
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

EDUCATIONAL ORGANIZATION SOFTWARE

Graduatio·n Project
COM400

Student: Caner Cak1r (20010391)

Supervisor: Mr. Omit llhan

Nicosia-2006

ACKNOWLEDGMENTS

For giving the chance of improving myself in this university with these conditions, I want

to express my gratitude to Near East University.

First of all I want to thank my supervisor Mr. Umit ilhan for his advices and his

invaluable guidance in my Project . He forced my creativity to improve myself and my

project. I am also grateful to him for giving his valuable time to me.

I also want to thank Mr. Okan Donangil who taught me the basics of programming

approach and made me love the programming job.

Secondly I would like to thank all my friends especially Muhammed Akgiin and Aykut

Damsman who causes question marks in my mind and forced me to solve the problems I

faced.

Especially I want to thank Sebla Tamk for being my inspiration and for her support.

At last My Family, the ones who deserves the most gratitude for giving their endless

support and encouragement not only for my study, for all my life. I really thank you. It

could not be done without you.

TABLE OF CONTENTS

ACKNOWLEDGEMENT
TABLE OF CONTENTS
ABSTRACT
INTRODUCTION
1. .NET FRAMEWORK

1.1 Introduction to .Net Framework
1.2 Description
1.3 How a Visual Basic Application is Compiled and Run?

2. VISUAL BASIC.NET
2.1 Why you should move to VB.NET?
2.2 Visual Basic.NET IDE
2.3 Project Files _1

2.4 Common Properties For Forms and Controls
3. OBJECT-ORIENTED PROGRAMMING

3.1 Introduction to Object-Oriented Programming
3.1.1 How to Refer to Properties , Methods and Events
3.1.2 How an Application Responds To Events
3.1.3 How to create an event procedure

4. MICROSOFT ACCESS
4.1 Introduction to Microsoft Access
4.2 Steps for Developing Database System
4.3 Using Microsoft Access

4.3.1 How to Open Access
4.3.2 How to Create a database
4.3.3 How to Open and Close a database
4.3.4 Creating a Table
4.3.5 Access Field Types
4.3.6 Primary Key
4.3.7 Building Relationship
4.3.8 Creating and Executing a Query

5. ADO.NET
5.1 Introduction to ADO.NET
5.2 How ADO.NET works?
5.3 Creating ADO.NET Objects

5.3.1 .NET data provider core objects
5.3.2 Connection, DataAdapter, Command

6. WEB SERVICES
6.1 Introduction to Web Services
6.2 How Web Services Work?
6.3 How to Add Web Services?
6.4 How to Write Web Service Methods?

7. ASP.NET
7 .1 Introduction to Asp.NET

11

11

iv

2
2
3
3
5
5
7
16
16
19
19
20
21
22
23
23
23
23
23
23
24
24
25
25
26
27
28
28
28
29
30
30
40
40
41
42
46
50
50

7.2 ASP.NET Advantages Over ASP
7.3 How ASP.NET Works?
7.4 Web Pages and Code
7.5 Basic Web Controls •....
7.6 First ASP.NET Application
7. 7 Validation Controls
7.8 Types of Validators
7.9 The Databound ListControls Family

7.9.1 Using the Databound ListControls
8. EDUCATIONAL ORGANIZATION SOFTWARE

8.1 How Educational Organization Software Works?
8.2 Student Information System

CONCLUSION
REFERENCES
APPENDIX A: Program Codes (Only Servicel.asmx)
APPENDIX B: Database Relationships

111

50
51
52
53
54
59
63
64
65
67
67
82
90
91
92
130

ABSTRACT

Automation programs with the development of the technology became compulsory

software to make easy the works of the human in large platforms. Because the computers

take place in every part of our lives, to equip them with programs that relieve our live is a

good idea. Education Automation programs are one of these kind that help the personel,

manager and owner in the Education sector to follow jobs easily and comfortably.

The main aim of this Project is making the users job easy. In this Project the student

informations, course registrations and payments are recorded and pursued by the users.

Also the teacher and advisor informations are kept in the storage. The registration is also

applicable for the teachers to the courses. Project has a detailed search options for searching

students, teachers and advisors seperately. These main application of the Project is

designed and written in Visual Basic .NET.

Also this Project has a web based part that helps the students to reach the informations

related. And give them to updat~ and see list of informations about the courses like

payment installment list and exam results. This project is prepared by using ASP.NET.

Also Microsoft Access DB are used to store all the information in different tables. The

Web Service technology is used to hold the database in HTTP and to let the project to

communicate with the database.

As a result this project combines the VB.NET and ASP.NET together with Web Service

technology to allow user to work with the data on the HTTP.

IV

INTRODUCTION

The Technology is changing very fast and the world is trying to adapt these changes. Lots

of things are changed after internet was found. The interactive banking, communication

over internet etc., these are the things that we can't imagine before 20 years.

Nowadays the technology in programming is developed and there are several programming

languages and programming services and techniques. As internet becomes a need in daily

life, also in programming internet became very important. Nowadays it becomes important

to have strong Internet Programming abilities for any programmers. The industry is

focusing on critical distributed computing with web services capabilities.

In my project web services are used to build a internet based educational windows

application which works on the local machine. Since the database is in HTTP the software

will work in any place where has an internet connection. It can be used both from one end

of the world to the other end. Also a web page is build to let students have chance to

analyze their informations from web.

1

CHAPTER ONE

1 .NET FRAMEWORK

1.1 Introduction to .Net Framework

.NET Framework provides a common set of services that application programs written
)

in a .NET language such as Visual Basic .NET can use to run on various operating

systems and hardware platforms. The .NET Framework is divided into two main

components: the .NET Framework Class Library and the Common Language Runtime.

The .NET Framework Class Library consists of segments of pre-written code called

classes that provide many of the functions that you need for developing .NET

applications. For instance, the Windows Forms classes are used for developing

Windows Forms applications. The ASP.NET classes are used for developing Web

Forms applications. And other classes let you work with databases, manage security,

access files, and perform many other functions.

The Common Language Runtime, or CLR, provides the services that are needed for

executing any application that's developed with one of the .NET languages. This is

possible because all of the .NET languages compile to a common intermediate

language.

Figure 1.1.1 Main Components of .Net Framework

2

1.2 Description

• .NET applications do not access the operating system or computer hardware

directly. Instead, they use services of the .NET Framework, which in turn access

the operating system and hardware.

• The .NET Framework consists of two main components: the .NET Framework

Class Library and the Common Language Runtime.

• The .NET Framework Class Library provides pre-written code in the form of

classes that are available to all of the .NET programming languages. This class

library consists of hundreds of classes, but you can create simple .NET

applications once you learn how to use just a few of them.

• The Common Language Runtime, or CLR, is the foundation of the .NET

Framework. Itmanages the execution of .NET programs by coordinating

essential functions such as memory management, code execution, security, and

other services. Because .NET applications are managed by the CLR, they are

called managed applications.

• The Common Type System is a component of the CLR that ensures that all

.NET applications use the same basic data types regardless of what

programming languages were used to develop the applications.

1.3 How a Visual Basic Application is Compiled and Run?

Figure 1.3.1 shows how an application is compiled and run when using Visual

Basic .NET. Visual Basic compiler is used , which is built into Visual Studio, to

compile your Visual Basic source code into Microsoft Intermediate Language (or

MSIL). For short, this can be referred to as Intermediate Language (or IL). The

Intermediate Language is stored on disk in a file that's called an assembly. In addition

to the IL, the assembly includes references to the classes that the application requires.

The assembly can then be run on any PC that has the Common Language Runtime

installed on it. When the assembly is run, the CLR converts the Intermediate Language

to native code that can be run by the Windows operating system.

3

Vill'~al Stitdio .NET

lnlegrattcd
Oe·,•eiopnlfnt
Environl!ffl'lt

Visual Ba.sic
complier

Commtm
Language,
Run ti mt

So!ltiloo

Figure 1.3.1 How a VB.Net Application is compiled and run

• The programmer uses Visual Studio's Integrated Development Environment to

create a project, which includes one or more Visual Basic source files. In some

cases, a project may contain other types of files, such as graphic image files or

sound files. A solution is a container that holds projects. Although a solution

can contain more than one project, the solution for most simple applications

contains just one project. So you can think of the solution and the project as

essentially the same thing.

• The Visual Basic compiler translates or builds the source code into Microsoft

Intermediate Language (MSIL), or just Intermediate Language (IL). This

language is stored on disk in an assembly that also contains references to the

classes that the application requires. An assembly is simply an executable file

that has an .exe or .dll extension.

• The assembly is then run by the .NET Framework's Common Language

Runtime. The CLR manages all aspects of how the assembly is run, including

converting the Intermediate Language to native code that can be run by the

operating system, managing memory for the assembly, enforcing security, and

so on.

4

CHAPTER TWO

2. VISUAL BASIC.NET

2.1 Why you should move to VB.NET?

One of the most common questions today is, "Why should I move to .NET?" .NET is

new, and there are many questions about what it can do for you. From a Visual Basic

standpoint, it's important to understand some of the dramatic benefits that can be

achieved by moving to VB.NET.

Easy and GUI based programming language, making each & every task easier and

improves programmer's productivity. VB has won the best RAD (Rapid Application

Development) Tool award for three times and still keeping itself at top.

Microsoft first started Visual Basic in early 1990s and the project name was "Thunder".

After the launch of VB 5.0, it crosses all the boundaries and won the best RAD Tool

award by beating PowerBuilder in 1998. VB 5.0 came out with some great

enhancements but definitely this time VB.NET has come with revolutionary changes to

make it suitable for next generation of application development. Many developers today

talk about new generation programming languages and don't count VB 6.0 as a

powerful tool for developing good programs, but i would like to present the surprising

data about VB developers given by Bill Gates.

"Since Visual Basie's inception, its community has grown to more than 3 million

professional developers worldwide. In fact, about half the world's developers now use

Visual Basic. The increasing power and richness of the PC provided the backbone for

this amazing growth."

Certainly this seems to be an amazing thing to talk about these details in the world of

Internet Programming and when we know that Java has already taken place of most

popular Internet programming language, but this is hard truth. The only feature lacking

in VB was its Internet capabilities and when we are moving towards the third generation

of the Internet, it becomes important to have strong Internet Programming capabilities

for any programming language.

5

The industry is focusing on critical distributed computing with web services

capabilities. At this moment VB.NET is definitely a powerful tool to provide all these

solutions in integrated environment of .NET technology. Let us discuss the major

problems with VB 6.0, which has been creating troubles for VB developers for a long

time.

Problems with VB 6.0

• No capabilities for multithreading.

• Lack of implementation inheritance and other object oriented features.

• Poor error handling capabilities.

• Poor integration with other languages such as C++.

• No effective user interface for Internet based applications.

In VB.NET all these shortcomings have been eliminated. In fact VB gets the most

extensive changes of any existing language in the Visual Studio suite. Let us talk about

the major features VB.NET has developed.

Some new features of VB.NET

• Full support for object oriented programming.

• Structured error handling capabilities. -

• Access to .NET Framework.

• Powerful unified Integrated Development Environment (IDE).

• Inherent support for XML & Web Services.

• Better windows applications with Windows Forms.

• New Console capabilities of VB.NET.

• New Web capabilities with Web Forms.

• Immense power of tools & controls (including Server Controls).

• Interoperatibility with other .NET complined languages.

• Better database programming approach with ADO.NET .

... and many more. The list is very long. Now we have to figure out that how important

role VB will play in future? The answer is there in the words of Bill Gates once again -

6

"The next 10 years will be an amazing time for software developers. The advancements

in the way we develop, deploy, and use applications will be as profound as the

architectural shift from DOS- to Windows-based programming. Visual Basic.NET will

provide the foundation for building the solutions that enable a new age of truly

distributed computing on the Internet.

Microsoft sees the Visual Basic community as a core part of this vision. If you're new to

this community, I welcome you to what promises to be an incredibly exciting era. If

you're a seasoned Visual Basic developer, I thank you for continuing to make it the

world's most popular development tool. I'm confident that Visual Basic.NET will give

you the power to write cutting-edge software for tomorrow's Internet."

2.2 Visual Basic.NET IDE

The new VB.NET IDE might look somewhat familiar to the Visual Basic developers,

but there are some significant changes that make it a more useful environment.

However, these changes can be frustrating to experienced VB developers because many

of the keystrokes have changed, windows have different names, and the debugging tools

work differently. VB.NET is part of Visual Studio.NET (or VS.NET), which finally

consolidates all the development languages into one place: VB.NET, C++.NET, C# and

J#. You can even create a single solution, containing multiple projects, in which the

individual projects are written in separate languages.

i. Start Page

The very first time you start Visual Studio.NET, you are taken to a screen that allows

you to configure the IDE. That screen is the My Profile page. After your first visit to the

My Profile page, all subsequent starts of Visual Studio.NET begin with the Start Page,

as shown in Figure 2.2.1.

The start page contains a number of sections, as indicated by the links along the left

side. These sections are:

7

• Get Started : This option allows opening a recent or existing project, or create

a new one. No recent projects are listed on the Get Started area shown in

Figure 2.2.1 As you create projects in VB.NET, this area will display the four

most recently opened projects. This area also contains links to open an existing

project, to create a new project, and to log a bug report. Expect this last option

to disappear after the final product is released.

• What's New: This option covers new language features in Visual Studio.NET,

including each individual language and the Visual Studio.NET environment.

There are links to topics in the help files on new features for the VS.NET

languages, the .NET SDKs, and a link to check for VS.NET upgrades.

• Online Community : This provides links to the Microsoft newsgroups. These

are newsgroups accessible with any newsreader, but they are served from

Microsoft's news server (msnews.microsoft.com) and not normal Usenet news

servers. This page appears blank in some of the interim builds of VS.NET, but

expect it to be fixed for the released version of Beta 2.

• Headlines: Provides a place for links to news about .NET. In some interim

builds of Beta 2, this page simply generates an error. However, by the time

Beta 2 is released, expect this page to include a link to MSDN Online at least.

• Search Online: Searches the MSDN Online library.

• My Profile : This screen lets you choose the overall layout of Visual

Studio.NET. You can set the keyboard mappings to the same scheme as in

previous versions of Visual Studio, such as Visual Basic 6. You can also set the

window layout to match previous versions of Visual Studio projects, and you

can automatically filter help using the profile.

8

::rr..itt .. i;:.1;.~:.'!.Er:~.i~.ti
hl,\1 .. 1 .. \:ir-.=.taU.t..'.1:>:/i~T..~.!-~P.£!:1

Figure 2.2.1: The Visual Studio.NET Start Page

ii. Creating a New Project

Return to the Start Page, identifiable by the tab at the top, and click on Get Started.

Now, click on the Create New Project link. Doing so opens the New Project dialog

shown in Figure 2.2.2 Notice that there are different languages you can use to create

applications in Visual Studio.NET.

\/1$u1il C# Project's
Setup Md Deployment Projects

€£1 otherProjatts
··!Bl! \/l5u1il studio Solutions

Figure 2.2.2 The New Project Dialog Box

If you examine the Visual Basic project types, you'll see that many of them are different

from what you are used to with VB6. Some of the major project types are as follows:

• Windows Application: This is a standard executable, in VB6 terminology. It

is the way to create applications with a Windows interface, using forms and

controls. This is as close to "your father's VB" as you'll get in VB.NET.

9

• Class Library : This project type allows you to create classes that will be used

in other applications. Think of it as similar to the COM components that you

have been building, which VB6 called the ActiveX DLL and ActiveX EXE

project types.

• Windows Control Library: This project type is for creating what used to be

called ActiveX controls. This type allows you to create new controls to be used

in Windows applications.

• Web Application: Visual Basic now has Web Application projects, which use

ASP.NET to create dynamic Web applications. These projects allow you to

create HTML, ASP.NET, and VB files. You will now code your Web

applications using a powerful, event-driven model instead of the

request/response model.

• Web Service: If you've used VB6 to create COM components and then made

them available over HTTP with SOAP, you understand the concept of Web

Services. Web Service projects are components that you make available to

other applications via the Web; the underlying protocol is HTTP instead of

DCOM, and you pass requests and receive responses behind the scenes using

XML. Some of the major promises of Web Services are that they are all

standards-based and are platform independent. Unlike DCOM, which was tied

to a COM (that is, Windows) infrastructure, Web Service projects can be placed

on any platform that supports .NET, and can then be called by any application

using just the HTTP protocol.

• Web Control Library: As with Web Service projects, there's no exact match

back in VB6 for the Web Control Library projects. Thanks to the new Web

Application projects in VB.NET, you can add controls to Web pages just as you

would in a standard Windows Application project, but VB.NET makes them

HTML controls at runtime. You can design your own controls that can then be

used by Web applications.

10

• Console Application : Many of the Windows administrative tools are still

console (or command-line, or DOS) applications. Previously, you didn't have a

good way to create console applications in VB, and instead had to rely on C++.

Now, console applications are natively supported by VB.NET.

• Windows Service : As with console applications, there was no good way to

create Windows services in previous versions of VB. Windows services, of

course, are programs that run in the background of Windows, and can

automatically start when the machine is booted, even if no one logs in. Those are

the basic types of applications you can create. You can also create an Empty

project (for Windows applications, class libraries, and services) or an empty

Web Application (for Web applications).

iii. Examining the IDE

A new Windows Application is created and named "Leaming VB". After a time, a new

project will open up. Notice this adds a Forml .vb tab to the main window. In the main

window, now there is an empty form. This is commonly referred to as the Form

Designer. One difference that has occurred is that the files created have already been

saved on your machine. In VB, you could create a project, do some quick coding, and

then exit without saving, and nothing was stored on your machine. Now, however, the

files are saved at creation, so each project you create does store something on the hard

drive.

At the right side of the IDE, you'll see a window called the Solution Explorer. This

works like the Project Explorer in VB6, showing you the projects and files you have in

the current solution (what VB6 called a group). The Solution Explorer currently lists the

solution name, the project name, and all the forms and modules. Right now, there is just

one form, named Forml.vb. In addition, the window will have a file called

Assembly Info.vb, which is part of the metadata that will be compiled into this

assembly. You also see a new node, called References, in the list. If you expand the

References node, you will see all the references that are already available to your

project when you start. You can see the Solution Explorer in Figure 2.2.3.

11

View ;Designer ;./""
button

View Prope.rties button

Figure 2.2.3 The Solution Explorer Window

Also Class View, exists at the bottom of the Server Explorer window. If you click on

the Class View tab, you will see the Leaming VB project listed. If you expand the

project node, you will see the namespaces for this project listed. Expand the

LeamingVB namespace and you will see that just Forml is listed below it. Expand

Forml and you will see some of the form's methods, as well as a node for Bases and

Interfaces. If you expand that node and the Form node under it, you will see a long list

of properties, methods, and events available to you in the form. (see a part of list in

Figure 2.2.4)

If you want to know more about what one of those properties or methods can do for

you, it's easy to look it up in the Object Browser. Properties of any method can be seen

by scrolling down classes to find the method and by right clicking on it to choose

Browse Definition. Object Browser opens as a tab in the main work area, and that you

are on the definition for that method. Return Type and Father class is included in

definition. (Figure 2.2.5 shows the Class view)

12

Act:i¥at~Syi;t1Nn.~.funl5.fo
add,..Acth>.lted{System,Elt"ffli:ti¥ldiet)
add_Oo--...ed(System,Eveot:H~)
oddJ..k>M9{Sy5tem.Co~~-CMC!
'1d>:IJ)eactiv~(SY1tem.Evert:Haneler)
•dd..Jnp,.;L-""'9,,d(Sy-.W'­
<dd_lnj>.llir_tw,,;,,,Q(S,-,,,Wmo
<dd_LO<N(Sy,t,:m,E,«>tH"'6ff)
addfa:d1~Sy$t!!:rn.E¥t!:I
add_~eCh~System,EYentH~
<dd..M<i(l,ldActlvo!e(SyJ:em,E,"'"1~)
a<idfaW::-e(Sy-,E-)
add_Meru5tbrt(Sy$tcrn,Ev~)
~_Mrirur6u:~Sysl:e"n.Evffil:H.!if
AddC~a-m{$ystem,Wndows,Fotms,Fot:

Figure 2.2.4 The New Class View Window

Dov

$~=;"
li.>'°>:-­
L'J-,}>O. ••• dlon
d,1....tp C,tbl;l(iropEffecti
(f·,?it Dr«tv«tArg5
ij!·"':0.4v"'Hao<ler
qF<>g Dtawttoo:£v~Aros
ff.··.:,..i$0rawlt~
rk,,.i) orawttaMStett ,t,,J>o..­
tj}cJ'EmrlllnlsSt,l<
!jl··b'Err«~
00-·~fo<ltProvidei
~><?.: Feo!ttu-eSuwort
t}r,.4F~
l~·a}l'1.><s,,i,
1!>9i:""""""" {¥··*.:m

.•• Cert«ToSo',
f=w•~)
C-·,• do,e{)
~-··6• CtNteA:<Conttlf'B() ,
f--'~Cr~i,<:or.t,~~
C-•{,Oeot"""<le()
i..,J; ~oc(Syst,m,-.Fo,m,,Mo»•o•)
'-,•c,,.i"""Q
hti•- '

·;;• GetAiJ::oScale~Sy:Stem,DrO!IW",o,Font)
h'1•~A:tContakw(}
,,,,,. ~Syst""',Wro,ws.Fonns.Mdl..,yoct)
; 00~tritegor,Sy$te,n.~.Forms,

, .•• ""'° !-··if' OnActi'¥"~.ed(Sy5tem.EvettAt91)
0'<!1 Onehsed(Sy~em.Ev«tAr~)
C ,,Ji OnC!osr,l(Sy,tem.~.C"°""'
'--,Ji Or.C,e.tew,,,cl()
(=\.• ~acbvat~system.EvtfitAl'gs)

Figure 2.2.5 Object Browser in main work area

Below the Server Explorer/Class View windows is something that will be quite familiar

to the VB Developers: the Properties window. If you close the Object Browser and go

back to the Form 1. vb [Design] tab, you should see the properties for Form 1. You might

actually have to click on the form for it to get the focus. After the form has the focus,

you will see the properties for the form. Most of these properties will look very familiar

to you, although there are some new ones.

13

In the same area as the Properties window is a tab labeled Dynamic Help. This is a new

Visual Studio.NET feature that allows you to have constantly updating help while you

work. It monitors what you are doing in the IDE and provides a list of help topics for

your current activity.

Along the left side of the IDE are two sideways tabs. The first tab is labeled Server

Explorer and the second tab is labeled Toolbox. To get either to appear, just hover the

mouse over the tab.

The Server Explorer is a new feature to the IDE. It allows for discoverable services on

various servers. For example, if you want to find machines that are running Microsoft

SQL Server, there is a SQL Server Databases node under each server. (see Figure

2.2.6)

Toolbox is used to add controls to a form. The easiest way to do that is to click on the

control in the Toolbox, then click the form at the location where you want to add the

control. Then control can be resized by dragging one of the control's adjustment

handles, and can be moved by dragging the it to a new location on the form.

~ <AddSefvet' .• .>

;; """' £ ffil Ev"" Loos
('l,[\'filloo<lod-
fil, """"-("""" ji .. 0 Performance Cot.rten
ti!" r::;i-.,,., a~ to~es
8 ' (!j SQ. s..ver """"°"' Sw .0 LAPTOP

~i--a­
f/1 ~ model
i!),,~m<d,
r,i .;; N«tlwmd
:il t, •.•.•
$!7t-

s- (lj Web SMvieM

Figure 2.2.6 Server Explorer

The main part of the Visual Studio IDE contains one or more tabbed windows. To

develop a form, you use the Form Designer window. And to develop code, you use the

Code Editor window. A general view of form designer in Visual Basic .NET is shown

in Figure 2.2.7.

14

.Standard
t<:,olbar
Layout
toolbar

Solution
E,tplwtst
window

f':roptrtles
window

Figure 2.2.7 Form Designer and Windows

The Code Editor window is where you create and edit the Visual Basic code that your

application requires. Code Editor can be displayed by double-clicking the form or one

of the controls in the Form Designer window or by clicking the View Code button in the

Solution Explorer. Moving beyong the views can be done by shortcuts Ctrl+ Tab or

Shift+Ctrl+ Tab.

Vtew
Cod•
b.utton

Figure 2.2.8 Code Editor Window

15

2 . .--3 Project Files

• Visual Basic source files are stored with the file extension . vb. Each form you

create for a project will have its own form file. You can also create code files

that contain Visual Basic code but do not define a form. The Solution Explorer

uses different icons to distinguish between form files and code files.

• The Assemblyinfo.vb file is created automatically when the project is created. It

contains information about the assembly that's created when you compile the

project.

• The References folder contains references to the assemblies for the namespaces

that the application can use. These namespaces contain the classes that the

project requires. In most cases, all the assemblies that you need are included

when the project is created.

• In addition to the assemblies in the References folder, every Visual Basic

application you develop has access to the Microsoft.VisualBasic assembly.

2.4 Common Properties For Forms and Controls

There are some common properties for forms and controls. The Name and the Text

properties apply to both forms and controls. The other properties are presented in two

groups: properties that apply to forms and properties that apply to controls. Note that

some of the control properties only apply to certain types of controls. That's because

different types of controls have different properties. Since all forms and controls must

have a Name property, Visual Studio creates generic names for all forms and controls,

such as Forml or Buttonl , Often, though, you should change these generic names to

something more meaningful, especially if you're going to refer to them in your Visual

Basic code.

Forms and most controls also have a Text property that is visible when the

form is displayed. A form's Text property is displayed in the form's title bar. For

a control, the Text property is displayed somewhere within the control. The Text

property of a button, for example, is displayed on the button, and the Text

property of a text box is displayed in the text box.

16

i) The Name property
• Sets the name you use to identify a form or control in your Visual Basic code.

• Should only be changed if you intend to refer to the form or control in your

code. For label controls whose values won't change during your program's

execution, you can leave the name set to the default value.

• Use a specific prefix for naming the controls or forms so that the readability of

the project will be easier.

ii) The Text property
• Sets the text that is displayed on the form or control. The default value is the

form or control name, which you'll almost always want to change.

• - For a form, the Text value is displayed in the title bar. For controls, the Text

value is displayed directly on the control.

• For a text box, the Text value changes when the user types text into the field. As

a result, you can use the Text property to access the information entered by the

user.

• If you want a text box to be initially blank, be sure to clear its Text property

iii) Other Properties for Forms

AcceptButton

CancelButton

the Enter key.

Identifies the button that will be activated when the user presses

the Esc key.

ControlBox Determines whether a control box will be displayed in the upper

left comer of the form.

FormBorderStyle Sets the border style for the form.

MaximizeBox

Minimize Box

Determines whether a Maximize button will be displayed on the

form.

Determines whether a Minimize button will be displayed on the

form.

StartPosition Sets the position at which the form is displayed. To center the

form, set this property to CenterScreen.

17

iv) Other Properties for Controls

:t?~~<:i:ipti()ll
! Sets the border style for controls.

L J.>.r()p~i:ty
! BorderStyle
~----·----'------------
! Enabled Determines whether the control will be enabled or disabled.

Read Only Determines whether the text in some controls like text boxes can

be edited.

Tab Index Indicates the control's position in the tab order, which

determines the order in which the controls will receive the focus

when the user presses the Tab key.

Determines whether the control will accept the focus when the

user presses the Tab key to move from one control to another.

Some controls, like labels, don't have the TabStop property

because they can't receive the focus.

Sets the alignment for the text displayed on a control.

Tab Stop

TextAlign

18

CHAPTER THREE

3. OBJECT-ORIENTED PROGRAMMING

3.1 Introduction to Object-Oriented Programming

Visual Basic .Net has Object-Oriented Programming structure. Each control on a form

is an object, and the form itself is an object. These objects are derived from classes that

are part of the .NET Class Library. By creating project actually a new class is created

that inherits the characteristics of the Form class that's part of the .NET Class Library.

And when the project is run actually an instance of your form class is created, which is

known as an object. when a control is added to a form, actually a control object is added

to the form. Each control is an instance of a specific class. For example, a text box

control is an object that is an instance of the TextBox class.

Tthe properties of an object define the object's characteristics and data. For instance, the

Name property gives a name to a control. The methods of an object determine the

operations that can be performed by the object. And an object's events are signals sent

by the object to your application that something has happened that can be responded to.

i) Class and object concepts
• An object is a self-contained unit that combines code and data.

• A class is the code that defines the characteristics of an object. You can think of

a class as a template for an object.

• An object is an instance of a class, and the process of creating an object from a

class is called instantiation.

• More than one object instance can be created from a single class. For example, a

form can have several button objects, all instantiated from the same Button

class. Each is a separate object, but all share the characteristics of the Button

class.

• A class can be based on an existing class. In that case, the existing class is

referred to as the base class, and the new class inherits the characteristics of the

base class.

19

ii) Property, method, and event concepts
• An object's interface consists of a clearly defined set of properties, methods,

and events.

• The properties, methods, and events can be referred to as members of the object.

• Properties are the data associated with an object.

• Methods are the operations that an object can perform.

• Events are signals by which an object can notify other objects that something

noteworthy has occurred.

• If you instantiate two or more instances of the same class, all of the objects have

thesame properties, methods, and events. However, the values assigned to the

properties can vary from one instance to another.

3.1.1 How to Refer to Properties , Methods and Events

While entering the code for a form in the Code Editor window, often it is needed to

refer to the properties, methods, and events of its objects. To do that, the name of the

object is typed, a period (also known as a dot operator, or dot), and the name of the

member. To make it easier to refer to the members of an object, Visual Basic provides

the Auto List Members feature shown in this Figure 3.1.1. After an object name and a

period is typed, this feature displays a list of the members that are available for that

object.

f,l:!i'J«">M $\lll l>\\,l\CnlttUJ<1!:1>_t:HclqlfyV"I ,,,.,,ti.,,. ,1;,.., 'Zf"'"""'·Ol>:J1><1r., :ll7'l<>l").:, Sy,st-.Cv
Jliw dCnt.u;Tou,.l u O•dr....L
.,:iorrternn.at ,. ,;.itm~rrora

!!nu ifi/.1!.>

t,,,1.1\);in
r~
l,:*
Tooling
!hffl

Figure 3.1.1 Auto List Members feature in Code Window

20

i) Statements that refer to properties

Txtl. Text = 10 Assigns the value 10 to the Text property of the text box named Txt 1.

Txtl.ReadOnly = True Assigns the True value to the Read Only property of the textbox

named Txtl so the user can't change its contents.

ii) Statements that refer to methods

txtMonthlylnvestment.Focus Uses the Focus method to move the focus to the text box

named txtMonthl y Investment.

Me.Close Uses the Close method to close the form that contains the method. In this

example, Me is a keyword that is used to refer to the current instance of the class.

iii) Code that refers to an event

btnExit.Click Refers to the click event of a button named btnExit.

3.1.2 How an Application Responds To Events

Visual Basic applications are event-driven. That means they work by responding to the

events that occur on objects. The event procedure may consists of several statements

that's needed to perform desired job. The Private Sub and End Sub statements are

generated by Visual Studio to mark the beginning and the end of the procedure.

i) Common control events

Click the user clicks on the control.
Dbl Click the user double-clicks on the control.
GotF ocus the focus is moved to the control.
LostF ocus ... the focus is moved from the control.

ii) Common form events

... the form is

... the form is closed.

21

• Windows applications work by responding to events that occur on objects.

• To indicate how an application should respond to an event, you code an event

procedure, which is also known as an event handler.

• An event can be an action that's initiated by the user like the Click event, or it

can be an action initiated by program code like the Closed event.

3.1.3 How to create an event procedure

One way to create an event procedure is to select the object and event from the drop­

down lists at the top of the window in Code Editor. Then Visual Studio generates the

Sub and End Sub statements for you, and you can add the code for the procedure

between those two statements.

You can also start an event procedure by double-clicking on an object in the

Form Designer window. Then, Visual Studio opens the Code Editor window and

generates Sub and End Sub statements for the default event of the object. (See Figure

3.1.3)

& iil lrwuil:.T otal
trl· ~ flel--.:04
J · ~ Attltml:>~t n!C.Yl>
i ... m

Object Event

Figure 3.1.3 A Click event procedure

The Sub statement that's generated when you create an event procedure includes a

Handles clause that names the object and event the procedure handles. The procedure

name that's generated consists of the object name, an underscore, and the event name.

Thus, btnCalculate _ Click is the name of the procedure that handles the Click event of

the btnCalculate button.

22

CHAPTER FOUR

4. MICROSOFT ACCESS

4.1 Introduction to Microsoft Access

Access is a Relational Database Management System (RDMS) that allows you to

store, organize, and manipulate collections of information in an electronic format. A

database is a collection of related information or data.

4.2 Steps for Developing Database System

These are the basic steps in designing a database:

i. Determine the purpose of your database.

n, Determine the tables you need in the database.

iii. Determine the fields you need in the tables.

iv. Identify fields with unique values.

v. Determine the relationships between tables.

vi. Refine your design.

vii. Add data and create other database objects.

4.3 Using Microsoft Access

This section will guide you to perform basic operations in Microsoft Access.

4.3.1 How to Open Access

• Click Start in Windows, select All Programs and click on Microsoft Access

4.3.2 How to Create a database

• Click File, New or click the new icon on the standard toolbar

• Select Blank Database from the Task Pane menu

• Type a name for database in the File Name window

• Click Create

23

4.3.3 How to Open and Close a database

To Open a database

• Click File, Open or click the open icon on the standard toolbar

• Browse to where the database is saved

• Click the name of the database

• Click Open

To Close a database

• Click File, Close

4.3.4 Creating a Table (Figure 4.3.4)

• Double-click Create table in design view

• In the Field Name column type the name of data field (i.e. FirstName)

• In the Data Type column select the type of data to be entered in the field (i.e.

Text, Number, etc.)

Creat&table by entering data•

Figure 4.3.4 Database Tables Tab View

24

4.3.5 Access Field Types

I Up to 255 characters. Characters can be letters, numbers, and other
· ation.
er fields Contain numbers (excluding currency a111UU1H.:>J U1'U \..all

be used in calculation.
fields contain values up to four decimal places. Displays

commas, dollar sign}', and two digits to the right of the decimal point.
Date/Time fields utilize a variety of display formats. Can also be
calculated.

i----· I ----,··-------- .. ----·--·-·-···----·· . "'
Memo fields can contain up to 64,000 characters. The characters can be I

~rs, numbers, and other marks, including punctuation marks.
,-~.•.·.-·,.---·--w-·.·.-~,=~=N~,~,-u,------~" ·P

d to automatically insert unique, sequential, or random numbers.
· g typically begins with one.

Yes/No fields accept the following entries: Yes/No, True/False, or
(?Ill(?tr<?nly ()ll~ ()!~~~ !~() yalues isclisplayed.
OLE Object fields (object linking and embedding) contain objects
created in other programs that can be linked or embedded .

... , .. ,,, .

Hyperlink fields contain text or combinations of text and numbers.
Used in forms, reports, and datasheets to jump to objects in the same or
another database; to documents created with Word, Excel, and

and URLs.
Lookup fields enable the user to choose a value from another table or
from a list of values. Choosing this option starts the Lookup Wizard,
which can be used to easily create a lookup_ field.

Yes/No

OLE/Object

Hyper link

Lookup Wizard

4.3.6 Primary Key

A Primary Key is a field or combination of fields that uniquely identify each record in

a table.

Primary Key features: no two records in a table can have the same value in the

primary key field. Records are automatically sorted based on the primary key.

Primary Keys perform the following functions:

• Prevent duplicate values.

• Maintains the record order.

• Creates a primary index: indexes are used to improve the speed of queries,

reports, and locating records.

• Facilitates relationships to other normalized data in the database. The primary

table to be joined must have a primary key field.

Note: Memo, Yes/No, OLE object, and Hyperlink fields can't be Primary fields.

25

4.3. 7 Building Relationship

To build a relationship between tables the button "Relationships"
tool bar.

is pressed in the

Relation is built in below 5 steps:

i. Right click on Relationships Window and click the "Show Table ... " Button

ii. Select tables and click the Add button to add tables on Relationships Window

iii. To build a relation between any tables, the primary key of one table should be

foreign key of another table. To do that just drag primary key field to the

proper field of other tables and drop.

iv. Edit Relationships window will appear and click "Enforce Referential

Integrity".

v. Click close.

Then the Relationships Window will look like in Figure 4.3. 7.

Figure 4.3. 7 Relationships Window

26

4.3.8 Creating and Executing a Query

• Double-click "Create query in design view"

• Select and add tables in the "Show Table" window

• Right click on the query and write your sql statement. (see Figure 4.3.8.1)

• Execute the sql statement by clicking the "Run" button

tool bar.

on the standard

Figure 4.3.8.1 Query View

Above query's result is as shown in Figure 4.3.8.2.

Figure 4.3.8.2 Query Result View

Queries can be saved to recall in the future by clicking File, Save or clicking the save

icon on the Standard Toolbar. Stored queries can be called again by simply double

clicking on the query in design view. Hence, it may be useful for the queries which are

run several times or used too much. Therefore Saving queries saves time from writing

queries again and again.

27

CHAPTER FIVE

5. ADO.NET

5.1 Introduction to ADO.NET

ADO.NET (ActiveX Data Objects .NET) is the primary data access API for the .NET

Framework. It provides the classes that you use as you develop database applications

with Visual Basic .NET as well as other .NET languages.

5.2 How ADO.NET works?

To work with data using ADO.NET, a variety of ADO.NET objects are used (see

Figure 5.2). To start, the data used by an application is stored in a dataset that contains

one or more data tables. To load data into a data table, you use a data adapter. The

main function of the data adapter is to manage the flow of data between a dataset and a

database. To do that, it uses commands that define the SQL statements to be issued.

The command for retrieving data, for example, typically defines a Select statement.

Then, the command connects to the database using a connection and passes the Select

statement to the database. After the Select statement is executed, the result set it

produces is sent back to the data adapter, which stores the results in the data table.

To update the data in a database, the data adapter uses a command that

defines an Insert, Update, or Delete statement for a data table. Then, the command

connects to the database and performs the requested operation.

The data in a dataset is independent of the database that the data was retrieved from. In

fact, the connection to the database is typically closed after the data is retrieved from the

database. Then, the connection is opened again when it's needed. Because of that, the

application must work with the copy of the data that's stored in the dataset. The

architecture that's used to implement this type of data processing is referred to as a

disconnected data architecture.

28

One of the advantages of using a disconnected data architecture is improved

system performance due to the use of fewer system resources for maintaining

connections. Another advantage is that it makes ADO.NET compatible with

ASP .NET web applications.

Figure 5.2 Basic ADO.NET objects

5.3 Creating ADO.NET Objects

Two basic techniques are used to create the ADO.NET objects while developing

database applications. First, method is to use the components in the Data tab of the

Toolbox to create ADO.NET objects by dragging and dropping them onto a form.

Notice that the names of most of the components in the Data tab are prefixed with either

"OleDb" or "Sql". (see Figure 5.3.1)

The second technique for creating ADO.NET objects is to write the code yourself. The

code shown in figure 5.3.b, for example, creates three objects: a connection named

conPayables, a data adapter named da Vendors, and a dataset named dsPayables. It also

uses the Fill method of the data adapter to retrieve data from the database identified by

the connection and load it into the dataset.

29

Figure 5.3.1 ADO.NeT Objects in Data Tab of the Toolbox

Although creating ADO.NET objects through code is more time-consuming than using

the components and wizards, it can result in more compact and efficient code. In

addition, because the components and wizards have limitations, there are times when it

is needed to write code.

5.3.1 .NET data provider core objects

I Represents an individual SQL statement that can be executed against i
i I the database. ; rn~t~ r"eade; 1 Pr"o;ictes;;~a~o~iy~io~~ct=~~ly ac~ess to.the dat~ in a a·~t;b;·~e. ···-: , , +-··-···-·· ,, , ···-····-··-··· ·- I Data adapter i Provides t~e link between the command and connection objects and a !
! I dataset object, I
~ .. ·N--m,,m,,,,,,~,~~-,~m,--,.~,,._,,_,.,_,=,,.-,-~-,--;;,m;,.- N ----·-----~-~,,,,,,___,,,.J

Command

5.3.2 Connection, DataAdapter, Command

As it is discussed in previous sections, ADO.NET objects can be created by dragging

and dropping them onto a form.

30

i. Connection Creation in Design View

• OledbConnection is found in Data Tab and dropped onto the form. As it is

appeared on the form the properties of the connection are listed in the Properties

Window. (See Figure 5.3.2.1)

• At first sight on the Properties Window, Name and ConnectionString

properties appear.

Figure 5.3.2.1 Connection and Properties Window

• Name Property can be changed to the desired unique name.

• To set ConnectionString property click on the combobox besides the

ConnectionString field and click <New Connection ... >.

• VB Developers will be familiar with the wizard that appears , Click Provider

Tab and set the provider as "Microsoft Jet 4.0 OLE DB Provider".

• By Clicking Connection Tab, setting the database Url and clicking the "Include

password" button on the opened dialogbox, The Connection settings are

finished.

31

Common properties and methods of the Connection class

a connection to a database.
--~~~ ~=,~~~A- ,.·,·N w'h"''-''AW n--,,-,w=--·,•.w,•,•,sw~·--,m=-,-

Closes a connection to a database.

ii. Command Creation in Design View

To execute a SQL statement against a Access database, you create a OleDBCommand

object that contains the statement. Figure 2-4 presents the OleDBCommand class you

use to create this object. Notice that the Connection property of this class associates the

command with a OleDBConnection object, and the CommandText property contains the

SQL statement to be executed. Lets Create OleDBCommand:

• To work with Commands Connection is needed so as it is described in previous

sections Connection is created.

• OledbCommand is found in Data Tab and dropped onto the form. As it is

appeared on the form the properties of the connection are listed in the Properties

Window. (See Figure 5.3.2.2)

• At first sight on the Properties Window, Name, CommandText and

Connection properties appear.

• Name Property can be changed to the desired unique name.

• Connection is set by selecting a existing connection (which is created in the first

step) or a new connection.

• Sql statement will be either written by just writing statements in the

CommandText Property field of the Command or by clicking the" ... " button

besides the CommandText field so that a QueryBuilder will appear and Sql

statement is written on it as described in previous Chapter .

32

Figure 5.3.2.2 OleDbCommand and Porperties Window

Executing a command object is done directly by using one of the three Execute methods

shown in Figure 5.3.2.3. If the command contains a Select statement, for example, you

can execute it using either ExecuteReader or ExecuteScalar. If you use

ExecuteReader, the results are returned as a DataReader object. If you use

Execute Scalar, only the value in the first column and row of the query results is returned.

If the command contains an Insert, Update, or Delete statement, you'll use

ExecuteNonQuery method to execute it. This method returns an integer value that

indicates the number of rows that were affected by the command. For example, the

command deletes a single row, the ExecuteNonQuery method returns 1.

E t R d I Executes a query and returns the result as a OleDbDataReader , xecu e ea er , b. t
1 1 o jeer.
r- ' -~---~.----·- . I ExecuteNonQuery I Executes the command and returns an integer representing th
I I number of rows affected.

Figure 5.3.2.3 Methods of the OleDbCommand Class

33

Common properties and methods of the Command class

Command Text

The OleDbConnection object that's used by the command to
connect to the database.
The text of the SQL command or the name of a stored procedure or
database table.

,. T~e ??llectio11 ?f Pct~cl1!1~!~ES ?~~cl ~x t~~ ~?1!11!1'111~: Parameters

Writing Code for OleDbCommand

Before coming to writing code , the Connection, CommandText, Parameters properties

should be set in design view. Then an Command can be executed as shown below

'Below Codes are fixed for the command created in design view
Try

OleDbConnecitonl.Open()
OleDbCommandl.ExecuteNonQuery()

Catch ex As Exception
MsgBox(ex.Message)

Finally
OleDbConnectionl.Close()

End Try

'Open Connection
'Execute Command
'Catch Errors
'Show Errors if exists

'Close Connection

OledbCommand can be created and executed by code only as shown below:

'Declare Command
Dim mycommand As New OleDb.OleDbCommand

'Set Command's Connection
mycommand.Connection = oledbconnectionl

'Set CommandText of Command which will be performed
mycommand.CommandText = "Update City set CityName=@name"

'Add Parameter to the command that is required
mycommand.Parameters.Add("@name",name.text)

Try
OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()
Catch ex As Exception

MsgBox(ex.Message)
Finally

OleDbConnectionl.Close()
End Try

'Open Connection
'Execute Command

'Catch Errors
'Show Errors if exists

'Close Connection

34

iii. Data Adapter Creation in Design View

The job of a data adapter is to provide a link between a database and a dataset. The four

properties of the OleDbDataAdapter class listed in Figure 5.3.2.4 identify the four

SQL commands that the data adapter uses to transfer data from the database to the

dataset and vice versa. The SelectCommand property identifies the command object

that's used to retrieve data from the database. And the DeleteCommand,

InsertCommand, and UpdateCommand properties identify the commands that are

used to update the database based on changes made to the data in the dataset.

To execute the command identified by the SelectCommand property and place the data

that's retrieved in a dataset, you use the Fill method.

(Methods of the OleDbDataAdapter class listed in Figure 5.3.2.5) Then, the

application can work with the data in the dataset without affecting the data in the

database.

S 1 tc d A SqlCommand object representing the Select statement used to
e ec omman th d t b e a a ase.

A SqlCommand object representing the Delete statement used to
delete a row from the database.

DeleteCommand

ertCommand A SqlCommand object representing the Insert statement used to
add a row to the database.

UpdateCommand I A SqlCommand object representing the Update statement used to
update a row in the database.

Figure 5.3.2.4 The four properties of the OleDbDataAdapter

Update

utes the command identified by the SelectCommand property
l()ct4~ tl1e .. rest1lt)11t() cl 4cita~et object'.

Executes the commands identified by the DeleteCommand,
InsertCommand, and UpdateCommand properties for each row in
the data~et t~was deleted, added,~or u!}dated
Figure 5.3.2.5 The methods of the OleDbDataAdapter

Creating OleDbDataAdapter is very simple and straight forward:

• As OleDbDataAdapter is draged and droped onto form, a wizard called

DataAdapter Configuration Wizard appears. Click "Next".

• Choose Which Data Connection the data adater will use. Click "Next". (see

Figure 5.3.2.6)

35

• Choose "Use Sql Statements". After that choice a blank field will be ready to

hold sql statements. You Either write your Sql Statements in that field or click

Query Builder to not to deal with Sql if you are not good at it. Click "Next".

• Last Window will come from wizard that shows you if the Sql statements are

correct or if there is an error or warning about statements. Click "Finish".

As OleDbDataAdapter is created on the form, you will notice that automatically an

OleDbConnection is created on the form. (Connection contains the database selected in

the wizard.)

Figure 5.3.2.6 Data Adapter Configuration Wizard

Writing Code for OleDbDataAdapter

Below Code will list all cities into the combo box. Display Member means what user will

see on combobox and ValueMember holds the Cityld that when user select a city at

back the Cityld is selected. That is useful for Delete,Update operations.

36

Dim ds As New Dataset 'Create a new Dataset
'Fill Dataset with result of the DataAdapter
OleDbDataAdapterl.Fill(ds)
ComboBoxl.DataSource = ds.Tables(O) 'Bind the Combobox to
dataset
'Set DisplayMember ofcomboboxl as City Name
ComboBoxl.DisplayMember = "CityName"
'Set ValueMember of Comboboxl as Cityid
ComboBoxl.ValueMember = "Cityid"

OleDbDataAdapter can be created and executed in the code as shown below:

'Create DataAdapter with Sql Statement and Connection
Dim MyAdapter As New OleDb.OleDbDataAdapter("Select * from City",
oledbconnectionl)
Dim ds As New Dataset 'Create a new Dataset
'Fill Dataset with result of the DataAdapter
MyAdapter.Fill(ds)

ComboBoxl.DataSource = ds.Tables(O) 'Bind the Combobox to dataset
'Set DisplayMember ofcomboboxl as City Name
ComboBoxl.DisplayMember = "CityName"
'Set ValueMember of Comboboxl as Cityid
ComboBoxl.ValueMember = "Cityid"

iv. Data Reader

A data reader provides an efficient way of reading the rows in a result set returned by a

database query. In fact, when you use a data adapter to retrieve data, the data adapter

uses a data reader to read through the rows in the result set and store them in a dataset.

Data reader is read-only. It only lets you read rows in a forward direction. Once you

read the next row, the previous row will be unavailable.

In most cases, it is used to code the Read method in a loop that reads and processes

rows until the end of the data reader is reached. To access a column of data from the

current row of a data reader, the Item property is used. Common properties and methods

of the DataReader class is shown in Figure 5.3.2. 7

To identify the column, either its index value is used as below:

drCustomer .I tern(0)

or its name is used as below:

drCustomer.Item("Name")

37

Figure 5.3.2. 7 Common properties and methods of the DataReader class

v. Dataset

Dataset is structured much like a relational database. It can contain one or more tables,

and each table can contain one or more columns and rows. In addition, each table can

contain one or more constraints that can define a unique key within the table or a

foreign key of another table in the dataset. If a dataset contains two or more tables, the

dataset can also define the relationships between those tables. (see Figure 5.3.2.8)

DJr,ilralnt

Figure 5.3.2.8 The basic organization of an ADO.NET dataset.

Each Table collection has a Count property that you can use to determine how many

items are in the collection. To get the number of tables in a dataset named ds, for

example, below code is used:

<ls.Tables.Count()

To access a specific item in a collection, Item property is used. On that property, it is

required to specify the index value or name of the item which is desired to access.

ds. Tables.Item("Customer") or ds. Tables.Item(O)

38

Since Item is the default property of the collection class, however, you typically

omit it like this:

ds.Tables("Customer") or ds.Tables(O)

The Common properties and methods of the DataSet class is shown in Figure 5.3.2.9

, DataSetName ! The name of the dataset. ~-- -- -, ..• ,,,_, ,,,,,---·-··---,,,,, ·----·
I Tables I A collection of the Data Table objects contained in the dataset. ,__ ,. 4,,,.... ,. ,•.·.·.·,•,.. . ·-- ·--· ' . --- ----·-·--·--·····
I Relations I ~ collection of t~e DataRelation objects containe~!n the dataset_. __

Figure 5.3.2.9 Properties and methods of the DataSet

39

CHAPTER SIX

6. WEB SERVICES

6.1 Introduction to Web Services

Microsoft likes to point out that .NET acts like a huge operating system. In effect, the

entire Internet becomes your operating system. This means that pieces of your

applications can be distributed over the Internet but the applications run as if the

pieces were all on your local machine.

Imagine if you had told someone back in the early days of Visual Basic that someday

they'd be writing their applications in a number of separate components and putting

those parts on different machines. The application sitting on the user's desktop would

call these components on other machines, and those components would access the data

on still other machines. The data would be returned to these components and finally

flow back to the client application.

Naturally, this sounds quite normal today. However, now consider taking those

components, and even the database, and removing them from your internal network.

Spread them out all over the Internet, so that the only way with which you can

communicate with them is HTTP. This is precisely what a Web service is all about.

The idea behind a Web service is to create a reusable component that can be called over

standard HTTP, but has the full power of a .NET language application. These

components are discoverable, which means that you can locate and call available

components. The format for calling particular methods is exposed as well, so anyone

can determine what methods are available and how to call them.

40

6.2 How W eh Services Work?

Every Method in Web Services is made public by adding the <Weblvlethodtj> attribute

to the method declaration. This makes the method automatically discoverable by anyone

accessing the project's URL. Any class that has one or more methods marked with

<WebMethod()> becomes a Web service. The Framework handles the task of setting up

all the necessary hooks for the component to be callable via HTTP.

The full System.Web.Services.myService syntax is used to call predefined services.

By Adding a Web Service project below files are created in the project:

• Global.asax

• Web.config

• <Service Name>.asmx

• Assemblylnfo.vb

The Global.asax file, is an optional file that contains code for responding to

application-level events raised by ASP.NET or by HttpModules. The Global.asax file

itself is configured so that any direct URL request for it is automatically rejected;

external users cannot download or view the code written within it.

Web.config files are Web Forms configuration files, provide settings for every Web

Forms page in the same directory as the configuration file. The settings are usually also

inherited by subdirectories.

<Service_Name>.asmx file contains the WebService processing directive and serves

as the addressable entry point for the XML Web service. The <Service_Name>.asmx.vb

class file is a hidden, dependent file of <Service_Name>.asmx. It contains the code­

behind class for the XML Web service. When viewing the Code View of

<Service_Name>.asmx, you see the contents of this file.

A project information file Assembly Info.vb that contains metadata about the

assemblies in a project, such as name, version, and culture information.

41

6.3 How to Add Web Services?

• Right Click on the solution name on Solution Explorer and click Add -->New

Project or simply click on the File--> New Project.

• Select ASP.NET Web Service, you will see Location field below. Location for

webservices are always in the localhost without changing the localhost change

the name of the web service. See Figure 6.3.1

Visual C# Projects
~ Visual J# Projects
"tii]"v1sua1 c++ProJects
;,,!ii) Setup and Deployment.Projects
fi;.jil. other PrqJects ·

Figure 6.3.1 Add New ASP.NET Web Service

After adding Web Service, VB.NET will create a virtual directory on the

localhost (c:\inetpub\wwwroot\ ...). And for every open process of this project

VB.NET will communicate with these virtual directories to import and update web

service.

Actually this is not enough to work with the Web Services. In order to reach and

communicate with the web services from any project (Windows applications or Web

applications) it is needed to add Web Reference to the current project which will

communicate with Web Service.

42

To add Web Reference below steps should be followed:

• Right click on the "References" in the project which you want to

communicate with the web services. Click "Add Web Reference ... "

• A window appear and waits for a url for the web service. You can either

write Url to the proper field or you can use the "Browse to" Links to find

where the web service is. (see Figure 6.3.2)

Use this p;,ge es a starting point tofindWeb ser\llces, Voy ,on tick.the hnl<s
!,elow, or type a~ URL lr~o .th!> <!ddress W,

Browse to:
• ~.rJ:.¥.i1;;e:,; rm !he !m~! mtu;l:llt1J;J.
• Browse UQOI Seryen;,on the lo;;:ol network

~Y'(OIX i<M:al network for Ll)fjlser\/et'S,
• 11.R .. Q.!;.Rlrer;tJWl
Query~ uoor business registry to find corripanies .and prooocronweb
servJces, .

Figure 6.3.2 Browse Web Service

• By Clicking on the "Web services on the local machine" the web services are

searched on the local machine and found services are listed. (see Figure 6.3.3)

• Selecting a web service on the list will bring all methods listed on the window

and the service description. Methods can be tested by clicking on them and write

the parameters to the fields required for the method. (see Figure 6.3.4)

• Web reference name is default "localhost", it can be changed by writing a

unique name in the "Web reference name".

• After changing the name of the web reference you can add it by clicking on the

"Add Reference" button.

43

The Web services and Oisc;ove,-y Coo.m>enb available on your VS.NET deveiope,
machine are listed be4ow. Clkkthe service ink.to browse that servke.

lJ,$!..'(/Cei

l:!r.rxiI!i:l
Jt,tP/l~,;,sV°'N!'£~~e1/~v.:ei.asmx
J:ttp:j/lo{;~t/Webse.rvislrn/Servicel·:a.,m,;

See Figure 6.3.3 Web Services found on local machine are listed

The followin.g operations ~re$upported. fo'r \i,formal definition,
ple~se revlew th~ Service' Degrli>tton'; . ' '

• update Jeache,;

• SegrchStu.Jent

• searciloelcted

Figure 6.3.4 Web Service methods listed

After adding the web reference to the project there will be a new tree node named

"Web References" and the web references will be grouped together there.

44

As it is discussed in previous sections Servicel.asmx is the file contains the Web

Service methods. Adding , deleting, updating a method on this file will cause a

problem.Because Web Reference will not be updated automatically you should save and

rebuild the web service first then update the web references in any projects. For

example if a method named method I is written in the Service I .asmx file and saved.

When the service is called from the application which is either web or windows

application, the method named method 1 will not be seem in the Service 1.

Hence After any change done to the Service l .asmx file below steps should be followed:

• Rebuild the Web Service by right clicking on it and by clicking "Rebuild".

• After the message on the status bar "Rebuild All succeeded" is recognized then

Update the Web References which are included to the projects by right clicking

on the web reference and clicking "Update". (see Figure 6.3.5)

Figure 6.3.5 Updating Web Service in Windows Application! Project

45

6.4 How to Write Web Service Methods?

Web Service Methods are written in the Servicel.asmx file. To open Servicel.asmx file

double click on the file in Solution Explorer Window or right click on Servicel.asmx

file and click "Open". (See Figure 6.4.1)

lo add.cornpOJ;&Ots to yoUr· class, .t;,9 them fr® the Server Explorer or
~ 11nd use.the Propert~wlndol'/1:o.set. their properties, to cre<!l:e
methods and events for your dass, clkk here tomb tb code)li\l'tl•

Figure 6.4.1 Servicel.asmx.vb Design Window

Components can be add on to the Servicel.asmx.vd design window. e.g.

OleDbConnection. To create methods and events either click the link "click here to

switch to code view" or press F7 shortcut. Code View is shown in Figure 6.4.2.

The System.Web.Services.WebService class is imported, which defines the optional

base class for XML Web services, provides direct access to common ASP.NET objects.

Each XML Web service requires a unique namespace, which makes it possible for

client applications to differentiate among XML Web services that might use the same

method name. The default namespace for XML Web services created in Visual Studio

.NET is "http://tempuri.org/WebServicel/Servicel" where WebServicel is the

project name and Servicel is the class name.

46

: = "httP> //temPuri, ora/racor1"cin/

' WEB SERVICE EXAMPLE
1 The Ke.UollO;r.14() .exampJ._e service :re-turns: t.ne string :tte-.l.l.o fforl.tl.
1 To huiid, uno"anmant th·e .~nlldwing 1ine,s ·then save and bui1d the prcrj ect.
1 To test this web se:rvi.ce, ensure that the . as:mx: file is the start tHl!l6
amt press F/1.

• <W.,hllethod () >
'Public Function HelloWor1d() A:s S.tt'ing

.1 End Function

Figure 6.4.2 Code View of Service I .asmx file

Code View comes with a simple example named "Hello World" lies in comment as

shown below:

'<WebMethod()>
'Public Function HelloWorld() As String

Return "Hello World"
'End Function

The syntax for a web service method is shown below:

<WebMethod () > _
Public Function Fune Name(Param_name As DataType) As ReturnType
'Statements here
End Function

Function name and parameters name should be meaningful since the methods will be

called from either web application or windows application. RetumType should be

decided carefully and when it is necessary return error messages.

47

When the web service is build or rebuild the Webservicel.dll file created in the bin

directory of the virtual directory in the localhost. Therefore WebServicel .dll is the

output file for the web service project. And it will work without project files.

The Figure 6.4.3 shows the relationship between the project, the class, its methods, and

the resulting XML Web service.

Development: ,computer
WobSo.rvico1 Proj,u:t

Web Sctrve.r
WobServlcet 'Virtual Root

Figure 6.4.3

A simple example for Web service method

<System.Web.Services.WebService(
Namespace:=" http://tempuri.org/ConvertTemp/Servicel",
Description:="A temperature conversion service.")>

Public Class Servicel
<WebMethod () >
Public Function CTemperature(ByVal dFahrenheit As Double)

Return ((dFahrenheit - 32) * 5) I 9
End Function

As Double

Previous web service method can be called in below format in windows forms

applications or in web applications:

Dim myservice As New ConvertTemp.Servicel
Msgbox(Myservice.CTemperature(lOO))

'Declare webservice
'Show Result in MessageBox

48

Actually the real use of webservices is to build distributed systems. Below code is an

good distributed database example.

<WebMethod()> _
Public Function ListStudents(ByVal DID As Integer) As Dataset

Dim myadap As New OleDbDataAdapter("SELECT Student.SNo,
Student.name, Student.surname, Student.sex, Student.Address,
City.CityName, Student.postcode, Student.Gsm, Student.OsymNo,
Student.phone, Student.Email, Advisor.AdvisorName,Student.Studentid
FROM Advisor INNER JOIN (City INNER JOIN Student ON City.Cityid
Student.Cityid) ON Advisor.Advisorid = Student.Advisorid where
Student.isDeleted=false and Student.Departmentid=@DID;",
OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@DID", DID)
Dim ds As New Dataset
myadap.Fill(ds)
Return (ds)

End Function

In above Web Service Method named ListStudents requires a parameter called DID

which is department Id and lists all students in that department who are studying still.

As we look at the returntype of the method it is DataSet. DataAdapter named myadap

executes and fill the dataset called ds and returns the dataset.

49

CHAPTER SEVEN

7. ASP.NET

7.1 Introduction to Asp.NET

Most developers today are building Web applications. For the past three and half years

or so, Microsoft developers have been building Web applications using Active Server

Pages, or ASP. ASP is a technology in which the pages are a mix of HTML and a

scripting language, such as VBScript or JavaScript. The HTML was basically static, and

was rendered as you typed it in the page. The script was interpreted on-thefly, and

generated additional HTML. This generated HTML was mixed in with the static

HTML, and the page was sent to the browser.

Web applications, including Active Server Pages applications, follow a simple

request/response metaphor because that is all that is allowed by HTTP. The user

requests a page, and the page is sent to the browser to be rendered. The person can fill

out data fields, and when he clicks a button, he is making a new request, and the

response is generated on the server and returned.

ASP.NET has to use request/response, of course, because you're still using HTTP.

However, ASP.NET seeks to simplify the coding model, by making it appear as an

eventdriven programming model.

7.2 ASP.NET Advantages Over ASP

• Eliminates long code blocks. Script is no longer intermixed with HTML. This

makes the code much smaller, cleaner, and easier to maintain. This is made

possible by the event-driven page processing.

• New controls have been introduced that promote user interface encapsulation.

These controls give browser-independent rendering, which means that you write

code only once for multiple clients.

50

• Page services have been introduced that reduce the grunt work involved in

creating form pages that post back to themselves: ViewState and PostBack data

processmg.

• New application services make applications faster and more scalable. These

include caching, farmable session state, and security to name a few.

7.3 How ASP.NET Works?

Basically, ASP.NET works by using server-based components to generate HTML. The

HTML is sent to the client and rendered in a browser. ASP .NET determines the

capabilities of the client browser and generates HTML appropriate for that browser.

ASP.NET works by using server-based components to generate markup, such as

HTML, and script. The HTML and script are sent to the client and rendered in a

browser. ASP.NET determines the capabilities of the client browser and renders HTML

appropriate for that browser. The type of markup sent to the client is determined by the

controls. The markup code doesn't have to be HTML.

ASP .NET user code is precompiled. This is in contrast to ASP, which interprets the

script code that is intermingled with static HTML. Even if you were using compiled

COM components with ASP, the calls to the components were late-bound. Using

ASP .NET allows you to benefit from all the services of the .NET Framework, such as

inheritance, security, and garbage collection.

ASP .NET also provides some of the functionality that has been coded by hand in the

past. Like ASP, ASP .NET can provide automatic state management. Because HTTP is a

stateless protocol, maintaining state in Web applications has always been a problem.

ASP .NET provides state management that, unlike ASP, is scalable across Web farms,

survives IIS crashes, and does not have to use cookies.

51

~,,;:;-;--. - ~~., ~'""

~
,, ,""' l · fh -~ './" ..••. .}\:'°"...... (J(.' • "'~"-

t
.i;,f' I V.i ,~\

(-,, . ,..,. i •.... ,1
7.4 Web Pages and Code ! r.~i":ftiu\ ~ I

l\ 'r: ::0
\.~

J\ ~"'
The pages are created in ASP .NET are divided into two parts: the user interface a~ c;

the code. When you create the page in VB.NET, you see the .ASPX and the .VB files as

two views of the same page. The VB file is a class file, called a page class, and it

segregates your code from the HTML. When you compile the page, ASP .NET generates

a new class and compiles it. This new class has the static HTML, ASP .NET server

controls, and code from your form compiled in. Unlike ASP, all the HTML sent to the

client is generated from the class on-the-fly. This class is actually an executable

program, and whenever the page is called, the executable generates the HTML that is

sent to the browser.

When a web page created, a compiled class is created from these two files. When

someone browses the ASPX page, the class is executed and generates the HTML to

send to the browser. HTML sent to the browser, has <FORM> ... </FORM> block and

all the controls added on the form should be in these tags. This is because an HTML

form is the only way for standard HTML to get data from an HTML page back to the

server.

The code written for an event runs only on the server. When someone calls the event,

and the form is submitted to the server. In effect, you take the event and send it to the

server for processing. The generated class is instantiated, and the event code is

processed. A new HTML stream is generated and sent back to the client browser.

52

7.5 Basic Web Controls

Label

A Label is used to display text. If we want to display static
text, we do not need a Label server control; we should
instead use HTML. We should use a Label server control

. if we need to change its properties via server code .
..................................

A TextBox control enables the user to enter text. By
default, the TextMode property is SingleLine, but it can
also be set to Multiline or Password. In case of Multiline
text box, the Rows property determines the height. If its
AutoPostBack property is set to True, it generates a
PostBac*·()P: its Ie~!- Cha11gecl() eyeP:!:
All three types of buttons cause PostBacks when the user
clicks them.

TextBox

Buttons:

• Button Button controls can be placed inside other container
controls, such as DataList, DataGrid and Repeater.

• LinkButton
The ImageButton displays an image that responds to
mouse clicks. We can also use it as an image map. Thus,

.. ' ~e .. lP:8:Y piP:pOiP:t .. ~here iP: the gr<1phi~ the llSeth8:S ~lic~ed.
· It enables the user to input Boolean data: true or false, yes
or no. Its Checked property can also be bound to a data
field of a data source. Its CheckedChanged event can be
used for AutoPostBack ; .

• ImageButton

CheckBox

ListControls:
• CheckBoxList
• DropDownList
• ListBox
• RadioButtonList later section of this chapter.

These controls are derived from the ListControl abstract
class. Note: these controls will be discussed in detail in a

Hyper Link

It displays a link to another page. It is typically displayed
as text specified in its Text property. It can also be dis­
played as an image specified in the ImageUrl property. If
both the Text and ImageUrl properties are set, the
ImageUrl property is displayed. If the image does not exist,
then the text in the Text property is shown. Internet
Explore}' uses theJmprooertv to displav ToolTi..,.

Image

We may use the Image control to display an image on the
Web page. The ImageUrl property specifies the path to the
displayed image. When the image does not exist, we can
specify the text to display in place of the image by setting
the AltemateText property. The Image control only
displays an image. If we need to capture mouse clicks on
the image, we should instead use the ImageButton control.

53

Panel

RadioButton

Table

Xml This control can be used to transform XML documents.

Many of the basic server controls work very similarly to their HTML server

control counterparts. All of the Web controls are prefixed with asp: in their tags.

For example, the tag for a label Web control is <asp:Label> .Their uses are also

mostly intuitive. All of the examples illustrated in the HTML server control section

can also be effectively developed using Web controls.

7 .6 First ASP .NET Application

Start Visual Studio.NET and choose to create a new Visual Basic project using the Web

Application project and name the project WebAppTest. Notice, as shown in Figure

7.6.1 , that the location of the project is an HTTP address, not a directory on the

machine. The server to which you connect must have Internet Information Server

(IIS) 4.0 or higher. The server must also have the .NET Framework loaded, so you

might want to use your local machine as the Web server.

54

Visual C# Projects
Visual C++ Projects
Setup and Deployment Projects
Other Projects
Visual Studio Solutions

Class Library

Web Service

Figure 7.6.1

After you click the OK button, VS.NET attempts to communicate with the Web

server. Provided this communication is successful, the project is created on the Web

server, and you are ready to begin working with the project.

The page will open as a blank form in the designer, with a little descriptive text in

the middle. If you look in the Solution Explorer, you will see that this page is named

WebForml .aspx. ASP uses the .asp extension, whereas ASP.NET files use the .a~px

extension. ASP and ASP.NET can coexist in the same directory if necessary. If you

look at the editor, it is just a blank form right now. The default view is for the form to

be in GridLayout mode, which means that you can drag and drop controls onto the form

and easily position them by using the standard snap-to-grid feature-of the designer.

There is also a FlowLayout mode that allows you to get absolute positioning by placing

the controls exactly where you want. To switch between FlowLayout and GridLayout

modes, change the pageLayout property in the Properties window.

55

Go ahead and switch the pageLayout property to FlowLayout. This mode works like

a word processor in some ways. If you click once on the form, you have a cursor

blinking in the upper-left comer. Type Welcome to my ~rst ASP.NET page and

then press the Enter key. As you can see, the text is placed on the form, just as you

would expect in a word processor. Highlight the text and look at the toolbar. There is

a drop-down box that says Normal. Drop down this list and choose Headingl. The

text enlarges significantly.

Along the bottom of this window are two buttons: Design and HTML. If you click

the HTML button, you will be shown the HTML making up the page. Right now, the

line that creates the Heading I is as follows:

<Hl>Welcome to my first ASP.NET page</Hl>

· Now, go back to the Design view by clicking the Design button. Highlight the text

again, and click the Center button to center the text. If you switch back to the HTML

view, you will see that the earlier Headingl line has changed to this:

<Hl align=center>Welcome to my first ASP.NET page</Hl>

At this point, you might think you have a high-powered HTML editor, not much

different from FrontPage or a hundred other HTML editors. Now, however, it is time to

see an example of some ASP.NET. Go back to the Design view and move to the line

below the Heading I line you added. Click on the Toolbox and notice that there is a tab

for Web Forms. (See Figure 7.6.2)

56

Figure 7.6.2 Web Form Tab in Toolbox

Next, click and drag a button to the form. You should now have a label and a button

next to each other. Double-click on the button and you will open the code window.

Notice that this code window creates a file with the same name as the ASPX, but the

file has a .VB extension. As you will see, this is called a code-behind page. One of

ASP .NET' s design goals is to separate the code and the user interface.

In the code window, you will be in the Buttonl_Click event procedure. Type the

following code:

Labell.Text = "Hello, World!"

57

Notice that you are programming this just as you would a standard Windows

application. Go ahead and click the Start button. The page renders in the browser, as

shown in Figure 7.6.3. What is interesting is not what you see in the browser, but the
'l

code behind it. Click on View, Source and you will see the HTML that is making up the

page.

Welcome to my first ASP.NET page
wmml Label!.\~

Figure 7.6.3 Your first ASP.NET page being rendered in the browser.

HTML code is below:
<HTML>
<HEAD>
<meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
<meta name="CODE LANGUAGE" content="Visual Basic 7.0">
<meta name=vs_defaultClientScript content="JScript">
<meta name=vs targetSchema content="Internet Explorer 5.0">
</HEAD>
<body>
<form name="WebForml" method="post"
action="WebForml.aspx" id="WebForml">
<input type="hidden" name="_VIEWSTATE"
value="dDwtMzQ3NzI50TM40zs+" />
<Hl align=center>Welcome to my first ASP.NET page</Hl>
<P align=left>
Label
<input type="submit" name="Buttonl" value="Button" id="Buttonl" />
</P>
</form>
</body>
</HTML>

58

Notice that there is no VB code here. You created a procedure for the Buttonl_Click

event and typed a line of code. However, none of that has made it to the client. This is

because ASP .NET just sends HTML to the client, whereas the code is compiled and
'l

lives on the server. That means this page can be used by anyone, using any browser and

operating system.

Test the page by clicking the button. You will notice the text Hello, World! Now

appears in the label. If you click View, Source again, you will notice that the Label 1 tag

has changed from this:

Label

to this:

Hello, World!

7. 7 Validation Controls

One of the most common requests for any Web application is the ability to perform

client-side validation of input. In standard HTML, there is no way to perform validation

of data on the client. To get around this problem, most browsers let you mix in some

client-side script code, which is capable of performing validation, but the code for this

can be tedious to write. There are a number of reasons for performing validation on the

client. First, you give the user a better experience. If you can immediately notify the

user that he did not fill in a required field, you just saved him the time it would have

taken to submit the form, have the server generate a message to inform him of the

problem, and return the error message to him.

Microsoft provides a series of validation controls in ASP .NET that automate clientside

form validation. The validation controls in ASP .NET are smart; they will perform

the validation at the client if possible. If the client can handle DHTML, the

validation controls send the code down to the client. If the browser is less capable,

the validation code is actually executed on the server.

59

Add a new Web Form to your project and name it Userlnfo.aspx. Change Userlnfo's

pageLayout property to FlowLayout. Click on the Toolbox and drag a text box from the

Web Forms tab and drop it on your new Web form. No:r, on the form, click to the right

of the text box so that you can see the cursor. Press the Enter key to move to the next

line. Click on the Toolbox, drag a button from the Web Forms tab, and drop it on the

line below the text box. Now, from the Web Forms tab of the Toolbox, drag a

RequiredFieldValidator control and drop it next to the text box. The

RequiredFieldValidator control checks whether a particular field has been filled in. You

place the RequiredFieldValidator on the page, and then tie it to a particular input

control, such as a TextBox, CheckBox, or DropDownList. In this case, you want to tie it

to the text box. Click once on the RequiredFieldValidator if it is not already the current

object. In the Properties window, you will see a property named ControlTo Validate.

Click here and drop down the list. The only input control that will appear is TextBoxl

choose it.

It is required to go to the project properties and choose to make Userlnfo.aspx the

startup object. However, Web Applications work differently: There is no startup object.

Right-click on Userlnfo.aspx in the Solution Explorer window and choose Set As Start

Page. This notifies Visual Studio.NET which page to run when the user clicks the Start

button. It does not change anything in the page itself. Now that you have set

Userlnfo.aspx as the start page, run the project. The page appears inside Internet

Explorer.

After the page is running, click on the button without entering anything in the

text box. Immediately, the message RequiredFieldValidator appears to the right

of the text box as shown in Figure 7.7.1. Now, enter anything into the textbox and click

the button. The RequiredFieldValidator text goes away, and the entered value stays in

the text box. When the RequiredFieldValidator text disappears and the value you typed

in the text box remains, it means that the submit action has taken place, which means

you have made a round trip to the server.

60

Please Do not Leave The Text.Box

Figure 7.7.1 RequiredFieldValidator in ASP.NET

If you use IE 4.0 or higher, the validation actually occurs on the client. This allows

you to get immediate feedback that the field is blank, when in fact you specified that

a value is required. After you fill in the value, you send the data to the server and

perform a server round trip.

The error message is default as the name of the validator. For example the default error

message for RequiredFieldValidator is "RequiredFieldValidator". To make sense the

errormessages should be meaningful. All validators have Error Message property.

A more complex data entry screen with validator server controls is shown in Figure

7.7.2 with default Error messages and with modified ErrorMessages in Figure 7.7.3

61

Figures 7. 7 .2 Validators with Default Error Messages

SSNJ __ ~ 1 This £ekl is required
First Name~ I The First Name is required
Last N rune:I I The Last Narne is required
Address 1:[, ,,,,, ... ,,., .. J 'Ihe i11.ddress is required
Address 2:1. ·~···. . J
City:L-~.·--·····--·.. . J The City is required

Figures 7.7.3 Validators with Modified Messages

62

7 .8 Types of Validators

If you look at the Web Forms tab of the Toolbox, you'll see a variety of validator

controls. Briefly, they are as follows:

• RequiredFieldValidator:This validator requires that its ControlTo Validate

property have a value. In other words, the control to which this validator is tied

cannot be left blank.

• CompareValidator:This validator compares the value the user entered with a

value you specify. Your specified value could be a constant, a calculated value,

or a value from a database.

• RangeValidator:This validator requires that entered data be within a particular

range. The range can be numeric, dates, currency, or alphabetical.

• RegularExpressionValidator:Regular expressions are also known as masks.

This validator can make sure that entered data matches a particular format, such

as the format of phone numbers and Social Security numbers.

• Custom Validator:This validator uses code you write yourself to validate the

data.

• ValidationSummary:This validator simply reports all the errors encountered by

the other validators. You will see an example of this validator shortly.

There are a number of common properties in these controls.The major ones are:

• ErrorMessage In case of an error, the system displays this message at the

location of the control, and in the summary report, if any.

• Display A validation control is kept invisible until a bad input is entered. In case

of a bad input, the system has to display the error message. The display

mechanism can be handled in one of three ways.

i. Display= "static" Initially, enough room in the page is reserved for the

expected error message.

ii. Display= "dynamic" No room is initially reserved. In case of an error,

the message is displayed by displacing existing contents of the page.

iii. Display="none" The message won't be displayed at the location of the

control; however, it will be reported in the summary report, if any.

63

7 .9 The Databound ListControls Family

This family of controls is new to ASP developers. These controls provide rapid

application development to display and manipulate data from any data source.The

following controls shown in Figure 7.9.1 belong to this family.

CheckBoxList
Html Select

Data Grid DataList DropDownList
ListBox RadioButtonList Repeater

Figure 7.9.1 The Databound ListControls Family

Data binding means binding controls to information stored in a data store. Here, the

term "data" is used in a very broad sense. When we talk about data binding, it implies

binding any control property to almost any kind of data store. A data store can be as

simple as a public property on a page, or as complex as a database stored on a server.

This broad choice among data stores provides high flexibility, and thus enables you to

bind a control to any data store based on your need. The good news about data binding

is that many of the same data controls are used in ADO.NET.

The Web Forms controls that are bound to a data store access data through the

properties of specific classes, categorized as data classes. Data classes typically include

methods that can be used for updating the underlying data stores.

You can bind a control to different data stores, such as properties, methods, or

collections. These different data stores can be bound to a control property by using data

binding expressions. While binding, the data is always bound to a particular property of

the control (the property name might differ for various controls). When a data binding

expression is evaluated, the resulting value is loaded in the control's bound property.

When you bind a control property to a data store, the Web Forms Framework cannot

evaluate data binding expressions automatically. To display the evaluated value in the

control's bound property, you need to call the DataBindO method explicitly. The page

and each control on the page support this method. When you call the DataBind()

method for a control, it is cascaded to all its child controls.

64

7.9.1 Using the Databound ListControls

i. DropDownList Control

DropDownList control can be used to display bound data. The advantage of the

DropDownList in ASP .NET to other languages is that DropDownList holds two

fields , one which is the text the user sees, other which is the value that is not shown

to the user.

Some properties of the DropDownList Control is listed below:

DataTextField: Field that is shown to the user binded to a specific datafield in

datasource .

DataValueField: Field that is not shown to the user binded to a specific datafield in

datasource . Generally the primary key is contained in this field.

Sub bindListControl()
Dim myadapter As New OleDb.OleDbDataAdapter("Select cityname,cityid
from city", OleDbConnectionl)

Dim ds As New Dataset
myadapter.Fill(ds)
citylist.DataSource = ds.Tables(O)
citylist.DataTextField = "cityname"
citylist.DataValueField = "cityid"
citylist.DataBind()

End Sub

The result page of the above Code is shown in Figure 7.9.1.1.

City:

Figure 7.9.1.1 Binded DropDownList

65

ii. Data Grid Control

The DataGrid Control happens to be the most powerful member of the data-bound

control family. DataGrid control offers sorting and paging capabilities.We can

employ its <AllowSorting> property to dynamically sort and re-display data on

selection of a column header. In case of very large data source, we can use its

<Allow Paging> property to display a selected page of data.

Essentially, a DataGrid control can be used to display bound data in tabular format.

Each record in the data source is displayed as a row in the grid. By default, the data

grid maps each field of the data source as a column in the grid. Obviously, we may

override the default value of its AutoGenerateColumn property to display selected

columns in a particular order.

Sub bindListControl()
Dim mydataset As New Dataset
sqlStr=" Select* from Products"
myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)
myOleDbAdapter.Fill(myDataSet,"dtProducts")
DataGridl.DataSource=myDataSet.Tables("dtProducts")
DataGridl.DataBind()
End Sub

The result of the above sub routine is shown in Figure 7.9.1.2.

Figure 7.9.1.2 Binded DataGrid

66

CHAPTER EIGHT

8. EDUCATIONAL ORGANIZATION SOFTWARE

8.1 How Educational Organization Software Works?

The project is on Education Software. The software can work at anywhere where an

internet connection is established. Hence it is a powerful program for the educational

organizations which has several branches in different places. The organization will use

only one windows program that will be on local on each computer and the database will

be on the HTTP. Hence all datas are in one database file and program will communicate

with HTTP to work with those datas.

Figure 8.1.1 shows the Welcome screen for the Educational Organisation Software.

Figure 8.1.1 Welcome Screen

In Welcome Screen the software communicates with the database which is on the

internet and list the Departments to the combobox.

67

After a registered Username and Password are written in the fields, Login button will

start the main form which is shown in Figure 8.1.2.

Figure 8.1.2 Main Form

Main form has a mdi Form property which contains child forms that will be created as

buttons click events called. In left side a menu is appear. It has 3 tabs Teacher

Processes, Student Processes and Settings tabs. As shown in Figure 8.1.2 the teacher

tab contains Add, Delete, Update, Search processes. Those are main processes that can

be done to both teacher, student and advisor. Settings tab is a special tab because it is

shown to the admin users only.

In top of the window the software name, department name and the username is written

as the form opens. There is a clock at the bottom right of the window on status bar that

takes the system time.

It is not possible to explain and show all forms since there are 38. A brief explanation

for several forms will be done. Now lets see the Add New Teacher Form in

Figure 8.1.3

68

€;...;ti
'

'~•th'6iiie: f,2/20imis :ii

Figure 8.1.3 Add New Teacher Form

As it is said before the Main Form is mdi parent and all the other forms that will be

opened will be mdi childf of main form. Teacher informations are taken in that form

and new teacher is added. Notice that there are some icons besides the textboxes. These

icons are ErrorProviders which avoid wrong or missing entries. For example Name field

is empty and lost the focus then as you point the mouse on the icon and wait for a

second the errormessage will appear saying that 'Do not Leave Name Field Empty'.

Since the errors shown before user presses the buttons , the time is saved from pressing

th button and then showing the error. This will save time for user.

No messagebox is used in that software. MessageBox will appear and wait user to press

OK button to disappear and sometimes they can be disturbing when appears after every

operation. A userdefined Notifier is used in that project. This will show an Title with

message and disappear in 2 seconds or just by clicking the 'x' button on it. The Figure

8.1.4 shows an example view of the notifier.

69

Figure 8.1.4 Notifier after Update Process

Lets see the Search Teachers Form in Figure 8.1.5.

Figure 8.1.5 Search Teachers Form

In this form All teachers are listed. And a variety of filter options are served for the

user. At the top of the page the radiobuttons will filter the teachers. For example Email

radiobutton will list only the teachers who have email addres. And at the right top there

is a radio button named Other. This will cause the panels at left of the screen to roll

down and see the other search criterias. In that part you can search with name and

surname, and by the course he/she gives.

70

Add, Delete, Update buttons will immediately call the forms Add New Teacher Form,

Update Teacher and Delete Teacher. Details button will create a form which shows

teacher information on a form in detail. Why it is needed is a nice question since some

fields can be more than the field size on the datagrid then it will be torture to read those

fields. Send Email button will create a form which has a similar view with an outlook

window but notice that this is not an outlook window. The System.Web.Mail.SmtpMail

class is used to send mails. Therefore Smtp should be installed in the user's computer.

Register button will create and call a form that has a combobox which lists all the

courses that are not given to any teacher. So that any listed teacher can be registered to

those courses. Register Form is shown in Figure 8.1.6

Figure 8.1.6 Teacher Course Registeration Form

Lets pass to the Update Teacher Form shown in Figure Figure 8.1.7. Actually to update

a teacher first the teacher who will be updated, should be found so as user presses the

Update Teacher button the Search Teachers Form will appear. After selecting the

teacher who will be updated the Update button is pressed which will list the information

of the teacher to be updated.

71

Figure 8.1.7 Update Teacher Form

ErrorProviders are used to avoid the user to enter empty name, surname or address.
Lets see the code to update the teacher.

Dim result As String
If Errorl.GetError(TName) =""And Errorl.GetError(Tsurname) =""And
Errorl.GetError(Taddress) =""Then
'If any error occurs then the ex message will pass to the variable
called result

result= wservice.Update_Teacher(TName.Text,
Tsurname.Text, Taddress.Text, Tgsm.Text, Tphone.Text, Temail.Text,
BDate.Value, TIO)

If result="" Then
Mainpage.ShowNotifier("Update Process Result",

"Teacher Updated Successfully")
Else

Mainpage.ShowNotifier("ERROR OCURED DURING UPDATE",
result)

End If
End If

In this code block the Error Provider named "Error l "s GetError method used to check if

there is an error and if not the Update_Teacher() method is called from the webservice

and the required parameters are passed to that method. The retumtype is string from that

method as you see and it returns error if there is any. By checking the content of that

result variable the proper message is shown to the user with notifier which is declared in

Mainpage. The "ShowNotifier" sub routine will create and show the notifier with the

given message and title. The Webservice method to update teacher is follow:

72

'Function to Update Teachers
<WebMethod()> _

Public Function Update_Teacher(ByVal name As String, ByVal surname
As String, ByVal address As String, ByVal gsm As String, ByVal phone
As String, ByVal email As String, ByVal bdate As Date, ByVal TIO As
Integer) As String

Dim mycommand As New OleDb.OleDbCommand
mycommand.Connection = OleDbConnectionl
mycommand.CommandText = "Update Teacher set Tname=@name,

Tsurname=@surname, address=@address, Gsm=@gsm, phone=@phone,
Email=@email, Birthdate=@Bdate where TeacherID=@TID"

mycommand.Parameters.Add("@name", name)
mycommand.Parameters.Add("@surname", surname)
mycommand.Parameters.Add("@address", address)
mycommand.Parameters.Add("@gsm", gsm)
mycommand.Parameters.Add("@phone", phone)
mycommand.Parameters.Add("@email", email)
mycommand.Parameters.Add("@Bdate", bdate)
mycommand.Parameters.Add("@TID", TIO)

Try
OleDbConnectionl.Open()
mycommand.ExecuteNonQuery()

Catch ex As Exception
Return ex.Message

Finally
OleDbConnectionl.Close()

End Try

End Function

Lets see how a teacher is deleted in Figure 8.1.8

Figure 8.1.8 Delete Teacher Form

73

Since the teachers are related to the courses they shouldn't be deleted physically. So that

a fied named "isDeleted" in the Teacher Table in database is used to differentiate the

deleted and active teachers. For deletion process a deletion comment is required which

will explain why the teacher is deleted , and the deletion date which is the current date.

The code for deletion process which is in delete_ click event procedure is below:

Dim result As String
result= wservice.DelTeacher(TID, DelDate.Text, Comments.Text)
If result<>"" Then

Mainpage.ShowNotifier("ERROR OCURED DURING DELETION", result)
Else
Mainpage.ShowNotifier("DELETION PROCESS", "Teacher is Deleted

Successfully")
Me. Close ()

End If

For Advisor process everything is same in Teacher processes. Since advisors are only

deal with students the only difference is that there is no register to course process. So

lets jump to the Student Processes. See Figure 8.1.9

Figure 8.1.9 Student Processes

74

As shown in Figure 8.1.9 the Student Processes tab contains Add, Delete, Update,

Search, Register, Enter Exam Results and List Exam Results processes. Simply Add

New Student button creates and call a form that has several tabs which contain fields for

data entry. These tabs are Personal Informations, Contact Informations, Course

Informations, Payment Informations. Moving to the other tabs can be done by holding

mouse on the tab you wish , it will automatically go to that tab and show the content.

See Figure 8.1.10.

Figure 8.1.10 Add New Student Form

Since user should enter all informations about student, the Add button is placed in the

Payment Informations Tab. When a student is added, the student personal informations

are added to the "student" table, course informations are added to "crs" table and

payment informations are added in "payment_schedule" and calculated the installments

and added these are added to the installments table.

Now lets look to the Search Student form in Figure 8.1.11.

75

Figure 8.1.11 Search Student Form

In Search Student Form you see a list of all students in a datagrid. Besides filtering by

email, unregistered , deleted you can also search by student no , name & surname and

by course. Add , update, delete processes is done with the buttons below. All buttons

call other forms to perform the necessary actions . Student details can be seen by

clicking the Detail button. Unregistered students can be registered with Register button.

Payments can be done for any student. And lastly email is sent by clicking the Send

Mail button.

Detail form is similar to the Add New Student form but this time the fields are disabled.

It is just to list the information and see them in a tabbed view. Tabs are same with in

Add New Student Form. But this time course Information and Payment Information is

to list the courses which student takes and the payments which student have, in

datagrids. Detail Form is shown in Figure 8.1.12.

In Personal Informations tab there is an button named "Print". You can print preview

the student informations and print the page. By clicking on the button will create

crystalreport and list the student informations on it.

76

Figure 8.1.12 Student Detail Form Payment Tab

You now see Payment Informations tab in Figure 8.1.12. The payment installments are

listed In the datagrid according to the course selected which student takes in the

combobox. You can print the installment list by cliking the Print button below the

datagrid. Figure 8.1.13 shows what you will see in the payment installments report.

Payment Report

l\i:uiknl: .CANl\K CAKII{

~i.o\f~~lt ·etl!ili ,tiCilm
J/1!20% 1$7,00 Fafse
)/2/1(fV6 lJ?,(IQ. False
3i:l/2y()6 1$1,{l() .ratje
;N/2006 2Y1itO False
J!H(J()(, 1~1.00 Pulse
,/(i,120(>6 IJ7.Nl Petse
J/1/1()()6 lM.00 ll'iliie-
3/fl/2006 2~7.!lO Febe
Ji9120fl6 251,00 Pu.lse
:Vl-0!20(}(\ 2:;JJ,O False
Jll lfZ!Jf>6 '.2:S?,00 hll!le
Yl.212000 2)7,Nl Fctse

Figure 8.1.13 Payment Installments Report

77

The crystalreport's toolbar can be used to zoom the page, refresh, print or find a word

in the report.

By clicking the Register button in Search Student Form, Register to Course Form will

be created and showed. In this form there is a combobox that contains all the courses

available for registration for the selected student. Student is registered simply by

clicking the Register button.

To let a student pay their installments there is a button named "Pay" on the Search

Student Form. In this form there is a combobox that contains the courses that student

takes. As the course is selected the installments will be listed in the datagrid and by

selecting the row (installment) and clicking the Pay button the installment will be paid.

Notice that after payment finish the Ispaid field in datagrid is becomes checked that

shows the current installment is paid. (See Figure 8.1.14)

Figure 8.1.14 Payment Installments Report

Lets see now the button named "Enter Exam Results" on the main menu. This button

will create and call a form which lists exams in a datagrid, And when a exam is selected

on the datagrid the students who took that exam are listed in a combobox.

(See Figure 8.1.15)

78

Figure 8.1.15 Enter Exam Results Form

As the student selected from the combobox then the name and surname appears in the

disabled textbox. Then by giving the exam results to the NumericUpDown control and

then pressing the Update button will write the result of the exam to the student.

Last Process for the Student Processes tab is the "List Exam Results". Lets see what that

button will do. As you press this button a form named ListExam Results appears. There

are 2 combobox, a datagrid and a button on it. Course Types and courses are listed in

the comboboxes. And when user select a course (Actually they are exams) the students

who entered that exam are listed in the datagrid with their name surname and exam

results. (See Figure 8.1.16)

By pressing the button named Print, the crystalreport is shown to the user which lists the

current exam results of the students in the report and give choice to print the list by

clicking on the print button at the crystal report toolbar.

79

Figure 8.1.16 List Exam Results Form

In Main Menu only there are only Settings tab that we did not discussed yet. Settings

tab is a access limited tab as we disscused in previous pages. Only admin users can

access to the Settings tab. (See Figure 8.1.17)

Figure 8.1.17 Settings Tab in Menu

80

In settings tab there are bunchs of settings like "Add New City", "Add New

Department", "Add Exam", etc. As it is understable from their names what they do is

straight forward.

Add New City Adds a new city to the City Table in the database.
Adds a new department to the Department table and
creates a default user whose usemame is "admin" and Add New Department

Add New User Adds new user to the Login Table with usemame and

dd New Course Adds new course to the Courses Table.

Add New Course Type Adds new course type to the CourseTypes Table

Adds a new exam to the exam table and sends email
to the students who takes that course. Add Exam

Manage Cities Updates, Deletes cities

Manage Courses Updates, Deletes courses

Manage Exams Updates, Deletes exams (change exam time and

Manage Users Updates, Deletes users

Updates the interest rate for the payment calculations Set Interest Rate

81

8.2 Student Information System

A web site is designed for the students using ASP.NET. The students can sign up, get

usemame and password. And then they can sign in with their usemame and password.

The aim of the website is to give information and let students to see and change their

personal informations, see payments and exam results.

Default.aspx is the startup page for the ASP.NET project. See Figure 8.2.1 In that Web

Form Login, Sign Up, Forgot Password Link.buttons, two textboxes, one for

usemame other for password and a button named Login placed on it. Student may sign

up to the Student Information System by clicking "Sign up" Link.button.

Figure 8.2.1 Default.aspx Web Form

Signup.aspx Web Form contains fields that requires student information to check the

student informations that's in the database. See Figure 8.2.2.

82

Figure 8.2.2 Signup.aspx Web Form

By clicking the Apply button the student is searched in the Student table by Student No,

Department, student name, Student surname, Mother name and City. If there is such

student then the usemame and password is added to the table named WebLogin. Hence

the student is registered and can now login into the Student Information System.

Below codes are the codes which are in the button_ click procedure of signup.aspx:

Dim ds As New Dataset
'Search Student by No and Department Id
Dim myadap As New OleDb.OleDbDataAdapter("SELECT
Student.Studentid,Student.SNo, Student.name, Student.surname FROM
Student WHERE Student.Sno=@Sno and Student.isDeleted=false and
Student.Departmentid=@DID and Student.name=@name and
student.surname=@surname and student.MotherName=@Mname and
Student.Cityid=@City", OleDbConnectionl)
myadap.SelectCommand.Parameters.Add("@Sno", Sno.Text)
myadap.SelectCommand.Parameters.Add("@DID", Department.SelectedValue)
myadap.SelectCommand.Parameters.Add("@name", SName.Text)
myadap.SelectCommand.Parameters.Add("@surname", Ssurname.Text)
myadap.SelectCommand.Parameters.Add("@Mname", Mname.Text)
myadap.SelectCommand.Parameters.Add("@City", CityList.SelectedValue)
myadap.Fill(ds)

83

'If there is no such Student
If ds.Tables(O) .Rows.Count= 0 Then
Result.Text= "No Such Student Found Please Check Your Information"

Else
'If student Found write password to table WebLogin
Dim encrypted As String
encrypted r=

FormsAuthentication.HashPasswordForStoringinConfigFile(Password.Text,
"shal ")

Dim mycommand As New OleDb.OleDbCommand
mycommand.Connection = OleDbConnectionl
mycommand.CommandText = "INSERT INTO

WebLogin(StudentID,Uname,UPass) VALUES(@Sid,@uname,@pass)"
mycommand.Parameters.Add("@Sid", (ds.Tables(O) .Rows(O) (0)))
mycommand.Parameters.Add("@uname", Uname.Text)
mycommand.Parameters.Add("@pass", encrypted)

Try
OleDbConnectionl.Open()
mycommand.ExecuteNonQuery()
Result.Text= "Application is successful please login

with your password"
Catch ex As Exception

Result.Text= ex.Message
Finally

OleDbConnectionl.Close()
End Try

End If

After signing up in the Student Information System, main.aspx Web Form is appear.

This page contains a simple menu at the right. There are 3 HyperLink on the menu.

Student Information, Payment Information, Exam Results are the HyperLink buttons'

Text. Main.aspx Web Form is shown in Figure 8.2.3.

Figure 8.2.3 Main.aspx Web Form

84

Figure 8.2.4 shows the Student Information page. Personal informations of the student

are listed. And student can change and update his/her personal informations. Also

password can be changed.

Figure 8.2.4 Student Information Web Form

In windows forms there are ErrorProviders to check some controls content and give user

some errormessage. In ASP.NET there is no ErrorProvider instead, there is validators.

In Student Information Page RequiredField Validator is used. Therefore students do not

have chance to update his/her personal informations empty and since the validators will

show errormessages on lost focus from the field which validator is binded to, this will

save time for the user. Otherwise student will enter all fields maybe leave some empty

and then preses the button named Update. Then he/she will see an error message beside

the field which is empty or not in a correct format. For example Name field is validated

with RequiredField validator so error message will be seen when this field will be left

empty, Email field is validated with RegularExpression validator (Email Format) and

when an incorrect email is entered the error message will be shown to the user as user

clicks somewhere else or leaves that field.

85

Below code is the code block for the Update Button click event.

'Updating Student Info
Dim mycommand As New OleDb.OleDbCommand("Update Student set

name=@name ,surname=@sname, sex=@gender, address=@addres,
cityid=@cID, postcode=@pc, gsm=@gsm, phone=@phone, email=@email where
studentid=@SID", OleDbConnectionl)

mycommand.Parameters.Add("@name", Sname.Text)
mycommand.§'arameters.Add("@sname", Ssurname.Text)
If M.Checked = True Then

mycommand.Parameters.Add("@gender", M.Text)
Else

mycommand.Parameters.Add("@gender", F.Text)
End If
mycommand.Parameters.Add("@address", Address.Text)
mycommand.Parameters.Add("@cID", City.SelectedValue)
mycommand.Parameters.Add("@pc", Postcode.Text)
mycommand.Parameters.Add("@gsm", Gsm.Text)
mycommand.Parameters.Add("@phone", Phone.Text)
mycommand.Parameters.Add("@email", Email.Text)
mycommand.Parameters.Add("SID", Session("SID"))
Try

OleDbConnectionl.Open()
mycommand.ExecuteNonQuery()

Catch ex As Exception
result.Text= ex.Message

Finally
OleDbConnectionl.Close()

End Try

Figure 8.2.5 Shows the Payment Information page of the Student Information System.

Figure 8.2.5 Payment Information Web Form

86

In this Web Form since the students can take more than one course, first course should

be selected. The courses that student takes are listed in the combobox on page load. To

see the payment installment list, the course is selected from the course and the button

named "Show Payment" is pressed. The Figure 8.2.5 is the result after pressing button.

Below code is written in the button click event to list the payment installments.

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Student.Sno As
Student_No,Student.name As
Name,Student.Surname,Exam.ExamDate,ExamResults.Result FROM Student
INNER JOIN (Course INNER JOIN (Exam INNER JOIN ExamResults ON
Exam.Examid = ExamResults.Examid) ON Course.Courseid = Exam.Courseid)
ON Student.Studentid = ExamResults.Studentid where
Student.Studentid=@SID and Course.Courseid=@CID;", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@SID", Session("sid"))
myadapter.SelectCommand.Parameters.Add("@CID",

Exams.SelectedValue)
Dim ds As New Dataset
myadapter.Fill(ds)
DataGridl.DataSource = ds.Tables(O)
DataGridl.DataBind()

Figure 8.2.6 shows the Exam Results Form. Simply the courses that student takes are

listed in the combobox and after the button named "Show Exam Result" is pressed the

student's exam result is listed for that course in datagrid.

Figure 8.2.6 List Exam Results Web Form

87

Lets see what will happen if a student forgets his/her password. There is a Linkbutton

on the default.aspx named "Forgot password?" (see Figure 8.2.1) This Linkbutton will

redirect the student to the Forgot password Web Form.

Before disscussing the Forgot password Web Form, it is needed to talk a little about

Encryption. The passwords in the database is kept in "shal" encryption technique

which is not possible to rollback. So it is not possible to ask student his/her information

and give his/her password. The only way to give student a new password which means

reseting the previous one and creating a new password with a userdefined procedure.

And new password is then sent to the student's email. In Figure 8.2. 7 Forgot Password

Web Form is shown.

Figure 8.2.7 Forgot Password Web Form

The userdefined procedure to create a new password is below:
Dim randoml As New Random
Dim pass As String
Dim myarray() As String= {"A", "D", "F", "Z", "T", "l", "5", "7",
"K", "4", "L", "Y", "U", "M", "4", "8"}
Dim number As Integer
For i As Integer= 1 To 5
number= randoml.Next(l, 16)
pass&= myarray(number)
Next

88

This procedure has an array of string named myarray and it contains some alphabetical

characters and numeric characters. A Random variable declared to generate random

numbers between 1 to 16. For loop is from 1 to 16 because there are 16 characters in the

array named myarray. So a randomly selected number between 1 and 16 means

randomly selected character from the array myarray. Then any character selected are

added to the variable pass which has string datatype.

Last thing to do with the password is to encrypt it again before writing it to the table.

Below code will show how it is encrypted .

Dim encrypted As String
encrypted=
FormsAuthentication.HashPasswordForStoringinConfigFile(pass, ''shal")

"shal" encryption technique is used to encrypt the password. If specialist forgets that

little point , this user will get the password to his/her email and will not be able to login

because as he/she writes the password, it will encrypted and will be compared with the

one in the database and the bad news is the password in the database was not encrypted

before write process.

Now it is safe to write the password to the table. After writing the password to the

weblogin table now it is the time to make student know his/her new password. Below

code shows how to send email.

System.Web.Mail.SmtpMail.Send("Education Center",

ds. Tables (0) . Rows (0) ("Email"), "Your New Password", pass)

89

CONCLUSION

The aim of my project is to create an alternative for organization software. It proves that an

organization software can work without an local server. Since internet connection is required,

the hosting server is used only. Therefore it saves from buying and maintaining the server

machines that cost much and make problems.

It is not told that there is no problem with the web service projects. The situation of same time

processes and conflicts may occur in real practice. But these problems can be solved by using

other database technologies. Sql server can overcome these problems. Another problem is

that, since application is communicating with web service and perform actions on the web the

operation times are slower than an local one. Higher internet connections can overcome these

problem.

Hence I believe that the technology I used will be very popular in big companies and the

problems I face to face while doing that project will not be a big deal in near future.

90

REFERENCES

Balena, Francesco,(2004) Programming Microsoft Visual Basic .NET version 2003:Microsoft

VB.NET Informations from

http://wvvw.dotnctjunkics.com

ASP .NET Informations from

http://www.asp.net

91

APPENDIX A: PROGRAM CODES

Servicel .asmx

Imports System.Web.Services

Imports System.Web.Security

Imports System.Data.OleDb

<System.Web.Services.WebService(Namespace:="http://tempuri.org/Webservisim/

Servicel")>

Public Class Servicel

Inherits System.Web.Services.WebService

#Region" Web Services Designer Generated Code"

Public Sub New ()

MyBase. New ()

'This call is required by the Web Services Designer.

InitializeComponent()

'Add your own initialization code after the InitializeComponent()

call

End Sub

'Required by the Web Services Designer

Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Web Services Designer

'It can be modified using the Web Services Designer.

'Do not modify it using the code editor.

Friend WithEvents OleDbConnectionl As System.Data.OleDb.OleDbConnection

<System.Diagnostics.DebuggerStepThrough()> Private Sub

InitializeComponent()

Me.OleDbConnectionl New System.Data.OleDb.OleDbConnection

'OleDbConnectionl

Me.OleDbConnectionl.ConnectionString = "Jet OLEDB:Global Partial

Bulk Ops=2;Jet OLEDB:Registry Path=;Jet OLEDB:Database L" & _

92

"ocking Mode=l;Jet OLEDB:Database Password=;Data

Source='"'C: \Inetpub\wwwroot\Webse" & _

"rvisim\Dersane.mdb"";Password=;Jet OLEDB:Engine Type=S;Jet

OLEDB:Global Bulk Tran" &

"sactions=l;Provider=""Microsoft.Jet.OLEDB.4.0''";Jet OLEDB:System

database=;Jet OLE" &

"DB:SFP=False;Extended Properties=;Mode=Share Deny None;Jet

OLEDB:New Database Pa" &

"ssword=;Jet OLEDB:Create System Database=False;Jet OLEDB:Don't

Copy Locale on Co" & _

"mpact=False;Jet OLEDB:Compact Without Replica Repair=False;User

ID=Admin;Jet OLE" &

"DB:Encrypt Database=False"

End Sub

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

'CODEGEN: This procedure is required by the Web Services Designer

'Do not modify it using the code editor.

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

#End Region

'http://localhost/Webservisim/Servicel.asmx

'http://tempuri.org/Webservisim/Servicel
1 WEB SERVICE EXAMPLE

' The HelloWorld() example service returns the string Hello World.

' To build, uncomment the following lines then save and build the

project.

' To test this web service, ensure that the .asmx file is the start

page

' and press F5.

'<WebMethod () > _
'Public Function HelloWorld() As String

Return "Hello World"

93

'End Function

'List All Students to the DataGrid in Search Form

<WebMethod () >

Public Function ListStudents(ByVal DID As Integer) As Dataset

Dim myadap As New OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email, Advisor.AdvisorName,Student.Studentid FROM Advisor INNER

JOIN (City INNER JOIN Student ON City.Cityid = Student.Cityid) ON

Advisor.Advisorid = Student.Advisorid where Student.isDeleted=false and

Student.Departmentid=@DID;", OleDbConnectionl)

myadap. SelectCommand. Parameters .Add ("@DID'.', DID)

Dim ds As New Dataset

myadap. Fill (ds)

Return (ds)

End Function

'Search a Student with his/her Student No

<WebMethod () >

Public Function SearchStudent(ByVal Sno As Integer, ByVal DID As

Integer) As Dataset

Dim myadap As New OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email, Advisor.AdvisorName,Student.Studentid FROM Advisor INNER

JOIN (City INNER JOIN Student ON City.Cityid = Student.Cityid) ON

Advisor.Advisorid = Student.Advisorid WHERE Student.Sno=@Sno and

Student.isDeleted=false and Student.Departmentid=@DID", OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@Sno", Sno)

myadap.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadap. Fill (ds)

Return (ds)

End Function

'Search a Student with his/her Name and Surname

<WebMethod()> _

Public Function SearchByName(ByVal Name As String, ByVal Surname As

String, ByVal DID As Integer) As Dataset

94

Dim myadap As New OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email, Advisor.AdvisorName,Student.Studentid FROM Advisor INNER

JOIN (City INNER JOIN Student ON City.Cityid = Student.Cityid) ON

Advisor.Advisorid = Student.Advisorid WHERE Student.name=@Name and

Student.surname=@Surname and Student.isDeleted=false and

Student.Departmentid=@DID", OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@Name", Name)

myadap.SelectCommand.Parameters.Add("@Surname", Surname)

myadap.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadap. Fill (ds)

Return (ds)

End Function

'Function to Add New Student to Student Table only

<WebMethod()> _

Public Function Addstudent(ByVal name As String, ByVal surname As

String, ByVal Sno As Integer, ByVal school As String, ByVal sex As String,

ByVal address As String, ByVal cityid As Integer, ByVal postcode As String,

ByVal gsm As String, ByVal fname As String, ByVal mname As String, ByVal

bplace As String, ByVal bdate As Date, ByVal OSYM As String, ByVal notes As

String, ByVal email As String, ByVal phone As String, ByVal advisor As

Integer, ByVal DID As Integer) As String

Dim komutum As New OleDb.OleDbCommand

komutum.Connection = OleDbConnectionl

komutum.CommandText = "Insert into

Student(Departmentid,Advisorid,SNo,name,surname,school,sex,Address,Cityid,p

ostcode,Gsm,FatherName,MotherName,BirthPlace,BirthDate,OsymNo,Notes,Email,p

hone)

values(@DID,@AID,@Sno,@name,@surname,@school,@sex,@address,@city,@postcode,

@Gsm,@fname,@mname,@bplace,@bdate,@OSYM,@notes,@email,@phone)"

komutum.Parameters.Add("@DID", DID)

komutum.Parameters.Add("@AID", advisor)

komutum.Parameters.Add("@Sno", Sno)

komutum.Parameters.Add("@name", name)

komutum.Parameters.Add("@surname", surname)

komutum.Parameters.Add("@school", school)

komutum.Parameters.Add("@sex", sex)

komutum.Parameters.Add("@address", address)

95

komutum.Parameters.Add("@city", cityid)

komutum.Parameters.Add("@postcode", postcode)

komutum.Parameters.Add("@Gsm", gsm)

komutum.Parameters.Add("@fname", fname)

komutum.Parameters.Add("@mname", mname)

komutum.Parameters.Add("@bplace", bplace)

komutum.Parameters.Add("@bdate", bdate)

komutum.Parameters.Add("@OSYM", OSYM)

komutum.Parameters.Add("@notes", notes)

komutum.Parameters.Add("@email", email)

komutum.Parameters.Add("@phone", phone)

Dim myadap As New OleDbDataAdapter("Select

Studentid,Sno,name,surname from Student WHERE Sno=@no and name=@name and

surname=@surname", OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@no", Sno)

myadap.SelectCommand.Parameters.Add("@name", name)

myadap.SelectCommand.Parameters.Add("@surname", surname)

Dim ds As New Dataset

Try

OleDbConnectionl.Open()

komutum.ExecuteNonQuery()

myadap. Fi 11 (ds)

Dims As String

s = ds. Tables (0) . Rows (0) ("Student Id")

Returns

Catch ex As Exception

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Record the Payment Informations

<WebMethod()> _

Public Function RecordPayment(ByVal Sid As Integer, ByVal total As

Single, ByVal Advanced As Single, ByVal Remaining As Single, ByVal

Installments As Integer, ByVal Courseid As Integer) As String

Dim mycomm As New OleDbCommand

mycomm.Connection = OleDbConnectionl

96

mycomrn.ComrnandText = "INSERT INTO

PaySchedule(Studentid,Total,InAdvanced,Remaining,NoOfinstallment,Courseid)

Values(@SID,@Total,@Advanced,@Remaining,@Installment,@Cid) "

mycomrn.Parameters.Add("@SID", Sid)

mycomrn.Parameters.Add("@Total", total)

mycomrn.Parameters.Add("@Advanced", Advanced)

mycomrn.Parameters.Add("@Remaining", Remaining)

mycomrn.Parameters.Add("@Installment", Installments)

mycomrn.Parameters.Add("@Cid", Courseid)

Try

OleDbConnectionl.Open()

mycomrn.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Record the Payment Installments

<WebMethod()>

Public Function Recordinstallment(ByVal Sid As Integer, ByVal total As

Single, ByVal Advanced As Single, ByVal Remaining As Single, ByVal

Installments As Integer, ByVal Pdate As Date, ByVal Price As Single) As

String

Dim mycomrn As New OleDbComrnand

Dim mycomrn2 As New OleDbComrnand

mycomrn.Connection = OleDbConnectionl

mycomrn2.Connection - OleDbConnectionl

mycomrn.ComrnandText = "INSERT INTO

Installment(Paymentid,PaymentDate,Price)

Values(@Paymentid,@PaymentDate,@Price) "
mycomrn2.ComrnandText = "Select Paymentid from PaySchedule where

Studentid=@SID and total=@Total and Remaining =@Remain and

NoOfinstallment=@Installments"

mycomrn2.Parameters.Add("@SID", Sid)

mycomrn2.Parameters.Add("@Total", total)

mycomrn2.Parameters.Add("@Remain", Remaining)

mycomrn2.Parameters.Add("@Installments", Installments)

Try

OleDbConnectionl.Open()

97

mycomm.Parameters.Add("@Paymentid", mycomm2.ExecuteScalar)

mycomm.Parameters.Add("@PaymentDate", Pdate)

mycomm.Parameters.Add("@Price", Price)

mycomm.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Add New Advisor

<WebMethod () > _

Public Function AddAdvisor(ByVal name As String, ByVal surname As

String, ByVal phone As String, ByVal address As String, ByVal DID As

Integer) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "Insert into

Advisor(AdvisorName,AdvisorSurname,Phone,Address,Departmentid)

Values(@N,@S,@P,@A,@D)"

mycommand.Parameters.Add("@N", name)

mycommand.Parameters.Add("@S", surname)

mycommand.Parameters.Add("@P", phone)

mycommand.Parameters.Add("@A", address)

mycommand.Parameters.Add("@D", DID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to list all advisor teachers

<WebMethod () > _
Public Function ListAdvisors(ByVal DID As Integer) As Dataset

98

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Advisorid,AdvisorName+' '+AdvisorSurname As NameSurname,phone,Address from

Advisor where Departmentid=@DID and isDeleted=false", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to list all Cities

<WebMethod()>

Public Function Listcities() As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select Cityid,CityName

from City", OleDbConnectionl)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to Update City

<WebMethod () >

Public Function Updatecity(ByVal CID As Integer, ByVal name As String)

As String

Dim mycommand As New OleDb.OleDbCommand("UPDATE City SET

CityName=@name WHERE Cityid=@CID", OleDbConnectionl)

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@CID", CID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Delete City

<WebMethod () > _

Public Function Delcity(ByVal CID As Integer) As String

99

Dim mycommand As New OleDb.OleDbCommand("DELETE FROM City WHERE

Cityid=@CID", OleDbConnectionl)

mycommand.Parameters.Add("@CID", CID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Add New City

<WebMethod () > _
Public Function AddCity(ByVal city As String) As String

Dim komutum As New OleDb.OleDbCommand

komutum.Connection = OleDbConnectionl

komutum.CommandText = "Insert into City(CityName) Values(@city)"

komutum.Parameters.Add("@city", city)

Try

OleDbConnectionl.Open()

komutum.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'List Departments

<WebMethod () > _
Public Function ListDepartments() As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Departmentid,DepartmentName from Department", OleDbConnectionl)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

100

'Check Username Password And Department in LOGIN

<WebMethod()> _

Public Function Checkit(ByVal Uname As String, ByVal Password As

String, ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Login.Userid,

Login.UserName, Login.UserPassword, Login.IsAdmin FROM Department INNER

JOIN Login ON Department.Departmentid = Login.Departmentid where

Login.Departmentid=@DID and Login.UserName=@Uname And

Login.UserPassword=@Password", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

myadapter.SelectCommand.Parameters.Add("@Uname", Uname)

myadapter.SelectCommand.Parameters.Add("@Password", Password)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

'ADD Department

<WebMethod()>

Public Function AddDepartment(ByVal name As String, ByVal address

As String, ByVal phone As String, ByVal fax As String, ByVal Irate As

Integer) As String

Dim mycommand As New OleDb.OleDbCommand

Dim mycommand2 As New OleDb.OleDbCommand

Dim mycommand3 As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand2.Connection = OleDbConnectionl

mycommand3.Connection

mycommand.CommandText

OleDbConnectionl

"Insert into

Department(DepartmentName,Address,Phone,Fax,InterestRate)

Values(@name,@address,@phone,@fax,@Irate)"

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@address", address)

mycommand.Parameters.Add("@phone", phone)

mycommand.Parameters.Add("@fax", fax)

mycommand.Parameters.Add("@Irate", Irate)

mycommand2.CommandText = "Select Departmentid from Department where

DepartmentName=@name and Address=@address"

mycommand2.Parameters.Add("@name", name)

mycommand2.Parameters.Add("@address", address)

101

Dim encodedpass As String

encodedpass =

FormsAuthentication. HashPasswordForStoringinConf igFile ("admin", "shal")

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

mycommand3.CommandText = "Insert Into

Login(Username,UserPassword,Departmentid,Isadmin)

Values(@Uname,@Upass,@DeptID,@Isadmin)"

mycommand3. Parameters .Add ("Uname", "admin")

mycommand3.Parameters.Add("Upass", encodedpass)

mycommand3.Parameters.Add("@Deptid", mycommand2.ExecuteScalar)

mycommand3.Parameters.Add("Isadmin", True)

mycommand3.ExecuteNonQuery()

Catch ex As Exception

Return (ex.Message())

Finally

OleDbConnectionl.Close()

End Try

End Function

'Create the MainPage name as department name and username

<WebMethod () > _
Public Function MainPageName(ByVal DID As Integer, ByVal UID As

Integer) As String

Dim resultname As String

Dim myadapter As New OleDb.OleDbDataAdapter("Select DepartmentName

from Department where Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

resultname = ".:: Supplementary Educational Organization Software

Department: " & ds. Tables (0) . Rows (0) ("DepartmentName")

Dim myadapter2 As New OleDb.OleDbDataAdapter("Select UserName from

Login where Userid=@UID", OleDbConnectionl)

myadapter2.SelectCommand.Parameters.Add("@UID", UID)

Dim ds2 As New Dataset

myadapter2.Fill(ds2)

resultname +=" UserName: " & ds2.Tables(O) .Rows(O) ("UserName")

Return resultname

End Function

102

<WebMethod()>

Public Function CheckUser(ByVal uname As String, ByVal pass As String,

ByVal DID As Integer, ByVal Isadmin As Boolean) As Boolean

'Check if There is Same User in The department

Dim myadapter As New OleDb.OleDbDataAdapter("Select Userid from

Login where UserName=@uname and UserPassword=@pass and Departmentid=@DID",

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@uname", uname)

myadapter.SelectCommand.Parameters.Add("@pass", pass)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

'If there is same user in department return false else return

True

If ds.Tables(O) .Rows.Count<> 0 Then

Return False

Else

Return True

End If

End Function

'Add New User

<WebMethod()> _

Public Function AddUser(ByVal uname As String, ByVal pass As String,

ByVal DID As Integer, ByVal Isadmin As Boolean) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "Insert into

Login(UserName,UserPassword,Departmentid,IsAdmin)

Values(@Uname,@pass,@DID,@Admin)"

mycommand.Parameters.Add("@Uname", uname)

mycommand.Parameters.Add("@pass", pass)

mycommand.Parameters.Add("@DID", DID)

mycommand.Parameters.Add("@Admin", Isadmin)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

103

OleDbConnectionl.Close()

End Try

End Function

'Add New Teacher function

<WebMethod () >

Public Function AddTeacher(ByVal name As String, ByVal surname As

String, ByVal address As String, ByVal gsm As String, ByVal phone As

String, ByVal email As String, ByVal DID As Integer, ByVal Bdate As Date)

As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "Insert Into

Teacher(Tname,Tsurname,Address,GSM,Phone,Email,Departmentid,BirthDate)

Values(@name,@surname,@address,@gsm,@phone,@email,@DID,@bdate)"

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@surname", surname)

mycommand.Parameters.Add("@Address", address)

mycommand.Parameters.Add("@gsm", gsm)

mycommand.Parameters.Add("@phone", phone)

mycommand.Parameters.Add("@email", email)

mycommand.Parameters.Add("@DID", DID)

mycommand.Parameters.Add("@bdate", Bdate)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'List All CourseTypes

<WebMethod()> _

Public Function ListCourseType() As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

CourseTypeName,CourseTypeid from CourseTypes order by coursetypeName",

OleDbConnectionl)

Dim ds As New Dataset

myadapter.Fill(ds)

104

Return ds

End Function

'List All Courses

<WebMethod()> _

Public Function ListCourses(ByVal Id As Integer, ByVal DID As Integer)

As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Courseid,CourseName from Course where CourseTypeid=@ID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@ID", Id)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

' List All Courses with all Fields for Manage Courses Form

<WebMethod () >

Public Function ListCourses details(ByVal Id As Integer, ByVal DID As

Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Courseid,CourseName,CourseCode,CourseContent,StartDate,EndDate,IsWeekend,Qu

ota,Price from Course where CourseTypeid=@ID and Departmentid=@DID",

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@ID", Id)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

'Update Course With its Id

<WebMethod()> _

Public Function UpdateCourse(ByVal CTYP As Integer, ByVal name As

String, ByVal code As String, ByVal content As String, ByVal Sdate As Date,

ByVal Edate As Date, ByVal IsWeek As Boolean, ByVal quota As Integer, ByVal

price As Single, ByVal Cid As Integer, ByVal DID As Integer) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

105

mycommand.CommandText = "UPDATE Course Set

CourseTypeid=@CTYP,CourseName=@name, CourseCode=@Code,

CourseContent=@Content, StartDate=@Sdate, EndDate=@Edate,

IsWeekend=@IsWeek, Quota=@quota, Price=@price where Courseid=@CID and

Departmentid=@DID"

mycommand.Parameters.Add("@CTYP", CTYP)

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@Code", code)

mycommand.Parameters.Add("@Content", content)

mycommand.Parameters.Add("@Sdate", Sdate)

mycommand.Parameters.Add("@Edate", Edate)

mycommand.Parameters.Add("@IsWeek", IsWeek)

mycommand.Parameters.Add("@quota", quota)

mycommand.Parameters.Add("@price", price)

mycommand.Parameters.Add("@CID", Cid)

mycommand.Parameters.Add("@DID", DID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Update Course Type With its Id

<WebMethod () >
Public Function UpdateCourseType(ByVal CTYP As Integer, ByVal name As

String) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "UPDATE CourseTypes Set

CourseTypeName=@name where CourseTypeid=@CTYP"

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@CTYP", CTYP)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

106

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

' Search Students who take specific class

<WebMethod () > _

Public Function SearchCourseStudents(ByVal Cid As Integer, ByVal DID As

Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter('' SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email, Advisor.AdvisorName,Student.Studentid FROM Course INNER JOIN

((Advisor INNER JOIN (City INNER JOIN Student ON City.Cityid =

Student.Cityid) ON Advisor.Advisorid = Student.Advisorid) INNER JOIN CSR ON

Student.Studentid = CSR.Studentid) ON Course.Courseid = CSR.Courseid WHERE

Course.Courseid=@CID AND Course.Departmentid=@DID and

Student.isDeleted=false;", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("CID", Cid)

myadapter.SelectCommand.Parameters.Add("DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

'List All Students Who Has Email

<WebMethod () > _

Public Function ListStudentEmail(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email, Advisor.AdvisorName,Student.Studentid FROM Advisor INNER

JOIN (City INNER JOIN Student ON City.Cityid = Student.Cityid) ON

Advisor.Advisorid = Student.Advisorid where Student.Email<>'' and

Student.isDeleted=false and Student.Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

107

'Delete Student Fucntion (Actually Update Statements changing the

isDelete Field Norecord is deleted physically)

<WebMethod () >

Public Function DelStudent(ByVal Sid As Integer, ByVal DelDate As

DateTime, ByVal DComment As String) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "UPDATE Student set isDeleted=true,

DeletionDate=@DelDate, DeletionComment=@DComment where

Student.Studentid=@SID"

mycommand.Parameters.Add("@DelDate", DelDate)

mycommand.Parameters.Add("@DComment", DComment)

mycommand.Parameters.Add("@SID", Sid)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Search Student for Details Form

<WebMethod () >

Public Function ShowStudent_Details(ByVal SID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.FatherName,

Student.MotherName, Student.BirthPlace, Student.BirthDate, Student.school,

Student.phone, Student.Gsm, Student.Email, Student.Cityid, Student.Address,

Student.postcode, Student.Advisorid, Student.OsymNo, Notes FROM Student

Where Studentid=@SID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to Update Student

108

<WebMethod()> _

Public Function Updatestudent(ByVal name As String, ByVal surname As

String, ByVal Sno As Integer, ByVal school As String, ByVal sex As String,

ByVal address As String, ByVal cityid As Integer, ByVal postcode As String,

ByVal gsm As String, ByVal fname As String, ByVal mname As String, ByVal

bplace As String, ByVal bdate As Date, ByVal OSYM As String, ByVal notes As

String, ByVal email As String, ByVal phone As String, ByVal SID As Integer)

As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "UPDATE Student SET Sno=@Sno, name=@name,

surname=@surname, school=@school, sex=@sex, Address=@address,

Cityid=@city,postcode=@postcode,Gsm=@Gsm,FatherName=@fname,MotherName=@mnam

e,BirthPlace=@bplace,BirthDate=@bdate,OsymNo=@OSYM,Notes=@notes,Email=@emai

l,Phone=@phone where Studentid=@SID"

With mycommand.Parameters

.Add("@Sno", Sno)

.Add("@name", name)

.Add("@surname", surname)

.Add("@school", school)

.Add ("@sex", sex)

.Add("@address", address)

.Add ("@city", cityid)

.Add("@postcode", postcode)

.Add("@Gsm", gsm)

.Add("@fname", fname)

.Add("@mname", mname)

.Add("@bplace", bplace)

.Add ("@bdate", bdate)

.Add("@OSYM", OSYM)

.Add("@notes", notes)

.Add("@email", email)

.Add("@phone", phone)

.Add ("@SID" I SID)

End With

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

109

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Register Student

<WebMethod () >

Public Function Register_Student(ByVal Courseid As Integer, ByVal SID As

Integer, ByVal BookDate As Date) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "INSERT INTO

CSR(Courseid,Studentid,BookDate) Values(@Courseid,@Studentid,@BookDate)"

With mycommand.Parameters

.Add("@Courseid", Courseid)

.Add("@Studentid", SID)

.Add("@BookDate", BookDate)

End With

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to List Unregistered Students in Search Form

<WebMethod()>

Public Function SearchUnReg(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email, Advisor.AdvisorName,Student.Studentid FROM Advisor INNER

JOIN (City INNER JOIN Student ON City.Cityid = Student.Cityid) ON

Advisor.Advisorid = Student.Advisorid where Student.Studentid Not IN

(Select Studentid from CSR) and Student.Departmentid=@DID",

OleDbConnectionl)

110

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to List Courses that Students are taking

<WebMethod () >

Public Function Find_C_S(ByVal SID As Integer, ByVal DID As Integer) As

Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Course.Courseid,Course.CourseName,StartDate,EndDate FROM Course INNER JOIN

CSR ON Course.Courseid = CSR.Courseid WHERE CSR.Studentid=@SID and

Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to List Deleted Students in Search Form

<WebMethod () > _

Public Function SearchDeleted(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Student.SNo,

Student.name, Student.surname, Student.sex, Student.Address, City.CityName,

Student.postcode, Student.Gsm, Student.OsymNo, Student.phone,

Student.Email,

Advisor.AdvisorName,Student.Studentid,Student.DeletionDate,Student.Deletion

Comment FROM Advisor INNER JOIN (City INNER JOIN Student ON City.Cityid

Student.Cityid) ON Advisor.Advisorid = Student.Advisorid where

Student.isDeleted=true and Student.Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to List All Teachers in Search Teacher Form

<WebMethod()> _

Public Function ListTeachers(ByVal DID As Integer) As Dataset

111

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Teacherid,Tname,Tsurname,Address,Gsm,Phone,Email,Birthdate from Teacher

where isDeleted=false and Teacher.Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to List All Teachers who has email in Search Teacher Form

<WebMethod () >

Public Function ListTemails(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Teacherid,Tname,Tsurname,Address,Gsm,Phone,Email,Birthdate from Teacher

where isDeleted=false and Email<>'' and Teacher.Departmentid=@DID",

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to List All Teachers who is deleted

<WebMethod () >

Public Function ListTdeleted(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Teacherid,Tname,Tsurname,Address,Gsm,Phone,Email,Birthdate from Teacher

where isDeleted=true and Teacher.Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to List All Teachers who hasn't registered to a course

<WebMethod()> _

Public Function ListT_Not_Registered(ByVal DID As Integer) As Dataset

112

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT DISTINCT

Teacher.Teacherid,Teacher.Tname,Teacher.Tsurname,Teacher.Address,Teacher.Gs

m,Teacher.Phone,Teacher.Email,Teacher.Birthdate from Teacher,TCR where

Teacher.isdeleted=false and Teacher.Teacherid NOT IN (Select TCR.Teacherid

from TCR)and Teacher.Departmentid=@DID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to Search Teachers that Teacher Id is taken as input

<WebMethod () > _

Public Function Search_T_f_Update(ByVal TID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Teacher.Teacherid,Teacher.Tname,Teacher.Tsurname,Teacher.Address,Teacher.Gs

m,Teacher.Phone,Teacher.Email,Teacher.Birthdate from Teacher where

Teacher.Teacherid=@TID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@TID", TID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Function to Update Teachers

<WebMethod () >

Public Function Update_Teacher(ByVal name As String, ByVal surname As

String, ByVal address As String, ByVal gsm As String, ByVal phone As

String, ByVal email As String, ByVal bdate As Date, ByVal TID As Integer)

As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "Update Teacher set Tname=@name,

Tsurname=@surname, address=@address, Gsm=@gsm, phone=@phone, Email=@email,

Birthdate=@Bdate where TeacherID=@TID"

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@surname", surname)

mycommand.Parameters.Add("@address", address)

mycommand.Parameters.Add("@gsm", gsm)

mycommand.Parameters.Add("@phone", phone)

113

mycommand.Parameters.Add("@email", email)

mycommand.Parameters.Add("@Bdate", bdate)

mycommand.Parameters.Add("@TID", TID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Delete Teacher Function (Actually Update Statements changing the

isDelete Field Norecord is deleted physically)

<WebMethod () > _

Public Function DelTeacher(ByVal TID As Integer, ByVal DelDate As

DateTime, ByVal DComment As String) As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "UPDATE Teacher set isDeleted=true,

DelDate=@DelDate, DeletionComment=@DComment where Teacherid=@TID"

mycommand.Parameters.Add("@DelDate", DelDate)

mycommand.Parameters.Add("@DComment", DComment)

mycommand.Parameters.Add("@TID", TID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Function to Search Teacher for Details Form

<WebMethod()> _

Public Function ShowTeacher Details_personal(ByVal TID As Integer) As

Dataset

114

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT Tname as Name,

Tsurname as Surname, Address, Gsm as Mobile, Phone, Email, BirthDate FROM

Teacher Where Teacherid=@TID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@TID", TIO)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

. End Function

'Function to Return Courses that selected Teacher gives for Details

Form

<WebMethod () > _

Public Function ShowTeacher_Details_course(ByVal TIO As Integer) As

Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

CourseTypes.CourseTypeName, Course.CourseCode,Course.CourseName FROM

CourseTypes INNER JOIN (Course INNER JOIN (Teacher INNER JOIN TCR ON

Teacher.Teacherid = TCR.Teacherid) ON Course.Courseid = TCR.Courseid) ON

CourseTypes.CourseTypeid = Course.CourseTypeid where

Teacher.Teacherid=@TID;", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@TID", TIO)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Register Teacher To the Selected Course

<WebMethod () > _

Public Function Reg_Teacher(ByVal TIO As Integer, ByVal CID As Integer)

As String

Dim mycommand As New OleDb.OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "INSERT INTO TCR(Teacherid,CourseID)

VALOES(@TID,@CID)"

mycommand.Parameters.Add("@TID", TIO)

mycommand.Parameters.Add("@CID", CID)

Try

OleDbConnectionl.Open()

115

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Search a Teacher with his/her Name and Surname in Teacher Search Form

<WebMethod () > _

Public Function SearchByNameT(ByVal Name As String, ByVal Surname As

String, ByVal DID As Integer) As Dataset

Dim myadap As New OleDbDataAdapter("SELECT

Teacherid,Tname,Tsurname,Address,Gsm,Phone,Email,Birthdate from Teacher

WHERE Tname=@Name and Tsurname=@Surname and isDeleted=false and

Teacher.Departmentid=@DID", OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@Name", Name)

myadap.SelectCommand.Parameters.Add("@Surname", Surname)

myadap.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadap.Fill(ds)

Return (ds)

End Function

'List All Courses that are available for teachers to Register

<WebMethod()> _

Public Function Available Course_Reg() As Dataset

Dim myadap As New OleDbDataAdapter("Select Distinct Course.Courseid

AS CID,CourseCode+' '+CourseName AS CODE from Course,TCR where

Course.CourseID NOT IN (SELECT TCR.CourseID From TCR)", OleDbConnectionl)

Dim ds As New Dataset

myadap. Fill (ds)

Return (ds)

End Function

'Search Teacher who gives the specific class that's Taken as Input

<WebMethod()>

Public Function Search_Teacher_ByCourse(ByVal CID As Integer) As Dataset

Dim myadap As New OleDbDataAdapter("SELECT

Teacher.Teacherid,Tname,Tsurname,Address,Gsm,Phone,Email,Birthdate FROM

116

Course INNER JOIN (Teacher INNER JOIN TCR ON Teacher.Teacherid

TCR.Teacherid) ON Course.Courseid = TCR.Courseid where

Course.Courseid=@CID;", OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@CID", CID)

Dim ds As New Dataset

myadap. Fill (ds)

Return (ds)

End Function

'Add New Course

<WebMethod()>

Public Function Add_Course(ByVal CTID As Integer, ByVal name As String,

ByVal Code As String, ByVal Content As String, ByVal Sdate As Date, ByVal

Edate As Date, ByVal Isweek As Boolean, ByVal quota As Integer, ByVal price

As Single, ByVal DID As Integer) As String

Dim mycommand As New OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "INSERT INTO

Course(CourseTypeid,CourseName,CourseCode,CourseContent,StartDate,EndDate,I

sWeekend,quota,price,Departmentid)

VALUES(@CTID,@name,@Code,@content,@Sdate,@Edate,@IsWeek,@quota,@price,@DID)

"
mycommand.Parameters.Add("@CTID", CTID)

mycommand.Parameters.Add("@name", name)

mycommand.Parameters.Add("@Code", Code)

mycommand.Parameters.Add("@Content", Content)

mycommand.Parameters.Add("@Sdate", Sdate)

mycommand.Parameters.Add("@Edate", Edate)

mycommand.Parameters.Add("@Isweek", Isweek)

mycommand.Parameters.Add("@quota", quota)

mycommand.Parameters.Add("@price", price)

mycommand.Parameters.Add("@DID", DID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

117

'Add New Course Type

<WebMethod () > _

Public Function Add CourseType(ByVal CTname As String, ByVal CTcont As

String) As String

Dim mycommand As New OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "INSERT INTO

CourseType(CourseTypeName,CourseContent) VALUES(@CTname,@CTcont)"

mycommand.Parameters.Add("@CTname", CTname)

mycommand.Parameters.Add("@CTcont", CTcont)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Add New Exam

<WebMethod () > _

Public Function Add Exam(ByVal Edate As Date, ByVal Eplace As String,

ByVal Courseid As Integer, ByVal ETime As DateTime) As String

Dim mycommand As New OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "INSERT INTO

Exam(ExamDate,ExamPlace,Courseid,ExamTime)

VALUES(@Edate,@Eplace,@Courseid,@Etime)"

mycommand.Parameters.Add("@Edate", Edate)

mycommand.Parameters.Add("@Eplace", Eplace)

mycommand.Parameters.Add("@Courseid", Courseid)

mycommand.Parameters.Add("@Etime", ETime.TimeOfDay)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

118

OleDbConnectionl.Close()

End Try

End Function

'Search All Advisors who are not dealing with students

<WebMethod () > _

Public Function Search_Advisor NReg(ByVal DID As Integer) As Dataset

Dim myadap As New OleDbDataAdapter("SELECT Distinct

Advisor.Advisorid,Advisor.AdvisorName+' '+Advisor.AdvisorSurname As

NameSurname,Advisor.phone,Advisor.Address FROM Advisor, Student WHERE

Advisor.Advisorid Not In (Select Advisorid from Student) and

Advisor.Departmentid=@DID and Advisor.isDeleted=false;", OleDbConnectionl)

myadap.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadap. Fill (ds)

Return (ds)

End Function

'Fuction to list all advisor teachers who are deleted

<WebMethod () >

Public Function List Del_Advisors(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Advisorid,AdvisorName+' '+AdvisorSurname As NameSurname,phone,Address from

Advisor where Departmentid=@DID and isDeleted=true", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to search advisor with name and surname

<WebMethod () >

Public Function Search_Advisors(ByVal DID As Integer, ByVal name As

String, ByVal surname As String) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Advisorid,AdvisorName+' '+AdvisorSurname As NameSurname,phone,Address from

Advisor where Departmentid=@DID and isDeleted=false and AdvisorName=@name

and AdvisorSurname=@surname'', OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

myadapter.SelectCommand.Parameters.Add("@name", name)

119

myadapter.SelectCommand.Parameters.Add("@surname", surname)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to search advisor with ID for update Form

<WebMethod () > _

Public Function Search_Advisor ByID(ByVal DID As Integer, ByVal AID As

Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("Select

Advisorid,AdvisorName,AdvisorSurname,phone,Address from Advisor where

Departmentid=@DID and isDeleted=false and Advisorid=@AID",

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

myadapter.SelectCommand.Parameters.Add("@AID", AID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to Update Advisor Informations

<WebMethod () >
Public Function Update_Advisor(ByVal name As String, ByVal surname As

String, ByVal phone As String, ByVal address As String, ByVal AID As

Integer) As String

Dim mycommand As New OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "UPDATE Advisor Set AdvisorName=@name,

AdvisorSurname=@surname, Phone=@phone, Address=@address where

Advisorid=@AID"

mycommand.Parameters.Add("@AdvisorName", name)

mycommand.Parameters.Add("@AdvisorSurname", surname)

mycommand.Parameters.Add("@Phone", phone)

mycommand.Parameters.Add("@Address", address)

mycommand.Parameters.Add("@Advisorid", AID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

120

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to Delete Advisor

<WebMethod () >

Public Function Delete_Advisor(ByVal AID As Integer, ByVal DID As

Integer, ByVal Comment As String, ByVal DelDate As Date) As String

Dim mycommand As New OleDbCommand

mycommand.Connection = OleDbConnectionl

mycommand.CommandText = "UPDATE Advisor Set isDeleted=true,

DeletionComment=@Comment, DelDate=@DelDate where Advisorid=@AID and

Departmentid=@DID"

mycommand.Parameters.Add("@Comment", Comment)

mycommand.Parameters.Add("@DelDate", DelDate)

mycommand.Parameters.Add("@Advisorid", AID)

mycommand.Parameters.Add("@DID", DID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to search students whom a given advisor deals with

<WebMethod () >

Public Function Search_Advisor_Students(ByVal AID As Integer) As

Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Student.SNo,Student.name, Student.surname, Student.GSM,Student.birthdate

FROM Advisor INNER JOIN Student ON Advisor.Advisorid = Student.Advisorid

where Advisor.Advisorid=@AID;", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@AID", AID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

121

'Fuction to List All Exams

<WebMethod () > _

Public Function ListExams(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Exam.Examid,Course.CourseName,Exam.ExamDate, Exam.ExamPlace,

Exam.ExamTime,Course.Courseid FROM Course INNER JOIN Exam ON

Course.Courseid = Exam.Courseid where Course.departmentid=@DID",

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to Update Exam

<WebMethod () > _

Public Function UpdateExams(ByVal EID As Integer, ByVal Edate As Date,

ByVal Eplace As String, ByVal Etime As DateTime) As String

Dim mycommand As New OleDb.OleDbCommand("UPDATE EXAM SET

Exam.ExamDate=@Edate, Exam.ExamPlace=@Eplace, Exam.ExamTime=@Etime WHERE

Examid=@EID", OleDbConnectionl)

mycommand.Parameters.Add("@Edate", Edate)

mycommand.Parameters.Add("@Eplace", Eplace)

mycommand.Parameters.Add("@Etime", Etime)

mycommand.Parameters.Add("@EID", EID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to List All Students Who has entered an exam that's the input

<WebMethod()> _

Public Function ListExamStudents(ByVal CID As Integer, ByVal DID As

Integer) As Dataset

122

Dim myadapter As New OleDb.OleDbDataAdapter(" SELECT

Student.Studentid,Student.SNo,Student.name FROM Student INNER JOIN ((Course

INNER JOIN Exam ON Course.Courseid = Exam.Courseid) INNER JOIN CSR ON

Course.Courseid = CSR.Courseid) ON Student.Studentid = CSR.Studentid where

Exam.Courseid=@CID and Student.Departmentid=@DID;", OleDbConnectionl)

myadapter.SelectCornrnand.Parameters.Add("@CID", CID)

myadapter.SelectCornrnand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to Add Exam Results to selected Student

<WebMethod () >

Public Function ExamResults(ByVal SID As Integer, ByVal EID As Integer,

ByVal Result As Integer) As String

Dim mycornrnand As New OleDbCornrnand("INSERT INTO

ExamResults(Examid,Studentid,Result) VALUES(@Examid,@StudentID,@Result)",

OleDbConnectionl)

With mycornrnand.Parameters

.Add("@Examid", EID)

.Add ("@StudentID", SID)

.Add("@Result", Result)

End With

Try

OleDbConnectionl.Open()

mycornrnand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to List All Users

<WebMethod()> _

Public Function ListUsers(ByVal DID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter(" SELECT

Userid,UserName,IsAdrnin From Login where Departmentid=@DID",

OleDbConnectionl)

123

•

myadapter.SelectCommand.Parameters.Add("@DID", DID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to Update Selected User

<WebMethod()>

Public Function UpdateUser(ByVal DID As Integer, ByVal UID As Integer,

ByVal name As String, ByVal pass As String, ByVal admin As Boolean) As

String

'Update User

Dim mycommand As New OleDbCommand("UPDATE Login set UserName=@Name,

UserPassword=@Pass, IsAdmin=@Admin WHERE Departmentid=@DID and

UserID=@UID", OleDbConnectionl)

With mycommand.Parameters

.Add("@Name", name)

.Add("@Pass", pass)

. Add ("@Admin", admin)

.Add("@DID", DID)

.Add("@UID", UID)

End With

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message()

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to Delete Selected User

<WebMethod () > _

Public Function DeleteUser(ByVal UID As Integer) As String

Dim mycommand As New OleDbCommand("DELETE FROM LOGIN WHERE

Userid=@UID", OleDbConnectionl)

mycommand.Parameters.Add("@UID", UID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

124

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to Return Interest Rate

<WebMethod () > _

Public Function ReturnRate(ByVal DID As Integer) As Integer

Dim mycommand As New OleDbCommand("Select InterestRate from

Department Where Departmentid=@DID", OleDbConnectionl)

mycommand.Parameters.Add("@DID", DID)

Try

OleDbConnectionl.Open()

Return mycommand.ExecuteScalar()

Catch ex As Exception

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to Set Interest Rate for given Department

<WebMethod()> _

Public Function SetIRate(ByVal DID As Integer, ByVal Irate As Integer)

As String

Dim mycommand As New OleDbCommand("UPDATE Department SET

InterestRate=@Irate Where Departmentid=@DID", OleDbConnectionl)

mycommand.Parameters.Add("@Irate", Irate)

mycommand.Parameters.Add("@DID", DID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

125

'Fuction to List All installments for a given student and course

<WebMethod () >

Public Function Listinstallments(ByVal DID As Integer, ByVal SID As

Integer, ByVal CID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Installment.Installmentid, Course.CourseName, Installment.PaymentDate,

Installment.Price, Installment.IsPaid FROM Department INNER JOIN ((Student

INNER JOIN ((Course INNER JOIN CSR ON Course.Courseid = CSR.Courseid) INNER

JOIN PaySchedule ON Course.Courseid = PaySchedule.Courseid) ON

(Student.Studentid = PaySchedule.Studentid) AND (Student.Studentid

CSR.Studentid)) INNER JOIN Installment ON PaySchedule.Paymentid =

Installment.Paymentid) ON (Student.Departmentid = Department.Departmentid)

AND (Department.Departmentid = Course.Departmentid) where

Department.Departmentid=@DID and Student.Studentid=@SID and

Course.Courseid=@CID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

myadapter.SelectCommand.Parameters.Add("@CID", CID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to Update Paid Installment

<WebMethod () >

Public Function Payinstallment(ByVal IID As Integer) As String

Dim mycommand As New OleDbCommand("UPDATE Installment SET

Ispaid=True Where InstallmentID=@IID", OleDbConnectionl)

mycommand.Parameters.Add("@IID", IID)

Try

OleDbConnectionl.Open()

mycommand.ExecuteNonQuery()

Catch ex As Exception

Return ex.Message

Finally

OleDbConnectionl.Close()

End Try

End Function

'Fuction to List all Payments of a Student

126

<WebMethod()>

Public Function ListPayments(ByVal SID As Integer) As Dataset

Dim myadapter As New OleDbDataAdapter("SELECT Course.CourseName AS

COURSE, PaySchedule.Total AS TOTAL, PaySchedule.InAdvanced,

PaySchedule.NoOfinstallment AS INSTALLMENTS FROM Student INNER JOIN (Course

INNER JOIN PaySchedule ON Course.Courseid PaySchedule.Courseid) ON

Student.Studentid = PaySchedule.Studentid WHERE

((([Student]. [Studentid])=[@SID]));", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

'List Exam Results of Students For a Given Course

<WebMethod () > _

Public Function ListExamResults(ByVal CID As Integer) As Dataset

Dim myadapter As New OleDbDataAdapter("SELECT

Student.SNo,Student.Name,Student.Surname,ExamResults.Result FROM Student

INNER JOIN (Course INNER JOIN (Exam INNER JOIN ExamResults ON Exam.Examid

ExamResults.Examid) ON Course.Courseid = Exam.Courseid) ON

Student.Studentid = ExamResults.Studentid where Course.Courseid=@CID;",

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@CID", CID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

'List Exam Results of Students For a Given Course

<WebMethod () > _

Public Function ListExamResultsReport(ByVal CID As Integer) As

Dataset

Dim myadapter As New OleDbDataAdapter("SELECT

Student.SNo,Student.Name,Student.Surname,Course.CourseName,ExamResults.Resu

lt FROM Student INNER JOIN (Course INNER JOIN (Exam INNER JOIN ExamResults

ON Exam.Examid = ExamResults.Examid) ON Course.Courseid = Exam.Courseid) ON

127

Student.Studentid

OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@CID", CID)

Dim ds As New Dataset

myadapter.Fill(ds)

ExamResults.Studentid where Course.Courseid=@CID;",

Return ds

End Function

'List Courses of Students For

<WebMethod () > _
Public Function ListCoursesOfStudents(ByVal SID As Integer) As

Dataset

Dim myadapter As New OleDbDataAdapter("SELECT

Course.Courseid,Course.CourseName FROM Student INNER JOIN (Course INNER

JOIN CSR ON Course.Courseid = CSR.Courseid) ON Student.Studentid

CSR.Studentid Where Student.Studentid=@SID;", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return ds

End Function

'Fuction to List All installments for a given student and course for

detail form

<WebMethod () >

Public Function ListinstallmentsForDetail(ByVal DID As Integer, ByVal

SID As Integer, ByVal CID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Installment.PaymentDate, Installment.Price, Installment.IsPaid FROM

Department INNER JOIN ((Student INNER JOIN ((Course INNER JOIN CSR ON

Course.Courseid = CSR.Courseid) INNER JOIN PaySchedule ON Course.Courseid

PaySchedule.Courseid) ON (Student.Studentid = PaySchedule.Studentid) AND

(Student.Studentid = CSR.Studentid)) INNER JOIN Installment O

PaySchedule.Paymentid = Installment.Paymentid) ON (Student.Departmentid

Department.Departmentid) AND (Department.Departmentid =

Course.Departmentid) where Department.Departmentid=@DID and

Student.Studentid=@SID and Course.Courseid=@CID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

128

myadapter.SelectCommand.Parameters.Add("@CID", CID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

'Fuction to List All installments for a given student and course for

detail form

<WebMethod () > _
Public Function ListinstallmentsForReport(ByVal DID As Integer, ByVal

SID As Integer, ByVal CID As Integer) As Dataset

Dim myadapter As New OleDb.OleDbDataAdapter("SELECT

Installment.PaymentDate, Installment.Price,

Installment.IsPaid,Student.Name,Student.Surname FROM Department INNER JOIN

((Student INNER JOIN ((Course INNER JOIN CSR ON Course.Courseid

CSR.Courseid) INNER JOIN PaySchedule ON Course.Courseid =

PaySchedule.Courseid) ON (Student.Studentid = PaySchedule.Studentid) AND

(Student.Studentid = CSR.Studentid)) INNER JOIN Installment ON

PaySchedule.Paymentid = Installment.Paymentid) ON (Student.Departmentid

Department.Departmentid) AND (Department.Departmentid =

Course.Departmentid) where Department.Departmentid=@DID and

Student.Studentid=@SID and Course.Courseid=@CID", OleDbConnectionl)

myadapter.SelectCommand.Parameters.Add("@DID", DID)

myadapter.SelectCommand.Parameters.Add("@SID", SID)

myadapter.SelectCommand.Parameters.Add("@CID", CID)

Dim ds As New Dataset

myadapter.Fill(ds)

Return (ds)

End Function

End Class

129

APPENDIX B: DATABASE RELATIONSHIPS

130

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGMENTS

	Images
	Image 1

	Page 3
	Titles
	TABLE OF CONTENTS

	Page 4
	Page 5
	Titles
	ABSTRACT

	Page 6
	Titles
	INTRODUCTION

	Page 7
	Titles
	CHAPTER ONE
	1 .NET FRAMEWORK

	Images
	Image 1
	Image 2

	Page 8
	Page 9
	Titles
	4

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	CHAPTER TWO
	2. VISUAL BASIC.NET

	Page 11
	Page 12
	Titles
	7

	Page 13
	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Page 16
	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Titles
	$~=;"
	, .ŁŁ ""'°

	Images
	Image 1
	Image 2

	Page 19
	Titles
	14

	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	CHAPTER THREE
	3. OBJECT-ORIENTED PROGRAMMING

	Images
	Image 1

	Page 25
	Images
	Image 1
	Image 2

	Page 26
	Titles
	3.1.2 How an Application Responds To Events

	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1

	Page 28
	Titles
	CHAPTER FOUR
	4. MICROSOFT ACCESS

	Images
	Image 1

	Page 29
	Titles
	24

	Images
	Image 1
	Image 2
	Image 3

	Page 30
	Titles
	i----· I ----,··-------- .. ----·--·-·-···----·· . "'

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 31
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 32
	Images
	Image 1
	Image 2

	Page 33
	Titles
	CHAPTER FIVE
	5. ADO.NET

	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Titles
	! I dataset object, I

	Images
	Image 1
	Image 2

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 39
	Titles
	Common properties and methods of the Command class
	The OleDbConnection object that's used by the command to
	The text of the SQL command or the name of a stored procedure or
	Command Text
	Parameters
	,. T~e ??llectio11 ?f Pct~cl1!1~!~ES ?~~cl ~x t~~ ~?1!11!1'111~:
	Writing Code for OleDbCommand
	Before coming to writing code , the Connection, CommandText, Parameters properties
	OledbCommand can be created and executed by code only as shown below:
	34

	Images
	Image 1
	Image 2
	Image 3

	Page 40
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 41
	Images
	Image 1
	Image 2
	Image 3

	Page 42
	Page 43
	Images
	Image 1
	Image 2
	Image 3

	Page 44
	Images
	Image 1

	Page 45
	Titles
	CHAPTER SIX
	6. WEB SERVICES
	40

	Page 46
	Page 47
	Images
	Image 1
	Image 2

	Page 48
	Images
	Image 1
	Image 2
	Image 3

	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 50
	Images
	Image 1

	Page 51
	Titles
	46

	Images
	Image 1
	Image 2

	Page 52
	Images
	Image 1
	Image 2
	Image 3

	Page 53
	Images
	Image 1
	Image 2

	Page 54
	Titles
	49

	Page 55
	Titles
	CHAPTER SEVEN
	7. ASP.NET

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	Welcome to my first ASP.NET page
	58

	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	62
	Figures 7.7.3 Validators with Modified Messages
	Figures 7. 7 .2 Validators with Default Error Messages
	Address 2:1. ·~···. . J
	City:L-~.·--·····--·.. . J The City is required

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	CHAPTER EIGHT
	8. EDUCATIONAL ORGANIZATION SOFTWARE

	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Titles
	Lets see how a teacher is deleted in Figure 8.1.8
	Figure 8.1.8 Delete Teacher Form
	73

	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1
	Image 2

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Images
	Image 1
	Image 2
	Image 3

	Page 31
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 32
	Images
	Image 1
	Image 2

	Page 33
	Titles
	83

	Images
	Image 1
	Image 2

	Page 34
	Titles
	84

	Images
	Image 1
	Image 2

	Page 35
	Images
	Image 1
	Image 2

	Page 36
	Titles
	Figure 8.2.5 Shows the Payment Information page of the Student Information System.
	Figure 8.2.5 Payment Information Web Form
	86

	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2

	Page 39
	Images
	Image 1

	Page 40
	Titles
	CONCLUSION

	Images
	Image 1

	Page 41
	Titles
	REFERENCES

	Images
	Image 1

	Page 42
	Titles
	APPENDIX A: PROGRAM CODES
	Servicel .asmx
	92

	Images
	Image 1

	Page 43
	Titles
	93

	Images
	Image 1

	Page 44
	Titles
	94

	Images
	Image 1

	Page 45
	Titles
	95

	Images
	Image 1
	Image 2

	Page 46
	Titles
	96

	Images
	Image 1

	Page 47
	Titles
	"
	97

	Images
	Image 1

	Page 48
	Titles
	98

	Images
	Image 1

	Page 49
	Titles
	99

	Images
	Image 1

	Page 50
	Titles
	100

	Images
	Image 1

	Page 51
	Titles
	101

	Images
	Image 1

	Page 52
	Titles
	102

	Images
	Image 1

	Page 53
	Titles
	103

	Page 54
	Titles
	104

	Images
	Image 1

	Page 55
	Titles
	105

	Images
	Image 1

	Page 56
	Titles
	106

	Images
	Image 1

	Page 57
	Titles
	107

	Images
	Image 1

	Page 58
	Titles
	108

	Images
	Image 1

	Page 59
	Titles
	109

	Images
	Image 1

	Page 60
	Titles
	110

	Images
	Image 1

	Page 61
	Titles
	111

	Images
	Image 1

	Page 62
	Titles
	112

	Page 63
	Titles
	113

	Images
	Image 1
	Image 2

	Page 64
	Titles
	114

	Images
	Image 1

	Page 65
	Titles
	115

	Images
	Image 1

	Page 66
	Titles
	116

	Images
	Image 1

	Page 67
	Titles
	"
	117

	Images
	Image 1

	Page 68
	Titles
	118

	Page 69
	Titles
	119

	Page 70
	Titles
	120

	Page 71
	Titles
	121

	Page 72
	Titles
	122

	Page 73
	Titles
	123
	Ł

	Images
	Image 1
	Image 2
	Image 3

	Page 74
	Titles
	124

	Page 75
	Titles
	125

	Page 76
	Titles
	126

	Page 77
	Titles
	127

	Images
	Image 1

	Page 78
	Titles
	128

	Images
	Image 1
	Image 2

	Page 79
	Titles
	129

	Images
	Image 1

	Page 80
	Images
	Image 1

