. Low error meant high fitness.

Network

Chromosome: (0.3 -0.4 0.2 0.8 --0.3 --0.1 O.7 --0.3)

Figure 5.2 illustration of Montana and Davis's encoding of network weights into a list
that serves as a chromosome for the GA. The units in the network are numbered for
later reference. The real-valued numbers on the links are the weights.

Before mutation After mutation

..

(0.3 --0.4 0.2 0.8 --0.3 --0.1 0.7 --0.3) (0.3 --0.4 0.2 0.6 --0.3 -0.9 0.7 -0.1)

Figure 5.3 illustration of Montana and Davis's mutation method. Here the weights on
incoming links to unit 5 are mutated.

An initial population of 50 weight vectors was chosen randomly, with each weight

being between -1. O and + 1. O. Montana and Davis tried a number of different genetic

operators in various experiments. The mutation and crossover operators they used for

their comparison of the GA with back-propagation are illustrated in figures 5.3 and 5.4.

The mutation operator selects n non-input units and, for each incoming link to those

units, adds a random value between - 1. O and + 1. O to the weight on the link. The

crossover operator takes two parent weight vectors and, for each non-input unit in the

offspring vector, selects one of the parents at random and copies the weights on the

ıncomıng links from that parent to the offspring. Notice that only one offspring is

created.

The performance of a GA using these operators was compared with the performance of

a back-propagation algorithm. The GA had a population of 50 weight vectors, and a

rank-selection method was used. The GA was allowed to run for 200 generations (i.e.,

10,000 network evaluations). The back-propagation algorithm was allowed to run for

5000 iterations, where iteration is a complete epoch (a complete pass through the

training data). Montana and Davis reasoned that two network evaluations under the GA

are equivalent to one back-propagation iteration, since back-propagation on a given

training example consists of two parts-the forward propagation of activation (and the

calculation of errors at the output units) and the backward error propagation (and

adjusting of the weights). The GA performs only the first part. Since the second part re­

quires more computation, two GA evaluations takes less than half the computation of a

single back-propagation iteration.

..

(0.3 -0.4 0.2 0.8 -0.3 -0.1 o.7 -0.3)

59

(0.7 -0.9 0.3 0.4 0.8 -0.2 O.I 0.5)

(0.7 -0.9 0.2 0.4 -0.3 -0.2 0.7 0.5)
Figure 5.4 illustration of Montana and Davis's crossover method.

The results of the comparison are displayed in figure 5.5. Here one backpropagation

iteration is plotted for every two GA evaluations. The x axis gives the number of

iterations, and the y axis gives the best evaluation (lowest sum of squares of errors)

found by that time. It can be seen that the GA significantly outperforms back­

propagation on this task, obtaining better weight vectors more quickly.

This experiment shows that in some situations the GA is a better training method for

networks than simple back-propagation. This does not mean that the GA will

outperform back-propagation in all cases. It is also possible that enhancements of back­

propagation might help it overcome some of the problems that prevented it from

performing as well as the GA in this experiment. Schaffer, Whitley, and Eshelman

(1992) point out that the GA has not been found to outperform the best weight­

adjustment methods (e.g., "quickprop") on supervised learning tasks, but they predict

that the GA will be most useful in finding weights in tasks where back-propagation and

its relatives cannot be used, such as in unsupervised learning tasks, in which the error at

each output unit is not available to the learning system, or in situations in which only

sparse reinforcement is available. This is often the case for "neurocontrol" tasks, in

which neural networks are, used to control complicated systems such as robots
navigating in unfamiliar environments. •.

•

60

tÜıR~J l t I ~
O 2e+03 4e-+03 6e+03 8e+03 le+04 Iterations

Figure 5.5 Montana and Davis's results comparing the peıformance of the GA with
back-propagation.

5.3 Evolving Network Architectures:

Montana and Davis's [3] GA evolved the weights in a fixed network. As in most neural

network applications, the architecture of the network-the number of units and their

interconnections-is decided ahead of time by the programmer by guesswork, often

aided by some heuristics (e.g., "more hidden units are required for more difficult

problems") and by trial and error. Neural network researchers know all too well that the

particular architecture chosen can determine the success or failure of the application, so

they would like veıy much to be able to automatically optimize the procedure of

designing an architecture for a particular application. Many believe that GAs are well

suited for this task There have been several efforts along these lines, most of which fall

into one of two categories: direct encoding and grammatical encoding. Under direct

encoding, network architecture is directly encoded into a GA chromosome. Under

grammatical encoding, the GA does not evolve network architectures; rather, it evolves

grammars that can be used to develop network architectures.

••
•..

61

Form unit 1 2 3 4 5
to unit 1 O O O O O

2 00000
3 LLOOO
4 LLOOO
5 OOLLO

chromosome: O O O O O O O O O O 11 O O O 1 1 O O O O O 11 O

Figure 5.6 An illustration of Miller, Todd, and Hegde's representation scheme. Each
entıy in the matrix represents the type of connection on the link between the "from
unit" (column) and the "to unit" (row). The rows of the matrix are strung together to
make the bit-string encoding of the network, given at the bottom of the figure.

..
•..

62

Chapter Six

Future Directions

As we have seen that genetic algorithms and neural networks can be a powerful tool for

solving problems and for simulating natural systems in a wide variety of scientific

fields. In examining the accomplishments of these algorithms, we have also seen that

many unanswered questions remain. Finally we, summarize what the field of neural

networks and genetic algorithms has achieved, and what are the most interesting and
important directions for future research.

From the knowledge of problem-solving, scientific modeling, and theory we come to
the following conclusions:

GAs and neural networks are promısıng methods for solving difficult technological

problems, and for machine learning. More generally, they are a part of a new movement

in computer science that is exploring biologically inspired approaches to computation.

Advocates of this movement believe that in order to create the kinds of computing

systems we need systems that are adaptable, massively parallel, able to deal with

complexity, able to learn, and even creative-we should copy natural systems with

these qualities.Natural evolution is a particularly appealing source of inspiration.

..

Genetic algorithms and neural networks are also promising approaches for modeling the

natural systems that inspired their design. Most models using GAs are meant to be

"gedanken experiments" or "idea models" (Roughgarden et al. [3] 1995) rather thanto

precise simulations attempting to match real-world data The purposes of these idea
•

models are to make ideas precise and to test their plausibility by implementing them as
"computer programs (e.g., Hinton and Nowlan's [3] model of the Baldwin effect), to

understand and predict general tendencies of natural systems (e.g.. Echo), and to see

how these tendencies are affected by changes in details of the model (e.g., Collins and

Jefferson's variations on Kirkpatrick's [3] sexual selection model). These models can

allow scientists to perform experiments that would not be possible in the real world, and

63

to simulate phenomena that are difficult or impossible to capture and analyze in a set of

equations. These models also have a largely unexplored but potentially interesting side

that has not so far been mentioned here: by explicitly modeling evolution as a computer

program, we explicitly cast evolution as a computational process, and thus we can think

about it in this new light. For example, we can attempt to measure the "information"

contained in a population and attempt to understand exactly how evolution processes

that information to create structures that lead to higher fitness.

Holland's [3] Adaptation in Natural and Artificial Systems, in which GAs were defined,

was one of the first attempts to set down a general framework for adaptation in nature

and in computers. Holland's work has had considerable influence on the thinking of

scientists in many fields, and it set the stage for most of the subsequent work on GA

theory. However, Holland's theory is not a complete description of GA behavior. Re­

cently a number of other approaches, such as exact mathematical models, statistical­

mechanics-based models, and results from population genetics, have gained

considerable attention. GA theory is not just academic; theoretical advances must be

made so that we can know how best to use GAs and how to characterize the types of

problems for which they are suited. Theoretical advances will also filter back to the

evolutionary biology community. Though it hasn't happened yet, there is a veıy good

chance that proving things about these simple models will lead to new ways to think

mathematically about natural evolution.

Evolutionary computation is far from being an established science with a body of

knowledge that has been collected for centuries. It has been around for little more than

30 years, and only in the last decade have a reasonably large number of people been

-working on it. Almost all the projects discussed in this book still can be considered

"work in progress." Here is a brief list of some of the directions, which are the most
•important and promising. "..

6.1 Incorporating Ecological Interactions:

In most neural and GA applications the candidate solutions in the population are

assigned fitnesses independent of one another and interact only by competing for

selection slots via their fitnesses. However, some of the more interesting and successful

64

applications have used more complicated "ecological" interactions among population

members. Hillis's [3] host-parasite co evolution was a prime example; so was Axelrod's

[3] experiment in which the evolving strategies for the Prisoner's Dilemma played

against one another and developed a cooperative symbiosis. These methods (along with

other examples in the GA literature) are not understood veıy well; much more work is

needed, for example, on making host-parasite co evolution a more generally applicable

method and understanding how it works. hı addition, other types of ecological

interactions, such as individual competition for resources or symbiotic cooperation in

collective problem solving, can be utilized in GAs.

6.2 Incorporating New Ideas from Genetics:

Haploid [4] crossover and mutation are only the barest bones of real-world genetic

systems. Some extensions, including diploidy, inversion, gene doubling, and deletion.

Other GA researchers have looked at genetics-inspired mechanisms such as dominance,

translocation, sexual differentiation and introns (Levenick [4] 1991). These all are likely

to have important roles in nature, and mechanisms inspired by them could potentially be

put to excellent use in problem solving with GAs. As yet, the exploration of such

mechanisms has only barely scratched the surface of their potential. Perhaps even more

potentially significant is genetic regulation. hı recent years a huge amount has been

learned in the genetics community about how genes regulate one another-how they

tum one another on and off in complicated ways so that only the appropriate genes get

expressed in a given situation. It is these regulatory networks that make the genome a

complex but extremely adaptive system. Capturing this kind of genetic adaptivity will

be increasingly important as GAs are used in more complicated, changing environ­
ments.

6.3 Incorporating Development and Learning:

hı typical GA applications evolution works directly on a population of candidate

solutions, in nature there is a separation between genotypes (encodings) and phenotypes

(candidate solutions). There are veıy good reasons for such a separation. üne is that, as

organisms become more complex, it seems to be more efficient and tractable for the

operators of evolution to work on a simpler encoding that develops into the complex

organism. Another is that environments are often too unpredictable for appropriate

65

behavior to be directly encoded into a genotype that does not change during an

individual's life. In nature, the processes of development and learning help "tune" the

behavioral parameters defined by the individual's genome so that the individual's

behavior will become adapted for its particular environment. These reasons for sepa­

rating genotype from phenotype and for incorporating development and learning have

been seen in several of our case studies. Kitano pointed out that a grammatical encoding

followed by a development phase allows for the evolution of more complex neural

networks than is possible using a direct encoding. Incorporating development in this

way has been taken further by Gruau [4] (1992) and Belew (1993), but much more work

needs to be done if we are to use GAs to evolve large, complex systems (such as

computational "brains"). The same can be said for incorporating learning into

evolutionary computation-we have seen how this can have many advantages, even if

what is learned is not directly transmitted to offspring-but the simulations we have

seen are only early steps in understanding how to best take advantage of interactions

between evolution and learning.

6.4 Adapting Encodings and using Encodings that Permit Hierarchy

and Open-Endedness:
Evolution in nature not only changes the fitnesses of organisms, it also has mechanisms

for changing the genetic encoding. Some reordering operators that occur in nature (e.g.,

inversion and translocation). In addition, genotypes have increased in size over

evolutionary time. The ability to adapt their own encodings is important for GAs.

Several methods have been explored in the GA literature. If we want GAs eventually to

be able to evolve complex structures, the most important factors will be open-endedness

(the ability for evolution to increase the size and complexity of individuals to an
••

arbitrary degree), encapsulation (the ability to protect a useful part of an encoding from

genetic disruption and to make sure it • acts as a single whole), and hierarchical
•

regulation (the ability to have different parts of the genome regulate other parts, and

likewise the ability to have different parts of the phenotype regulate other parts). Some

explorations of open-endedness and encapsulation in genetic programming were dis­

cussed; to me these types of explorations seem to be on the right track, though the

66

specific type of encoding used in GP may not tum out to be the most effective one for

evolving complex structures.

6.5 Adapting Parameters:

Natural evolution also adapts its own parameters. Crossover and mutation rates are

encoded (presumably in some rather complicated way) in the genomes of organisms,

along with places where these operators are more likely to be applied (e.g., crossover

hot spots). Likewise, population sizes in nature are not constant but are controlled by

complicated ecological interactions. To find similar ways of adapting the parameters for

GAs as part of the evolutionary process. There have been several explorations of this

already, but much more work needs to be done to develop more general and sophis­

ticated techniques. One of the major difficulties is having the time scale of adaptation

for the parameters appropriately match the time scale of adaptation of the individuals in

the population.

6.6 Extension of Statistical Mechanics Approaches:

Approaches similar to that taken by Prugel-Bennett and Shapiro [3] are promising for

better understanding the behavior of GAs. That is, rather than construct exact

mathematical models that in effect take into account every individual in a population; it

is more useful to understand how macroscopic population structures change as a result

of evolution. Ultimately we would like to have a general theory of the evolution of such

macroscopic structures that will predict the effects of changes in parameters and other

details of the GA. There is much more to be mined from the field of statistical

mechanics in formulating such theories.

6.7 Identifying and Overcoming Impediments to the Success of GAs:

1n the case studies and in the theoretical discussion we came across many potential
•impediments to the success of GAs, including deception, hitchhiking, symmetry

breaking, over fitting, and inadequate sampling. GA researchers do not yet have

anywhere near a complete understanding of the precise effects of these and other

impediments on the performance of GAs, or of the precise conditions under which they

come about, or of how to overcome them if that is possible.

67

6.8 Understanding the Role of Crossover:

Crossover is the primaıy operator distinguishing GAs from other stochastic search

methods, but its role in GAs needs to be better understood.

Under what conditions does it indeed recombine building blocks to form high-fitness

solutions, and under what conditions is it instead serving only as a "macro-mutation"

operator, simply making larger jumps in the search space than a simple mutation

operator can make? What is its role during various stages of the search? How can we

quantify its ability to construct good solutions? Much theoretical work on GAs is aimed

at answering these questions but precise answers are still lacking.

6.9 Theory of GAs with Endogenous Fitness:
In many of the scientific models we have looked at, "fitness" is not externally imposed

but instead arises endogenously; it is reflected, for example, by the longevity and the

fertility of an individual. Up to now, almost all work in GA theory has assumed

exogenous rather than endogenous fitness functions. Holland (1994) has recently done

some theoretical work on GA behavior with endogenous fitness in the context of Echo,

using notions such a "flow-matrix" for describing the transmission of useful genetic

building blocks from generation to generation. This is only a first step in theoretically

analyzing such systems.

•.
•

68

Conclusion

The integration of Neural Networks and Genetic Algorithms can be applied in many

scientific complicated research areas, which can lead to the solution of many

unanswered questions that require human intelligence. Systems can be trained to work

and think like humans, e.g. modeling of natural systems, encoding and decoding of

parameters, machine learning, evolution of strategies as in the example of Prisoner

Dilemma etc.

Chapter one was a brief discussion on history of neural networks, with their evolution in

biological terminology, along with a brief discussion of hybrid intelligent systems was

discussed. In chapter two brief history of genetic algorithm along with a brief

discussion of search space, genetic operators and application of genetic algorithms was

discussed. Chapter three was a detail discussion about neural networks, neural learning,

supervised and unsupervised learning, and classification of neural networks was

discussed. In chapter four details about genetic algorithm, implementation, genetic

encoding and selection methods, along with a brief example of prisoner dilemma was

discussed. In chapter five a detail example of implementing a genetic algorithm, in a

neural network was discussed. In chapter six future directions for implementation of

neural networks and genetic algorithms was discussed.

However though Genetic Algorithms and Neural Networks can offer great benefits for

mankind in terms of simulating human perception in machine, there are potential

problems related to this novel approach in the Artificial Intelligence. These problems

have so for been ethical.

•..
Ethical Problems:

Although the integration of Neural Networks and Genetic Algorithms can have a lot of

benefits, but on the other hand when it comes to machine learning, (which is an

important topic not only because it would be an indispensable element in an intelligence

system but, also because it holds a great promise in scientific discoveries) machine can

69

be trained but machines don't have feelings as humans do, this can lead to the invention

of machines of massive destruction, which can have negative effect on the human race.

On the other hand such machines can tum on their own inventors during their training

periods.

..
•..

70

References

[l] LiMin Fu., Neural Networks in Computer Intelligence, Mc Graw-Hill, Inc.,

New York NY, 1994.

[2] Asst. Prof Dr Adnan Kashman., Neural Networks Lecture Notes.

[3] Melanie Mitchell.,An Introduction to Genetic Algorithms, The MIT Press MA,

Cambridge, Massachusetts, London, England, 1996.

[4] Davis L., Handbook of GeneticAlgorithms, Morgan Kaufmann, 1991.

[5] Zeidenberg, Neural Networks in ArtificialIntelligence, EllisHorwood,

New York NY, 1990.

[6] Goldberg De., Genetic Algorithms, Addison-Welsey MA, 1989.

[7] Liepins Ge., and Vose, Foundations of Genetic Algorithms, MIT Press MA,

England, 1991.

lı •

71

