
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

VETERINERIAN APPLICATION PROGRAM WITH
DELPHI

Graduation Project
COM400

Student: Ahmet KAYABA$ (20021329)

Supervisor: Mr. Elburus IMANOV

Lefko!ja-2007

TABLE OF CONTENT
TABLE OF CONTENT I

ACKNOWLEDGMENTS VI

ABSTRACT VII

INTRODUCTION [VIII

CHAPTER 1: DELPHI
1.1 Introduction to delphi 1
1.2 What is Delphi? 3
1.3 What kind of Programming can you do with Delphi? 4
1.4 Versions are there and How do they differ? 5
1.5 Some Knowledge About Delphi 7

1.5.2 Example: Try First Delphi Program 8
1.5.2 Delphi Style 10

1.6 How Delphi helps You Define Patterns 11
1.6.1 Delphi Examples of Design Patterns 11
1.6 .. 2 Pattern: Singleton 13

1.6.2.1 Definition 13
1.6.2.2 Applications in Delphi 13
1.6.2.3 Implementation Example 14

1.6.3 Pattern: Adapter 14
1.6.3.1 Definition 14
1.6.3.2 Applications in Delphi 14
1.6.3.3 Implementation Example 15

1.6.4 Pattern: Template Method 15
1.6.4.1 Definition 15
1.6.4.2 Applications in Delphi 15
1.6.4.3 A typical example of abstraction is the TGraphic class. 15
1.6.4.4 Implementation Example 16

1.6.5 Pattern: Builder 16

I

1.6.5.2 Applica6ons in Delphi 16
1.6.5.3 Implementation Example 17

1.6.6 Pattern: Abstract Factory 17
1.6.6.1 Definition 17

'
1.6.6.2 Applica6ons in Delphi 17
1.6.6.3 Implementation Example 17

1.6.7 Pattern: Factory Method 18
1.6.7.1 Definition 18
1.6.7.2 Applications in Delphi 1~

I

1.6.7.3 Implementation Example 18
1.7 Key elements of Delphi class definitions 19

1.7.1 Unit Structure 19

1.7.2 Class Interfaces 19
1. 7 .3 Properties 19
1. 7.4 Inheritance 19
1. 7.5 Abstract Methods 21

1. 7 .6 Messages 22
1.7.7 Events 22
1.7.8 Constructors and Destructors 22

1.8 The VCL to Applications Developers 23
1.8.1 The VCL to Component Writers 23
1.8.2 The VCL is made up of components 24
1.8.3 Component Types, structure, and VCL hierarchy 24
1.8.4 Component Types 25

1.8.4.1 Standard Components 25
1.8.4.2 Custom Components 26
1.8.4.3 Graphical Components 26
1.8.4.4 Non-Visual Components 26
1.8.4.5 Structure of a Component 27
1.8.4.6 Component Properties 27

1.9 Properties Provide Access, to Internal Storage Fields 27
1.9.1 Property-access methods 28
1.9.2 Types of properties 30

1.6.5.1 Definition 16

II

1.9.3 Methods 31

1.9.4 Events 31

1.9.5 Containership 32

1.9.6 Ownership 32

1.9.7 Parenthood 33

CHAPTER 2 :DATABASE 34

2.1 Demerits of Absence of Database 34

2.2 Merits of Database 35

23 Database Design 35

2.4 Database Models 36

2.4.1 Flat Model 37

2.4.2 Network Model 37

2.4.3 Relational Model 37
2.4.3.1 Why we use a Relational Database Design 38

2.5 Relationship Between Tables 39

2.5.2 One-To-One Relationships 39
2.5.3 One-To-Many Relationships 39

2.6 Data Modeling 40
i.6.1 Database Normalization 40

2.6.2 Primary Key 40
2.6.3 Foreign Key 41

2.6.4 Compound Key 42

CHAPTER 3 :MYSQL 43

3.1 Introducrtion to MySQL 43

3.2 What is MySQL? 43
3.2.1 Definition 43

3.3 Why Choose MySQL? 44
3.4 Preparing the Windows MySQL Environment 45

3.5 Starting the Server for the First Time 46
3.6 Connecting to and Disconnecting from Server 48

3.7 Entering Queries 49

III

CHAPTER 4 : USER MANUEL 54

CONCLUSION 76

APPENDIX 77

Forml Codes 77

Form2 Codes 82

Form3 Codes 84

Form4 Codes 87

Form5 Codes 89

Form6 Codes 91

Form7 Codes 94

Form8 Codes 95

Form9 Codes 96

FormlO Codes 100

Formll Codes 106

Form12 Codes 109

Form13 Codes 114

Form14 Codes 117

Form15 Codes 121

Form16 Codes 126

Form17 Codes 132

Form18 Codes 138

Form19 Codes 143

Form20 Codes 149

Form21 Codes 154

Form22 Codes 160

Form23 Codes 168

Form24 Codes 172

Form25 Codes 179

Form26 Codes 185

Form27 Codes 188

Form28 Codes 195

Form29 Codes 202

IV

Form30 Codes 209

Form31 Codes 211

Form32 Codes 214

Form33 Codes 219
Form34 Codes 224

Form35 Codes 229

Form36 Codes 232

Form37 Codes 236

Form38 Codes 238

Form39 Codes 240
Form40 Codes 241

Form41 Codes 244
Vetap Project Codes 250

Database Creation Codes 253

:{1}{}

V

ACKNOWLEDGMENT

When people start a new work they get excited.Because who do not know any thing

about the future of work. When a time passed human becomes familiar for this

work.Afterthat may be borred,maybe want to leave this work. That may be true maybe

false.It changes from people to people.But I believe that the important thing in the life do

not leave such who should embrace very tightly. When we get this it makes us happy.

In the life what is important for you.Business? Money? Science? Power? Family?

Love? Humanity? or purpose of existence? In my opinion first of all aim of existence

comes.Rest of all things involved in aim of existence.After that comes Love. The world exists

of love. With love person gets power, gains working perseverence .

Well in this project I gained perseverence from Allah and from my fiancee.l am

happy to complete the task which I had given with blessing of Allah and also I am grateful

to my fiancee and all the people in my life who have supported me, advised me. They all

the time helped and encouraged me to follow my dreams and ambitions.

For intellectual support, encouragement I want to thank to my supervisor Mr.

Elburus lmanov who made this project contributions.

And thank my dearest parents who supported me to continue beyond my

undergraduate studies, and also many thanks to my dear familiy who brought me till such

meaning days.

To all my friends, especially M.Fethullah Akatay, Selman Kayabas, Metin Yenigun ,

Kadir Bekiroglu and My dear fiancee for sharing wonderful moments, advice, and for

making me feel at home and in life. And above, I thank God for giving me stamina and

courage to achieve my objectives.

AHMET KAYABA~

VI

ABSTRACT

In the world not only human life is important.In the same time other entity lives with us.We

are not alone on the earth.Animals share life with us.Ilnesses are not only for human.In the
same time whole alive interested with illnesses.How Doctor is important for us like

Veterinerian is important for animals.Todays Doctors use application program.Because of

to keep knowledge of patient, to facility diagnosis of illness, to reach background of

patient efficiently and easly.

Well Veterinerian application program is important like the program that is used human

health.Also much more important then others.Because animal can not keep the illnesses

knowledge.And also papers of the animal can lost.

This project has as its goal to develop software, processing information about activities of a

veterinerian application software. Software developed in this project like not only for

animal.In the same time for staff and for owner of the animal.All records keep in the other

Database program.It acts easly and fast access.Veterinerian can keep all records in the

program as concentment.

VII

INTRODUCTION

Since human created by the powerful Allah, Human wonder everything.Well who tried to

satisfy wonder.Such humanity came to nowadays as develop.Todays everyone says

technology perfect developed.Yes that is right.By means of technology all process gained

velocity.This development acts to spend time to the people.

Technology is entered to every platform of our life human needed to combine both

software and hardware. Without software the machines are nothing. They need software to

operate.The automation is also became a part of our lives. The people operate with

automation systems in everywhere.

Veterinerian Application project which is my project.In this software veterinerian can keep

animal knowledge, patient background knowledge of the animal, owner of the animal

knowledge.With this software veterinerian will make record process easily and safetly.

In Software there are five types user.They can access to only their task process.In the

same time in the program veterinerian can get obligation as daily.The software can be used

at every animal clinic easly.

VIII

CHAPTER 1

DELPHI

1.1 INTRODUCTION TO DELPHI

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey

(the founders of the method) were particular happy. Since many of the early Delphi

studies focused on utilizing the technique to make forecasts of future occurrences, the

name was first applied by some others at Rand as a joke. However, the name stuck. The

resulting image of a priestess, sitting on a stool over a crack in the earth, inhaling sulfur

fumes, and making vague and jumbled statements that could be interpreted in many

different ways, did not exactly inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information

"sounds" so easy to do that many people have done "one" Delphi, but never a second.

Since the name gives no obvious insight into the method and since the number of

unsuccessful Delphi studies probably exceeds the successful ones, there has been a long

history of diverse definitions and opinions about the method. Some of these

misconceptions are expressed in statements such as the following that one finds in the

literature:

It is a method for predicting future events.

It is a method for generating a quick consensus by a group.

It is the use of a survey to collect information.

It is the use of anonymity on the part of the participants.

It is the use of voting to reduce the need for long discussions.

It is a method for quantifying human judgement in a group setting.

Some of these statements are sometimes true; a few (e.g. consensus) are actually

contrary to the purpose of a Delphi. Delphi is a communication structure aimed at

producing detailed critical examination and discussion, not at forcing a quick

I

compromise. Certainly quantification is a property, but only to serve the goal of quickly

identifying agreement and disagreement in order to focus attention. It is often very

common, even today, for people to come to a view of the Delphi method that reflects a

particular application with which they are familiar. In 1975 Linstone and Turoff

proposed a view of the Delphi method that they felt best summarized both the technique

and its objective:

"Delphi may be characterized as a method for structuring a group communication

process, so that the process is effective in allowing a group of individuals, as a whole, to

deal with complex problems." The essence of Delphi is structuring of the group

communication process. Given that there had been much earlier work on how to

facilitate and structure face-to-face meetings, the other important distinction was that

Delphi was commonly applied utilizing a paper and pencil communication process

among groups in which the members were dispersed in space and time. Also, Delphis

were commonly applied to groups of a size (30 to 100 individuals) that could not

function well in a face-to-face environment, even if they could find a time when they all

could get together.

Additional opportunity has been added by the introduction of Computer Mediated

Communication Systems (Hiltz and Turoff, 1978; Rice and Associates, 1984; Turoff,

1989; Turoff, 1991). These are computer systems that support group communications in

either a synchronous (Group Decision Support Systems, Desanctis et. al., 1987) or an

asynchronous manner (Computer Conferencing). Techniques that were developed and

refined in the evolution of the Delphi Method (e.g. anonymity, voting) have been

incorporated as basic facilities or tools in many of these computer based systems. As a

result, any of these systems can be used to carry out some form of a Delphi process or

Nominal Group Technique (Delbecq, et. al., 1975).

The result, however, is not merely confusion due to different names to describe the

same things; but a basic lack of knowledge by many people working in these areas as to

what was learned in the studies of the Delphi Method about how to properly employ

these techniques and their impact on the communication process. There seems to be a

great deal of "rediscovery" and repeating of earlier misconceptions and difficulties.

2

Given this situation, the primary objective of this chapter is to review the specific

properties and methods employed in the design and execution of Delphi Exercises and

to examine how they may best be translated into a computer based environment.

1.2 WHAT IS DELPHI?

Delphi is an object oriented, component based, visual, rapid development environment

for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market. The term "visual" describes Delphi very well. All of the user

interface development is conducted "in a What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers (the

previous versions of which went by the name "Turbo Pascal") from the company

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal

compilers that preceded it, Delphi is not just a compiler, but a complete development

environment. Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

3

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools What's more, the development environment itself is

extensible, and there are a number of add ins available to perform functions such as

memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications that will

run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tools.

This specialisation on one platform and one operating system, makes Delphi a very

strong tool. The code it generates runs very rapidly, and is very stable, once your own

bugs have been ironed out!

1.3 WHAT KIND OF PROGRAMMING CAN YOU DO WITH DELPHI?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

4

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.4 VERSIONS ARE THERE AND HOW DO THEY DIFFER?

Borland (as they were then) has a long tradition in the creation of high speed compilers.

One of their best known products was Turbo Pascal - a tool that many programmers cut

their teeth on. With the rise in importance of the Windows environment, it was only a

matter of time before development tools started to appear that were specific to this new

environment.

In the very beginning, Windows produced SDKs (software development kits) that were

totally non-visual (user interface development was totally separated from the

development of the actual application), and required great patience and some genius to

5

get anything working with. Whilst these tools slowly improved, they still required a

really good understanding of the inner workings of Windows.

To a great extent these criticisms were dispatched by the release of Microsoft's Visual

Basic product, which attempted to bring Windows development to the masses. It

achieved this to a great extent too, and remains a popular product today. However,it

suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers weren't so

keen!

Into this environment arrived the eye opening Delphi I product, and in many ways the

standard for visual development tools for Windows was set. This first version was a 16

bit compiler, and produced executable code that would run on Windows 3 .1 and

Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.

Delphi 2 was released quite soon after Delphi I, and in fact included a full distribution

of Delphi I on the same CD. Delphi 2, (and all subsequent versions) have been 32 bit

compilers, producing code that runs exclusively on 32bit Windows platforms. (We

ignore for simplicity the WIN32S DLLs which allow Win 3. lx to run some 32 bit

applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0) expected

shortly. In its latest version, Delphi has become somewhat feature loaded, and as a

result, we would argue, less stable than the earlier versions. However, in its defence,

Delphi (and Borland products in general) have always been more stable than their

competitors products, and the majority of Delphi 4's glitches are minor and forgivable -

6

just don't try and copy/paste a selection of your code, midway through a debugging

session!

The reasons for the version progression include the addition of new components,

improvements in the development environment, the inclusion of more internet related

support and improvements in the documentation. Delphi at version 4 is a very mature

product, and Inprise has always been responsive in developing the product in the

direction that the market requires it to go. Predominantly this means right now, the

inclusion of more and more Internet, Web and CORBA related tools and components - a

trend we are assured continues with the release of version 5. 0

For each version of Delphi there are several sub-versions, varying in cost and features,

from the most basic "Developer" version to the most complete (and expensive) "Client

Server" version. The variation in price is substantial, and if you are contemplating a

purchase, you should study the feature list carefully to ensure you are not paying for

features you will never use. Even the most basic "Developer" version contains the vast

majority of the features you are likely to need on a day to day basis. Don't assume that

you will need Client Server, simply because you are intending to write a large database

application - The developer edition is quitcapable ofthis.

1.5 SOME KNOWLEDGE ABOUT DELPHI

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

7

For the purposes of this series I will be using Delphi 7. There are more recent versions

available (2005 and 2006) however Delphi 7 should be available inexpensively

compared to the new versions which will set you back a lot of money. Delphi 7 will

more than likely be available in a magazine for free.

1.5.2 Example: Try First Delphi Program

First thing is first, fire up your copy of Delphi and open the Project> Options menu. To

compile a console application you need to change a setting on the Linker tab called

'Generate console application', check the box and click OK. Now select File > Close

All if anything is already loaded. Then select File > New > Other > Console

Application.

Notice the first line refers to the keyword program. You can rename this to Hello World.

You can also remove the commented portion enclosed in curly brackets.

The uses keyword allows you to list all units that you want to use in the program. At the

moment just leave it as it is, SysUtils is all we need.

Your unit should now look like this:

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

end.

Now what we have just done is written a program, it currently doesn't do a thing

however. Hit the run button and see the result. Now wasn't that completely worthless.

8

Luckily this isn't the end of the article so we'll actually have a worthwhile program at

the end of it. All we need to do is insert some code in the main procedure we have just

made.

Every good programmer's first program was 'Hello World' and you'll be no exception.

All we need to do is use the WriteLn procedure to write 'Hello World!' to the console,

simple.Notice the semicolon at the end of the line, at the end of any statement you need

to add a semicolon. Run the program and see the results ...

Now I don't know about you but I saw hello world flash up and go away in a second, if

you didn't write the program you wouldn't even know what it said. To solve this

problem we need to tell the program to leave the console open until the user is ready to

close it. We can use ReadLn for this which reads the users input from the console.

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!'+ #13#10 + #13#10 +

'Press RETURN to end ... ');

ReadLn;

end.

I have added a few extra things into the 'Hello World' string so the user knows what to

do to end the program as it could be a bit confusing. '#13#10' is to insert a carriage

9

return as 13 and 10 are the ASCII codes for a carriage return followed by a new line

feed. ASCII can be inserted in this way into strings.

1.5.2 Delphi Style

Coding style, the way you format your code and the way in which you present it on the

page.At the end of the day who cares about my style, I can read it, and Delphi strips all

the spaces out of it and doesn't care ifl indent. Why waste my time?

Neatly present code which conforms to the accepted standards not only makes your

code much easier for you to read and debug but also but any one else who might read

your code to help you, or learn from you can do so with ease. After all which code is

easier to follow, example 1 or 2?

Delphi Code:

II Example I

procedure xyzQ;

var

x,y,z,a:integer;

begin

x:=l;y:=2;

for z:=x toy do begin

a:=power(z,y);

showmessage(inttostr(a));

end;

10

end;

Delphi Code:

II Example 2

procedure XYZ();

var

X, Y,Z,A: Integer;

begin

X := 1;

y :=2;

for Z := X to Y do

begin

A := Power(Z, Y);

ShowMessage(IntT oStr(A));

end; II for end

end; II procedure end

Design patterns are frequently recurring structures and relationships in object-oriented

design. Getting to know them can help you design better, more reusable code and also

help you learn to design more complex systems.

Much of the ground-breaking work on design patterns was presented in the book Design

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson

and Vlissides. You might also have heard of the authors referred to as "the Gang of

Four". If you haven't read this book before and you're designing objects, it's an excellent

11

pnmer to help structure your design. To get the most out of these examples, I

recommend reading the book as well.

Another good source of pattern concepts is the book Object Models: Strategies, Patterns

and Applications by Peter Coad. Coad's examples are more business oriented and he

emphasises learning strategies to identify patterns in your own work.

1.6 HOW DELPHI HELPS YOU DEFINE PATTERNS

Delphi implements a fully object-oriented language with many practical refinements

that simplify development.

The most important class attributes from a pattern perspective are the basic inheritance

of classes; virtual and abstract methods; and use of protected and public scope. These

give you the tools to create patterns that can be reused and extended, and let you isolate

varying functionality from base attributes that are unchanging.

Delphi is a great example of an extensible application, through its component

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual

and abstract constructors and operations.

1.6.1 Delphi Examples of Design Patterns

I should note from the outset, there may be alternative or better ways to implement

these patterns and I welcome your suggestions on ways to improve the design. The

following patterns from the book Design, Patterns are discussed and illustrated m

Delphi to give you a starting point for implementing your own Delphi patterns.

Pattern Name

Singleton

Definition

"Ensure a class has only one instance, and provide a global point

of access to it."

"Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't
Adapter

12

Template Method

Builder

Abstract Factory

Factory Method

otherwise because of incompatible interfaces."

"Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the

algorithm's structure."

"Separate the construction of a complex object from its

representation so that the same construction process can create

different representations."

"Provide an interface for creating families of related or

dependant objects without specifying their concrete classes."

"Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory method lets a class

defer instantiation to subclasses."

Note: These definitions are taken from Design Patterns.

1.6.2 Pattern: Singleton

1.6.2.1 Definition

"Ensure a class has only one instance, and provide a global point of access to it."

This is one of the easiest patterns to implement.

1.6.2.2 Applications in Delphi

There are several examples of this sort of class in the Delphi VCL, such as

T Application, TScreen or TClipboard. The pattern is useful whenever you want a single

global object in your application. Other uses might include a global exception handler,

application security, or a single point of interface to another application.

13

1.6.2.3 Implementation Example

To implement a class of this type, override the constructor and destructor of the class to

refer to a global (interface) variable of the class.

Abort the constructor if the variable is assigned, otherwise create the instance and

assign the variable.

In the destructor, clear the variable if it refers to the instance being destroyed.

Note: To make the creation and destruction of the single instance automatic, include its

creation in the initialization section of the unit. To destroy the instance, include its

destruction in an Exitf'roc (Delphi 1) or in the finalization section of the unit (Delphi 2).

1.6.3 Pattern: Adapter

1.6.3.1 Definition

"Convert the interface of a class into another interface clients expect. Adapter lets

classes work together that couldn't otherwise because of incompatible interfaces."

1.6.3.2 Applications in Delphi

A typical example of this is the wrapper Delphi generates when you import a VBX or

OCX. Delphi generates a new class which translates the interface of the external control

into a Pascal compatible interface. Another typical case is when you want to build a

single interface to old and new systems.

Note Delphi does not allow class adaption through multiple inheritance in the way

described in Design Patterns. Instead, the adapter needs to refer to a specific instance of

the old class.

14

1.6.3.3 Implementation Example

The following example is a simple (read only) case of a new customer class, an adapter

class and an old customer class. The adapter illustrates handling the year 2000 problem,

translating an old customer record containing two digit years into a new date format.

The client using this wrapper only knows about the new customer class. Translation

between classes is handled by the use of virtual access methods for the properties. The

old customer class and adapter class are hidden in the implementation of the unit.

1.6.4 Pattern: Template Method

1.6.4.1 Definition

"Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template Method lets subclasses redefine certain steps of an algorithm without

changing the algorithm's structure."

This pattern is essentially an extension of abstract methods to more complex algorithms.

1.6.4.2 Applications in Delphi

Abstraction is implemented in Delphi by abstract virtual methods. Abstract methods

differ from virtual methods by the base class not providing any implementation. The

descendant class is completely responsible for implementing an abstract method.

Calling an abstract method that has not been overridden will result in a runtime error.

1.6.4.3 A typical example of abstraction is the TGraphic class.

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile. Other

developers have frequently used TGraphic as the basis for other graphics objects such as

PCX, GIF, JPG representations. TGraphic defines abstract methods such as Draw,

LoadFromFile and SaveToFile which are then overridden in the concrete classes. Other

objects that use TGraphic, such as a TCanvas only know about the abstract Draw

method, yet are used with the concrete class at runtime.

15

Many classes that use complex algorithms are likely to benefit from abstraction using

the template method approach. Typical examples include data compression, encryption

and advanced graphics processing.

1.6.4.4 Implementation Example

To implement template methods you need an abstract class and concrete classes for

each alternate implementation. Define a public interface to an algorithm in an abstract

base class. In that public method, implement the steps of the algorithm in calls to

protected abstract methods of the class. In concrete classes derived from the base class,

override each step of the algorithm with a concrete implementation specific to that

class.

1.6.5 Pattern: Builder

1.6.5.1 Definition

"Separate the construction of a complex object from its representation so that the same

construction process can create different representations."

A Builder seems similar in concept to the Abstract Factory. The difference as I see it is

the Builder refers to single complex objects of different concrete classes but containing

multiple parts, whereas the abstract factory lets you create whole families of concrete

classes. For example, a builder might construct a house, cottage or office. You might

employ a different builder for a brick house or a timber house, though you would give

them both similar instructions about the size and shape of the house. On the other hand

the factory generates parts and not the whole. It might produce a range of windows for

buildings, or it might produce a quite different range of windows for cars.

1.6.5.2 Applications in Delphi

The functionality used in Delphi's VCL to create forms and components is similar in

concept to the builder. Delphi creates forms using a common interface, through

Application.CreateForm and through the TForm class constructor. TForm implements a

16

common constructor using the resource information (DFM file) to instantiate the

components owned by the form. Many descendant classes reuse this same construction

process to create different representations. Delphi also makes developer extensions

easy. TForm's OnCreate event also adds a hook into the builder process to make the

functionality easy to extend.

1.6.5.3 Implementation Example

The following example includes a class TAbstractForrnBuilder and two concrete classes

TRedForrnBuilder and TBlueForrnBuilder. For ease of development some common

functionality of the concrete classes has been moved into the shared

T AbstractF orrnBuilder class.

1.6.6 Pattern: Abstract Factory

1.6.6.1 Definition

"Provide an interface for creating families of related or dependant objects without

specifying their concrete classes."

The Factory Method pattern below is commonly used in this pattern.

1.6.6.2 Applications in Delphi

This pattern is ideal where you want to isolate your application from the implementation

of the concrete classes. For example if you wanted to overlay Delphi's VCL with a

common VCL layer for both 16 and 32 bit applications, you might start with the

abstract factory as a base.

1.6.6.3 Implementation Example

The following example uses an abstract factory and two concrete factory classes to

implement different styles of user interface components. TOAbstractFactory is a

singleton class, since we usually want one factory to be used for the whole application.

17

At runtime, our client application instantiates the abstract factory with a concrete class

and then uses the abstract interface. Parts of the client application that use the factory

don't need to know which concrete class is actually in use.

1.6. 7 Pattern: Factory Method

l.6.7.1 Definition

"Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory method lets a class defer instantiation to subclasses."

The Abstact Factory pattern can be viewed as a collection of Factory Methods.

1.6.7.2 Applications in Delphi

This pattern is useful when you want to encapsulate the construction of a class and

isolate knowledge of the concrete class from the client application through an abstract

interface.

One example of this might arise if you had an object oriented business application

potentially interfacing to multiple target DBMS. The client application only wants to

know about the business classes, not about their implementation-specific storage and

retrieval.

1.6.7.3 Implementation Example

In the Abstract Factory example, each of the virtual widget constructor functions is a

Factory Method. In their implementation we define a specific widget cl,ass to return.

18

1. 7 KEY ELEMENTS OF DELPID CLASS DEFINITIONS

1.7.1 Unit Structure

Delphi units (.PAS files) allow declaration of interface and implementation sections.

The interface defines the part that is visible to other units using that unit. The keyword

uses can be added to a unit's interface or implementation section to list the other units

that your unit uses. This indicates to the compiler that your unit refers to parts of the

used unit's interface. Parts of a unit declared in the implementation section are all

private to that unit, i.e. never visible to any other unit. Types, functions and procedures

declared in the interface of a unit must have a corresponding implementation, or be

declared as external (e.g. a call to a function in a DLL).

1. 7 .2 Class Interfaces

Classes are defined as types in Delphi and may contain fields of standard data types or

other objects, methods declared as functions or procedures, and properties. The type

declaration of a class defines its interface and the scope of access to fields, methods and

properties of the class. Class interfaces are usually defined in the interface of a unit to

make them accessible to other modules using that unit. However they don't need to be.

Sometimes a type declaration of a class may be used only within the implementation

part of a unit.

1. 7 .3 Properties

Properties are a specialised interface to a field of a defined type, allowing access control

through read and write methods. Properties are not virtual, you can replace a property

with another property of the same name, but the parent class doesn't know about the

new property. It is however possible to make the access methods of a property virtual.

1. 7.4 Inheritance

Delphi's inheritance model is based on a single hierarchy. Every class inherits from

TObject and can have only one parent.

19

A descendant class inherits all of the interface and functionality of its parent class,

subject to the scope described below.

Multiple inheritance from more than one parent is not allowed directly. It can be

implemented by using a container class to create instances one or more other classes

and selectively expose parts of the contained classes.

Private, Protected, Public and Published ScopeScope refers to the visibility of methods

and data defined in the interface of a class, i.e. what parts of the class are accessible to

the rest of the application or to descendant classes.

The default scope is public, for instance the component instances you add to a form at

design time. Public says "come and get me"; it makes the data or method visible to

everything at runtime.

Published parts of a class are a specialized form of Public scope. They indicate special

behaviour for classes derived from Tf'ersistent. A persistent class can save and restore

its published properties to persistent storage using Delphi's standard streaming methods.

Published properties also interact with Delphi Object Inspector in the IDE. A class must

descend from TPersistent in order to use Published. There's also not much point in

publishing methods, since you can't store them, although Delphi's compiler doesn't stop

you. Published also lets another application access details of the class through Delphi's

runtime type information. This would be rarely used, except in Delphi's design time

interaction with its VCL.

Encapsulation or information hiding is essential to object orientation, so Protected and

Private scope let you narrow the access to parts of a class.

Protected parts are visible only to descendant classes, or to other classes defined in the

same unit.

Private parts are visible only to the defining class, or to other classes defined in the

same unit.

It's important to note that once something is given public or published scope, it cannot

be hidden in descendant classes.

20

Static, Virtual and Dynamic Methods; Override and Inherited

Methods declared as virtual or dynamic let you change their behaviour using override in

a descendant class. You're unlikely to see a virtual method in the private part of a class,

since it could only be overridden in the same unit, although Delphi's compiler doesn't

stop you from doing this.

Override indicates that your new method replaces the method of the same name from

the parent class. The override must be declared with the same name and parameters as

the original method.

When a method is overridden, a call to the parent class's method actually executes the

override method in the real class of the object.

Static methods on the other hand have no virtual or override declaration. You can

replace a method of a class in a descendant class by redeclaring another method,

however this is not object oriented. If you reference your descendant class as the parent

type and try to call the replaced method, the static method of the parent class is

executed. So in most cases, it's a bad idea to replace a static method.

Virtual and dynamic methods can be used interchangeably. They differ only in their

treatment by the compiler and runtime library. Delphi's help explains that dynamic

methods have their implementation resolved at compile time and run slightly faster,

whereas virtual methods are resolved at runtime, resulting in slightly slower access but

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help

suggests using dynamic when you have a base class with many descendants that may

not override the method.

The inherited directive lets you refer back to a property or method as it was declared in

the parent class. This is most often used in the implementation of an override method, to

call the inherited method of the parent class and then supplement its behaviour.

1. 7 .5 Abstract Methods

Abstract is used in base classes to declare a method in the interface and defer its

implementation to a descendant class. I.e. it defines an interface, but not the underlying

21

operation. Abstract must be used with the virtual or dynamic directive. Abstract

methods are never implemented in the base class and must be implemented in

descendant classes to be used. A runtime error occurs if you try to execute an abstract

method that is not overridden. Calling inherited within the override implementation of

an abstract method will also result in a runtime error, since there is no inherited

behaviour.

1. 7 .6 Messages

Delphi's handling of Windows messages is a special case of virtual methods. Message

handlers are implemented in classes that descend from TControl. Le classes that have a

handle and can receive messages. Message handlers are always virtual and can be

declared in the private part of a class interface, yet still allow the inherited method to be

called. Inherited in a message handler just uses the keyword inherited, there is no need

to supply the name of the method to call.

1. 7. 7 Events

Events are also an important characteristic of Delphi, since they let you delegate

extensible behaviour to instances of a class. Events are properties that refer to a method

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour ·

to let you use inherited in an event. . Inherited in an event handler just uses the keyword

inherited, there is no need to supply the name of the method to call.

Events are particularly important to component developers, since they provide a hook

for the user of the component to modify its behaviour in a way that may not be foreseen

at the time the component is written.

1.7.S Constructors and Destructors

The constructor and destructor are two special types of methods, The constructor

initializes a class instance (allocates memory initialized to 0) and returns a reference

(pointer) to the object. The destructor deallocates memory used by the object (but not

the memory of other objects created by the object).

22

Classes descended from TObject have a static constructor, Create, and a virtual

destructor Destroy.

TConiponent introduces a new public property, the Owner of the component and this

must be initialized in the constructor. TComponent's constructor is declared virtual, i.e.

it can be overridden in descendant classes.It is essential when you override a virtual

constructor or destructor in a TComponent descendant to include a call to the inherited

method.

1.8 THE VCL TO APPLICATIONS DEVELOPERS

Applications Developers create complete applications by interacting with the Delphi

visual environment (as mentioned earlier, this is a concept nonexistent in many other

frameworks). These people use the VCL to create their user-interface and the other

elements of their application: database connectivity, data validation, business rules, etc ..

Applications Developers should know which properties, events, and methods each

component makes available. Additionally, by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

applications by extending components or creating new ones. Then they can maximize

the capabilities of these components, and create better applications.

1.8.1 The VCL to Component Writers

Component Writers expand on the existing VCL, either by developing new components,

or by increasing the functionality of existing ones. Many component writers make their

components available for Applications Developers to use.

A Component Writer must take their knowledge of the VCL a step further than that of

the Application Developer. For example, they must know whether to write a new

component or to extend an existing one when the need for a certain characteristic arises.

This requires a greater knowledge of the VCL's inner workings.

23

1.8.2 The VCL is made up of components

Components are the building blocks that developers use to design the user-interface and

to provide some non-visual capabilities to their applications. To an Application

Developer, a component is an object most commonly dragged from the Component

palette and placed onto a form. Once on the form, one can manipulate the component's

properties and add code to the component's various events to give the component a

specific behavior. To a Component Writer, components are objects in Object Pascal

code. Some components encapsulate the behavior of elements provided by the system,

such as the standard Windows 95 controls. Other objects introduce entirely new visual

or non-visual elements, in which case the component's code makes up the entire

behavior of the component.

The complexity of different components varies widely. Some might be simple while

others might encapsulate a elaborate task. There is no limit to what a component can do

or be made up of You can have a very simple component like a TLabel, or a much

more complex component which encapsulates the complete functionality of a

spreadsheet.

1.8.3 Component Types, structure, and VCL hierarchy

Components are really just special types of objects. In fact, a component's structure is

based on the rules that apply to Object Pascal. There are three fundamental keys to

understanding the VCL.

First, you should know the special characteristics of the four basic component types:

standard controls, custom controls, graphical controls and non-visual components.

Second, you must understand the VCL structure with which components are built. This

really ties into your understanding of Object Pascal's implementation. Third, you should

be familiar with the VCL hierarchy and you should also know where the four

component types previously mentioned fit into the VCL hierarchy. The following

paragraphs will discuss each of these keys to understanding the VCL.

24

1.8.4 Component Types

As a component writer, there four primary types of components that you will work with

in Delphi: standard controls, custom controls, graphical controls, and non-visual

components. Although these component types are primarily of interest to component

writers, it's not a bad idea for applications developers to be familiar with them. They are

the foundations on which applications are built.

1.8.4.1 Standard Components

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox and Tedit, for example. You will find

these components on the Standard page of the Component Palette. These components

are Windows' common controls with Object Pascal wrappers around them.

Each standard component looks and works like the Windows' common control which it

encapsulates. The VCL wrapper's simply makes the control available to you in the form

of a Delphi component-it doesn't define the common control's appearance or

functionality, but rather, surfaces the ability to modify a control's

appearance/functionality in the form of methods and properties. If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS.PAS.

If you want to use these standard components unchanged, there is no need to understand

how the VCL wraps them. If, however, you want to extend or change one of these

components, then you must understand how the Window's common control is wrapped

by the VCL into a Delphi component.

For example, the Windows class LISTBOX can display the list box items in multiple

columns. This capability, however, isn't surfaced by Delphi's TListBox component

(which encapsulates the Windows LISTBOX class). (TListBox only displays items in a

single column.) Surfacing this capability requires that you override the default creation

of the TListBox component.

25

This example also serves to illustrate why it is important for Applications Developers to

understand the VCL. Just knowing this tidbit of information helps you to identify where

enhancements to the existing library of components can help make your life easier and

more productive.

1.8.4.2 Custom components

Unlike standard components, custom components are controls that don't already have a

method for displaying themselves, nor do they have a defined behavior. The Component

Writer must provide to code that tells the component how to draw itself and determines

how the component behaves when the user interacts with it. Examples of existing

custom components are the TPanel and TStringGrid components.

It should be mentioned here that both standard and custom components are windowed

controls. A "windowed control" has a window associated with it and, therefore, has a

window handle. Windowed controls have three characteristics: they can receive the

input focus, they use system resources, and they can be parents to other controls.

(Parents is related to containership, discussed later in this paper.) An example of a

component which can be a container is the TPanel component.

1.8.4.3 Graphical components

Graphical components are visual controls which cannot receive the input focus from the

user. They are non-windowed controls. Graphical components allow you to display

something to the user without using up any system resources; they have less "overhead"

than standard or custom components. Graphical components don't require a window

handle-thus, they cannot can't get focus. Some examples of graphical components are

the TLabel and TShape components.

Graphical components cannot be containers of other components. This means that they

cannot own other components which are placed on top of them.

1.8.4.4 Non-visual components

Non-visual components are components that do not appear on the form as controls at

run-time. These components allow you to encapsulate some functionality of an entity

26

within an object. You can manipulate how the component will behave, at design-time,

through the Object Inspector. Using the Object Inspector, you can modify a non-visual

component's properties and provide event handlers for its events. Examples of such

components are the TOpenDialog, TTable, and TTimer components.

1.8.4.5 Structure of a component

All components share a similar structure. Each component consists of common

elements that allow developers to manipulate its appearance and function via properties,

methods and events. The following sections in this paper will discuss these common

elements as well as talk about a few other characteristics bf components which don't

apply to all components.

1.8.4.6 Component properties

Properties provide an extension of an object's fields. Unlike fields, properties do not

store data: they provide other-capabilities. For example, properties may use methods to

read or write data to an object field to which the user has no access. This adds a certain

level of protection as to how a given field is assigned data. Properties also cause "side

effects" to occur when the user makes a particular assignment to the property. Thus

what appears as a simple field assignment to the component user could trigger a

complex operation to occur behind the scenes.

1.9 PROPERTIES PROVIDE ACCESS TO INTERNAL STORAGE FIELDS

There are two ways that properties provide access to internal storage fields of

components: directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

FMaxLength: Integer;

protected

procedure SetMaxLength(Value: Integer);

27

published

property MaxLength: Integer read

FMaxLength write SetMaxLength default O;

end;

The code above is snippet of the TCustomEdit component class. TCustomEdit is the

base class for edit boxes and memo components such as TEdit, and TMemo.

TCustomEdit has an internal field FMaxLength of type Integer which specifies the

maximum length of characters which the user can enter into the control. The user

doesn't directly access the FMaxLength field to specify this value. Instead, a value is

added to this field by making an assignment to the MaxLength property.

The property MaxLength provides the access to the storage field FMaxLength. The

property definition is comprised of the property name, the property type, a read

declaration, a write declaration and optional default value.

The read declaration specifies how the property is used to read the value of an internal

storage field. For instance, the MaxLength property has direct read access to

FMaxLength. The write declaration for MaxLength shows that assignments made to the

MaxLength property result in a call to an access method which is responsible for

assigning a value to the FMaxLength storage field. This access method is

SetMaxLength.

1.9.1 Property-access methods

Access methods take a single parameter of the same type as the property. One of the

primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

28

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the SetMaxLength method below.

procedure TCustomEdit. SetMaxLength(Value: Integer);

begin

if FMaxLength <> Value then

begin

FMaxLength := Value;

if HandleAllocated then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

The code in the SetMaxLength method checks if the user is assigning the same value as

that which the property already holds. This is done as a simple optimization. The

method then assigns the new value to the internal storage field, FMaxLength.

Additionally, the method then sends an EM_ LIMITTEXT Windows message to the

window which the TCustomEdit encapsulates. The EM_ LIMITTEXT message places a

limit on the amount of text that a user can enter into an edit control. This last step is

what is referred to as a side-effect when assigning property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

Providing access to internal storage fields through property access methods offers the

advantage that the Component Writer can modify the implementation of a class without

modifying the interface. It is also possible to have access methods for the read access of

a property. The read access method might, for example, return a type which is different

that that of a properties storage field. For instance, it could return the string

representation of an integer storage field.

29

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.9.2 Types of properties

Properties can be of the standard data types defined by the Object Pascal rules. Property

types also determine how they are edited in Delphi's Object Inspector. The table below

shows the different property types as~ they are defined in Delphi's online help.

Property type Object Inspector treatment

Numeric, character, and string properties appear in the Object Inspector

as numbers, characters, and strings, respectively. The user can type and

edit the value of the property directly.

Properties of enumerated types (including Boolean) display the value as

defined in the source code The user can cycle through the possible
Enumerated

values by double-clicking the value column There is also a drop-down

list that shows all possible values of the enumerated type.

Simple

Set

Properties of set types appear in the Object Inspector looking like a set

By expanding the set, the user can treat each element of the set as a

Boolean value True if the element is included in the set or False if it's

not included.

Properties that are themselves objects often have their own property

editors However, if the object that is a property also has published

properties, the Object Inspector allows the user to expand the list of

object properties and edit them individually Object properties must

descend from TPersistent.

Array properties must have their own property editors. The Object

Inspector has no built-in support for editing array properties.

Object

Array

For more information on properties, refer to the "Component Writers Guide" which

ships with Delphi.

30

1.9.3 Methods

Since components are really just objects, they can have methods. We will discuss some

of the more commonly used methods later in this paper when we discuss the different

levels of the VCL hierarchy.

1.9.4 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

Components contain special properties called events to which the component user

assigns code. This code will be executed whenever a certain event occurs. For instance,

if you look at the events page of a TEdit component, you'll see such events as

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

When the user of a component assigns code to one of those events, the user's code is

referred to as an event handler. For example, by double clicking on the events page for a

particular event causes Delphi to generate a method and places you in the Code Editor

where you can add your code for that method. An example of this is shown in the code

below, which is an OnClick event for a TButton component.

It becomes clearer that events are method pointers when you assign an event handler to

an event programmatically. The above example was Delphi generated code. To link

your own an event handler to a TButton's OnClick event at run time you must first

create a method that you will assign to this event. Since this is a method, it must belong

to an existing object. This object can be the form which owns the TButton component

although it doesn't have to be. In fact, the event handlers which Delphi creates belong to

the form on which the component resides. The code below illustrates how you would

create an event handler method.

When you define methods for event handlers, these methods must be defined as the

same type as the event property and the field to ~hich the event property refers. For

31

instance, the OnClick event refers to an internal data field, FOnClick. Both the property

OnClick, and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvent = procedure (Sender: TObject) of object;

Note the use of the of object specification. This tells the compiler that the procedure

definition is actually a method and performs some additional logic like ensuring that an

implicit Self parameter is also passed to this method when called. Self is just a pointer

reference to the class to which a method belongs.

1.9.5 Containership

Some components in the VCL can own other components as well as be parents to other

components. These two concepts have a different meaning as will be discussed in the

section to follow.

1.9.6 Ownership

All components may be owned by other components but not all components can own

other components. A component's Owner property contains a reference to the

component which owns it.

The basic responsibility of the owner is one of resource management. The owner is

responsible for freeing those components which it owns whenever it is destroyed.

Typically, the form owns all components which appear on it, even if those components

are placed on another component such as a TPanel. At design-time, the form

automatically becomes the owner for components which you place on it. At run-time,

when you create a component, you pass the owner as a parameter to the component's

constructor. For instance, the code below shows how to create a TButton component at

run-time and passes the form's implicit Self variable to the TButton's Create constructor.

TButton. Create will then assign whatever is passed to it, in this case Self or rather the

form, and assign it to the button's Owner property.

MyButton := TButton.Create(self);

32

When the form that now owns this TButton component gets freed, MyButton will also

be freed.

You can create a component without an owner by passing nil to the component's Create

constructor, however, you must ensure that the component is freed when it is no longer

needed. The code below shows you how to do this for a TTable component.

1.9. 7 Parenthood

Parenthood is a much different concept from ownership. It applies only to windowed

components, which can be parents to other components. Later, when we discuss the

VCL hierarchy, you will see the level in the hierarchy which introduces windowed

controls.

Parent components are responsible for the display of other components. They call the

appropriate methods internally that cause the children components to draw themselves.

The Parent property of a component refers to the component which is its parent. Also, a

component's parent does not have to be it's owner. Although the parent component is

mainly responsible for the display of components, it also frees children components

when it is destroyed.

Windowed components are controls which are visible user interface elements such as

edit controls, list boxes and memo controls. In order for a windowed component to be

displayed, it must be assigned a parent on which to display itself. This task is done

automatically by Delphi's design-time environment when you drop a component from

the Component Palette onto your form.

33

CHAPTER2

DATABASE

Every thing around us has a particular identity. To identify anything system, actor or

person in words we need a data or information. So this information is valuable and in

this advanced era we can store it in database and access this data by the blink of eye.

For an instant if we go through the definitions of database we may find following

definitions.

A database is a collection of related information.

A database is an organized body of related information.

2.1 DEMERITS OF ABSENCE OF DAT ABASE

A glance on the past will may help us to reveal the drawbacks in case of

absence of database.

In the past when there wasn't proper system of database, Much paper work was need to

do and to handle great deal of written paper documentation was giant among the

problems itself.

In the huge networks to deal with equally bulky data, more workers are needed which

affidavit cost much labor expanses.

The old criteria for saving data and making identification was much time consuming

such as if we want to search the particular data of a person.

Before the Development of Computer database it was a great problem to search for

some thing. Efforts to avoid the headache of search often results in new establishments

of data.

34

Before the development of database it seemed very unsafe to keep the worthy

information. In Some situation some big organization had to employee the special

persons in order to secure the data.

Before the implementation of database any firm had to face the plenty of difficulties in

order to maintain their Management. To hold the check on the expenses of the firm, the

manager faced difficulties.

2.2 MERITS OF DATABASE

The modem era is known as the golden age computer sciences and technology. In a

simple phrase we can express that the modem age is built on the foundation of database.

If we carefully watch our daily life we can examine that some how our daily life is

being connected with database.

There are several benefits of database developments.

Now with the help of computerized database we can access data in a second.

By the development of the database we can make data more secure.

By the development of database we can reduce the cost.

2.3 DATABASE DESIGN

The design of a database has to do with the way data is stored and how that data is

related. The design process is performed after you determine exactly what information

needs to be stored and how it is to be retrieved.

A collection of programs that enables you to store, modify, and extract information

from a database. There are many different types of DBMS ranging from small systems

that run on personal computers to huge systems that run on mainframes. The following

are examples of database applications:

Computerized library systems

35

Automated teller machines

Flight reservation systems

Computerized parts inventory systems

From a technical standpoint, DBMS can differ widely. The terms relational, network,

flat, and hierarchical all refer to the way a DBMS organizes information internally. The

internal organization can affect how quickly and flexibly you can extract information.

Requests for information from a database are made in the form of a query.

Database design is a complex subject. A properly designed database is a model of a

business, Country Database or some other in the real world. Like their physical model

counterparts, data models enable you to get answers about the facts that make up the

objects being modeled. It's the questions that need answers that determine which facts

need to be stored in the data model.

In the relational model, data is organized in tables that have the following

characteristics: every record has the same number of facts, every field contains the same

type of facts (Data) in each record, and there is only one entry for each fact. No two

records are exactly the same.

The more carefully you design, the better the physical database meets users' needs. In

the process of designing a complete system, you must consider user needs from a

variety of viewpoints.

2.4 DATABASE MODELS

Various techniques are used to model data structures. Certain models are more easily

implemented by some types of database management systems than others. For any one

logical model various physical implementation may be possible. An example of this is

the relational model: in larger systems the physical implementation often has indexes

which point to the data; this is similar to some aspects of common implementations of

the network model. But in small relational database the data is often stored in a set of

36

files, one per table, in a flat, un-indexed structure. There is some confusion below and

elsewhere in this article as to logical data model vs. its physical implementation.

2.4.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data elements,

where all members of a given column are assumed to be similar values, and all

members of a row are assumed to be related to one another. For instance, columns for

name and password might be used as a part of a system security database. Each row

would have the specific password associated with a specific user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is the basis of the

spreadsheet.

2.4.2 Network Model

The network model allows multiple datasets to be used together through the use of

pointers (or references). Some columns contain pointers to different tables instead of

data. Thus, the tables are related by references, which can be viewed as a network

structure. A particular subset of the network model, the hierarchical model, limits the

relationships to a tree structure, instead of the more general directed graph structure

implied by the full network model.

2.4.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Cod in 1970 as

a way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

Although the basic idea of a relational database has been very popular, relatively few

people understand the mathematical definition and only a few obscure DBMSs

implement it completely and without extension. Oracle, for example, can be used in a

purely relational way, but it also allow tables to be defined that allow duplicate rows an

extension (or violation) of the relational model. In common English usage, a DBMS is

37

called relational if it supports relational operational operations, regardless of whether it

enforces strict adherence to the relational model. The following is an informal, not

technical explanation of how "relational" database management systems commonly

work.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. However, unlike network databases, the tables are not linked by

pointers. Instead, keys are used to match up rows of data in different tables. A key is

just one or more columns in one table that correspond to columns in other tables. Any

column can be a key, or: multiple columns can be grouped together into a single key.

Unlike pointers, it's not necessary to define all the keys in advance; a column can be

used as a key even if it wasn't originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to row; this is defined as

the table's primary key.

When a key consists of data that has an external, real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature

key is suitable, an arbitrary key can be assigned (such as by given employees ID

numbers). In practice, most databases have both generated and natural keys, because

generated keys can be used internally to create links between rows that can't break,

while natural keys can be used, less reliably, for searches and for integration with other

databases. (For example, records in two independently developed databases could be

matched up by social security number, except when the social security numbers are

incorrect, missing, or have changed).

2.4.3.1 Why we use a Relational Database Design

Maintaining a simple, so-called flat database consisting of a single table doesn't require

much knowledge of database theory. On the other hand, most database worth

maintaining are quite a bit more complicated than that. Real life databases often have

hundreds of thousands or even millions of records, with data that are very intricately

related. This is where using a full-fledged relational database program becomes

essential. Consider, for example, the Library of Congress, which has over 16 million

38

books in its collection. For reasons that will become apparent soon, a single table

simply will not do for this database.

2.5 RELATIONSHIPS BETWEEN TABLES

When you create tables for an application, you should also consider the relationships

between them. These relationships give a relational database much of its power. There

are three types of relationships between tables: one-to-one, one-to-many and many-to

many relationships.

2.5.2 One-To-One Relationships

In a one-to-one relationship, each record in one table corresponds to a single record in a

second table. This relationship is not very common, but it can offer several benefits.

First, you can put the fields from both tables into a single, combined table. One reason

for using two tables is that each field is a property of a separate entity, such as owner

operators and their tracks. Each operator can operate just one truck at a time, but the

fields for the operator and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table by

placing some of the table's columns in a second, separate table. This approach makes

particular sense when a table has some fields that are used infrequently. Finally, a one

to-one relationship can support in a table requires security, placing them in a separate

table lets your application restrict to certain fields. Your application can link the

restricted table back to the main table via a one-to-one relationship so that people with

proper permissions can edit, delete, and add new records to these fields.

2.5.3 One-To-Many Relationships

A one-to-many relationship, in which a row from one table corresponds to one or more

rows from a second table, is more common. This kind of relationship can form the basis

for a Marty-To-Many relationship as well.

39

2.6 DATA MODELING

In information system design, data modeling is the analysis and design of the

information in the system, concentrating on the logical entities and the logical

.dependencies between these entities. Data modeling is an abstraction activity in that the

details of the values of individual data observations are ignored in favor of the structure,

relationships, names and formats of the data of interest, although a list of valid values is

frequently recorded. It is by the data model that definitions of what the data means is

related to the data structures.

While a common term for this activity is "Data Analysis" the activity actually has more

in common with the ideas and methods of synthesis (putting things together), than it

does in the original meaning of the term analysis (taking things apart). This is because

the activity strives to bring the data structures of interest together in a cohesive,

inseparable, whole by eliminating unnecessary data redundancies and relating data

structures by relationships.

2.6.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design that

allows for consistent storage and efficient access of data in a relational database. These

steps reduce data redundancy and the risk of data becoming inconsistent.

However, many relational DBMS lack sufficient separation between the logical

database design and the physical implementation of the data store, such that queries

against a fully normalized database often perform poorly. In this case de-normalizations

are sometimes used to improve performance, at the cost of reduced consistency.

2.6.2 Primary Key

In database design, a primary key is a value that can be used to identify a particular row

in a table. Attributes are associated with it. Examples are names in a telephone book (to

look up telephone numbers), words in a dictionary (to look up definitions) and Dewey

Decimal Numbers (to look up books in a library).

40

In the relational model of data, a primary key is a candidate key chosen as the main

method of uniquely identifying a relation. Practical telephone books, dictionaries and

libraries can not use names, words or Dewey Decimal System Numbers as candidate

keys because they do not uniquely identify telephone numbers, word definitions or

books. In some design situations it is impossible to find a natural key that uniquely

identifies a relation. A surrogate key can be used as the primary key. In other situations

there may be more than one candidate key for a relation, and no candidate key is

obviously preferred. A surrogate key may be used as the primary key to avoid giving

one candidate key artificial primacy over the others. In addition to the requirement that

the primary key be a candidate key, there are several other factors which may make a

particular choice of key better than others for a given relation.

The primary key should generally be short to minimize the amount of data that needs to

be stored by other relations that reference it. A compound key is usually not

appropriate. (However, this is a design consideration, and some database management

systems may be better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed during

the course of normal operations of the database. (Recall that a primary key is the means

of uniquely identifying a tuple, and that identity by definition, never changes.) This

avoids the problem of dangling references or orphan records created by other relations

referring to a tuple whose primary key has changed. If the primary key is immutable,

this can never happen.

2.6.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that points to a

key field of another database record in another table where the foreign key of one table

refers to the primary key of the other table. This way references can be made to link

information together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a book in

the e-mail. Instead, they can include the ISBN of the book, and interested persons can

then use the number to get information about the book, or even the book itself The

ISBN is the primary key of the book, and it is used as a foreign key in the e-mail.

41

Note that using a foreign key often assumes its existence as a primary key somewhere

else. Improper foreign key/primary key relationships are the source of many database

problems.

2.6.4 Compound Key

In database design, a compound key (also called a composite key) is a key that consists

on 2 or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within the

data model. This means that any one, none or all, of the multiple attributes within the

compound key can be foreign keys. Indeed, a foreign key may, itself, be a compound

key.

Compound keys almost always originate from attributive or associative entities (tables)

within the model, but this is not an absolute value.

42

CHAPTER3

MYSQL

3.1 INTRODUCTION TO MYSQL

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql

client program to create and use a simple database. mysql (sometimes referred to as the

"terminal monitor" or just "monitor") is an interactive program that allows you to connect to

a MySQL server, run queries, and view the results. mysql may also be used in batch mode:

you place your queries in a file beforehand, then tell mysql to execute the contents of the file.

Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is

available to which you can connect. If this is not true, contact your MySQL administrator.

(If you are the administrator, you will need to consult other sections of this manual.)

This chapter describes the entire process of setting up and using a database. If you are

interested only in accessing an already-existing database, you may want to skip over the

sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily left out. Consult the

relevant sections of the manual for more information on the topics covered here.

3.2 WHAT IS MYSQL?

3.2.1 Definition
MySQL is an open source software relational database management system (RDBMS)

which

uses a SQL (Structured Query Language)

43

SQL is the standard language used for interacting with databases.

3.3 WHY CHOOSE ~YSQL?

There are many relational databases available to use, so why choose MySQL?

We are specifically interested in databases which PHP supports; these include Oracle,

IBM's DB2 and Microsoft's SQL Server (all of which cost money).

The two main open source (free) alternatives to these are PostgreSQL and MySQL.

PostgreSQL is arguably the better of the two, but MySQL is better

supported on Windows, and is a popular choice among Web hosts that provide

support for PHP.

Here are some ofMySQL's advantages

• It's fast

• It's free to use, and commercial licenses are reasonable

• It's easy to use

• It is cross platform

• There is a wide community of technical support

• It's secure

• It supports large databases

• It is designed specifically for web base applications and hence works very well

partnered with PHP

44

3.4 PREPARING THE WINDOWS MYSQL ENVIRONMENT

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the

MySQL- Max server binaries. Here is a list of the different MySQL servers you can use:

mysqld Compiled with full debugging and automatic memory allocation
checking, symbolic links, hmoDB and DBD tables.

my sq I-opt Optimized binary with no support for transactional tables.

mysqld-nt
Optimized binary for NT with support for named pipes. You can run
this version on Win98, but in this case no named pipes are created
and you must have TCP/IP installed.

mysqld-max Optimized binary with support for symbolic links, InnoDB and DBD
tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

All of the above binaries are optimized for the Pentium Pro processor but should work on

any Intel processor >=i386

In the following circumstance, you will need to use the MySQL configuration file:

• The install/data directories are different than the default 'c:\mysql' and 'c:\mysql\data'.

• If you want to use one of these servers:

mysqld.exe

mysqld-max. exe

mysqld-max-nt.exe

• If you need to tune the server settings.

45

There are two configuration files with the same function: 'my.cnf' and 'my.ini' file,

however, only one of these can/should be used. Both files are plain text. The 'rny.cnf" file

should be created in the root directory of drive C and the 'my.ini' file in the WinDir

directory e.g.: C:\WINDOWS or C:\WINNT. If your PC uses a boot loader where the C

drive isn't the boot drive, then your only option is to use the 'my.ini' file. Also note that if

you use the WinMySQLAdmin tool, only the

'my.ini' file is used. The '\mysql\bin' directory contains a help file with instructions for

using this tool.

Using Notepad, create the configuration file and edit the base section and keys:

[mysqld]

basedir = the_install__path # e.g. 'c:\mysql'

datadir = the_data_path # e.g. 'c:\mysql\data' or 'd:\mydata\data'

If the data directory is other than the default 'c:\mysql\data', you must cut the whole

'\data\mysql' directory and paste it on the your option new directory, e.g. 'd:\mydata\mysql'.

If you want to use the InnoDB transaction tables, you need to manually create two new

directories to hold the InnoDB data and log files, e.g. 'c:\ibdata' and 'c:\iblogs'. You will

also need to create some extra lines to the configuration file.

If you don't want to use, add the skip-innodb option to the configuration file.

Now you are ready to test starting the server.

3.5 STARTING THE SERVER FOR THE FIRST TIME

Testing from a DOS command prompt is the best thing to do because the server prints

messages, so if something is wrong with your configuration, you will see a more accurate

error message which will make it easier to identify and fix any problems.

46

Make sure you're in the right directory (C:\>cd \mysql\bin),

To install mysqld as a standalone program, enter:

C: \mysql\bin> mysqld-max --standalone

You should see the below print messages:

Inn,:,[;,I: Th.;, r t rr t :,i:·-,,,~i:ti.;,,:\ ,:be,. fil-,, ·.il .. :l.:-..t:-..··.il: .. :bt.:-d ,:li,:l n,:,t .;,:-:i.,t
Inn,:,C:•I:
Inn,:, l•I:
Inn,:,C:•I:
Inn,:, [)I:
Inn,:,DI
Inn,:,DI:
Inn,:,DI:
Ln n.o DI:
Inn,:,C:•I:
Inn,:,C:•I:
Inn,:,DI·
Inn,:,[;,I:
Inn,:,C:·I:
U 11,:.,:.::.;;

.:, n.;,·., ,:L, t ~d:,.:-..:c.,, t ·=· l:•.;, ,: r.,, :, t..;, ,:l 1
;?.;,ttin~-- :t il.;, ·~ \il:·,:l:,t:,··il:,.:\:,t:,1 ::;iz.,, t,:, :.::u::•: l[,:.::•:n:,
[;,::, t:,.1:·:,.,:,-,, I·h:::, i·:.:,11:· ·.,Tit . .;,., t h-s :t il-,, :tull - . .-~•.it
L•:•·s' :til.;, \il:·l•:•\'::-:\il:·_l,:, fil.,,•:• ,:li•:l not .,,:-:i::,t. 11.,,·_, r.» 1:,-,, ,:r.;,~,t.,,,:\
;,i.;,ttin~-- 1,:,.:, r i i , ,: \it·l·=· .,\it,_l,:··s·:t i1.,,,:, :,i:::.;, t,:, •c: 1.;;.,.::.::,,, .. :.,
L•>\·· :ti 1-,, \i 1:·l<•\<< -, .. i l.-; l,:, f i 1.,, 1 ,:li•:l n,:,t .;,:-:i::,t. n.;,·., t.,:, 1:,-,, ,: r.;,.:, t-,,,:l
;,i.;,t.t.in~-- 1,:,.:, fil.;, ,: \il:,l,:, .,··-.il:,_l,:,;--:t il.,,1 :ci:::.;, t,:, .-:: 1.;;.,.::.:::::,~,
L·>·;·· :til.;, \il:·l·>·~--,:;\il:·_l,:, fil.,,:.:: ,:lid nct -,,:--.i,:-,t. n.;,·., t.,:, 1:,.,, ,:r.;,~,t-,,,:l
;,:.;, t. t. t.n ; 1.: . .:,· ti 1.;. ·= · .. il:·l·=· ., · .. it,_ 1,:,·;·:t il-,,:.:: :, i:::.;, t-·=· .:, 1.;;.c.::.::,,,.~.·
C:•,:,ul:,1.,,·.:rit..,, t,uf:t-,,r not, f ,un,:l ,: r.;,:,t.in.:,· n.;,·_.,-
[; .. :, ul.. 1.,,-_.-r it . .;, 1:,uf :t.;, r ,: r -,,::-,, t . .;, ,:l
-:.r-,,:,tin\' f,:.r.,,i·s·-:i1 ~-:.;,:· ,:,:,n,:-,t.r::,.int .,::.,t.,,::. t:<.1:,1.,,:c
f,:,r.,,L;;n ~:.,,:· ,:,:,n,:-,t.r~,.int. .,::.,t..;,::. t.:,1:,1.,,,, ,: r.;,:,t . .;,,:l
1,:, .r,·:: :.::c rnnc.t-t ;":'-t.:,.rt..,,,:l

To install mysql as a service (Windows 2000), enter:

C: \mysql\bin> mysqld-nt --install

Now you can start and stop mysqld as follows:

C:\>NET START MySQL C:\>NET STOP MySQL

C:\>NET START MySQL

To start the MySQL Monitor, enter:

The MySql service is starting.

The MySQL service was started successfully.

C:\>cd \mysql

C: \mysql>bin\mysql

Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id

47

is 1 to server version 3.23.49-nt Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> (enter a command or enter 'QUIT' to quit)

mysql> QUIT Bye

C: \mysql> NET STOP MySQL The MySQL service is stopping.

The MySQL service was stopped successfully.

C:\mysql>

3.6 CONNECTING TO AND DISCONNECTING FROM THE SERVER

To connect to the server, you'll usually need to provide a MySQL user name when you

invoke mysql and, most likely, a password. If the server runs on a machine other than the one

where you log in, you'll also need to specify a hostname. Contact your administrator to find

out what connection parameters you should use to connect (that is, what host, user name, and

password to use). Once you know the proper parameters, you should be able to connect like

this:

shell> mysql -h host -u user -p

Enter password: ********

The******** represents your password; enter it when mysql displays the Enter password:

prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p

Enter password: ********

Welcome to the MySQL monitor. Commands end with; or \g. Your MySQL connection id

is 459 to server version: 3.22.20a-log

48

Type 'help' for help.

mysql>

The prompt tells you that mysql is ready for you to enter commands.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the

server running on the local host. If this is the case on your machine, you should be able to

connect to that server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT at the

mys qi>

prompt: mysql> QUIT Bye

You can also disconnect by pressing Control-D.

Most examples in the following sections assume you are connected to the server. They

indicate this by the mysql> prompt.

3.7 ENTERING QUERIES

Make sure you are connected to the server, as discussed in the previous section. Doing so

will not in itself select any database to work with, but that's okay. At this point, it's more

important to find out a little about how to issue queries than to jump right in creating tables,

loading data into them, and retrieving data from them. This section describes the basic

principles of entering commands, using several queries you can try out to familiarize

yourself with how mysql works.

Here's a simple command that asks the server to tell you its version number and the current

date. Type it in as shown below following the mysql> prompt and hit the RETURN key:

mysql> SELECT VERSION(), CURRENT DATE;

49

versioru) CURRENT DATE

3 .22.20a-102: 1999-03-19

row in set (0.01 sec)

mysql>

This query illustrates several things about mysql:

A command normally consists of a SQL statement followed by a semicolon. (There are some

exceptions where a semicolon is not needed. QUIT, mentioned earlier, is one of them. We'll

get to others later.)

When you issue a command, mysql sends it to the server for execution and displays the

results, then prints another mysql> to indicate that it is ready for another command.

Mysql displays query output as a table (rows and columns). The first row contains labels for

the columns. The rows following are the query results. Normally, column labels are the

names of the columns you fetch from database tables. If you're retrieving the value of an

expression rather than a table column (as in the example just shown), mysql labels the

column using the expression itself

Mysql shows how many rows were returned and how long the query took to execute, which

gives you a rough idea of server performance. These values are imprecise because they

represent wall clock time (not CPU or machine time), and because they are affected by

factors such as server load and network latency. (For brevity, the "rows in set" line is not

shown in the remaining examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSIONO, CURRENT_DATE; mysql> select versioni), current_date;
mysql> SELECT VERSIONO, current_DATE;
mysql> SELECT SIN(PI0/4), (4+ 1) *5;

The commands shown thus far have been relatively short, single-line statements. You can

even enter multiple statements on a single line. Just end each one with a semicolon:

50

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

VETERINERIAN APPLICATION PROGRAM WITH
DELPHI

Graduation Project
COM400

Student: Ahmet KAYABA$ (20021329)

Supervisor: Mr. Elburus IMANOV

Lefko!ja-2007

TABLE OF CONTENT
TABLE OF CONTENT I

ACKNOWLEDGMENTS VI

ABSTRACT VII

INTRODUCTION [VIII

CHAPTER 1: DELPHI
1.1 Introduction to delphi 1
1.2 What is Delphi? 3
1.3 What kind of Programming can you do with Delphi? 4
1.4 Versions are there and How do they differ? 5
1.5 Some Knowledge About Delphi 7

1.5.2 Example: Try First Delphi Program 8
1.5.2 Delphi Style 10

1.6 How Delphi helps You Define Patterns 11
1.6.1 Delphi Examples of Design Patterns 11
1.6 .. 2 Pattern: Singleton 13

1.6.2.1 Definition 13
1.6.2.2 Applications in Delphi 13
1.6.2.3 Implementation Example 14

1.6.3 Pattern: Adapter 14
1.6.3.1 Definition 14
1.6.3.2 Applications in Delphi 14
1.6.3.3 Implementation Example 15

1.6.4 Pattern: Template Method 15
1.6.4.1 Definition 15
1.6.4.2 Applications in Delphi 15
1.6.4.3 A typical example of abstraction is the TGraphic class. 15
1.6.4.4 Implementation Example 16

1.6.5 Pattern: Builder 16

I

1.6.5.2 Applica6ons in Delphi 16
1.6.5.3 Implementation Example 17

1.6.6 Pattern: Abstract Factory 17
1.6.6.1 Definition 17

'
1.6.6.2 Applica6ons in Delphi 17
1.6.6.3 Implementation Example 17

1.6.7 Pattern: Factory Method 18
1.6.7.1 Definition 18
1.6.7.2 Applications in Delphi 1~

I

1.6.7.3 Implementation Example 18
1.7 Key elements of Delphi class definitions 19

1.7.1 Unit Structure 19

1.7.2 Class Interfaces 19
1. 7 .3 Properties 19
1. 7.4 Inheritance 19
1. 7.5 Abstract Methods 21

1. 7 .6 Messages 22
1.7.7 Events 22
1.7.8 Constructors and Destructors 22

1.8 The VCL to Applications Developers 23
1.8.1 The VCL to Component Writers 23
1.8.2 The VCL is made up of components 24
1.8.3 Component Types, structure, and VCL hierarchy 24
1.8.4 Component Types 25

1.8.4.1 Standard Components 25
1.8.4.2 Custom Components 26
1.8.4.3 Graphical Components 26
1.8.4.4 Non-Visual Components 26
1.8.4.5 Structure of a Component 27
1.8.4.6 Component Properties 27

1.9 Properties Provide Access, to Internal Storage Fields 27
1.9.1 Property-access methods 28
1.9.2 Types of properties 30

1.6.5.1 Definition 16

II

1.9.3 Methods 31

1.9.4 Events 31

1.9.5 Containership 32

1.9.6 Ownership 32

1.9.7 Parenthood 33

CHAPTER 2 :DATABASE 34

2.1 Demerits of Absence of Database 34

2.2 Merits of Database 35

23 Database Design 35

2.4 Database Models 36

2.4.1 Flat Model 37

2.4.2 Network Model 37

2.4.3 Relational Model 37
2.4.3.1 Why we use a Relational Database Design 38

2.5 Relationship Between Tables 39

2.5.2 One-To-One Relationships 39
2.5.3 One-To-Many Relationships 39

2.6 Data Modeling 40
i.6.1 Database Normalization 40

2.6.2 Primary Key 40
2.6.3 Foreign Key 41

2.6.4 Compound Key 42

CHAPTER 3 :MYSQL 43

3.1 Introducrtion to MySQL 43

3.2 What is MySQL? 43
3.2.1 Definition 43

3.3 Why Choose MySQL? 44
3.4 Preparing the Windows MySQL Environment 45

3.5 Starting the Server for the First Time 46
3.6 Connecting to and Disconnecting from Server 48

3.7 Entering Queries 49

III

CHAPTER 4 : USER MANUEL 54

CONCLUSION 76

APPENDIX 77

Forml Codes 77

Form2 Codes 82

Form3 Codes 84

Form4 Codes 87

Form5 Codes 89

Form6 Codes 91

Form7 Codes 94

Form8 Codes 95

Form9 Codes 96

FormlO Codes 100

Formll Codes 106

Form12 Codes 109

Form13 Codes 114

Form14 Codes 117

Form15 Codes 121

Form16 Codes 126

Form17 Codes 132

Form18 Codes 138

Form19 Codes 143

Form20 Codes 149

Form21 Codes 154

Form22 Codes 160

Form23 Codes 168

Form24 Codes 172

Form25 Codes 179

Form26 Codes 185

Form27 Codes 188

Form28 Codes 195

Form29 Codes 202

IV

Form30 Codes 209

Form31 Codes 211

Form32 Codes 214

Form33 Codes 219
Form34 Codes 224

Form35 Codes 229

Form36 Codes 232

Form37 Codes 236

Form38 Codes 238

Form39 Codes 240
Form40 Codes 241

Form41 Codes 244
Vetap Project Codes 250

Database Creation Codes 253

:{1}{}

V

ACKNOWLEDGMENT

When people start a new work they get excited.Because who do not know any thing

about the future of work. When a time passed human becomes familiar for this

work.Afterthat may be borred,maybe want to leave this work. That may be true maybe

false.It changes from people to people.But I believe that the important thing in the life do

not leave such who should embrace very tightly. When we get this it makes us happy.

In the life what is important for you.Business? Money? Science? Power? Family?

Love? Humanity? or purpose of existence? In my opinion first of all aim of existence

comes.Rest of all things involved in aim of existence.After that comes Love. The world exists

of love. With love person gets power, gains working perseverence .

Well in this project I gained perseverence from Allah and from my fiancee.l am

happy to complete the task which I had given with blessing of Allah and also I am grateful

to my fiancee and all the people in my life who have supported me, advised me. They all

the time helped and encouraged me to follow my dreams and ambitions.

For intellectual support, encouragement I want to thank to my supervisor Mr.

Elburus lmanov who made this project contributions.

And thank my dearest parents who supported me to continue beyond my

undergraduate studies, and also many thanks to my dear familiy who brought me till such

meaning days.

To all my friends, especially M.Fethullah Akatay, Selman Kayabas, Metin Yenigun ,

Kadir Bekiroglu and My dear fiancee for sharing wonderful moments, advice, and for

making me feel at home and in life. And above, I thank God for giving me stamina and

courage to achieve my objectives.

AHMET KAYABA~

VI

ABSTRACT

In the world not only human life is important.In the same time other entity lives with us.We

are not alone on the earth.Animals share life with us.Ilnesses are not only for human.In the
same time whole alive interested with illnesses.How Doctor is important for us like

Veterinerian is important for animals.Todays Doctors use application program.Because of

to keep knowledge of patient, to facility diagnosis of illness, to reach background of

patient efficiently and easly.

Well Veterinerian application program is important like the program that is used human

health.Also much more important then others.Because animal can not keep the illnesses

knowledge.And also papers of the animal can lost.

This project has as its goal to develop software, processing information about activities of a

veterinerian application software. Software developed in this project like not only for

animal.In the same time for staff and for owner of the animal.All records keep in the other

Database program.It acts easly and fast access.Veterinerian can keep all records in the

program as concentment.

VII

INTRODUCTION

Since human created by the powerful Allah, Human wonder everything.Well who tried to

satisfy wonder.Such humanity came to nowadays as develop.Todays everyone says

technology perfect developed.Yes that is right.By means of technology all process gained

velocity.This development acts to spend time to the people.

Technology is entered to every platform of our life human needed to combine both

software and hardware. Without software the machines are nothing. They need software to

operate.The automation is also became a part of our lives. The people operate with

automation systems in everywhere.

Veterinerian Application project which is my project.In this software veterinerian can keep

animal knowledge, patient background knowledge of the animal, owner of the animal

knowledge.With this software veterinerian will make record process easily and safetly.

In Software there are five types user.They can access to only their task process.In the

same time in the program veterinerian can get obligation as daily.The software can be used

at every animal clinic easly.

VIII

CHAPTER 1

DELPHI

1.1 INTRODUCTION TO DELPHI

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey

(the founders of the method) were particular happy. Since many of the early Delphi

studies focused on utilizing the technique to make forecasts of future occurrences, the

name was first applied by some others at Rand as a joke. However, the name stuck. The

resulting image of a priestess, sitting on a stool over a crack in the earth, inhaling sulfur

fumes, and making vague and jumbled statements that could be interpreted in many

different ways, did not exactly inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information

"sounds" so easy to do that many people have done "one" Delphi, but never a second.

Since the name gives no obvious insight into the method and since the number of

unsuccessful Delphi studies probably exceeds the successful ones, there has been a long

history of diverse definitions and opinions about the method. Some of these

misconceptions are expressed in statements such as the following that one finds in the

literature:

It is a method for predicting future events.

It is a method for generating a quick consensus by a group.

It is the use of a survey to collect information.

It is the use of anonymity on the part of the participants.

It is the use of voting to reduce the need for long discussions.

It is a method for quantifying human judgement in a group setting.

Some of these statements are sometimes true; a few (e.g. consensus) are actually

contrary to the purpose of a Delphi. Delphi is a communication structure aimed at

producing detailed critical examination and discussion, not at forcing a quick

I

compromise. Certainly quantification is a property, but only to serve the goal of quickly

identifying agreement and disagreement in order to focus attention. It is often very

common, even today, for people to come to a view of the Delphi method that reflects a

particular application with which they are familiar. In 1975 Linstone and Turoff

proposed a view of the Delphi method that they felt best summarized both the technique

and its objective:

"Delphi may be characterized as a method for structuring a group communication

process, so that the process is effective in allowing a group of individuals, as a whole, to

deal with complex problems." The essence of Delphi is structuring of the group

communication process. Given that there had been much earlier work on how to

facilitate and structure face-to-face meetings, the other important distinction was that

Delphi was commonly applied utilizing a paper and pencil communication process

among groups in which the members were dispersed in space and time. Also, Delphis

were commonly applied to groups of a size (30 to 100 individuals) that could not

function well in a face-to-face environment, even if they could find a time when they all

could get together.

Additional opportunity has been added by the introduction of Computer Mediated

Communication Systems (Hiltz and Turoff, 1978; Rice and Associates, 1984; Turoff,

1989; Turoff, 1991). These are computer systems that support group communications in

either a synchronous (Group Decision Support Systems, Desanctis et. al., 1987) or an

asynchronous manner (Computer Conferencing). Techniques that were developed and

refined in the evolution of the Delphi Method (e.g. anonymity, voting) have been

incorporated as basic facilities or tools in many of these computer based systems. As a

result, any of these systems can be used to carry out some form of a Delphi process or

Nominal Group Technique (Delbecq, et. al., 1975).

The result, however, is not merely confusion due to different names to describe the

same things; but a basic lack of knowledge by many people working in these areas as to

what was learned in the studies of the Delphi Method about how to properly employ

these techniques and their impact on the communication process. There seems to be a

great deal of "rediscovery" and repeating of earlier misconceptions and difficulties.

2

Given this situation, the primary objective of this chapter is to review the specific

properties and methods employed in the design and execution of Delphi Exercises and

to examine how they may best be translated into a computer based environment.

1.2 WHAT IS DELPHI?

Delphi is an object oriented, component based, visual, rapid development environment

for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market. The term "visual" describes Delphi very well. All of the user

interface development is conducted "in a What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers (the

previous versions of which went by the name "Turbo Pascal") from the company

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal

compilers that preceded it, Delphi is not just a compiler, but a complete development

environment. Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

3

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools What's more, the development environment itself is

extensible, and there are a number of add ins available to perform functions such as

memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications that will

run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tools.

This specialisation on one platform and one operating system, makes Delphi a very

strong tool. The code it generates runs very rapidly, and is very stable, once your own

bugs have been ironed out!

1.3 WHAT KIND OF PROGRAMMING CAN YOU DO WITH DELPHI?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

4

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.4 VERSIONS ARE THERE AND HOW DO THEY DIFFER?

Borland (as they were then) has a long tradition in the creation of high speed compilers.

One of their best known products was Turbo Pascal - a tool that many programmers cut

their teeth on. With the rise in importance of the Windows environment, it was only a

matter of time before development tools started to appear that were specific to this new

environment.

In the very beginning, Windows produced SDKs (software development kits) that were

totally non-visual (user interface development was totally separated from the

development of the actual application), and required great patience and some genius to

5

get anything working with. Whilst these tools slowly improved, they still required a

really good understanding of the inner workings of Windows.

To a great extent these criticisms were dispatched by the release of Microsoft's Visual

Basic product, which attempted to bring Windows development to the masses. It

achieved this to a great extent too, and remains a popular product today. However,it

suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers weren't so

keen!

Into this environment arrived the eye opening Delphi I product, and in many ways the

standard for visual development tools for Windows was set. This first version was a 16

bit compiler, and produced executable code that would run on Windows 3 .1 and

Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.

Delphi 2 was released quite soon after Delphi I, and in fact included a full distribution

of Delphi I on the same CD. Delphi 2, (and all subsequent versions) have been 32 bit

compilers, producing code that runs exclusively on 32bit Windows platforms. (We

ignore for simplicity the WIN32S DLLs which allow Win 3. lx to run some 32 bit

applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0) expected

shortly. In its latest version, Delphi has become somewhat feature loaded, and as a

result, we would argue, less stable than the earlier versions. However, in its defence,

Delphi (and Borland products in general) have always been more stable than their

competitors products, and the majority of Delphi 4's glitches are minor and forgivable -

6

just don't try and copy/paste a selection of your code, midway through a debugging

session!

The reasons for the version progression include the addition of new components,

improvements in the development environment, the inclusion of more internet related

support and improvements in the documentation. Delphi at version 4 is a very mature

product, and Inprise has always been responsive in developing the product in the

direction that the market requires it to go. Predominantly this means right now, the

inclusion of more and more Internet, Web and CORBA related tools and components - a

trend we are assured continues with the release of version 5. 0

For each version of Delphi there are several sub-versions, varying in cost and features,

from the most basic "Developer" version to the most complete (and expensive) "Client

Server" version. The variation in price is substantial, and if you are contemplating a

purchase, you should study the feature list carefully to ensure you are not paying for

features you will never use. Even the most basic "Developer" version contains the vast

majority of the features you are likely to need on a day to day basis. Don't assume that

you will need Client Server, simply because you are intending to write a large database

application - The developer edition is quitcapable ofthis.

1.5 SOME KNOWLEDGE ABOUT DELPHI

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

7

For the purposes of this series I will be using Delphi 7. There are more recent versions

available (2005 and 2006) however Delphi 7 should be available inexpensively

compared to the new versions which will set you back a lot of money. Delphi 7 will

more than likely be available in a magazine for free.

1.5.2 Example: Try First Delphi Program

First thing is first, fire up your copy of Delphi and open the Project> Options menu. To

compile a console application you need to change a setting on the Linker tab called

'Generate console application', check the box and click OK. Now select File > Close

All if anything is already loaded. Then select File > New > Other > Console

Application.

Notice the first line refers to the keyword program. You can rename this to Hello World.

You can also remove the commented portion enclosed in curly brackets.

The uses keyword allows you to list all units that you want to use in the program. At the

moment just leave it as it is, SysUtils is all we need.

Your unit should now look like this:

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

end.

Now what we have just done is written a program, it currently doesn't do a thing

however. Hit the run button and see the result. Now wasn't that completely worthless.

8

Luckily this isn't the end of the article so we'll actually have a worthwhile program at

the end of it. All we need to do is insert some code in the main procedure we have just

made.

Every good programmer's first program was 'Hello World' and you'll be no exception.

All we need to do is use the WriteLn procedure to write 'Hello World!' to the console,

simple.Notice the semicolon at the end of the line, at the end of any statement you need

to add a semicolon. Run the program and see the results ...

Now I don't know about you but I saw hello world flash up and go away in a second, if

you didn't write the program you wouldn't even know what it said. To solve this

problem we need to tell the program to leave the console open until the user is ready to

close it. We can use ReadLn for this which reads the users input from the console.

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!'+ #13#10 + #13#10 +

'Press RETURN to end ... ');

ReadLn;

end.

I have added a few extra things into the 'Hello World' string so the user knows what to

do to end the program as it could be a bit confusing. '#13#10' is to insert a carriage

9

return as 13 and 10 are the ASCII codes for a carriage return followed by a new line

feed. ASCII can be inserted in this way into strings.

1.5.2 Delphi Style

Coding style, the way you format your code and the way in which you present it on the

page.At the end of the day who cares about my style, I can read it, and Delphi strips all

the spaces out of it and doesn't care ifl indent. Why waste my time?

Neatly present code which conforms to the accepted standards not only makes your

code much easier for you to read and debug but also but any one else who might read

your code to help you, or learn from you can do so with ease. After all which code is

easier to follow, example 1 or 2?

Delphi Code:

II Example I

procedure xyzQ;

var

x,y,z,a:integer;

begin

x:=l;y:=2;

for z:=x toy do begin

a:=power(z,y);

showmessage(inttostr(a));

end;

10

end;

Delphi Code:

II Example 2

procedure XYZ();

var

X, Y,Z,A: Integer;

begin

X := 1;

y :=2;

for Z := X to Y do

begin

A := Power(Z, Y);

ShowMessage(IntT oStr(A));

end; II for end

end; II procedure end

Design patterns are frequently recurring structures and relationships in object-oriented

design. Getting to know them can help you design better, more reusable code and also

help you learn to design more complex systems.

Much of the ground-breaking work on design patterns was presented in the book Design

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson

and Vlissides. You might also have heard of the authors referred to as "the Gang of

Four". If you haven't read this book before and you're designing objects, it's an excellent

11

pnmer to help structure your design. To get the most out of these examples, I

recommend reading the book as well.

Another good source of pattern concepts is the book Object Models: Strategies, Patterns

and Applications by Peter Coad. Coad's examples are more business oriented and he

emphasises learning strategies to identify patterns in your own work.

1.6 HOW DELPHI HELPS YOU DEFINE PATTERNS

Delphi implements a fully object-oriented language with many practical refinements

that simplify development.

The most important class attributes from a pattern perspective are the basic inheritance

of classes; virtual and abstract methods; and use of protected and public scope. These

give you the tools to create patterns that can be reused and extended, and let you isolate

varying functionality from base attributes that are unchanging.

Delphi is a great example of an extensible application, through its component

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual

and abstract constructors and operations.

1.6.1 Delphi Examples of Design Patterns

I should note from the outset, there may be alternative or better ways to implement

these patterns and I welcome your suggestions on ways to improve the design. The

following patterns from the book Design, Patterns are discussed and illustrated m

Delphi to give you a starting point for implementing your own Delphi patterns.

Pattern Name

Singleton

Definition

"Ensure a class has only one instance, and provide a global point

of access to it."

"Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't
Adapter

12

Template Method

Builder

Abstract Factory

Factory Method

otherwise because of incompatible interfaces."

"Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the

algorithm's structure."

"Separate the construction of a complex object from its

representation so that the same construction process can create

different representations."

"Provide an interface for creating families of related or

dependant objects without specifying their concrete classes."

"Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory method lets a class

defer instantiation to subclasses."

Note: These definitions are taken from Design Patterns.

1.6.2 Pattern: Singleton

1.6.2.1 Definition

"Ensure a class has only one instance, and provide a global point of access to it."

This is one of the easiest patterns to implement.

1.6.2.2 Applications in Delphi

There are several examples of this sort of class in the Delphi VCL, such as

T Application, TScreen or TClipboard. The pattern is useful whenever you want a single

global object in your application. Other uses might include a global exception handler,

application security, or a single point of interface to another application.

13

1.6.2.3 Implementation Example

To implement a class of this type, override the constructor and destructor of the class to

refer to a global (interface) variable of the class.

Abort the constructor if the variable is assigned, otherwise create the instance and

assign the variable.

In the destructor, clear the variable if it refers to the instance being destroyed.

Note: To make the creation and destruction of the single instance automatic, include its

creation in the initialization section of the unit. To destroy the instance, include its

destruction in an Exitf'roc (Delphi 1) or in the finalization section of the unit (Delphi 2).

1.6.3 Pattern: Adapter

1.6.3.1 Definition

"Convert the interface of a class into another interface clients expect. Adapter lets

classes work together that couldn't otherwise because of incompatible interfaces."

1.6.3.2 Applications in Delphi

A typical example of this is the wrapper Delphi generates when you import a VBX or

OCX. Delphi generates a new class which translates the interface of the external control

into a Pascal compatible interface. Another typical case is when you want to build a

single interface to old and new systems.

Note Delphi does not allow class adaption through multiple inheritance in the way

described in Design Patterns. Instead, the adapter needs to refer to a specific instance of

the old class.

14

1.6.3.3 Implementation Example

The following example is a simple (read only) case of a new customer class, an adapter

class and an old customer class. The adapter illustrates handling the year 2000 problem,

translating an old customer record containing two digit years into a new date format.

The client using this wrapper only knows about the new customer class. Translation

between classes is handled by the use of virtual access methods for the properties. The

old customer class and adapter class are hidden in the implementation of the unit.

1.6.4 Pattern: Template Method

1.6.4.1 Definition

"Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template Method lets subclasses redefine certain steps of an algorithm without

changing the algorithm's structure."

This pattern is essentially an extension of abstract methods to more complex algorithms.

1.6.4.2 Applications in Delphi

Abstraction is implemented in Delphi by abstract virtual methods. Abstract methods

differ from virtual methods by the base class not providing any implementation. The

descendant class is completely responsible for implementing an abstract method.

Calling an abstract method that has not been overridden will result in a runtime error.

1.6.4.3 A typical example of abstraction is the TGraphic class.

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile. Other

developers have frequently used TGraphic as the basis for other graphics objects such as

PCX, GIF, JPG representations. TGraphic defines abstract methods such as Draw,

LoadFromFile and SaveToFile which are then overridden in the concrete classes. Other

objects that use TGraphic, such as a TCanvas only know about the abstract Draw

method, yet are used with the concrete class at runtime.

15

Many classes that use complex algorithms are likely to benefit from abstraction using

the template method approach. Typical examples include data compression, encryption

and advanced graphics processing.

1.6.4.4 Implementation Example

To implement template methods you need an abstract class and concrete classes for

each alternate implementation. Define a public interface to an algorithm in an abstract

base class. In that public method, implement the steps of the algorithm in calls to

protected abstract methods of the class. In concrete classes derived from the base class,

override each step of the algorithm with a concrete implementation specific to that

class.

1.6.5 Pattern: Builder

1.6.5.1 Definition

"Separate the construction of a complex object from its representation so that the same

construction process can create different representations."

A Builder seems similar in concept to the Abstract Factory. The difference as I see it is

the Builder refers to single complex objects of different concrete classes but containing

multiple parts, whereas the abstract factory lets you create whole families of concrete

classes. For example, a builder might construct a house, cottage or office. You might

employ a different builder for a brick house or a timber house, though you would give

them both similar instructions about the size and shape of the house. On the other hand

the factory generates parts and not the whole. It might produce a range of windows for

buildings, or it might produce a quite different range of windows for cars.

1.6.5.2 Applications in Delphi

The functionality used in Delphi's VCL to create forms and components is similar in

concept to the builder. Delphi creates forms using a common interface, through

Application.CreateForm and through the TForm class constructor. TForm implements a

16

common constructor using the resource information (DFM file) to instantiate the

components owned by the form. Many descendant classes reuse this same construction

process to create different representations. Delphi also makes developer extensions

easy. TForm's OnCreate event also adds a hook into the builder process to make the

functionality easy to extend.

1.6.5.3 Implementation Example

The following example includes a class TAbstractForrnBuilder and two concrete classes

TRedForrnBuilder and TBlueForrnBuilder. For ease of development some common

functionality of the concrete classes has been moved into the shared

T AbstractF orrnBuilder class.

1.6.6 Pattern: Abstract Factory

1.6.6.1 Definition

"Provide an interface for creating families of related or dependant objects without

specifying their concrete classes."

The Factory Method pattern below is commonly used in this pattern.

1.6.6.2 Applications in Delphi

This pattern is ideal where you want to isolate your application from the implementation

of the concrete classes. For example if you wanted to overlay Delphi's VCL with a

common VCL layer for both 16 and 32 bit applications, you might start with the

abstract factory as a base.

1.6.6.3 Implementation Example

The following example uses an abstract factory and two concrete factory classes to

implement different styles of user interface components. TOAbstractFactory is a

singleton class, since we usually want one factory to be used for the whole application.

17

At runtime, our client application instantiates the abstract factory with a concrete class

and then uses the abstract interface. Parts of the client application that use the factory

don't need to know which concrete class is actually in use.

1.6. 7 Pattern: Factory Method

l.6.7.1 Definition

"Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory method lets a class defer instantiation to subclasses."

The Abstact Factory pattern can be viewed as a collection of Factory Methods.

1.6.7.2 Applications in Delphi

This pattern is useful when you want to encapsulate the construction of a class and

isolate knowledge of the concrete class from the client application through an abstract

interface.

One example of this might arise if you had an object oriented business application

potentially interfacing to multiple target DBMS. The client application only wants to

know about the business classes, not about their implementation-specific storage and

retrieval.

1.6.7.3 Implementation Example

In the Abstract Factory example, each of the virtual widget constructor functions is a

Factory Method. In their implementation we define a specific widget cl,ass to return.

18

1. 7 KEY ELEMENTS OF DELPID CLASS DEFINITIONS

1.7.1 Unit Structure

Delphi units (.PAS files) allow declaration of interface and implementation sections.

The interface defines the part that is visible to other units using that unit. The keyword

uses can be added to a unit's interface or implementation section to list the other units

that your unit uses. This indicates to the compiler that your unit refers to parts of the

used unit's interface. Parts of a unit declared in the implementation section are all

private to that unit, i.e. never visible to any other unit. Types, functions and procedures

declared in the interface of a unit must have a corresponding implementation, or be

declared as external (e.g. a call to a function in a DLL).

1. 7 .2 Class Interfaces

Classes are defined as types in Delphi and may contain fields of standard data types or

other objects, methods declared as functions or procedures, and properties. The type

declaration of a class defines its interface and the scope of access to fields, methods and

properties of the class. Class interfaces are usually defined in the interface of a unit to

make them accessible to other modules using that unit. However they don't need to be.

Sometimes a type declaration of a class may be used only within the implementation

part of a unit.

1. 7 .3 Properties

Properties are a specialised interface to a field of a defined type, allowing access control

through read and write methods. Properties are not virtual, you can replace a property

with another property of the same name, but the parent class doesn't know about the

new property. It is however possible to make the access methods of a property virtual.

1. 7.4 Inheritance

Delphi's inheritance model is based on a single hierarchy. Every class inherits from

TObject and can have only one parent.

19

A descendant class inherits all of the interface and functionality of its parent class,

subject to the scope described below.

Multiple inheritance from more than one parent is not allowed directly. It can be

implemented by using a container class to create instances one or more other classes

and selectively expose parts of the contained classes.

Private, Protected, Public and Published ScopeScope refers to the visibility of methods

and data defined in the interface of a class, i.e. what parts of the class are accessible to

the rest of the application or to descendant classes.

The default scope is public, for instance the component instances you add to a form at

design time. Public says "come and get me"; it makes the data or method visible to

everything at runtime.

Published parts of a class are a specialized form of Public scope. They indicate special

behaviour for classes derived from Tf'ersistent. A persistent class can save and restore

its published properties to persistent storage using Delphi's standard streaming methods.

Published properties also interact with Delphi Object Inspector in the IDE. A class must

descend from TPersistent in order to use Published. There's also not much point in

publishing methods, since you can't store them, although Delphi's compiler doesn't stop

you. Published also lets another application access details of the class through Delphi's

runtime type information. This would be rarely used, except in Delphi's design time

interaction with its VCL.

Encapsulation or information hiding is essential to object orientation, so Protected and

Private scope let you narrow the access to parts of a class.

Protected parts are visible only to descendant classes, or to other classes defined in the

same unit.

Private parts are visible only to the defining class, or to other classes defined in the

same unit.

It's important to note that once something is given public or published scope, it cannot

be hidden in descendant classes.

20

Static, Virtual and Dynamic Methods; Override and Inherited

Methods declared as virtual or dynamic let you change their behaviour using override in

a descendant class. You're unlikely to see a virtual method in the private part of a class,

since it could only be overridden in the same unit, although Delphi's compiler doesn't

stop you from doing this.

Override indicates that your new method replaces the method of the same name from

the parent class. The override must be declared with the same name and parameters as

the original method.

When a method is overridden, a call to the parent class's method actually executes the

override method in the real class of the object.

Static methods on the other hand have no virtual or override declaration. You can

replace a method of a class in a descendant class by redeclaring another method,

however this is not object oriented. If you reference your descendant class as the parent

type and try to call the replaced method, the static method of the parent class is

executed. So in most cases, it's a bad idea to replace a static method.

Virtual and dynamic methods can be used interchangeably. They differ only in their

treatment by the compiler and runtime library. Delphi's help explains that dynamic

methods have their implementation resolved at compile time and run slightly faster,

whereas virtual methods are resolved at runtime, resulting in slightly slower access but

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help

suggests using dynamic when you have a base class with many descendants that may

not override the method.

The inherited directive lets you refer back to a property or method as it was declared in

the parent class. This is most often used in the implementation of an override method, to

call the inherited method of the parent class and then supplement its behaviour.

1. 7 .5 Abstract Methods

Abstract is used in base classes to declare a method in the interface and defer its

implementation to a descendant class. I.e. it defines an interface, but not the underlying

21

operation. Abstract must be used with the virtual or dynamic directive. Abstract

methods are never implemented in the base class and must be implemented in

descendant classes to be used. A runtime error occurs if you try to execute an abstract

method that is not overridden. Calling inherited within the override implementation of

an abstract method will also result in a runtime error, since there is no inherited

behaviour.

1. 7 .6 Messages

Delphi's handling of Windows messages is a special case of virtual methods. Message

handlers are implemented in classes that descend from TControl. Le classes that have a

handle and can receive messages. Message handlers are always virtual and can be

declared in the private part of a class interface, yet still allow the inherited method to be

called. Inherited in a message handler just uses the keyword inherited, there is no need

to supply the name of the method to call.

1. 7. 7 Events

Events are also an important characteristic of Delphi, since they let you delegate

extensible behaviour to instances of a class. Events are properties that refer to a method

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour ·

to let you use inherited in an event. . Inherited in an event handler just uses the keyword

inherited, there is no need to supply the name of the method to call.

Events are particularly important to component developers, since they provide a hook

for the user of the component to modify its behaviour in a way that may not be foreseen

at the time the component is written.

1.7.S Constructors and Destructors

The constructor and destructor are two special types of methods, The constructor

initializes a class instance (allocates memory initialized to 0) and returns a reference

(pointer) to the object. The destructor deallocates memory used by the object (but not

the memory of other objects created by the object).

22

Classes descended from TObject have a static constructor, Create, and a virtual

destructor Destroy.

TConiponent introduces a new public property, the Owner of the component and this

must be initialized in the constructor. TComponent's constructor is declared virtual, i.e.

it can be overridden in descendant classes.It is essential when you override a virtual

constructor or destructor in a TComponent descendant to include a call to the inherited

method.

1.8 THE VCL TO APPLICATIONS DEVELOPERS

Applications Developers create complete applications by interacting with the Delphi

visual environment (as mentioned earlier, this is a concept nonexistent in many other

frameworks). These people use the VCL to create their user-interface and the other

elements of their application: database connectivity, data validation, business rules, etc ..

Applications Developers should know which properties, events, and methods each

component makes available. Additionally, by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

applications by extending components or creating new ones. Then they can maximize

the capabilities of these components, and create better applications.

1.8.1 The VCL to Component Writers

Component Writers expand on the existing VCL, either by developing new components,

or by increasing the functionality of existing ones. Many component writers make their

components available for Applications Developers to use.

A Component Writer must take their knowledge of the VCL a step further than that of

the Application Developer. For example, they must know whether to write a new

component or to extend an existing one when the need for a certain characteristic arises.

This requires a greater knowledge of the VCL's inner workings.

23

1.8.2 The VCL is made up of components

Components are the building blocks that developers use to design the user-interface and

to provide some non-visual capabilities to their applications. To an Application

Developer, a component is an object most commonly dragged from the Component

palette and placed onto a form. Once on the form, one can manipulate the component's

properties and add code to the component's various events to give the component a

specific behavior. To a Component Writer, components are objects in Object Pascal

code. Some components encapsulate the behavior of elements provided by the system,

such as the standard Windows 95 controls. Other objects introduce entirely new visual

or non-visual elements, in which case the component's code makes up the entire

behavior of the component.

The complexity of different components varies widely. Some might be simple while

others might encapsulate a elaborate task. There is no limit to what a component can do

or be made up of You can have a very simple component like a TLabel, or a much

more complex component which encapsulates the complete functionality of a

spreadsheet.

1.8.3 Component Types, structure, and VCL hierarchy

Components are really just special types of objects. In fact, a component's structure is

based on the rules that apply to Object Pascal. There are three fundamental keys to

understanding the VCL.

First, you should know the special characteristics of the four basic component types:

standard controls, custom controls, graphical controls and non-visual components.

Second, you must understand the VCL structure with which components are built. This

really ties into your understanding of Object Pascal's implementation. Third, you should

be familiar with the VCL hierarchy and you should also know where the four

component types previously mentioned fit into the VCL hierarchy. The following

paragraphs will discuss each of these keys to understanding the VCL.

24

1.8.4 Component Types

As a component writer, there four primary types of components that you will work with

in Delphi: standard controls, custom controls, graphical controls, and non-visual

components. Although these component types are primarily of interest to component

writers, it's not a bad idea for applications developers to be familiar with them. They are

the foundations on which applications are built.

1.8.4.1 Standard Components

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox and Tedit, for example. You will find

these components on the Standard page of the Component Palette. These components

are Windows' common controls with Object Pascal wrappers around them.

Each standard component looks and works like the Windows' common control which it

encapsulates. The VCL wrapper's simply makes the control available to you in the form

of a Delphi component-it doesn't define the common control's appearance or

functionality, but rather, surfaces the ability to modify a control's

appearance/functionality in the form of methods and properties. If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS.PAS.

If you want to use these standard components unchanged, there is no need to understand

how the VCL wraps them. If, however, you want to extend or change one of these

components, then you must understand how the Window's common control is wrapped

by the VCL into a Delphi component.

For example, the Windows class LISTBOX can display the list box items in multiple

columns. This capability, however, isn't surfaced by Delphi's TListBox component

(which encapsulates the Windows LISTBOX class). (TListBox only displays items in a

single column.) Surfacing this capability requires that you override the default creation

of the TListBox component.

25

This example also serves to illustrate why it is important for Applications Developers to

understand the VCL. Just knowing this tidbit of information helps you to identify where

enhancements to the existing library of components can help make your life easier and

more productive.

1.8.4.2 Custom components

Unlike standard components, custom components are controls that don't already have a

method for displaying themselves, nor do they have a defined behavior. The Component

Writer must provide to code that tells the component how to draw itself and determines

how the component behaves when the user interacts with it. Examples of existing

custom components are the TPanel and TStringGrid components.

It should be mentioned here that both standard and custom components are windowed

controls. A "windowed control" has a window associated with it and, therefore, has a

window handle. Windowed controls have three characteristics: they can receive the

input focus, they use system resources, and they can be parents to other controls.

(Parents is related to containership, discussed later in this paper.) An example of a

component which can be a container is the TPanel component.

1.8.4.3 Graphical components

Graphical components are visual controls which cannot receive the input focus from the

user. They are non-windowed controls. Graphical components allow you to display

something to the user without using up any system resources; they have less "overhead"

than standard or custom components. Graphical components don't require a window

handle-thus, they cannot can't get focus. Some examples of graphical components are

the TLabel and TShape components.

Graphical components cannot be containers of other components. This means that they

cannot own other components which are placed on top of them.

1.8.4.4 Non-visual components

Non-visual components are components that do not appear on the form as controls at

run-time. These components allow you to encapsulate some functionality of an entity

26

within an object. You can manipulate how the component will behave, at design-time,

through the Object Inspector. Using the Object Inspector, you can modify a non-visual

component's properties and provide event handlers for its events. Examples of such

components are the TOpenDialog, TTable, and TTimer components.

1.8.4.5 Structure of a component

All components share a similar structure. Each component consists of common

elements that allow developers to manipulate its appearance and function via properties,

methods and events. The following sections in this paper will discuss these common

elements as well as talk about a few other characteristics bf components which don't

apply to all components.

1.8.4.6 Component properties

Properties provide an extension of an object's fields. Unlike fields, properties do not

store data: they provide other-capabilities. For example, properties may use methods to

read or write data to an object field to which the user has no access. This adds a certain

level of protection as to how a given field is assigned data. Properties also cause "side

effects" to occur when the user makes a particular assignment to the property. Thus

what appears as a simple field assignment to the component user could trigger a

complex operation to occur behind the scenes.

1.9 PROPERTIES PROVIDE ACCESS TO INTERNAL STORAGE FIELDS

There are two ways that properties provide access to internal storage fields of

components: directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

FMaxLength: Integer;

protected

procedure SetMaxLength(Value: Integer);

27

published

property MaxLength: Integer read

FMaxLength write SetMaxLength default O;

end;

The code above is snippet of the TCustomEdit component class. TCustomEdit is the

base class for edit boxes and memo components such as TEdit, and TMemo.

TCustomEdit has an internal field FMaxLength of type Integer which specifies the

maximum length of characters which the user can enter into the control. The user

doesn't directly access the FMaxLength field to specify this value. Instead, a value is

added to this field by making an assignment to the MaxLength property.

The property MaxLength provides the access to the storage field FMaxLength. The

property definition is comprised of the property name, the property type, a read

declaration, a write declaration and optional default value.

The read declaration specifies how the property is used to read the value of an internal

storage field. For instance, the MaxLength property has direct read access to

FMaxLength. The write declaration for MaxLength shows that assignments made to the

MaxLength property result in a call to an access method which is responsible for

assigning a value to the FMaxLength storage field. This access method is

SetMaxLength.

1.9.1 Property-access methods

Access methods take a single parameter of the same type as the property. One of the

primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

28

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the SetMaxLength method below.

procedure TCustomEdit. SetMaxLength(Value: Integer);

begin

if FMaxLength <> Value then

begin

FMaxLength := Value;

if HandleAllocated then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

The code in the SetMaxLength method checks if the user is assigning the same value as

that which the property already holds. This is done as a simple optimization. The

method then assigns the new value to the internal storage field, FMaxLength.

Additionally, the method then sends an EM_ LIMITTEXT Windows message to the

window which the TCustomEdit encapsulates. The EM_ LIMITTEXT message places a

limit on the amount of text that a user can enter into an edit control. This last step is

what is referred to as a side-effect when assigning property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

Providing access to internal storage fields through property access methods offers the

advantage that the Component Writer can modify the implementation of a class without

modifying the interface. It is also possible to have access methods for the read access of

a property. The read access method might, for example, return a type which is different

that that of a properties storage field. For instance, it could return the string

representation of an integer storage field.

29

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.9.2 Types of properties

Properties can be of the standard data types defined by the Object Pascal rules. Property

types also determine how they are edited in Delphi's Object Inspector. The table below

shows the different property types as~ they are defined in Delphi's online help.

Property type Object Inspector treatment

Numeric, character, and string properties appear in the Object Inspector

as numbers, characters, and strings, respectively. The user can type and

edit the value of the property directly.

Properties of enumerated types (including Boolean) display the value as

defined in the source code The user can cycle through the possible
Enumerated

values by double-clicking the value column There is also a drop-down

list that shows all possible values of the enumerated type.

Simple

Set

Properties of set types appear in the Object Inspector looking like a set

By expanding the set, the user can treat each element of the set as a

Boolean value True if the element is included in the set or False if it's

not included.

Properties that are themselves objects often have their own property

editors However, if the object that is a property also has published

properties, the Object Inspector allows the user to expand the list of

object properties and edit them individually Object properties must

descend from TPersistent.

Array properties must have their own property editors. The Object

Inspector has no built-in support for editing array properties.

Object

Array

For more information on properties, refer to the "Component Writers Guide" which

ships with Delphi.

30

1.9.3 Methods

Since components are really just objects, they can have methods. We will discuss some

of the more commonly used methods later in this paper when we discuss the different

levels of the VCL hierarchy.

1.9.4 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

Components contain special properties called events to which the component user

assigns code. This code will be executed whenever a certain event occurs. For instance,

if you look at the events page of a TEdit component, you'll see such events as

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

When the user of a component assigns code to one of those events, the user's code is

referred to as an event handler. For example, by double clicking on the events page for a

particular event causes Delphi to generate a method and places you in the Code Editor

where you can add your code for that method. An example of this is shown in the code

below, which is an OnClick event for a TButton component.

It becomes clearer that events are method pointers when you assign an event handler to

an event programmatically. The above example was Delphi generated code. To link

your own an event handler to a TButton's OnClick event at run time you must first

create a method that you will assign to this event. Since this is a method, it must belong

to an existing object. This object can be the form which owns the TButton component

although it doesn't have to be. In fact, the event handlers which Delphi creates belong to

the form on which the component resides. The code below illustrates how you would

create an event handler method.

When you define methods for event handlers, these methods must be defined as the

same type as the event property and the field to ~hich the event property refers. For

31

instance, the OnClick event refers to an internal data field, FOnClick. Both the property

OnClick, and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvent = procedure (Sender: TObject) of object;

Note the use of the of object specification. This tells the compiler that the procedure

definition is actually a method and performs some additional logic like ensuring that an

implicit Self parameter is also passed to this method when called. Self is just a pointer

reference to the class to which a method belongs.

1.9.5 Containership

Some components in the VCL can own other components as well as be parents to other

components. These two concepts have a different meaning as will be discussed in the

section to follow.

1.9.6 Ownership

All components may be owned by other components but not all components can own

other components. A component's Owner property contains a reference to the

component which owns it.

The basic responsibility of the owner is one of resource management. The owner is

responsible for freeing those components which it owns whenever it is destroyed.

Typically, the form owns all components which appear on it, even if those components

are placed on another component such as a TPanel. At design-time, the form

automatically becomes the owner for components which you place on it. At run-time,

when you create a component, you pass the owner as a parameter to the component's

constructor. For instance, the code below shows how to create a TButton component at

run-time and passes the form's implicit Self variable to the TButton's Create constructor.

TButton. Create will then assign whatever is passed to it, in this case Self or rather the

form, and assign it to the button's Owner property.

MyButton := TButton.Create(self);

32

When the form that now owns this TButton component gets freed, MyButton will also

be freed.

You can create a component without an owner by passing nil to the component's Create

constructor, however, you must ensure that the component is freed when it is no longer

needed. The code below shows you how to do this for a TTable component.

1.9. 7 Parenthood

Parenthood is a much different concept from ownership. It applies only to windowed

components, which can be parents to other components. Later, when we discuss the

VCL hierarchy, you will see the level in the hierarchy which introduces windowed

controls.

Parent components are responsible for the display of other components. They call the

appropriate methods internally that cause the children components to draw themselves.

The Parent property of a component refers to the component which is its parent. Also, a

component's parent does not have to be it's owner. Although the parent component is

mainly responsible for the display of components, it also frees children components

when it is destroyed.

Windowed components are controls which are visible user interface elements such as

edit controls, list boxes and memo controls. In order for a windowed component to be

displayed, it must be assigned a parent on which to display itself. This task is done

automatically by Delphi's design-time environment when you drop a component from

the Component Palette onto your form.

33

CHAPTER2

DATABASE

Every thing around us has a particular identity. To identify anything system, actor or

person in words we need a data or information. So this information is valuable and in

this advanced era we can store it in database and access this data by the blink of eye.

For an instant if we go through the definitions of database we may find following

definitions.

A database is a collection of related information.

A database is an organized body of related information.

2.1 DEMERITS OF ABSENCE OF DAT ABASE

A glance on the past will may help us to reveal the drawbacks in case of

absence of database.

In the past when there wasn't proper system of database, Much paper work was need to

do and to handle great deal of written paper documentation was giant among the

problems itself.

In the huge networks to deal with equally bulky data, more workers are needed which

affidavit cost much labor expanses.

The old criteria for saving data and making identification was much time consuming

such as if we want to search the particular data of a person.

Before the Development of Computer database it was a great problem to search for

some thing. Efforts to avoid the headache of search often results in new establishments

of data.

34

Before the development of database it seemed very unsafe to keep the worthy

information. In Some situation some big organization had to employee the special

persons in order to secure the data.

Before the implementation of database any firm had to face the plenty of difficulties in

order to maintain their Management. To hold the check on the expenses of the firm, the

manager faced difficulties.

2.2 MERITS OF DATABASE

The modem era is known as the golden age computer sciences and technology. In a

simple phrase we can express that the modem age is built on the foundation of database.

If we carefully watch our daily life we can examine that some how our daily life is

being connected with database.

There are several benefits of database developments.

Now with the help of computerized database we can access data in a second.

By the development of the database we can make data more secure.

By the development of database we can reduce the cost.

2.3 DATABASE DESIGN

The design of a database has to do with the way data is stored and how that data is

related. The design process is performed after you determine exactly what information

needs to be stored and how it is to be retrieved.

A collection of programs that enables you to store, modify, and extract information

from a database. There are many different types of DBMS ranging from small systems

that run on personal computers to huge systems that run on mainframes. The following

are examples of database applications:

Computerized library systems

35

Automated teller machines

Flight reservation systems

Computerized parts inventory systems

From a technical standpoint, DBMS can differ widely. The terms relational, network,

flat, and hierarchical all refer to the way a DBMS organizes information internally. The

internal organization can affect how quickly and flexibly you can extract information.

Requests for information from a database are made in the form of a query.

Database design is a complex subject. A properly designed database is a model of a

business, Country Database or some other in the real world. Like their physical model

counterparts, data models enable you to get answers about the facts that make up the

objects being modeled. It's the questions that need answers that determine which facts

need to be stored in the data model.

In the relational model, data is organized in tables that have the following

characteristics: every record has the same number of facts, every field contains the same

type of facts (Data) in each record, and there is only one entry for each fact. No two

records are exactly the same.

The more carefully you design, the better the physical database meets users' needs. In

the process of designing a complete system, you must consider user needs from a

variety of viewpoints.

2.4 DATABASE MODELS

Various techniques are used to model data structures. Certain models are more easily

implemented by some types of database management systems than others. For any one

logical model various physical implementation may be possible. An example of this is

the relational model: in larger systems the physical implementation often has indexes

which point to the data; this is similar to some aspects of common implementations of

the network model. But in small relational database the data is often stored in a set of

36

files, one per table, in a flat, un-indexed structure. There is some confusion below and

elsewhere in this article as to logical data model vs. its physical implementation.

2.4.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data elements,

where all members of a given column are assumed to be similar values, and all

members of a row are assumed to be related to one another. For instance, columns for

name and password might be used as a part of a system security database. Each row

would have the specific password associated with a specific user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is the basis of the

spreadsheet.

2.4.2 Network Model

The network model allows multiple datasets to be used together through the use of

pointers (or references). Some columns contain pointers to different tables instead of

data. Thus, the tables are related by references, which can be viewed as a network

structure. A particular subset of the network model, the hierarchical model, limits the

relationships to a tree structure, instead of the more general directed graph structure

implied by the full network model.

2.4.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Cod in 1970 as

a way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

Although the basic idea of a relational database has been very popular, relatively few

people understand the mathematical definition and only a few obscure DBMSs

implement it completely and without extension. Oracle, for example, can be used in a

purely relational way, but it also allow tables to be defined that allow duplicate rows an

extension (or violation) of the relational model. In common English usage, a DBMS is

37

called relational if it supports relational operational operations, regardless of whether it

enforces strict adherence to the relational model. The following is an informal, not

technical explanation of how "relational" database management systems commonly

work.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. However, unlike network databases, the tables are not linked by

pointers. Instead, keys are used to match up rows of data in different tables. A key is

just one or more columns in one table that correspond to columns in other tables. Any

column can be a key, or: multiple columns can be grouped together into a single key.

Unlike pointers, it's not necessary to define all the keys in advance; a column can be

used as a key even if it wasn't originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to row; this is defined as

the table's primary key.

When a key consists of data that has an external, real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature

key is suitable, an arbitrary key can be assigned (such as by given employees ID

numbers). In practice, most databases have both generated and natural keys, because

generated keys can be used internally to create links between rows that can't break,

while natural keys can be used, less reliably, for searches and for integration with other

databases. (For example, records in two independently developed databases could be

matched up by social security number, except when the social security numbers are

incorrect, missing, or have changed).

2.4.3.1 Why we use a Relational Database Design

Maintaining a simple, so-called flat database consisting of a single table doesn't require

much knowledge of database theory. On the other hand, most database worth

maintaining are quite a bit more complicated than that. Real life databases often have

hundreds of thousands or even millions of records, with data that are very intricately

related. This is where using a full-fledged relational database program becomes

essential. Consider, for example, the Library of Congress, which has over 16 million

38

books in its collection. For reasons that will become apparent soon, a single table

simply will not do for this database.

2.5 RELATIONSHIPS BETWEEN TABLES

When you create tables for an application, you should also consider the relationships

between them. These relationships give a relational database much of its power. There

are three types of relationships between tables: one-to-one, one-to-many and many-to

many relationships.

2.5.2 One-To-One Relationships

In a one-to-one relationship, each record in one table corresponds to a single record in a

second table. This relationship is not very common, but it can offer several benefits.

First, you can put the fields from both tables into a single, combined table. One reason

for using two tables is that each field is a property of a separate entity, such as owner

operators and their tracks. Each operator can operate just one truck at a time, but the

fields for the operator and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table by

placing some of the table's columns in a second, separate table. This approach makes

particular sense when a table has some fields that are used infrequently. Finally, a one

to-one relationship can support in a table requires security, placing them in a separate

table lets your application restrict to certain fields. Your application can link the

restricted table back to the main table via a one-to-one relationship so that people with

proper permissions can edit, delete, and add new records to these fields.

2.5.3 One-To-Many Relationships

A one-to-many relationship, in which a row from one table corresponds to one or more

rows from a second table, is more common. This kind of relationship can form the basis

for a Marty-To-Many relationship as well.

39

2.6 DATA MODELING

In information system design, data modeling is the analysis and design of the

information in the system, concentrating on the logical entities and the logical

.dependencies between these entities. Data modeling is an abstraction activity in that the

details of the values of individual data observations are ignored in favor of the structure,

relationships, names and formats of the data of interest, although a list of valid values is

frequently recorded. It is by the data model that definitions of what the data means is

related to the data structures.

While a common term for this activity is "Data Analysis" the activity actually has more

in common with the ideas and methods of synthesis (putting things together), than it

does in the original meaning of the term analysis (taking things apart). This is because

the activity strives to bring the data structures of interest together in a cohesive,

inseparable, whole by eliminating unnecessary data redundancies and relating data

structures by relationships.

2.6.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design that

allows for consistent storage and efficient access of data in a relational database. These

steps reduce data redundancy and the risk of data becoming inconsistent.

However, many relational DBMS lack sufficient separation between the logical

database design and the physical implementation of the data store, such that queries

against a fully normalized database often perform poorly. In this case de-normalizations

are sometimes used to improve performance, at the cost of reduced consistency.

2.6.2 Primary Key

In database design, a primary key is a value that can be used to identify a particular row

in a table. Attributes are associated with it. Examples are names in a telephone book (to

look up telephone numbers), words in a dictionary (to look up definitions) and Dewey

Decimal Numbers (to look up books in a library).

40

In the relational model of data, a primary key is a candidate key chosen as the main

method of uniquely identifying a relation. Practical telephone books, dictionaries and

libraries can not use names, words or Dewey Decimal System Numbers as candidate

keys because they do not uniquely identify telephone numbers, word definitions or

books. In some design situations it is impossible to find a natural key that uniquely

identifies a relation. A surrogate key can be used as the primary key. In other situations

there may be more than one candidate key for a relation, and no candidate key is

obviously preferred. A surrogate key may be used as the primary key to avoid giving

one candidate key artificial primacy over the others. In addition to the requirement that

the primary key be a candidate key, there are several other factors which may make a

particular choice of key better than others for a given relation.

The primary key should generally be short to minimize the amount of data that needs to

be stored by other relations that reference it. A compound key is usually not

appropriate. (However, this is a design consideration, and some database management

systems may be better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed during

the course of normal operations of the database. (Recall that a primary key is the means

of uniquely identifying a tuple, and that identity by definition, never changes.) This

avoids the problem of dangling references or orphan records created by other relations

referring to a tuple whose primary key has changed. If the primary key is immutable,

this can never happen.

2.6.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that points to a

key field of another database record in another table where the foreign key of one table

refers to the primary key of the other table. This way references can be made to link

information together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a book in

the e-mail. Instead, they can include the ISBN of the book, and interested persons can

then use the number to get information about the book, or even the book itself The

ISBN is the primary key of the book, and it is used as a foreign key in the e-mail.

41

Note that using a foreign key often assumes its existence as a primary key somewhere

else. Improper foreign key/primary key relationships are the source of many database

problems.

2.6.4 Compound Key

In database design, a compound key (also called a composite key) is a key that consists

on 2 or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within the

data model. This means that any one, none or all, of the multiple attributes within the

compound key can be foreign keys. Indeed, a foreign key may, itself, be a compound

key.

Compound keys almost always originate from attributive or associative entities (tables)

within the model, but this is not an absolute value.

42

CHAPTER3

MYSQL

3.1 INTRODUCTION TO MYSQL

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql

client program to create and use a simple database. mysql (sometimes referred to as the

"terminal monitor" or just "monitor") is an interactive program that allows you to connect to

a MySQL server, run queries, and view the results. mysql may also be used in batch mode:

you place your queries in a file beforehand, then tell mysql to execute the contents of the file.

Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is

available to which you can connect. If this is not true, contact your MySQL administrator.

(If you are the administrator, you will need to consult other sections of this manual.)

This chapter describes the entire process of setting up and using a database. If you are

interested only in accessing an already-existing database, you may want to skip over the

sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily left out. Consult the

relevant sections of the manual for more information on the topics covered here.

3.2 WHAT IS MYSQL?

3.2.1 Definition
MySQL is an open source software relational database management system (RDBMS)

which

uses a SQL (Structured Query Language)

43

SQL is the standard language used for interacting with databases.

3.3 WHY CHOOSE ~YSQL?

There are many relational databases available to use, so why choose MySQL?

We are specifically interested in databases which PHP supports; these include Oracle,

IBM's DB2 and Microsoft's SQL Server (all of which cost money).

The two main open source (free) alternatives to these are PostgreSQL and MySQL.

PostgreSQL is arguably the better of the two, but MySQL is better

supported on Windows, and is a popular choice among Web hosts that provide

support for PHP.

Here are some ofMySQL's advantages

• It's fast

• It's free to use, and commercial licenses are reasonable

• It's easy to use

• It is cross platform

• There is a wide community of technical support

• It's secure

• It supports large databases

• It is designed specifically for web base applications and hence works very well

partnered with PHP

44

3.4 PREPARING THE WINDOWS MYSQL ENVIRONMENT

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the

MySQL- Max server binaries. Here is a list of the different MySQL servers you can use:

mysqld Compiled with full debugging and automatic memory allocation
checking, symbolic links, hmoDB and DBD tables.

my sq I-opt Optimized binary with no support for transactional tables.

mysqld-nt
Optimized binary for NT with support for named pipes. You can run
this version on Win98, but in this case no named pipes are created
and you must have TCP/IP installed.

mysqld-max Optimized binary with support for symbolic links, InnoDB and DBD
tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

All of the above binaries are optimized for the Pentium Pro processor but should work on

any Intel processor >=i386

In the following circumstance, you will need to use the MySQL configuration file:

• The install/data directories are different than the default 'c:\mysql' and 'c:\mysql\data'.

• If you want to use one of these servers:

mysqld.exe

mysqld-max. exe

mysqld-max-nt.exe

• If you need to tune the server settings.

45

There are two configuration files with the same function: 'my.cnf' and 'my.ini' file,

however, only one of these can/should be used. Both files are plain text. The 'rny.cnf" file

should be created in the root directory of drive C and the 'my.ini' file in the WinDir

directory e.g.: C:\WINDOWS or C:\WINNT. If your PC uses a boot loader where the C

drive isn't the boot drive, then your only option is to use the 'my.ini' file. Also note that if

you use the WinMySQLAdmin tool, only the

'my.ini' file is used. The '\mysql\bin' directory contains a help file with instructions for

using this tool.

Using Notepad, create the configuration file and edit the base section and keys:

[mysqld]

basedir = the_install__path # e.g. 'c:\mysql'

datadir = the_data_path # e.g. 'c:\mysql\data' or 'd:\mydata\data'

If the data directory is other than the default 'c:\mysql\data', you must cut the whole

'\data\mysql' directory and paste it on the your option new directory, e.g. 'd:\mydata\mysql'.

If you want to use the InnoDB transaction tables, you need to manually create two new

directories to hold the InnoDB data and log files, e.g. 'c:\ibdata' and 'c:\iblogs'. You will

also need to create some extra lines to the configuration file.

If you don't want to use, add the skip-innodb option to the configuration file.

Now you are ready to test starting the server.

3.5 STARTING THE SERVER FOR THE FIRST TIME

Testing from a DOS command prompt is the best thing to do because the server prints

messages, so if something is wrong with your configuration, you will see a more accurate

error message which will make it easier to identify and fix any problems.

46

Make sure you're in the right directory (C:\>cd \mysql\bin),

To install mysqld as a standalone program, enter:

C: \mysql\bin> mysqld-max --standalone

You should see the below print messages:

Inn,:,[;,I: Th.;, r t rr t :,i:·-,,,~i:ti.;,,:\ ,:be,. fil-,, ·.il .. :l.:-..t:-..··.il: .. :bt.:-d ,:li,:l n,:,t .;,:-:i.,t
Inn,:,C:•I:
Inn,:, l•I:
Inn,:,C:•I:
Inn,:, [)I:
Inn,:,DI
Inn,:,DI:
Inn,:,DI:
Ln n.o DI:
Inn,:,C:•I:
Inn,:,C:•I:
Inn,:,DI·
Inn,:,[;,I:
Inn,:,C:·I:
U 11,:.,:.::.;;

.:, n.;,·., ,:L, t ~d:,.:-..:c.,, t ·=· l:•.;, ,: r.,, :, t..;, ,:l 1
;?.;,ttin~-- :t il.;, ·~ \il:·,:l:,t:,··il:,.:\:,t:,1 ::;iz.,, t,:, :.::u::•: l[,:.::•:n:,
[;,::, t:,.1:·:,.,:,-,, I·h:::, i·:.:,11:· ·.,Tit . .;,., t h-s :t il-,, :tull - . .-~•.it
L•:•·s' :til.;, \il:·l•:•\'::-:\il:·_l,:, fil.,,•:• ,:li•:l not .,,:-:i::,t. 11.,,·_, r.» 1:,-,, ,:r.;,~,t.,,,:\
;,i.;,ttin~-- 1,:,.:, r i i , ,: \it·l·=· .,\it,_l,:··s·:t i1.,,,:, :,i:::.;, t,:, •c: 1.;;.,.::.::,,, .. :.,
L•>\·· :ti 1-,, \i 1:·l<•\<< -, .. i l.-; l,:, f i 1.,, 1 ,:li•:l n,:,t .;,:-:i::,t. n.;,·., t.,:, 1:,-,, ,: r.;,.:, t-,,,:l
;,i.;,t.t.in~-- 1,:,.:, fil.;, ,: \il:,l,:, .,··-.il:,_l,:,;--:t il.,,1 :ci:::.;, t,:, .-:: 1.;;.,.::.:::::,~,
L·>·;·· :til.;, \il:·l·>·~--,:;\il:·_l,:, fil.,,:.:: ,:lid nct -,,:--.i,:-,t. n.;,·., t.,:, 1:,.,, ,:r.;,~,t-,,,:l
;,:.;, t. t. t.n ; 1.: . .:,· ti 1.;. ·= · .. il:·l·=· ., · .. it,_ 1,:,·;·:t il-,,:.:: :, i:::.;, t-·=· .:, 1.;;.c.::.::,,,.~.·
C:•,:,ul:,1.,,·.:rit..,, t,uf:t-,,r not, f ,un,:l ,: r.;,:,t.in.:,· n.;,·_.,-
[; .. :, ul.. 1.,,-_.-r it . .;, 1:,uf :t.;, r ,: r -,,::-,, t . .;, ,:l
-:.r-,,:,tin\' f,:.r.,,i·s·-:i1 ~-:.;,:· ,:,:,n,:-,t.r::,.int .,::.,t.,,::. t:<.1:,1.,,:c
f,:,r.,,L;;n ~:.,,:· ,:,:,n,:-,t.r~,.int. .,::.,t..;,::. t.:,1:,1.,,,, ,: r.;,:,t . .;,,:l
1,:, .r,·:: :.::c rnnc.t-t ;":'-t.:,.rt..,,,:l

To install mysql as a service (Windows 2000), enter:

C: \mysql\bin> mysqld-nt --install

Now you can start and stop mysqld as follows:

C:\>NET START MySQL C:\>NET STOP MySQL

C:\>NET START MySQL

To start the MySQL Monitor, enter:

The MySql service is starting.

The MySQL service was started successfully.

C:\>cd \mysql

C: \mysql>bin\mysql

Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id

47

is 1 to server version 3.23.49-nt Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> (enter a command or enter 'QUIT' to quit)

mysql> QUIT Bye

C: \mysql> NET STOP MySQL The MySQL service is stopping.

The MySQL service was stopped successfully.

C:\mysql>

3.6 CONNECTING TO AND DISCONNECTING FROM THE SERVER

To connect to the server, you'll usually need to provide a MySQL user name when you

invoke mysql and, most likely, a password. If the server runs on a machine other than the one

where you log in, you'll also need to specify a hostname. Contact your administrator to find

out what connection parameters you should use to connect (that is, what host, user name, and

password to use). Once you know the proper parameters, you should be able to connect like

this:

shell> mysql -h host -u user -p

Enter password: ********

The******** represents your password; enter it when mysql displays the Enter password:

prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p

Enter password: ********

Welcome to the MySQL monitor. Commands end with; or \g. Your MySQL connection id

is 459 to server version: 3.22.20a-log

48

Type 'help' for help.

mysql>

The prompt tells you that mysql is ready for you to enter commands.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the

server running on the local host. If this is the case on your machine, you should be able to

connect to that server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT at the

mys qi>

prompt: mysql> QUIT Bye

You can also disconnect by pressing Control-D.

Most examples in the following sections assume you are connected to the server. They

indicate this by the mysql> prompt.

3.7 ENTERING QUERIES

Make sure you are connected to the server, as discussed in the previous section. Doing so

will not in itself select any database to work with, but that's okay. At this point, it's more

important to find out a little about how to issue queries than to jump right in creating tables,

loading data into them, and retrieving data from them. This section describes the basic

principles of entering commands, using several queries you can try out to familiarize

yourself with how mysql works.

Here's a simple command that asks the server to tell you its version number and the current

date. Type it in as shown below following the mysql> prompt and hit the RETURN key:

mysql> SELECT VERSION(), CURRENT DATE;

49

versioru) CURRENT DATE

3 .22.20a-102: 1999-03-19

row in set (0.01 sec)

mysql>

This query illustrates several things about mysql:

A command normally consists of a SQL statement followed by a semicolon. (There are some

exceptions where a semicolon is not needed. QUIT, mentioned earlier, is one of them. We'll

get to others later.)

When you issue a command, mysql sends it to the server for execution and displays the

results, then prints another mysql> to indicate that it is ready for another command.

Mysql displays query output as a table (rows and columns). The first row contains labels for

the columns. The rows following are the query results. Normally, column labels are the

names of the columns you fetch from database tables. If you're retrieving the value of an

expression rather than a table column (as in the example just shown), mysql labels the

column using the expression itself

Mysql shows how many rows were returned and how long the query took to execute, which

gives you a rough idea of server performance. These values are imprecise because they

represent wall clock time (not CPU or machine time), and because they are affected by

factors such as server load and network latency. (For brevity, the "rows in set" line is not

shown in the remaining examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSIONO, CURRENT_DATE; mysql> select versioni), current_date;
mysql> SELECT VERSIONO, current_DATE;
mysql> SELECT SIN(PI0/4), (4+ 1) *5;

The commands shown thus far have been relatively short, single-line statements. You can

even enter multiple statements on a single line. Just end each one with a semicolon:

50

mysql> SELECT VERSIONO; SELECT NOWO;

A command need not be given all on a single line, so lengthy commands that require several

lines are not a problem. mysql determines where your statement ends by looking for the

terminating semicolon, not by looking for the end of the input line. (In other words, mysql

accepts free-format input: it collects input lines but does not execute them until it sees the

semicolon.)

Here's a simple multiple-line statement:

mysql> SELECT USERO,CURRENT_DATE;

USER() CURRENT _DATE
joesmith@localhost 1999-03-18

In this example, notice how the prompt changes from mysql> to -> after you enter the first

line of a multiple-line query. This is how mysql indicates that it hasn't seen a complete

statement and is waiting for the rest. The prompt is your friend, because it provides valuable

feedback. If you use that feedback, you will always be aware of what mysql is waiting for.

If you decide you don't want to execute a command that you are in the process of entering,

cancel it by typing \c:

mysql> SELECT USERO \c mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing

feedback to indicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean

about the state that mysql is in:

51

·:.~ ·-~
(} '.t

··- J{

->
'> ins with a single auote c~

'"' "> Waitin

Multiple-line statements commonly occur by accident when you intend to issue a command

on a single line, but forget the terminating semicolon. In this case, mysql waits for more

input:

mysql> SELECT USERO
->

If this happens to you (you think you've entered a statement but the only response is a ->

prompt), most likely mysql is waiting for the semicolon. If you don't notice what the prompt

is telling you, you might sit there for a while before realizing what you need to do. Enter a

semicolon to complete the statement, and mysql will execute it:

mysql> SELECT USERO

->

USERO
joesmith@localhost

The '> and "> prompts occur during string collection. In MySQL, you can write strings

surrounded by either '" or '"' characters (for example, 'hello' or "goodbye"), and mysql lets

you enter strings that span multiple lines. When you see a '> or "> prompt, it means that

you've entered a line containing a string that begins with a :" or ?" quote character, but have

not yet entered the matching quote that terminates the string. That's fine if you really are

entering a multiple-line string, but how likely is that? Not very. More often, the '> and ">

prompts indicate that you've inadvertantly left out a quote character. For example:

52

mysql> SELECT * FROM my _table WHERE name = "Smith AND age < 30;
">

If you enter this SELECT statement, then hit RETURN and wait for the result, nothing will

happen. Instead of wondering why this query takes so long, notice the clue provided by the

"> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do you

see the error in the statement? The string "Smith is missing the second quote.)

At this point, what do you do? The simplest thing is to cancel the command. However, you

cannot just type \c in this case, because mysql interprets it as part of the string that it is

collecting! Instead, enter the closing quote character (so mysql knows you've finished the

string), then type

\c: mysql> SELECT * FROM my _table WHERE name = "Smith AND age < 30;
"> "\c mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

It's important to know what the '> and "> prompts signify, because if you mistakenly enter an

unterminated string, any further lines you type will appear to be ignored by mysql -

including a line containing QUIT! This can be quite confusing, especially if you don't know

that you need to supply the terminating quote before you can cancel the current command.

53

CHAPTER4

USER MANUAL

In this chapter I will try to explain the veterinerian application program that when it run.If

a someone run the program; firstly splash form will be shown for 3000ms like below.

Figure 4.1

After 3000ms entry page (Secure Page) will be shown. (Figure 4.2)

54

On this page (Figure 4.2) the user must enter the user name and password.If user name and

password found then the program check the user state for still working or has left.If still

working; now the program check the user position for Admin,Veterinerian,Manager,User

and Temporary.If the user has left then who can not enter the system; in the same time there

is no user name and password program gives three trying chance to enter the system; when

is thirth the program will be terminate.

If user is Adrnin then who can access everything to make on application program; If user is

manager then who access everything to make exclusive of wrong password application; If

user is veterinerian then who can not access process of user after that who can access; If

user is a normal user then who can see some knowledge and can change the program

settings; If the user is temporary then who can access only amusements, internet explorer,

find folder and drug knowledge.

Then main page comes (Figure 4.3) it is shown below
~:·· COll'.OFJ .1J«l 5l:101C[S !llOU' · .. • · 1UAtt CO,Wi>iN!IS flM(I'\' ··""!!.!! .. rlllRtlflllm .lPPI IUllON PROGJIDol •• ,

COMSOFTAND SCIENCES
GROUP

AWU-S[MCHI

*
Figure 4.3

55

This is main page; other pages shown on it. There are ten button on this. User click one of

them and access the page that wanted by the user.

When button of definition clicked definition selection page is shown like below figure

'DRUGS

ANDC \.,
ROU

~CLOSE

APPLICATIONS

~ \,I

II ""i." I
I
INTERNET EXPLORER

' (9 !
'

Figure 4.4

Definitions acts to create knowledge that is necessary for application process.User decide

process and click the button to access the page for needed application.

When the staff button clicked; the page is shown that is figure 4.5. On this page user can

make some process like save, update, delete and find.

On staff record form there is a magnifier button that acts that if there is a person who saved

before;knowledge of that person is shown on form with all knowledge.

56

TAl'f 10:

SlillltJAME:

TI\SI(; [Scil:>iil Or~

U:»IVERSITY: I
CRAM STATE, Sooci.O~ 0
START OATE: _W01.l®7 - "1i] TOWN:

UPDATE AVlr

cm: Se1!d.Ot'1!!

(;OUt'l!ltY: ~lO;.,-· --- --= -3:1
MAit.: I

WEB:

LEAVE DATE: ffi.09.ffi9

~ I AHMET
2 TIJIIA
3 Af!MET

1/eJc<JllC!iGr•
\1~1.,.-'~

1¥>1

Figure 4.5

When the magnifier button clicked figure 4.6 is shown

57

< TRANFER CLOSE REFRESH

Figure 4.6

When the vaccines record clicked; the page is shown that is figure 4.5. On this page user

can add new vaccine, can delete or update it.For process of vaccinates vaccine name called

from here (Figure 4.7)

58

VACCINE ID:

DIJR.ATION: !select One @ Month

VACCINE NAME: ._• ---------'

SAVE UPDATE DELETE NEW

VACCIIIES LIST

Vaccine_id _.~cine_name Vaccine_duration
~, 1 DURATION 4•

4 5 FAFS

Figure 4.7

When user clicked drugs button Drug Record page will be shown. On this page user can add

new drug, delete drug and update old drug record.For process of drug application drug

name will absorb from here Figure 4.8

L. .[[select One

r,,,,_r H .c I. ~ jselecl One ll

][DELETE ~ ~ NEW l SAVE UPDATE

DRUGS LIST

[Druqjd JDrug__name Drug__ruationjDrug_kind ~
.-1 1 ilb.C:

4·SALLA
5 DENEME

610UTER PARASITE
3 INNER PARASITE
3 GENERAL DRUG

·--· -·---

Figure 4.8

59

When operations button clicked Operation Record page will be shown. On this page user

can add new operation, deleteand update operation.For operation application operation

name will be taken from here Figure 4.9

OPERATION ID:-------~ OPERATION NAME:~· --------

SAVE UPDATE DELETE NEW

OPERATIOIIS LIST

fl 1 ~ASMA_KESM~
2 CERRAHPA$A --- - - "" _
3 SALLJl.MA

Figure 4.9

If the user click the user button; user page is opened to make adding,deleting and updating

user knowledge like Figure 4 .10.

On this form there is a mini arrow button.It is act to get staff to combine with users and

staff.Because after when a knowledge is needed it sta:fisfied directly.

60

TAff f>QSITION; ,s.cleciOoo. ~~

SAVE UPDAlE

t~A.GER
AOl.tiN
USEfll
VE:TERINERlAI·
ift.iPORARY

1 WOl'l!QNG
2 WO~K.JNG
1 lllF'l
2 WORKING
J 'WORKING
1 '1./0RKlNG USER

Figure 4.10

ADD Record button thet on main form acts to create knowledge that is necessary for

continuity of program.Because Customer and Animal is defined here.User decide process

and click the button to access the page for needed application.Figure 4.11 act transaction of

this process from main menu.

61

1}, :::·COMSOfif,ANDSCIENCES GROUP::: ::':'TUAH COMPANl[S·TURKEVJ:::;: ::: VfTERINERIA

DEANITIONS

~AND
GROl

ADD RECORD

l\ l5cusTOMER ~ANIMAL

SEARCH RECORD

DELETE RECORD

APPLICATIONS

(;,~ ;;it'--,

Figure 4Jl

User can decide customer or animal.who if decide to continue for customer must click

customer button.When he/she made this a new form is shown,Customer record form.With

this form user can add an new customer or delete or update an old customer.Update or
delete is needed.Well may be customer transferred to other city or transferred to other

veterinerian.Figure 4.12 include a customer record page figure

The Program acts all of them easly.Interface is basic as shown.Every user can adapt easly

to make operation.

62

tOU~HRY:.S-*'!Onc a CUSTOMER ID:: FAX,L-..1:-,----

AOO""I I
Toww:1-
m:(s~to""

tMAII.: ._. -----------+
WEB.:_·--

SURN/1..ME:

HOME PHONE: LL. I
MOBIL f'J-iON.I:: 'LL-- 1 -·------...........,.,.~
W'ORK PHONE: .LL·-=-----'

[I, l I
I I. [L

DELETE: NEW SAVE

Figure 4.12

If user decided for animal must click animal button on Add Record Form (Figure 4.11).

When he/she clicked animal button Animal Record Form will be displayed.With this form

user can add an new animal or delete or update an old animal with their owner.Update or

delete is needed.Well may be animal transferred to other veterinerian or may be died.

Figure 4.13 shows animal record form.

63

m.

ANIMAi!. Klrm; I
""""' '~-------' COLOR:•--~--.---·--• Al11M.Ai. ID: '------

A!lll!MAL l~AMli'.: :.. _
r~-

WilCl-lT: _

COlJIJ'\R.NO:l

11!,g

WUnNO •o, . "ON«, MOD~lm ··1 ·
UFE STATE:ISek!«Cln.o G ..
'"'""''"!-- ~·· l ~-------' AllltMAL RAC.E :

OWNER NO, ·~---- __ [,!.
AlllP.THiOATE:,01,000-.-·. :w
ANl!~tA.L $'!;:X , ,Seieet 0'11! -- GJ

N0ff•r __ _____.
SAVE UPDATE OEU:TE'. NEW

~rina-~ ;1::--
J 2 \\/EFF

IUlll.tAlUST

la,'.;._l<i,d
liG
WE\\/ER

Figure 4.13

On this form (Figure 4.13) there is a mini arrow button.It find owner.Thats why initially

customer must save then animal can save.Because as seen owner only called from other

form directly.(Figure 4.14)

This Page (Figure 4.14) absorb the knowledge directly database through queries.When it

opened datas comes onto dbgrid that on page.

64

TRAN FER REFRESH

Figure 4.14

Search Record button that on main form acts to show knowledge.The knowledge stored in

database.User can access data through this pages (Search pages).When Search Button

clicked on main menu a new page will appear (Figure 4.15)

On this form (Figure 4.15) there are all states, applications.Well users can see, collect the

datas easly.They must decide Only 'What do I need' then click button and access

knowledge that needed by your own.

65

'f:je,, ,,,, ;;·,:: :-(OMSOFT1AND·'sc1rncEs'GROUP·::: ;,; .·;::: :~TU1H'coMPAN1Es,il.JRktv,:: :~ i:: .. :: : VE

DEFINITIONS r .. · .. •if. _,;_.,;:- -. ::;;;r;;;rr#:zc!.-~-~..:-v1::-;,t..;,,;,sc"t·.,;, ·_:._.·:,.·:t:q,.L.;~,.,. '.'" boi";; __ ;_ ,~- .• ~.,..~-..,,#.,:.--:~mf:t;#:iifl!-~.>.;,..a~; · ~~1:reu• mt •. I,,,_,,, 'c

CUSTOMER ·
ANIMAL .•.. ~~]

VACCINES

ADD RECORD

~--·1 - ~l ~

DRUGS I! INNER DRUGS II OUTER DRUGS •• 'Jl
._..,..,

MEDICINATE II OPERATIONS j[APPLIED OP.

Figure 4.15

If user want to see customer knowledge, he/she must click customer button. Than customer

search form will be displayed.Well easly got the data.Figure 4.16 has a customer search

page image.

As it seen there are five criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4.16 has only one of them.All figure will append

end of project as appendix.

66

{M~,!~i'.fj_s su11.!,~!U A1.;C'!'!'J 11s !'?will ~$ <111..-ror.mr._101. 11:!Jl. ~IIST()f.Jm
I ·y,,..;;: . - . - . - - .

L S.gAR(:~I AS NAM(

·-·-~ --- .., I SEAktH :I NEW SE:AflCli I NAM~·
c= _

Figure 4.16

If user want to see animal knowledge, he/she must click animal button.Than animal search

form will be displayed.Figure 4.17 shows an animal search page.

As it seen there are five criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4.17 has only one of them.

When user write character from keyboard the program will check the animals.

67

$!!AftCM AS ANIMAL ~-fA'htE

ANIMAL NAME: ;dogo NEW:SEARt:H

OUTER J'I\RASrrE Al'l'll(A.TION
IPn<n31_id f o~_i:hqlomo

INNER PARASITE Al'rt!U\TION
AAINll_id 111>_0:,q,omc

VACCIHATES
Arimot_i:I lv~..,r.mo

1 1 It.AC 1 1 ~UA
2 lM

~ l (lU!lA.1'l0tJ
l l)UBATlrul
l OU!t<\Tlllll
1r OURAT!O'N

Figure 4.17

If user want to see staff knowledge, he/she must click staff button that is on mam

page.Than staff search form will be displayed.Figure 4.18 shows an staff search form.

As it seen there are seven criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4.18 has only one of them.

When user write character from keyboard the program will check the staff name

68

l>EJIRCH AS $TAFF Nl\ME '
1,---[-N~EW SE-,1\RCH--,j i

~~ ,~,

Figure 4.18

If user want to see vaccinate knowledge, he/she must click vaccinate button that is on main

page.Than vaccinate search form will be displayed.Figure 4.19 shows an staff search form.

As it seen there are five criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4 .19 has only one of them.

69

[07.01.2007

J

Figure 4.19

When User want to change the settings, he/she must click settings button that is on main

page.Than setting page will be displayed.Figure 4.20 shows an settings form

As it seen there are two criteria to make search.Well user can change setting to various

situation.User can change form color,can disable or enable skins, disable or enable picture,

change skins and picture.

70

r].~~COMSO-flf AND SCIENCES GROUP::: ... , .. :::: Tl.JAH COMPANIESTURl<EY,:::;.:- . .'
••-v-•• ,_,, .~,---·•• * •-~- ••• ¥• ~ - • ~ • • •

DEFINITIONS

FORMS I OTHERS
ADD RECORD

It QCANCEL THE CLOSING ANIMATION

SEARCH RECORD
0CANCEL THE FORM Sl<INS

CHANGE THE FORM SKIN
DELETE RECORD

CHANGE FORfv.1 COLOR RESTORE DEFAULT

APPLICATIONS
~

Figure 4.20

If User want to see 'What will I do today?' ,'Which process will be made today ?', he/she

must click obligation button that is on search record page.Than obligation page will be

displayed.Figure 4.21 shows an settings form

As it seen there are three criteria to make search.Well user can learn to satisfy vaccinate

process, inner parasite application process, outer parasite application process.

71

PERFQMING l'INO

PE,RFORNIING DATE:[05.01.2007 El I FIND ,ll NEW J

VACCINATES I INNER P AR.~SITEJ OUTER PARASITE I

>1

Figure 4.21

When User want to arrvive the amusement. He/she must click amusement button that is on

main page.Than amusement selection page will be displayed.Figure 4.22 shows an

amusement selection form

As it seen there are six selection object to fun.Well user can arrive various fun.

72

ADD RECORD "'1111 I fw1ED1A PLAY ER II SOLITAIRE , II FREE CELL

ll 1111 I ~ •. 'II .,;,_

SEARCH RECORD

~ JI I MINES . I CALCULATOR
.·~ DELETE RECORD IID I : ''"'1 l~

~

I . I l Jl l
~

APPLICATIONS f_ l
r NOTEPAD lf HEARTS l

~
=

SETT1NGS

Jo
INTERNET EXPLORER

AMUSEMENT

~
~

Figure 4.22

If User want to open a web page. He/she must click internet explorer button that is on main

page.Than internet explorer page will be displayed.Figure 4.23 shows that.

73

'{;.,, .• ,.:;; CO...SCIIT AND scm«:rs GROUl>T:""·"';;;:ru'lH COMPA.Nm;·ruruuv·::;;, .. ,.;;: Vf'ltfUNfRl.lN lPPU(Jl'lON P!WGRAM ;;;, •• ~

t@-;__;~fj:t:
--i,IJGl. ~"

DELETE RECORD

~
---~~~~~--,r~--,,~~-=-~~-,-~~~~-.' r;n,;i,,,.,
(Googll!:'da Ata H ~30$1nlt Denemek isli)"tirum I .ll.l.ll!W:lm

Ara: 0 Web O ifirf<'Je nyfalar O Turl<iye'<len sayfalar

IN1
Rcklarn P,og.mMljllflFi'IIZ • Googlll: Hakk,ruh • l(a,ivnr B3~nJl.)n • Google CO>'l'I '" Er1gli1p

AMUSEMENT

r ~. ifil ~ ci, wmet I

Figure 4.23

If User want toget an windows screen. He/she must click find folder button that is on main

page.Than windows screen page will be displayed.Figure 4.24 shows that.In here can find

folder, files.And also can process some operation about other application.

74

t'.lfflNITHlNS

I .•••. ~ II~ 0 - -~.. ·~ ::ro ~gel~,~~
'fil Mw,w.,;;
se;)ml!I

t:::il ~.fMll O~;oJorJll
~Miilitim
-lJWSetuµo
, _ Mure Pad.age
£E\ Res.Ide;
!!;)~lam,
Eli¢!_avarrn
~~~ ..• 

iJ Geri ~rnY.UMY 
18i20ei ,,_tcoi 

., 101105M20 
~~ (:('»!320 
O com'432 1:.1 :!06µrsamba 
Qde e) for~ e gtarve ney 

~ e::i 

DELETE RECORD 

Al'Pl.lu\ TIONS 

INTERNET EXPLORER 

r.wla,jrm r.Jasooerrn 
KISaV<)I 
l KB 

V 

Figure 4.24 

75 



CONCLUSION 

MySQL and Delphi are powerful program.When I study with these two program.I get 

fun.Because these program are wonderful.Examination of the data for internal 

consistency and comparisons with externally available data indicates that the Delphi 

study appears reliable. However, the study was difficult to carry out owing to 

difficulties in obtaining answers from possible respondents. Thus, if a larger survey is to 

be undertaken to include all building components, it is recommended that committed 

respondents be obtained before devising the survey. 

Veterinerian Application program for veterinerian and users act more facility.However 

Users adapt easly to the program and use it safetly.Nowadays in everywhere, in every 

job is combined with the computer. Well Veterinerian clinic will combine with this 

project. 

76 



APPENDIX 

VETARINERIAN APPLICATION PROGRAM SOURCE CODE 

FORM 1 CODES 

unit Unitl; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, ComCtrls, Menus, ExtCtrls, WinSkinData, jpeg, StdCtrls, 
XPMan; 

type 
TForml = class(TForm) 
Panel 1: TPanel; 
MainMenul: TMainMenu; 
Filel: TMenultem; 
StatusBarl: TStatusBar; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
SpeedButtonlO: TSpeedButton; 
Shapel: TShape; 
SkinDatal: TSkinData; 
Label 1: TLabel; 
Timerl: TTimer; 
Image 1: Tlmage; 
XPManifest 1: TXPManifest; 
procedure Timerl Timer(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton 1 OClick(Sender: TObject ); 
procedure SpeedButton3Click(Sender: TObject); 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure SpeedButton5Click(Sender: TObject ); 
procedure SpeedButton8Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure SpeedButton9Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 

77 



procedure SpeedButtonlMouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton7MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton8MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton9MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton6MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButtonlOMouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

procedure SpeedButton6Click(Sender: TObject); 
private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forml: TForml; 

implementation 

uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, Unit9, Unit41; 

{$R *.dfm} 

procedure TForml.Timerl Timer(Sender: TObject); 
begin 
//if (forml.Labell.Top <> 600) then/land (forml.Labell.Top > 1) then 
//form I .Label 1. Top: =form l .Label 1. Top-1; 
//ifforml.Labell.Top <> 1 then 
//form l .Label 1. Top: =form l .Label 1. Top+ 1; 
FORMl. StatusBarl .Panels[ 5]. Text:=TIMETOSTR(TIME); 
end; 

procedure TForml.FormCreate(Sender: TObject); 
begin 
forml.Labell.Caption:='COMSOFT and SCIENCES'+#l3+' 
FORMl.StatusBarl.Panels[l].Text:=DATETOSTR(DATE); 
FORMl. StatusBarl .Panels[ 5]. Text:=TIMETOSTR(TIME); 

GROUP'; 

78 



end; 

procedure TF orm 1. S peedButton 1 Click( Sender: TObj ect); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM3. CLOSE; 
FORM4.CLOSE; 
FORMS.CLOSE; 
FORM6.CLOSE; 
FORM2.SHOW; 
end; 

procedure TForm 1. SpeedButton 1 OClick(Sender: TObject ); 
begin 
form41.CLOSE; 
end; 

procedure TForml.SpeedButton3Click(Sender: TObject); 
begin 
FORM6.CLOSE; 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM4.CLOSE; 
FORMS.CLOSE; 
FORM3.SHOW; 
end; 

procedure TForml .FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
form2.CLOSE; 
form3.CLOSE; 
form4.CLOSE; 
forms. CLOSE; 
form6.CLOSE; 
form4 l. close; 

end; 

procedure TF orm 1. SpeedButtonSClick(Sender: TObject ); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3. CLOSE; 
FORMS. CLOSE; 
FORM6.CLOSE; 

79 



form4. show; 
end; 

procedure TForml.SpeedButton8Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3.CLOSE; 
FORM4.CLOSE; 
FORM6.CLOSE; 
FORMS.SHOW; 
end; 

procedure TForml. SpeedButton4Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM2.CLOSE; 
FORM3 .CLOSE; 
FORM4.CLOSE; 
FORMS. CLOSE; 
FORM7.CLOSE; 
form6.show; 
end; 

procedure TForml.SpeedButton2Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM2.CLOSE; 
FORM3. CLOSE; 
FORM4.CLOSE; 
FORMS.CLOSE; 
FORM6.CLOSE; 
FORM7.SHOW; 
end; 

procedure TForml.SpeedButton9Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3.CLOSE; 
FORMS. CLOSE; 
FORM4.CLOSE; 
FORM6.CLOSE; 
if FileExists('C:\ WINDOWS\explorer.exe') then 
winexec('C:\WINDOWS\explorer.exe',sw_shownormal); 

end; 

procedure TF orm 1. SpeedButton7Click(Sender: TObject ); 

80 



begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3.CLOSE; 
FORMS.CLOSE; 
FORM4.CLOSE; 
FORM6.CLOSE; 
if FileExists('C:\Program Files\Internet Explorer\iexplore.exe') then 
winexec('C:\Program Files\Internet Explorer\iexplore.exe',sw_shownormal); 

end; 

procedure TForml.SpeedButtonlMouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORMl.SpeedButtonl.Hint:=' THIS ACTS TO DEFINE NEW 
KNOWLEDGE'+#13+ 

'(STAFF, VACCINE, DRUGS, OPERATIONS, USERS)'; 

end; 

procedure TForml. SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM!. SpeedButton2.Hint:='USES TO SA VE NEW RECORD'+# 13+ 

I (CUSTOMER, ANIMAL)'; 
end; 

procedure TForml.SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton3.Hint:='USE TO FIND RECORD'+#13+ 

I (ALL CRITERIA)'; 
end; 

procedure TForml.SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton4.Hint:='ACTS TO DELETE RECORD'+#13+ 

I (ALL CRITERIA)'; 
end; 

procedure TForml.SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton5.Hint:=' USES TO SAVE NEW APPLICATION'+#13+ 

'(VACCINATE, INNER PARASITE, OUTER PARASITE)'+# 13+ 
'(MEDICINATE, APPLIED OPERATIONS, ILNESSES )'; 

end; 

81 



procedure TForml.SpeedButton7MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton7.Hint:='USES TO OPEN THE INTERNET EXPLORER'; 

end; 

procedure TForml.SpeedButton8MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORMl. SpeedButton8.Hint:='USE TO HA VE FUN'; 

end; 

procedure TForml.SpeedButton9MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton9.Hint:='USES TO SEE WINDOWS FILES OR FOLDERS'; 

end; 

procedure TForml.SpeedButton6MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORMl. SpeedButton6.Hint:='ACTS TO CHANGE THE PROGRAM SETTINGS'; 
end; 

procedure TF orml. SpeedButtonl OMouseMove(Sender: TObject; 
Shift: TShiftState; X, Y: Integer); 

begin 
FORMl.SpeedButtonlO.Hint:='ACTS TO CLOSE THE PROGRAM'; 
end; 

procedure TForml.SpeedButton6Click(Sender: TObject); 
begin 
FORM4.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3 .CLOSE; 
FORMS.CLOSE; 
FORM6.CLOSE; 
FORM9.SHOW; 
end; 

end. 

FORM2CODES 

unit Unit2; 

interface 

82 



uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, Buttons; 

type 
TForm2 = class(TForm) 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButton6: TSpeedButton; 
procedure SpeedButton6Click(Sender: TObject ); 
procedure SpeedButtonl Click(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form2: TForm2; 

implementation 

uses UnitlO, Unitl 1, Unit12, Unit13, Unit14; 

{$R *.dfm} 

procedure TForm2.SpeedButton6Click(Sender: TObject); 
begin 
form2.hide; 
end; 

procedure TForm2.SpeedButton1Click(Sender: TObject); 
begin 
FORMlO.SHOW; 
form2.Hide; 
end; 

procedure TForm2.SpeedButton2Click(Sender: TObject); 
begin 
form 11. show; 
form2.Hide; 

83 



end; 

procedure TF orm2. S peedButton3 Click(Sender: TObj ect); 
begin 
FORM12.SHOW; 
FORM2.Hide; 

end; 

procedure TForm2.SpeedButton4Click(Sender: 'I'Object); 
begin 
FORM13.SHOW; 
FORM2.HIDE; 

end; 

procedure TForm2.SpeedButton5Click(Sender: TObject); 
begin 
FORM14.SHOW; 
FORM2.Hide; 

end; 

end. 

FORM3CODES 

unit Unit3; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, Buttons; 

type 
TForm3 = class(TForm) 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
SpeedButton 10: TSpeedButton; 
SpeedButtonl 1: TSpeedButton; 
SpeedButton12: TSpeedButton; 
SpeedButton13: TSpeedButton; 
SpeedButton14: TSpeedButton; 
SpeedButton15: TSpeedButton; 

84 



MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButton16: TSpeedButton; 
procedure SpeedButtonl Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 
procedure SpeedButton14Click(Sender: TObject); 
procedure SpeedButtonlSClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButton9Click(Sender: TObject ); 
procedure SpeedButtonlOClick(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton8Click(Sender: TObject); 
procedure SpeedButtonl lClick(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject ); 
procedure SpeedButton12Click(Sender: TObject); 
procedure SpeedButton 16Click(Sender: TObject ); 
procedure SpeedButton13Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
F orm3: TF orm3; 

implementation 

uses Unitl, Unit23, Unit24, Unit25, Unit28, Unit27, Unit29, Unit30, Unit31, 
Unit32, Unit26, Unit33, Unit34, Unit35, Unit36, Unit37; 

{$R *.dfm} 

procedure TF orm3. SpeedButton 1 Click(Sender: TObj ect ); 
begin 
FORM23.SHOW; 
FORM3 .Hide; 

end; 

procedure TForm3.SpeedButton7Click(Sender: TObject); 
begin 
FORM24. SHOW; 
FORM3 .Hide; 

end; 

85 



procedure TForm3.SpeedButton14Click(Sender: TObject); 
begin 
FORM25. SHOW; 
FORM3 .Hide; 

end; 

procedure TForm3. SpeedButtonl 5Click(Sender: TObject); 
begin 
FORM27. SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton2Click(Sender: TObject ); 
begin 
FORM28.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton5Click(Sender: TObject); 
begin 
forrn29. show; 
form3 .Hide; 
end; 

procedure TF orm3. SpeedButton9Click(Sender: TObject ); 
begin 
FORM30.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton 1 OClick(Sender: TObj ect ); 
begin 
FORM31.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton3Click(Sender: TObject); 
begin 
FORM32.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton4Click(Sender: TObject ); 
begin 
FORM26.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton8Click(Sender: TObject ); 
begin 

86 



FORM33.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButtonl 1Click(Sender: TObject); 
begin 
FORM34. SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton6Click(Sender: TObject); 
begin 
FORM35.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton12Click(Sender: TObject); 
begin 
FORM36.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton 16Click(Sender: TObj ect ); 
begin 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton13Click(Sender: TObject); 
begin 
FORM37.SHOW; 
FORM3 .Hide; 
end; 

end. 

FORM4CODES 

unit Unit4; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, Menus; 

type 
TForm4 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 

87 



SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
procedure SpeedButton 1 Click(Sender: TObject ); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject ); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject ); 
procedure SpeedButton7Click(Sender: TObject ); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
F orm4: TF orm4; 

implementation 

uses Unitl 7, Unit18, Unit 19, Unit20, Unit21, Unit22; 

{$R *.dfm} 

procedure TForm4.SpeedButton1Click(Sender: TObject); 
begin 
FORMI 7.SHOW; 
FORM4.Hide; 

end; 

procedure TF orm4. S peedButton2Cli ck( Sender: TObj ect); 
begin 
FORM18.SHOW; 
FORM4.Hide; 

end; 

procedure TForm4.SpeedButton5Click(Sender: TObject); 
begin 
FORM19.SHOW; 
FORM4.Hide; 

end; 

procedure TForm4.SpeedButton3Click(Sender: TObject); 
begin 
FORM20. SHOW; 

88 



FORM4.Hide; 
end; 

procedure TF orm4. SpeedButton4Click(Sender: TObj ect ); 
begin 
FORM21.SHOW; 
FORM4.Hide; 

end; 

procedure TF orm4. SpeedButton6Click(Sender: TObject ); 
begin 
form22.show; 
form4.Hide; 
end; 

procedure TForm4.SpeedButton7Click(Sender: TObject); 
begin 
FORM4.Hide; 
end; 

end. 

FORM5CODES 

unit Unit5; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, Menus; 

type 
TForm5 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 

89 



procedure SpeedButtonSClick(Sender: TObject); 
procedure SpeedButton8Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 
procedure SpeedButton9Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forms: TFormS; 

implementation 

{$R *.dfm} 

procedure TFormS.SpeedButtonlClick(Sender: TObject); 
begin 
if FileExists('C: \Program Files\ Windows Media Player\wmplayer. exe') then 
winexec('C:\Program Files\Windows Media Player\wmplayer.exe',sw_shownormal); 

end; 

procedure TForm5.SpeedButton2Click(Sender: TObject); 
begin 
if FileExists('C:\ WINDOWS\system3 2\sol.exe') then 
winexec('C:\ WINDOWS\system32\sol. exe',sw _ shownormal); 

end; 

procedure TForm5.SpeedButton3Click(Sender: TObject); 
begin 
if FileExists('C: \ windows\system3 2\freecell. exe') then 
winexec('C:\windows\system32\freecell.exe',sw _shownormal); 

end; 

procedure TF orm5. SpeedButton4Click(Sender: TObj ect ); 
begin 
if FileExists('C:\WINDOWS\system32\winmine.exe') then 
winexec('C:\ WINDOWS\system32\winmine. exe',sw _ shownormal); 

end; 

procedure TForm5.SpeedButton5Click(Sender: TObject); 
begin 
ifFileExists('C:\WINDOWS\system32\calc.exe') then 
winexec('C:\WINDOWS\system32\calc.exe',sw_shownormal); 

end; 

procedure TForm5.SpeedButton8Click(Sender: TObject); 
begin 

90 



if FileExists('C:\ WINDOWS\notepad. exe') then 
winexec('C :\ WINDOWS\notepad.exe',sw _ shownormal); 

end; 

procedure TForm5.SpeedButton6Click(Sender: TObject); 
begin 
ifFileExists('C:\Program Files\MSN Messenger\msnmsgr.exe') then 
winexec('C: \Program Files\MSN Messenger\msnmsgr. exe',sw _ shownormal) 

else if FileExists('C:\Program Files\Messenger\msmsgs.exe') then 
winexec('C: \Program Files\Messenger\msmsgs. exe', sw _ shownormal); 

end; 

procedure TF orm5. SpeedButton7Click(Sender: TObject ); 
begin 
form5 .Hide; 
end; 

procedure TF orm5. SpeedButton9Click(Sender: TObject ); 
begin 
ifFileExists('C:\WINDOWS\system32\mshearts.exe') then 
winexec('C: \ WINDOWS\system32\mshearts. exe', sw _ shownormal); 

end; 

end. 

FORM6CODES 

unit Unit6; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, Buttons; 

type 
TForm6 = class(TForm) 
SpeedButton 1: TSpeedButton; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
SpeedButtonl 1: TSpeedButton; 

91 



SpeedButtonl2: TSpeedButton; 
SpeedButtonl3: TSpeedButton; 
SpeedButtonl4: TSpeedButton; 
procedure SpeedButton6Click(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButtonSClick(Sender: TObject ); 
procedure SpeedButton9Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 
procedure SpeedButton8Click(Sender: TObject ); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure SpeedButtonl lClick(Sender: TObject); 
procedure SpeedButtonl4Click(Sender: TObject); 
procedure SpeedButtonl2Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton13Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form6: TForm6; 

implementation 

uses Unitl5, Unitl 1, Unitl2, Unitl3, Unitl4, Unit 16, Unitl 7, Unit 18, 
Unitl9, Unit21, Unit20, Unit22; 

{$R *.dfm} 

procedure TForm6.SpeedButton6Click(Sender: TObject); 
begin 
FORM6.CLOSE; 
end; 

procedure TForm6.SpeedButtonlClick(Sender: TObject); 
begin 
FormlS.LbSpeedButtonl.Enabled:=FALSE; 
Form 15 .LbSpeedButton2.Enabled:=F ALSE; 
FORM15.SHOW; 
FORM6.CLOSE; 

end; 

procedure TForm6.SpeedButton5Click(Sender: TObject); 
begin 
FORMl 1. SpeedButton2.Enabled:=F ALSE; 
FORMl 1. SpeedButton3 .Enabled:=F ALSE; 
FORMl I.SHOW; 

92 



FORM6.Close; 
end; 

procedure TF orm6. SpeedButton9Click(Sender: TObject ); 
begin 
FORMl 2. SpeedButton2.Enabled:=F ALSE; 
FORM12. SpeedButton3 .Enabled:=F ALSE; 
FORM12.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton4Click(Sender: TObject); 
begin 
Form13.LbSpeedButtonl.Enabled:=FALSE; 
Form 13 .LbSpeedButton2.Enabled:=F ALSE; 
FORM13.SHOW; 
FORM6.Close; 

end; 

procedure TF orm6. S peedButton 7 Click(Sender: TObj ect); 
begin 
Form 14 .LbSpeedButton 1.Enabled:=F ALSE; 
Form 14 .LbSpeedButton2.Enabled:=F ALSE; 
FORM14.SHOW; 
FORM6.CLOSE; 

end; 

procedure TForm6.SpeedButton8Click(Sender: TObject); 
begin 
FORMl 6. SpeedButton3 .Enabled:=F ALSE; 
FORMl 6. SpeedButton4.Enabled:=F ALSE; 
FORM16.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton2Click(Sender: TObject); 
begin 
Forml 7.LbSpeedButtonl .Enabled:=F ALSE; 
Forml 7.LbSpeedButton2.Enabled:=F ALSE; 
FORMl 7. SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButtonl 1Click(Sender: TObject); 
begin 
Form18.SpeedButton3.Enabled:=FALSE; 
Form18.SpeedButton4.Enabled:=FALSE; 
FORM18.SHOW; 
FORM6.Close; 

end; 

93 



procedure TForm6.SpeedButton14Click(Sender: TObject); 
begin 
Form19.LbSpeedButtonl.Enabled:=FALSE; 
Form19.LbSpeedButton2.Enabled:=FALSE; 
FORM19.SHOW; 
FORM6.CLOSE; 

end; 

procedure TForm6. SpeedButton 12Click(Sender: TObject ); 
begin 
Form21.LbSpeedButtonl .Enabled:=F ALSE; 
Form21.LbSpeedButton2.Enabled:=F ALSE; 
FORM21.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton3Click(Sender: TObject); 
begin 
Form20.SpeedButton3.Enabled:=FALSE; 
Form20. SpeedButton4.Enabled:=F ALSE; 
FORM20.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton13Click(Sender: TObject); 
begin 
Form22.SpeedButton3.Enabled:=FALSE; 
Form22. SpeedButton4.Enabled:=F ALSE; 
FORM22.SHOW; 
FORM6.Close; 

end; 

end. 

FORM7CODES 

unit Unit7; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, Menus; 

type 
TForm7 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 

94 



SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form7: TForm7; 

implementation 

uses Unitl5, Unitl6; 

{$R *.dfm} 

procedure TForm7.SpeedButtonlClick(Sender: TObject); 
begin 
FORM15.SHOW; 
FORM7.IDDE; 

end; 

procedure TF orm7. SpeedButton2Click(Sender: TObject ); 
begin 
FORM16.SHOW; 
FORM? .Hide; 

end; 

end. 

FORMS CODES 

unit Unit8; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, jpeg, ExtCtrls; 

type 
TForm8 = class(TForm) 
Image 1: Tlmage; 
private 
{ Private declarations } 

public 

95 



{ Public declarations } 
end; 

var 
Form8: TForm8; 

implementation 

{$R *.dfm} 

end. 

FORM9CODES 

unit Unit9; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, ComCtrls, Menus, StdCtrls, jpeg, ExtDlgs; 

type 
TForm9 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
PageControl 1: TPageControl; 
TabSheet3: TTabSheet; 
TabSheet4: TTabSheet; 
ColorDialogl: TColorDialog; 
F ontDialog 1 : TF ontDialog; 
CheckBox 1: TCheckBox; 
CheckBox2: TCheckBox; 
SpeedButton4: TSpeedButton; 
CheckBox3: TCheckBox; 
CheckBox6: TCheckBox; 
SpeedButton5: TSpeedButton; 
OpenDialog 1: TOpenDialog; 
OpenPictureDialog 1: TOpenPictureDialog; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
procedure SpeedButton4Click(Sender: TObject); 
procedure CheckBox2Click(Sender: TObject ); 
procedure CheckBox6Click(Sender: TObject ); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject ); 

private 
{ Private declarations } 

96 



public 
{ Public declarations } 

end; 

var 
Form9: TForm9; 

implementation 

uses Unitl, Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, UnitlO, Unitl 1, 
Unit12, Unit13, Unit14, Unit15, Unit 16, Unitl 7, Unit18, Unit19, Unit20, 
Unit21, Unit22, Unit23, Unit24, Unit25, Unit26, Unit27, Unit28, Unit29, 
Unit30, Unit31, Unit32, Unit33, Unit34, Unit35, Unit36, Unit37, Unit38, 
Unit39, Unit40, Unit41; 

{$R *.dfm} 

procedure TF orm9. SpeedButton4Click(Sender: TObject ); 
begin 
if form9. CheckBox2. Checked <> true then 
begin 
form9.0penDialogl.Filter:='Skin Files (skn)j*.skn'; 
if form9. OpenDialog I .Execute then 
begin 
forml .SkinDatal .LoadFromFile(form9.0penDialogl .FileName); 
//forml .Label 1.Caption:=forml. SkinDatal. SkinFile; 
end; 
end 
else 
begin 
beep; 
showmessage('YOU HA VE CANCELED THE SKINS BEFORE'); 

end; 

end; 

procedure TForm9.CheckBox2Click(Sender: TObject); 
begin 
ifform9.CheckBox2.Checked = true then 
form 1. SkinDatal .Active:=false; 
ifform9.CheckBox2.Checked = false then 
forml.SkinDatal.Active:=true; 

end; 

procedure TForm9.CheckBox6Click(Sender: TObject); 
begin 
if form9.CheckBox6.Checked = true then 
begin 
form I .Image 1. Visible: =true; 

97 



end; 

if form9.CheckBox6.Checked = false then 
begin 
forml .Imagel. Visible:=false; 

end; 
end; 

procedure TF orm9. SpeedButton5Click(Sender: TObject ); 
begin 
if form9.CheckBox6.Checked = true then 
begin 
if form9. OpenPictureDialog 1.Execute then 
forml.Imagel.Picture.LoadFromFile(form9.0penPictureDialogl.FileName); 

end 
else 
begin 
beep; 
showmessage('YOU HA VE CANCELED WALLPAPERS BEFORE'); 

end; 
end; 

procedure TForm9.SpeedButtonlClick(Sender: TObject); 
begin 
if form9. ColorDialog 1.Execute then 
begin 
form 1. Color:=form9. ColorDialog 1. Color; 
form.2. Color:=form9. ColorDialog 1. Color; 
form3. Color:=form9. ColorDialog 1. Color; 
form4.Color:=form9.ColorDialogl.Color; 
forms. Color:=form9. Color Dialog 1. Color; 
form6. Color:=form9. ColorDialog 1. Color; 
form7. Color:=form9. Color Dialog 1. Color; 
form9. Color:=form9. ColorDialog 1. Color; 
form 10. Color:=form9. ColorDialog 1. Color; 
form 11. Color:=form9. Color Dialog 1. Color; 
forml2.Color:=form9.ColorDialogl.Color; 
form 13. Color:=form9. ColorDialog 1. Color; 
forml4.Color:=form9.ColorDialogl.Color; 
forml 5. Color:=form9. Color Dialog 1. Color; 
forml6.Color:=form9.ColorDialogl.Color; 
form 17. Color:=form9. ColorDialog 1. Color; 
form 18. Color:=form9. ColorDialog 1. Color; 
form 19. Color:=form9. ColorDialog 1. Color; 
form.20. Color:=form9. ColorDialog 1. Color; 
form.21. Color:=form9. ColorDialog 1. Color; 
form.22. Color:=form9. ColorDialog 1. Color; 
form.23. Color:=form9. ColorDialog 1. Color; 
form.24. Color:=form9. ColorDialog 1. Color; 
form.25. Color:=form9. ColorDialog 1. Color; 

98 



form26. Color:=form9. ColorDialog 1. Color; 
form27.Color:=form9.ColorDialogl.Color; 
form28. Color:=form9. ColorDialog 1. Color; 
form29. Color:=form9. ColorDialog 1. Color; 
form30. Color:=form9. ColorDialog 1. Color; 
form3 l. Color:=form9. ColorDialog 1. Color; 
form32. Color:=form9. ColorDialog 1. Color; 
form3 3. Color:=form9. ColorDialog 1. Color; 
form34. Color:=form9. ColorDialog 1. Color; 
form3 5. Color:=form9. ColorDialog 1. Color; 
form36. Color:=form9. ColorDialog 1. Color; 
form3 7. Color:=form9. ColorDialog 1. Color; 
form3 8. Color:=form9. ColorDialog 1. Color; 
form39.Color:=form9.ColorDialogl.Color; 
form40. Color:=form9. ColorDialog 1. Color; 
form4 l .Color:=form9.ColorDialogl .Color; 

end; 

end; 

procedure TForm9.SpeedButton2Click(Sender: TObject); 
begin 
form 1. color:=clBlack; 
form2.color:=c1BtnFace; 
form3 .color:=clBtnFace; 
form4.color:=c1BtnFace; 
forms .color:=clBtnFace; 
form6.color:=clBtnFace; 
form7.color:=c1BtnFace; 
form9.color:=clBtnFace; 
form10.color:=$004080FF; 
forml l .color:=$00C08080; 
form12.color:=$00400040; 
form 13 .color:=clGray; 
form14.color:=c1Silver; 
form 15 .color:=$00404080; 
forml6.color:=c1BtnFace; 
forml 7.color:=clMoneyGreen; 
forml8.color:=$00400000; 
form 19 .color:=clBlack; 
form20. color: =clBtnF ace; 
form2 l .color:=$00404080; 
form22. color: =cllnactiveCaption Text; 
form23 .color:=clBtnFace; 
form24.color:=clBtnFace; 
form25 .color:=clBtnFace; 
form26.color:=clBtnFace; 
form27 .color:=clBtnFace; 
form28.color:=clBtnFace; 
form29.color:=clBtnFace; 

99 



form30.color:=clBtnFace; 
form31.color:=clBtnFace; 
form32.color:=clBtnFace; 
form33.color:=clBtnFace; 
form34. color:=clBtnFace; 
form35.color:=clBtnFace; 
form36.color:=clBtnFace; 
form37.color:=clBtnFace; 
form38.color:=clBtnFace; 
form39.color:=$00DOA5A4; 
form40.color:=clBtnFace; 
form41.color:=clBtnFace; 
end; 

end. 

FORM 10 CODES 

unit UnitlO; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, StdCtrls, Mask, Menus, DB, ADODB, Buttons, Grids, 
DBGrids, LbSpeedButton, ExtCtrls; 

type 
TFormlO = class(TForm) 
ADOConnection 1: T ADOConnection; 
ADOQueryl: TADOQuery; 
DataSource 1 : TDataSource; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 
Label?: TLabel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
Edit3: TEdit; 
ComboBox 1: TComboBox; 
ComboBox2: TComboBox; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
Label8: TLabel; 

100 



Label9: TLabel; 
Labell 0: TLabel; 
Label 11: TLabel; 
Label12: TLabel; 
Label 13: TLabel; 
Edit4: TEdit; 
MaskEdit 1: TMaskEdit; 
Memol: TMemo; 
Edit5: TEdit; 
ComboBox3: TComboBox; 
ComboBox4: TComboBox; 
Label 14: TLabel; 
Label 15: TLabel; 
Label16: TLabel; 
Label 17: TLabel; 
Edit6: TEdit; 
DateTimePicker3: TDateTimePicker; 
MaskEdit2: TMaskEdit; 
Edit?: TEdit; 
Label 18: TLabel; 
Memo2: TMemo; 
StatusBarl: TStatusBar; 
Label 19: TLabel; 
Edit8: TEdit; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
DBGrid 1: TDBGrid; 
SpeedButtonl: TSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
Panell: TPanel; 
ADOQuery2: TADOQuery; 
DataSource2: TDataSource; 
procedure FormCreate(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure FormShow(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure EditlChange(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure FormHide(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
FormlO: TFormlO; 

101 



implementation 

uses Unit38; 

{$R *.dfm} 

procedure TFormlO.FormCreate(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyy/m/d'; 
end; 

procedure TFormlO.SpeedButtonlClick(Sender: TObject); 
begin 
FORM38.SHOW; 
TA:=10; 

end; 

procedure TFormlO.FormShow(Sender: TObject); 
begin 
forml O .DateTimePicker 1.Date:=date; 
form 10 .DateTimePicker2.Date:=date; 
//form 10 .DateTimePicker3 .Date:=date; 
formlO.ADOQuery2.Close; 
formlO.ADOQuery2.SQL.Text:='select * from staff; 
form 10. ADOQuery2. Open; 
end; 

procedure TF orm 10 .LbSpeedButton 1 Click(Sender: TObject ); 
begin 
formlO.ADOQueryl.Close; 
formlO.ADOQueryl.SQL.Text:='select * from staff where 

Staff name='+#39+form10.Edit2.Text+#39+' and 
Staff surname='+#39+form10.Edit3.Text+#39+' and 
S_birthdate='+#39+datetostr(form10.DateTimePicker2.date)+#39; 
form 10. ADOQuery 1. Open; 

ifformlO.ADOQueryl.RecordCount = 0 then 
begin 
if (form10.Edit2.Text <>")or (form10.Edit3.Text <>")then 
begin 
form 10. ADOQuery 1. Close; 
formlO.ADOQueryl.SQL.Text:='insert into staff 

(Staff _name, Staff_ surname, Staff _task, University, Grade_ state, S _ workstartdate, S _ birthd 
ate, S _ TCidno, S _ homephone, S _ mobilphone, S _ address, S _ town, S _city, S _country, S _ ema 
il, S _ web, S _leavingdate, S _note) values 
('+#39+Form10.Edit2.Text+#39+','+#39+form10.Edit3.Text+#39+','+#39+form10.Com 
boBoxl.Text+#39+','+#39+form10.Edit4.Text+#39+','+#39+form10.ComboBox2.Text+ 
#39+','+#39+datetostr(form10.DateTimePickerl.date)+#39+','+#39+datetostr(form10.D 

102 



NEAR EAST UNIVERSITY 

Faculty of Engineering 

Department of Computer Engineering 

VETERINERIAN APPLICATION PROGRAM WITH 
DELPHI 

Graduation Project 
COM400 

Student: Ahmet KAYABA$ (20021329) 

Supervisor: Mr. Elburus IMANOV 

Lefko!ja-2007 



TABLE OF CONTENT 
TABLE OF CONTENT I 

ACKNOWLEDGMENTS VI 

ABSTRACT VII 

INTRODUCTION [VIII 

CHAPTER 1: DELPHI 
1.1 Introduction to delphi 1 
1.2 What is Delphi? 3 
1.3 What kind of Programming can you do with Delphi? 4 
1.4 Versions are there and How do they differ? 5 
1.5 Some Knowledge About Delphi 7 

1.5.2 Example: Try First Delphi Program 8 
1.5.2 Delphi Style 10 

1.6 How Delphi helps You Define Patterns 11 
1.6.1 Delphi Examples of Design Patterns 11 
1.6 .. 2 Pattern: Singleton 13 

1.6.2.1 Definition 13 
1.6.2.2 Applications in Delphi 13 
1.6.2.3 Implementation Example 14 

1.6.3 Pattern: Adapter 14 
1.6.3.1 Definition 14 
1.6.3.2 Applications in Delphi 14 
1.6.3.3 Implementation Example 15 

1.6.4 Pattern: Template Method 15 
1.6.4.1 Definition 15 
1.6.4.2 Applications in Delphi 15 
1.6.4.3 A typical example of abstraction is the TGraphic class. 15 
1.6.4.4 Implementation Example 16 

1.6.5 Pattern: Builder 16 

I 



1.6.5.2 Applica6ons in Delphi 16 
1.6.5.3 Implementation Example 17 

1.6.6 Pattern: Abstract Factory 17 
1.6.6.1 Definition 17 

' 
1.6.6.2 Applica6ons in Delphi 17 
1.6.6.3 Implementation Example 17 

1.6.7 Pattern: Factory Method 18 
1.6.7.1 Definition 18 
1.6.7.2 Applications in Delphi 1~ 

I 

1.6.7.3 Implementation Example 18 
1.7 Key elements of Delphi class definitions 19 

1.7.1 Unit Structure 19 

1.7.2 Class Interfaces 19 
1. 7 .3 Properties 19 
1. 7.4 Inheritance 19 
1. 7.5 Abstract Methods 21 

1. 7 .6 Messages 22 
1.7.7 Events 22 
1.7.8 Constructors and Destructors 22 

1.8 The VCL to Applications Developers 23 
1.8.1 The VCL to Component Writers 23 
1.8.2 The VCL is made up of components 24 
1.8.3 Component Types, structure, and VCL hierarchy 24 
1.8.4 Component Types 25 

1.8.4.1 Standard Components 25 
1.8.4.2 Custom Components 26 
1.8.4.3 Graphical Components 26 
1.8.4.4 Non-Visual Components 26 
1.8.4.5 Structure of a Component 27 
1.8.4.6 Component Properties 27 

1.9 Properties Provide Access, to Internal Storage Fields 27 
1.9.1 Property-access methods 28 
1.9.2 Types of properties 30 

1.6.5.1 Definition 16 

II 



1.9.3 Methods 31 

1.9.4 Events 31 

1.9.5 Containership 32 

1.9.6 Ownership 32 

1.9.7 Parenthood 33 

CHAPTER 2 :DATABASE 34 

2.1 Demerits of Absence of Database 34 

2.2 Merits of Database 35 

23 Database Design 35 

2.4 Database Models 36 

2.4.1 Flat Model 37 

2.4.2 Network Model 37 

2.4.3 Relational Model 37 
2.4.3.1 Why we use a Relational Database Design 38 

2.5 Relationship Between Tables 39 

2.5.2 One-To-One Relationships 39 
2.5.3 One-To-Many Relationships 39 

2.6 Data Modeling 40 
i.6.1 Database Normalization 40 

2.6.2 Primary Key 40 
2.6.3 Foreign Key 41 

2.6.4 Compound Key 42 

CHAPTER 3 :MYSQL 43 

3.1 Introducrtion to MySQL 43 

3.2 What is MySQL? 43 
3.2.1 Definition 43 

3.3 Why Choose MySQL? 44 
3.4 Preparing the Windows MySQL Environment 45 

3.5 Starting the Server for the First Time 46 
3.6 Connecting to and Disconnecting from Server 48 

3.7 Entering Queries 49 

III 



CHAPTER 4 : USER MANUEL 54 

CONCLUSION 76 

APPENDIX 77 

Forml Codes 77 

Form2 Codes 82 

Form3 Codes 84 

Form4 Codes 87 

Form5 Codes 89 

Form6 Codes 91 

Form7 Codes 94 

Form8 Codes 95 

Form9 Codes 96 

FormlO Codes 100 

Formll Codes 106 

Form12 Codes 109 

Form13 Codes 114 

Form14 Codes 117 

Form15 Codes 121 

Form16 Codes 126 

Form17 Codes 132 

Form18 Codes 138 

Form19 Codes 143 

Form20 Codes 149 

Form21 Codes 154 

Form22 Codes 160 

Form23 Codes 168 

Form24 Codes 172 

Form25 Codes 179 

Form26 Codes 185 

Form27 Codes 188 

Form28 Codes 195 

Form29 Codes 202 

IV 



Form30 Codes 209 

Form31 Codes 211 

Form32 Codes 214 

Form33 Codes 219 
Form34 Codes 224 

Form35 Codes 229 

Form36 Codes 232 

Form37 Codes 236 

Form38 Codes 238 

Form39 Codes 240 
Form40 Codes 241 

Form41 Codes 244 
Vetap Project Codes 250 

Database Creation Codes 253 

:{1}{} 

V 



ACKNOWLEDGMENT 

When people start a new work they get excited.Because who do not know any thing 

about the future of work. When a time passed human becomes familiar for this 

work.Afterthat may be borred,maybe want to leave this work. That may be true maybe 

false.It changes from people to people.But I believe that the important thing in the life do 

not leave such who should embrace very tightly. When we get this it makes us happy. 

In the life what is important for you.Business? Money? Science? Power? Family? 

Love? Humanity? or purpose of existence? In my opinion first of all aim of existence 

comes.Rest of all things involved in aim of existence.After that comes Love. The world exists 

of love. With love person gets power, gains working perseverence . 

Well in this project I gained perseverence from Allah and from my fiancee.l am 

happy to complete the task which I had given with blessing of Allah and also I am grateful 

to my fiancee and all the people in my life who have supported me, advised me. They all 

the time helped and encouraged me to follow my dreams and ambitions. 

For intellectual support, encouragement I want to thank to my supervisor Mr. 

Elburus lmanov who made this project contributions. 

And thank my dearest parents who supported me to continue beyond my 

undergraduate studies, and also many thanks to my dear familiy who brought me till such 

meaning days. 

To all my friends, especially M.Fethullah Akatay, Selman Kayabas, Metin Yenigun , 

Kadir Bekiroglu and My dear fiancee for sharing wonderful moments, advice, and for 

making me feel at home and in life. And above, I thank God for giving me stamina and 

courage to achieve my objectives. 

AHMET KAYABA~ 

VI 



ABSTRACT 

In the world not only human life is important.In the same time other entity lives with us.We 

are not alone on the earth.Animals share life with us.Ilnesses are not only for human.In the 
same time whole alive interested with illnesses.How Doctor is important for us like 

Veterinerian is important for animals.Todays Doctors use application program.Because of 

to keep knowledge of patient, to facility diagnosis of illness, to reach background of 

patient efficiently and easly. 

Well Veterinerian application program is important like the program that is used human 

health.Also much more important then others.Because animal can not keep the illnesses 

knowledge.And also papers of the animal can lost. 

This project has as its goal to develop software, processing information about activities of a 

veterinerian application software. Software developed in this project like not only for 

animal.In the same time for staff and for owner of the animal.All records keep in the other 

Database program.It acts easly and fast access.Veterinerian can keep all records in the 

program as concentment. 

VII 



INTRODUCTION 

Since human created by the powerful Allah, Human wonder everything.Well who tried to 

satisfy wonder.Such humanity came to nowadays as develop.Todays everyone says 

technology perfect developed.Yes that is right.By means of technology all process gained 

velocity.This development acts to spend time to the people. 

Technology is entered to every platform of our life human needed to combine both 

software and hardware. Without software the machines are nothing. They need software to 

operate.The automation is also became a part of our lives. The people operate with 

automation systems in everywhere. 

Veterinerian Application project which is my project.In this software veterinerian can keep 

animal knowledge, patient background knowledge of the animal, owner of the animal 

knowledge.With this software veterinerian will make record process easily and safetly. 

In Software there are five types user.They can access to only their task process.In the 

same time in the program veterinerian can get obligation as daily.The software can be used 

at every animal clinic easly. 

VIII 



CHAPTER 1 

DELPHI 

1.1 INTRODUCTION TO DELPHI 

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey 

(the founders of the method) were particular happy. Since many of the early Delphi 

studies focused on utilizing the technique to make forecasts of future occurrences, the 

name was first applied by some others at Rand as a joke. However, the name stuck. The 

resulting image of a priestess, sitting on a stool over a crack in the earth, inhaling sulfur 

fumes, and making vague and jumbled statements that could be interpreted in many 

different ways, did not exactly inspire confidence in the method. 

The straightforward nature of utilizing an iterative survey to gather information 

"sounds" so easy to do that many people have done "one" Delphi, but never a second. 

Since the name gives no obvious insight into the method and since the number of 

unsuccessful Delphi studies probably exceeds the successful ones, there has been a long 

history of diverse definitions and opinions about the method. Some of these 

misconceptions are expressed in statements such as the following that one finds in the 

literature: 

It is a method for predicting future events. 

It is a method for generating a quick consensus by a group. 

It is the use of a survey to collect information. 

It is the use of anonymity on the part of the participants. 

It is the use of voting to reduce the need for long discussions. 

It is a method for quantifying human judgement in a group setting. 

Some of these statements are sometimes true; a few (e.g. consensus) are actually 

contrary to the purpose of a Delphi. Delphi is a communication structure aimed at 

producing detailed critical examination and discussion, not at forcing a quick 

I 



compromise. Certainly quantification is a property, but only to serve the goal of quickly 

identifying agreement and disagreement in order to focus attention. It is often very 

common, even today, for people to come to a view of the Delphi method that reflects a 

particular application with which they are familiar. In 1975 Linstone and Turoff 

proposed a view of the Delphi method that they felt best summarized both the technique 

and its objective: 

"Delphi may be characterized as a method for structuring a group communication 

process, so that the process is effective in allowing a group of individuals, as a whole, to 

deal with complex problems." The essence of Delphi is structuring of the group 

communication process. Given that there had been much earlier work on how to 

facilitate and structure face-to-face meetings, the other important distinction was that 

Delphi was commonly applied utilizing a paper and pencil communication process 

among groups in which the members were dispersed in space and time. Also, Delphis 

were commonly applied to groups of a size (30 to 100 individuals) that could not 

function well in a face-to-face environment, even if they could find a time when they all 

could get together. 

Additional opportunity has been added by the introduction of Computer Mediated 

Communication Systems (Hiltz and Turoff, 1978; Rice and Associates, 1984; Turoff, 

1989; Turoff, 1991). These are computer systems that support group communications in 

either a synchronous (Group Decision Support Systems, Desanctis et. al., 1987) or an 

asynchronous manner (Computer Conferencing). Techniques that were developed and 

refined in the evolution of the Delphi Method ( e.g. anonymity, voting) have been 

incorporated as basic facilities or tools in many of these computer based systems. As a 

result, any of these systems can be used to carry out some form of a Delphi process or 

Nominal Group Technique (Delbecq, et. al., 1975). 

The result, however, is not merely confusion due to different names to describe the 

same things; but a basic lack of knowledge by many people working in these areas as to 

what was learned in the studies of the Delphi Method about how to properly employ 

these techniques and their impact on the communication process. There seems to be a 

great deal of "rediscovery" and repeating of earlier misconceptions and difficulties. 

2 



Given this situation, the primary objective of this chapter is to review the specific 

properties and methods employed in the design and execution of Delphi Exercises and 

to examine how they may best be translated into a computer based environment. 

1.2 WHAT IS DELPHI? 

Delphi is an object oriented, component based, visual, rapid development environment 

for event driven Windows applications, based on the Pascal language. 

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi 

compiles the code you write and produces really tight, natively executable code for the 

target platform. In fact the most recent versions of Delphi optimise the compiled code 

and the resulting executables are as efficient as those compiled with any other compiler 

currently on the market. The term "visual" describes Delphi very well. All of the user 

interface development is conducted "in a What You See Is What You Get environment 

(WYSIWYG), which means you can create polished, user friendly interfaces in a very 

short time, or prototype whole applications in a few hours. 

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers (the 

previous versions of which went by the name "Turbo Pascal") from the company 

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal 

compilers that preceded it, Delphi is not just a compiler, but a complete development 

environment. Some of the facilities that are included in the "Integrated Development 

Environment" (IDE) are listed below: 

• A syntax sensitive program file editor 

• A rapid optimising compiler 

• Built in debugging /tracing facilities 

• A visual interface developer 

• Syntax sensitive help files 

• Database creation and editing tools 

3 



• Image/Icon/Cursor creation I editing tools 

• Version Control CASE tools What's more, the development environment itself is 

extensible, and there are a number of add ins available to perform functions such as 

memory leak detection and profiling. 

In short, Delphi includes just about everything you need to write applications that will 

run on an Intel platform under Windows, but if your target platform is a Silicon 

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running 

LINUX, then you will need to look elsewhere for your development tools. 

This specialisation on one platform and one operating system, makes Delphi a very 

strong tool. The code it generates runs very rapidly, and is very stable, once your own 

bugs have been ironed out! 

1.3 WHAT KIND OF PROGRAMMING CAN YOU DO WITH DELPHI? 

The simple answer is "more or less anything". Because the code is compiled, it runs 

quickly, and is therefore suitable for writing more or less any program that you would 

consider a candidate for the Windows operating system. 

You probably won't be using it to write embedded systems for washing machines, 

toasters or fuel injection systems, but for more or less anything else, it can be used (and 

the chances are that probably someone somewhere has!) 

Some projects to which Delphi is suited: 

• Simple, single user database applications 

• Intermediate multi-user database applications 

• Large scale multi-tier, multi-user database applications 

• Internet applications 

• Graphics Applications 

4 



• Multimedia Applications 

• Image processing/Image recognition 

• Data analysis 

• System tools 

This is not intended to be an exhaustive list, more an indication of the depth and breadth 

of Delphi's applicability. Because it is possible to access any and all of the Windows 

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler 

code directly into your ordinary Pascal instructions, it is possible to do more or less 

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and 

can call out to DLLs written in other programming languages without difficulty. 

Because Delphi is based on the concept of self contained Components ( elements of code 

that can be dropped directly on to a form in your application, and exist in object form, 

performing their function until they are no longer required), it is possible to build 

applications very rapidly. Because Delphi has been available for quite some time, the 

number of pre-written components has been increasing to the point that now there is a 

component to do more or less anything you can imagine. The job of the programmer has 

become one of gluing together appropriate components with code that operates them as 

required. 

1.4 VERSIONS ARE THERE AND HOW DO THEY DIFFER? 

Borland ( as they were then) has a long tradition in the creation of high speed compilers. 

One of their best known products was Turbo Pascal - a tool that many programmers cut 

their teeth on. With the rise in importance of the Windows environment, it was only a 

matter of time before development tools started to appear that were specific to this new 

environment. 

In the very beginning, Windows produced SDKs (software development kits) that were 

totally non-visual (user interface development was totally separated from the 

development of the actual application), and required great patience and some genius to 

5 



get anything working with. Whilst these tools slowly improved, they still required a 

really good understanding of the inner workings of Windows. 

To a great extent these criticisms were dispatched by the release of Microsoft's Visual 

Basic product, which attempted to bring Windows development to the masses. It 

achieved this to a great extent too, and remains a popular product today. However,it 

suffered from several drawbacks: 

1) It wasn't as stable as it might have been 

2) It was an interpreted language and hence was slow to run 

3) It had as its underlying language BASIC, and most "real" programmers weren't so 

keen! 

Into this environment arrived the eye opening Delphi I product, and in many ways the 

standard for visual development tools for Windows was set. This first version was a 16 

bit compiler, and produced executable code that would run on Windows 3 .1 and 

Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit 

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications, 

however, many of the features that were introduced in these newer operating systems 

are not accessible to the 16 bit applications developed with Delphi I. 

Delphi 2 was released quite soon after Delphi I, and in fact included a full distribution 

of Delphi I on the same CD. Delphi 2, (and all subsequent versions) have been 32 bit 

compilers, producing code that runs exclusively on 32bit Windows platforms. (We 

ignore for simplicity the WIN32S DLLs which allow Win 3. lx to run some 32 bit 

applications). 

Delphi is currently standing at Version 4.0, with a new release (version 5.0) expected 

shortly. In its latest version, Delphi has become somewhat feature loaded, and as a 

result, we would argue, less stable than the earlier versions. However, in its defence, 

Delphi (and Borland products in general) have always been more stable than their 

competitors products, and the majority of Delphi 4's glitches are minor and forgivable - 

6 



just don't try and copy/paste a selection of your code, midway through a debugging 

session! 

The reasons for the version progression include the addition of new components, 

improvements in the development environment, the inclusion of more internet related 

support and improvements in the documentation. Delphi at version 4 is a very mature 

product, and Inprise has always been responsive in developing the product in the 

direction that the market requires it to go. Predominantly this means right now, the 

inclusion of more and more Internet, Web and CORBA related tools and components - a 

trend we are assured continues with the release of version 5. 0 

For each version of Delphi there are several sub-versions, varying in cost and features, 

from the most basic "Developer" version to the most complete ( and expensive) "Client 

Server" version. The variation in price is substantial, and if you are contemplating a 

purchase, you should study the feature list carefully to ensure you are not paying for 

features you will never use. Even the most basic "Developer" version contains the vast 

majority of the features you are likely to need on a day to day basis. Don't assume that 

you will need Client Server, simply because you are intending to write a large database 

application - The developer edition is quitcapable ofthis. 

1.5 SOME KNOWLEDGE ABOUT DELPHI 

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag 

and drop components on to a blank canvas to create a program. Delphi will also allow 

you to use write console based DOS like programs. 

Delphi is based around the Pascal language but is more developed object orientated 

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the 

program easily readable and to help the compiler sort the code. Although Delphi code is 

not case sensitive there is a generally accepted way of writing Delphi code. The main 

reason for this is so that any programmer can read your code and easily understand what 

you are doing, because they write their code like you write yours. 

7 



For the purposes of this series I will be using Delphi 7. There are more recent versions 

available (2005 and 2006) however Delphi 7 should be available inexpensively 

compared to the new versions which will set you back a lot of money. Delphi 7 will 

more than likely be available in a magazine for free. 

1.5.2 Example: Try First Delphi Program 

First thing is first, fire up your copy of Delphi and open the Project> Options menu. To 

compile a console application you need to change a setting on the Linker tab called 

'Generate console application', check the box and click OK. Now select File > Close 

All if anything is already loaded. Then select File > New > Other > Console 

Application. 

Notice the first line refers to the keyword program. You can rename this to Hello World. 

You can also remove the commented portion enclosed in curly brackets. 

The uses keyword allows you to list all units that you want to use in the program. At the 

moment just leave it as it is, SysUtils is all we need. 

Your unit should now look like this: 

Delphi Code: 

program Hello World; 

{$APPTYPE CONSOLE} 

uses 

SysUtils; 

begin 

end. 

Now what we have just done is written a program, it currently doesn't do a thing 

however. Hit the run button and see the result. Now wasn't that completely worthless. 

8 



Luckily this isn't the end of the article so we'll actually have a worthwhile program at 

the end of it. All we need to do is insert some code in the main procedure we have just 

made. 

Every good programmer's first program was 'Hello World' and you'll be no exception. 

All we need to do is use the WriteLn procedure to write 'Hello World!' to the console, 

simple.Notice the semicolon at the end of the line, at the end of any statement you need 

to add a semicolon. Run the program and see the results ... 

Now I don't know about you but I saw hello world flash up and go away in a second, if 

you didn't write the program you wouldn't even know what it said. To solve this 

problem we need to tell the program to leave the console open until the user is ready to 

close it. We can use ReadLn for this which reads the users input from the console. 

Delphi Code: 

program Hello World; 

{$APPTYPE CONSOLE} 

uses 

SysUtils; 

begin 

WriteLn('Hello World!'+ #13#10 + #13#10 + 

'Press RETURN to end ... '); 

ReadLn; 

end. 

I have added a few extra things into the 'Hello World' string so the user knows what to 

do to end the program as it could be a bit confusing. '#13#10' is to insert a carriage 

9 



return as 13 and 10 are the ASCII codes for a carriage return followed by a new line 

feed. ASCII can be inserted in this way into strings. 

1.5.2 Delphi Style 

Coding style, the way you format your code and the way in which you present it on the 

page.At the end of the day who cares about my style, I can read it, and Delphi strips all 

the spaces out of it and doesn't care ifl indent. Why waste my time? 

Neatly present code which conforms to the accepted standards not only makes your 

code much easier for you to read and debug but also but any one else who might read 

your code to help you, or learn from you can do so with ease. After all which code is 

easier to follow, example 1 or 2? 

Delphi Code: 

II Example I 

procedure xyzQ; 

var 

x,y,z,a:integer; 

begin 

x:=l;y:=2; 

for z:=x toy do begin 

a:=power(z,y); 

showmessage(inttostr( a)); 

end; 

10 



end; 

Delphi Code: 

II Example 2 

procedure XYZ(); 

var 

X, Y,Z,A: Integer; 

begin 

X := 1; 

y :=2; 

for Z := X to Y do 

begin 

A := Power(Z, Y); 

ShowMessage(IntT oStr( A)); 

end; II for end 

end; II procedure end 

Design patterns are frequently recurring structures and relationships in object-oriented 

design. Getting to know them can help you design better, more reusable code and also 

help you learn to design more complex systems. 

Much of the ground-breaking work on design patterns was presented in the book Design 

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson 

and Vlissides. You might also have heard of the authors referred to as "the Gang of 

Four". If you haven't read this book before and you're designing objects, it's an excellent 

11 



pnmer to help structure your design. To get the most out of these examples, I 

recommend reading the book as well. 

Another good source of pattern concepts is the book Object Models: Strategies, Patterns 

and Applications by Peter Coad. Coad's examples are more business oriented and he 

emphasises learning strategies to identify patterns in your own work. 

1.6 HOW DELPHI HELPS YOU DEFINE PATTERNS 

Delphi implements a fully object-oriented language with many practical refinements 

that simplify development. 

The most important class attributes from a pattern perspective are the basic inheritance 

of classes; virtual and abstract methods; and use of protected and public scope. These 

give you the tools to create patterns that can be reused and extended, and let you isolate 

varying functionality from base attributes that are unchanging. 

Delphi is a great example of an extensible application, through its component 

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual 

and abstract constructors and operations. 

1.6.1 Delphi Examples of Design Patterns 

I should note from the outset, there may be alternative or better ways to implement 

these patterns and I welcome your suggestions on ways to improve the design. The 

following patterns from the book Design, Patterns are discussed and illustrated m 

Delphi to give you a starting point for implementing your own Delphi patterns. 

Pattern Name 

Singleton 

Definition 

"Ensure a class has only one instance, and provide a global point 

of access to it." 

"Convert the interface of a class into another interface clients 

expect. Adapter lets classes work together that couldn't 
Adapter 

12 



Template Method 

Builder 

Abstract Factory 

Factory Method 

otherwise because of incompatible interfaces." 

"Define the skeleton of an algorithm in an operation, deferring 

some steps to subclasses. Template Method lets subclasses 

redefine certain steps of an algorithm without changing the 

algorithm's structure." 

"Separate the construction of a complex object from its 

representation so that the same construction process can create 

different representations." 

"Provide an interface for creating families of related or 

dependant objects without specifying their concrete classes." 

"Define an interface for creating an object, but let subclasses 

decide which class to instantiate. Factory method lets a class 

defer instantiation to subclasses." 

Note: These definitions are taken from Design Patterns. 

1.6.2 Pattern: Singleton 

1.6.2.1 Definition 

"Ensure a class has only one instance, and provide a global point of access to it." 

This is one of the easiest patterns to implement. 

1.6.2.2 Applications in Delphi 

There are several examples of this sort of class in the Delphi VCL, such as 

T Application, TScreen or TClipboard. The pattern is useful whenever you want a single 

global object in your application. Other uses might include a global exception handler, 

application security, or a single point of interface to another application. 

13 



1.6.2.3 Implementation Example 

To implement a class of this type, override the constructor and destructor of the class to 

refer to a global (interface) variable of the class. 

Abort the constructor if the variable is assigned, otherwise create the instance and 

assign the variable. 

In the destructor, clear the variable if it refers to the instance being destroyed. 

Note: To make the creation and destruction of the single instance automatic, include its 

creation in the initialization section of the unit. To destroy the instance, include its 

destruction in an Exitf'roc (Delphi 1) or in the finalization section of the unit (Delphi 2). 

1.6.3 Pattern: Adapter 

1.6.3.1 Definition 

"Convert the interface of a class into another interface clients expect. Adapter lets 

classes work together that couldn't otherwise because of incompatible interfaces." 

1.6.3.2 Applications in Delphi 

A typical example of this is the wrapper Delphi generates when you import a VBX or 

OCX. Delphi generates a new class which translates the interface of the external control 

into a Pascal compatible interface. Another typical case is when you want to build a 

single interface to old and new systems. 

Note Delphi does not allow class adaption through multiple inheritance in the way 

described in Design Patterns. Instead, the adapter needs to refer to a specific instance of 

the old class. 

14 



1.6.3.3 Implementation Example 

The following example is a simple (read only) case of a new customer class, an adapter 

class and an old customer class. The adapter illustrates handling the year 2000 problem, 

translating an old customer record containing two digit years into a new date format. 

The client using this wrapper only knows about the new customer class. Translation 

between classes is handled by the use of virtual access methods for the properties. The 

old customer class and adapter class are hidden in the implementation of the unit. 

1.6.4 Pattern: Template Method 

1.6.4.1 Definition 

"Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. 

Template Method lets subclasses redefine certain steps of an algorithm without 

changing the algorithm's structure." 

This pattern is essentially an extension of abstract methods to more complex algorithms. 

1.6.4.2 Applications in Delphi 

Abstraction is implemented in Delphi by abstract virtual methods. Abstract methods 

differ from virtual methods by the base class not providing any implementation. The 

descendant class is completely responsible for implementing an abstract method. 

Calling an abstract method that has not been overridden will result in a runtime error. 

1.6.4.3 A typical example of abstraction is the TGraphic class. 

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile. Other 

developers have frequently used TGraphic as the basis for other graphics objects such as 

PCX, GIF, JPG representations. TGraphic defines abstract methods such as Draw, 

LoadFromFile and SaveToFile which are then overridden in the concrete classes. Other 

objects that use TGraphic, such as a TCanvas only know about the abstract Draw 

method, yet are used with the concrete class at runtime. 

15 



Many classes that use complex algorithms are likely to benefit from abstraction using 

the template method approach. Typical examples include data compression, encryption 

and advanced graphics processing. 

1.6.4.4 Implementation Example 

To implement template methods you need an abstract class and concrete classes for 

each alternate implementation. Define a public interface to an algorithm in an abstract 

base class. In that public method, implement the steps of the algorithm in calls to 

protected abstract methods of the class. In concrete classes derived from the base class, 

override each step of the algorithm with a concrete implementation specific to that 

class. 

1.6.5 Pattern: Builder 

1.6.5.1 Definition 

"Separate the construction of a complex object from its representation so that the same 

construction process can create different representations." 

A Builder seems similar in concept to the Abstract Factory. The difference as I see it is 

the Builder refers to single complex objects of different concrete classes but containing 

multiple parts, whereas the abstract factory lets you create whole families of concrete 

classes. For example, a builder might construct a house, cottage or office. You might 

employ a different builder for a brick house or a timber house, though you would give 

them both similar instructions about the size and shape of the house. On the other hand 

the factory generates parts and not the whole. It might produce a range of windows for 

buildings, or it might produce a quite different range of windows for cars. 

1.6.5.2 Applications in Delphi 

The functionality used in Delphi's VCL to create forms and components is similar in 

concept to the builder. Delphi creates forms using a common interface, through 

Application.CreateForm and through the TForm class constructor. TForm implements a 

16 



common constructor using the resource information (DFM file) to instantiate the 

components owned by the form. Many descendant classes reuse this same construction 

process to create different representations. Delphi also makes developer extensions 

easy. TForm's OnCreate event also adds a hook into the builder process to make the 

functionality easy to extend. 

1.6.5.3 Implementation Example 

The following example includes a class TAbstractForrnBuilder and two concrete classes 

TRedForrnBuilder and TBlueForrnBuilder. For ease of development some common 

functionality of the concrete classes has been moved into the shared 

T AbstractF orrnBuilder class. 

1.6.6 Pattern: Abstract Factory 

1.6.6.1 Definition 

"Provide an interface for creating families of related or dependant objects without 

specifying their concrete classes." 

The Factory Method pattern below is commonly used in this pattern. 

1.6.6.2 Applications in Delphi 

This pattern is ideal where you want to isolate your application from the implementation 

of the concrete classes. For example if you wanted to overlay Delphi's VCL with a 

common VCL layer for both 16 and 32 bit applications, you might start with the 

abstract factory as a base. 

1.6.6.3 Implementation Example 

The following example uses an abstract factory and two concrete factory classes to 

implement different styles of user interface components. TOAbstractFactory is a 

singleton class, since we usually want one factory to be used for the whole application. 

17 



At runtime, our client application instantiates the abstract factory with a concrete class 

and then uses the abstract interface. Parts of the client application that use the factory 

don't need to know which concrete class is actually in use. 

1.6. 7 Pattern: Factory Method 

l.6.7.1 Definition 

"Define an interface for creating an object, but let subclasses decide which class to 

instantiate. Factory method lets a class defer instantiation to subclasses." 

The Abstact Factory pattern can be viewed as a collection of Factory Methods. 

1.6.7.2 Applications in Delphi 

This pattern is useful when you want to encapsulate the construction of a class and 

isolate knowledge of the concrete class from the client application through an abstract 

interface. 

One example of this might arise if you had an object oriented business application 

potentially interfacing to multiple target DBMS. The client application only wants to 

know about the business classes, not about their implementation-specific storage and 

retrieval. 

1.6.7.3 Implementation Example 

In the Abstract Factory example, each of the virtual widget constructor functions is a 

Factory Method. In their implementation we define a specific widget cl,ass to return. 

18 



1. 7 KEY ELEMENTS OF DELPID CLASS DEFINITIONS 

1.7.1 Unit Structure 

Delphi units (.PAS files) allow declaration of interface and implementation sections. 

The interface defines the part that is visible to other units using that unit. The keyword 

uses can be added to a unit's interface or implementation section to list the other units 

that your unit uses. This indicates to the compiler that your unit refers to parts of the 

used unit's interface. Parts of a unit declared in the implementation section are all 

private to that unit, i.e. never visible to any other unit. Types, functions and procedures 

declared in the interface of a unit must have a corresponding implementation, or be 

declared as external (e.g. a call to a function in a DLL). 

1. 7 .2 Class Interfaces 

Classes are defined as types in Delphi and may contain fields of standard data types or 

other objects, methods declared as functions or procedures, and properties. The type 

declaration of a class defines its interface and the scope of access to fields, methods and 

properties of the class. Class interfaces are usually defined in the interface of a unit to 

make them accessible to other modules using that unit. However they don't need to be. 

Sometimes a type declaration of a class may be used only within the implementation 

part of a unit. 

1. 7 .3 Properties 

Properties are a specialised interface to a field of a defined type, allowing access control 

through read and write methods. Properties are not virtual, you can replace a property 

with another property of the same name, but the parent class doesn't know about the 

new property. It is however possible to make the access methods of a property virtual. 

1. 7.4 Inheritance 

Delphi's inheritance model is based on a single hierarchy. Every class inherits from 

TObject and can have only one parent. 

19 



A descendant class inherits all of the interface and functionality of its parent class, 

subject to the scope described below. 

Multiple inheritance from more than one parent is not allowed directly. It can be 

implemented by using a container class to create instances one or more other classes 

and selectively expose parts of the contained classes. 

Private, Protected, Public and Published ScopeScope refers to the visibility of methods 

and data defined in the interface of a class, i.e. what parts of the class are accessible to 

the rest of the application or to descendant classes. 

The default scope is public, for instance the component instances you add to a form at 

design time. Public says "come and get me"; it makes the data or method visible to 

everything at runtime. 

Published parts of a class are a specialized form of Public scope. They indicate special 

behaviour for classes derived from Tf'ersistent. A persistent class can save and restore 

its published properties to persistent storage using Delphi's standard streaming methods. 

Published properties also interact with Delphi Object Inspector in the IDE. A class must 

descend from TPersistent in order to use Published. There's also not much point in 

publishing methods, since you can't store them, although Delphi's compiler doesn't stop 

you. Published also lets another application access details of the class through Delphi's 

runtime type information. This would be rarely used, except in Delphi's design time 

interaction with its VCL. 

Encapsulation or information hiding is essential to object orientation, so Protected and 

Private scope let you narrow the access to parts of a class. 

Protected parts are visible only to descendant classes, or to other classes defined in the 

same unit. 

Private parts are visible only to the defining class, or to other classes defined in the 

same unit. 

It's important to note that once something is given public or published scope, it cannot 

be hidden in descendant classes. 

20 



Static, Virtual and Dynamic Methods; Override and Inherited 

Methods declared as virtual or dynamic let you change their behaviour using override in 

a descendant class. You're unlikely to see a virtual method in the private part of a class, 

since it could only be overridden in the same unit, although Delphi's compiler doesn't 

stop you from doing this. 

Override indicates that your new method replaces the method of the same name from 

the parent class. The override must be declared with the same name and parameters as 

the original method. 

When a method is overridden, a call to the parent class's method actually executes the 

override method in the real class of the object. 

Static methods on the other hand have no virtual or override declaration. You can 

replace a method of a class in a descendant class by redeclaring another method, 

however this is not object oriented. If you reference your descendant class as the parent 

type and try to call the replaced method, the static method of the parent class is 

executed. So in most cases, it's a bad idea to replace a static method. 

Virtual and dynamic methods can be used interchangeably. They differ only in their 

treatment by the compiler and runtime library. Delphi's help explains that dynamic 

methods have their implementation resolved at compile time and run slightly faster, 

whereas virtual methods are resolved at runtime, resulting in slightly slower access but 

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help 

suggests using dynamic when you have a base class with many descendants that may 

not override the method. 

The inherited directive lets you refer back to a property or method as it was declared in 

the parent class. This is most often used in the implementation of an override method, to 

call the inherited method of the parent class and then supplement its behaviour. 

1. 7 .5 Abstract Methods 

Abstract is used in base classes to declare a method in the interface and defer its 

implementation to a descendant class. I.e. it defines an interface, but not the underlying 

21 



operation. Abstract must be used with the virtual or dynamic directive. Abstract 

methods are never implemented in the base class and must be implemented in 

descendant classes to be used. A runtime error occurs if you try to execute an abstract 

method that is not overridden. Calling inherited within the override implementation of 

an abstract method will also result in a runtime error, since there is no inherited 

behaviour. 

1. 7 .6 Messages 

Delphi's handling of Windows messages is a special case of virtual methods. Message 

handlers are implemented in classes that descend from TControl. Le classes that have a 

handle and can receive messages. Message handlers are always virtual and can be 

declared in the private part of a class interface, yet still allow the inherited method to be 

called. Inherited in a message handler just uses the keyword inherited, there is no need 

to supply the name of the method to call. 

1. 7. 7 Events 

Events are also an important characteristic of Delphi, since they let you delegate 

extensible behaviour to instances of a class. Events are properties that refer to a method 

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour · 

to let you use inherited in an event. . Inherited in an event handler just uses the keyword 

inherited, there is no need to supply the name of the method to call. 

Events are particularly important to component developers, since they provide a hook 

for the user of the component to modify its behaviour in a way that may not be foreseen 

at the time the component is written. 

1.7.S Constructors and Destructors 

The constructor and destructor are two special types of methods, The constructor 

initializes a class instance (allocates memory initialized to 0) and returns a reference 

(pointer) to the object. The destructor deallocates memory used by the object (but not 

the memory of other objects created by the object). 

22 



Classes descended from TObject have a static constructor, Create, and a virtual 

destructor Destroy. 

TConiponent introduces a new public property, the Owner of the component and this 

must be initialized in the constructor. TComponent's constructor is declared virtual, i.e. 

it can be overridden in descendant classes.It is essential when you override a virtual 

constructor or destructor in a TComponent descendant to include a call to the inherited 

method. 

1.8 THE VCL TO APPLICATIONS DEVELOPERS 

Applications Developers create complete applications by interacting with the Delphi 

visual environment ( as mentioned earlier, this is a concept nonexistent in many other 

frameworks). These people use the VCL to create their user-interface and the other 

elements of their application: database connectivity, data validation, business rules, etc .. 

Applications Developers should know which properties, events, and methods each 

component makes available. Additionally, by understanding the VCL architecture, 

Applications Developers will be able to easily identify where they can improve their 

applications by extending components or creating new ones. Then they can maximize 

the capabilities of these components, and create better applications. 

1.8.1 The VCL to Component Writers 

Component Writers expand on the existing VCL, either by developing new components, 

or by increasing the functionality of existing ones. Many component writers make their 

components available for Applications Developers to use. 

A Component Writer must take their knowledge of the VCL a step further than that of 

the Application Developer. For example, they must know whether to write a new 

component or to extend an existing one when the need for a certain characteristic arises. 

This requires a greater knowledge of the VCL's inner workings. 

23 



1.8.2 The VCL is made up of components 

Components are the building blocks that developers use to design the user-interface and 

to provide some non-visual capabilities to their applications. To an Application 

Developer, a component is an object most commonly dragged from the Component 

palette and placed onto a form. Once on the form, one can manipulate the component's 

properties and add code to the component's various events to give the component a 

specific behavior. To a Component Writer, components are objects in Object Pascal 

code. Some components encapsulate the behavior of elements provided by the system, 

such as the standard Windows 95 controls. Other objects introduce entirely new visual 

or non-visual elements, in which case the component's code makes up the entire 

behavior of the component. 

The complexity of different components varies widely. Some might be simple while 

others might encapsulate a elaborate task. There is no limit to what a component can do 

or be made up of You can have a very simple component like a TLabel, or a much 

more complex component which encapsulates the complete functionality of a 

spreadsheet. 

1.8.3 Component Types, structure, and VCL hierarchy 

Components are really just special types of objects. In fact, a component's structure is 

based on the rules that apply to Object Pascal. There are three fundamental keys to 

understanding the VCL. 

First, you should know the special characteristics of the four basic component types: 

standard controls, custom controls, graphical controls and non-visual components. 

Second, you must understand the VCL structure with which components are built. This 

really ties into your understanding of Object Pascal's implementation. Third, you should 

be familiar with the VCL hierarchy and you should also know where the four 

component types previously mentioned fit into the VCL hierarchy. The following 

paragraphs will discuss each of these keys to understanding the VCL. 

24 



1.8.4 Component Types 

As a component writer, there four primary types of components that you will work with 

in Delphi: standard controls, custom controls, graphical controls, and non-visual 

components. Although these component types are primarily of interest to component 

writers, it's not a bad idea for applications developers to be familiar with them. They are 

the foundations on which applications are built. 

1.8.4.1 Standard Components 

Some of the components provided by Delphi 2.0 encapsulate the behavior of the 

standard Windows controls: TButton, TListbox and Tedit, for example. You will find 

these components on the Standard page of the Component Palette. These components 

are Windows' common controls with Object Pascal wrappers around them. 

Each standard component looks and works like the Windows' common control which it 

encapsulates. The VCL wrapper's simply makes the control available to you in the form 

of a Delphi component-it doesn't define the common control's appearance or 

functionality, but rather, surfaces the ability to modify a control's 

appearance/functionality in the form of methods and properties. If you have the VCL 

source code, you can examine how the VCL wraps these controls in the file 

STDCTRLS.PAS. 

If you want to use these standard components unchanged, there is no need to understand 

how the VCL wraps them. If, however, you want to extend or change one of these 

components, then you must understand how the Window's common control is wrapped 

by the VCL into a Delphi component. 

For example, the Windows class LISTBOX can display the list box items in multiple 

columns. This capability, however, isn't surfaced by Delphi's TListBox component 

(which encapsulates the Windows LISTBOX class). (TListBox only displays items in a 

single column.) Surfacing this capability requires that you override the default creation 

of the TListBox component. 

25 



This example also serves to illustrate why it is important for Applications Developers to 

understand the VCL. Just knowing this tidbit of information helps you to identify where 

enhancements to the existing library of components can help make your life easier and 

more productive. 

1.8.4.2 Custom components 

Unlike standard components, custom components are controls that don't already have a 

method for displaying themselves, nor do they have a defined behavior. The Component 

Writer must provide to code that tells the component how to draw itself and determines 

how the component behaves when the user interacts with it. Examples of existing 

custom components are the TPanel and TStringGrid components. 

It should be mentioned here that both standard and custom components are windowed 

controls. A "windowed control" has a window associated with it and, therefore, has a 

window handle. Windowed controls have three characteristics: they can receive the 

input focus, they use system resources, and they can be parents to other controls. 

(Parents is related to containership, discussed later in this paper.) An example of a 

component which can be a container is the TPanel component. 

1.8.4.3 Graphical components 

Graphical components are visual controls which cannot receive the input focus from the 

user. They are non-windowed controls. Graphical components allow you to display 

something to the user without using up any system resources; they have less "overhead" 

than standard or custom components. Graphical components don't require a window 

handle-thus, they cannot can't get focus. Some examples of graphical components are 

the TLabel and TShape components. 

Graphical components cannot be containers of other components. This means that they 

cannot own other components which are placed on top of them. 

1.8.4.4 Non-visual components 

Non-visual components are components that do not appear on the form as controls at 

run-time. These components allow you to encapsulate some functionality of an entity 

26 



within an object. You can manipulate how the component will behave, at design-time, 

through the Object Inspector. Using the Object Inspector, you can modify a non-visual 

component's properties and provide event handlers for its events. Examples of such 

components are the TOpenDialog, TTable, and TTimer components. 

1.8.4.5 Structure of a component 

All components share a similar structure. Each component consists of common 

elements that allow developers to manipulate its appearance and function via properties, 

methods and events. The following sections in this paper will discuss these common 

elements as well as talk about a few other characteristics bf components which don't 

apply to all components. 

1.8.4.6 Component properties 

Properties provide an extension of an object's fields. Unlike fields, properties do not 

store data: they provide other-capabilities. For example, properties may use methods to 

read or write data to an object field to which the user has no access. This adds a certain 

level of protection as to how a given field is assigned data. Properties also cause "side 

effects" to occur when the user makes a particular assignment to the property. Thus 

what appears as a simple field assignment to the component user could trigger a 

complex operation to occur behind the scenes. 

1.9 PROPERTIES PROVIDE ACCESS TO INTERNAL STORAGE FIELDS 

There are two ways that properties provide access to internal storage fields of 

components: directly or through access methods. Examine the code below which 

illustrates this process. 

TCustomEdit = class(TWinControl) 

private 

FMaxLength: Integer; 

protected 

procedure SetMaxLength(Value: Integer); 

27 



published 

property MaxLength: Integer read 

FMaxLength write SetMaxLength default O; 

end; 

The code above is snippet of the TCustomEdit component class. TCustomEdit is the 

base class for edit boxes and memo components such as TEdit, and TMemo. 

TCustomEdit has an internal field FMaxLength of type Integer which specifies the 

maximum length of characters which the user can enter into the control. The user 

doesn't directly access the FMaxLength field to specify this value. Instead, a value is 

added to this field by making an assignment to the MaxLength property. 

The property MaxLength provides the access to the storage field FMaxLength. The 

property definition is comprised of the property name, the property type, a read 

declaration, a write declaration and optional default value. 

The read declaration specifies how the property is used to read the value of an internal 

storage field. For instance, the MaxLength property has direct read access to 

FMaxLength. The write declaration for MaxLength shows that assignments made to the 

MaxLength property result in a call to an access method which is responsible for 

assigning a value to the FMaxLength storage field. This access method is 

SetMaxLength. 

1.9.1 Property-access methods 

Access methods take a single parameter of the same type as the property. One of the 

primary reasons for write access methods is to cause some side-effect to occur as a 

result of an assignment to a property. Write access methods also provide a method layer 

over assignments made to a component's fields. Instead of the component user making 

the assignment to the field directly, the property's write access method will assign the 

28 



value to the storage field if the property refers to a particular storage field. For example, 

examine the implementation of the SetMaxLength method below. 

procedure TCustomEdit. SetMaxLength(Value: Integer); 

begin 

if FMaxLength <> Value then 

begin 

FMaxLength := Value; 

if HandleAllocated then 

SendMessage(Handle, EM_LIMITTEXT, Value, O); 

end; 

end; 

The code in the SetMaxLength method checks if the user is assigning the same value as 

that which the property already holds. This is done as a simple optimization. The 

method then assigns the new value to the internal storage field, FMaxLength. 

Additionally, the method then sends an EM_ LIMITTEXT Windows message to the 

window which the TCustomEdit encapsulates. The EM_ LIMITTEXT message places a 

limit on the amount of text that a user can enter into an edit control. This last step is 

what is referred to as a side-effect when assigning property values. Side effects are any 

additional actions that occur when assigning a value to a property and can be quite 

sophisticated. 

Providing access to internal storage fields through property access methods offers the 

advantage that the Component Writer can modify the implementation of a class without 

modifying the interface. It is also possible to have access methods for the read access of 

a property. The read access method might, for example, return a type which is different 

that that of a properties storage field. For instance, it could return the string 

representation of an integer storage field. 

29 



Another fundamental reason for properties is that properties are accessible for 

modification at run-time through Delphi's Object Inspector. This occurs whenever the 

declaration of the property appears in the published section of a component's 

declaration. 

1.9.2 Types of properties 

Properties can be of the standard data types defined by the Object Pascal rules. Property 

types also determine how they are edited in Delphi's Object Inspector. The table below 

shows the different property types as~ they are defined in Delphi's online help. 

Property type Object Inspector treatment 

Numeric, character, and string properties appear in the Object Inspector 

as numbers, characters, and strings, respectively. The user can type and 

edit the value of the property directly. 

Properties of enumerated types (including Boolean) display the value as 

defined in the source code The user can cycle through the possible 
Enumerated 

values by double-clicking the value column There is also a drop-down 

list that shows all possible values of the enumerated type. 

Simple 

Set 

Properties of set types appear in the Object Inspector looking like a set 

By expanding the set, the user can treat each element of the set as a 

Boolean value True if the element is included in the set or False if it's 

not included. 

Properties that are themselves objects often have their own property 

editors However, if the object that is a property also has published 

properties, the Object Inspector allows the user to expand the list of 

object properties and edit them individually Object properties must 

descend from TPersistent. 

Array properties must have their own property editors. The Object 

Inspector has no built-in support for editing array properties. 

Object 

Array 

For more information on properties, refer to the "Component Writers Guide" which 

ships with Delphi. 

30 



1.9.3 Methods 

Since components are really just objects, they can have methods. We will discuss some 

of the more commonly used methods later in this paper when we discuss the different 

levels of the VCL hierarchy. 

1.9.4 Events 

Events provide a means for a component to notify the user of some pre-defined 

occurrence within the component. Such an occurrence might be a button click or the 

pressing of a key on a keyboard. 

Components contain special properties called events to which the component user 

assigns code. This code will be executed whenever a certain event occurs. For instance, 

if you look at the events page of a TEdit component, you'll see such events as 

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to 

methods. 

When the user of a component assigns code to one of those events, the user's code is 

referred to as an event handler. For example, by double clicking on the events page for a 

particular event causes Delphi to generate a method and places you in the Code Editor 

where you can add your code for that method. An example of this is shown in the code 

below, which is an OnClick event for a TButton component. 

It becomes clearer that events are method pointers when you assign an event handler to 

an event programmatically. The above example was Delphi generated code. To link 

your own an event handler to a TButton's OnClick event at run time you must first 

create a method that you will assign to this event. Since this is a method, it must belong 

to an existing object. This object can be the form which owns the TButton component 

although it doesn't have to be. In fact, the event handlers which Delphi creates belong to 

the form on which the component resides. The code below illustrates how you would 

create an event handler method. 

When you define methods for event handlers, these methods must be defined as the 

same type as the event property and the field to ~hich the event property refers. For 

31 



instance, the OnClick event refers to an internal data field, FOnClick. Both the property 

OnClick, and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a 

procedural type as shown below: 

TNotifyEvent = procedure (Sender: TObject) of object; 

Note the use of the of object specification. This tells the compiler that the procedure 

definition is actually a method and performs some additional logic like ensuring that an 

implicit Self parameter is also passed to this method when called. Self is just a pointer 

reference to the class to which a method belongs. 

1.9.5 Containership 

Some components in the VCL can own other components as well as be parents to other 

components. These two concepts have a different meaning as will be discussed in the 

section to follow. 

1.9.6 Ownership 

All components may be owned by other components but not all components can own 

other components. A component's Owner property contains a reference to the 

component which owns it. 

The basic responsibility of the owner is one of resource management. The owner is 

responsible for freeing those components which it owns whenever it is destroyed. 

Typically, the form owns all components which appear on it, even if those components 

are placed on another component such as a TPanel. At design-time, the form 

automatically becomes the owner for components which you place on it. At run-time, 

when you create a component, you pass the owner as a parameter to the component's 

constructor. For instance, the code below shows how to create a TButton component at 

run-time and passes the form's implicit Self variable to the TButton's Create constructor. 

TButton. Create will then assign whatever is passed to it, in this case Self or rather the 

form, and assign it to the button's Owner property. 

MyButton := TButton.Create(self); 

32 



When the form that now owns this TButton component gets freed, MyButton will also 

be freed. 

You can create a component without an owner by passing nil to the component's Create 

constructor, however, you must ensure that the component is freed when it is no longer 

needed. The code below shows you how to do this for a TTable component. 

1.9. 7 Parenthood 

Parenthood is a much different concept from ownership. It applies only to windowed 

components, which can be parents to other components. Later, when we discuss the 

VCL hierarchy, you will see the level in the hierarchy which introduces windowed 

controls. 

Parent components are responsible for the display of other components. They call the 

appropriate methods internally that cause the children components to draw themselves. 

The Parent property of a component refers to the component which is its parent. Also, a 

component's parent does not have to be it's owner. Although the parent component is 

mainly responsible for the display of components, it also frees children components 

when it is destroyed. 

Windowed components are controls which are visible user interface elements such as 

edit controls, list boxes and memo controls. In order for a windowed component to be 

displayed, it must be assigned a parent on which to display itself. This task is done 

automatically by Delphi's design-time environment when you drop a component from 

the Component Palette onto your form. 

33 



CHAPTER2 

DATABASE 

Every thing around us has a particular identity. To identify anything system, actor or 

person in words we need a data or information. So this information is valuable and in 

this advanced era we can store it in database and access this data by the blink of eye. 

For an instant if we go through the definitions of database we may find following 

definitions. 

A database is a collection of related information. 

A database is an organized body of related information. 

2.1 DEMERITS OF ABSENCE OF DAT ABASE 

A glance on the past will may help us to reveal the drawbacks in case of 

absence of database. 

In the past when there wasn't proper system of database, Much paper work was need to 

do and to handle great deal of written paper documentation was giant among the 

problems itself. 

In the huge networks to deal with equally bulky data, more workers are needed which 

affidavit cost much labor expanses. 

The old criteria for saving data and making identification was much time consuming 

such as if we want to search the particular data of a person. 

Before the Development of Computer database it was a great problem to search for 

some thing. Efforts to avoid the headache of search often results in new establishments 

of data. 

34 



Before the development of database it seemed very unsafe to keep the worthy 

information. In Some situation some big organization had to employee the special 

persons in order to secure the data. 

Before the implementation of database any firm had to face the plenty of difficulties in 

order to maintain their Management. To hold the check on the expenses of the firm, the 

manager faced difficulties. 

2.2 MERITS OF DATABASE 

The modem era is known as the golden age computer sciences and technology. In a 

simple phrase we can express that the modem age is built on the foundation of database. 

If we carefully watch our daily life we can examine that some how our daily life is 

being connected with database. 

There are several benefits of database developments. 

Now with the help of computerized database we can access data in a second. 

By the development of the database we can make data more secure. 

By the development of database we can reduce the cost. 

2.3 DATABASE DESIGN 

The design of a database has to do with the way data is stored and how that data is 

related. The design process is performed after you determine exactly what information 

needs to be stored and how it is to be retrieved. 

A collection of programs that enables you to store, modify, and extract information 

from a database. There are many different types of DBMS ranging from small systems 

that run on personal computers to huge systems that run on mainframes. The following 

are examples of database applications: 

Computerized library systems 

35 



Automated teller machines 

Flight reservation systems 

Computerized parts inventory systems 

From a technical standpoint, DBMS can differ widely. The terms relational, network, 

flat, and hierarchical all refer to the way a DBMS organizes information internally. The 

internal organization can affect how quickly and flexibly you can extract information. 

Requests for information from a database are made in the form of a query. 

Database design is a complex subject. A properly designed database is a model of a 

business, Country Database or some other in the real world. Like their physical model 

counterparts, data models enable you to get answers about the facts that make up the 

objects being modeled. It's the questions that need answers that determine which facts 

need to be stored in the data model. 

In the relational model, data is organized in tables that have the following 

characteristics: every record has the same number of facts, every field contains the same 

type of facts (Data) in each record, and there is only one entry for each fact. No two 

records are exactly the same. 

The more carefully you design, the better the physical database meets users' needs. In 

the process of designing a complete system, you must consider user needs from a 

variety of viewpoints. 

2.4 DATABASE MODELS 

Various techniques are used to model data structures. Certain models are more easily 

implemented by some types of database management systems than others. For any one 

logical model various physical implementation may be possible. An example of this is 

the relational model: in larger systems the physical implementation often has indexes 

which point to the data; this is similar to some aspects of common implementations of 

the network model. But in small relational database the data is often stored in a set of 

36 



files, one per table, in a flat, un-indexed structure. There is some confusion below and 

elsewhere in this article as to logical data model vs. its physical implementation. 

2.4.1 Flat Model 

The flat ( or table) model consists of a single, two dimensional array of data elements, 

where all members of a given column are assumed to be similar values, and all 

members of a row are assumed to be related to one another. For instance, columns for 

name and password might be used as a part of a system security database. Each row 

would have the specific password associated with a specific user. Columns of the table 

often have a type associated with them, defining them as character data, date or time 

information, integers, or floating point numbers. This model is the basis of the 

spreadsheet. 

2.4.2 Network Model 

The network model allows multiple datasets to be used together through the use of 

pointers (or references). Some columns contain pointers to different tables instead of 

data. Thus, the tables are related by references, which can be viewed as a network 

structure. A particular subset of the network model, the hierarchical model, limits the 

relationships to a tree structure, instead of the more general directed graph structure 

implied by the full network model. 

2.4.3 Relational Model 

The relational data model was introduced in an academic paper by E.F. Cod in 1970 as 

a way to make database management systems more independent of any particular 

application. It is a mathematical model defined in terms of predicate logic and set 

theory. 

Although the basic idea of a relational database has been very popular, relatively few 

people understand the mathematical definition and only a few obscure DBMSs 

implement it completely and without extension. Oracle, for example, can be used in a 

purely relational way, but it also allow tables to be defined that allow duplicate rows an 

extension ( or violation) of the relational model. In common English usage, a DBMS is 

37 



called relational if it supports relational operational operations, regardless of whether it 

enforces strict adherence to the relational model. The following is an informal, not 

technical explanation of how "relational" database management systems commonly 

work. 

A relational database contains multiple tables, each similar to the one in the "flat" 

database model. However, unlike network databases, the tables are not linked by 

pointers. Instead, keys are used to match up rows of data in different tables. A key is 

just one or more columns in one table that correspond to columns in other tables. Any 

column can be a key, or: multiple columns can be grouped together into a single key. 

Unlike pointers, it's not necessary to define all the keys in advance; a column can be 

used as a key even if it wasn't originally intended to be one. 

A key that can be used to uniquely identify a row in a table is called a unique key. 

Typically one of the unique keys is the preferred way to refer to row; this is defined as 

the table's primary key. 

When a key consists of data that has an external, real-world meaning (such as a person's 

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature 

key is suitable, an arbitrary key can be assigned (such as by given employees ID 

numbers). In practice, most databases have both generated and natural keys, because 

generated keys can be used internally to create links between rows that can't break, 

while natural keys can be used, less reliably, for searches and for integration with other 

databases. (For example, records in two independently developed databases could be 

matched up by social security number, except when the social security numbers are 

incorrect, missing, or have changed). 

2.4.3.1 Why we use a Relational Database Design 

Maintaining a simple, so-called flat database consisting of a single table doesn't require 

much knowledge of database theory. On the other hand, most database worth 

maintaining are quite a bit more complicated than that. Real life databases often have 

hundreds of thousands or even millions of records, with data that are very intricately 

related. This is where using a full-fledged relational database program becomes 

essential. Consider, for example, the Library of Congress, which has over 16 million 

38 



books in its collection. For reasons that will become apparent soon, a single table 

simply will not do for this database. 

2.5 RELATIONSHIPS BETWEEN TABLES 

When you create tables for an application, you should also consider the relationships 

between them. These relationships give a relational database much of its power. There 

are three types of relationships between tables: one-to-one, one-to-many and many-to 

many relationships. 

2.5.2 One-To-One Relationships 

In a one-to-one relationship, each record in one table corresponds to a single record in a 

second table. This relationship is not very common, but it can offer several benefits. 

First, you can put the fields from both tables into a single, combined table. One reason 

for using two tables is that each field is a property of a separate entity, such as owner 

operators and their tracks. Each operator can operate just one truck at a time, but the 

fields for the operator and truck tables refer to different entities. 

A one-to-one relationship can also reduce the time needed to open a large table by 

placing some of the table's columns in a second, separate table. This approach makes 

particular sense when a table has some fields that are used infrequently. Finally, a one 

to-one relationship can support in a table requires security, placing them in a separate 

table lets your application restrict to certain fields. Your application can link the 

restricted table back to the main table via a one-to-one relationship so that people with 

proper permissions can edit, delete, and add new records to these fields. 

2.5.3 One-To-Many Relationships 

A one-to-many relationship, in which a row from one table corresponds to one or more 

rows from a second table, is more common. This kind of relationship can form the basis 

for a Marty-To-Many relationship as well. 

39 



2.6 DATA MODELING 

In information system design, data modeling is the analysis and design of the 

information in the system, concentrating on the logical entities and the logical 

.dependencies between these entities. Data modeling is an abstraction activity in that the 

details of the values of individual data observations are ignored in favor of the structure, 

relationships, names and formats of the data of interest, although a list of valid values is 

frequently recorded. It is by the data model that definitions of what the data means is 

related to the data structures. 

While a common term for this activity is "Data Analysis" the activity actually has more 

in common with the ideas and methods of synthesis (putting things together), than it 

does in the original meaning of the term analysis (taking things apart). This is because 

the activity strives to bring the data structures of interest together in a cohesive, 

inseparable, whole by eliminating unnecessary data redundancies and relating data 

structures by relationships. 

2.6.1 Database Normalization 

Database normalization is a series of steps followed to obtain a database design that 

allows for consistent storage and efficient access of data in a relational database. These 

steps reduce data redundancy and the risk of data becoming inconsistent. 

However, many relational DBMS lack sufficient separation between the logical 

database design and the physical implementation of the data store, such that queries 

against a fully normalized database often perform poorly. In this case de-normalizations 

are sometimes used to improve performance, at the cost of reduced consistency. 

2.6.2 Primary Key 

In database design, a primary key is a value that can be used to identify a particular row 

in a table. Attributes are associated with it. Examples are names in a telephone book (to 

look up telephone numbers), words in a dictionary (to look up definitions) and Dewey 

Decimal Numbers (to look up books in a library). 

40 



In the relational model of data, a primary key is a candidate key chosen as the main 

method of uniquely identifying a relation. Practical telephone books, dictionaries and 

libraries can not use names, words or Dewey Decimal System Numbers as candidate 

keys because they do not uniquely identify telephone numbers, word definitions or 

books. In some design situations it is impossible to find a natural key that uniquely 

identifies a relation. A surrogate key can be used as the primary key. In other situations 

there may be more than one candidate key for a relation, and no candidate key is 

obviously preferred. A surrogate key may be used as the primary key to avoid giving 

one candidate key artificial primacy over the others. In addition to the requirement that 

the primary key be a candidate key, there are several other factors which may make a 

particular choice of key better than others for a given relation. 

The primary key should generally be short to minimize the amount of data that needs to 

be stored by other relations that reference it. A compound key is usually not 

appropriate. (However, this is a design consideration, and some database management 

systems may be better than others in this regard.) 

The primary key should be immutable, meaning its value should not be changed during 

the course of normal operations of the database. (Recall that a primary key is the means 

of uniquely identifying a tuple, and that identity by definition, never changes.) This 

avoids the problem of dangling references or orphan records created by other relations 

referring to a tuple whose primary key has changed. If the primary key is immutable, 

this can never happen. 

2.6.3 Foreign Key 

A foreign key (FK) is a field in a database record under one primary key that points to a 

key field of another database record in another table where the foreign key of one table 

refers to the primary key of the other table. This way references can be made to link 

information together and it is an essential part of database normalization. 

For example, a person sending an e-mail needs not to include the entire text of a book in 

the e-mail. Instead, they can include the ISBN of the book, and interested persons can 

then use the number to get information about the book, or even the book itself The 

ISBN is the primary key of the book, and it is used as a foreign key in the e-mail. 

41 



Note that using a foreign key often assumes its existence as a primary key somewhere 

else. Improper foreign key/primary key relationships are the source of many database 

problems. 

2.6.4 Compound Key 

In database design, a compound key (also called a composite key) is a key that consists 

on 2 or more attributes. 

No restriction is applied to the attribute regarding their (initial) ownership within the 

data model. This means that any one, none or all, of the multiple attributes within the 

compound key can be foreign keys. Indeed, a foreign key may, itself, be a compound 

key. 

Compound keys almost always originate from attributive or associative entities (tables) 

within the model, but this is not an absolute value. 

42 



CHAPTER3 

MYSQL 

3.1 INTRODUCTION TO MYSQL 

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql 

client program to create and use a simple database. mysql (sometimes referred to as the 

"terminal monitor" or just "monitor") is an interactive program that allows you to connect to 

a MySQL server, run queries, and view the results. mysql may also be used in batch mode: 

you place your queries in a file beforehand, then tell mysql to execute the contents of the file. 

Both ways of using mysql are covered here. 

To see a list of options provided by mysql, invoke it with the --help option: 

shell> mysql --help 

This chapter assumes that mysql is installed on your machine and that a MySQL server is 

available to which you can connect. If this is not true, contact your MySQL administrator. 

(If you are the administrator, you will need to consult other sections of this manual.) 

This chapter describes the entire process of setting up and using a database. If you are 

interested only in accessing an already-existing database, you may want to skip over the 

sections that describe how to create the database and the tables it contains. 

Because this chapter is tutorial in nature, many details are necessarily left out. Consult the 

relevant sections of the manual for more information on the topics covered here. 

3.2 WHAT IS MYSQL? 

3.2.1 Definition 
MySQL is an open source software relational database management system (RDBMS) 

which 

uses a SQL (Structured Query Language) 

43 



SQL is the standard language used for interacting with databases. 

3.3 WHY CHOOSE ~YSQL? 

There are many relational databases available to use, so why choose MySQL? 

We are specifically interested in databases which PHP supports; these include Oracle, 

IBM's DB2 and Microsoft's SQL Server (all of which cost money). 

The two main open source (free) alternatives to these are PostgreSQL and MySQL. 

PostgreSQL is arguably the better of the two, but MySQL is better 

supported on Windows, and is a popular choice among Web hosts that provide 

support for PHP. 

Here are some ofMySQL's advantages 

• It's fast 

• It's free to use, and commercial licenses are reasonable 

• It's easy to use 

• It is cross platform 

• There is a wide community of technical support 

• It's secure 

• It supports large databases 

• It is designed specifically for web base applications and hence works very well 

partnered with PHP 

44 



3.4 PREPARING THE WINDOWS MYSQL ENVIRONMENT 

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the 

MySQL- Max server binaries. Here is a list of the different MySQL servers you can use: 

mysqld Compiled with full debugging and automatic memory allocation 
checking, symbolic links, hmoDB and DBD tables. 

my sq I-opt Optimized binary with no support for transactional tables. 

mysqld-nt 
Optimized binary for NT with support for named pipes. You can run 
this version on Win98, but in this case no named pipes are created 
and you must have TCP/IP installed. 

mysqld-max Optimized binary with support for symbolic links, InnoDB and DBD 
tables. 

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes. 

All of the above binaries are optimized for the Pentium Pro processor but should work on 

any Intel processor >=i386 

In the following circumstance, you will need to use the MySQL configuration file: 

• The install/data directories are different than the default 'c:\mysql' and 'c:\mysql\data'. 

• If you want to use one of these servers: 

mysqld.exe 

mysqld-max. exe 

mysqld-max-nt.exe 

• If you need to tune the server settings. 

45 



There are two configuration files with the same function: 'my.cnf' and 'my.ini' file, 

however, only one of these can/should be used. Both files are plain text. The 'rny.cnf" file 

should be created in the root directory of drive C and the 'my.ini' file in the WinDir 

directory e.g.: C:\WINDOWS or C:\WINNT. If your PC uses a boot loader where the C 

drive isn't the boot drive, then your only option is to use the 'my.ini' file. Also note that if 

you use the WinMySQLAdmin tool, only the 

'my.ini' file is used. The '\mysql\bin' directory contains a help file with instructions for 

using this tool. 

Using Notepad, create the configuration file and edit the base section and keys: 

[mysqld] 

basedir = the_install__path # e.g. 'c:\mysql' 

datadir = the_data_path # e.g. 'c:\mysql\data' or 'd:\mydata\data' 

If the data directory is other than the default 'c:\mysql\data', you must cut the whole 

'\data\mysql' directory and paste it on the your option new directory, e.g. 'd:\mydata\mysql'. 

If you want to use the InnoDB transaction tables, you need to manually create two new 

directories to hold the InnoDB data and log files, e.g. 'c:\ibdata' and 'c:\iblogs'. You will 

also need to create some extra lines to the configuration file. 

If you don't want to use, add the skip-innodb option to the configuration file. 

Now you are ready to test starting the server. 

3.5 STARTING THE SERVER FOR THE FIRST TIME 

Testing from a DOS command prompt is the best thing to do because the server prints 

messages, so if something is wrong with your configuration, you will see a more accurate 

error message which will make it easier to identify and fix any problems. 

46 



Make sure you're in the right directory (C:\>cd \mysql\bin), 

# To install mysqld as a standalone program, enter: 

C: \mysql\bin> mysqld-max --standalone 

You should see the below print messages: 

Inn,:,[;,I: Th.;, r t rr t :,i:·-,,,~i:ti.;,,:\ ,:be,. fil-,, ·.il .. :l.:-..t:-..··.il: .. :bt.:-d ,:li,:l n,:,t .;,:-:i.,t 
Inn,:,C:•I: 
Inn,:, l•I: 
Inn,:,C:•I: 
Inn,:, [)I: 
Inn,:,DI 
Inn,:,DI: 
Inn,:,DI: 
Ln n.o DI: 
Inn,:,C:•I: 
Inn,:,C:•I: 
Inn,:,DI· 
Inn,:,[;,I: 
Inn,:,C:·I: 
U 11,:.,:.::.;; 

.:, n.;,·., ,:L, t ~d:,.:-..:c.,, t ·=· l:•.;, ,: r.,, :, t..;, ,:l 1 
;?.;,ttin~-- :t il.;, ·~ \il:·,:l:,t:,··il:,.:\:,t:,1 ::;iz.,, t,:, :.::u::•: l[,:.::•:n:, 
[;,::, t:,.1:·:,.,:,-,, I·h:::, i·:.:,11:· ·.,Tit . .;,., t h-s :t il-,, :tull - . .-~•.it 
L•:•·s' :til.;, \il:·l•:•\'::-:\il:·_l,:, fil.,,•:• ,:li•:l not .,,:-:i::,t. 11.,,·_, r.» 1:,-,, ,:r.;,~,t.,,,:\ 
;,i.;,ttin~-- 1,:,.:, r i i , ,: \it·l·=· .,\it,_l,:··s·:t i1.,,,:, :,i:::.;, t,:, •c: 1.;;.,.::.::,,, .. :., 
L•>\·· :ti 1-,, \i 1:·l<•\<< -, .. i l.-; l,:, f i 1.,, 1 ,:li•:l n,:,t .;,:-:i::,t. n.;,·., t.,:, 1:,-,, ,: r.;,.:, t-,,,:l 
;,i.;,t.t.in~-- 1,:,.:, fil.;, ,: \il:,l,:, .,··-.il:,_l,:,;--:t il.,,1 :ci:::.;, t,:, .-:: 1.;;.,.::.:::::,~, 
L·>·;·· :til.;, \il:·l·>·~--,:;\il:·_l,:, fil.,,:.:: ,:lid nct -,,:--.i,:-,t. n.;,·., t.,:, 1:,.,, ,:r.;,~,t-,,,:l 
;,:.;, t. t. t.n ; 1.: . .:,· ti 1.;. ·= · .. il:·l·=· ., · .. it,_ 1,:,·;·:t il-,,:.:: :, i:::.;, t-·=· .:, 1.;;.c.::.::,,,.~.· 
C:•,:,ul:,1.,,·.:rit..,, t,uf:t-,,r not, f ,un,:l ,: r.;,:,t.in.:,· n.;,·_.,- 
[; .. :, ul.. 1.,,-_.-r it . .;, 1:,uf :t.;, r ,: r -,,::-,, t . .;, ,:l 
-:.r-,,:,tin\' f,:.r.,,i·s·-:i1 ~-:.;,:· ,:,:,n,:-,t.r::,.int .,::.,t.,,::. t:<.1:,1.,,:c 
f,:,r.,,L;;n ~:.,,:· ,:,:,n,:-,t.r~,.int. .,::.,t..;,::. t.:,1:,1.,,,, ,: r.;,:,t . .;,,:l 
1,:, .r,·:: :.::c rnnc.t-t ;":'-t.:,.rt..,,,:l 

# To install mysql as a service (Windows 2000), enter: 

C: \mysql\bin> mysqld-nt --install 

Now you can start and stop mysqld as follows: 

C:\>NET START MySQL C:\>NET STOP MySQL 

C:\>NET START MySQL 

# To start the MySQL Monitor, enter: 

The MySql service is starting. 

The MySQL service was started successfully. 

C:\>cd \mysql 

C: \mysql>bin\mysql 

Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id 

47 



is 1 to server version 3.23.49-nt Type 'help;' or '\h' for help. Type '\c' to clear the buffer. 

mysql> (enter a command or enter 'QUIT' to quit) 

mysql> QUIT Bye 

C: \mysql> NET STOP MySQL The MySQL service is stopping. 

The MySQL service was stopped successfully. 

C:\mysql> 

3.6 CONNECTING TO AND DISCONNECTING FROM THE SERVER 

To connect to the server, you'll usually need to provide a MySQL user name when you 

invoke mysql and, most likely, a password. If the server runs on a machine other than the one 

where you log in, you'll also need to specify a hostname. Contact your administrator to find 

out what connection parameters you should use to connect (that is, what host, user name, and 

password to use). Once you know the proper parameters, you should be able to connect like 

this: 

shell> mysql -h host -u user -p 

Enter password: ******** 

The******** represents your password; enter it when mysql displays the Enter password: 

prompt. 

If that works, you should see some introductory information followed by a mysql> prompt: 

shell> mysql -h host -u user -p 

Enter password: ******** 

Welcome to the MySQL monitor. Commands end with; or \g. Your MySQL connection id 

is 459 to server version: 3.22.20a-log 

48 



Type 'help' for help. 

mysql> 

The prompt tells you that mysql is ready for you to enter commands. 

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the 

server running on the local host. If this is the case on your machine, you should be able to 

connect to that server by invoking mysql without any options: 

shell> mysql 

After you have connected successfully, you can disconnect any time by typing QUIT at the 

mys qi> 

prompt: mysql> QUIT Bye 

You can also disconnect by pressing Control-D. 

Most examples in the following sections assume you are connected to the server. They 

indicate this by the mysql> prompt. 

3.7 ENTERING QUERIES 

Make sure you are connected to the server, as discussed in the previous section. Doing so 

will not in itself select any database to work with, but that's okay. At this point, it's more 

important to find out a little about how to issue queries than to jump right in creating tables, 

loading data into them, and retrieving data from them. This section describes the basic 

principles of entering commands, using several queries you can try out to familiarize 

yourself with how mysql works. 

Here's a simple command that asks the server to tell you its version number and the current 

date. Type it in as shown below following the mysql> prompt and hit the RETURN key: 

mysql> SELECT VERSION(), CURRENT DATE; 

49 



versioru) CURRENT DATE 

3 .22.20a-102: 1999-03-19 

row in set (0.01 sec) 

mysql> 

This query illustrates several things about mysql: 

A command normally consists of a SQL statement followed by a semicolon. (There are some 

exceptions where a semicolon is not needed. QUIT, mentioned earlier, is one of them. We'll 

get to others later.) 

When you issue a command, mysql sends it to the server for execution and displays the 

results, then prints another mysql> to indicate that it is ready for another command. 

Mysql displays query output as a table (rows and columns). The first row contains labels for 

the columns. The rows following are the query results. Normally, column labels are the 

names of the columns you fetch from database tables. If you're retrieving the value of an 

expression rather than a table column (as in the example just shown), mysql labels the 

column using the expression itself 

Mysql shows how many rows were returned and how long the query took to execute, which 

gives you a rough idea of server performance. These values are imprecise because they 

represent wall clock time (not CPU or machine time), and because they are affected by 

factors such as server load and network latency. (For brevity, the "rows in set" line is not 

shown in the remaining examples in this chapter.) 

Keywords may be entered in any lettercase. The following queries are equivalent: 

mysql> SELECT VERSIONO, CURRENT_DATE; mysql> select versioni), current_date; 
mysql> SELECT VERSIONO, current_DATE; 
mysql> SELECT SIN(PI0/4), (4+ 1) *5; 

The commands shown thus far have been relatively short, single-line statements. You can 

even enter multiple statements on a single line. Just end each one with a semicolon: 

50 



mysql> SELECT VERSIONO; SELECT NOWO; 

A command need not be given all on a single line, so lengthy commands that require several 

lines are not a problem. mysql determines where your statement ends by looking for the 

terminating semicolon, not by looking for the end of the input line. (In other words, mysql 

accepts free-format input: it collects input lines but does not execute them until it sees the 

semicolon.) 

Here's a simple multiple-line statement: 

mysql> SELECT USERO,CURRENT_DATE; 

USER() CURRENT _DATE 
joesmith@localhost 1999-03-18 

In this example, notice how the prompt changes from mysql> to -> after you enter the first 

line of a multiple-line query. This is how mysql indicates that it hasn't seen a complete 

statement and is waiting for the rest. The prompt is your friend, because it provides valuable 

feedback. If you use that feedback, you will always be aware of what mysql is waiting for. 

If you decide you don't want to execute a command that you are in the process of entering, 

cancel it by typing \c: 

mysql> SELECT USERO \c mysql> 

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing 

feedback to indicate that mysql is ready for a new command. 

The following table shows each of the prompts you may see and summarizes what they mean 

about the state that mysql is in: 

51 



·:.~ ·-~ 
(} '.t 

··- J{ 

-> 
'> ins with a single auote c~ 

'"' "> Waitin 

Multiple-line statements commonly occur by accident when you intend to issue a command 

on a single line, but forget the terminating semicolon. In this case, mysql waits for more 

input: 

mysql> SELECT USERO 
-> 

If this happens to you (you think you've entered a statement but the only response is a -> 

prompt), most likely mysql is waiting for the semicolon. If you don't notice what the prompt 

is telling you, you might sit there for a while before realizing what you need to do. Enter a 

semicolon to complete the statement, and mysql will execute it: 

mysql> SELECT USERO 

-> 

USERO 
joesmith@localhost 

The '> and "> prompts occur during string collection. In MySQL, you can write strings 

surrounded by either '" or '"' characters (for example, 'hello' or "goodbye"), and mysql lets 

you enter strings that span multiple lines. When you see a '> or "> prompt, it means that 

you've entered a line containing a string that begins with a :" or ?" quote character, but have 

not yet entered the matching quote that terminates the string. That's fine if you really are 

entering a multiple-line string, but how likely is that? Not very. More often, the '> and "> 

prompts indicate that you've inadvertantly left out a quote character. For example: 

52 



mysql> SELECT * FROM my _table WHERE name = "Smith AND age < 30; 
"> 

If you enter this SELECT statement, then hit RETURN and wait for the result, nothing will 

happen. Instead of wondering why this query takes so long, notice the clue provided by the 

"> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do you 

see the error in the statement? The string "Smith is missing the second quote.) 

At this point, what do you do? The simplest thing is to cancel the command. However, you 

cannot just type \c in this case, because mysql interprets it as part of the string that it is 

collecting! Instead, enter the closing quote character (so mysql knows you've finished the 

string), then type 

\c: mysql> SELECT * FROM my _table WHERE name = "Smith AND age < 30; 
"> "\c mysql> 

The prompt changes back to mysql>, indicating that mysql is ready for a new command. 

It's important to know what the '> and "> prompts signify, because if you mistakenly enter an 

unterminated string, any further lines you type will appear to be ignored by mysql - 

including a line containing QUIT! This can be quite confusing, especially if you don't know 

that you need to supply the terminating quote before you can cancel the current command. 

53 



CHAPTER4 

USER MANUAL 

In this chapter I will try to explain the veterinerian application program that when it run.If 

a someone run the program; firstly splash form will be shown for 3000ms like below. 

Figure 4.1 

After 3000ms entry page (Secure Page) will be shown. (Figure 4.2) 

54 



On this page (Figure 4.2) the user must enter the user name and password.If user name and 

password found then the program check the user state for still working or has left.If still 

working; now the program check the user position for Admin,Veterinerian,Manager,User 

and Temporary.If the user has left then who can not enter the system; in the same time there 

is no user name and password program gives three trying chance to enter the system; when 

is thirth the program will be terminate. 

If user is Adrnin then who can access everything to make on application program; If user is 

manager then who access everything to make exclusive of wrong password application; If 

user is veterinerian then who can not access process of user after that who can access; If 

user is a normal user then who can see some knowledge and can change the program 

settings; If the user is temporary then who can access only amusements, internet explorer, 

find folder and drug knowledge. 

Then main page comes (Figure 4.3) it is shown below 
~:·· COll'.OFJ .1J«l 5l:101C[S !llOU' · .. • · 1UAtt CO,Wi>iN!IS flM(I'\' ··""!!.!! .. rlllRtlflllm .lPPI IUllON PROGJIDol •• , 

COMSOFTAND SCIENCES 
GROUP 

AWU-S[MCHI 

* 
Figure 4.3 

55 



This is main page; other pages shown on it. There are ten button on this. User click one of 

them and access the page that wanted by the user. 

When button of definition clicked definition selection page is shown like below figure 

'DRUGS 

ANDC \., 
ROU 

~CLOSE 

APPLICATIONS 

~ \,I 

II ""i." I 
I 
INTERNET EXPLORER 

' (9 ! 
' 

Figure 4.4 

Definitions acts to create knowledge that is necessary for application process.User decide 

process and click the button to access the page for needed application. 

When the staff button clicked; the page is shown that is figure 4.5. On this page user can 

make some process like save, update, delete and find. 

On staff record form there is a magnifier button that acts that if there is a person who saved 

before;knowledge of that person is shown on form with all knowledge. 

56 



TAl'f 10: 

SlillltJAME: 

TI\SI(; [Scil:>iil Or~ 

U:»IVERSITY: I 
CRAM STATE, Sooci.O~ 0 
START OATE: _W01.l®7 - "1i] TOWN: 

UPDATE AVlr 

cm: Se1!d.Ot'1!! 

(;OUt'l!ltY: ~lO;.,-· --- --= -3:1 
MAit.: I 

WEB: 

LEAVE DATE: ffi.09.ffi9 

~ I AHMET 
2 TIJIIA 
3 Af!MET 

1/eJc<JllC!iGr• 
\1~1.,.-'~ 

1¥>1 

Figure 4.5 

When the magnifier button clicked figure 4.6 is shown 

57 



< TRANFER CLOSE REFRESH 

Figure 4.6 

When the vaccines record clicked; the page is shown that is figure 4.5. On this page user 

can add new vaccine, can delete or update it.For process of vaccinates vaccine name called 

from here (Figure 4.7) 

58 



VACCINE ID: 

DIJR.ATION: !select One @ Month 

VACCINE NAME: ._• ---------' 

SAVE UPDATE DELETE NEW 

VACCIIIES LIST 

Vaccine_id _.~cine_name Vaccine_duration 
~, 1 DURATION 4• 

4 5 FAFS 

Figure 4.7 

When user clicked drugs button Drug Record page will be shown. On this page user can add 

new drug, delete drug and update old drug record.For process of drug application drug 

name will absorb from here Figure 4.8 

L. .[ [select One 

r,,,,_r H .c I. ~ jselecl One ll 

][ DELETE ~ ~ NEW l SAVE UPDATE 

DRUGS LIST 

[Druqjd JDrug__name Drug__ruationjDrug_kind ~ 
.-1 1 ilb.C: 

4·SALLA 
5 DENEME 

610UTER PARASITE 
3 INNER PARASITE 
3 GENERAL DRUG 

·--· -·--- 

Figure 4.8 

59 



When operations button clicked Operation Record page will be shown. On this page user 

can add new operation, deleteand update operation.For operation application operation 

name will be taken from here Figure 4.9 

OPERATION ID:-------~ OPERATION NAME:~· -------- 

SAVE UPDATE DELETE NEW 

OPERATIOIIS LIST 

fl 1 ~ASMA_KESM~ 
2 CERRAHPA$A --- - - "" _ 
3 SALLJl.MA 

Figure 4.9 

If the user click the user button; user page is opened to make adding,deleting and updating 

user knowledge like Figure 4 .10. 

On this form there is a mini arrow button.It is act to get staff to combine with users and 

staff.Because after when a knowledge is needed it sta:fisfied directly. 

60 



TAff f>QSITION; ,s.cleciOoo. ~~ 

SAVE UPDAlE 

t~A.GER 
AOl.tiN 
USEfll 
VE:TERINERlAI· 
ift.iPORARY 

1 WOl'l!QNG 
2 WO~K.JNG 
1 lllF'l 
2 WORKING 
J 'WORKING 
1 '1./0RKlNG USER 

Figure 4.10 

ADD Record button thet on main form acts to create knowledge that is necessary for 

continuity of program.Because Customer and Animal is defined here.User decide process 

and click the button to access the page for needed application.Figure 4.11 act transaction of 

this process from main menu. 

61 



1}, :::·COMSOfif,ANDSCIENCES GROUP::: ::':'TUAH COMPANl[S·TURKEVJ:::;: ::: VfTERINERIA 

DEANITIONS 

~AND 
GROl 

ADD RECORD 

l\ l5cusTOMER ~ANIMAL 

SEARCH RECORD 

DELETE RECORD 

APPLICATIONS 

(;,~ ;;it'--, 

Figure 4Jl 

User can decide customer or animal.who if decide to continue for customer must click 

customer button.When he/she made this a new form is shown,Customer record form.With 

this form user can add an new customer or delete or update an old customer.Update or 
delete is needed.Well may be customer transferred to other city or transferred to other 

veterinerian.Figure 4.12 include a customer record page figure 

The Program acts all of them easly.Interface is basic as shown.Every user can adapt easly 

to make operation. 

62 



tOU~HRY:.S-*'!Onc a CUSTOMER ID:: FAX,L-..1:-,---- 

AOO""I I 
Toww:1- 
m:(s~to"" 

tMAII.: ._. -----------+ 
WEB.:_·-- 

SURN/1..ME: 

HOME PHONE: LL. I 
MOBIL f'J-iON.I:: 'LL-- 1 -·------...........,.,.~ ..... 
W'ORK PHONE: .LL·-=-----' 

[I, l I 
I I. [ L 

DELETE: NEW SAVE 

Figure 4.12 

If user decided for animal must click animal button on Add Record Form (Figure 4.11 ). 

When he/she clicked animal button Animal Record Form will be displayed.With this form 

user can add an new animal or delete or update an old animal with their owner.Update or 

delete is needed.Well may be animal transferred to other veterinerian or may be died. 

Figure 4.13 shows animal record form. 

63 



m. 

ANIMAi!. Klrm; I 
""""' '~-------' COLOR:•--~--.---·--• Al11M.Ai. ID: '------ 

A!lll!MAL l~AMli'.: :.. _ 
r~- 

WilCl-lT: _ 

COlJIJ'\R.NO:l 

11!,g 

WUnNO •o, . "ON«, MOD~lm ··1 · 
UFE STATE:ISek!«Cln.o G .. 
'"'""''"!-- ~·· l ~-------' AllltMAL RAC.E : 

OWNER NO, ·~---- __ [,!. 
AlllP.THiOATE:,01,000-.-·. :w 
ANl!~tA.L $'!;:X , ,Seieet 0'11! -- GJ 

N0ff•r __ _____. 
SAVE UPDATE OEU:TE'. NEW 

~rina-~ ;1::-- 
J 2 \\/EFF 

IUlll.tAlUST 

la,'.;._l<i,d 
liG 
WE\\/ER 

Figure 4.13 

On this form (Figure 4.13) there is a mini arrow button.It find owner.Thats why initially 

customer must save then animal can save.Because as seen owner only called from other 

form directly.(Figure 4.14) 

This Page (Figure 4.14) absorb the knowledge directly database through queries.When it 

opened datas comes onto dbgrid that on page. 

64 



TRAN FER REFRESH 

Figure 4.14 

Search Record button that on main form acts to show knowledge.The knowledge stored in 

database.User can access data through this pages (Search pages).When Search Button 

clicked on main menu a new page will appear (Figure 4.15) 

On this form (Figure 4.15) there are all states, applications.Well users can see, collect the 

datas easly.They must decide Only 'What do I need' then click button and access 

knowledge that needed by your own. 

65 



'f:je,, ,,,, ;;·,:: :-(OMSOFT1AND·'sc1rncEs'GROUP·::: ;,; .·;::: :~TU1H'coMPAN1Es,il.JRktv,:: :~ i:: .. :: : VE 

DEFINITIONS r .. · .. •if. _,;_.,;:- -. ::;;;r;;;rr#:zc!.-~-~..:-v1::-;,t..;,,;,sc"t·.,;, ·_:._.·:,.·:t:q,.L.;~,.,. '.'" boi";; __ ;_ ,~- .• ~.,..~-..,,#.,:.--:~mf:t;#:iifl!-~.>.;,..a~; · ~~1:reu• mt •. I,,,_,,, 'c 

CUSTOMER · 
ANIMAL .•.. ~~] 

VACCINES 

ADD RECORD 

~--·1 - ~l ~ 

DRUGS I! INNER DRUGS II OUTER DRUGS •• 'Jl 
._..,.., 

MEDICINATE II OPERATIONS j[ APPLIED OP. 

Figure 4.15 

If user want to see customer knowledge, he/she must click customer button. Than customer 

search form will be displayed.Well easly got the data.Figure 4.16 has a customer search 

page image. 

As it seen there are five criteria to make search.Well user can search for various situation. 

Every criteria has different page.Figure 4.16 has only one of them.All figure will append 

end of project as appendix. 

66 



{M~,!~i'.fj_s su11.!,~!U A1.;C'!'!'J 11s !'?will ~$ <111..-ror.mr._101. 11:!Jl. ~IIST()f.Jm 
I ·y,,..;;: . - . - . - - . 

L S.gAR(:~I AS NAM( 

·-·-~ --- .., I SEAktH :I NEW SE:AflCli I NAM~· 
c= _ 

Figure 4.16 

If user want to see animal knowledge, he/she must click animal button.Than animal search 

form will be displayed.Figure 4.17 shows an animal search page. 

As it seen there are five criteria to make search.Well user can search for various situation. 

Every criteria has different page.Figure 4.17 has only one of them. 

When user write character from keyboard the program will check the animals. 

67 



$!!AftCM AS ANIMAL ~-fA'htE 

ANIMAL NAME: ;dogo NEW:SEARt:H 

OUTER J'I\RASrrE Al'l'll(A.TION 
IPn<n31_id f o~_i:hqlomo 

INNER PARASITE Al'rt!U\TION 
AAINll_id 111>_0:,q,omc 

VACCIHATES 
Arimot_i:I lv~..,r.mo 

1 1 It.AC 1 1 ~UA 
2 lM 

~ l (lU!lA.1'l0tJ 
l l)UBATlrul 
l OU!t<\Tlllll 
1r OURAT!O'N 

Figure 4.17 

If user want to see staff knowledge, he/she must click staff button that is on mam 

page.Than staff search form will be displayed.Figure 4.18 shows an staff search form. 

As it seen there are seven criteria to make search.Well user can search for various situation. 

Every criteria has different page.Figure 4.18 has only one of them. 

When user write character from keyboard the program will check the staff name 

68 



l>EJIRCH AS $TAFF Nl\ME ' 
1,---[ -N~EW SE-,1\RCH--,j i 

~~ ,~, 

Figure 4.18 

If user want to see vaccinate knowledge, he/she must click vaccinate button that is on main 

page.Than vaccinate search form will be displayed.Figure 4.19 shows an staff search form. 

As it seen there are five criteria to make search.Well user can search for various situation. 

Every criteria has different page.Figure 4 .19 has only one of them. 

69 



[07.01.2007 

J 

Figure 4.19 

When User want to change the settings, he/she must click settings button that is on main 

page.Than setting page will be displayed.Figure 4.20 shows an settings form 

As it seen there are two criteria to make search.Well user can change setting to various 

situation.User can change form color,can disable or enable skins, disable or enable picture, 

change skins and picture. 

70 



r].~~COMSO-flf AND SCIENCES GROUP::: ... , .. :::: Tl.JAH COMPANIESTURl<EY,:::;.:- . .' 
••-v-•• ,_,, .~,---·•• * •-~- ••• ¥• ~ - • ~ • • • 

DEFINITIONS 

FORMS I OTHERS 
ADD RECORD 

It QCANCEL THE CLOSING ANIMATION 

SEARCH RECORD 
0CANCEL THE FORM Sl<INS 

CHANGE THE FORM SKIN 
DELETE RECORD 

CHANGE FORfv.1 COLOR RESTORE DEFAULT 

APPLICATIONS 
~ 

Figure 4.20 

If User want to see 'What will I do today?' ,'Which process will be made today ?', he/she 

must click obligation button that is on search record page.Than obligation page will be 

displayed.Figure 4.21 shows an settings form 

As it seen there are three criteria to make search.Well user can learn to satisfy vaccinate 

process, inner parasite application process, outer parasite application process. 

71 



PERFQMING l'INO 

PE,RFORNIING DATE:[05.01.2007 El I FIND ,ll NEW J 

VACCINATES I INNER P AR.~SITEJ OUTER PARASITE I 

>1 

Figure 4.21 

When User want to arrvive the amusement. He/she must click amusement button that is on 

main page.Than amusement selection page will be displayed.Figure 4.22 shows an 

amusement selection form 

As it seen there are six selection object to fun.Well user can arrive various fun. 

72 



ADD RECORD "'1111 I fw1ED1A PLAY ER II SOLITAIRE , II FREE CELL 

ll 1111 I ~ •. 'II .,;,_ 

SEARCH RECORD 

~ JI I MINES . I CALCULATOR 
.·~ DELETE RECORD IID I : ''"'1 l~ 

~ 

I . I l Jl l 
~ 

APPLICATIONS f_ l 
r NOTEPAD lf HEARTS l 

~ 
= 

SETT1NGS 

Jo 
INTERNET EXPLORER 

AMUSEMENT 

~ 
~ 

Figure 4.22 

If User want to open a web page. He/she must click internet explorer button that is on main 

page.Than internet explorer page will be displayed.Figure 4.23 shows that. 

73 



'{;.,, .• ,.:;; CO...SCIIT AND scm«:rs GROUl>T:""·"';;;:ru'lH COMPA.Nm;·ruruuv·::;;, .. ,.;;: Vf'ltfUNfRl.lN lPPU(Jl'lON P!WGRAM ;;;, •• ~ 

t@-;__;~fj:t: 
--i,IJGl. ~" 

DELETE RECORD 

~ 
---~~~~~--,r~--,,~~-=-~~-,-~~~~-.' r;n,;i,,,., 
( Googll!:'da Ata H ~30$1nlt Denemek isli)"tirum I .ll.l.ll!W:lm 

Ara: 0 Web O ifirf<'Je nyfalar O Turl<iye'<len sayfalar 

IN1 
Rcklarn P,og.mMljllflFi'IIZ • Googlll: Hakk,ruh • l(a,ivnr B3~nJl.)n • Google CO>'l'I '" Er1gli1p 

AMUSEMENT 

r ~. ifil ~ ci, wmet I 

Figure 4.23 

If User want toget an windows screen. He/she must click find folder button that is on main 

page.Than windows screen page will be displayed.Figure 4.24 shows that.In here can find 

folder, files.And also can process some operation about other application. 

74 



t'.lfflNITHlNS 

I .•••. ~ II~ 0 - -~.. ·~ ::ro ~gel~,~~ 
'fil Mw,w.,;; 
se;)ml!I 

t:::il ~.fMll O~;oJorJll 
~Miilitim 
-lJWSetuµo 
, _ Mure Pad.age 
£E\ Res.Ide; 
!!;)~lam, 
Eli¢!_avarrn 
~~~ ..• 

iJ Geri ~rnY.UMY
18i20ei ,,_tcoi

., 101105M20
~~ (:('»!320
O com'432 1:.1 :!06µrsamba
Qde e) for~ e gtarve ney

~ e::i

DELETE RECORD

Al'Pl.lu\ TIONS

INTERNET EXPLORER

r.wla,jrm r.Jasooerrn
KISaV<)I
l KB

V

Figure 4.24

75

CONCLUSION

MySQL and Delphi are powerful program.When I study with these two program.I get

fun.Because these program are wonderful.Examination of the data for internal

consistency and comparisons with externally available data indicates that the Delphi

study appears reliable. However, the study was difficult to carry out owing to

difficulties in obtaining answers from possible respondents. Thus, if a larger survey is to

be undertaken to include all building components, it is recommended that committed

respondents be obtained before devising the survey.

Veterinerian Application program for veterinerian and users act more facility.However

Users adapt easly to the program and use it safetly.Nowadays in everywhere, in every

job is combined with the computer. Well Veterinerian clinic will combine with this

project.

76

APPENDIX

VETARINERIAN APPLICATION PROGRAM SOURCE CODE

FORM 1 CODES

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, ComCtrls, Menus, ExtCtrls, WinSkinData, jpeg, StdCtrls,
XPMan;

type
TForml = class(TForm)
Panel 1: TPanel;
MainMenul: TMainMenu;
Filel: TMenultem;
StatusBarl: TStatusBar;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
SpeedButton7: TSpeedButton;
SpeedButton8: TSpeedButton;
SpeedButton9: TSpeedButton;
SpeedButtonlO: TSpeedButton;
Shapel: TShape;
SkinDatal: TSkinData;
Label 1: TLabel;
Timerl: TTimer;
Image 1: Tlmage;
XPManifest 1: TXPManifest;
procedure Timerl Timer(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton 1 OClick(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure SpeedButton5Click(Sender: TObject);
procedure SpeedButton8Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton9Click(Sender: TObject);
procedure SpeedButton7Click(Sender: TObject);

77

procedure SpeedButtonlMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton7MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton8MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton9MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton6MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButtonlOMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

procedure SpeedButton6Click(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml: TForml;

implementation

uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, Unit9, Unit41;

{$R *.dfm}

procedure TForml.Timerl Timer(Sender: TObject);
begin
//if (forml.Labell.Top <> 600) then/land (forml.Labell.Top > 1) then
//form I .Label 1. Top: =form l .Label 1. Top-1;
//ifforml.Labell.Top <> 1 then
//form l .Label 1. Top: =form l .Label 1. Top+ 1;
FORMl. StatusBarl .Panels[5]. Text:=TIMETOSTR(TIME);
end;

procedure TForml.FormCreate(Sender: TObject);
begin
forml.Labell.Caption:='COMSOFT and SCIENCES'+#l3+'
FORMl.StatusBarl.Panels[l].Text:=DATETOSTR(DATE);
FORMl. StatusBarl .Panels[5]. Text:=TIMETOSTR(TIME);

GROUP';

78

end;

procedure TF orm 1. S peedButton 1 Click(Sender: TObj ect);
begin
FORM9.CLOSE;
FORM7.CLOSE;
FORM3. CLOSE;
FORM4.CLOSE;
FORMS.CLOSE;
FORM6.CLOSE;
FORM2.SHOW;
end;

procedure TForm 1. SpeedButton 1 OClick(Sender: TObject);
begin
form41.CLOSE;
end;

procedure TForml.SpeedButton3Click(Sender: TObject);
begin
FORM6.CLOSE;
FORM9.CLOSE;
FORM7.CLOSE;
FORM2.CLOSE;
FORM4.CLOSE;
FORMS.CLOSE;
FORM3.SHOW;
end;

procedure TForml .FormClose(Sender: TObject; var Action: TCloseAction);
begin
form2.CLOSE;
form3.CLOSE;
form4.CLOSE;
forms. CLOSE;
form6.CLOSE;
form4 l. close;

end;

procedure TF orm 1. SpeedButtonSClick(Sender: TObject);
begin
FORM9.CLOSE;
FORM7.CLOSE;
FORM2.CLOSE;
FORM3. CLOSE;
FORMS. CLOSE;
FORM6.CLOSE;

79

form4. show;
end;

procedure TForml.SpeedButton8Click(Sender: TObject);
begin
FORM9.CLOSE;
FORM7.CLOSE;
FORM2.CLOSE;
FORM3.CLOSE;
FORM4.CLOSE;
FORM6.CLOSE;
FORMS.SHOW;
end;

procedure TForml. SpeedButton4Click(Sender: TObject);
begin
FORM9.CLOSE;
FORM2.CLOSE;
FORM3 .CLOSE;
FORM4.CLOSE;
FORMS. CLOSE;
FORM7.CLOSE;
form6.show;
end;

procedure TForml.SpeedButton2Click(Sender: TObject);
begin
FORM9.CLOSE;
FORM2.CLOSE;
FORM3. CLOSE;
FORM4.CLOSE;
FORMS.CLOSE;
FORM6.CLOSE;
FORM7.SHOW;
end;

procedure TForml.SpeedButton9Click(Sender: TObject);
begin
FORM9.CLOSE;
FORM7.CLOSE;
FORM2.CLOSE;
FORM3.CLOSE;
FORMS. CLOSE;
FORM4.CLOSE;
FORM6.CLOSE;
if FileExists('C:\ WINDOWS\explorer.exe') then
winexec('C:\WINDOWS\explorer.exe',sw_shownormal);

end;

procedure TF orm 1. SpeedButton7Click(Sender: TObject);

80

begin
FORM9.CLOSE;
FORM7.CLOSE;
FORM2.CLOSE;
FORM3.CLOSE;
FORMS.CLOSE;
FORM4.CLOSE;
FORM6.CLOSE;
if FileExists('C:\Program Files\Internet Explorer\iexplore.exe') then
winexec('C:\Program Files\Internet Explorer\iexplore.exe',sw_shownormal);

end;

procedure TForml.SpeedButtonlMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORMl.SpeedButtonl.Hint:=' THIS ACTS TO DEFINE NEW
KNOWLEDGE'+#13+

'(STAFF, VACCINE, DRUGS, OPERATIONS, USERS)';

end;

procedure TForml. SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORM!. SpeedButton2.Hint:='USES TO SA VE NEW RECORD'+# 13+

I (CUSTOMER, ANIMAL)';
end;

procedure TForml.SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORM1.SpeedButton3.Hint:='USE TO FIND RECORD'+#13+

I (ALL CRITERIA)';
end;

procedure TForml.SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORM1.SpeedButton4.Hint:='ACTS TO DELETE RECORD'+#13+

I (ALL CRITERIA)';
end;

procedure TForml.SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORM1.SpeedButton5.Hint:=' USES TO SAVE NEW APPLICATION'+#13+

'(VACCINATE, INNER PARASITE, OUTER PARASITE)'+# 13+
'(MEDICINATE, APPLIED OPERATIONS, ILNESSES)';

end;

81

procedure TForml.SpeedButton7MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORM1.SpeedButton7.Hint:='USES TO OPEN THE INTERNET EXPLORER';

end;

procedure TForml.SpeedButton8MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORMl. SpeedButton8.Hint:='USE TO HA VE FUN';

end;

procedure TForml.SpeedButton9MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORM1.SpeedButton9.Hint:='USES TO SEE WINDOWS FILES OR FOLDERS';

end;

procedure TForml.SpeedButton6MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
FORMl. SpeedButton6.Hint:='ACTS TO CHANGE THE PROGRAM SETTINGS';
end;

procedure TF orml. SpeedButtonl OMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

begin
FORMl.SpeedButtonlO.Hint:='ACTS TO CLOSE THE PROGRAM';
end;

procedure TForml.SpeedButton6Click(Sender: TObject);
begin
FORM4.CLOSE;
FORM7.CLOSE;
FORM2.CLOSE;
FORM3 .CLOSE;
FORMS.CLOSE;
FORM6.CLOSE;
FORM9.SHOW;
end;

end.

FORM2CODES

unit Unit2;

interface

82

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Buttons;

type
TForm2 = class(TForm)
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
MainMenu 1: TMainMenu;
F 1: TMenultem;
SpeedButton6: TSpeedButton;
procedure SpeedButton6Click(Sender: TObject);
procedure SpeedButtonl Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form2: TForm2;

implementation

uses UnitlO, Unitl 1, Unit12, Unit13, Unit14;

{$R *.dfm}

procedure TForm2.SpeedButton6Click(Sender: TObject);
begin
form2.hide;
end;

procedure TForm2.SpeedButton1Click(Sender: TObject);
begin
FORMlO.SHOW;
form2.Hide;
end;

procedure TForm2.SpeedButton2Click(Sender: TObject);
begin
form 11. show;
form2.Hide;

83

end;

procedure TF orm2. S peedButton3 Click(Sender: TObj ect);
begin
FORM12.SHOW;
FORM2.Hide;

end;

procedure TForm2.SpeedButton4Click(Sender: 'I'Object);
begin
FORM13.SHOW;
FORM2.HIDE;

end;

procedure TForm2.SpeedButton5Click(Sender: TObject);
begin
FORM14.SHOW;
FORM2.Hide;

end;

end.

FORM3CODES

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Buttons;

type
TForm3 = class(TForm)
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
SpeedButton7: TSpeedButton;
SpeedButton8: TSpeedButton;
SpeedButton9: TSpeedButton;
SpeedButton 10: TSpeedButton;
SpeedButtonl 1: TSpeedButton;
SpeedButton12: TSpeedButton;
SpeedButton13: TSpeedButton;
SpeedButton14: TSpeedButton;
SpeedButton15: TSpeedButton;

84

MainMenu 1: TMainMenu;
F 1: TMenultem;
SpeedButton16: TSpeedButton;
procedure SpeedButtonl Click(Sender: TObject);
procedure SpeedButton7Click(Sender: TObject);
procedure SpeedButton14Click(Sender: TObject);
procedure SpeedButtonlSClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure SpeedButton9Click(Sender: TObject);
procedure SpeedButtonlOClick(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton8Click(Sender: TObject);
procedure SpeedButtonl lClick(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure SpeedButton12Click(Sender: TObject);
procedure SpeedButton 16Click(Sender: TObject);
procedure SpeedButton13Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
F orm3: TF orm3;

implementation

uses Unitl, Unit23, Unit24, Unit25, Unit28, Unit27, Unit29, Unit30, Unit31,
Unit32, Unit26, Unit33, Unit34, Unit35, Unit36, Unit37;

{$R *.dfm}

procedure TF orm3. SpeedButton 1 Click(Sender: TObj ect);
begin
FORM23.SHOW;
FORM3 .Hide;

end;

procedure TForm3.SpeedButton7Click(Sender: TObject);
begin
FORM24. SHOW;
FORM3 .Hide;

end;

85

procedure TForm3.SpeedButton14Click(Sender: TObject);
begin
FORM25. SHOW;
FORM3 .Hide;

end;

procedure TForm3. SpeedButtonl 5Click(Sender: TObject);
begin
FORM27. SHOW;
FORM3 .Hide;
end;

procedure TF orm3. SpeedButton2Click(Sender: TObject);
begin
FORM28.SHOW;
FORM3 .Hide;
end;

procedure TForm3.SpeedButton5Click(Sender: TObject);
begin
forrn29. show;
form3 .Hide;
end;

procedure TF orm3. SpeedButton9Click(Sender: TObject);
begin
FORM30.SHOW;
FORM3 .Hide;
end;

procedure TF orm3. SpeedButton 1 OClick(Sender: TObj ect);
begin
FORM31.SHOW;
FORM3 .Hide;
end;

procedure TForm3.SpeedButton3Click(Sender: TObject);
begin
FORM32.SHOW;
FORM3 .Hide;
end;

procedure TF orm3. SpeedButton4Click(Sender: TObject);
begin
FORM26.SHOW;
FORM3 .Hide;
end;

procedure TF orm3. SpeedButton8Click(Sender: TObject);
begin

86

FORM33.SHOW;
FORM3 .Hide;
end;

procedure TForm3.SpeedButtonl 1Click(Sender: TObject);
begin
FORM34. SHOW;
FORM3 .Hide;
end;

procedure TForm3.SpeedButton6Click(Sender: TObject);
begin
FORM35.SHOW;
FORM3 .Hide;
end;

procedure TForm3.SpeedButton12Click(Sender: TObject);
begin
FORM36.SHOW;
FORM3 .Hide;
end;

procedure TF orm3. SpeedButton 16Click(Sender: TObj ect);
begin
FORM3 .Hide;
end;

procedure TForm3.SpeedButton13Click(Sender: TObject);
begin
FORM37.SHOW;
FORM3 .Hide;
end;

end.

FORM4CODES

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, Menus;

type
TForm4 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;

87

SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
SpeedButton7: TSpeedButton;
procedure SpeedButton 1 Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure SpeedButton7Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
F orm4: TF orm4;

implementation

uses Unitl 7, Unit18, Unit 19, Unit20, Unit21, Unit22;

{$R *.dfm}

procedure TForm4.SpeedButton1Click(Sender: TObject);
begin
FORMI 7.SHOW;
FORM4.Hide;

end;

procedure TF orm4. S peedButton2Cli ck(Sender: TObj ect);
begin
FORM18.SHOW;
FORM4.Hide;

end;

procedure TForm4.SpeedButton5Click(Sender: TObject);
begin
FORM19.SHOW;
FORM4.Hide;

end;

procedure TForm4.SpeedButton3Click(Sender: TObject);
begin
FORM20. SHOW;

88

FORM4.Hide;
end;

procedure TF orm4. SpeedButton4Click(Sender: TObj ect);
begin
FORM21.SHOW;
FORM4.Hide;

end;

procedure TF orm4. SpeedButton6Click(Sender: TObject);
begin
form22.show;
form4.Hide;
end;

procedure TForm4.SpeedButton7Click(Sender: TObject);
begin
FORM4.Hide;
end;

end.

FORM5CODES

unit Unit5;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, Menus;

type
TForm5 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
SpeedButton7: TSpeedButton;
SpeedButton8: TSpeedButton;
SpeedButton9: TSpeedButton;
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);

89

procedure SpeedButtonSClick(Sender: TObject);
procedure SpeedButton8Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure SpeedButton7Click(Sender: TObject);
procedure SpeedButton9Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forms: TFormS;

implementation

{$R *.dfm}

procedure TFormS.SpeedButtonlClick(Sender: TObject);
begin
if FileExists('C: \Program Files\ Windows Media Player\wmplayer. exe') then
winexec('C:\Program Files\Windows Media Player\wmplayer.exe',sw_shownormal);

end;

procedure TForm5.SpeedButton2Click(Sender: TObject);
begin
if FileExists('C:\ WINDOWS\system3 2\sol.exe') then
winexec('C:\ WINDOWS\system32\sol. exe',sw _ shownormal);

end;

procedure TForm5.SpeedButton3Click(Sender: TObject);
begin
if FileExists('C: \ windows\system3 2\freecell. exe') then
winexec('C:\windows\system32\freecell.exe',sw _shownormal);

end;

procedure TF orm5. SpeedButton4Click(Sender: TObj ect);
begin
if FileExists('C:\WINDOWS\system32\winmine.exe') then
winexec('C:\ WINDOWS\system32\winmine. exe',sw _ shownormal);

end;

procedure TForm5.SpeedButton5Click(Sender: TObject);
begin
ifFileExists('C:\WINDOWS\system32\calc.exe') then
winexec('C:\WINDOWS\system32\calc.exe',sw_shownormal);

end;

procedure TForm5.SpeedButton8Click(Sender: TObject);
begin

90

if FileExists('C:\ WINDOWS\notepad. exe') then
winexec('C :\ WINDOWS\notepad.exe',sw _ shownormal);

end;

procedure TForm5.SpeedButton6Click(Sender: TObject);
begin
ifFileExists('C:\Program Files\MSN Messenger\msnmsgr.exe') then
winexec('C: \Program Files\MSN Messenger\msnmsgr. exe',sw _ shownormal)

else if FileExists('C:\Program Files\Messenger\msmsgs.exe') then
winexec('C: \Program Files\Messenger\msmsgs. exe', sw _ shownormal);

end;

procedure TF orm5. SpeedButton7Click(Sender: TObject);
begin
form5 .Hide;
end;

procedure TF orm5. SpeedButton9Click(Sender: TObject);
begin
ifFileExists('C:\WINDOWS\system32\mshearts.exe') then
winexec('C: \ WINDOWS\system32\mshearts. exe', sw _ shownormal);

end;

end.

FORM6CODES

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Buttons;

type
TForm6 = class(TForm)
SpeedButton 1: TSpeedButton;
MainMenu 1: TMainMenu;
F 1: TMenultem;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
SpeedButton7: TSpeedButton;
SpeedButton8: TSpeedButton;
SpeedButton9: TSpeedButton;
SpeedButtonl 1: TSpeedButton;

91

SpeedButtonl2: TSpeedButton;
SpeedButtonl3: TSpeedButton;
SpeedButtonl4: TSpeedButton;
procedure SpeedButton6Click(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButtonSClick(Sender: TObject);
procedure SpeedButton9Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton7Click(Sender: TObject);
procedure SpeedButton8Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButtonl lClick(Sender: TObject);
procedure SpeedButtonl4Click(Sender: TObject);
procedure SpeedButtonl2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton13Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form6: TForm6;

implementation

uses Unitl5, Unitl 1, Unitl2, Unitl3, Unitl4, Unit 16, Unitl 7, Unit 18,
Unitl9, Unit21, Unit20, Unit22;

{$R *.dfm}

procedure TForm6.SpeedButton6Click(Sender: TObject);
begin
FORM6.CLOSE;
end;

procedure TForm6.SpeedButtonlClick(Sender: TObject);
begin
FormlS.LbSpeedButtonl.Enabled:=FALSE;
Form 15 .LbSpeedButton2.Enabled:=F ALSE;
FORM15.SHOW;
FORM6.CLOSE;

end;

procedure TForm6.SpeedButton5Click(Sender: TObject);
begin
FORMl 1. SpeedButton2.Enabled:=F ALSE;
FORMl 1. SpeedButton3 .Enabled:=F ALSE;
FORMl I.SHOW;

92

FORM6.Close;
end;

procedure TF orm6. SpeedButton9Click(Sender: TObject);
begin
FORMl 2. SpeedButton2.Enabled:=F ALSE;
FORM12. SpeedButton3 .Enabled:=F ALSE;
FORM12.SHOW;
FORM6.Close;

end;

procedure TForm6.SpeedButton4Click(Sender: TObject);
begin
Form13.LbSpeedButtonl.Enabled:=FALSE;
Form 13 .LbSpeedButton2.Enabled:=F ALSE;
FORM13.SHOW;
FORM6.Close;

end;

procedure TF orm6. S peedButton 7 Click(Sender: TObj ect);
begin
Form 14 .LbSpeedButton 1.Enabled:=F ALSE;
Form 14 .LbSpeedButton2.Enabled:=F ALSE;
FORM14.SHOW;
FORM6.CLOSE;

end;

procedure TForm6.SpeedButton8Click(Sender: TObject);
begin
FORMl 6. SpeedButton3 .Enabled:=F ALSE;
FORMl 6. SpeedButton4.Enabled:=F ALSE;
FORM16.SHOW;
FORM6.Close;

end;

procedure TForm6.SpeedButton2Click(Sender: TObject);
begin
Forml 7.LbSpeedButtonl .Enabled:=F ALSE;
Forml 7.LbSpeedButton2.Enabled:=F ALSE;
FORMl 7. SHOW;
FORM6.Close;

end;

procedure TForm6.SpeedButtonl 1Click(Sender: TObject);
begin
Form18.SpeedButton3.Enabled:=FALSE;
Form18.SpeedButton4.Enabled:=FALSE;
FORM18.SHOW;
FORM6.Close;

end;

93

procedure TForm6.SpeedButton14Click(Sender: TObject);
begin
Form19.LbSpeedButtonl.Enabled:=FALSE;
Form19.LbSpeedButton2.Enabled:=FALSE;
FORM19.SHOW;
FORM6.CLOSE;

end;

procedure TForm6. SpeedButton 12Click(Sender: TObject);
begin
Form21.LbSpeedButtonl .Enabled:=F ALSE;
Form21.LbSpeedButton2.Enabled:=F ALSE;
FORM21.SHOW;
FORM6.Close;

end;

procedure TForm6.SpeedButton3Click(Sender: TObject);
begin
Form20.SpeedButton3.Enabled:=FALSE;
Form20. SpeedButton4.Enabled:=F ALSE;
FORM20.SHOW;
FORM6.Close;

end;

procedure TForm6.SpeedButton13Click(Sender: TObject);
begin
Form22.SpeedButton3.Enabled:=FALSE;
Form22. SpeedButton4.Enabled:=F ALSE;
FORM22.SHOW;
FORM6.Close;

end;

end.

FORM7CODES

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, Menus;

type
TForm7 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;

94

SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form7: TForm7;

implementation

uses Unitl5, Unitl6;

{$R *.dfm}

procedure TForm7.SpeedButtonlClick(Sender: TObject);
begin
FORM15.SHOW;
FORM7.IDDE;

end;

procedure TF orm7. SpeedButton2Click(Sender: TObject);
begin
FORM16.SHOW;
FORM? .Hide;

end;

end.

FORMS CODES

unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, jpeg, ExtCtrls;

type
TForm8 = class(TForm)
Image 1: Tlmage;
private
{ Private declarations }

public

95

{ Public declarations }
end;

var
Form8: TForm8;

implementation

{$R *.dfm}

end.

FORM9CODES

unit Unit9;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, ComCtrls, Menus, StdCtrls, jpeg, ExtDlgs;

type
TForm9 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
PageControl 1: TPageControl;
TabSheet3: TTabSheet;
TabSheet4: TTabSheet;
ColorDialogl: TColorDialog;
F ontDialog 1 : TF ontDialog;
CheckBox 1: TCheckBox;
CheckBox2: TCheckBox;
SpeedButton4: TSpeedButton;
CheckBox3: TCheckBox;
CheckBox6: TCheckBox;
SpeedButton5: TSpeedButton;
OpenDialog 1: TOpenDialog;
OpenPictureDialog 1: TOpenPictureDialog;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
procedure SpeedButton4Click(Sender: TObject);
procedure CheckBox2Click(Sender: TObject);
procedure CheckBox6Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);

private
{ Private declarations }

96

public
{ Public declarations }

end;

var
Form9: TForm9;

implementation

uses Unitl, Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, UnitlO, Unitl 1,
Unit12, Unit13, Unit14, Unit15, Unit 16, Unitl 7, Unit18, Unit19, Unit20,
Unit21, Unit22, Unit23, Unit24, Unit25, Unit26, Unit27, Unit28, Unit29,
Unit30, Unit31, Unit32, Unit33, Unit34, Unit35, Unit36, Unit37, Unit38,
Unit39, Unit40, Unit41;

{$R *.dfm}

procedure TF orm9. SpeedButton4Click(Sender: TObject);
begin
if form9. CheckBox2. Checked <> true then
begin
form9.0penDialogl.Filter:='Skin Files (skn)j*.skn';
if form9. OpenDialog I .Execute then
begin
forml .SkinDatal .LoadFromFile(form9.0penDialogl .FileName);
//forml .Label 1.Caption:=forml. SkinDatal. SkinFile;
end;
end
else
begin
beep;
showmessage('YOU HA VE CANCELED THE SKINS BEFORE');

end;

end;

procedure TForm9.CheckBox2Click(Sender: TObject);
begin
ifform9.CheckBox2.Checked = true then
form 1. SkinDatal .Active:=false;
ifform9.CheckBox2.Checked = false then
forml.SkinDatal.Active:=true;

end;

procedure TForm9.CheckBox6Click(Sender: TObject);
begin
if form9.CheckBox6.Checked = true then
begin
form I .Image 1. Visible: =true;

97

end;

if form9.CheckBox6.Checked = false then
begin
forml .Imagel. Visible:=false;

end;
end;

procedure TF orm9. SpeedButton5Click(Sender: TObject);
begin
if form9.CheckBox6.Checked = true then
begin
if form9. OpenPictureDialog 1.Execute then
forml.Imagel.Picture.LoadFromFile(form9.0penPictureDialogl.FileName);

end
else
begin
beep;
showmessage('YOU HA VE CANCELED WALLPAPERS BEFORE');

end;
end;

procedure TForm9.SpeedButtonlClick(Sender: TObject);
begin
if form9. ColorDialog 1.Execute then
begin
form 1. Color:=form9. ColorDialog 1. Color;
form.2. Color:=form9. ColorDialog 1. Color;
form3. Color:=form9. ColorDialog 1. Color;
form4.Color:=form9.ColorDialogl.Color;
forms. Color:=form9. Color Dialog 1. Color;
form6. Color:=form9. ColorDialog 1. Color;
form7. Color:=form9. Color Dialog 1. Color;
form9. Color:=form9. ColorDialog 1. Color;
form 10. Color:=form9. ColorDialog 1. Color;
form 11. Color:=form9. Color Dialog 1. Color;
forml2.Color:=form9.ColorDialogl.Color;
form 13. Color:=form9. ColorDialog 1. Color;
forml4.Color:=form9.ColorDialogl.Color;
forml 5. Color:=form9. Color Dialog 1. Color;
forml6.Color:=form9.ColorDialogl.Color;
form 17. Color:=form9. ColorDialog 1. Color;
form 18. Color:=form9. ColorDialog 1. Color;
form 19. Color:=form9. ColorDialog 1. Color;
form.20. Color:=form9. ColorDialog 1. Color;
form.21. Color:=form9. ColorDialog 1. Color;
form.22. Color:=form9. ColorDialog 1. Color;
form.23. Color:=form9. ColorDialog 1. Color;
form.24. Color:=form9. ColorDialog 1. Color;
form.25. Color:=form9. ColorDialog 1. Color;

98

form26. Color:=form9. ColorDialog 1. Color;
form27.Color:=form9.ColorDialogl.Color;
form28. Color:=form9. ColorDialog 1. Color;
form29. Color:=form9. ColorDialog 1. Color;
form30. Color:=form9. ColorDialog 1. Color;
form3 l. Color:=form9. ColorDialog 1. Color;
form32. Color:=form9. ColorDialog 1. Color;
form3 3. Color:=form9. ColorDialog 1. Color;
form34. Color:=form9. ColorDialog 1. Color;
form3 5. Color:=form9. ColorDialog 1. Color;
form36. Color:=form9. ColorDialog 1. Color;
form3 7. Color:=form9. ColorDialog 1. Color;
form3 8. Color:=form9. ColorDialog 1. Color;
form39.Color:=form9.ColorDialogl.Color;
form40. Color:=form9. ColorDialog 1. Color;
form4 l .Color:=form9.ColorDialogl .Color;

end;

end;

procedure TForm9.SpeedButton2Click(Sender: TObject);
begin
form 1. color:=clBlack;
form2.color:=c1BtnFace;
form3 .color:=clBtnFace;
form4.color:=c1BtnFace;
forms .color:=clBtnFace;
form6.color:=clBtnFace;
form7.color:=c1BtnFace;
form9.color:=clBtnFace;
form10.color:=$004080FF;
forml l .color:=$00C08080;
form12.color:=$00400040;
form 13 .color:=clGray;
form14.color:=c1Silver;
form 15 .color:=$00404080;
forml6.color:=c1BtnFace;
forml 7.color:=clMoneyGreen;
forml8.color:=$00400000;
form 19 .color:=clBlack;
form20. color: =clBtnF ace;
form2 l .color:=$00404080;
form22. color: =cllnactiveCaption Text;
form23 .color:=clBtnFace;
form24.color:=clBtnFace;
form25 .color:=clBtnFace;
form26.color:=clBtnFace;
form27 .color:=clBtnFace;
form28.color:=clBtnFace;
form29.color:=clBtnFace;

99

form30.color:=clBtnFace;
form31.color:=clBtnFace;
form32.color:=clBtnFace;
form33.color:=clBtnFace;
form34. color:=clBtnFace;
form35.color:=clBtnFace;
form36.color:=clBtnFace;
form37.color:=clBtnFace;
form38.color:=clBtnFace;
form39.color:=$00DOA5A4;
form40.color:=clBtnFace;
form41.color:=clBtnFace;
end;

end.

FORM 10 CODES

unit UnitlO;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, StdCtrls, Mask, Menus, DB, ADODB, Buttons, Grids,
DBGrids, LbSpeedButton, ExtCtrls;

type
TFormlO = class(TForm)
ADOConnection 1: T ADOConnection;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label?: TLabel;
Edit 1 : TEdit;
Edit2: TEdit;
Edit3: TEdit;
ComboBox 1: TComboBox;
ComboBox2: TComboBox;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Label8: TLabel;

100

Label9: TLabel;
Labell 0: TLabel;
Label 11: TLabel;
Label12: TLabel;
Label 13: TLabel;
Edit4: TEdit;
MaskEdit 1: TMaskEdit;
Memol: TMemo;
Edit5: TEdit;
ComboBox3: TComboBox;
ComboBox4: TComboBox;
Label 14: TLabel;
Label 15: TLabel;
Label16: TLabel;
Label 17: TLabel;
Edit6: TEdit;
DateTimePicker3: TDateTimePicker;
MaskEdit2: TMaskEdit;
Edit?: TEdit;
Label 18: TLabel;
Memo2: TMemo;
StatusBarl: TStatusBar;
Label 19: TLabel;
Edit8: TEdit;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
DBGrid 1: TDBGrid;
SpeedButtonl: TSpeedButton;
LbSpeedButton4: TLbSpeedButton;
Panell: TPanel;
ADOQuery2: TADOQuery;
DataSource2: TDataSource;
procedure FormCreate(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
FormlO: TFormlO;

101

implementation

uses Unit38;

{$R *.dfm}

procedure TFormlO.FormCreate(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyy/m/d';
end;

procedure TFormlO.SpeedButtonlClick(Sender: TObject);
begin
FORM38.SHOW;
TA:=10;

end;

procedure TFormlO.FormShow(Sender: TObject);
begin
forml O .DateTimePicker 1.Date:=date;
form 10 .DateTimePicker2.Date:=date;
//form 10 .DateTimePicker3 .Date:=date;
formlO.ADOQuery2.Close;
formlO.ADOQuery2.SQL.Text:='select * from staff;
form 10. ADOQuery2. Open;
end;

procedure TF orm 10 .LbSpeedButton 1 Click(Sender: TObject);
begin
formlO.ADOQueryl.Close;
formlO.ADOQueryl.SQL.Text:='select * from staff where

Staff name='+#39+form10.Edit2.Text+#39+' and
Staff surname='+#39+form10.Edit3.Text+#39+' and
S_birthdate='+#39+datetostr(form10.DateTimePicker2.date)+#39;
form 10. ADOQuery 1. Open;

ifformlO.ADOQueryl.RecordCount = 0 then
begin
if (form10.Edit2.Text <>")or (form10.Edit3.Text <>")then
begin
form 10. ADOQuery 1. Close;
formlO.ADOQueryl.SQL.Text:='insert into staff

(Staff _name, Staff_ surname, Staff _task, University, Grade_ state, S _ workstartdate, S _ birthd
ate, S _ TCidno, S _ homephone, S _ mobilphone, S _ address, S _ town, S _city, S _country, S _ ema
il, S _ web, S _leavingdate, S _note) values
('+#39+Form10.Edit2.Text+#39+','+#39+form10.Edit3.Text+#39+','+#39+form10.Com
boBoxl.Text+#39+','+#39+form10.Edit4.Text+#39+','+#39+form10.ComboBox2.Text+
#39+','+#39+datetostr(form10.DateTimePickerl.date)+#39+','+#39+datetostr(form10.D

102

ateTimePicker2.date)+#39+','+#39+formlO.Edit8.Text+#39+','+#39+formlO.MaskEditl
.Text+#39+','+#39+forml0.MaskEdit2.Text+#39+','+#39+forml0.Memol.Text+#39+','
+#39+formlO.Edit5.Text+#39+','+#39+formlO.ComboBox3.Text+#39+','+#39+form10.
ComboBox4.Text+#39+','+#39+formlO.Edit6.Text+#39+','+#39+formlO.Edit7.Text+#3
9+','+#39+datetostr(form10.DateTimePicker3.date)+#39+','+#39+form10.Memo2.Text+
#39+')';

forml O.ADOQueryl .ExecSQL;
formlO.ADOQueryl.Close;
formlO.ADOQueryl.SQL.Text:='select * from staff;
forml O. ADOQuery 1. Open;
showmessage('RECORD SAVED');
FORMl O .LbSpeedButton4. Click;

end
else
showmessage('CHECK THE FORM FOR EMPTY PLACE');

end
else
showmessage('RECORD HAS RECORDED BEFORE');

end;

procedure TF orm 10 .LbSpeedButton4Click(Sender: TObject);
begin
FORMl O .Edit 1. Clear;
FORMl O .Edit2. Clear;
FORMl O .Edit3. Clear;
FORMlO.ComboBoxl.Text:='Select One';
FORM10.Edit4.Clear;
FORM10.ComboBox2.Text:='Select One';
FORMlO.DateTimePickerl .Date:=DATE;

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacacy pekle donupturdum, ..
shortdateformat := 'dlm/yyyy';

FORM10.DateTimePicker2.Date:=STRTODATE('09.09.9999');
FORM10.DateTimePicker3.Date:=STRTODATE('09.09.9999');
form10.Edit8.Clear;
form 10 .MaskEdit 1. Clear;
form10.MaskEdit2.Clear;
formlO.Memol.Clear;
form 1 O .Edit5. Clear;
FORM10.ComboBox3.Text:='Select One';
FORM10.ComboBox4.Text:='Select One';
form10.Edit6.Clear;
form 10 .Edit7. Clear;
form10.Memo2.clear;
forml 0.Edit2. SetFocus;

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...

103

shortdateformat := 'yyyylm/d';

formlO.ADOQuery2.Close;
forml0.ADOQuery2.SQL.Text:='select * from staff';
form 10 .ADOQuery2. Open;

end;

procedure TFormlO.EditlChange(Sender: TObject);
begin
form3 8 .Hide;
formlO.ADOQueryl.Close;
formlO.ADOQueryl.SQL.Text:='select * from staff where

staff_id='+#39+forml0.Editl.Text+#39;
forml O. ADOQuery 1. Open;
ifformlO.ADOQueryl.RecordCount <> 0 then
begin
formlO.Editl.Text:=FORMlO.ADOQueryl.Fields[O].Text;
formlO.Edit2.Text:=FORM10.ADOQueryl.Fields[l].Text;
forml0.Edit3.Text:=FORM10.ADOQueryl.Fields[2].Text;
formlO.ComboBoxl.Text:=FORM10.ADOQueryl.Fields[3].Text;
forml0.Edit4.Text:=FORM10.ADOQueryl.Fields[4].Text;
forml0.ComboBox2.Text:=FORM10.ADOQueryl.Fields[5].Text;

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...

shortdateformat := 'dlm/yyyy';

forml0.DateTimePickerl.Date:=strtodate(FORM10.ADOQueryl.Fields[6].Text);
form10.DateTimePicker2.Date:=strtodate(FORM10.ADOQueryl.Fields[7].Text);
forml0.Edit8.Text:=FORM10.AD0Queryl.Fields[8].Text;
formlO.MaskEditl.Text:=FORM10.ADOQueryl.Fields[9].Text;
forml0.MaskEdit2.Text:=FORM10.ADOQueryl.Fields[10].Text;
formlO.Memol.Text:=FORMlO.ADOQueryl.Fields[ll].Text;
formlO.Edit5.Text:=FORM10.ADOQueryl.Fields[l2].Text;
form10.ComboBox3.Text:=FORM10.ADOQueryl.Fields[l3].Text;
forml0.ComboBox4.Text:=FORM10.ADOQueryl.Fields[l4].Text;
forml0.Edit6.Text:=FORM10.AD0Queryl.Fields[l5].Text;
formlO.Edit7.Text:=FORM10.ADOQueryl.Fields[l6].Text;
forml0.DateTimePicker3.Date:=strtodate(FORM10.ADOQueryl.Fields[l7].Text);
forml0.Memo2.Text:=FORM10.ADOQueryl.Fields[l8].Text;

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...

shortdateformat := 'yyyylm/d';
end;

end;

104

procedure TF orml O .LbSpeedButton2Click(Sender: TObject);
begin
IF (FORMlO.Editl.Text <>")AND (FORM10.Edit2.Text <>")AND

(FORM10.Edit3.Text <>")THEN
BEGIN
FORM10.AD0Query2.Close;
FORM10.ADOQuery2.SQL.Text:='UPDATE staff set Staff_name=

'+#39+form10.Edit2.Text+#39+', Staff_surname= '+#39+form10.Edit3.Text+#39+',
Staff_task='+#39+form10.ComboBoxl.Text+#39+',
University='+#39+form10.Edit4.Text+#39+',
Grade_ state='+#39+form 10. ComboBox2. Text+#39+',
S_workstartdate='+#39+datetostr(form10.DateTimePickerl.date)+#39+',
S_birthdate='+#39+datetostr(form10.DateTimePicker2.date)+#39+',
S _ TCidno='+#39+forml O.Edit8. Text+#39+',
S_homephone='+#39+form10.MaskEditl.Text+#39+',
S_mobilphone='+#39+form10.MaskEdit2.Text+#39+',
S_address='+#39+form10.Memol.Text+#39+',
S _ town='+#3 9+form 10 .Edit5. Text+#39+',
S _ city='+#39+form 10. ComboBox3. Text+#3 9+',
S _ country='+#3 9+form 10. ComboBox4. Text+#39+',
S_email='+#39+form10.Edit6.Text+#39+', S_web='+#39+form10.Edit7.Text+#39+',
S _leavingdate='+#39+datetostr(forml O .DateTimePicker3 .date)+#39+',
S note='+#39+form10.Memo2.Text+#39+' WHERE
Staff_id='+#39+form10.Editl.Text+#39;

form10.ADOQuery2.ExecSQL;
showmessage('RECORD UPDATED');
FORM10.LbSpeedButton4.Click;

END
ELSE
SHOWMESSAGE('PLEASE CHOOSE STAFF ID AND BE SURE'+#13+'TO

COMPLETE THE EMPTY PLACE');

end;

procedure TFormlO.FormHide(Sender: TObject);
begin
FORM10.LbSpeedButton4.Click;
FORMIO.ADOQueryl.Close;
FORM10.AD0Query2.Close;
end;

procedure TFormlO.FormClose(Sender: TObject; var Action: TCloseAction);
begin
FORMl O .LbSpeedButton4. Click;
FORMlO.ADOQueryl.Close;
FORMl O .ADOQuery2. Close;
end;

end.

105

FORM 11 CODES

unit Unit 11;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, Grids, DBGrids, DB, ADODB, ComCtrls, Buttons,
StdCtrls, Menus;

type
TForrnl 1 = class(TForm)
MainMenul: TMainMenu;
F 1: TMenultem;
Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
Edit 1 : TEdit;
Edit2: TEdit;
ComboBoxl: TComboBox;
Label4: TLabel;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
StatusBarl: TStatusBar;
DBGrid 1: TDBGrid;
Panel 1 : TPanel;
ADOConnectionl: T ADOConnection;
ADOQuery 1: T ADO Query;
ADOQuery2: T ADOQuery;
ADOQuery3: T ADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
procedure ForrnShow(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure DBGridl CellClick(Column: TColumn);
procedure DBGridlKeyUp(Sender: TObject; var Key: Word;
Shift: TShiftState);

procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure ForrnClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
private
{ Private declarations }

public

106

{ Public declarations }
end;

var
Forml 1: TForml 1;
SS:WORD;

implementation

uses Unit12;

{$R *.dfm}

procedure TForml 1.FormShow(Sender: TObject);
begin
forml 1.ADOQueryl.SQL.Text:='select * from vaccines';
form 11. ADOQuery 1. Open;
end;

procedure TForml 1. SpeedButton2Click(Sender: TObject);
begin
if (forml 1.Edit2.Text <>")then
begin
forml l .ADOQuery2.Close;
forml 1.ADOQuery2.SQL.Text:='select * from vaccines where

vaccine_name='+#39+forml 1.Edit2.Text+#39;
form 11.AD0Query2. Open;
ifforml 1.ADOQuery2.RecordCount = 0 then
begin
forml 1.ADOQuery2.Close;
forml 1.AD0Query2.SQL.Text:='insert into vaccines

(vaccine_ name, vaccine_ duration) values
('+#39+forml 1.Edit2.Text+#39+','+#39+forml 1.ComboBoxl. Text+#39+')';

forml 1.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');
FORM11.SpeedButton5.Click;

END
else
showmessage('RECORD HAS SAVED BEFORE');

END
ELSE
SHOWMESSAGE('BE SURE TO COMPLETE THE EMPTY PLACE');

end;

procedure TForml 1.DBGridlCellClick(Column: TColumn);
begin
IF FORMl 1.DBGridl.Fields[O].IsNull = false THEN
BEGIN
FORMl 1.Editl. Text:=FORMl 1.DBGrid 1.Fields[O]. Text;

107

FORM11.Edit2.Text:=FORM11.DBGridl.Fields[l].Text;
FORMl 1. ComboBoxl. Text:=FORMl 1.DBGrid 1.Fields[2].Text;

END
end;

procedure TForml 1.DBGridlKeyUp(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
IF FORMl 1.DBGridl.Fields[O].IsNull = false THEN
BEGIN
FORMl 1.Editl. Text:=FORMl 1.DBGrid 1.Fields[O]. Text;
FORM11.Edit2.Text:=FORM11.DBGridl .Fields[l].Text;
FORMl 1. ComboBox 1. Text:=FORMl 1.DBGrid 1.Fields[2]. Text;

END
end;

procedure TForml 1.SpeedButton3Click(Sender: TObject);
begin
IF (FORM11.Edit2.Text <> 11) OR ((FORMl 1.Editl.Text <> 11) AND
(FORM11.Edit2.Text <> 11)) THEN
BEGIN
FORM11.ADOQuery3. Close;
FORM11.AD0Query3.SQL.Text:='UPDATE vaccines set

vaccine_ name='+#39+form 11.Edit2. Text+#39+',
vaccine duration='+#39+forml 1.ComboBoxl.Text+#39+' where
vaccine_id='+#39+forml 1.Editl .Text+#39;

forml 1.ADOQuery3.ExecSQL;
showmessage('RECORD UPDATED');
FORMl 1. SpeedButton5. Click;
end
else
showmessage('PLEASE BE SURE TO COMPLETE EMPTY PLACE');

end;

procedure TForml 1. SpeedButton4Click(Sender: TObject);
begin
IF (FORMl 1.Editl.Text <> 11) THEN
BEGIN
SS:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM11.Edit2.Text+' 11

?',MTW ARNING,[MBYES ,MBNO],O);
IF SS = MRYES then
begin
FORM11.ADOQuery3. Close;
FORM11.ADOQuery3. SQL. Text:='DELETE FROM vaccines where

vaccine _id='+#3 9+form 11.Edit 1. Text+#3 9;
forml 1.ADOQuery3 .ExecSQL;
showmessage('RECORD DELETED');
FORM11.SpeedButton5.Click;
end;
end

108

else
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL

DELETE');
end;

procedure TForml 1. SpeedButton5Click(Sender: TObject);
begin
FORMl 1.Editl.Clear;
FORM11.Edit2.Clear;
FORMl 1.ComboBoxl.Text:='Select One';
forml 1.Edit2.SetFocus;
FORMl 1. SpeedButton2.Enabled:=TRUE;
FORMl 1. SpeedButton3 .Enabled:=TRUE;
forml 1.ADOQueryl.Close;
forml 1.ADOQuery 1. SQL. Text:='select * from vaccines';
form 11. ADOQuery 1. Open;

end;

procedure TForml 1.FormClose(Sender: TObject, var Action: 'I'CloseAction);
begin
FORM11.SpeedButton5.Click;
forml 1.ADOQueryl .Close;
forml 1.AD0Query2.Close;
forml 1.ADOQuery3.Close;
end;

procedure TForml 1.FormHide(Sender: TObject);
begin
FORMl 1. SpeedButton5. Click;
forml 1.ADOQueryl.Close;
form 11.ADOQuery2. Close;
forml 1.ADOQuery3.Close;
end;

end.

FORM 12 CODES

unit Unit12;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, Grids, DBGrids, ExtCtrls, Buttons, StdCtrls, Menus,
DB,ADODB;

type
TForm12 = class(TForm)

109

Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
MainMenu 1: TMainMenu;
F 1: TMenultem;
Edit 1 : TEdit;
Edit2: TEdit;
ComboBox 1: TComboBox;
ComboBox2: TComboBox;
Label5: TLabel;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
Panel 1: TPanel;
DBGridl: TDBGrid;
StatusBarl: TStatusBar;
ADOConnection 1: T ADOConnection;
ADOQueryl: TADOQuery;
ADOQuery2: TADOQuery;
AD0Query3: T ADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3 : TDataSource;
procedure FormShow(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure SpeedButton3Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form12: TForm12;
SSl:WORD;

implementation

{$R *.dfm}

procedure TForm12.FormShow(Sender: TObject);
begin
form12.ADOQueryl .Close;

110

form12.AD0Queryl.SQL.Text:='select * from drugs';
forml 2. ADOQuery 1. Open;
end;

procedure TF orml 2. SpeedButton2Click(Sender: TObject);
begin
if (form12.Edit2.Text <>")and (form12.ComboBoxl.Text <> 'Select One') then
begin
form12.AD0Query2.Close;
form12.AD0Query2.SQL.Text:='select * from drugs where

drug_name='+#39+form12.Edit2.Text+#39;
form12.ADOQuery2.0pen;
ifforml2.ADOQuery2.RecordCount = 0 then
begin
form12.AD0Query2.Close;
forml2.ADOQuery2.SQL.Text:='insert into drugs

(drug_ name, drug_ duration, drug_ kind) values
('+#39+form12.Edit2.Text+#39+','+#39+form12.ComboBoxl.Text+#39+','+#39+forml
2.ComboBox2.Text+#39+')';

form12.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');
Form12.SpeedButton5.Click;
END
ELSE
SHOWMESSAGE('RECORD HAS SAVED BEFORE');

END
ELSE
SHOWMESSAGE('BE SURE TO COMPLETE THE EMPTY PLACE');

end;

procedure TForml2.FormKeyPress(Sender: TObject; var Key: Char);
begin
{IF KEY=VK_F2 THEN
BEGIN
if (form12.Edit2.Text <>")and (form12.ComboBoxl.Text <> 'Select One') then
begin
form12.AD0Query2.Close;
forml2.AD0Query2.SQL.Text:='select * from drugs where

drug_name='+#3 9+form 12.Edit2. Text+#3 9;
form 12. ADOQuery2. Open;
ifform12.ADOQuery2.RecordCount = 0 then
begin
form12.ADOQuery2.Close;
forml2.AD0Query2.SQL.Text:='insert into drugs

(drug_ name, drug_ duration, drug_ kind) values
('+#39+form12.Edit2.Text+#39+','+#39+form12.ComboBoxl.Text+#39+','+#39+forml
2.ComboBox2.Text+#39+')';

form12.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');

111

FORM12.ADOQueryl .Close;
FORM12.ADOQueryl.SQL.Text:='SELECT * FROM drugs';
FORM12.ADOQueryl .Open;
END
ELSE
SHOWMESSAGE('RECORD HAS SAVED BEFORE');

END
ELSE
SHOWMESSAGE('BE SURE TO COMPLETE THE EMPTY PLACE');

END;}
end;

procedure TForm12.SpeedButton3Click(Sender: TObject);
begin
IF (FORM12.Editl.Text <>")AND (FORM12.Edit2.Text <> ") THEN
BEGIN
FORM12.ADOQuery3.Close;
FORM12.ADOQuery3.SQL.Text:='UPDATE drugs set

drug_name='+#39+form12.Edit2.Text+#39+',
drug_duration='+#39+form12.ComboBoxl.Text+#39+',
drug_ kind='+#39+forml 2. ComboBox2. Text+#39+' where
drug_id='+#39+form12.Editl.Text+#39;
form12.ADOQuery3.ExecSQL;
showmessage('RECORD UPDATED');
Form12.SpeedButton5.Click;
end
else
showmessage('PLEASE BE SURE TO COMPLETE EMPTY PLACE');

end;

procedure TForm12.DBGrid1CellClick(Column: TColumn);
begin
IF FORM12.DBGridl.Fields[O].IsNull = false THEN
BEGIN
FORM12.Editl.Text:=FORM12.DBGridl.Fields[O].Text;
FORMl 2.Edit2. Text:=FORMl 2.DBGrid I .Fields[1]. Text;
FORM12.ComboBoxl.Text:=FORM12.DBGridl.Fields[2].Text;
FORM12.ComboBox2.Text:=FORM12.DBGridl.Fields[3].Text;
END
end;

procedure TForm12.SpeedButton4Click(Sender: TObject);
begin
IF (FORM12.Editl.Text <>")THEN
BEGIN
SSl:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM12.Edit2.Text+' 11

?',MTW ARNING,[MBYES ,MBNO],O);
IF SSl = MRYES then
BEGIN

112

FORM12.AD0Query3. Close;
FORM12.ADOQuery3.SQL.Text:='DELETE FROM drugs where

drug_id='+#39+form12.Editl.Text+#39;
form12.ADOQuery3.ExecSQL;
showmessage('RECORD DELETED');
Form 12. S peedButtonS. Click;

END;
end
else
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL

DELETE');
end;

procedure TF orm 12. SpeedButton5Click(Sender: TObject);
begin
FORM12.Editl.Clear;
FORM12.Edit2.Clear;
FORM12. ComboBoxl. Text:='Select One';
FORM12.ComboBox2.Text:='Select One';
form12.Edit2. SetFocus;
FORMl 2. SpeedButton2.Enabled:=TRUE;
FORMl 2. SpeedButton3 .Enabled:=TRUE;

form 12. ADOQuery 1. Close;
form12.ADOQueryl.SQL.Text:='select * from drugs';
form 12. ADOQuery 1. Open;

end;

procedure TForm12.FormHide(Sender: TObject);
begin
Form 12. SpeedButtonS. Click;
form12.ADOQueryl .Close;
form12.ADOQuery2.Close;
form 12. ADOQuery3. Close;

end;

procedure TForm12.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Form12.SpeedButton5.Click;
form12.AD0Queryl.Close;
form12.ADOQuery2.Close;
form12.ADOQuery3.Close;

end;

end.

113

FORM 13 CODES

unit Unitl 3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, Grids, DBGrids, ComCtrls, LbSpeedButton, Buttons,
StdCtrls, Menus, DB, ADODB;

type
TForm13 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: TLabel;
Edit 1 : TEdit;
Edit2: TEdit;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
LbSpeedButton3: TLbSpeedButton;
LbSpeedButton4: TLbSpeedButton;
StatusBarl: TStatusBar;
DBGrid 1: TDBGrid;
Panell: TPanel;
ADOConnectionl: T ADOConnection;
ADOQuery 1: T ADO Query;
AD0Query2: T ADOQuery;
ADOQuery3: T ADO Query;
Data Source 1 : TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
procedure FormShow(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure LbSpeedButton3Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form13: TForm13;
SS13:WORD;

114

implementation

{$R *.dfm}

procedure TForm13.FormShow(Sender: TObject);
begin
form 13. ADOQuery 1. Close;
form13.ADOQueryl.SQL.Text:='select * from operations';
form 13. ADOQuery 1. Open;

end;

procedure TForm13.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form 13 .LbSpeedButton4. Click;
form13.AD0Queryl .Close;
form13.AD0Query2.Close;
form 13. ADOQuery3. Close;

end;

procedure TForm13.FormHide(Sender: TObject);
begin
form13.LbSpeedButton4.Click;
form13.ADOQueryl.Close;
form13.ADOQuery2.Close;
form 13. ADOQuery3. Close;

end;

procedure TForm13.LbSpeedButton1Click(Sender: TObject);
begin
if (form13.Edit2.Text <>")then
begin
form 13. ADOQuery2. Close;
form13.ADOQuery2.SQL.Text:='select * from operations where

operation_name='+#39+form13.Edit2.Text+#39;
form 13 .AD0Query2. Open;
ifform13.ADOQuery2.RecordCount = 0 then
begin
form13.AD0Query2.Close;
form13.ADOQuery2.SQL.Text:='insert into operations (operation_name) values

('+#39+form13.Edit2.Text+#39+')';
form13.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');
form 13 .LbSpeedButton4. Click;

END
ELSE
SHOWMESSAGE('RECORD HAS SAVED BEFORE');

END
ELSE
SHOWMESSAGE('BE SURE TO FILL THE OPERATION NAME');

end;

115

procedure TF orm 13 .LbSpeedButton2Click(Sender: TObject);
begin

IF (FORM13.Editl.Text <> 11) AND (FORM13.Edit2.Text <> 11) THEN
BEGIN
FORMl 3 .ADOQuery3. Close;
FORM13.ADOQuery3.SQL.Text:='UPDATE operations set

operation , name='+#3 9+form 13 .Edit2. Text+#3 9+' where
operation _id='+#39+forml 3.Editl. Text+#39;

forml3 .AD0Query3 .ExecSQL;
showmessage('RECORD UPDATED');
form 13 .LbSpeedButton4. Click;

end
else
showmessage('PLEASE BE SURE TO COMPLETE EMPTY PLACE');

end;

procedure TF orm 13 .Lb S peedButton3 Click(Sender: TObject);
begin
IF (FORM13.Editl.Text <> 11) THEN
BEGIN
SS13:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM13.Edit2.Text+'

II ?',MTW ARNING,[MBYES ,MBNO],O);
IF SS13 = MRYES then
BEGIN
FORMl 3 .ADOQuery3. Close;
FORM13.ADOQuery3.SQL.Text:='DELETE FROM operations where

operation _id='+#39+form 13 .Edit 1. Text+#3 9;
forml3.ADOQuery3.ExecSQL;
showmessage('RECORD DELETED');
forml3.LbSpeedButton4.Click;

END;
end
else
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL

DELETE');
end;

procedure TF orm 13 .LbSpeedButton4Click(Sender: TObject);
begin
FORMl 3 .Edit 1. Clear;
FORMl 3 .Edit2. Clear;
form 13 .Edit2. SetF ocus;
Form 13 .LbSpeedButton l .Enabled:=TRUE;
Forml3.LbSpeedButton2.Enabled:=TRUE;

form 13. ADOQuery 1. Close;
forml3.ADOQueryl.SQL.Text:='select * from operations';
form 13. ADOQuery 1. Open;

end;

116

procedure TForm13.DBGrid1CellClick(Column: TColumn);
begin
IF FORM13.DBGridl.Fields[O].IsNull = false THEN
BEGIN
FORM13.Editl.Text:=FORM13.DBGridl.Fields[O].Text;
FORM13.Edit2.Text:=FORM13.DBGridl.Fields[l].Text;

END
end;

end.

FORM 14 CODES

unit Unit14;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, ExtCtrls, Grids, DBGrids, LbSpeedButton, Buttons,
StdCtrls, Menus, DB, ADODB;

type
TForm14 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: Tl.abel;
Label3: TLabel;
Label4: TLabel;
Labels: Tl.abel;
Edit 1 : TEdit;
Edit2: TEdit;
Edit3: TEdit;
ComboBox 1: TComboBox;
ComboBox2: TComboBox;
SpeedButtonl: TSpeedButton;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
LbSpeedButton3: TLbSpeedButton;
LbSpeedButton4: TLbSpeedButton;
DBGrid 1: TDBGrid;
Panel 1 : TPanel;
StatusBarl: TStatusBar;
ADOQueryl: TADOQuery;
AD0Query2: TADOQuery;
ADOQuery3: T ADOQuery;
DataSource 1 : TDataSource;

117

DataSource2: TDataSource;
DataSource3: TDataSource;
procedure SpeedButtonlClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure LbSpeedButton3Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form14: TForm14;
SS14:WORD;

implementation

uses Unit38, UnitlO, Unit12;

{$R *.dfm}

procedure TF orm 14. S peedButton 1 Click(Sender: TObj ect);
begin
form38.show;
TA:=14;

end;

procedure TForm14.FormShow(Sender: TObject);
begin
form 14. ADOQuery 1. Close;
form14.AD0Queryl.SQL.Text:='select * from users';
form 14. ADOQuery 1. Open;

end;

procedure TForm14.LbSpeedButton1Click(Sender: TObject);
begin
if(form14.Editl.Text <>")and (form14.Edit2.Text <>")and (form14.Edit3.Text <>

") then
begin
form14.ADOQuery2.Close;
form14.ADOQuery2.SQL.Text:='select * from users where

user_name='+#39+form14.Edit2.Text+#39;
form 14. ADOQuery2. Open;
ifform14.ADOQuery2.RecordCount = 0 then
begin

118

forml4.ADOQuery2.Close;
forml4.AD0Query2.SQL.Text:='insert into users

(user_ name,password, staff _id, staff_ state, staff _pozition) values
('+#39+forml4.Edit2.Text+#39+','+#39+forml4.Edit3.Text+#39+','+#39+forml4.Editl.
Text+#39+', '+#3 9+form 14. ComboBoxl. Text+#39+', '+#39+form 14. ComboBox2. Text+#
39+')';

forml4.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');
Form 14 .LbS peedButton4. Click;
END
ELSE
SHOWMESSAGE('USER NAME IS USED');

END
ELSE if forml4.Editl.Text =" then
showmessage('PLEASE CHOOSE THE STAFF ID')

else
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE');

end;

procedure TF orml 4 .LbSpeedButton2Click(Sender: TObject);
begin
IF (FORM14.Editl.Text <>")AND (FORM14.Edit2.Text <>")AND
(FORM14.Edit3.Text <> ") THEN
BEGIN
form 14. ADOQuery3. Close;
form14.ADOQuery3.SQL.Text:='select * from users where

user_name='+#39+form14.Edit2.Text+#39;
form14.ADOQuery3.0pen;
ifforml4.ADOQuery3.RecordCount = 0 then
begin
FORM14.ADOQuery3.Close;
FORM14.ADOQuery3.SQL.Text:='UPDATE users set

user_name='+#39+form14.Edit2.Text+#39+',
password='+#3 9+form 14 .Edit3. Text+#3 9+', staff _id='+#3 9+form 14 .Edit 1. T ext+#3 9+',
staff_state='+#39+form14.ComboBoxl.Text+#39+',
staff _pozition='+#3 9+form 14. ComboBox2. Text+#39+' where
staff_id='+#39+forml4.Editl.Text+#39;

form 14. AD0Query3 .ExecSQL;
showmessage('RECORD UPDATED');
Form14.LbSpeedButton4.Click;
end
else
SHOWMESSAGE('USER NAME IS USED');

end
else
showmessage('PLEASE BE SURE TO FILL EMPTY PLACE');

end;

procedure TForm14.LbSpeedButton3Click(Sender: TObject);
begin

119

IF (FORM14.Editl.Text <> 11) THEN
BEGIN
SS14:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM14.Edit2.Text+'

II ?',MTWARNING,[MBYES ,MBNO],O);
IF SS14 = MRYES then
BEGIN
FORM14.ADOQuery3.Close;
FORM14.ADOQuery3.SQL.Text:='DELETE FROM users where

user_name='+#39+form14.Edit2.Text+#39;
forml 4.ADOQuery3 .ExecSQL;
showmessage('RECORD DELETED');
Form14.LbSpeedButton4.Click;

END;
end
else
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL

DELETE');
end;

procedure TF orm 14 .LbSpeedButton4Click(Sender: TObject);
begin
FORMl 4 .Edit 1. Clear;
FORM14.Edit2.Clear;
FORMl 4 .Edit3. Clear;
FORM14.ComboBoxl.Text:='Select One';
FORM14.ComboBox2.Text:='Select One';
form 14 .Edit2. SetF ocus;
Form 14 .LbSpeedButton 1.Enabled:=TRUE;
Form14.LbSpeedButton2.Enabled:=TRUE;

form 14. ADOQuery 1. Close;
form14.AD0Queryl.SQL.Text:='select * from users';
form 14. ADOQuery 1. Open;

end;

procedure TForm14.DBGrid1CellClick(Column: TCohimn);
begin
IF FORM14.DBGridl.Fields[O].IsNull = false THEN
BEGIN
FORMl 4.Edit 1.Text:=FORMl 4.DBGrid 1.Fields[2]. Text;
FORM14.Edit2.Text:=FORM14.DBGridl.Fields[O].Text;
FORM14.Edit3.Text:=FORM14.DBGridl.Fields[l].Text;
FORM14.ComboBoxl.Text:=FORM14.DBGridl.Fields[3].Text;
FORMl 4. ComboBox2. Text:=FORMl 4.DBGrid I .Fields[4]. Text;

END
end;

procedure TForm14.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Form14.LbSpeedButton4.Click;

120

form14.ADOQueryl.Close;
form 14. AD0Query2. Close;
form 14. ADOQuery3. Close;

end;

procedure TForm14.ForrnHide(Sender: TObject);
begin
Form14.LbSpeedButton4.Click;
form14.ADOQueryl.Close;
form14.ADOQuery2.Close;
form14.ADOQuery3.Close;

end;

end.

FORM 15 CODES

unit Unit15;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, LbSpeedButton, StdCtrls, Buttons, Mask, Menus, ExtCtrls,
ComCtrls, Grids, DBGrids, DB, ADODB;

type
TForm15 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
Label 11: TLabel;
Label12: TLabel;
Label 13: TLabel;
Label14: TLabel;
Edit 1 : TEdit;
Edit2: TEdit;
Edit3: TEdit;
MaskEdit 1: TMaskEdit;
MaskEdit2: TMaskEdit;

121

MaskEdit3: TMaskEdit;
MaskEdit4: TMaskEdit;
Memol: TMemo;
ComboBoxl: TComboBox;
Edit4: TEdit;
ComboBox2: TComboBox;
Edit5: TEdit;
Edit6: TEdit;
Memo2: TMemo;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
LbSpeedButton3: TLbSpeedButton;
LbSpeedButton4: TLbSpeedButton;
StatusBarl: TStatusBar;
Panel 1: TPanel;
ADOQueryl: TADOQuery;
ADOQuery2: T ADOQuery;
ADOQuery3: T ADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
ADOConnection 1: T ADOConnection;
DB Grid 1: TDBGrid;
procedure FormShow(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure LbSpeedButton3Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form15: TForm15;
SS15:WORD;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForm15.FormShow(Sender: TObject);
begin
FORM15.ADOQueryl.Close;

122

FORM15.ADOQueryl.SQL.Text:='select
customer _id, Cname, Csumame,Mobilphone,homephone, workphone,fax,address,city, tow
n,country,email,web,c_note from customer';
form 15 .ADOQuery 1. Open;

end;

procedure TForm15.LbSpeedButton1Click(Sender: TObject);
begin
if (form15.Edit2.Text <>")or (form15.Edit3.Text <>")then
begin
form15.ADOQuery2.Close;
form15.AD0Query2.SQL.Text:='select * from customer where

Cname='+#39+form15.Edit2.Text+#39+' and
Csumame='+#39+form15.Edit3.Text+#39+' and
mobilphone='+#39+form15.MaskEdit2.Text+#39;

form 15. ADOQuery2. Open;
ifform15.ADOQuery2.RecordCount = 0 then
begin
form15.AD0Query2.Close;
form15.AD0Query2.SQL.Text:='insert into customer

(Cname, Csumame,homephone,mobilphone, workphone,fax,address, town,city,country,e
mail, web, C _ note,recorddate,recordtime) values
('+#39+Form15.Edit2.Text+#39+','+#39+form15.Edit3.Text+#39+','+#39+form15.Mask
Editl.Text+#39+','+#39+form15.MaskEdit2.Text+#39+','+#39+forml5.MaskEdit3.Text
+#39+','+#39+form15.MaskEdit4.Text+#39+','+#39+form15.Memol.Text+#39+','+#39
+form15.Edit4.Text+#39+','+#39+form15.ComboBoxl.Text+#39+','+#39+form15.Com
boBox2.Text+#39+','+#39+form15.Edit5.Text+#39+','+#39+form15.Edit6.Text+#39+','
+#3 9+form 15 .Memo2. Text+#3 9+', '+#3 9+datetostr(date)+#3 9+', '+#3 9+timetostr(time)+
#39+')';

form 15. ADOQuery2.ExecSQL;
form15.ADOQuery2.Close;
form15.ADOQuery2.SQL.Text:='select * from customer';
form 15 .ADOQuery2. Open;
showmessage('RECORD SAVED');
Form15.LbSpeedButton4.Click;
END
else
SHOWMESSAGE('THE CUSTOMER SAVED BEFORE');

END
ELSE if form15.Edit2.Text =" then
showmessage('PLEASE FILL THE NAME')

ELSE if form15.Edit3.Text =" then
showmessage('PLEASE FILL THE SURNAME')
else
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE');

end;

123

procedure TF orm 15 .Lb S peedButton2Click(Sender: TObject);
begin
IF (FORM15.Editl.Text <> 11) AND (FORM15.Edit2.Text <> 11) AND

(FORM15.Edit3.Text <> 11) THEN
BEGIN
FORMl 5 .ADOQuery3. Close;
FORM15.ADOQuery3.SQL.Text:='UPDATE customer set Cname=

'+#39+form15.Edit2.Text+#39+', Csurname= '+#39+form15.Edit3.Text+#39+',
homephone='+#39+forml5.MaskEditl.Text+#39+',
mobilphone='+#39+form15.MaskEdit2.Text+#39+ ',
workphone='+#3 9+form 15 .MaskEdit3. Text+#39+',
fax='+#39+form15.MaskEdit4.Text+#39+',
address='+#3 9+form 15 .Memo 1. Text+#39+', town='+#39+form 15 .Edit4. Text+#39+',
city='+#39+forml 5. ComboBox 1. Text+#39+',
country='+#39+forml 5. ComboBox2. Text+#39+',
email='+#3 9+form 15 .Edit5. Text+#3 9+', web='+#3 9+form 15 .Edit6. T ext+#3 9+',
C note='+#39+forml 5 .Memo2. Text+#39+' WHERE
customer _id='+#3 9+form 15 .Edit 1. Text+#3 9;

form15.ADOQuery3.ExecSQL;
showmessage('RECORD UPDATED');
Form 15 .LbSpeedButton4. Click;

END
ELSE
SHOWMESSAGE('PLEASE SELECT CUSTOMER AND BE SURE'+#13+'TO

FILL THE EMPTY PLACE');
end;

procedure TForm15.LbSpeedButton3Click(Sender: TObject),
begin
IF (FORM15.Editl.Text <> 11) AND (FORM15.Edit2.Text <> 11) AND

(FORM15.Edit3.Text <> 11) then
BEGIN
SS15:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 ID:

'+FORM15.Editl.Text+'; CUSTOMER:' +FORM15.Edit2.Text+'
'+FORM15.Edit3.Text+' 11 ?',MTWARNING,[MBYES ,MBNO],O);

IF SS15 = MRYES then
BEGIN
FORMl 5 .ADOQuery3. Close;
form15.ADOQuery3.SQL.Text:='delete from customer where

customer _id='+#3 9+form 15 .Edit 1. Text+#3 9;
form 15. ADOQuery3 .ExecSQL;
showmessage('RECORD DELETED');
Form 15 .LbSpeedButton4. Click;

END;
end
else
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL

DELETE');
end;

124

procedure TF orm 15 .LbSpeedButton4Click(Sender: TObject);
begin
form 15 .Edit 1. Clear;
form 15 .Edit2. Clear;
form 15 .Edit3. Clear;
form 15 .MaskEdit 1. Clear;
form15.MaskEdit2.Clear;
form 15 .MaskEdit3. Clear;
form 15 .MaskEdit4. Clear;
form 15 .Memo 1. Clear;
form 15 .Edit4. Clear;
form 15. ComboBox 1. Text:='Select One';
form15.ComboBox2.Text:='Select One';
form 15 .Edit5. Clear;
form15.Edit6.Clear;
form 15 .Memo 2. Clear;
FORM15.Edit2.SetFocus;
Form15.LbSpeedButtonl.Enabled:=TRUE;
Form 15 .LbSpeedButton2.Enabled:=TRUE;

FORM15.ADOQueryl .Close;
FORMl 5 .ADO Query 1. SQL. Text:='select

customer _id, Cname, Csumame,Mobilphone,homephone, workphone,fax,address,city, tow
n,country,email,web,c_note from customer';
form 15 .ADOQuery 1. Open;

end;

procedure TForm15.DBGrid1CellClick(Column: TColumn);
begin

IF FORM15.ADOQueryl.RecordCount <> 0 THEN
BEGIN
FORM15.Editl.Text:=FORM15.DBGridl.Fields[O].Text;
FORMl 5 .Edit2. Text:=FORMl 5 .DBGrid I .Fields[1]. Text;
FORMl 5 .Edit3. Text:=FORMl 5 .DBGrid 1.Fields[2]. Text;
form15.MaskEditl.Text:=FORM15.DBGridl.Fields[3].Text;
form15.MaskEdit2.Text:=FORM15.DBGridl.Fields[4].Text;
form15.MaskEdit3.Text:=FORM15.DBGridl.Fields[5].Text;
form15.MaskEdit4.Text:=FORM15.DBGridl.Fields[6].Text;
FORMl 5 .Memo 1. Text:=FORMl 5 .DBGrid 1.Fields[7]. Text;
FORMl 5 .Edit 4. Text:=FORMl 5 .DBGrid 1.Fields[9]. Text;
FORM15.ComboBoxl.Text:=FORM15.DBGridl.Fields[8].Text;
FORM15.ComboBox2.Text:=FORM15.DBGridl.Fields[10].Text;
FORM15.Edit5.Text:=FORM15.DBGridl.Fields[ll].Text;
FORM15.Edit6.Text:=FORM15.DBGridl.Fields[12].Text;
FORM15.Memo2.Text:=FORM15.DBGridl.Fields[13].Text;

END;

end;

procedure TForm15.FormClose(Sender: TObject; var Action: TCloseAction);

125

begin
Form 15 .LbSpeedButton4. Click;
form 15. ADOQuery 1. Close;
form 15. ADOQuery2. Close;
form 15. AD0Query3. Close;

end;

procedure TForm15.FormHide(Sender: TObject);
begin
Form 15 .LbSpeedButton4. Click;
form 15. ADOQuery 1. Close;
form15.ADOQuery2.Close;
form15.ADOQuery3.Close;

end;

end.

FORM 16 CODES

unit Unit16;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, Grids, DBGrids, ExtCtrls, StdCtrls, Buttons, Menus,
DB,ADODB;

type
TForm16 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label 7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
Label 11 : TLabel;
Labell2: TLabel;
Label 13: TLabel;
Label 14: TLabel;
Label 15: TLabel;
Labell6: TLabel;
Edit 1 : TEdit;

126

Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Edit6: TEdit;
ComboBoxl: TComboBox;
DateTimePickerl: TDateTimePicker;
SpeedButtonl: TSpeedButton;
Memo 1: TMemo;
Memo2: TMemo;
Memo3: TMemo;
Edit?: TEdit;
Label 1 7: TLabel;
Edit8: TEdit;
Memo4: TMemo;
ComboBox2: TComboBox;
Edit9: TEdit;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
S peedButton5: TS peedButton;
SpeedButton6: TSpeedButton;
Panel 1 : TPanel;
DBGrid 1: TDBGrid;
StatusBarl: TStatusBar;
ADOQueryl: T ADOQuery;
AD0Query2: TADOQuery;
AD0Query3: T ADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3 : TDataSource;
procedure SpeedButton3Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject),
procedure SpeedButton6Click(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure DBGrid 1 CellClick(Column: TColumn);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml6: TForml6;
SS16:WORD;

127

implementation

uses UnitlO, Unit40, Unitl5;

{$R *.dfm}

procedure TForml6.SpeedButton3Click(Sender: TObject);
begin
if (forml6.Edit2.Text <>")and (forml6.Edit3.Text <>")and (forml6.Edit5.Text <>

")then
begin
forml6.ADOQuery2.Close;
forml6.ADOQuery2.SQL.Text:='select * from animal where

animal name='+#39+forml6.Edit2.Text+#39+' and
animal kind='+#39+form l 6.Edit3. Text+#39+' and
owner_ no='+#39+form l 6.Edit5. Text+#39;

form 16. AD0Query2. Open;
ifforml6.ADOQuery2.RecordCount = 0 then
begin
forml6.AD0Query2.Close;
forml6.ADOQuery2.SQL.Text:='insert into animal

(animal_name,animal_kind,animal_race,owner_no,abirthdate,animal_sex,animal_color,
animal_ weight,collar _ no.earning , no,life _state,animal _ mark,animal _ alergy ,acronic _ me
di cine, A_ note) values
('+#39+Forml6.Edit2.Text+#39+','+#39+forml6.Edit3.Text+#39+','+#39+forml6.Edit4
. Text+#39+', '+#39+form l 6.Edit5. Text+#39+','+#3 9+datetostr(forml 6.DateTimePicker 1
.Date)+#39+', '+#39+form 16. ComboBox 1. Text+#39+', '+#39+form l 6.Edit6. Text+#3 9+','
+#39+forml6.Edit7.Text+#39+','+#39+forml6.Edit8.Text+#39+','+#39+forml6.Edit9.
Text+#39+','+#39+forml6.ComboBox2.Text+#39+','+#39+forml6.Memol.Text+#39+',
'+#39+form l 6.Memo2. Text+#39+', '+#39+forml 6.Memo3. Text+#39+', '+#39+forml 6.M
emo4.Text+#39+')';

form 16. ADOQuery2.ExecSQL;
forml6.ADOQuery2.Close;
forml6.ADOQuery2.SQL.Text:='select * from animal';
forml6.ADOQuery2.0pen;
showmessage('RECORD SAVED');
Forml6.SpeedButton6.Click;
END
else
SHOWMESSAGE('THE ANIMAL SAVED BEFORE');

END
ELSE if forml6.Edit2.Text =" then
showmessage('PLEASE FILL THE ANIMAL NAME')

ELSE if forml6.Edit5.Text ="then
showmessage('PLEASE CHOOSE THE OWNER NO')

else
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE');

128

end;

procedure TForm16.FormCreate(Sender: TObject);
begin
form 16.DateTimePicker 1.Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylm/d';

end;

procedure TForm16.FormShow(Sender: TObject);
begin
FORM16.AD0Queryl.Close;
FORMl 6.ADOQuery 1. SQL. Text:='select

animal id,animal name,animal kind,animal race,owner no,animal sex,animal color,a - - - - - - -
nimal_weight,animal_mark,animal_alergy,acronic_medicine,collar_no,eaming_no,life_
state,a_note from animal';
form 16. ADOQuery 1. Open;

end;

procedure TForm16.SpeedButton4Click(Sender: TObject);
begin
IF (FORM16.Editl.Text <>")AND (FORM16.Edit2.Text <>")AND

(FORM16.Edit3.Text <>")AND (FORM16.Edit5.Text <>")THEN
BEGIN
FORMl 6.ADOQuery3. Close;
FORM16.ADOQuery3.SQL.Text:='UPDATE animal set animal_name=

'+#39+form16.Edit2.Text+#39+', animal_kind= '+#39+form16.Edit3.Text+#39+',
animal_race= '+#39+form16.Edit4.Text+#39+',
abirthdate='+#3 9+datetostr(form 16 .DateTimePicker 1.Date)+#3 9+',
animal_sex='+#39+form16.ComboBoxl.Text+#39+', animal_color=
'+#39+form16.Edit6.Text+#39+', animal_weight= '+#39+form16.Edit7.Text+#39+',
collar_no= '+#39+form16.Edit8.Text+#39+', eaming_no=
'+#39+form16.Edit9.Text+#39+', life_state='+#39+form16.ComboBox2.Text+#39+',
animal_mark='+#39+form16.Memol.Text+#39+',
animal_ alergy='+#39+forml 6.Memo2. Text+#39+',
acronic _ medicine='+#39+form 16.Memo3. Text+#39+',
a note='+#39+form16.Memo4.Text+#39+' WHERE
animal_id='+#39+form16.Editl.Text+#39;

form16.ADOQuery3.ExecSQL;
showmessage('RECORD UPDATED');
Form16.SpeedButton6.Click;

END
ELSE
SHOWMESSAGE('PLEASE SELECT CUSTOMER AND BE SURE'+#13+'TO

FILL THE EMPTY PLACE');
end;

procedure TForm16.SpeedButton5Click(Sender: TObject);

129

begin
IF (FORM16.Editl.Text <>")AND (FORM16.Edit2.Text <>")AND

(FORM16.Edit5.Text <>")then
BEGIN
SS16:=MESSAGEDLG('ARE YOU SURE TO DELETE "ID:

'+FORM16.Editl.Text+'; ANIMAL:' +FORM16.Edit2.Text+'"
?',MTW ARNING,[MBYES ,MBNO],O);

IF SS16 = MR.YES then
BEGIN
FORMl 6.ADOQuery3. Close;
forml6.ADOQuery3.SQL.Text:='delete from animal where

animal_id='+#39+forml6.Editl.Text+#39;
forml6.ADOQuery3.ExecSQL;
showmessage('RECORD DELETED');
form 16. SpeedButton6. Click;

END;
end
else
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL

DELETE');
end;

procedure TForml6.SpeedButton6Click(Sender: TObject);
begin
form 16 .Edit 1. Clear;
forml6.Edit2.Clear;
forml 6.Edit3. Clear;
forml6.Edit4.Clear;
forml6.Edit5.Clear;
form 16.DateTimePicker l .Date:=date;
forml6.ComboBoxl.Text:='Select One';
form l 6.Edit6. Clear;
forml6.Edit7.Clear;
form 16 .Edit8. Clear;
forml6.Edit9.Clear;
forml6.ComboBox2.Text:='Select One';
forml6.Memol.Clear;
forml6.Memo2.Clear;
forml6.Memo3.Clear;
forml6.Memo4.Clear;
FORM16.Edit2.SetFocus;
FORMl 6. SpeedButton3 .Enabled:=TRUE;
FORMl 6. SpeedButton4.Enabled:=TRUE;

FORM16.ADOQueryl .Close;
FORM16.ADOQueryl.SQL.Text:='select

animal id,animal name,animal kind,animal race,owner no,animal sex,animal color,a - - - - - - -
nimal _ weight,animal_ mark,animal _ alergy,acronic _ medicine,collar _ no,earning_ no,life _
state,a _ note from animal';
form 16. ADOQuery 1. Open;

130

end;

procedure TForm16.SpeedButton1Click(Sender: TObject);
begin
FORM40.SHOW;
end;

procedure TForm16.ForrnHide(Sender: TObject);
begin
forml 6. SpeedButton6.Click;
form16.AD0Queryl .Close;
form16.ADOQuery2.Close;
form16.ADOQuery3.Close;

end;

procedure TForm16.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form16.SpeedButton6.Click;
form16.AD0Queryl.Close;
form16.AD0Query2.Close;
form16.ADOQuery3.Close;

end;

procedure TForm16.DBGrid1CellClick(Column: 'I'Column);
begin
IF FORM16.ADOQueryl.RecordCount <> 0 THEN
BEGIN
FORM16.Editl.Text:=FORM16.DBGridl.Fields[O].Text;
FORM16.Edit2.Text:=FORM16.DBGridl.Fields[l].Text;
FORM16.Edit3.Text:=FORM16.DBGridl.Fields[2].Text;
FORM16.Edit4.Text:=FORM16.DBGridl.Fields[3].Text;
FORM16.Edit5.Text:=FORM16.DBGridl.Fields[4].Text;
FORM16.ComboBoxl.Text:=FORM16.DBGridl.Fields[5].Text;
FORM16.Edit6.Text:=FORM16.DBGridl.Fields[6].Text;
FORM16.Edit7.Text:=FORM16.DBGridl.Fields[7].Text;
FORMl 6.Memo 1. Text:=FORMl 6.DBGrid 1.Fields[8]. Text;
FORMl 6.Memo2. Text:=FORMl 6.DBGrid 1.Fields[9]. Text;
FORM16.Memo3.Text:=FORM16.DBGridl.Fields[10].Text;
FORMl 6.Edit8. Text:=FORMl 6.DBGrid 1.Fields[l 1]. Text;
FORM16.Edit9.Text:=FORM16.DBGridl.Fields[12].Text;
FORM16.ComboBox2.Text:=FORM16.DBGridl.Fields[13].Text;
FORM16.Memo4.Text:=FORM16.DBGridl.Fields[14].Text;
end;
end;

end.

131

FORM 17 CODES

unit Unitl 7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, LbSpeedButton, Ex:tCtrls, ComCtrls, StdCtrls,
Buttons, Menus, DB, ADODB;

type
TForml 7 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Edit 1 : TEdit;
ComboBoxl: TComboBox;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
SpeedButtonl: TSpeedButton;
Memol: TMemo;
SpeedButton2: TSpeedButton;
StatusBarl: TStatusBar;
Panel 1 : TPanel;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
LbSpeedButton3: TLbSpeedButton;
LbSpeedButton4: TLbSpeedButton;
DBGrid 1: TDBGrid;
ADOQueryl: TADOQuery;
Data Source 1 : TDataSource;
AD0Query2: T ADOQuery;
AD0Query3: T ADOQuery;
ADOQuery4: TADOQuery;
DataSource2: TDataSource;
DataSource3: TDataSource;
DataSource4: TDataSource;
procedure SpeedButtonlClick(Sender: TObject);
procedure FormShow(Sender: TObject);

132

procedure FormCreate(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure DBGridlCellClick(Column: TColumn);
procedure LbSpeedButton3Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml 7: TForml 7;
SS17:WORD;

implementation

uses UnitlO, Unit38, Unit39;

{$R *.dfm}

procedure TUAHQ;
begin
form 17. ComboBox I .Items. Clear;
FORM I 7 .ADOQuery4. Close;
FORM17.AD0Query4.SQL.Text:='select vaccine_name from vaccines';
form 17. AD0Query4. Open;
while not form17.AD0Query4.Eof do
begin
form 17. ComboBox I .Items.Add(forml 7. AD0Query4['vaccine _ name']);
forml 7.ADOQuery4.Next;
end;

END;

procedure TForml 7.SpeedButtonlClick(Sender: TObject);
begin
form38.show;
TA:=17;
end;

procedure TForml 7.FormShow(Sender: TObject);
begin
forml 7.ADOQueryl .Close;
forml 7.ADOQueryl.SQL.Text:='select * from vaccinate';
form 17. ADOQuery 1. Open;
TUAHQ;

133

end;

procedure TForml 7.Form.Create(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';
FORMl 7 .DateTimePickerl .Date:=DATE;
FORMl 7.DateTimePicker2.Date:=DATE;

end;

procedure TForml 7.LbSpeedButtonlClick(Sender: TObject);
begin

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';

if (forml 7.Editl.Text <> ") and (forml 7.ComboBoxl.Text <> 'Select One') and
(forml 7.Edit4.Text <>")AND (DATETOSTR(FORMl 7.DateTimePickerl.Date) <>
DATETOSTR(FORMl 7.DateTimePicker2.Date)) THEN
begin
forml 7.ADOQuery2.Close;
form17.AD0Query2.SQL.Text:='select * from vaccinate where

vaccine_ serialno='+#3 9+form 17 .Edit2. Text+#3 9;
forml 7. ADOQuery2. Open;
ifform17.ADOQuery2.RecordCount = 0 then
begin
forml 7. ADOQuery2. Close;
forml 7.ADOQuery2.SQL.Text:='insert into vaccinate

(animal _id, vaccine_ name, vaccinate_ date,next _ vaccinatedate, vaccine_ serialno, vaccine_
producer,applied _ staff, v _note) values
f+#39+form 17 .Edit 1. Text+#39+', '+#39+form 17. Combo Box 1. Text+#39+', '+#3 9+dateto
str(forml 7 .DateTimePickerl .Date)+#39+', '+#39+datetostr(forml 7 .DateTimePicker2.Da
te)+#39+','+#39+forml 7.Edit2.Text+#39+','+#39+forml 7.Edit3.Text+#39+','+#39+for
m17.Edit4.Text+#39+','+#39+form17.Memol.Text+#39+')';

form17.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');
forml 7.ADOQueryl .Close;
forml 7.ADOQueryl.SQL.Text:='select * from vaccinate where

animal_id='+#39+forml 7.Editl .Text+#39;
form 17. ADOQuery 1. Open;
TU AHO;

END
ELSE
SHOWMESSAGE('THE VACCINATE SAVED BEFORE');

END
ELSE if form 17 .Edit 1. Text = " then

134

showmessage('PLEASE CHOOSE THE ANIMAL ID')
ELSE ifform17.Edit4.Text =" then
showmessage('PLEASE CHOOSE THE STAFF ID')

else
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE');

end;

procedure TF orml 7. SpeedButton2Click(Sender: TObject);
begin
FORM39.SHOW;
ANI:=17;

end;

procedure TForml 7.EditlChange(Sender: TObject);
begin
forml 7.ADOQueryl .Close;
form17.ADOQueryl.SQL.Text:='select * from vaccinate where

animal_id='+#39+form 17.Editl .Text+#39;
form 17. ADOQuery 1. Open;
TU AHO;

end;

procedure TForml 7.LbSpeedButton2Click(Sender: TObject);
begin

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';

IF (FORM17.Editl.Text <>")AND (FORM17.Edit2.Text <>")AND
(FORM17.ComboBoxl.Text <> 'Select One') THEN
BEGIN
FORMl 7.AD0Query3.Close;
FORM17.ADOQuery3.SQL.Text:='UPDATE vaccinate set

Animal_id='+#39+forml 7.Editl.Text+#39+',
Vaccine_ name='+#39+form 17. ComboBox 1. Text+#39+',
Vaccinate_ date='+#3 9+datetostr(form 17 .DateTimePicker I .Date)+#3 9+',
ext_ vaccinatedate='+#3 9+datetostr(form 17 .DateTimePicker2.Date)+#39+',

Vaccine_ serialno='+#3 9+form 17 .Edit2. Text+#3 9+',
Vaccine_producer='+#39+forml 7.Edit3.Text+#39+',
Applied_staff='+#39+forml 7.Edit4.Text+#39+',
V note='+#39+forml 7.Memol.Text+#39+' where
Animal_id='+#39+form17.DBGridl.Fields[O].Text+#39+' and
Vaccine_ name='+#3 9+form 17 .DBGrid 1. Fields[1]. Text+#3 9+' and
Vaccinate_date='+#39+form17.DBGridl.Fields[2].Text+#39+' and
Vaccine_serialno='+#39+form17.DBGridl.Fields[4].Text+#39;

form17.ADOQuery3.ExecSQL;
showmessage('RECORD UPDATED');
FORMl 7.LbSpeedButton4.Click;

END

135

ELSE
SHOWMESSAGE('PLEASE CHOOSE VACCINATE FROM LIST');

end;

procedure TForm17.DBGrid1CellClick(Column: TColumn);
begin
IF FORM17.ADOQueryl.RecordCount <> 0 THEN
BEGIN

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...

shortdateformat := 'ddlmm/yyyy';

FORMl 7.Editl.Text:=FORMl 7.DBGridl .Fields[O].Text;
FORMl 7.ComboBoxl. Text:=FORMl 7.DBGrid 1.Fields[l].Text;

FORMl 7 .DateTimePicker 1.Date:=STRTODATE(FORMl 7 .DB Grid 1.Fields[2]. Text);

FORMl 7.DateTimePicker2.Date:=STRTODATE(FORM17.DBGridl.Fields[3].Text);
FORMl 7.Edit2.Text:=FORM17.DBGridl .Fields[4].Text;
FORMl 7.Edit3.Text:=FORM17.DBGridl .Fields[S].Text;
FORMl 7 .Edit4. Text:=FORMl 7 .DBGrid I .Fields[6]. Text;
FORMl 7 .Memo 1. Text:=FORMl 7 .DBGridl .Fields[7]. Text;

END;

end;

procedure TForml 7.LbSpeedButton3Click(Sender: TObject);
begin
IF (FORM17.Editl.Text <> 11) AND (FORM17.comboboxl.Text <> 'Select One')

AND (FORM17.Edit4.Text <> 11) then
BEGIN
SS17:=MESSAGEDLG('ARE YOU SURE TO DELETE II ANIMAL ID:

'+FORM17.Editl.Text+'; VACCINE:' +FORM17.COMBOBOX1.Text+' ;
VACCINATE DATE: '+DATETOSTR(FORMl 7.DateTimePickerl .Date)+' 11

. ,MTW ARNING,[MBYES ,MBNO],O);
IF SS17 = MRYES then
BEGIN
FORMl 7.AD0Query3.Close;
form17.AD0Query3.SQL.Text:='delete from vaccinate where

animal id='+#39+forml 7.Editl.Text+#39+' and
vaccine_ name='+#3 9+form 17. ComboBox 1. Text+#39;

IIFORMI 7.ADOQuery3.SQL.Text:='DELETE FROM vaccinate where
Animal id='+#39+forml 7.Editl.Text+#39+' and
Vaccine name='+#39+form 17. ComboBox 1. Text+#39+' and
Vaccinate_ date='+#3 9+datetostr(form 17 .DateTimePicker I .Date)+#3 9+' and
Vaccine_serialno='+#39+forml 7.Edit2.Text+#39;

forml 7.ADOQuery3.ExecSQL;
showmessage('RECORD DELETED');
Forml 7 .LbSpeedButton4. Click;

136

END;
end
else
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL

DELETE');
end;

procedure TForml 7.LbSpeedButton4Click(Sender: TObject);
begin
FORMl 7 .Edit 1. Clear;
FORMl 7.ComboBoxl .Text:='Select One';
form 17 .DateTimePicker l .Date:=date;
form 17 .DateTimePicker2 .Date: =date;
FORMl 7 .Edit2. Clear;
FORMl 7.Edit3.Clear;
FORMl 7.Edit4.Clear;
FORMl 7 .Memo 1. Clear;
forml 7.ComboBoxl. SetFocus;
Forml 7.LbSpeedButtonl .Enabled:=TRUE;
Forml 7.LbSpeedButton2.Enabled:=TRUE;

forml 7.ADOQueryl .Close;
forml 7.ADOQueryl.SQL.Text:='select * from vaccinate';
form 17. ADOQuery 1. Open;

end;

procedure TForml 7.FormClose(Sender: TObject; var Action: TCloseAction);
begin
forml7.LbSpeedButton4.Click;
forml 7.ADOQueryl .Close;
forml 7.AD0Query2.Close;
forml 7.ADOQuery3.Close;
forml 7.AD0Query4.Close;

end;

procedure TForml 7.FormHide(Sender: TObject);
begin
forml 7.LbSpeedButton4.Click;
form 17. ADOQuery 1. Close;
forml 7.ADOQuery2.Close;
forml 7.ADOQuery3.Close;
forml 7.ADOQuery4.Close;

end;

end.

137

FORM 18 CODES

unit Unitl8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, ExtCtrls, ComCtrls, Buttons, StdCtrls, Menus,
DB,ADODB;

type
TForml8 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1: TLabel;
Label2: TLabel;
Label3 : TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Editl : TEdit;
ComboBox 1: TComboBox;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Edit2: TEdit;
Memo 1: TMemo;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
StatusBarl: TStatusBar;
Panel 1 : TPanel;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
DBGrid 1: TDBGrid;
Label7: TLabel;
ADOQuery 1: T ADO Query;
ADOQuery2: TADOQuery;
ADOQuery3: TADOQuery;
ADOQuery4: TADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
DataSource4: TDataSource;
Edit3 : TEdit;
procedure FormShow(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButtonl Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);

138

procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure SpeedButton6Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure F ormCreate(Sender: TObj ect);
procedure EditlChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form18: TForm18;
SS 1·8·:WORD;

implementation

uses UnitlO, Unit39, Unit38;

{$R *.dfm}

PROCEDURE TUAHINQ;
BEGIN
forml·8.ComboBoxl.Items.Clear;
FORM18.AD0Query4.Close;
FORM18.AD0Query4.SQL.Text:='select drug_name from drugs where

drug_ kind='+#39+'INNER P ARAS1TE'+#39;
form 18. ADOQuery4. Open;
while not form18.AD0Query4.Eof do
begin
form 18. ComboBox 1.Items.Add(form 18.ADOQuery4['drug_ name'[);
form 18.ADOQuery4 .Next;

end;
END;

procedure TForm18.FormShow(Sender: TObject);
begin
form 18. ADOQuery 1. Close;
form18.ADOQueryl .SQL.Text:='select * from ipdrug';
form 18. ADOQuery 1. Open;
TUAHIN();

end;

procedure TForm18.SpeedButton3Click(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyy/rnrn/dd';

139

if (form18.Editl.Text <> ") and (forml8.ComboBoxl.Text <> 'Select One') and
(form18.Edit2.Text <>")AND (DATETOSTR(FORM18.DateTimePickerl.Date) <>
DATETOSTR(FORM18.DateTimePicker2.Date)) THEN
begin
form18.AD0Query2.Close;
form18.AD0Query2.SQL.Text:='select * from ipdrug where

animal id='+#39+form 18 .Edit 1. Text+#39+'and
ip _ drugname='+#39+form 18. ComboBox 1. Text+#3 9+' and
ip _ drugdate='+#39+datetostr(form 18 .DateTimePicker I .Date)+#39+' and
ip _ nextdrugdate='+#3 9+datetostr(form 18 .DateTimePicker2.Date)+#3 9;

form 18. ADOQuery2. Open;
ifform18.ADOQuery2.RecordCount = 0 then
begin
form18.AD0Query2.Close;
form18.ADOQuery2.SQL.Text:='insert into ipdrug

(animal _id,ip _ drugname,ip _ drugdate,ip _ nextdrugdate,applied _staff,ip _ drugnote) values
('+#39+form18.Editl.Text+#39+','+#39+form18.ComboBoxl.Text+#39+','+#39+dateto
str(form18.DateTimePickerl.Date)+#39+','+#39+datetostr(form18.DateTimePicker2.Da
te)+#39+','+#39+form18.Edit2.Text+#39+','+#39+form18.Memol.Text+#39+')';

form18.ADOQuery2.ExecSQL;
showmessage('RECORD SAVED');
forml 8.ADOQueryl .Close;
form18.ADOQueryl.SQL.Text:='select * from ipdrug where

animal _id='+#39+form 18.Edit 1. Text+#39;
form 18. ADOQuery 1. Open;
TUAHINQ;

END
ELSE
SHOWMESSAGE('THE INNER PARASITE APPLICATION SAVED BEFORE');

END
ELSE if form18.Editl.Text ="then
showmessage('PLEASE CHOOSE THE ANIMAL ID')

ELSE ifforml8.Edit2.Text ='' then
showmessage('PLEASE CHOOSE THE STAFF ID')

else
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE');

end;

procedure TForml8.-SpeedButtonlClick(Sender: TObject);
begin
form39. show;
ANI:=18;
end;

procedure TForml8.SpeedButton2Click(Sender: TObject);
begin
form38.show;
TA:=18;

end;

140

procedure TF orm 18. S peedButton4Click(Sender: TObj ect);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';

IF (FORMl8.Edit1.Text <> 11) AND (FORM18.Edit3.Text <> 11) AND
(FORM18.Edit2.Text <> 11) AND (FORM18.ComboBoxl.Text <> 'Select One') THEN
BEGIN
FORMl 8.ADOQuery3. Close;
FORM18.ADOQuery3.SQL.Text:='UPDATE ipdrug set

Animal_id='+#39+form18.Editl.Text+#39+',
ip _ drugname='+#39+form 18. Combo Box 1. Text+#39+',
ip _ drugdate='+#3 9+datetostr(form 18 .Date TimePicker I .Date)+#3 9+',
ip _ nextdrugdate='+#39+datetostr(form 18.DateTimePicker2.Date)+#39+',
Applied_stafI='+#39+form18.Edit2.Text+#39+',
ip _ drugnote='+#39+form 18.Memo 1. Text+#39+' where
Ip_id='+#39+form18.Edit3.Text+#39;

forml 8. ADOQuery3 .ExecSQL;
showmessage('RECORD UPDATED');
FORMl 8. SpeedButton6. Click;
END
ELSE
SHOWMESSAGE('PLEASE SELECT INNER PARASITE APPLICATION FROM

LIST');
end;

procedure TF orm 18. S peedButton5Click(Sender: TObj ect);
begin
IF (FORM18.Editl.Text <>")AND (FORM18.Edit3.Text <>")then
BEGIN
SS18:=MESSAGEDLG('ARE YOU SURE TO DELETE II ANIMAL ID:

'+FORM18.Editl.Text+'; INNER DRUG:' +FORM18.COMBOBOX1.Text+' ; IP
DRUG DATE: '+DATETOSTR(FORM18.DateTimePickerl.Date)+' 11

?',MTW ARNING,[MBYES ,MBNO],O);
IF SS18 = MR.YES then
BEGIN
FORMl 8.ADOQuery3 .Close;
form18.ADOQuery3.SQL.Text:='delete from ipdrug where

Ip _id='+#39+form 1~.Edit3. Text+#39;
form 18. ADOQuery3 .ExecSQL;
showmessage('RECORD DELETED');
Forml 8. SpeedButton6.Click;

END· ' end
else
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL

DELETE');
end;

141

procedure TForm18.DBGrid1CellClick(Column: TColumn);
begin
IF FORMl 8.ADOQuery I .Record Count<> O THEN
BEGIN

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacacy pekle donubturdum. ..

shortdateformat := 'ddlmm/yyyy';

FORM18.Edit3.Text:=FORM18.DBGridl.Fields[O].Text;
FORM18.Editl.Text:=FORM18.DBGridl.Fields[l].Text;
FORM18.ComboBoxl.Text:=FORM18.DBGridl.Fields[2].Text;

FORM18.DateTimePickerl.Date:=STRTODATE(FORM18.DBGridl.Fields[3].Text);

FORM18.DateTimePicker2.Date:=STRTODATE(FORM18.DBGridl.Fields[4].Text);
FORMl 8.Edit2. Text:=FORMl 8.DBGrid 1.Fields[S]. Text;
FORM18.Memol.Text:=FORM18.DBGridl.Fields[6].Text;

END;
end;

procedure TForm18.SpeedButton6Click(Sender: TObject);
begin
FORMl 8.Edit3 .Clear;
FORM18.Editl.Clear;
FORM18.ComboBoxl.Text:='Select One';
form 18.DateTimePickerl .Date:=date;
form 18 .DateTimePicker2.Date: =date;
FORM18.Edit2.Clear;
FORM18.Memol.Clear;
form 18. ComboBoxl. SetFocus;
Form18.SpeedButton3.Enabled:=TRUE;
Form18.SpeedButton4.Enabled:=TRUE;

form 18. ADOQuery 1. Close;
form18.AD0Queryl.SQL.Text:='select * from ipdrug';
form 18. ADOQuery I .Open;

end;

procedure TForm18.FormClose(Sender: TObject; var Action: TCloseAction);
begin
FORM18.SpeedButton6.Click:;
FORM18.ADOQueryl.Close;
FORM I 8 .ADOQuery2. Close;
FORM I 8.ADOQuery3. Close;
FORMI 8.AD0Query4.Close;

end;

procedure TForm18.FormHide(Sender: TObject);

142

begin
FORMl 8. SpeedButton6. Click;
FORM18.ADOQueryl .Close;
FORM I 8.ADOQuery2. Close;
FORM I 8.ADOQuery3. Close;
FORM18.AD0Query4.Close;

end;

procedure TForm 18 .F orrncreatetsenoer: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayra9laryny MySql database sistemintn

anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';
FORM18.DateTimePickerl.Date:=DATE;
FORM18.DateTimePicker2.Date:=DATE;

end;

procedure TFortn.18.EditlChange(Sendet: TObject);
begin
fotrn18.ADOQuetyl.Close;
forml8.ADOQueryl.SQL.Text:='select * from ipdrug where

animal id='+#39+forml8.Editl .Text+#39;
form 18. ADOQuery 1. Open;
TUAHIN();

end;

it Unit19;

s
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, StdCtrls, Menus, Grids, DBGrids, LbSpeedButton,
ExtCtrls, Buttons, DB, ADODB;

TForm19 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;

143

StatusBarl: TStatusBar;
Edit 1: TEdit;
Combolsox 1: TComboBox;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Edit2: TEdit;
Memo 1: TMemo;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
Panel 1: TPanel;
LbSpeedButtonl '. TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
LbSpeedButton3: TLbSpeedButton;
LbSpeedButton4: TLbSpeedButton;
DBGrid 1: TDBGrid;
Label?: TLabel;
Edit3: TEdit;
ADOQueryl: T ADOQuery;
ADOQuery2: T ADO Query;
AD0Query3: T ADOQuery;
AD0Query4: TADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
DataSource4: TDataSource;
procedure LbSpeedButtonlClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure LbSpeedButton3Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure LbSpeedButton4Click(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
ivate
{ Private declarations }
blic

{ Public declarations }
aid;

UnitlO, Unit18, Unit39, Unit38;

144

{$R *.dfm}

PROCEDURE itJAHOUT();
BEGIN
form 19. Combolsox I .Items. Clear;
FORMl 9 .AD0Query4. Close;
FORM19.ADOQuery4.SQL.Text:='select drugname from drugs where

drug_ kind='+#39+'0UTER P ARASITE'+#3 9;
form 19. ADOQuery4. Open;
while not form 19. ADOQuery4 .Eof do
begin
form 19. ComboBox I .Items.Add(form 19. ADOQuery4['drug_ name']);
forml 9.AD0Query4.Next;

end;
END· '

procedure TForm19.LbSpeedButton1Click(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';

if'(form lv.EditlText <> ") and (form19.ComboBoxl.Text <> 'Select One') and
(form19.Edit2.Text <>")AND (DATETOSTR(FORM19.DateTimePickerl.Date) <>
DATETOSTR(FORMl 9 .Date'I'imel'ickerz.Datej) THEN
begin
form19.ADOQuety2.Close;
form19.ADOQuery2.SQL.Text:='select * from opdrug where
· mal id='+#39+form 19 .Edit 1. Text+#39+'and
_ drugname='+#39+form 19. ComboBoxl. Text+#39+' and
_ drugdate='+#39+datetostr(form 19 .Date'I'imel'icker I .nate)+#3 9+' and
_ nextdrugdate='+#39+datetostr(form 19 .DateTimePicker2.Date)+#3 9;
form 19. ADOQuery2. Open;
if form19.ADOQuery2.RecordCount = 0 then
begin
form19.AD0Query2.Close;
fotrn19.ADOQuery2.SQL.Text:='insert into opdtug

animal _id, op_ drugname, op_ drugdate,op _ nextdrugdate,applied _ staff, op_ drugnote)
'ftlues
'+#39+forml 9 .Edit 1. Text+#39+', '+#3 9+form 19. ComboBox 1. Text+#39+', '+#3 9+dateto
form19.DateTimePicketl.Date)+#39+','+#39+datetostr(form19.DateTimePicker2.Da

:)+#39+','+#39+form19.Edit2.Text+#39+','+#39+form19.Memol.Text+#39+')';
form19.ADOQuety2.ExecSQL;
showmessage('RECORD SAVED');
forml 9.ADOQuetyl .Close;
form19.ADOQueryl.SQL.Text:='select * from opdrug where

· mal_id='+#39+fonrtl 9.Editl .Text+#39;
form 19. ADOQuery 1. Open;
TUAHOUT();

145

END
ELSE
SHOWMESSAGE('THE INNER P ARASI'l'E APPLICATION SAVED BEFORE\

END
ELSE ifform.19.Editl.Text =" then
showmessage('PLEASE CHOOSE THE ANIMAL ID')

ELSE if formlv.Editz.Text =" then
showmessage('PLEASE CHOOSE THE STAFF ID')

else
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE');

end;

procedure TFortn19.Fbrrn.Show(Sender: TObject);
begin
form19.ADOQueryl .Close;
form19.ADOQueryl.SQL.Text:='select * from opdrug';
form 19 .ADOQuery 1. Open;
TUAHOUT();

end;

procedure Tliorm 19 .LbSpeedButton2Click(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';

IF (FORM19.Editl.Text <>")AND (FORM19.Edit3.Text <>")AND
(FORM19.Edit2.Text <>")AND (FORM19.ComboBoxl.Text <> 'Select One') THEN
BEGIN
FORMl 9 .ADOQuery3. Close;
FORM19.ADOQuery3.SQL.Text:='UPDATE opdrug set

Animal_ id='+#3 9+form 19 .Edit 1. Text+#3 9+',
op_drugname='+#39+form19.ComboBoxl.Text+#39+',
op_drugdate='+#39+datetostr(form19.DateTimePickerl.Date)+#39+',
op_ nextdrugdate='+#3 9+datetostr(form 19 .Date TimePicket2 .Date)+#3 9+',
Applied_staff='+#39+form19.Edit2.Text+#39+',
op_ drUgnote='+#3 9+form 19 .Memo 1. Text+#39+' where
Op _id='+#39+form 19 .Edit3. Text+#39;

form 19. ADOQuery3 .ExecSQL;
showmessage('RECORD UPDATED');
Form 19 .tbSpeedButton4. Click;

END
ELSE
SHOWMESSAGE('PLEASE SELECT OUTER PARASITE APPLICATION FROM

LIST');
end;

procedure TFOnh19.LbSpeedButtori3Click(Sender: TObject);
begin
IF (FORM19.Editl.Text <>")AND (FORM19.Edit3.Text <>")then

146

BEGIN
SS 19:=MESSAGEDLG('ARE YOU SURE TO DELETE " ANIMAL ID:

'+FORM19.Editl.Text+'; OUTER DRUG:' +FORM19.COMBOBOX1.Text+' ; OP
DRUG DATE: '+DATETOSTR(FORM19.DateTimePickerl.Date)+'"
?',MTW ARNING,[MBYES ,MBNO],O);

IF SS19 = !\1RYES then
BEGIN
FORMl 9 .ADOQuery3. Close;
form.19.ADOQuety3.SQL.Text:='delete from opdrug where

Op_id='+#39+form19.Edit3.Text+#39;
rormt 9.ADOQUety3 .ExecSQL;
showmessage('RECORD DELETED');
Form19.LbSpeedButton4.Click;

END;
end
else
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL

DELETE');
end;

procedure TForm19.DBGrid1CellClick(Column: TColumn);
begin
IF FORM19.ADOQuery1.RecordCount <> 0 THEN
BEGIN

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminirt
anlayacaoy pekle donupturdum ...

shortdateformat := 'ddlmm/yyyy';

FORM19.Edit3.Text:=FORM19.DBGridl.Fields[O].Text;
FORM19.Editl.Text:=FORM19.DBGridl.Fields[l].Text;
FORM19.ComboBoxl.Text:=FORM19.DBGridl.Fields[2].Text;

FORM19.DateTimePickerl.Date:=STRTODATE(FORM19.DBGridl.Fields[3].Text);

FORM19.DateTimePicker2.Date:=STRTODATE(FORM19.DBGridl.Fields[4].Text);
FORM19.Edit2.Text:=FORM19.DBGridl.Fields[5].Text;
FORM19.Memol.Text:=FORM19.DBGridl.Fields[6].Text;

END· ' aid· ,

ocedure TFonh 19 .Lb Speedlsutton+Clicki Sender: TObject);
ltegin
FORMl 9 .Edit3. Clear;
FORMl 9 .Edit 1. Clear;
FORM19.ComboBoxl.Text:='Select One';
form19.DateTimePickerl.Date:=date;
form 19 .DateTimePicker2.Date:=date;
FORMl 9 .Edit2. Clear;
FORMl 9 .Memo 1. Clear;

147

forml 9.Comb6Boxl. SetFocus;
F orml 9 .LbSpeedButton 1.Enabled:=TRUE;
Form19.LbSpeedButton2.Enabled:=TRUE;

form 19. ADOQuery 1. Close;
form19.ADOQueryl.SQL.Text:='select * from opdrug';
form 19. ADOQuery 1. Open;

end;

procedure TForm.19.SpeedButtonlClick(Sertder: TObject);
begin
form39.show;
AN1:=19;

end;

procedure TF orm 19. S peedButton2Click(Sender: TObj ect);
begin
form38.show;
TA:=19;

end;

procedure TForm19.FotmClose(Sendet: TObject, vat Action: 'I'CloseAction);
begin
FORM19.LbSpeedButton4.Click;
FORMl 9 .ADOQuery 1. Close;
FORMl 9 .ADOQuety2.Close;
FORM19.ADOQuery3.Close;
FORMl 9 .ADOQuery4. Close;

end;

procedure TForm19.FormHide(Sender: TObject);
begin
FORMl 9 .LbSpeedBUUon4. Click;
FORMl 9 .ADO Query 1. Close;
FORM19.ADOQuery2.Close;
FORM19.ADOQuery3.Close;
FORM1'9.AD0Query4.Close;

end;

procedure TFotrn.19.Fotrn.Create(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum. ..
shortdateformat := 'yyyylmm/dd';
FORMl 9 .DateTimePickerl .Date:=DATE;
FORMl 9 .DateTimePicker2.Date:=DATE

end;

procedure TF orm 19 .Editl Change/Sender: TObject);
begin

148

forth 19. ADOQuery 1. Close;
form19.ADOQueryl.SQL.Text:='select * from opdrug where

anirnal , id='+#3 9+form 19 .Edit 1. Text+#3 9;
form 19 .ADOQuery 1. Open;
TUAHOUTQ;

end;

end.

FORM 20 CODES

unit Unit20;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, ComCtrls, ExtCtrls, Buttons, StdCtrls, Menus,
DB,ADODB;

type
TForm20 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: Tl.abel;
Edit 1 : TEdit;
ComboBoxl: TComboBox;
DateTimePickerl: TDateTimePicker;
Edit2: TEdit;
Memo 1: TMemo;
Speedlsuttonl : TSpeedlsutton;
SpeedButton2: TSpeedButton;
Speedlsuttons: TSpeedlsutton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedlsutton;
SpeedButton6: TSpeedButton;
Panel 1: TPanel;
StatusBarl: TStatusBar;
DBGridl: TDBGrid;
Label6: TLabel;
Edit3: TEdit;
ADOQueryl: TADOQuery;
ADOQuety2: TADOQuery;
AD0Query3: T ADOQuery;
ADOQuery4: T ADO Query;

149

DataSource 1 : TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
DataSource4: TDataSource;
procedure Speedlsutton.IClickf Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton5Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure Speedlsutton 1 Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure Form.Show(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Forml-lidet Sender: TObject);
procedure EditlChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form20: TForm20;
SS20:WORD;

implementation

uses UnitlO, Unit18, Unit39, Unit38;

{$R *.dfm}

PROCEDURE TUAHMEDQ;
BEGIN
form20. Cornbolsoxl .Items. Clear;
FORM20.ADOQuery4.Close;
FORM20.ADOQuery4.SQL.Text:='select drug_name from drugs where

drug_ kind='+#39+'GENERAL DRUG'+#39;
fofrn.20. ADOQuery4. Open;
while not form20.ADOQuery4.Eof do
begin
form20.ComboBoxl.Items.Add(form20.ADOQuery4['drug_name']);
form20.AD0Query4.Next;

end;
END;

procedure TF orm20. S peedButton3 Click(Sender: TObj ect);
begin
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donupturdum, ..
shortdateformat := 'yyyylmm/dd';

150

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

VETERINERIAN APPLICATION PROGRAM WITH
DELPHI

Graduation Project
COM400

Student: Ahmet KAYABA$ (20021329)

Supervisor: Mr. Elburus IMANOV

Lefko!ja-2007

TABLE OF CONTENT
TABLE OF CONTENT I

ACKNOWLEDGMENTS VI

ABSTRACT VII

INTRODUCTION [VIII

CHAPTER 1: DELPHI
1.1 Introduction to delphi 1
1.2 What is Delphi? 3
1.3 What kind of Programming can you do with Delphi? 4
1.4 Versions are there and How do they differ? 5
1.5 Some Knowledge About Delphi 7

1.5.2 Example: Try First Delphi Program 8
1.5.2 Delphi Style 10

1.6 How Delphi helps You Define Patterns 11
1.6.1 Delphi Examples of Design Patterns 11
1.6 .. 2 Pattern: Singleton 13

1.6.2.1 Definition 13
1.6.2.2 Applications in Delphi 13
1.6.2.3 Implementation Example 14

1.6.3 Pattern: Adapter 14
1.6.3.1 Definition 14
1.6.3.2 Applications in Delphi 14
1.6.3.3 Implementation Example 15

1.6.4 Pattern: Template Method 15
1.6.4.1 Definition 15
1.6.4.2 Applications in Delphi 15
1.6.4.3 A typical example of abstraction is the TGraphic class. 15
1.6.4.4 Implementation Example 16

1.6.5 Pattern: Builder 16

I

1.6.5.2 Applica6ons in Delphi 16
1.6.5.3 Implementation Example 17

1.6.6 Pattern: Abstract Factory 17
1.6.6.1 Definition 17

'
1.6.6.2 Applica6ons in Delphi 17
1.6.6.3 Implementation Example 17

1.6.7 Pattern: Factory Method 18
1.6.7.1 Definition 18
1.6.7.2 Applications in Delphi 1~

I

1.6.7.3 Implementation Example 18
1.7 Key elements of Delphi class definitions 19

1.7.1 Unit Structure 19

1.7.2 Class Interfaces 19
1. 7 .3 Properties 19
1. 7.4 Inheritance 19
1. 7.5 Abstract Methods 21

1. 7 .6 Messages 22
1.7.7 Events 22
1.7.8 Constructors and Destructors 22

1.8 The VCL to Applications Developers 23
1.8.1 The VCL to Component Writers 23
1.8.2 The VCL is made up of components 24
1.8.3 Component Types, structure, and VCL hierarchy 24
1.8.4 Component Types 25

1.8.4.1 Standard Components 25
1.8.4.2 Custom Components 26
1.8.4.3 Graphical Components 26
1.8.4.4 Non-Visual Components 26
1.8.4.5 Structure of a Component 27
1.8.4.6 Component Properties 27

1.9 Properties Provide Access, to Internal Storage Fields 27
1.9.1 Property-access methods 28
1.9.2 Types of properties 30

1.6.5.1 Definition 16

II

1.9.3 Methods 31

1.9.4 Events 31

1.9.5 Containership 32

1.9.6 Ownership 32

1.9.7 Parenthood 33

CHAPTER 2 :DATABASE 34

2.1 Demerits of Absence of Database 34

2.2 Merits of Database 35

23 Database Design 35

2.4 Database Models 36

2.4.1 Flat Model 37

2.4.2 Network Model 37

2.4.3 Relational Model 37
2.4.3.1 Why we use a Relational Database Design 38

2.5 Relationship Between Tables 39

2.5.2 One-To-One Relationships 39
2.5.3 One-To-Many Relationships 39

2.6 Data Modeling 40
i.6.1 Database Normalization 40

2.6.2 Primary Key 40
2.6.3 Foreign Key 41

2.6.4 Compound Key 42

CHAPTER 3 :MYSQL 43

3.1 Introducrtion to MySQL 43

3.2 What is MySQL? 43
3.2.1 Definition 43

3.3 Why Choose MySQL? 44
3.4 Preparing the Windows MySQL Environment 45

3.5 Starting the Server for the First Time 46
3.6 Connecting to and Disconnecting from Server 48

3.7 Entering Queries 49

III

CHAPTER 4 : USER MANUEL 54

CONCLUSION 76

APPENDIX 77

Forml Codes 77

Form2 Codes 82

Form3 Codes 84

Form4 Codes 87

Form5 Codes 89

Form6 Codes 91

Form7 Codes 94

Form8 Codes 95

Form9 Codes 96

FormlO Codes 100

Formll Codes 106

Form12 Codes 109

Form13 Codes 114

Form14 Codes 117

Form15 Codes 121

Form16 Codes 126

Form17 Codes 132

Form18 Codes 138

Form19 Codes 143

Form20 Codes 149

Form21 Codes 154

Form22 Codes 160

Form23 Codes 168

Form24 Codes 172

Form25 Codes 179

Form26 Codes 185

Form27 Codes 188

Form28 Codes 195

Form29 Codes 202

IV

Form30 Codes 209

Form31 Codes 211

Form32 Codes 214

Form33 Codes 219
Form34 Codes 224

Form35 Codes 229

Form36 Codes 232

Form37 Codes 236

Form38 Codes 238

Form39 Codes 240
Form40 Codes 241

Form41 Codes 244
Vetap Project Codes 250

Database Creation Codes 253

:{1}{}

V

ACKNOWLEDGMENT

When people start a new work they get excited.Because who do not know any thing

about the future of work. When a time passed human becomes familiar for this

work.Afterthat may be borred,maybe want to leave this work. That may be true maybe

false.It changes from people to people.But I believe that the important thing in the life do

not leave such who should embrace very tightly. When we get this it makes us happy.

In the life what is important for you.Business? Money? Science? Power? Family?

Love? Humanity? or purpose of existence? In my opinion first of all aim of existence

comes.Rest of all things involved in aim of existence.After that comes Love. The world exists

of love. With love person gets power, gains working perseverence .

Well in this project I gained perseverence from Allah and from my fiancee.l am

happy to complete the task which I had given with blessing of Allah and also I am grateful

to my fiancee and all the people in my life who have supported me, advised me. They all

the time helped and encouraged me to follow my dreams and ambitions.

For intellectual support, encouragement I want to thank to my supervisor Mr.

Elburus lmanov who made this project contributions.

And thank my dearest parents who supported me to continue beyond my

undergraduate studies, and also many thanks to my dear familiy who brought me till such

meaning days.

To all my friends, especially M.Fethullah Akatay, Selman Kayabas, Metin Yenigun ,

Kadir Bekiroglu and My dear fiancee for sharing wonderful moments, advice, and for

making me feel at home and in life. And above, I thank God for giving me stamina and

courage to achieve my objectives.

AHMET KAYABA~

VI

ABSTRACT

In the world not only human life is important.In the same time other entity lives with us.We

are not alone on the earth.Animals share life with us.Ilnesses are not only for human.In the
same time whole alive interested with illnesses.How Doctor is important for us like

Veterinerian is important for animals.Todays Doctors use application program.Because of

to keep knowledge of patient, to facility diagnosis of illness, to reach background of

patient efficiently and easly.

Well Veterinerian application program is important like the program that is used human

health.Also much more important then others.Because animal can not keep the illnesses

knowledge.And also papers of the animal can lost.

This project has as its goal to develop software, processing information about activities of a

veterinerian application software. Software developed in this project like not only for

animal.In the same time for staff and for owner of the animal.All records keep in the other

Database program.It acts easly and fast access.Veterinerian can keep all records in the

program as concentment.

VII

INTRODUCTION

Since human created by the powerful Allah, Human wonder everything.Well who tried to

satisfy wonder.Such humanity came to nowadays as develop.Todays everyone says

technology perfect developed.Yes that is right.By means of technology all process gained

velocity.This development acts to spend time to the people.

Technology is entered to every platform of our life human needed to combine both

software and hardware. Without software the machines are nothing. They need software to

operate.The automation is also became a part of our lives. The people operate with

automation systems in everywhere.

Veterinerian Application project which is my project.In this software veterinerian can keep

animal knowledge, patient background knowledge of the animal, owner of the animal

knowledge.With this software veterinerian will make record process easily and safetly.

In Software there are five types user.They can access to only their task process.In the

same time in the program veterinerian can get obligation as daily.The software can be used

at every animal clinic easly.

VIII

CHAPTER 1

DELPHI

1.1 INTRODUCTION TO DELPHI

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey

(the founders of the method) were particular happy. Since many of the early Delphi

studies focused on utilizing the technique to make forecasts of future occurrences, the

name was first applied by some others at Rand as a joke. However, the name stuck. The

resulting image of a priestess, sitting on a stool over a crack in the earth, inhaling sulfur

fumes, and making vague and jumbled statements that could be interpreted in many

different ways, did not exactly inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information

"sounds" so easy to do that many people have done "one" Delphi, but never a second.

Since the name gives no obvious insight into the method and since the number of

unsuccessful Delphi studies probably exceeds the successful ones, there has been a long

history of diverse definitions and opinions about the method. Some of these

misconceptions are expressed in statements such as the following that one finds in the

literature:

It is a method for predicting future events.

It is a method for generating a quick consensus by a group.

It is the use of a survey to collect information.

It is the use of anonymity on the part of the participants.

It is the use of voting to reduce the need for long discussions.

It is a method for quantifying human judgement in a group setting.

Some of these statements are sometimes true; a few (e.g. consensus) are actually

contrary to the purpose of a Delphi. Delphi is a communication structure aimed at

producing detailed critical examination and discussion, not at forcing a quick

I

compromise. Certainly quantification is a property, but only to serve the goal of quickly

identifying agreement and disagreement in order to focus attention. It is often very

common, even today, for people to come to a view of the Delphi method that reflects a

particular application with which they are familiar. In 1975 Linstone and Turoff

proposed a view of the Delphi method that they felt best summarized both the technique

and its objective:

"Delphi may be characterized as a method for structuring a group communication

process, so that the process is effective in allowing a group of individuals, as a whole, to

deal with complex problems." The essence of Delphi is structuring of the group

communication process. Given that there had been much earlier work on how to

facilitate and structure face-to-face meetings, the other important distinction was that

Delphi was commonly applied utilizing a paper and pencil communication process

among groups in which the members were dispersed in space and time. Also, Delphis

were commonly applied to groups of a size (30 to 100 individuals) that could not

function well in a face-to-face environment, even if they could find a time when they all

could get together.

Additional opportunity has been added by the introduction of Computer Mediated

Communication Systems (Hiltz and Turoff, 1978; Rice and Associates, 1984; Turoff,

1989; Turoff, 1991). These are computer systems that support group communications in

either a synchronous (Group Decision Support Systems, Desanctis et. al., 1987) or an

asynchronous manner (Computer Conferencing). Techniques that were developed and

refined in the evolution of the Delphi Method (e.g. anonymity, voting) have been

incorporated as basic facilities or tools in many of these computer based systems. As a

result, any of these systems can be used to carry out some form of a Delphi process or

Nominal Group Technique (Delbecq, et. al., 1975).

The result, however, is not merely confusion due to different names to describe the

same things; but a basic lack of knowledge by many people working in these areas as to

what was learned in the studies of the Delphi Method about how to properly employ

these techniques and their impact on the communication process. There seems to be a

great deal of "rediscovery" and repeating of earlier misconceptions and difficulties.

2

Given this situation, the primary objective of this chapter is to review the specific

properties and methods employed in the design and execution of Delphi Exercises and

to examine how they may best be translated into a computer based environment.

1.2 WHAT IS DELPHI?

Delphi is an object oriented, component based, visual, rapid development environment

for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market. The term "visual" describes Delphi very well. All of the user

interface development is conducted "in a What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers (the

previous versions of which went by the name "Turbo Pascal") from the company

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal

compilers that preceded it, Delphi is not just a compiler, but a complete development

environment. Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

3

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools What's more, the development environment itself is

extensible, and there are a number of add ins available to perform functions such as

memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications that will

run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tools.

This specialisation on one platform and one operating system, makes Delphi a very

strong tool. The code it generates runs very rapidly, and is very stable, once your own

bugs have been ironed out!

1.3 WHAT KIND OF PROGRAMMING CAN YOU DO WITH DELPHI?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

4

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.4 VERSIONS ARE THERE AND HOW DO THEY DIFFER?

Borland (as they were then) has a long tradition in the creation of high speed compilers.

One of their best known products was Turbo Pascal - a tool that many programmers cut

their teeth on. With the rise in importance of the Windows environment, it was only a

matter of time before development tools started to appear that were specific to this new

environment.

In the very beginning, Windows produced SDKs (software development kits) that were

totally non-visual (user interface development was totally separated from the

development of the actual application), and required great patience and some genius to

5

get anything working with. Whilst these tools slowly improved, they still required a

really good understanding of the inner workings of Windows.

To a great extent these criticisms were dispatched by the release of Microsoft's Visual

Basic product, which attempted to bring Windows development to the masses. It

achieved this to a great extent too, and remains a popular product today. However,it

suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers weren't so

keen!

Into this environment arrived the eye opening Delphi I product, and in many ways the

standard for visual development tools for Windows was set. This first version was a 16

bit compiler, and produced executable code that would run on Windows 3 .1 and

Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.

Delphi 2 was released quite soon after Delphi I, and in fact included a full distribution

of Delphi I on the same CD. Delphi 2, (and all subsequent versions) have been 32 bit

compilers, producing code that runs exclusively on 32bit Windows platforms. (We

ignore for simplicity the WIN32S DLLs which allow Win 3. lx to run some 32 bit

applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0) expected

shortly. In its latest version, Delphi has become somewhat feature loaded, and as a

result, we would argue, less stable than the earlier versions. However, in its defence,

Delphi (and Borland products in general) have always been more stable than their

competitors products, and the majority of Delphi 4's glitches are minor and forgivable -

6

just don't try and copy/paste a selection of your code, midway through a debugging

session!

The reasons for the version progression include the addition of new components,

improvements in the development environment, the inclusion of more internet related

support and improvements in the documentation. Delphi at version 4 is a very mature

product, and Inprise has always been responsive in developing the product in the

direction that the market requires it to go. Predominantly this means right now, the

inclusion of more and more Internet, Web and CORBA related tools and components - a

trend we are assured continues with the release of version 5. 0

For each version of Delphi there are several sub-versions, varying in cost and features,

from the most basic "Developer" version to the most complete (and expensive) "Client

Server" version. The variation in price is substantial, and if you are contemplating a

purchase, you should study the feature list carefully to ensure you are not paying for

features you will never use. Even the most basic "Developer" version contains the vast

majority of the features you are likely to need on a day to day basis. Don't assume that

you will need Client Server, simply because you are intending to write a large database

application - The developer edition is quitcapable ofthis.

1.5 SOME KNOWLEDGE ABOUT DELPHI

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

7

For the purposes of this series I will be using Delphi 7. There are more recent versions

available (2005 and 2006) however Delphi 7 should be available inexpensively

compared to the new versions which will set you back a lot of money. Delphi 7 will

more than likely be available in a magazine for free.

1.5.2 Example: Try First Delphi Program

First thing is first, fire up your copy of Delphi and open the Project> Options menu. To

compile a console application you need to change a setting on the Linker tab called

'Generate console application', check the box and click OK. Now select File > Close

All if anything is already loaded. Then select File > New > Other > Console

Application.

Notice the first line refers to the keyword program. You can rename this to Hello World.

You can also remove the commented portion enclosed in curly brackets.

The uses keyword allows you to list all units that you want to use in the program. At the

moment just leave it as it is, SysUtils is all we need.

Your unit should now look like this:

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

end.

Now what we have just done is written a program, it currently doesn't do a thing

however. Hit the run button and see the result. Now wasn't that completely worthless.

8

Luckily this isn't the end of the article so we'll actually have a worthwhile program at

the end of it. All we need to do is insert some code in the main procedure we have just

made.

Every good programmer's first program was 'Hello World' and you'll be no exception.

All we need to do is use the WriteLn procedure to write 'Hello World!' to the console,

simple.Notice the semicolon at the end of the line, at the end of any statement you need

to add a semicolon. Run the program and see the results ...

Now I don't know about you but I saw hello world flash up and go away in a second, if

you didn't write the program you wouldn't even know what it said. To solve this

problem we need to tell the program to leave the console open until the user is ready to

close it. We can use ReadLn for this which reads the users input from the console.

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!'+ #13#10 + #13#10 +

'Press RETURN to end ... ');

ReadLn;

end.

I have added a few extra things into the 'Hello World' string so the user knows what to

do to end the program as it could be a bit confusing. '#13#10' is to insert a carriage

9

return as 13 and 10 are the ASCII codes for a carriage return followed by a new line

feed. ASCII can be inserted in this way into strings.

1.5.2 Delphi Style

Coding style, the way you format your code and the way in which you present it on the

page.At the end of the day who cares about my style, I can read it, and Delphi strips all

the spaces out of it and doesn't care ifl indent. Why waste my time?

Neatly present code which conforms to the accepted standards not only makes your

code much easier for you to read and debug but also but any one else who might read

your code to help you, or learn from you can do so with ease. After all which code is

easier to follow, example 1 or 2?

Delphi Code:

II Example I

procedure xyzQ;

var

x,y,z,a:integer;

begin

x:=l;y:=2;

for z:=x toy do begin

a:=power(z,y);

showmessage(inttostr(a));

end;

10

end;

Delphi Code:

II Example 2

procedure XYZ();

var

X, Y,Z,A: Integer;

begin

X := 1;

y :=2;

for Z := X to Y do

begin

A := Power(Z, Y);

ShowMessage(IntT oStr(A));

end; II for end

end; II procedure end

Design patterns are frequently recurring structures and relationships in object-oriented

design. Getting to know them can help you design better, more reusable code and also

help you learn to design more complex systems.

Much of the ground-breaking work on design patterns was presented in the book Design

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson

and Vlissides. You might also have heard of the authors referred to as "the Gang of

Four". If you haven't read this book before and you're designing objects, it's an excellent

11

pnmer to help structure your design. To get the most out of these examples, I

recommend reading the book as well.

Another good source of pattern concepts is the book Object Models: Strategies, Patterns

and Applications by Peter Coad. Coad's examples are more business oriented and he

emphasises learning strategies to identify patterns in your own work.

1.6 HOW DELPHI HELPS YOU DEFINE PATTERNS

Delphi implements a fully object-oriented language with many practical refinements

that simplify development.

The most important class attributes from a pattern perspective are the basic inheritance

of classes; virtual and abstract methods; and use of protected and public scope. These

give you the tools to create patterns that can be reused and extended, and let you isolate

varying functionality from base attributes that are unchanging.

Delphi is a great example of an extensible application, through its component

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual

and abstract constructors and operations.

1.6.1 Delphi Examples of Design Patterns

I should note from the outset, there may be alternative or better ways to implement

these patterns and I welcome your suggestions on ways to improve the design. The

following patterns from the book Design, Patterns are discussed and illustrated m

Delphi to give you a starting point for implementing your own Delphi patterns.

Pattern Name

Singleton

Definition

"Ensure a class has only one instance, and provide a global point

of access to it."

"Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't
Adapter

12

Template Method

Builder

Abstract Factory

Factory Method

otherwise because of incompatible interfaces."

"Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the

algorithm's structure."

"Separate the construction of a complex object from its

representation so that the same construction process can create

different representations."

"Provide an interface for creating families of related or

dependant objects without specifying their concrete classes."

"Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory method lets a class

defer instantiation to subclasses."

Note: These definitions are taken from Design Patterns.

1.6.2 Pattern: Singleton

1.6.2.1 Definition

"Ensure a class has only one instance, and provide a global point of access to it."

This is one of the easiest patterns to implement.

1.6.2.2 Applications in Delphi

There are several examples of this sort of class in the Delphi VCL, such as

T Application, TScreen or TClipboard. The pattern is useful whenever you want a single

global object in your application. Other uses might include a global exception handler,

application security, or a single point of interface to another application.

13

1.6.2.3 Implementation Example

To implement a class of this type, override the constructor and destructor of the class to

refer to a global (interface) variable of the class.

Abort the constructor if the variable is assigned, otherwise create the instance and

assign the variable.

In the destructor, clear the variable if it refers to the instance being destroyed.

Note: To make the creation and destruction of the single instance automatic, include its

creation in the initialization section of the unit. To destroy the instance, include its

destruction in an Exitf'roc (Delphi 1) or in the finalization section of the unit (Delphi 2).

1.6.3 Pattern: Adapter

1.6.3.1 Definition

"Convert the interface of a class into another interface clients expect. Adapter lets

classes work together that couldn't otherwise because of incompatible interfaces."

1.6.3.2 Applications in Delphi

A typical example of this is the wrapper Delphi generates when you import a VBX or

OCX. Delphi generates a new class which translates the interface of the external control

into a Pascal compatible interface. Another typical case is when you want to build a

single interface to old and new systems.

Note Delphi does not allow class adaption through multiple inheritance in the way

described in Design Patterns. Instead, the adapter needs to refer to a specific instance of

the old class.

14

1.6.3.3 Implementation Example

The following example is a simple (read only) case of a new customer class, an adapter

class and an old customer class. The adapter illustrates handling the year 2000 problem,

translating an old customer record containing two digit years into a new date format.

The client using this wrapper only knows about the new customer class. Translation

between classes is handled by the use of virtual access methods for the properties. The

old customer class and adapter class are hidden in the implementation of the unit.

1.6.4 Pattern: Template Method

1.6.4.1 Definition

"Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template Method lets subclasses redefine certain steps of an algorithm without

changing the algorithm's structure."

This pattern is essentially an extension of abstract methods to more complex algorithms.

1.6.4.2 Applications in Delphi

Abstraction is implemented in Delphi by abstract virtual methods. Abstract methods

differ from virtual methods by the base class not providing any implementation. The

descendant class is completely responsible for implementing an abstract method.

Calling an abstract method that has not been overridden will result in a runtime error.

1.6.4.3 A typical example of abstraction is the TGraphic class.

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile. Other

developers have frequently used TGraphic as the basis for other graphics objects such as

PCX, GIF, JPG representations. TGraphic defines abstract methods such as Draw,

LoadFromFile and SaveToFile which are then overridden in the concrete classes. Other

objects that use TGraphic, such as a TCanvas only know about the abstract Draw

method, yet are used with the concrete class at runtime.

15

Many classes that use complex algorithms are likely to benefit from abstraction using

the template method approach. Typical examples include data compression, encryption

and advanced graphics processing.

1.6.4.4 Implementation Example

To implement template methods you need an abstract class and concrete classes for

each alternate implementation. Define a public interface to an algorithm in an abstract

base class. In that public method, implement the steps of the algorithm in calls to

protected abstract methods of the class. In concrete classes derived from the base class,

override each step of the algorithm with a concrete implementation specific to that

class.

1.6.5 Pattern: Builder

1.6.5.1 Definition

"Separate the construction of a complex object from its representation so that the same

construction process can create different representations."

A Builder seems similar in concept to the Abstract Factory. The difference as I see it is

the Builder refers to single complex objects of different concrete classes but containing

multiple parts, whereas the abstract factory lets you create whole families of concrete

classes. For example, a builder might construct a house, cottage or office. You might

employ a different builder for a brick house or a timber house, though you would give

them both similar instructions about the size and shape of the house. On the other hand

the factory generates parts and not the whole. It might produce a range of windows for

buildings, or it might produce a quite different range of windows for cars.

1.6.5.2 Applications in Delphi

The functionality used in Delphi's VCL to create forms and components is similar in

concept to the builder. Delphi creates forms using a common interface, through

Application.CreateForm and through the TForm class constructor. TForm implements a

16

common constructor using the resource information (DFM file) to instantiate the

components owned by the form. Many descendant classes reuse this same construction

process to create different representations. Delphi also makes developer extensions

easy. TForm's OnCreate event also adds a hook into the builder process to make the

functionality easy to extend.

1.6.5.3 Implementation Example

The following example includes a class TAbstractForrnBuilder and two concrete classes

TRedForrnBuilder and TBlueForrnBuilder. For ease of development some common

functionality of the concrete classes has been moved into the shared

T AbstractF orrnBuilder class.

1.6.6 Pattern: Abstract Factory

1.6.6.1 Definition

"Provide an interface for creating families of related or dependant objects without

specifying their concrete classes."

The Factory Method pattern below is commonly used in this pattern.

1.6.6.2 Applications in Delphi

This pattern is ideal where you want to isolate your application from the implementation

of the concrete classes. For example if you wanted to overlay Delphi's VCL with a

common VCL layer for both 16 and 32 bit applications, you might start with the

abstract factory as a base.

1.6.6.3 Implementation Example

The following example uses an abstract factory and two concrete factory classes to

implement different styles of user interface components. TOAbstractFactory is a

singleton class, since we usually want one factory to be used for the whole application.

17

At runtime, our client application instantiates the abstract factory with a concrete class

and then uses the abstract interface. Parts of the client application that use the factory

don't need to know which concrete class is actually in use.

1.6. 7 Pattern: Factory Method

l.6.7.1 Definition

"Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory method lets a class defer instantiation to subclasses."

The Abstact Factory pattern can be viewed as a collection of Factory Methods.

1.6.7.2 Applications in Delphi

This pattern is useful when you want to encapsulate the construction of a class and

isolate knowledge of the concrete class from the client application through an abstract

interface.

One example of this might arise if you had an object oriented business application

potentially interfacing to multiple target DBMS. The client application only wants to

know about the business classes, not about their implementation-specific storage and

retrieval.

1.6.7.3 Implementation Example

In the Abstract Factory example, each of the virtual widget constructor functions is a

Factory Method. In their implementation we define a specific widget cl,ass to return.

18

1. 7 KEY ELEMENTS OF DELPID CLASS DEFINITIONS

1.7.1 Unit Structure

Delphi units (.PAS files) allow declaration of interface and implementation sections.

The interface defines the part that is visible to other units using that unit. The keyword

uses can be added to a unit's interface or implementation section to list the other units

that your unit uses. This indicates to the compiler that your unit refers to parts of the

used unit's interface. Parts of a unit declared in the implementation section are all

private to that unit, i.e. never visible to any other unit. Types, functions and procedures

declared in the interface of a unit must have a corresponding implementation, or be

declared as external (e.g. a call to a function in a DLL).

1. 7 .2 Class Interfaces

Classes are defined as types in Delphi and may contain fields of standard data types or

other objects, methods declared as functions or procedures, and properties. The type

declaration of a class defines its interface and the scope of access to fields, methods and

properties of the class. Class interfaces are usually defined in the interface of a unit to

make them accessible to other modules using that unit. However they don't need to be.

Sometimes a type declaration of a class may be used only within the implementation

part of a unit.

1. 7 .3 Properties

Properties are a specialised interface to a field of a defined type, allowing access control

through read and write methods. Properties are not virtual, you can replace a property

with another property of the same name, but the parent class doesn't know about the

new property. It is however possible to make the access methods of a property virtual.

1. 7.4 Inheritance

Delphi's inheritance model is based on a single hierarchy. Every class inherits from

TObject and can have only one parent.

19

A descendant class inherits all of the interface and functionality of its parent class,

subject to the scope described below.

Multiple inheritance from more than one parent is not allowed directly. It can be

implemented by using a container class to create instances one or more other classes

and selectively expose parts of the contained classes.

Private, Protected, Public and Published ScopeScope refers to the visibility of methods

and data defined in the interface of a class, i.e. what parts of the class are accessible to

the rest of the application or to descendant classes.

The default scope is public, for instance the component instances you add to a form at

design time. Public says "come and get me"; it makes the data or method visible to

everything at runtime.

Published parts of a class are a specialized form of Public scope. They indicate special

behaviour for classes derived from Tf'ersistent. A persistent class can save and restore

its published properties to persistent storage using Delphi's standard streaming methods.

Published properties also interact with Delphi Object Inspector in the IDE. A class must

descend from TPersistent in order to use Published. There's also not much point in

publishing methods, since you can't store them, although Delphi's compiler doesn't stop

you. Published also lets another application access details of the class through Delphi's

runtime type information. This would be rarely used, except in Delphi's design time

interaction with its VCL.

Encapsulation or information hiding is essential to object orientation, so Protected and

Private scope let you narrow the access to parts of a class.

Protected parts are visible only to descendant classes, or to other classes defined in the

same unit.

Private parts are visible only to the defining class, or to other classes defined in the

same unit.

It's important to note that once something is given public or published scope, it cannot

be hidden in descendant classes.

20

Static, Virtual and Dynamic Methods; Override and Inherited

Methods declared as virtual or dynamic let you change their behaviour using override in

a descendant class. You're unlikely to see a virtual method in the private part of a class,

since it could only be overridden in the same unit, although Delphi's compiler doesn't

stop you from doing this.

Override indicates that your new method replaces the method of the same name from

the parent class. The override must be declared with the same name and parameters as

the original method.

When a method is overridden, a call to the parent class's method actually executes the

override method in the real class of the object.

Static methods on the other hand have no virtual or override declaration. You can

replace a method of a class in a descendant class by redeclaring another method,

however this is not object oriented. If you reference your descendant class as the parent

type and try to call the replaced method, the static method of the parent class is

executed. So in most cases, it's a bad idea to replace a static method.

Virtual and dynamic methods can be used interchangeably. They differ only in their

treatment by the compiler and runtime library. Delphi's help explains that dynamic

methods have their implementation resolved at compile time and run slightly faster,

whereas virtual methods are resolved at runtime, resulting in slightly slower access but

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help

suggests using dynamic when you have a base class with many descendants that may

not override the method.

The inherited directive lets you refer back to a property or method as it was declared in

the parent class. This is most often used in the implementation of an override method, to

call the inherited method of the parent class and then supplement its behaviour.

1. 7 .5 Abstract Methods

Abstract is used in base classes to declare a method in the interface and defer its

implementation to a descendant class. I.e. it defines an interface, but not the underlying

21

operation. Abstract must be used with the virtual or dynamic directive. Abstract

methods are never implemented in the base class and must be implemented in

descendant classes to be used. A runtime error occurs if you try to execute an abstract

method that is not overridden. Calling inherited within the override implementation of

an abstract method will also result in a runtime error, since there is no inherited

behaviour.

1. 7 .6 Messages

Delphi's handling of Windows messages is a special case of virtual methods. Message

handlers are implemented in classes that descend from TControl. Le classes that have a

handle and can receive messages. Message handlers are always virtual and can be

declared in the private part of a class interface, yet still allow the inherited method to be

called. Inherited in a message handler just uses the keyword inherited, there is no need

to supply the name of the method to call.

1. 7. 7 Events

Events are also an important characteristic of Delphi, since they let you delegate

extensible behaviour to instances of a class. Events are properties that refer to a method

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour ·

to let you use inherited in an event. . Inherited in an event handler just uses the keyword

inherited, there is no need to supply the name of the method to call.

Events are particularly important to component developers, since they provide a hook

for the user of the component to modify its behaviour in a way that may not be foreseen

at the time the component is written.

1.7.S Constructors and Destructors

The constructor and destructor are two special types of methods, The constructor

initializes a class instance (allocates memory initialized to 0) and returns a reference

(pointer) to the object. The destructor deallocates memory used by the object (but not

the memory of other objects created by the object).

22

Classes descended from TObject have a static constructor, Create, and a virtual

destructor Destroy.

TConiponent introduces a new public property, the Owner of the component and this

must be initialized in the constructor. TComponent's constructor is declared virtual, i.e.

it can be overridden in descendant classes.It is essential when you override a virtual

constructor or destructor in a TComponent descendant to include a call to the inherited

method.

1.8 THE VCL TO APPLICATIONS DEVELOPERS

Applications Developers create complete applications by interacting with the Delphi

visual environment (as mentioned earlier, this is a concept nonexistent in many other

frameworks). These people use the VCL to create their user-interface and the other

elements of their application: database connectivity, data validation, business rules, etc ..

Applications Developers should know which properties, events, and methods each

component makes available. Additionally, by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

applications by extending components or creating new ones. Then they can maximize

the capabilities of these components, and create better applications.

1.8.1 The VCL to Component Writers

Component Writers expand on the existing VCL, either by developing new components,

or by increasing the functionality of existing ones. Many component writers make their

components available for Applications Developers to use.

A Component Writer must take their knowledge of the VCL a step further than that of

the Application Developer. For example, they must know whether to write a new

component or to extend an existing one when the need for a certain characteristic arises.

This requires a greater knowledge of the VCL's inner workings.

23

1.8.2 The VCL is made up of components

Components are the building blocks that developers use to design the user-interface and

to provide some non-visual capabilities to their applications. To an Application

Developer, a component is an object most commonly dragged from the Component

palette and placed onto a form. Once on the form, one can manipulate the component's

properties and add code to the component's various events to give the component a

specific behavior. To a Component Writer, components are objects in Object Pascal

code. Some components encapsulate the behavior of elements provided by the system,

such as the standard Windows 95 controls. Other objects introduce entirely new visual

or non-visual elements, in which case the component's code makes up the entire

behavior of the component.

The complexity of different components varies widely. Some might be simple while

others might encapsulate a elaborate task. There is no limit to what a component can do

or be made up of You can have a very simple component like a TLabel, or a much

more complex component which encapsulates the complete functionality of a

spreadsheet.

1.8.3 Component Types, structure, and VCL hierarchy

Components are really just special types of objects. In fact, a component's structure is

based on the rules that apply to Object Pascal. There are three fundamental keys to

understanding the VCL.

First, you should know the special characteristics of the four basic component types:

standard controls, custom controls, graphical controls and non-visual components.

Second, you must understand the VCL structure with which components are built. This

really ties into your understanding of Object Pascal's implementation. Third, you should

be familiar with the VCL hierarchy and you should also know where the four

component types previously mentioned fit into the VCL hierarchy. The following

paragraphs will discuss each of these keys to understanding the VCL.

24

1.8.4 Component Types

As a component writer, there four primary types of components that you will work with

in Delphi: standard controls, custom controls, graphical controls, and non-visual

components. Although these component types are primarily of interest to component

writers, it's not a bad idea for applications developers to be familiar with them. They are

the foundations on which applications are built.

1.8.4.1 Standard Components

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox and Tedit, for example. You will find

these components on the Standard page of the Component Palette. These components

are Windows' common controls with Object Pascal wrappers around them.

Each standard component looks and works like the Windows' common control which it

encapsulates. The VCL wrapper's simply makes the control available to you in the form

of a Delphi component-it doesn't define the common control's appearance or

functionality, but rather, surfaces the ability to modify a control's

appearance/functionality in the form of methods and properties. If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS.PAS.

If you want to use these standard components unchanged, there is no need to understand

how the VCL wraps them. If, however, you want to extend or change one of these

components, then you must understand how the Window's common control is wrapped

by the VCL into a Delphi component.

For example, the Windows class LISTBOX can display the list box items in multiple

columns. This capability, however, isn't surfaced by Delphi's TListBox component

(which encapsulates the Windows LISTBOX class). (TListBox only displays items in a

single column.) Surfacing this capability requires that you override the default creation

of the TListBox component.

25

This example also serves to illustrate why it is important for Applications Developers to

understand the VCL. Just knowing this tidbit of information helps you to identify where

enhancements to the existing library of components can help make your life easier and

more productive.

1.8.4.2 Custom components

Unlike standard components, custom components are controls that don't already have a

method for displaying themselves, nor do they have a defined behavior. The Component

Writer must provide to code that tells the component how to draw itself and determines

how the component behaves when the user interacts with it. Examples of existing

custom components are the TPanel and TStringGrid components.

It should be mentioned here that both standard and custom components are windowed

controls. A "windowed control" has a window associated with it and, therefore, has a

window handle. Windowed controls have three characteristics: they can receive the

input focus, they use system resources, and they can be parents to other controls.

(Parents is related to containership, discussed later in this paper.) An example of a

component which can be a container is the TPanel component.

1.8.4.3 Graphical components

Graphical components are visual controls which cannot receive the input focus from the

user. They are non-windowed controls. Graphical components allow you to display

something to the user without using up any system resources; they have less "overhead"

than standard or custom components. Graphical components don't require a window

handle-thus, they cannot can't get focus. Some examples of graphical components are

the TLabel and TShape components.

Graphical components cannot be containers of other components. This means that they

cannot own other components which are placed on top of them.

1.8.4.4 Non-visual components

Non-visual components are components that do not appear on the form as controls at

run-time. These components allow you to encapsulate some functionality of an entity

26

within an object. You can manipulate how the component will behave, at design-time,

through the Object Inspector. Using the Object Inspector, you can modify a non-visual

component's properties and provide event handlers for its events. Examples of such

components are the TOpenDialog, TTable, and TTimer components.

1.8.4.5 Structure of a component

All components share a similar structure. Each component consists of common

elements that allow developers to manipulate its appearance and function via properties,

methods and events. The following sections in this paper will discuss these common

elements as well as talk about a few other characteristics bf components which don't

apply to all components.

1.8.4.6 Component properties

Properties provide an extension of an object's fields. Unlike fields, properties do not

store data: they provide other-capabilities. For example, properties may use methods to

read or write data to an object field to which the user has no access. This adds a certain

level of protection as to how a given field is assigned data. Properties also cause "side

effects" to occur when the user makes a particular assignment to the property. Thus

what appears as a simple field assignment to the component user could trigger a

complex operation to occur behind the scenes.

1.9 PROPERTIES PROVIDE ACCESS TO INTERNAL STORAGE FIELDS

There are two ways that properties provide access to internal storage fields of

components: directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

FMaxLength: Integer;

protected

procedure SetMaxLength(Value: Integer);

27

published

property MaxLength: Integer read

FMaxLength write SetMaxLength default O;

end;

The code above is snippet of the TCustomEdit component class. TCustomEdit is the

base class for edit boxes and memo components such as TEdit, and TMemo.

TCustomEdit has an internal field FMaxLength of type Integer which specifies the

maximum length of characters which the user can enter into the control. The user

doesn't directly access the FMaxLength field to specify this value. Instead, a value is

added to this field by making an assignment to the MaxLength property.

The property MaxLength provides the access to the storage field FMaxLength. The

property definition is comprised of the property name, the property type, a read

declaration, a write declaration and optional default value.

The read declaration specifies how the property is used to read the value of an internal

storage field. For instance, the MaxLength property has direct read access to

FMaxLength. The write declaration for MaxLength shows that assignments made to the

MaxLength property result in a call to an access method which is responsible for

assigning a value to the FMaxLength storage field. This access method is

SetMaxLength.

1.9.1 Property-access methods

Access methods take a single parameter of the same type as the property. One of the

primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

28

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the SetMaxLength method below.

procedure TCustomEdit. SetMaxLength(Value: Integer);

begin

if FMaxLength <> Value then

begin

FMaxLength := Value;

if HandleAllocated then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

The code in the SetMaxLength method checks if the user is assigning the same value as

that which the property already holds. This is done as a simple optimization. The

method then assigns the new value to the internal storage field, FMaxLength.

Additionally, the method then sends an EM_ LIMITTEXT Windows message to the

window which the TCustomEdit encapsulates. The EM_ LIMITTEXT message places a

limit on the amount of text that a user can enter into an edit control. This last step is

what is referred to as a side-effect when assigning property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

Providing access to internal storage fields through property access methods offers the

advantage that the Component Writer can modify the implementation of a class without

modifying the interface. It is also possible to have access methods for the read access of

a property. The read access method might, for example, return a type which is different

that that of a properties storage field. For instance, it could return the string

representation of an integer storage field.

29

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.9.2 Types of properties

Properties can be of the standard data types defined by the Object Pascal rules. Property

types also determine how they are edited in Delphi's Object Inspector. The table below

shows the different property types as~ they are defined in Delphi's online help.

Property type Object Inspector treatment

Numeric, character, and string properties appear in the Object Inspector

as numbers, characters, and strings, respectively. The user can type and

edit the value of the property directly.

Properties of enumerated types (including Boolean) display the value as

defined in the source code The user can cycle through the possible
Enumerated

values by double-clicking the value column There is also a drop-down

list that shows all possible values of the enumerated type.

Simple

Set

Properties of set types appear in the Object Inspector looking like a set

By expanding the set, the user can treat each element of the set as a

Boolean value True if the element is included in the set or False if it's

not included.

Properties that are themselves objects often have their own property

editors However, if the object that is a property also has published

properties, the Object Inspector allows the user to expand the list of

object properties and edit them individually Object properties must

descend from TPersistent.

Array properties must have their own property editors. The Object

Inspector has no built-in support for editing array properties.

Object

Array

For more information on properties, refer to the "Component Writers Guide" which

ships with Delphi.

30

1.9.3 Methods

Since components are really just objects, they can have methods. We will discuss some

of the more commonly used methods later in this paper when we discuss the different

levels of the VCL hierarchy.

1.9.4 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

Components contain special properties called events to which the component user

assigns code. This code will be executed whenever a certain event occurs. For instance,

if you look at the events page of a TEdit component, you'll see such events as

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

When the user of a component assigns code to one of those events, the user's code is

referred to as an event handler. For example, by double clicking on the events page for a

particular event causes Delphi to generate a method and places you in the Code Editor

where you can add your code for that method. An example of this is shown in the code

below, which is an OnClick event for a TButton component.

It becomes clearer that events are method pointers when you assign an event handler to

an event programmatically. The above example was Delphi generated code. To link

your own an event handler to a TButton's OnClick event at run time you must first

create a method that you will assign to this event. Since this is a method, it must belong

to an existing object. This object can be the form which owns the TButton component

although it doesn't have to be. In fact, the event handlers which Delphi creates belong to

the form on which the component resides. The code below illustrates how you would

create an event handler method.

When you define methods for event handlers, these methods must be defined as the

same type as the event property and the field to ~hich the event property refers. For

31

instance, the OnClick event refers to an internal data field, FOnClick. Both the property

OnClick, and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvent = procedure (Sender: TObject) of object;

Note the use of the of object specification. This tells the compiler that the procedure

definition is actually a method and performs some additional logic like ensuring that an

implicit Self parameter is also passed to this method when called. Self is just a pointer

reference to the class to which a method belongs.

1.9.5 Containership

Some components in the VCL can own other components as well as be parents to other

components. These two concepts have a different meaning as will be discussed in the

section to follow.

1.9.6 Ownership

All components may be owned by other components but not all components can own

other components. A component's Owner property contains a reference to the

component which owns it.

The basic responsibility of the owner is one of resource management. The owner is

responsible for freeing those components which it owns whenever it is destroyed.

Typically, the form owns all components which appear on it, even if those components

are placed on another component such as a TPanel. At design-time, the form

automatically becomes the owner for components which you place on it. At run-time,

when you create a component, you pass the owner as a parameter to the component's

constructor. For instance, the code below shows how to create a TButton component at

run-time and passes the form's implicit Self variable to the TButton's Create constructor.

TButton. Create will then assign whatever is passed to it, in this case Self or rather the

form, and assign it to the button's Owner property.

MyButton := TButton.Create(self);

32

When the form that now owns this TButton component gets freed, MyButton will also

be freed.

You can create a component without an owner by passing nil to the component's Create

constructor, however, you must ensure that the component is freed when it is no longer

needed. The code below shows you how to do this for a TTable component.

1.9. 7 Parenthood

Parenthood is a much different concept from ownership. It applies only to windowed

components, which can be parents to other components. Later, when we discuss the

VCL hierarchy, you will see the level in the hierarchy which introduces windowed

controls.

Parent components are responsible for the display of other components. They call the

appropriate methods internally that cause the children components to draw themselves.

The Parent property of a component refers to the component which is its parent. Also, a

component's parent does not have to be it's owner. Although the parent component is

mainly responsible for the display of components, it also frees children components

when it is destroyed.

Windowed components are controls which are visible user interface elements such as

edit controls, list boxes and memo controls. In order for a windowed component to be

displayed, it must be assigned a parent on which to display itself. This task is done

automatically by Delphi's design-time environment when you drop a component from

the Component Palette onto your form.

33

CHAPTER2

DATABASE

Every thing around us has a particular identity. To identify anything system, actor or

person in words we need a data or information. So this information is valuable and in

this advanced era we can store it in database and access this data by the blink of eye.

For an instant if we go through the definitions of database we may find following

definitions.

A database is a collection of related information.

A database is an organized body of related information.

2.1 DEMERITS OF ABSENCE OF DAT ABASE

A glance on the past will may help us to reveal the drawbacks in case of

absence of database.

In the past when there wasn't proper system of database, Much paper work was need to

do and to handle great deal of written paper documentation was giant among the

problems itself.

In the huge networks to deal with equally bulky data, more workers are needed which

affidavit cost much labor expanses.

The old criteria for saving data and making identification was much time consuming

such as if we want to search the particular data of a person.

Before the Development of Computer database it was a great problem to search for

some thing. Efforts to avoid the headache of search often results in new establishments

of data.

34

Before the development of database it seemed very unsafe to keep the worthy

information. In Some situation some big organization had to employee the special

persons in order to secure the data.

Before the implementation of database any firm had to face the plenty of difficulties in

order to maintain their Management. To hold the check on the expenses of the firm, the

manager faced difficulties.

2.2 MERITS OF DATABASE

The modem era is known as the golden age computer sciences and technology. In a

simple phrase we can express that the modem age is built on the foundation of database.

If we carefully watch our daily life we can examine that some how our daily life is

being connected with database.

There are several benefits of database developments.

Now with the help of computerized database we can access data in a second.

By the development of the database we can make data more secure.

By the development of database we can reduce the cost.

2.3 DATABASE DESIGN

The design of a database has to do with the way data is stored and how that data is

related. The design process is performed after you determine exactly what information

needs to be stored and how it is to be retrieved.

A collection of programs that enables you to store, modify, and extract information

from a database. There are many different types of DBMS ranging from small systems

that run on personal computers to huge systems that run on mainframes. The following

are examples of database applications:

Computerized library systems

35

Automated teller machines

Flight reservation systems

Computerized parts inventory systems

From a technical standpoint, DBMS can differ widely. The terms relational, network,

flat, and hierarchical all refer to the way a DBMS organizes information internally. The

internal organization can affect how quickly and flexibly you can extract information.

Requests for information from a database are made in the form of a query.

Database design is a complex subject. A properly designed database is a model of a

business, Country Database or some other in the real world. Like their physical model

counterparts, data models enable you to get answers about the facts that make up the

objects being modeled. It's the questions that need answers that determine which facts

need to be stored in the data model.

In the relational model, data is organized in tables that have the following

characteristics: every record has the same number of facts, every field contains the same

type of facts (Data) in each record, and there is only one entry for each fact. No two

records are exactly the same.

The more carefully you design, the better the physical database meets users' needs. In

the process of designing a complete system, you must consider user needs from a

variety of viewpoints.

2.4 DATABASE MODELS

Various techniques are used to model data structures. Certain models are more easily

implemented by some types of database management systems than others. For any one

logical model various physical implementation may be possible. An example of this is

the relational model: in larger systems the physical implementation often has indexes

which point to the data; this is similar to some aspects of common implementations of

the network model. But in small relational database the data is often stored in a set of

36

files, one per table, in a flat, un-indexed structure. There is some confusion below and

elsewhere in this article as to logical data model vs. its physical implementation.

2.4.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data elements,

where all members of a given column are assumed to be similar values, and all

members of a row are assumed to be related to one another. For instance, columns for

name and password might be used as a part of a system security database. Each row

would have the specific password associated with a specific user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is the basis of the

spreadsheet.

2.4.2 Network Model

The network model allows multiple datasets to be used together through the use of

pointers (or references). Some columns contain pointers to different tables instead of

data. Thus, the tables are related by references, which can be viewed as a network

structure. A particular subset of the network model, the hierarchical model, limits the

relationships to a tree structure, instead of the more general directed graph structure

implied by the full network model.

2.4.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Cod in 1970 as

a way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

Although the basic idea of a relational database has been very popular, relatively few

people understand the mathematical definition and only a few obscure DBMSs

implement it completely and without extension. Oracle, for example, can be used in a

purely relational way, but it also allow tables to be defined that allow duplicate rows an

extension (or violation) of the relational model. In common English usage, a DBMS is

37

called relational if it supports relational operational operations, regardless of whether it

enforces strict adherence to the relational model. The following is an informal, not

technical explanation of how "relational" database management systems commonly

work.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. However, unlike network databases, the tables are not linked by

pointers. Instead, keys are used to match up rows of data in different tables. A key is

just one or more columns in one table that correspond to columns in other tables. Any

column can be a key, or: multiple columns can be grouped together into a single key.

Unlike pointers, it's not necessary to define all the keys in advance; a column can be

used as a key even if it wasn't originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to row; this is defined as

the table's primary key.

When a key consists of data that has an external, real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature

key is suitable, an arbitrary key can be assigned (such as by given employees ID

numbers). In practice, most databases have both generated and natural keys, because

generated keys can be used internally to create links between rows that can't break,

while natural keys can be used, less reliably, for searches and for integration with other

databases. (For example, records in two independently developed databases could be

matched up by social security number, except when the social security numbers are

incorrect, missing, or have changed).

2.4.3.1 Why we use a Relational Database Design

Maintaining a simple, so-called flat database consisting of a single table doesn't require

much knowledge of database theory. On the other hand, most database worth

maintaining are quite a bit more complicated than that. Real life databases often have

hundreds of thousands or even millions of records, with data that are very intricately

related. This is where using a full-fledged relational database program becomes

essential. Consider, for example, the Library of Congress, which has over 16 million

38

books in its collection. For reasons that will become apparent soon, a single table

simply will not do for this database.

2.5 RELATIONSHIPS BETWEEN TABLES

When you create tables for an application, you should also consider the relationships

between them. These relationships give a relational database much of its power. There

are three types of relationships between tables: one-to-one, one-to-many and many-to

many relationships.

2.5.2 One-To-One Relationships

In a one-to-one relationship, each record in one table corresponds to a single record in a

second table. This relationship is not very common, but it can offer several benefits.

First, you can put the fields from both tables into a single, combined table. One reason

for using two tables is that each field is a property of a separate entity, such as owner

operators and their tracks. Each operator can operate just one truck at a time, but the

fields for the operator and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table by

placing some of the table's columns in a second, separate table. This approach makes

particular sense when a table has some fields that are used infrequently. Finally, a one

to-one relationship can support in a table requires security, placing them in a separate

table lets your application restrict to certain fields. Your application can link the

restricted table back to the main table via a one-to-one relationship so that people with

proper permissions can edit, delete, and add new records to these fields.

2.5.3 One-To-Many Relationships

A one-to-many relationship, in which a row from one table corresponds to one or more

rows from a second table, is more common. This kind of relationship can form the basis

for a Marty-To-Many relationship as well.

39

2.6 DATA MODELING

In information system design, data modeling is the analysis and design of the

information in the system, concentrating on the logical entities and the logical

.dependencies between these entities. Data modeling is an abstraction activity in that the

details of the values of individual data observations are ignored in favor of the structure,

relationships, names and formats of the data of interest, although a list of valid values is

frequently recorded. It is by the data model that definitions of what the data means is

related to the data structures.

While a common term for this activity is "Data Analysis" the activity actually has more

in common with the ideas and methods of synthesis (putting things together), than it

does in the original meaning of the term analysis (taking things apart). This is because

the activity strives to bring the data structures of interest together in a cohesive,

inseparable, whole by eliminating unnecessary data redundancies and relating data

structures by relationships.

2.6.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design that

allows for consistent storage and efficient access of data in a relational database. These

steps reduce data redundancy and the risk of data becoming inconsistent.

However, many relational DBMS lack sufficient separation between the logical

database design and the physical implementation of the data store, such that queries

against a fully normalized database often perform poorly. In this case de-normalizations

are sometimes used to improve performance, at the cost of reduced consistency.

2.6.2 Primary Key

In database design, a primary key is a value that can be used to identify a particular row

in a table. Attributes are associated with it. Examples are names in a telephone book (to

look up telephone numbers), words in a dictionary (to look up definitions) and Dewey

Decimal Numbers (to look up books in a library).

40

In the relational model of data, a primary key is a candidate key chosen as the main

method of uniquely identifying a relation. Practical telephone books, dictionaries and

libraries can not use names, words or Dewey Decimal System Numbers as candidate

keys because they do not uniquely identify telephone numbers, word definitions or

books. In some design situations it is impossible to find a natural key that uniquely

identifies a relation. A surrogate key can be used as the primary key. In other situations

there may be more than one candidate key for a relation, and no candidate key is

obviously preferred. A surrogate key may be used as the primary key to avoid giving

one candidate key artificial primacy over the others. In addition to the requirement that

the primary key be a candidate key, there are several other factors which may make a

particular choice of key better than others for a given relation.

The primary key should generally be short to minimize the amount of data that needs to

be stored by other relations that reference it. A compound key is usually not

appropriate. (However, this is a design consideration, and some database management

systems may be better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed during

the course of normal operations of the database. (Recall that a primary key is the means

of uniquely identifying a tuple, and that identity by definition, never changes.) This

avoids the problem of dangling references or orphan records created by other relations

referring to a tuple whose primary key has changed. If the primary key is immutable,

this can never happen.

2.6.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that points to a

key field of another database record in another table where the foreign key of one table

refers to the primary key of the other table. This way references can be made to link

information together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a book in

the e-mail. Instead, they can include the ISBN of the book, and interested persons can

then use the number to get information about the book, or even the book itself The

ISBN is the primary key of the book, and it is used as a foreign key in the e-mail.

41

Note that using a foreign key often assumes its existence as a primary key somewhere

else. Improper foreign key/primary key relationships are the source of many database

problems.

2.6.4 Compound Key

In database design, a compound key (also called a composite key) is a key that consists

on 2 or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within the

data model. This means that any one, none or all, of the multiple attributes within the

compound key can be foreign keys. Indeed, a foreign key may, itself, be a compound

key.

Compound keys almost always originate from attributive or associative entities (tables)

within the model, but this is not an absolute value.

42

CHAPTER3

MYSQL

3.1 INTRODUCTION TO MYSQL

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql

client program to create and use a simple database. mysql (sometimes referred to as the

"terminal monitor" or just "monitor") is an interactive program that allows you to connect to

a MySQL server, run queries, and view the results. mysql may also be used in batch mode:

you place your queries in a file beforehand, then tell mysql to execute the contents of the file.

Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is

available to which you can connect. If this is not true, contact your MySQL administrator.

(If you are the administrator, you will need to consult other sections of this manual.)

This chapter describes the entire process of setting up and using a database. If you are

interested only in accessing an already-existing database, you may want to skip over the

sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily left out. Consult the

relevant sections of the manual for more information on the topics covered here.

3.2 WHAT IS MYSQL?

3.2.1 Definition
MySQL is an open source software relational database management system (RDBMS)

which

uses a SQL (Structured Query Language)

43

SQL is the standard language used for interacting with databases.

3.3 WHY CHOOSE ~YSQL?

There are many relational databases available to use, so why choose MySQL?

We are specifically interested in databases which PHP supports; these include Oracle,

IBM's DB2 and Microsoft's SQL Server (all of which cost money).

The two main open source (free) alternatives to these are PostgreSQL and MySQL.

PostgreSQL is arguably the better of the two, but MySQL is better

supported on Windows, and is a popular choice among Web hosts that provide

support for PHP.

Here are some ofMySQL's advantages

• It's fast

• It's free to use, and commercial licenses are reasonable

• It's easy to use

• It is cross platform

• There is a wide community of technical support

• It's secure

• It supports large databases

• It is designed specifically for web base applications and hence works very well

partnered with PHP

44

3.4 PREPARING THE WINDOWS MYSQL ENVIRONMENT

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the

MySQL- Max server binaries. Here is a list of the different MySQL servers you can use:

mysqld Compiled with full debugging and automatic memory allocation
checking, symbolic links, hmoDB and DBD tables.

my sq I-opt Optimized binary with no support for transactional tables.

mysqld-nt
Optimized binary for NT with support for named pipes. You can run
this version on Win98, but in this case no named pipes are created
and you must have TCP/IP installed.

mysqld-max Optimized binary with support for symbolic links, InnoDB and DBD
tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

All of the above binaries are optimized for the Pentium Pro processor but should work on

any Intel processor >=i386

In the following circumstance, you will need to use the MySQL configuration file:

• The install/data directories are different than the default 'c:\mysql' and 'c:\mysql\data'.

• If you want to use one of these servers:

mysqld.exe

mysqld-max. exe

mysqld-max-nt.exe

• If you need to tune the server settings.

45

There are two configuration files with the same function: 'my.cnf' and 'my.ini' file,

however, only one of these can/should be used. Both files are plain text. The 'rny.cnf" file

should be created in the root directory of drive C and the 'my.ini' file in the WinDir

directory e.g.: C:\WINDOWS or C:\WINNT. If your PC uses a boot loader where the C

drive isn't the boot drive, then your only option is to use the 'my.ini' file. Also note that if

you use the WinMySQLAdmin tool, only the

'my.ini' file is used. The '\mysql\bin' directory contains a help file with instructions for

using this tool.

Using Notepad, create the configuration file and edit the base section and keys:

[mysqld]

basedir = the_install__path # e.g. 'c:\mysql'

datadir = the_data_path # e.g. 'c:\mysql\data' or 'd:\mydata\data'

If the data directory is other than the default 'c:\mysql\data', you must cut the whole

'\data\mysql' directory and paste it on the your option new directory, e.g. 'd:\mydata\mysql'.

If you want to use the InnoDB transaction tables, you need to manually create two new

directories to hold the InnoDB data and log files, e.g. 'c:\ibdata' and 'c:\iblogs'. You will

also need to create some extra lines to the configuration file.

If you don't want to use, add the skip-innodb option to the configuration file.

Now you are ready to test starting the server.

3.5 STARTING THE SERVER FOR THE FIRST TIME

Testing from a DOS command prompt is the best thing to do because the server prints

messages, so if something is wrong with your configuration, you will see a more accurate

error message which will make it easier to identify and fix any problems.

46

Make sure you're in the right directory (C:\>cd \mysql\bin),

To install mysqld as a standalone program, enter:

C: \mysql\bin> mysqld-max --standalone

You should see the below print messages:

Inn,:,[;,I: Th.;, r t rr t :,i:·-,,,~i:ti.;,,:\ ,:be,. fil-,, ·.il .. :l.:-..t:-..··.il: .. :bt.:-d ,:li,:l n,:,t .;,:-:i.,t
Inn,:,C:•I:
Inn,:, l•I:
Inn,:,C:•I:
Inn,:, [)I:
Inn,:,DI
Inn,:,DI:
Inn,:,DI:
Ln n.o DI:
Inn,:,C:•I:
Inn,:,C:•I:
Inn,:,DI·
Inn,:,[;,I:
Inn,:,C:·I:
U 11,:.,:.::.;;

.:, n.;,·., ,:L, t ~d:,.:-..:c.,, t ·=· l:•.;, ,: r.,, :, t..;, ,:l 1
;?.;,ttin~-- :t il.;, ·~ \il:·,:l:,t:,··il:,.:\:,t:,1 ::;iz.,, t,:, :.::u::•: l[,:.::•:n:,
[;,::, t:,.1:·:,.,:,-,, I·h:::, i·:.:,11:· ·.,Tit . .;,., t h-s :t il-,, :tull - . .-~•.it
L•:•·s' :til.;, \il:·l•:•\'::-:\il:·_l,:, fil.,,•:• ,:li•:l not .,,:-:i::,t. 11.,,·_, r.» 1:,-,, ,:r.;,~,t.,,,:\
;,i.;,ttin~-- 1,:,.:, r i i , ,: \it·l·=· .,\it,_l,:··s·:t i1.,,,:, :,i:::.;, t,:, •c: 1.;;.,.::.::,,, .. :.,
L•>\·· :ti 1-,, \i 1:·l<•\<< -, .. i l.-; l,:, f i 1.,, 1 ,:li•:l n,:,t .;,:-:i::,t. n.;,·., t.,:, 1:,-,, ,: r.;,.:, t-,,,:l
;,i.;,t.t.in~-- 1,:,.:, fil.;, ,: \il:,l,:, .,··-.il:,_l,:,;--:t il.,,1 :ci:::.;, t,:, .-:: 1.;;.,.::.:::::,~,
L·>·;·· :til.;, \il:·l·>·~--,:;\il:·_l,:, fil.,,:.:: ,:lid nct -,,:--.i,:-,t. n.;,·., t.,:, 1:,.,, ,:r.;,~,t-,,,:l
;,:.;, t. t. t.n ; 1.: . .:,· ti 1.;. ·= · .. il:·l·=· ., · .. it,_ 1,:,·;·:t il-,,:.:: :, i:::.;, t-·=· .:, 1.;;.c.::.::,,,.~.·
C:•,:,ul:,1.,,·.:rit..,, t,uf:t-,,r not, f ,un,:l ,: r.;,:,t.in.:,· n.;,·_.,-
[; .. :, ul.. 1.,,-_.-r it . .;, 1:,uf :t.;, r ,: r -,,::-,, t . .;, ,:l
-:.r-,,:,tin\' f,:.r.,,i·s·-:i1 ~-:.;,:· ,:,:,n,:-,t.r::,.int .,::.,t.,,::. t:<.1:,1.,,:c
f,:,r.,,L;;n ~:.,,:· ,:,:,n,:-,t.r~,.int. .,::.,t..;,::. t.:,1:,1.,,,, ,: r.;,:,t . .;,,:l
1,:, .r,·:: :.::c rnnc.t-t ;":'-t.:,.rt..,,,:l

To install mysql as a service (Windows 2000), enter:

C: \mysql\bin> mysqld-nt --install

Now you can start and stop mysqld as follows:

C:\>NET START MySQL C:\>NET STOP MySQL

C:\>NET START MySQL

To start the MySQL Monitor, enter:

The MySql service is starting.

The MySQL service was started successfully.

C:\>cd \mysql

C: \mysql>bin\mysql

Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id

47

is 1 to server version 3.23.49-nt Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> (enter a command or enter 'QUIT' to quit)

mysql> QUIT Bye

C: \mysql> NET STOP MySQL The MySQL service is stopping.

The MySQL service was stopped successfully.

C:\mysql>

3.6 CONNECTING TO AND DISCONNECTING FROM THE SERVER

To connect to the server, you'll usually need to provide a MySQL user name when you

invoke mysql and, most likely, a password. If the server runs on a machine other than the one

where you log in, you'll also need to specify a hostname. Contact your administrator to find

out what connection parameters you should use to connect (that is, what host, user name, and

password to use). Once you know the proper parameters, you should be able to connect like

this:

shell> mysql -h host -u user -p

Enter password: ********

The******** represents your password; enter it when mysql displays the Enter password:

prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p

Enter password: ********

Welcome to the MySQL monitor. Commands end with; or \g. Your MySQL connection id

is 459 to server version: 3.22.20a-log

48

Type 'help' for help.

mysql>

The prompt tells you that mysql is ready for you to enter commands.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the

server running on the local host. If this is the case on your machine, you should be able to

connect to that server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT at the

mys qi>

prompt: mysql> QUIT Bye

You can also disconnect by pressing Control-D.

Most examples in the following sections assume you are connected to the server. They

indicate this by the mysql> prompt.

3.7 ENTERING QUERIES

Make sure you are connected to the server, as discussed in the previous section. Doing so

will not in itself select any database to work with, but that's okay. At this point, it's more

important to find out a little about how to issue queries than to jump right in creating tables,

loading data into them, and retrieving data from them. This section describes the basic

principles of entering commands, using several queries you can try out to familiarize

yourself with how mysql works.

Here's a simple command that asks the server to tell you its version number and the current

date. Type it in as shown below following the mysql> prompt and hit the RETURN key:

mysql> SELECT VERSION(), CURRENT DATE;

49

versioru) CURRENT DATE

3 .22.20a-102: 1999-03-19

row in set (0.01 sec)

mysql>

This query illustrates several things about mysql:

A command normally consists of a SQL statement followed by a semicolon. (There are some

exceptions where a semicolon is not needed. QUIT, mentioned earlier, is one of them. We'll

get to others later.)

When you issue a command, mysql sends it to the server for execution and displays the

results, then prints another mysql> to indicate that it is ready for another command.

Mysql displays query output as a table (rows and columns). The first row contains labels for

the columns. The rows following are the query results. Normally, column labels are the

names of the columns you fetch from database tables. If you're retrieving the value of an

expression rather than a table column (as in the example just shown), mysql labels the

column using the expression itself

Mysql shows how many rows were returned and how long the query took to execute, which

gives you a rough idea of server performance. These values are imprecise because they

represent wall clock time (not CPU or machine time), and because they are affected by

factors such as server load and network latency. (For brevity, the "rows in set" line is not

shown in the remaining examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSIONO, CURRENT_DATE; mysql> select versioni), current_date;
mysql> SELECT VERSIONO, current_DATE;
mysql> SELECT SIN(PI0/4), (4+ 1) *5;

The commands shown thus far have been relatively short, single-line statements. You can

even enter multiple statements on a single line. Just end each one with a semicolon:

50

mysql> SELECT VERSIONO; SELECT NOWO;

A command need not be given all on a single line, so lengthy commands that require several

lines are not a problem. mysql determines where your statement ends by looking for the

terminating semicolon, not by looking for the end of the input line. (In other words, mysql

accepts free-format input: it collects input lines but does not execute them until it sees the

semicolon.)

Here's a simple multiple-line statement:

mysql> SELECT USERO,CURRENT_DATE;

USER() CURRENT _DATE
joesmith@localhost 1999-03-18

In this example, notice how the prompt changes from mysql> to -> after you enter the first

line of a multiple-line query. This is how mysql indicates that it hasn't seen a complete

statement and is waiting for the rest. The prompt is your friend, because it provides valuable

feedback. If you use that feedback, you will always be aware of what mysql is waiting for.

If you decide you don't want to execute a command that you are in the process of entering,

cancel it by typing \c:

mysql> SELECT USERO \c mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing

feedback to indicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean

about the state that mysql is in:

51

·:.~ ·-~
(} '.t

··- J{

->
'> ins with a single auote c~

'"' "> Waitin

Multiple-line statements commonly occur by accident when you intend to issue a command

on a single line, but forget the terminating semicolon. In this case, mysql waits for more

input:

mysql> SELECT USERO
->

If this happens to you (you think you've entered a statement but the only response is a ->

prompt), most likely mysql is waiting for the semicolon. If you don't notice what the prompt

is telling you, you might sit there for a while before realizing what you need to do. Enter a

semicolon to complete the statement, and mysql will execute it:

mysql> SELECT USERO

->

USERO
joesmith@localhost

The '> and "> prompts occur during string collection. In MySQL, you can write strings

surrounded by either '" or '"' characters (for example, 'hello' or "goodbye"), and mysql lets

you enter strings that span multiple lines. When you see a '> or "> prompt, it means that

you've entered a line containing a string that begins with a :" or ?" quote character, but have

not yet entered the matching quote that terminates the string. That's fine if you really are

entering a multiple-line string, but how likely is that? Not very. More often, the '> and ">

prompts indicate that you've inadvertantly left out a quote character. For example:

52

mysql> SELECT * FROM my _table WHERE name = "Smith AND age < 30;
">

If you enter this SELECT statement, then hit RETURN and wait for the result, nothing will

happen. Instead of wondering why this query takes so long, notice the clue provided by the

"> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do you

see the error in the statement? The string "Smith is missing the second quote.)

At this point, what do you do? The simplest thing is to cancel the command. However, you

cannot just type \c in this case, because mysql interprets it as part of the string that it is

collecting! Instead, enter the closing quote character (so mysql knows you've finished the

string), then type

\c: mysql> SELECT * FROM my _table WHERE name = "Smith AND age < 30;
"> "\c mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

It's important to know what the '> and "> prompts signify, because if you mistakenly enter an

unterminated string, any further lines you type will appear to be ignored by mysql -

including a line containing QUIT! This can be quite confusing, especially if you don't know

that you need to supply the terminating quote before you can cancel the current command.

53

CHAPTER4

USER MANUAL

In this chapter I will try to explain the veterinerian application program that when it run.If

a someone run the program; firstly splash form will be shown for 3000ms like below.

Figure 4.1

After 3000ms entry page (Secure Page) will be shown. (Figure 4.2)

54

On this page (Figure 4.2) the user must enter the user name and password.If user name and

password found then the program check the user state for still working or has left.If still

working; now the program check the user position for Admin,Veterinerian,Manager,User

and Temporary.If the user has left then who can not enter the system; in the same time there

is no user name and password program gives three trying chance to enter the system; when

is thirth the program will be terminate.

If user is Adrnin then who can access everything to make on application program; If user is

manager then who access everything to make exclusive of wrong password application; If

user is veterinerian then who can not access process of user after that who can access; If

user is a normal user then who can see some knowledge and can change the program

settings; If the user is temporary then who can access only amusements, internet explorer,

find folder and drug knowledge.

Then main page comes (Figure 4.3) it is shown below
~:·· COll'.OFJ .1J«l 5l:101C[S !llOU' · .. • · 1UAtt CO,Wi>iN!IS flM(I'\' ··""!!.!! .. rlllRtlflllm .lPPI IUllON PROGJIDol •• ,

COMSOFTAND SCIENCES
GROUP

AWU-S[MCHI

*
Figure 4.3

55

This is main page; other pages shown on it. There are ten button on this. User click one of

them and access the page that wanted by the user.

When button of definition clicked definition selection page is shown like below figure

'DRUGS

ANDC \.,
ROU

~CLOSE

APPLICATIONS

~ \,I

II ""i." I
I
INTERNET EXPLORER

' (9 !
'

Figure 4.4

Definitions acts to create knowledge that is necessary for application process.User decide

process and click the button to access the page for needed application.

When the staff button clicked; the page is shown that is figure 4.5. On this page user can

make some process like save, update, delete and find.

On staff record form there is a magnifier button that acts that if there is a person who saved

before;knowledge of that person is shown on form with all knowledge.

56

TAl'f 10:

SlillltJAME:

TI\SI(; [Scil:>iil Or~

U:»IVERSITY: I
CRAM STATE, Sooci.O~ 0
START OATE: _W01.l®7 - "1i] TOWN:

UPDATE AVlr

cm: Se1!d.Ot'1!!

(;OUt'l!ltY: ~lO;.,-· --- --= -3:1
MAit.: I

WEB:

LEAVE DATE: ffi.09.ffi9

~ I AHMET
2 TIJIIA
3 Af!MET

1/eJc<JllC!iGr•
\1~1.,.-'~

1¥>1

Figure 4.5

When the magnifier button clicked figure 4.6 is shown

57

< TRANFER CLOSE REFRESH

Figure 4.6

When the vaccines record clicked; the page is shown that is figure 4.5. On this page user

can add new vaccine, can delete or update it.For process of vaccinates vaccine name called

from here (Figure 4.7)

58

VACCINE ID:

DIJR.ATION: !select One @ Month

VACCINE NAME: ._• ---------'

SAVE UPDATE DELETE NEW

VACCIIIES LIST

Vaccine_id _.~cine_name Vaccine_duration
~, 1 DURATION 4•

4 5 FAFS

Figure 4.7

When user clicked drugs button Drug Record page will be shown. On this page user can add

new drug, delete drug and update old drug record.For process of drug application drug

name will absorb from here Figure 4.8

L. .[[select One

r,,,,_r H .c I. ~ jselecl One ll

][DELETE ~ ~ NEW l SAVE UPDATE

DRUGS LIST

[Druqjd JDrug__name Drug__ruationjDrug_kind ~
.-1 1 ilb.C:

4·SALLA
5 DENEME

610UTER PARASITE
3 INNER PARASITE
3 GENERAL DRUG

·--· -·---

Figure 4.8

59

When operations button clicked Operation Record page will be shown. On this page user

can add new operation, deleteand update operation.For operation application operation

name will be taken from here Figure 4.9

OPERATION ID:-------~ OPERATION NAME:~· --------

SAVE UPDATE DELETE NEW

OPERATIOIIS LIST

fl 1 ~ASMA_KESM~
2 CERRAHPA$A --- - - "" _
3 SALLJl.MA

Figure 4.9

If the user click the user button; user page is opened to make adding,deleting and updating

user knowledge like Figure 4 .10.

On this form there is a mini arrow button.It is act to get staff to combine with users and

staff.Because after when a knowledge is needed it sta:fisfied directly.

60

TAff f>QSITION; ,s.cleciOoo. ~~

SAVE UPDAlE

t~A.GER
AOl.tiN
USEfll
VE:TERINERlAI·
ift.iPORARY

1 WOl'l!QNG
2 WO~K.JNG
1 lllF'l
2 WORKING
J 'WORKING
1 '1./0RKlNG USER

Figure 4.10

ADD Record button thet on main form acts to create knowledge that is necessary for

continuity of program.Because Customer and Animal is defined here.User decide process

and click the button to access the page for needed application.Figure 4.11 act transaction of

this process from main menu.

61

1}, :::·COMSOfif,ANDSCIENCES GROUP::: ::':'TUAH COMPANl[S·TURKEVJ:::;: ::: VfTERINERIA

DEANITIONS

~AND
GROl

ADD RECORD

l\ l5cusTOMER ~ANIMAL

SEARCH RECORD

DELETE RECORD

APPLICATIONS

(;,~ ;;it'--,

Figure 4Jl

User can decide customer or animal.who if decide to continue for customer must click

customer button.When he/she made this a new form is shown,Customer record form.With

this form user can add an new customer or delete or update an old customer.Update or
delete is needed.Well may be customer transferred to other city or transferred to other

veterinerian.Figure 4.12 include a customer record page figure

The Program acts all of them easly.Interface is basic as shown.Every user can adapt easly

to make operation.

62

tOU~HRY:.S-*'!Onc a CUSTOMER ID:: FAX,L-..1:-,----

AOO""I I
Toww:1-
m:(s~to""

tMAII.: ._. -----------+
WEB.:_·--

SURN/1..ME:

HOME PHONE: LL. I
MOBIL f'J-iON.I:: 'LL-- 1 -·------...........,.,.~
W'ORK PHONE: .LL·-=-----'

[I, l I
I I. [L

DELETE: NEW SAVE

Figure 4.12

If user decided for animal must click animal button on Add Record Form (Figure 4.11).

When he/she clicked animal button Animal Record Form will be displayed.With this form

user can add an new animal or delete or update an old animal with their owner.Update or

delete is needed.Well may be animal transferred to other veterinerian or may be died.

Figure 4.13 shows animal record form.

63

m.

ANIMAi!. Klrm; I
""""' '~-------' COLOR:•--~--.---·--• Al11M.Ai. ID: '------

A!lll!MAL l~AMli'.: :.. _
r~-

WilCl-lT: _

COlJIJ'\R.NO:l

11!,g

WUnNO •o, . "ON«, MOD~lm ··1 ·
UFE STATE:ISek!«Cln.o G ..
'"'""''"!-- ~·· l ~-------' AllltMAL RAC.E :

OWNER NO, ·~---- __ [,!.
AlllP.THiOATE:,01,000-.-·. :w
ANl!~tA.L $'!;:X , ,Seieet 0'11! -- GJ

N0ff•r __ _____.
SAVE UPDATE OEU:TE'. NEW

~rina-~ ;1::--
J 2 \\/EFF

IUlll.tAlUST

la,'.;._l<i,d
liG
WE\\/ER

Figure 4.13

On this form (Figure 4.13) there is a mini arrow button.It find owner.Thats why initially

customer must save then animal can save.Because as seen owner only called from other

form directly.(Figure 4.14)

This Page (Figure 4.14) absorb the knowledge directly database through queries.When it

opened datas comes onto dbgrid that on page.

64

TRAN FER REFRESH

Figure 4.14

Search Record button that on main form acts to show knowledge.The knowledge stored in

database.User can access data through this pages (Search pages).When Search Button

clicked on main menu a new page will appear (Figure 4.15)

On this form (Figure 4.15) there are all states, applications.Well users can see, collect the

datas easly.They must decide Only 'What do I need' then click button and access

knowledge that needed by your own.

65

'f:je,, ,,,, ;;·,:: :-(OMSOFT1AND·'sc1rncEs'GROUP·::: ;,; .·;::: :~TU1H'coMPAN1Es,il.JRktv,:: :~ i:: .. :: : VE

DEFINITIONS r .. · .. •if. _,;_.,;:- -. ::;;;r;;;rr#:zc!.-~-~..:-v1::-;,t..;,,;,sc"t·.,;, ·_:._.·:,.·:t:q,.L.;~,.,. '.'" boi";; __ ;_ ,~- .• ~.,..~-..,,#.,:.--:~mf:t;#:iifl!-~.>.;,..a~; · ~~1:reu• mt •. I,,,_,,, 'c

CUSTOMER ·
ANIMAL .•.. ~~]

VACCINES

ADD RECORD

~--·1 - ~l ~

DRUGS I! INNER DRUGS II OUTER DRUGS •• 'Jl
._..,..,

MEDICINATE II OPERATIONS j[APPLIED OP.

Figure 4.15

If user want to see customer knowledge, he/she must click customer button. Than customer

search form will be displayed.Well easly got the data.Figure 4.16 has a customer search

page image.

As it seen there are five criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4.16 has only one of them.All figure will append

end of project as appendix.

66

{M~,!~i'.fj_s su11.!,~!U A1.;C'!'!'J 11s !'?will ~$ <111..-ror.mr._101. 11:!Jl. ~IIST()f.Jm
I ·y,,..;;: . - . - . - - .

L S.gAR(:~I AS NAM(

·-·-~ --- .., I SEAktH :I NEW SE:AflCli I NAM~·
c= _

Figure 4.16

If user want to see animal knowledge, he/she must click animal button.Than animal search

form will be displayed.Figure 4.17 shows an animal search page.

As it seen there are five criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4.17 has only one of them.

When user write character from keyboard the program will check the animals.

67

$!!AftCM AS ANIMAL ~-fA'htE

ANIMAL NAME: ;dogo NEW:SEARt:H

OUTER J'I\RASrrE Al'l'll(A.TION
IPn<n31_id f o~_i:hqlomo

INNER PARASITE Al'rt!U\TION
AAINll_id 111>_0:,q,omc

VACCIHATES
Arimot_i:I lv~..,r.mo

1 1 It.AC 1 1 ~UA
2 lM

~ l (lU!lA.1'l0tJ
l l)UBATlrul
l OU!t<\Tlllll
1r OURAT!O'N

Figure 4.17

If user want to see staff knowledge, he/she must click staff button that is on mam

page.Than staff search form will be displayed.Figure 4.18 shows an staff search form.

As it seen there are seven criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4.18 has only one of them.

When user write character from keyboard the program will check the staff name

68

l>EJIRCH AS $TAFF Nl\ME '
1,---[-N~EW SE-,1\RCH--,j i

~~ ,~,

Figure 4.18

If user want to see vaccinate knowledge, he/she must click vaccinate button that is on main

page.Than vaccinate search form will be displayed.Figure 4.19 shows an staff search form.

As it seen there are five criteria to make search.Well user can search for various situation.

Every criteria has different page.Figure 4 .19 has only one of them.

69

[07.01.2007

J

Figure 4.19

When User want to change the settings, he/she must click settings button that is on main

page.Than setting page will be displayed.Figure 4.20 shows an settings form

As it seen there are two criteria to make search.Well user can change setting to various

situation.User can change form color,can disable or enable skins, disable or enable picture,

change skins and picture.

70

r].~~COMSO-flf AND SCIENCES GROUP::: ... , .. :::: Tl.JAH COMPANIESTURl<EY,:::;.:- . .'
••-v-•• ,_,, .~,---·•• * •-~- ••• ¥• ~ - • ~ • • •

DEFINITIONS

FORMS I OTHERS
ADD RECORD

It QCANCEL THE CLOSING ANIMATION

SEARCH RECORD
0CANCEL THE FORM Sl<INS

CHANGE THE FORM SKIN
DELETE RECORD

CHANGE FORfv.1 COLOR RESTORE DEFAULT

APPLICATIONS
~

Figure 4.20

If User want to see 'What will I do today?' ,'Which process will be made today ?', he/she

must click obligation button that is on search record page.Than obligation page will be

displayed.Figure 4.21 shows an settings form

As it seen there are three criteria to make search.Well user can learn to satisfy vaccinate

process, inner parasite application process, outer parasite application process.

71

PERFQMING l'INO

PE,RFORNIING DATE:[05.01.2007 El I FIND ,ll NEW J

VACCINATES I INNER P AR.~SITEJ OUTER PARASITE I

>1

Figure 4.21

When User want to arrvive the amusement. He/she must click amusement button that is on

main page.Than amusement selection page will be displayed.Figure 4.22 shows an

amusement selection form

As it seen there are six selection object to fun.Well user can arrive various fun.

72

ADD RECORD "'1111 I fw1ED1A PLAY ER II SOLITAIRE , II FREE CELL

ll 1111 I ~ •. 'II .,;,_

SEARCH RECORD

~ JI I MINES . I CALCULATOR
.·~ DELETE RECORD IID I : ''"'1 l~

~

I . I l Jl l
~

APPLICATIONS f_ l
r NOTEPAD lf HEARTS l

~
=

SETT1NGS

Jo
INTERNET EXPLORER

AMUSEMENT

~
~

Figure 4.22

If User want to open a web page. He/she must click internet explorer button that is on main

page.Than internet explorer page will be displayed.Figure 4.23 shows that.

73

'{;.,, .• ,.:;; CO...SCIIT AND scm«:rs GROUl>T:""·"';;;:ru'lH COMPA.Nm;·ruruuv·::;;, .. ,.;;: Vf'ltfUNfRl.lN lPPU(Jl'lON P!WGRAM ;;;, •• ~

t@-;__;~fj:t:
--i,IJGl. ~"

DELETE RECORD

~
---~~~~~--,r~--,,~~-=-~~-,-~~~~-.' r;n,;i,,,.,
(Googll!:'da Ata H ~30$1nlt Denemek isli)"tirum I .ll.l.ll!W:lm

Ara: 0 Web O ifirf<'Je nyfalar O Turl<iye'<len sayfalar

IN1
Rcklarn P,og.mMljllflFi'IIZ • Googlll: Hakk,ruh • l(a,ivnr B3~nJl.)n • Google CO>'l'I '" Er1gli1p

AMUSEMENT

r ~. ifil ~ ci, wmet I

Figure 4.23

If User want toget an windows screen. He/she must click find folder button that is on main

page.Than windows screen page will be displayed.Figure 4.24 shows that.In here can find

folder, files.And also can process some operation about other application.

74

t'.lfflNITHlNS

I .•••. ~ II~ 0 - -~.. ·~ ::ro ~gel~,~~
'fil Mw,w.,;;
se;)ml!I

t:::il ~.fMll O~;oJorJll
~Miilitim
-lJWSetuµo
, _ Mure Pad.age
£E\ Res.Ide;
!!;)~lam,
Eli¢!_avarrn
~~~ ..• 

iJ Geri ~rnY.UMY 
18i20ei ,,_tcoi 

., 101105M20 
~~ (:('»!320 
O com'432 1:.1 :!06µrsamba 
Qde e) for~ e gtarve ney 

~ e::i 

DELETE RECORD 

Al'Pl.lu\ TIONS 

INTERNET EXPLORER 

r.wla,jrm r.Jasooerrn 
KISaV<)I 
l KB 

V 

Figure 4.24 

75 



CONCLUSION 

MySQL and Delphi are powerful program.When I study with these two program.I get 

fun.Because these program are wonderful.Examination of the data for internal 

consistency and comparisons with externally available data indicates that the Delphi 

study appears reliable. However, the study was difficult to carry out owing to 

difficulties in obtaining answers from possible respondents. Thus, if a larger survey is to 

be undertaken to include all building components, it is recommended that committed 

respondents be obtained before devising the survey. 

Veterinerian Application program for veterinerian and users act more facility.However 

Users adapt easly to the program and use it safetly.Nowadays in everywhere, in every 

job is combined with the computer. Well Veterinerian clinic will combine with this 

project. 

76 



APPENDIX 

VETARINERIAN APPLICATION PROGRAM SOURCE CODE 

FORM 1 CODES 

unit Unitl; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, ComCtrls, Menus, ExtCtrls, WinSkinData, jpeg, StdCtrls, 
XPMan; 

type 
TForml = class(TForm) 
Panel 1: TPanel; 
MainMenul: TMainMenu; 
Filel: TMenultem; 
StatusBarl: TStatusBar; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
SpeedButtonlO: TSpeedButton; 
Shapel: TShape; 
SkinDatal: TSkinData; 
Label 1: TLabel; 
Timerl: TTimer; 
Image 1: Tlmage; 
XPManifest 1: TXPManifest; 
procedure Timerl Timer(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton 1 OClick(Sender: TObject ); 
procedure SpeedButton3Click(Sender: TObject); 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure SpeedButton5Click(Sender: TObject ); 
procedure SpeedButton8Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure SpeedButton9Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 

77 



procedure SpeedButtonlMouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton7MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton8MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton9MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButton6MouseMove(Sender: TObject; Shift: TShiftState; X, 
Y: Integer); 

procedure SpeedButtonlOMouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

procedure SpeedButton6Click(Sender: TObject); 
private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forml: TForml; 

implementation 

uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, Unit9, Unit41; 

{$R *.dfm} 

procedure TForml.Timerl Timer(Sender: TObject); 
begin 
//if (forml.Labell.Top <> 600) then/land (forml.Labell.Top > 1) then 
//form I .Label 1. Top: =form l .Label 1. Top-1; 
//ifforml.Labell.Top <> 1 then 
//form l .Label 1. Top: =form l .Label 1. Top+ 1; 
FORMl. StatusBarl .Panels[ 5]. Text:=TIMETOSTR(TIME); 
end; 

procedure TForml.FormCreate(Sender: TObject); 
begin 
forml.Labell.Caption:='COMSOFT and SCIENCES'+#l3+' 
FORMl.StatusBarl.Panels[l].Text:=DATETOSTR(DATE); 
FORMl. StatusBarl .Panels[ 5]. Text:=TIMETOSTR(TIME); 

GROUP'; 

78 



end; 

procedure TF orm 1. S peedButton 1 Click( Sender: TObj ect); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM3. CLOSE; 
FORM4.CLOSE; 
FORMS.CLOSE; 
FORM6.CLOSE; 
FORM2.SHOW; 
end; 

procedure TForm 1. SpeedButton 1 OClick(Sender: TObject ); 
begin 
form41.CLOSE; 
end; 

procedure TForml.SpeedButton3Click(Sender: TObject); 
begin 
FORM6.CLOSE; 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM4.CLOSE; 
FORMS.CLOSE; 
FORM3.SHOW; 
end; 

procedure TForml .FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
form2.CLOSE; 
form3.CLOSE; 
form4.CLOSE; 
forms. CLOSE; 
form6.CLOSE; 
form4 l. close; 

end; 

procedure TF orm 1. SpeedButtonSClick(Sender: TObject ); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3. CLOSE; 
FORMS. CLOSE; 
FORM6.CLOSE; 

79 



form4. show; 
end; 

procedure TForml.SpeedButton8Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3.CLOSE; 
FORM4.CLOSE; 
FORM6.CLOSE; 
FORMS.SHOW; 
end; 

procedure TForml. SpeedButton4Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM2.CLOSE; 
FORM3 .CLOSE; 
FORM4.CLOSE; 
FORMS. CLOSE; 
FORM7.CLOSE; 
form6.show; 
end; 

procedure TForml.SpeedButton2Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM2.CLOSE; 
FORM3. CLOSE; 
FORM4.CLOSE; 
FORMS.CLOSE; 
FORM6.CLOSE; 
FORM7.SHOW; 
end; 

procedure TForml.SpeedButton9Click(Sender: TObject); 
begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3.CLOSE; 
FORMS. CLOSE; 
FORM4.CLOSE; 
FORM6.CLOSE; 
if FileExists('C:\ WINDOWS\explorer.exe') then 
winexec('C:\WINDOWS\explorer.exe',sw_shownormal); 

end; 

procedure TF orm 1. SpeedButton7Click(Sender: TObject ); 

80 



begin 
FORM9.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3.CLOSE; 
FORMS.CLOSE; 
FORM4.CLOSE; 
FORM6.CLOSE; 
if FileExists('C:\Program Files\Internet Explorer\iexplore.exe') then 
winexec('C:\Program Files\Internet Explorer\iexplore.exe',sw_shownormal); 

end; 

procedure TForml.SpeedButtonlMouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORMl.SpeedButtonl.Hint:=' THIS ACTS TO DEFINE NEW 
KNOWLEDGE'+#13+ 

'(STAFF, VACCINE, DRUGS, OPERATIONS, USERS)'; 

end; 

procedure TForml. SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM!. SpeedButton2.Hint:='USES TO SA VE NEW RECORD'+# 13+ 

I (CUSTOMER, ANIMAL)'; 
end; 

procedure TForml.SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton3.Hint:='USE TO FIND RECORD'+#13+ 

I (ALL CRITERIA)'; 
end; 

procedure TForml.SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton4.Hint:='ACTS TO DELETE RECORD'+#13+ 

I (ALL CRITERIA)'; 
end; 

procedure TForml.SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton5.Hint:=' USES TO SAVE NEW APPLICATION'+#13+ 

'(VACCINATE, INNER PARASITE, OUTER PARASITE)'+# 13+ 
'(MEDICINATE, APPLIED OPERATIONS, ILNESSES )'; 

end; 

81 



procedure TForml.SpeedButton7MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton7.Hint:='USES TO OPEN THE INTERNET EXPLORER'; 

end; 

procedure TForml.SpeedButton8MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORMl. SpeedButton8.Hint:='USE TO HA VE FUN'; 

end; 

procedure TForml.SpeedButton9MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORM1.SpeedButton9.Hint:='USES TO SEE WINDOWS FILES OR FOLDERS'; 

end; 

procedure TForml.SpeedButton6MouseMove(Sender: TObject; Shift: TShiftState; 
X, Y: Integer); 

begin 
FORMl. SpeedButton6.Hint:='ACTS TO CHANGE THE PROGRAM SETTINGS'; 
end; 

procedure TF orml. SpeedButtonl OMouseMove(Sender: TObject; 
Shift: TShiftState; X, Y: Integer); 

begin 
FORMl.SpeedButtonlO.Hint:='ACTS TO CLOSE THE PROGRAM'; 
end; 

procedure TForml.SpeedButton6Click(Sender: TObject); 
begin 
FORM4.CLOSE; 
FORM7.CLOSE; 
FORM2.CLOSE; 
FORM3 .CLOSE; 
FORMS.CLOSE; 
FORM6.CLOSE; 
FORM9.SHOW; 
end; 

end. 

FORM2CODES 

unit Unit2; 

interface 

82 



uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, Buttons; 

type 
TForm2 = class(TForm) 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButton6: TSpeedButton; 
procedure SpeedButton6Click(Sender: TObject ); 
procedure SpeedButtonl Click(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form2: TForm2; 

implementation 

uses UnitlO, Unitl 1, Unit12, Unit13, Unit14; 

{$R *.dfm} 

procedure TForm2.SpeedButton6Click(Sender: TObject); 
begin 
form2.hide; 
end; 

procedure TForm2.SpeedButton1Click(Sender: TObject); 
begin 
FORMlO.SHOW; 
form2.Hide; 
end; 

procedure TForm2.SpeedButton2Click(Sender: TObject); 
begin 
form 11. show; 
form2.Hide; 

83 



end; 

procedure TF orm2. S peedButton3 Click(Sender: TObj ect); 
begin 
FORM12.SHOW; 
FORM2.Hide; 

end; 

procedure TForm2.SpeedButton4Click(Sender: 'I'Object); 
begin 
FORM13.SHOW; 
FORM2.HIDE; 

end; 

procedure TForm2.SpeedButton5Click(Sender: TObject); 
begin 
FORM14.SHOW; 
FORM2.Hide; 

end; 

end. 

FORM3CODES 

unit Unit3; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, Buttons; 

type 
TForm3 = class(TForm) 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
SpeedButton 10: TSpeedButton; 
SpeedButtonl 1: TSpeedButton; 
SpeedButton12: TSpeedButton; 
SpeedButton13: TSpeedButton; 
SpeedButton14: TSpeedButton; 
SpeedButton15: TSpeedButton; 

84 



MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButton16: TSpeedButton; 
procedure SpeedButtonl Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 
procedure SpeedButton14Click(Sender: TObject); 
procedure SpeedButtonlSClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButton9Click(Sender: TObject ); 
procedure SpeedButtonlOClick(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton8Click(Sender: TObject); 
procedure SpeedButtonl lClick(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject ); 
procedure SpeedButton12Click(Sender: TObject); 
procedure SpeedButton 16Click(Sender: TObject ); 
procedure SpeedButton13Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
F orm3: TF orm3; 

implementation 

uses Unitl, Unit23, Unit24, Unit25, Unit28, Unit27, Unit29, Unit30, Unit31, 
Unit32, Unit26, Unit33, Unit34, Unit35, Unit36, Unit37; 

{$R *.dfm} 

procedure TF orm3. SpeedButton 1 Click(Sender: TObj ect ); 
begin 
FORM23.SHOW; 
FORM3 .Hide; 

end; 

procedure TForm3.SpeedButton7Click(Sender: TObject); 
begin 
FORM24. SHOW; 
FORM3 .Hide; 

end; 

85 



procedure TForm3.SpeedButton14Click(Sender: TObject); 
begin 
FORM25. SHOW; 
FORM3 .Hide; 

end; 

procedure TForm3. SpeedButtonl 5Click(Sender: TObject); 
begin 
FORM27. SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton2Click(Sender: TObject ); 
begin 
FORM28.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton5Click(Sender: TObject); 
begin 
forrn29. show; 
form3 .Hide; 
end; 

procedure TF orm3. SpeedButton9Click(Sender: TObject ); 
begin 
FORM30.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton 1 OClick(Sender: TObj ect ); 
begin 
FORM31.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton3Click(Sender: TObject); 
begin 
FORM32.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton4Click(Sender: TObject ); 
begin 
FORM26.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton8Click(Sender: TObject ); 
begin 

86 



FORM33.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButtonl 1Click(Sender: TObject); 
begin 
FORM34. SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton6Click(Sender: TObject); 
begin 
FORM35.SHOW; 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton12Click(Sender: TObject); 
begin 
FORM36.SHOW; 
FORM3 .Hide; 
end; 

procedure TF orm3. SpeedButton 16Click(Sender: TObj ect ); 
begin 
FORM3 .Hide; 
end; 

procedure TForm3.SpeedButton13Click(Sender: TObject); 
begin 
FORM37.SHOW; 
FORM3 .Hide; 
end; 

end. 

FORM4CODES 

unit Unit4; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, Menus; 

type 
TForm4 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 

87 



SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
procedure SpeedButton 1 Click(Sender: TObject ); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject ); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject ); 
procedure SpeedButton7Click(Sender: TObject ); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
F orm4: TF orm4; 

implementation 

uses Unitl 7, Unit18, Unit 19, Unit20, Unit21, Unit22; 

{$R *.dfm} 

procedure TForm4.SpeedButton1Click(Sender: TObject); 
begin 
FORMI 7.SHOW; 
FORM4.Hide; 

end; 

procedure TF orm4. S peedButton2Cli ck( Sender: TObj ect); 
begin 
FORM18.SHOW; 
FORM4.Hide; 

end; 

procedure TForm4.SpeedButton5Click(Sender: TObject); 
begin 
FORM19.SHOW; 
FORM4.Hide; 

end; 

procedure TForm4.SpeedButton3Click(Sender: TObject); 
begin 
FORM20. SHOW; 

88 



FORM4.Hide; 
end; 

procedure TF orm4. SpeedButton4Click(Sender: TObj ect ); 
begin 
FORM21.SHOW; 
FORM4.Hide; 

end; 

procedure TF orm4. SpeedButton6Click(Sender: TObject ); 
begin 
form22.show; 
form4.Hide; 
end; 

procedure TForm4.SpeedButton7Click(Sender: TObject); 
begin 
FORM4.Hide; 
end; 

end. 

FORM5CODES 

unit Unit5; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, Menus; 

type 
TForm5 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 

89 



procedure SpeedButtonSClick(Sender: TObject); 
procedure SpeedButton8Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 
procedure SpeedButton9Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forms: TFormS; 

implementation 

{$R *.dfm} 

procedure TFormS.SpeedButtonlClick(Sender: TObject); 
begin 
if FileExists('C: \Program Files\ Windows Media Player\wmplayer. exe') then 
winexec('C:\Program Files\Windows Media Player\wmplayer.exe',sw_shownormal); 

end; 

procedure TForm5.SpeedButton2Click(Sender: TObject); 
begin 
if FileExists('C:\ WINDOWS\system3 2\sol.exe') then 
winexec('C:\ WINDOWS\system32\sol. exe',sw _ shownormal); 

end; 

procedure TForm5.SpeedButton3Click(Sender: TObject); 
begin 
if FileExists('C: \ windows\system3 2\freecell. exe') then 
winexec('C:\windows\system32\freecell.exe',sw _shownormal); 

end; 

procedure TF orm5. SpeedButton4Click(Sender: TObj ect ); 
begin 
if FileExists('C:\WINDOWS\system32\winmine.exe') then 
winexec('C:\ WINDOWS\system32\winmine. exe',sw _ shownormal); 

end; 

procedure TForm5.SpeedButton5Click(Sender: TObject); 
begin 
ifFileExists('C:\WINDOWS\system32\calc.exe') then 
winexec('C:\WINDOWS\system32\calc.exe',sw_shownormal); 

end; 

procedure TForm5.SpeedButton8Click(Sender: TObject); 
begin 

90 



if FileExists('C:\ WINDOWS\notepad. exe') then 
winexec('C :\ WINDOWS\notepad.exe',sw _ shownormal); 

end; 

procedure TForm5.SpeedButton6Click(Sender: TObject); 
begin 
ifFileExists('C:\Program Files\MSN Messenger\msnmsgr.exe') then 
winexec('C: \Program Files\MSN Messenger\msnmsgr. exe',sw _ shownormal) 

else if FileExists('C:\Program Files\Messenger\msmsgs.exe') then 
winexec('C: \Program Files\Messenger\msmsgs. exe', sw _ shownormal); 

end; 

procedure TF orm5. SpeedButton7Click(Sender: TObject ); 
begin 
form5 .Hide; 
end; 

procedure TF orm5. SpeedButton9Click(Sender: TObject ); 
begin 
ifFileExists('C:\WINDOWS\system32\mshearts.exe') then 
winexec('C: \ WINDOWS\system32\mshearts. exe', sw _ shownormal); 

end; 

end. 

FORM6CODES 

unit Unit6; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, Buttons; 

type 
TForm6 = class(TForm) 
SpeedButton 1: TSpeedButton; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
SpeedButton7: TSpeedButton; 
SpeedButton8: TSpeedButton; 
SpeedButton9: TSpeedButton; 
SpeedButtonl 1: TSpeedButton; 

91 



SpeedButtonl2: TSpeedButton; 
SpeedButtonl3: TSpeedButton; 
SpeedButtonl4: TSpeedButton; 
procedure SpeedButton6Click(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButtonSClick(Sender: TObject ); 
procedure SpeedButton9Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject); 
procedure SpeedButton8Click(Sender: TObject ); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure SpeedButtonl lClick(Sender: TObject); 
procedure SpeedButtonl4Click(Sender: TObject); 
procedure SpeedButtonl2Click(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton13Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form6: TForm6; 

implementation 

uses Unitl5, Unitl 1, Unitl2, Unitl3, Unitl4, Unit 16, Unitl 7, Unit 18, 
Unitl9, Unit21, Unit20, Unit22; 

{$R *.dfm} 

procedure TForm6.SpeedButton6Click(Sender: TObject); 
begin 
FORM6.CLOSE; 
end; 

procedure TForm6.SpeedButtonlClick(Sender: TObject); 
begin 
FormlS.LbSpeedButtonl.Enabled:=FALSE; 
Form 15 .LbSpeedButton2.Enabled:=F ALSE; 
FORM15.SHOW; 
FORM6.CLOSE; 

end; 

procedure TForm6.SpeedButton5Click(Sender: TObject); 
begin 
FORMl 1. SpeedButton2.Enabled:=F ALSE; 
FORMl 1. SpeedButton3 .Enabled:=F ALSE; 
FORMl I.SHOW; 

92 



FORM6.Close; 
end; 

procedure TF orm6. SpeedButton9Click(Sender: TObject ); 
begin 
FORMl 2. SpeedButton2.Enabled:=F ALSE; 
FORM12. SpeedButton3 .Enabled:=F ALSE; 
FORM12.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton4Click(Sender: TObject); 
begin 
Form13.LbSpeedButtonl.Enabled:=FALSE; 
Form 13 .LbSpeedButton2.Enabled:=F ALSE; 
FORM13.SHOW; 
FORM6.Close; 

end; 

procedure TF orm6. S peedButton 7 Click(Sender: TObj ect); 
begin 
Form 14 .LbSpeedButton 1.Enabled:=F ALSE; 
Form 14 .LbSpeedButton2.Enabled:=F ALSE; 
FORM14.SHOW; 
FORM6.CLOSE; 

end; 

procedure TForm6.SpeedButton8Click(Sender: TObject); 
begin 
FORMl 6. SpeedButton3 .Enabled:=F ALSE; 
FORMl 6. SpeedButton4.Enabled:=F ALSE; 
FORM16.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton2Click(Sender: TObject); 
begin 
Forml 7.LbSpeedButtonl .Enabled:=F ALSE; 
Forml 7.LbSpeedButton2.Enabled:=F ALSE; 
FORMl 7. SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButtonl 1Click(Sender: TObject); 
begin 
Form18.SpeedButton3.Enabled:=FALSE; 
Form18.SpeedButton4.Enabled:=FALSE; 
FORM18.SHOW; 
FORM6.Close; 

end; 

93 



procedure TForm6.SpeedButton14Click(Sender: TObject); 
begin 
Form19.LbSpeedButtonl.Enabled:=FALSE; 
Form19.LbSpeedButton2.Enabled:=FALSE; 
FORM19.SHOW; 
FORM6.CLOSE; 

end; 

procedure TForm6. SpeedButton 12Click(Sender: TObject ); 
begin 
Form21.LbSpeedButtonl .Enabled:=F ALSE; 
Form21.LbSpeedButton2.Enabled:=F ALSE; 
FORM21.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton3Click(Sender: TObject); 
begin 
Form20.SpeedButton3.Enabled:=FALSE; 
Form20. SpeedButton4.Enabled:=F ALSE; 
FORM20.SHOW; 
FORM6.Close; 

end; 

procedure TForm6.SpeedButton13Click(Sender: TObject); 
begin 
Form22.SpeedButton3.Enabled:=FALSE; 
Form22. SpeedButton4.Enabled:=F ALSE; 
FORM22.SHOW; 
FORM6.Close; 

end; 

end. 

FORM7CODES 

unit Unit7; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, Menus; 

type 
TForm7 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 

94 



SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form7: TForm7; 

implementation 

uses Unitl5, Unitl6; 

{$R *.dfm} 

procedure TForm7.SpeedButtonlClick(Sender: TObject); 
begin 
FORM15.SHOW; 
FORM7.IDDE; 

end; 

procedure TF orm7. SpeedButton2Click(Sender: TObject ); 
begin 
FORM16.SHOW; 
FORM? .Hide; 

end; 

end. 

FORMS CODES 

unit Unit8; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, jpeg, ExtCtrls; 

type 
TForm8 = class(TForm) 
Image 1: Tlmage; 
private 
{ Private declarations } 

public 

95 



{ Public declarations } 
end; 

var 
Form8: TForm8; 

implementation 

{$R *.dfm} 

end. 

FORM9CODES 

unit Unit9; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, ComCtrls, Menus, StdCtrls, jpeg, ExtDlgs; 

type 
TForm9 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
PageControl 1: TPageControl; 
TabSheet3: TTabSheet; 
TabSheet4: TTabSheet; 
ColorDialogl: TColorDialog; 
F ontDialog 1 : TF ontDialog; 
CheckBox 1: TCheckBox; 
CheckBox2: TCheckBox; 
SpeedButton4: TSpeedButton; 
CheckBox3: TCheckBox; 
CheckBox6: TCheckBox; 
SpeedButton5: TSpeedButton; 
OpenDialog 1: TOpenDialog; 
OpenPictureDialog 1: TOpenPictureDialog; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
procedure SpeedButton4Click(Sender: TObject); 
procedure CheckBox2Click(Sender: TObject ); 
procedure CheckBox6Click(Sender: TObject ); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject ); 

private 
{ Private declarations } 

96 



public 
{ Public declarations } 

end; 

var 
Form9: TForm9; 

implementation 

uses Unitl, Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, UnitlO, Unitl 1, 
Unit12, Unit13, Unit14, Unit15, Unit 16, Unitl 7, Unit18, Unit19, Unit20, 
Unit21, Unit22, Unit23, Unit24, Unit25, Unit26, Unit27, Unit28, Unit29, 
Unit30, Unit31, Unit32, Unit33, Unit34, Unit35, Unit36, Unit37, Unit38, 
Unit39, Unit40, Unit41; 

{$R *.dfm} 

procedure TF orm9. SpeedButton4Click(Sender: TObject ); 
begin 
if form9. CheckBox2. Checked <> true then 
begin 
form9.0penDialogl.Filter:='Skin Files (skn)j*.skn'; 
if form9. OpenDialog I .Execute then 
begin 
forml .SkinDatal .LoadFromFile(form9.0penDialogl .FileName); 
//forml .Label 1.Caption:=forml. SkinDatal. SkinFile; 
end; 
end 
else 
begin 
beep; 
showmessage('YOU HA VE CANCELED THE SKINS BEFORE'); 

end; 

end; 

procedure TForm9.CheckBox2Click(Sender: TObject); 
begin 
ifform9.CheckBox2.Checked = true then 
form 1. SkinDatal .Active:=false; 
ifform9.CheckBox2.Checked = false then 
forml.SkinDatal.Active:=true; 

end; 

procedure TForm9.CheckBox6Click(Sender: TObject); 
begin 
if form9.CheckBox6.Checked = true then 
begin 
form I .Image 1. Visible: =true; 

97 



end; 

if form9.CheckBox6.Checked = false then 
begin 
forml .Imagel. Visible:=false; 

end; 
end; 

procedure TF orm9. SpeedButton5Click(Sender: TObject ); 
begin 
if form9.CheckBox6.Checked = true then 
begin 
if form9. OpenPictureDialog 1.Execute then 
forml.Imagel.Picture.LoadFromFile(form9.0penPictureDialogl.FileName); 

end 
else 
begin 
beep; 
showmessage('YOU HA VE CANCELED WALLPAPERS BEFORE'); 

end; 
end; 

procedure TForm9.SpeedButtonlClick(Sender: TObject); 
begin 
if form9. ColorDialog 1.Execute then 
begin 
form 1. Color:=form9. ColorDialog 1. Color; 
form.2. Color:=form9. ColorDialog 1. Color; 
form3. Color:=form9. ColorDialog 1. Color; 
form4.Color:=form9.ColorDialogl.Color; 
forms. Color:=form9. Color Dialog 1. Color; 
form6. Color:=form9. ColorDialog 1. Color; 
form7. Color:=form9. Color Dialog 1. Color; 
form9. Color:=form9. ColorDialog 1. Color; 
form 10. Color:=form9. ColorDialog 1. Color; 
form 11. Color:=form9. Color Dialog 1. Color; 
forml2.Color:=form9.ColorDialogl.Color; 
form 13. Color:=form9. ColorDialog 1. Color; 
forml4.Color:=form9.ColorDialogl.Color; 
forml 5. Color:=form9. Color Dialog 1. Color; 
forml6.Color:=form9.ColorDialogl.Color; 
form 17. Color:=form9. ColorDialog 1. Color; 
form 18. Color:=form9. ColorDialog 1. Color; 
form 19. Color:=form9. ColorDialog 1. Color; 
form.20. Color:=form9. ColorDialog 1. Color; 
form.21. Color:=form9. ColorDialog 1. Color; 
form.22. Color:=form9. ColorDialog 1. Color; 
form.23. Color:=form9. ColorDialog 1. Color; 
form.24. Color:=form9. ColorDialog 1. Color; 
form.25. Color:=form9. ColorDialog 1. Color; 

98 



form26. Color:=form9. ColorDialog 1. Color; 
form27.Color:=form9.ColorDialogl.Color; 
form28. Color:=form9. ColorDialog 1. Color; 
form29. Color:=form9. ColorDialog 1. Color; 
form30. Color:=form9. ColorDialog 1. Color; 
form3 l. Color:=form9. ColorDialog 1. Color; 
form32. Color:=form9. ColorDialog 1. Color; 
form3 3. Color:=form9. ColorDialog 1. Color; 
form34. Color:=form9. ColorDialog 1. Color; 
form3 5. Color:=form9. ColorDialog 1. Color; 
form36. Color:=form9. ColorDialog 1. Color; 
form3 7. Color:=form9. ColorDialog 1. Color; 
form3 8. Color:=form9. ColorDialog 1. Color; 
form39.Color:=form9.ColorDialogl.Color; 
form40. Color:=form9. ColorDialog 1. Color; 
form4 l .Color:=form9.ColorDialogl .Color; 

end; 

end; 

procedure TForm9.SpeedButton2Click(Sender: TObject); 
begin 
form 1. color:=clBlack; 
form2.color:=c1BtnFace; 
form3 .color:=clBtnFace; 
form4.color:=c1BtnFace; 
forms .color:=clBtnFace; 
form6.color:=clBtnFace; 
form7.color:=c1BtnFace; 
form9.color:=clBtnFace; 
form10.color:=$004080FF; 
forml l .color:=$00C08080; 
form12.color:=$00400040; 
form 13 .color:=clGray; 
form14.color:=c1Silver; 
form 15 .color:=$00404080; 
forml6.color:=c1BtnFace; 
forml 7.color:=clMoneyGreen; 
forml8.color:=$00400000; 
form 19 .color:=clBlack; 
form20. color: =clBtnF ace; 
form2 l .color:=$00404080; 
form22. color: =cllnactiveCaption Text; 
form23 .color:=clBtnFace; 
form24.color:=clBtnFace; 
form25 .color:=clBtnFace; 
form26.color:=clBtnFace; 
form27 .color:=clBtnFace; 
form28.color:=clBtnFace; 
form29.color:=clBtnFace; 

99 



form30.color:=clBtnFace; 
form31.color:=clBtnFace; 
form32.color:=clBtnFace; 
form33.color:=clBtnFace; 
form34. color:=clBtnFace; 
form35.color:=clBtnFace; 
form36.color:=clBtnFace; 
form37.color:=clBtnFace; 
form38.color:=clBtnFace; 
form39.color:=$00DOA5A4; 
form40.color:=clBtnFace; 
form41.color:=clBtnFace; 
end; 

end. 

FORM 10 CODES 

unit UnitlO; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, StdCtrls, Mask, Menus, DB, ADODB, Buttons, Grids, 
DBGrids, LbSpeedButton, ExtCtrls; 

type 
TFormlO = class(TForm) 
ADOConnection 1: T ADOConnection; 
ADOQueryl: TADOQuery; 
DataSource 1 : TDataSource; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 
Label?: TLabel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
Edit3: TEdit; 
ComboBox 1: TComboBox; 
ComboBox2: TComboBox; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
Label8: TLabel; 

100 



Label9: TLabel; 
Labell 0: TLabel; 
Label 11: TLabel; 
Label12: TLabel; 
Label 13: TLabel; 
Edit4: TEdit; 
MaskEdit 1: TMaskEdit; 
Memol: TMemo; 
Edit5: TEdit; 
ComboBox3: TComboBox; 
ComboBox4: TComboBox; 
Label 14: TLabel; 
Label 15: TLabel; 
Label16: TLabel; 
Label 17: TLabel; 
Edit6: TEdit; 
DateTimePicker3: TDateTimePicker; 
MaskEdit2: TMaskEdit; 
Edit?: TEdit; 
Label 18: TLabel; 
Memo2: TMemo; 
StatusBarl: TStatusBar; 
Label 19: TLabel; 
Edit8: TEdit; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
DBGrid 1: TDBGrid; 
SpeedButtonl: TSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
Panell: TPanel; 
ADOQuery2: TADOQuery; 
DataSource2: TDataSource; 
procedure FormCreate(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure FormShow(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure EditlChange(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure FormHide(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
FormlO: TFormlO; 

101 



implementation 

uses Unit38; 

{$R *.dfm} 

procedure TFormlO.FormCreate(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyy/m/d'; 
end; 

procedure TFormlO.SpeedButtonlClick(Sender: TObject); 
begin 
FORM38.SHOW; 
TA:=10; 

end; 

procedure TFormlO.FormShow(Sender: TObject); 
begin 
forml O .DateTimePicker 1.Date:=date; 
form 10 .DateTimePicker2.Date:=date; 
//form 10 .DateTimePicker3 .Date:=date; 
formlO.ADOQuery2.Close; 
formlO.ADOQuery2.SQL.Text:='select * from staff; 
form 10. ADOQuery2. Open; 
end; 

procedure TF orm 10 .LbSpeedButton 1 Click(Sender: TObject ); 
begin 
formlO.ADOQueryl.Close; 
formlO.ADOQueryl.SQL.Text:='select * from staff where 

Staff name='+#39+form10.Edit2.Text+#39+' and 
Staff surname='+#39+form10.Edit3.Text+#39+' and 
S_birthdate='+#39+datetostr(form10.DateTimePicker2.date)+#39; 
form 10. ADOQuery 1. Open; 

ifformlO.ADOQueryl.RecordCount = 0 then 
begin 
if (form10.Edit2.Text <>")or (form10.Edit3.Text <>")then 
begin 
form 10. ADOQuery 1. Close; 
formlO.ADOQueryl.SQL.Text:='insert into staff 

(Staff _name, Staff_ surname, Staff _task, University, Grade_ state, S _ workstartdate, S _ birthd 
ate, S _ TCidno, S _ homephone, S _ mobilphone, S _ address, S _ town, S _city, S _country, S _ ema 
il, S _ web, S _leavingdate, S _note) values 
('+#39+Form10.Edit2.Text+#39+','+#39+form10.Edit3.Text+#39+','+#39+form10.Com 
boBoxl.Text+#39+','+#39+form10.Edit4.Text+#39+','+#39+form10.ComboBox2.Text+ 
#39+','+#39+datetostr(form10.DateTimePickerl.date)+#39+','+#39+datetostr(form10.D 

102 



ateTimePicker2.date)+#39+','+#39+formlO.Edit8.Text+#39+','+#39+formlO.MaskEditl 
.Text+#39+','+#39+forml0.MaskEdit2.Text+#39+','+#39+forml0.Memol.Text+#39+',' 
+#39+formlO.Edit5.Text+#39+','+#39+formlO.ComboBox3.Text+#39+','+#39+form10. 
ComboBox4.Text+#39+','+#39+formlO.Edit6.Text+#39+','+#39+formlO.Edit7.Text+#3 
9+','+#39+datetostr(form10.DateTimePicker3.date)+#39+','+#39+form10.Memo2.Text+ 
#39+')'; 

forml O.ADOQueryl .ExecSQL; 
formlO.ADOQueryl.Close; 
formlO.ADOQueryl.SQL.Text:='select * from staff; 
forml O. ADOQuery 1. Open; 
showmessage('RECORD SAVED'); 
FORMl O .LbSpeedButton4. Click; 

end 
else 
showmessage('CHECK THE FORM FOR EMPTY PLACE'); 

end 
else 
showmessage('RECORD HAS RECORDED BEFORE'); 

end; 

procedure TF orm 10 .LbSpeedButton4Click(Sender: TObject ); 
begin 
FORMl O .Edit 1. Clear; 
FORMl O .Edit2. Clear; 
FORMl O .Edit3. Clear; 
FORMlO.ComboBoxl.Text:='Select One'; 
FORM10.Edit4.Clear; 
FORM10.ComboBox2.Text:='Select One'; 
FORMlO.DateTimePickerl .Date:=DATE; 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacacy pekle donupturdum, .. 
shortdateformat := 'dlm/yyyy'; 

FORM10.DateTimePicker2.Date:=STRTODATE('09.09.9999'); 
FORM10.DateTimePicker3.Date:=STRTODATE('09.09.9999'); 
form10.Edit8.Clear; 
form 10 .MaskEdit 1. Clear; 
form10.MaskEdit2.Clear; 
formlO.Memol.Clear; 
form 1 O .Edit5. Clear; 
FORM10.ComboBox3.Text:='Select One'; 
FORM10.ComboBox4.Text:='Select One'; 
form10.Edit6.Clear; 
form 10 .Edit7. Clear; 
form10.Memo2.clear; 
forml 0.Edit2. SetFocus; 

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

103 



shortdateformat := 'yyyylm/d'; 

formlO.ADOQuery2.Close; 
forml0.ADOQuery2.SQL.Text:='select * from staff'; 
form 10 .ADOQuery2. Open; 

end; 

procedure TFormlO.EditlChange(Sender: TObject); 
begin 
form3 8 .Hide; 
formlO.ADOQueryl.Close; 
formlO.ADOQueryl.SQL.Text:='select * from staff where 

staff_id='+#39+forml0.Editl.Text+#39; 
forml O. ADOQuery 1. Open; 
ifformlO.ADOQueryl.RecordCount <> 0 then 
begin 
formlO.Editl.Text:=FORMlO.ADOQueryl.Fields[O].Text; 
formlO.Edit2.Text:=FORM10.ADOQueryl.Fields[l].Text; 
forml0.Edit3.Text:=FORM10.ADOQueryl.Fields[2].Text; 
formlO.ComboBoxl.Text:=FORM10.ADOQueryl.Fields[3].Text; 
forml0.Edit4.Text:=FORM10.ADOQueryl.Fields[4].Text; 
forml0.ComboBox2.Text:=FORM10.ADOQueryl.Fields[5].Text; 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'dlm/yyyy'; 

forml0.DateTimePickerl.Date:=strtodate(FORM10.ADOQueryl.Fields[6].Text); 
form10.DateTimePicker2.Date:=strtodate(FORM10.ADOQueryl.Fields[7].Text); 
forml0.Edit8.Text:=FORM10.AD0Queryl.Fields[8].Text; 
formlO.MaskEditl.Text:=FORM10.ADOQueryl.Fields[9].Text; 
forml0.MaskEdit2.Text:=FORM10.ADOQueryl.Fields[10].Text; 
formlO.Memol.Text:=FORMlO.ADOQueryl.Fields[ll].Text; 
formlO.Edit5.Text:=FORM10.ADOQueryl.Fields[l2].Text; 
form10.ComboBox3.Text:=FORM10.ADOQueryl.Fields[l3].Text; 
forml0.ComboBox4.Text:=FORM10.ADOQueryl.Fields[l4].Text; 
forml0.Edit6.Text:=FORM10.AD0Queryl.Fields[l5].Text; 
formlO.Edit7.Text:=FORM10.ADOQueryl.Fields[l6].Text; 
forml0.DateTimePicker3.Date:=strtodate(FORM10.ADOQueryl.Fields[l7].Text); 
forml0.Memo2.Text:=FORM10.ADOQueryl.Fields[l8].Text; 

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'yyyylm/d'; 
end; 

end; 

104 



procedure TF orml O .LbSpeedButton2Click(Sender: TObject ); 
begin 
IF (FORMlO.Editl.Text <>")AND (FORM10.Edit2.Text <>")AND 

(FORM10.Edit3.Text <>")THEN 
BEGIN 
FORM10.AD0Query2.Close; 
FORM10.ADOQuery2.SQL.Text:='UPDATE staff set Staff_name= 

'+#39+form10.Edit2.Text+#39+', Staff_surname= '+#39+form10.Edit3.Text+#39+', 
Staff_task='+#39+form10.ComboBoxl.Text+#39+', 
University='+#39+form10.Edit4.Text+#39+', 
Grade_ state='+#39+form 10. ComboBox2. Text+#39+', 
S_workstartdate='+#39+datetostr(form10.DateTimePickerl.date)+#39+', 
S_birthdate='+#39+datetostr(form10.DateTimePicker2.date)+#39+', 
S _ TCidno='+#39+forml O.Edit8. Text+#39+', 
S_homephone='+#39+form10.MaskEditl.Text+#39+', 
S_mobilphone='+#39+form10.MaskEdit2.Text+#39+', 
S_address='+#39+form10.Memol.Text+#39+', 
S _ town='+#3 9+form 10 .Edit5. Text+#39+', 
S _ city='+#39+form 10. ComboBox3. Text+#3 9+', 
S _ country='+#3 9+form 10. ComboBox4. Text+#39+', 
S_email='+#39+form10.Edit6.Text+#39+', S_web='+#39+form10.Edit7.Text+#39+', 
S _leavingdate='+#39+datetostr(forml O .DateTimePicker3 .date )+#39+', 
S note='+#39+form10.Memo2.Text+#39+' WHERE 
Staff_id='+#39+form10.Editl.Text+#39; 

form10.ADOQuery2.ExecSQL; 
showmessage('RECORD UPDATED'); 
FORM10.LbSpeedButton4.Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE CHOOSE STAFF ID AND BE SURE'+#13+'TO 

COMPLETE THE EMPTY PLACE'); 

end; 

procedure TFormlO.FormHide(Sender: TObject); 
begin 
FORM10.LbSpeedButton4.Click; 
FORMIO.ADOQueryl.Close; 
FORM10.AD0Query2.Close; 
end; 

procedure TFormlO.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
FORMl O .LbSpeedButton4. Click; 
FORMlO.ADOQueryl.Close; 
FORMl O .ADOQuery2. Close; 
end; 

end. 

105 



FORM 11 CODES 

unit Unit 11; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ExtCtrls, Grids, DBGrids, DB, ADODB, ComCtrls, Buttons, 
StdCtrls, Menus; 

type 
TForrnl 1 = class(TForm) 
MainMenul: TMainMenu; 
F 1: TMenultem; 
Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
ComboBoxl: TComboBox; 
Label4: TLabel; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
StatusBarl: TStatusBar; 
DBGrid 1: TDBGrid; 
Panel 1 : TPanel; 
ADOConnectionl: T ADOConnection; 
ADOQuery 1: T ADO Query; 
ADOQuery2: T ADOQuery; 
ADOQuery3: T ADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
procedure ForrnShow(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure DBGridl CellClick(Column: TColumn); 
procedure DBGridlKeyUp(Sender: TObject; var Key: Word; 
Shift: TShiftState ); 

procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure ForrnClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 
private 
{ Private declarations } 

public 

106 



{ Public declarations } 
end; 

var 
Forml 1: TForml 1; 
SS:WORD; 

implementation 

uses Unit12; 

{$R *.dfm} 

procedure TForml 1.FormShow(Sender: TObject); 
begin 
forml 1.ADOQueryl.SQL.Text:='select * from vaccines'; 
form 11. ADOQuery 1. Open; 
end; 

procedure TForml 1. SpeedButton2Click(Sender: TObject); 
begin 
if (forml 1.Edit2.Text <>")then 
begin 
forml l .ADOQuery2.Close; 
forml 1.ADOQuery2.SQL.Text:='select * from vaccines where 

vaccine_name='+#39+forml 1.Edit2.Text+#39; 
form 11.AD0Query2. Open; 
ifforml 1.ADOQuery2.RecordCount = 0 then 
begin 
forml 1.ADOQuery2.Close; 
forml 1.AD0Query2.SQL.Text:='insert into vaccines 

(vaccine_ name, vaccine_ duration) values 
('+#39+forml 1.Edit2.Text+#39+','+#39+forml 1.ComboBoxl. Text+#39+')'; 

forml 1.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
FORM11.SpeedButton5.Click; 

END 
else 
showmessage('RECORD HAS SAVED BEFORE'); 

END 
ELSE 
SHOWMESSAGE('BE SURE TO COMPLETE THE EMPTY PLACE'); 

end; 

procedure TForml 1.DBGridlCellClick(Column: TColumn); 
begin 
IF FORMl 1.DBGridl.Fields[O].IsNull = false THEN 
BEGIN 
FORMl 1.Editl. Text:=FORMl 1.DBGrid 1.Fields[O]. Text; 

107 



FORM11.Edit2.Text:=FORM11.DBGridl.Fields[l].Text; 
FORMl 1. ComboBoxl. Text:=FORMl 1.DBGrid 1.Fields[2].Text; 

END 
end; 

procedure TForml 1.DBGridlKeyUp(Sender: TObject; var Key: Word; 
Shift: TShiftState); 

begin 
IF FORMl 1.DBGridl.Fields[O].IsNull = false THEN 
BEGIN 
FORMl 1.Editl. Text:=FORMl 1.DBGrid 1.Fields[O]. Text; 
FORM11.Edit2.Text:=FORM11.DBGridl .Fields[l].Text; 
FORMl 1. ComboBox 1. Text:=FORMl 1.DBGrid 1.Fields[2]. Text; 

END 
end; 

procedure TForml 1.SpeedButton3Click(Sender: TObject); 
begin 
IF (FORM11.Edit2.Text <> 11) OR ((FORMl 1.Editl.Text <> 11) AND 
(FORM11.Edit2.Text <> 11)) THEN 
BEGIN 
FORM11.ADOQuery3. Close; 
FORM11.AD0Query3.SQL.Text:='UPDATE vaccines set 

vaccine_ name='+#39+form 11.Edit2. Text+#39+', 
vaccine duration='+#39+forml 1.ComboBoxl.Text+#39+' where 
vaccine_id='+#39+forml 1.Editl .Text+#39; 

forml 1.ADOQuery3.ExecSQL; 
showmessage('RECORD UPDATED'); 
FORMl 1. SpeedButton5. Click; 
end 
else 
showmessage('PLEASE BE SURE TO COMPLETE EMPTY PLACE'); 

end; 

procedure TForml 1. SpeedButton4Click(Sender: TObject); 
begin 
IF (FORMl 1.Editl.Text <> 11) THEN 
BEGIN 
SS:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM11.Edit2.Text+' 11 

?',MTW ARNING,[MBYES ,MBNO],O); 
IF SS = MRYES then 
begin 
FORM11.ADOQuery3. Close; 
FORM11.ADOQuery3. SQL. Text:='DELETE FROM vaccines where 

vaccine _id='+#3 9+form 11.Edit 1. Text+#3 9; 
forml 1.ADOQuery3 .ExecSQL; 
showmessage('RECORD DELETED'); 
FORM11.SpeedButton5.Click; 
end; 
end 

108 



else 
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TForml 1. SpeedButton5Click(Sender: TObject); 
begin 
FORMl 1.Editl.Clear; 
FORM11.Edit2.Clear; 
FORMl 1.ComboBoxl.Text:='Select One'; 
forml 1.Edit2.SetFocus; 
FORMl 1. SpeedButton2.Enabled:=TRUE; 
FORMl 1. SpeedButton3 .Enabled:=TRUE; 
forml 1.ADOQueryl.Close; 
forml 1.ADOQuery 1. SQL. Text:='select * from vaccines'; 
form 11. ADOQuery 1. Open; 

end; 

procedure TForml 1.FormClose(Sender: TObject, var Action: 'I'CloseAction); 
begin 
FORM11.SpeedButton5.Click; 
forml 1.ADOQueryl .Close; 
forml 1.AD0Query2.Close; 
forml 1.ADOQuery3.Close; 
end; 

procedure TForml 1.FormHide(Sender: TObject); 
begin 
FORMl 1. SpeedButton5. Click; 
forml 1.ADOQueryl.Close; 
form 11.ADOQuery2. Close; 
forml 1.ADOQuery3.Close; 
end; 

end. 

FORM 12 CODES 

unit Unit12; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, Grids, DBGrids, ExtCtrls, Buttons, StdCtrls, Menus, 
DB,ADODB; 

type 
TForm12 = class(TForm) 

109 



Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Edit 1 : TEdit; 
Edit2: TEdit; 
ComboBox 1: TComboBox; 
ComboBox2: TComboBox; 
Label5: TLabel; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
Panel 1: TPanel; 
DBGridl: TDBGrid; 
StatusBarl: TStatusBar; 
ADOConnection 1: T ADOConnection; 
ADOQueryl: TADOQuery; 
ADOQuery2: TADOQuery; 
AD0Query3: T ADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3 : TDataSource; 
procedure FormShow(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure FormKeyPress(Sender: TObject; var Key: Char); 
procedure SpeedButton3Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure FormHide(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form12: TForm12; 
SSl:WORD; 

implementation 

{$R *.dfm} 

procedure TForm12.FormShow(Sender: TObject); 
begin 
form12.ADOQueryl .Close; 

110 



form12.AD0Queryl.SQL.Text:='select * from drugs'; 
forml 2. ADOQuery 1. Open; 
end; 

procedure TF orml 2. SpeedButton2Click(Sender: TObject ); 
begin 
if (form12.Edit2.Text <>")and (form12.ComboBoxl.Text <> 'Select One') then 
begin 
form12.AD0Query2.Close; 
form12.AD0Query2.SQL.Text:='select * from drugs where 

drug_name='+#39+form12.Edit2.Text+#39; 
form12.ADOQuery2.0pen; 
ifforml2.ADOQuery2.RecordCount = 0 then 
begin 
form12.AD0Query2.Close; 
forml2.ADOQuery2.SQL.Text:='insert into drugs 

( drug_ name, drug_ duration, drug_ kind) values 
('+#39+form12.Edit2.Text+#39+','+#39+form12.ComboBoxl.Text+#39+','+#39+forml 
2.ComboBox2.Text+#39+')'; 

form12.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
Form12.SpeedButton5.Click; 
END 
ELSE 
SHOWMESSAGE('RECORD HAS SAVED BEFORE'); 

END 
ELSE 
SHOWMESSAGE('BE SURE TO COMPLETE THE EMPTY PLACE'); 

end; 

procedure TForml2.FormKeyPress(Sender: TObject; var Key: Char); 
begin 
{IF KEY=VK_F2 THEN 
BEGIN 
if (form12.Edit2.Text <>")and (form12.ComboBoxl.Text <> 'Select One') then 
begin 
form12.AD0Query2.Close; 
forml2.AD0Query2.SQL.Text:='select * from drugs where 

drug_name='+#3 9+form 12.Edit2. Text+#3 9; 
form 12. ADOQuery2. Open; 
ifform12.ADOQuery2.RecordCount = 0 then 
begin 
form12.ADOQuery2.Close; 
forml2.AD0Query2.SQL.Text:='insert into drugs 

( drug_ name, drug_ duration, drug_ kind) values 
('+#39+form12.Edit2.Text+#39+','+#39+form12.ComboBoxl.Text+#39+','+#39+forml 
2.ComboBox2.Text+#39+')'; 

form12.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 

111 



FORM12.ADOQueryl .Close; 
FORM12.ADOQueryl.SQL.Text:='SELECT * FROM drugs'; 
FORM12.ADOQueryl .Open; 
END 
ELSE 
SHOWMESSAGE('RECORD HAS SAVED BEFORE'); 

END 
ELSE 
SHOWMESSAGE('BE SURE TO COMPLETE THE EMPTY PLACE'); 

END;} 
end; 

procedure TForm12.SpeedButton3Click(Sender: TObject); 
begin 
IF (FORM12.Editl.Text <>")AND (FORM12.Edit2.Text <> ") THEN 
BEGIN 
FORM12.ADOQuery3.Close; 
FORM12.ADOQuery3.SQL.Text:='UPDATE drugs set 

drug_name='+#39+form12.Edit2.Text+#39+', 
drug_duration='+#39+form12.ComboBoxl.Text+#39+', 
drug_ kind='+#39+forml 2. ComboBox2. Text+#39+' where 
drug_id='+#39+form12.Editl.Text+#39; 
form12.ADOQuery3.ExecSQL; 
showmessage('RECORD UPDATED'); 
Form12.SpeedButton5.Click; 
end 
else 
showmessage('PLEASE BE SURE TO COMPLETE EMPTY PLACE'); 

end; 

procedure TForm12.DBGrid1CellClick(Column: TColumn); 
begin 
IF FORM12.DBGridl.Fields[O].IsNull = false THEN 
BEGIN 
FORM12.Editl.Text:=FORM12.DBGridl.Fields[O].Text; 
FORMl 2.Edit2. Text:=FORMl 2.DBGrid I .Fields[ 1]. Text; 
FORM12.ComboBoxl.Text:=FORM12.DBGridl.Fields[2].Text; 
FORM12.ComboBox2.Text:=FORM12.DBGridl.Fields[3].Text; 
END 
end; 

procedure TForm12.SpeedButton4Click(Sender: TObject); 
begin 
IF (FORM12.Editl.Text <>")THEN 
BEGIN 
SSl:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM12.Edit2.Text+' 11 

?',MTW ARNING,[MBYES ,MBNO],O); 
IF SSl = MRYES then 
BEGIN 

112 



FORM12.AD0Query3. Close; 
FORM12.ADOQuery3.SQL.Text:='DELETE FROM drugs where 

drug_id='+#39+form12.Editl.Text+#39; 
form12.ADOQuery3.ExecSQL; 
showmessage('RECORD DELETED'); 
Form 12. S peedButtonS. Click; 

END; 
end 
else 
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TF orm 12. SpeedButton5Click(Sender: TObject ); 
begin 
FORM12.Editl.Clear; 
FORM12.Edit2.Clear; 
FORM12. ComboBoxl. Text:='Select One'; 
FORM12.ComboBox2.Text:='Select One'; 
form12.Edit2. SetFocus; 
FORMl 2. SpeedButton2.Enabled:=TRUE; 
FORMl 2. SpeedButton3 .Enabled:=TRUE; 

form 12. ADOQuery 1. Close; 
form12.ADOQueryl.SQL.Text:='select * from drugs'; 
form 12. ADOQuery 1. Open; 

end; 

procedure TForm12.FormHide(Sender: TObject); 
begin 
Form 12. SpeedButtonS. Click; 
form12.ADOQueryl .Close; 
form12.ADOQuery2.Close; 
form 12. ADOQuery3. Close; 

end; 

procedure TForm12.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
Form12.SpeedButton5.Click; 
form12.AD0Queryl.Close; 
form12.ADOQuery2.Close; 
form12.ADOQuery3.Close; 

end; 

end. 

113 



FORM 13 CODES 

unit Unitl 3; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ExtCtrls, Grids, DBGrids, ComCtrls, LbSpeedButton, Buttons, 
StdCtrls, Menus, DB, ADODB; 

type 
TForm13 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
StatusBarl: TStatusBar; 
DBGrid 1: TDBGrid; 
Panell: TPanel; 
ADOConnectionl: T ADOConnection; 
ADOQuery 1: T ADO Query; 
AD0Query2: T ADOQuery; 
ADOQuery3: T ADO Query; 
Data Source 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
procedure FormShow(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure LbSpeedButton3Click(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form13: TForm13; 
SS13:WORD; 

114 



implementation 

{$R *.dfm} 

procedure TForm13.FormShow(Sender: TObject); 
begin 
form 13. ADOQuery 1. Close; 
form13.ADOQueryl.SQL.Text:='select * from operations'; 
form 13. ADOQuery 1. Open; 

end; 

procedure TForm13.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
form 13 .LbSpeedButton4. Click; 
form13.AD0Queryl .Close; 
form13.AD0Query2.Close; 
form 13. ADOQuery3. Close; 

end; 

procedure TForm13.FormHide(Sender: TObject); 
begin 
form13.LbSpeedButton4.Click; 
form13.ADOQueryl.Close; 
form13.ADOQuery2.Close; 
form 13. ADOQuery3. Close; 

end; 

procedure TForm13.LbSpeedButton1Click(Sender: TObject); 
begin 
if (form13.Edit2.Text <>")then 
begin 
form 13. ADOQuery2. Close; 
form13.ADOQuery2.SQL.Text:='select * from operations where 

operation_name='+#39+form13.Edit2.Text+#39; 
form 13 .AD0Query2. Open; 
ifform13.ADOQuery2.RecordCount = 0 then 
begin 
form13.AD0Query2.Close; 
form13.ADOQuery2.SQL.Text:='insert into operations (operation_name) values 

('+#39+form13.Edit2.Text+#39+')'; 
form13.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
form 13 .LbSpeedButton4. Click; 

END 
ELSE 
SHOWMESSAGE('RECORD HAS SAVED BEFORE'); 

END 
ELSE 
SHOWMESSAGE('BE SURE TO FILL THE OPERATION NAME'); 

end; 

115 



procedure TF orm 13 .LbSpeedButton2Click(Sender: TObject ); 
begin 

IF (FORM13.Editl.Text <> 11) AND (FORM13.Edit2.Text <> 11) THEN 
BEGIN 
FORMl 3 .ADOQuery3. Close; 
FORM13.ADOQuery3.SQL.Text:='UPDATE operations set 

operation , name='+#3 9+form 13 .Edit2. Text+#3 9+' where 
operation _id='+#39+forml 3.Editl. Text+#39; 

forml3 .AD0Query3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
form 13 .LbSpeedButton4. Click; 

end 
else 
showmessage('PLEASE BE SURE TO COMPLETE EMPTY PLACE'); 

end; 

procedure TF orm 13 .Lb S peedButton3 Click( Sender: TObject ); 
begin 
IF (FORM13.Editl.Text <> 11) THEN 
BEGIN 
SS13:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM13.Edit2.Text+' 

II ?',MTW ARNING,[MBYES ,MBNO],O); 
IF SS13 = MRYES then 
BEGIN 
FORMl 3 .ADOQuery3. Close; 
FORM13.ADOQuery3.SQL.Text:='DELETE FROM operations where 

operation _id='+#39+form 13 .Edit 1. Text+#3 9; 
forml3.ADOQuery3.ExecSQL; 
showmessage('RECORD DELETED'); 
forml3.LbSpeedButton4.Click; 

END; 
end 
else 
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TF orm 13 .LbSpeedButton4Click(Sender: TObject ); 
begin 
FORMl 3 .Edit 1. Clear; 
FORMl 3 .Edit2. Clear; 
form 13 .Edit2. SetF ocus; 
Form 13 .LbSpeedButton l .Enabled:=TRUE; 
Forml3.LbSpeedButton2.Enabled:=TRUE; 

form 13. ADOQuery 1. Close; 
forml3.ADOQueryl.SQL.Text:='select * from operations'; 
form 13. ADOQuery 1. Open; 

end; 

116 



procedure TForm13.DBGrid1CellClick(Column: TColumn); 
begin 
IF FORM13.DBGridl.Fields[O].IsNull = false THEN 
BEGIN 
FORM13.Editl.Text:=FORM13.DBGridl.Fields[O].Text; 
FORM13.Edit2.Text:=FORM13.DBGridl.Fields[l].Text; 

END 
end; 

end. 

FORM 14 CODES 

unit Unit14; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, ExtCtrls, Grids, DBGrids, LbSpeedButton, Buttons, 
StdCtrls, Menus, DB, ADODB; 

type 
TForm14 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: Tl.abel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: Tl.abel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
Edit3: TEdit; 
ComboBox 1: TComboBox; 
ComboBox2: TComboBox; 
SpeedButtonl: TSpeedButton; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
DBGrid 1: TDBGrid; 
Panel 1 : TPanel; 
StatusBarl: TStatusBar; 
ADOQueryl: TADOQuery; 
AD0Query2: TADOQuery; 
ADOQuery3: T ADOQuery; 
DataSource 1 : TDataSource; 

117 



DataSource2: TDataSource; 
DataSource3: TDataSource; 
procedure SpeedButtonlClick(Sender: TObject); 
procedure FormShow(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure LbSpeedButton3Click(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form14: TForm14; 
SS14:WORD; 

implementation 

uses Unit38, UnitlO, Unit12; 

{$R *.dfm} 

procedure TF orm 14. S peedButton 1 Click( Sender: TObj ect ); 
begin 
form38.show; 
TA:=14; 

end; 

procedure TForm14.FormShow(Sender: TObject); 
begin 
form 14. ADOQuery 1. Close; 
form14.AD0Queryl.SQL.Text:='select * from users'; 
form 14. ADOQuery 1. Open; 

end; 

procedure TForm14.LbSpeedButton1Click(Sender: TObject); 
begin 
if(form14.Editl.Text <>")and (form14.Edit2.Text <>")and (form14.Edit3.Text <> 

") then 
begin 
form14.ADOQuery2.Close; 
form14.ADOQuery2.SQL.Text:='select * from users where 

user_name='+#39+form14.Edit2.Text+#39; 
form 14. ADOQuery2. Open; 
ifform14.ADOQuery2.RecordCount = 0 then 
begin 

118 



forml4.ADOQuery2.Close; 
forml4.AD0Query2.SQL.Text:='insert into users 

(user_ name,password, staff _id, staff_ state, staff _pozition) values 
('+#39+forml4.Edit2.Text+#39+','+#39+forml4.Edit3.Text+#39+','+#39+forml4.Editl. 
Text+#39+', '+#3 9+form 14. ComboBoxl. Text+#39+', '+#39+form 14. ComboBox2. Text+# 
39+')'; 

forml4.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
Form 14 .LbS peedButton4. Click; 
END 
ELSE 
SHOWMESSAGE('USER NAME IS USED'); 

END 
ELSE if forml4.Editl.Text =" then 
showmessage('PLEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

procedure TF orml 4 .LbSpeedButton2Click(Sender: TObject ); 
begin 
IF (FORM14.Editl.Text <>")AND (FORM14.Edit2.Text <>")AND 
(FORM14.Edit3.Text <> ") THEN 
BEGIN 
form 14. ADOQuery3. Close; 
form14.ADOQuery3.SQL.Text:='select * from users where 

user_name='+#39+form14.Edit2.Text+#39; 
form14.ADOQuery3.0pen; 
ifforml4.ADOQuery3.RecordCount = 0 then 
begin 
FORM14.ADOQuery3.Close; 
FORM14.ADOQuery3.SQL.Text:='UPDATE users set 

user_name='+#39+form14.Edit2.Text+#39+', 
password='+#3 9+form 14 .Edit3. Text+#3 9+', staff _id='+#3 9+form 14 .Edit 1. T ext+#3 9+', 
staff_state='+#39+form14.ComboBoxl.Text+#39+', 
staff _pozition='+#3 9+form 14. ComboBox2. Text+#39+' where 
staff_id='+#39+forml4.Editl.Text+#39; 

form 14. AD0Query3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
Form14.LbSpeedButton4.Click; 
end 
else 
SHOWMESSAGE('USER NAME IS USED'); 

end 
else 
showmessage('PLEASE BE SURE TO FILL EMPTY PLACE'); 

end; 

procedure TForm14.LbSpeedButton3Click(Sender: TObject); 
begin 

119 



IF (FORM14.Editl.Text <> 11) THEN 
BEGIN 
SS14:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 '+FORM14.Edit2.Text+' 

II ?',MTWARNING,[MBYES ,MBNO],O); 
IF SS14 = MRYES then 
BEGIN 
FORM14.ADOQuery3.Close; 
FORM14.ADOQuery3.SQL.Text:='DELETE FROM users where 

user_name='+#39+form14.Edit2.Text+#39; 
forml 4.ADOQuery3 .ExecSQL; 
showmessage('RECORD DELETED'); 
Form14.LbSpeedButton4.Click; 

END; 
end 
else 
showmessage('PLEASE BE SURE TO CHOOSE DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TF orm 14 .LbSpeedButton4Click(Sender: TObject ); 
begin 
FORMl 4 .Edit 1. Clear; 
FORM14.Edit2.Clear; 
FORMl 4 .Edit3. Clear; 
FORM14.ComboBoxl.Text:='Select One'; 
FORM14.ComboBox2.Text:='Select One'; 
form 14 .Edit2. SetF ocus; 
Form 14 .LbSpeedButton 1.Enabled:=TRUE; 
Form14.LbSpeedButton2.Enabled:=TRUE; 

form 14. ADOQuery 1. Close; 
form14.AD0Queryl.SQL.Text:='select * from users'; 
form 14. ADOQuery 1. Open; 

end; 

procedure TForm14.DBGrid1CellClick(Column: TCohimn); 
begin 
IF FORM14.DBGridl.Fields[O].IsNull = false THEN 
BEGIN 
FORMl 4.Edit 1.Text:=FORMl 4.DBGrid 1.Fields[2]. Text; 
FORM14.Edit2.Text:=FORM14.DBGridl.Fields[O].Text; 
FORM14.Edit3.Text:=FORM14.DBGridl.Fields[l].Text; 
FORM14.ComboBoxl.Text:=FORM14.DBGridl.Fields[3].Text; 
FORMl 4. ComboBox2. Text:=FORMl 4.DBGrid I .Fields[ 4]. Text; 

END 
end; 

procedure TForm14.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
Form14.LbSpeedButton4.Click; 

120 



form14.ADOQueryl.Close; 
form 14. AD0Query2. Close; 
form 14. ADOQuery3. Close; 

end; 

procedure TForm14.ForrnHide(Sender: TObject); 
begin 
Form14.LbSpeedButton4.Click; 
form14.ADOQueryl.Close; 
form14.ADOQuery2.Close; 
form14.ADOQuery3.Close; 

end; 

end. 

FORM 15 CODES 

unit Unit15; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, LbSpeedButton, StdCtrls, Buttons, Mask, Menus, ExtCtrls, 
ComCtrls, Grids, DBGrids, DB, ADODB; 

type 
TForm15 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Label5: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Label9: TLabel; 
LabellO: TLabel; 
Label 11: TLabel; 
Label12: TLabel; 
Label 13: TLabel; 
Label14: TLabel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
Edit3: TEdit; 
MaskEdit 1: TMaskEdit; 
MaskEdit2: TMaskEdit; 

121 



MaskEdit3: TMaskEdit; 
MaskEdit4: TMaskEdit; 
Memol: TMemo; 
ComboBoxl: TComboBox; 
Edit4: TEdit; 
ComboBox2: TComboBox; 
Edit5: TEdit; 
Edit6: TEdit; 
Memo2: TMemo; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
StatusBarl: TStatusBar; 
Panel 1: TPanel; 
ADOQueryl: TADOQuery; 
ADOQuery2: T ADOQuery; 
ADOQuery3: T ADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
ADOConnection 1: T ADOConnection; 
DB Grid 1: TDBGrid; 
procedure FormShow(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure LbSpeedButton3Click(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form15: TForm15; 
SS15:WORD; 

implementation 

uses UnitlO; 

{$R *.dfm} 

procedure TForm15.FormShow(Sender: TObject); 
begin 
FORM15.ADOQueryl.Close; 

122 



FORM15.ADOQueryl.SQL.Text:='select 
customer _id, Cname, Csumame,Mobilphone,homephone, workphone,fax,address,city, tow 
n,country,email,web,c_note from customer'; 
form 15 .ADOQuery 1. Open; 

end; 

procedure TForm15.LbSpeedButton1Click(Sender: TObject); 
begin 
if (form15.Edit2.Text <>")or (form15.Edit3.Text <>")then 
begin 
form15.ADOQuery2.Close; 
form15.AD0Query2.SQL.Text:='select * from customer where 

Cname='+#39+form15.Edit2.Text+#39+' and 
Csumame='+#39+form15.Edit3.Text+#39+' and 
mobilphone='+#39+form15.MaskEdit2.Text+#39; 

form 15. ADOQuery2. Open; 
ifform15.ADOQuery2.RecordCount = 0 then 
begin 
form15.AD0Query2.Close; 
form15.AD0Query2.SQL.Text:='insert into customer 

(Cname, Csumame,homephone,mobilphone, workphone,fax,address, town,city,country,e 
mail, web, C _ note,recorddate,recordtime) values 
('+#39+Form15.Edit2.Text+#39+','+#39+form15.Edit3.Text+#39+','+#39+form15.Mask 
Editl.Text+#39+','+#39+form15.MaskEdit2.Text+#39+','+#39+forml5.MaskEdit3.Text 
+#39+','+#39+form15.MaskEdit4.Text+#39+','+#39+form15.Memol.Text+#39+','+#39 
+form15.Edit4.Text+#39+','+#39+form15.ComboBoxl.Text+#39+','+#39+form15.Com 
boBox2.Text+#39+','+#39+form15.Edit5.Text+#39+','+#39+form15.Edit6.Text+#39+',' 
+#3 9+form 15 .Memo2. Text+#3 9+', '+#3 9+datetostr( date )+#3 9+', '+#3 9+timetostr( time)+ 
#39+')'; 

form 15. ADOQuery2.ExecSQL; 
form15.ADOQuery2.Close; 
form15.ADOQuery2.SQL.Text:='select * from customer'; 
form 15 .ADOQuery2. Open; 
showmessage('RECORD SAVED'); 
Form15.LbSpeedButton4.Click; 
END 
else 
SHOWMESSAGE('THE CUSTOMER SAVED BEFORE'); 

END 
ELSE if form15.Edit2.Text =" then 
showmessage('PLEASE FILL THE NAME') 

ELSE if form15.Edit3.Text =" then 
showmessage('PLEASE FILL THE SURNAME') 
else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

123 



procedure TF orm 15 .Lb S peedButton2Click( Sender: TObject ); 
begin 
IF (FORM15.Editl.Text <> 11) AND (FORM15.Edit2.Text <> 11) AND 

(FORM15.Edit3.Text <> 11) THEN 
BEGIN 
FORMl 5 .ADOQuery3. Close; 
FORM15.ADOQuery3.SQL.Text:='UPDATE customer set Cname= 

'+#39+form15.Edit2.Text+#39+', Csurname= '+#39+form15.Edit3.Text+#39+', 
homephone='+#39+forml5.MaskEditl.Text+#39+', 
mobilphone='+#39+form15.MaskEdit2.Text+#39+ ', 
workphone='+#3 9+form 15 .MaskEdit3. Text+#39+', 
fax='+#39+form15.MaskEdit4.Text+#39+', 
address='+#3 9+form 15 .Memo 1. Text+#39+', town='+#39+form 15 .Edit4. Text+#39+', 
city='+#39+forml 5. ComboBox 1. Text+#39+', 
country='+#39+forml 5. ComboBox2. Text+#39+', 
email='+#3 9+form 15 .Edit5. Text+#3 9+', web='+#3 9+form 15 .Edit6. T ext+#3 9+', 
C note='+#39+forml 5 .Memo2. Text+#39+' WHERE 
customer _id='+#3 9+form 15 .Edit 1. Text+#3 9; 

form15.ADOQuery3.ExecSQL; 
showmessage('RECORD UPDATED'); 
Form 15 .LbSpeedButton4. Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE SELECT CUSTOMER AND BE SURE'+#13+'TO 

FILL THE EMPTY PLACE'); 
end; 

procedure TForm15.LbSpeedButton3Click(Sender: TObject), 
begin 
IF (FORM15.Editl.Text <> 11) AND (FORM15.Edit2.Text <> 11) AND 

(FORM15.Edit3.Text <> 11) then 
BEGIN 
SS15:=MESSAGEDLG('ARE YOU SURE TO DELETE 11 ID: 

'+FORM15.Editl.Text+'; CUSTOMER:' +FORM15.Edit2.Text+' 
'+FORM15.Edit3.Text+' 11 ?',MTWARNING,[MBYES ,MBNO],O); 

IF SS15 = MRYES then 
BEGIN 
FORMl 5 .ADOQuery3. Close; 
form15.ADOQuery3.SQL.Text:='delete from customer where 

customer _id='+#3 9+form 15 .Edit 1. Text+#3 9; 
form 15. ADOQuery3 .ExecSQL; 
showmessage('RECORD DELETED'); 
Form 15 .LbSpeedButton4. Click; 

END; 
end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

124 



procedure TF orm 15 .LbSpeedButton4Click(Sender: TObject ); 
begin 
form 15 .Edit 1. Clear; 
form 15 .Edit2. Clear; 
form 15 .Edit3. Clear; 
form 15 .MaskEdit 1. Clear; 
form15.MaskEdit2.Clear; 
form 15 .MaskEdit3. Clear; 
form 15 .MaskEdit4. Clear; 
form 15 .Memo 1. Clear; 
form 15 .Edit4. Clear; 
form 15. ComboBox 1. Text:='Select One'; 
form15.ComboBox2.Text:='Select One'; 
form 15 .Edit5. Clear; 
form15.Edit6.Clear; 
form 15 .Memo 2. Clear; 
FORM15.Edit2.SetFocus; 
Form15.LbSpeedButtonl.Enabled:=TRUE; 
Form 15 .LbSpeedButton2.Enabled:=TRUE; 

FORM15.ADOQueryl .Close; 
FORMl 5 .ADO Query 1. SQL. Text:='select 

customer _id, Cname, Csumame,Mobilphone,homephone, workphone,fax,address,city, tow 
n,country,email,web,c_note from customer'; 
form 15 .ADOQuery 1. Open; 

end; 

procedure TForm15.DBGrid1CellClick(Column: TColumn); 
begin 

IF FORM15.ADOQueryl.RecordCount <> 0 THEN 
BEGIN 
FORM15.Editl.Text:=FORM15.DBGridl.Fields[O].Text; 
FORMl 5 .Edit2. Text:=FORMl 5 .DBGrid I .Fields[ 1]. Text; 
FORMl 5 .Edit3. Text:=FORMl 5 .DBGrid 1.Fields[2]. Text; 
form15.MaskEditl.Text:=FORM15.DBGridl.Fields[3].Text; 
form15.MaskEdit2.Text:=FORM15.DBGridl.Fields[4].Text; 
form15.MaskEdit3.Text:=FORM15.DBGridl.Fields[5].Text; 
form15.MaskEdit4.Text:=FORM15.DBGridl.Fields[6].Text; 
FORMl 5 .Memo 1. Text:=FORMl 5 .DBGrid 1.Fields[7]. Text; 
FORMl 5 .Edit 4. Text:=FORMl 5 .DBGrid 1.Fields[9]. Text; 
FORM15.ComboBoxl.Text:=FORM15.DBGridl.Fields[8].Text; 
FORM15.ComboBox2.Text:=FORM15.DBGridl.Fields[10].Text; 
FORM15.Edit5.Text:=FORM15.DBGridl.Fields[ll].Text; 
FORM15.Edit6.Text:=FORM15.DBGridl.Fields[12].Text; 
FORM15.Memo2.Text:=FORM15.DBGridl.Fields[13].Text; 

END; 

end; 

procedure TForm15.FormClose(Sender: TObject; var Action: TCloseAction); 

125 



begin 
Form 15 .LbSpeedButton4. Click; 
form 15. ADOQuery 1. Close; 
form 15. ADOQuery2. Close; 
form 15. AD0Query3. Close; 

end; 

procedure TForm15.FormHide(Sender: TObject); 
begin 
Form 15 .LbSpeedButton4. Click; 
form 15. ADOQuery 1. Close; 
form15.ADOQuery2.Close; 
form15.ADOQuery3.Close; 

end; 

end. 

FORM 16 CODES 

unit Unit16; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, Grids, DBGrids, ExtCtrls, StdCtrls, Buttons, Menus, 
DB,ADODB; 

type 
TForm16 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 
Label 7: TLabel; 
Label8: TLabel; 
Label9: TLabel; 
LabellO: TLabel; 
Label 11 : TLabel; 
Labell2: TLabel; 
Label 13: TLabel; 
Label 14: TLabel; 
Label 15: TLabel; 
Labell6: TLabel; 
Edit 1 : TEdit; 

126 



Edit2: TEdit; 
Edit3: TEdit; 
Edit4: TEdit; 
Edit5: TEdit; 
Edit6: TEdit; 
ComboBoxl: TComboBox; 
DateTimePickerl: TDateTimePicker; 
SpeedButtonl: TSpeedButton; 
Memo 1: TMemo; 
Memo2: TMemo; 
Memo3: TMemo; 
Edit?: TEdit; 
Label 1 7: TLabel; 
Edit8: TEdit; 
Memo4: TMemo; 
ComboBox2: TComboBox; 
Edit9: TEdit; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
S peedButton5: TS peedButton; 
SpeedButton6: TSpeedButton; 
Panel 1 : TPanel; 
DBGrid 1: TDBGrid; 
StatusBarl: TStatusBar; 
ADOQueryl: T ADOQuery; 
AD0Query2: TADOQuery; 
AD0Query3: T ADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3 : TDataSource; 
procedure SpeedButton3Click(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure FormShow(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject ); 
procedure SpeedButton5Click(Sender: TObject), 
procedure SpeedButton6Click(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure FormHide(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure DBGrid 1 CellClick(Column: TColumn); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forml6: TForml6; 
SS16:WORD; 

127 



implementation 

uses UnitlO, Unit40, Unitl5; 

{$R *.dfm} 

procedure TForml6.SpeedButton3Click(Sender: TObject); 
begin 
if (forml6.Edit2.Text <>")and (forml6.Edit3.Text <>")and (forml6.Edit5.Text <> 

")then 
begin 
forml6.ADOQuery2.Close; 
forml6.ADOQuery2.SQL.Text:='select * from animal where 

animal name='+#39+forml6.Edit2.Text+#39+' and 
animal kind='+#39+form l 6.Edit3. Text+#39+' and 
owner_ no='+#39+form l 6.Edit5. Text+#39; 

form 16. AD0Query2. Open; 
ifforml6.ADOQuery2.RecordCount = 0 then 
begin 
forml6.AD0Query2.Close; 
forml6.ADOQuery2.SQL.Text:='insert into animal 

(animal_name,animal_kind,animal_race,owner_no,abirthdate,animal_sex,animal_color, 
animal_ weight,collar _ no.earning , no,life _state,animal _ mark,animal _ alergy ,acronic _ me 
di cine, A_ note) values 
('+#39+Forml6.Edit2.Text+#39+','+#39+forml6.Edit3.Text+#39+','+#39+forml6.Edit4 
. Text+#39+', '+#39+form l 6.Edit5. Text+#39+','+#3 9+datetostr(forml 6.DateTimePicker 1 
.Date )+#39+', '+#39+form 16. ComboBox 1. Text+#39+', '+#39+form l 6.Edit6. Text+#3 9+',' 
+#39+forml6.Edit7.Text+#39+','+#39+forml6.Edit8.Text+#39+','+#39+forml6.Edit9. 
Text+#39+','+#39+forml6.ComboBox2.Text+#39+','+#39+forml6.Memol.Text+#39+', 
'+#39+form l 6.Memo2. Text+#39+', '+#39+forml 6.Memo3. Text+#39+', '+#39+forml 6.M 
emo4.Text+#39+')'; 

form 16. ADOQuery2.ExecSQL; 
forml6.ADOQuery2.Close; 
forml6.ADOQuery2.SQL.Text:='select * from animal'; 
forml6.ADOQuery2.0pen; 
showmessage('RECORD SAVED'); 
Forml6.SpeedButton6.Click; 
END 
else 
SHOWMESSAGE('THE ANIMAL SAVED BEFORE'); 

END 
ELSE if forml6.Edit2.Text =" then 
showmessage('PLEASE FILL THE ANIMAL NAME') 

ELSE if forml6.Edit5.Text ="then 
showmessage('PLEASE CHOOSE THE OWNER NO') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

128 



end; 

procedure TForm16.FormCreate(Sender: TObject); 
begin 
form 16.DateTimePicker 1.Date:=date; 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylm/d'; 

end; 

procedure TForm16.FormShow(Sender: TObject); 
begin 
FORM16.AD0Queryl.Close; 
FORMl 6.ADOQuery 1. SQL. Text:='select 

animal id,animal name,animal kind,animal race,owner no,animal sex,animal color,a - - - - - - - 
nimal_weight,animal_mark,animal_alergy,acronic_medicine,collar_no,eaming_no,life_ 
state,a_note from animal'; 
form 16. ADOQuery 1. Open; 

end; 

procedure TForm16.SpeedButton4Click(Sender: TObject); 
begin 
IF (FORM16.Editl.Text <>")AND (FORM16.Edit2.Text <>")AND 

(FORM16.Edit3.Text <>")AND (FORM16.Edit5.Text <>")THEN 
BEGIN 
FORMl 6.ADOQuery3. Close; 
FORM16.ADOQuery3.SQL.Text:='UPDATE animal set animal_name= 

'+#39+form16.Edit2.Text+#39+', animal_kind= '+#39+form16.Edit3.Text+#39+', 
animal_race= '+#39+form16.Edit4.Text+#39+', 
abirthdate='+#3 9+datetostr(form 16 .DateTimePicker 1.Date )+#3 9+', 
animal_sex='+#39+form16.ComboBoxl.Text+#39+', animal_color= 
'+#39+form16.Edit6.Text+#39+', animal_weight= '+#39+form16.Edit7.Text+#39+', 
collar_no= '+#39+form16.Edit8.Text+#39+', eaming_no= 
'+#39+form16.Edit9.Text+#39+', life_state='+#39+form16.ComboBox2.Text+#39+', 
animal_mark='+#39+form16.Memol.Text+#39+', 
animal_ alergy='+#39+forml 6.Memo2. Text+#39+', 
acronic _ medicine='+#39+form 16.Memo3. Text+#39+', 
a note='+#39+form16.Memo4.Text+#39+' WHERE 
animal_id='+#39+form16.Editl.Text+#39; 

form16.ADOQuery3.ExecSQL; 
showmessage('RECORD UPDATED'); 
Form16.SpeedButton6.Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE SELECT CUSTOMER AND BE SURE'+#13+'TO 

FILL THE EMPTY PLACE'); 
end; 

procedure TForm16.SpeedButton5Click(Sender: TObject); 

129 



begin 
IF (FORM16.Editl.Text <>")AND (FORM16.Edit2.Text <>")AND 

(FORM16.Edit5.Text <>")then 
BEGIN 
SS16:=MESSAGEDLG('ARE YOU SURE TO DELETE "ID: 

'+FORM16.Editl.Text+'; ANIMAL:' +FORM16.Edit2.Text+'" 
?',MTW ARNING,[MBYES ,MBNO],O); 

IF SS16 = MR.YES then 
BEGIN 
FORMl 6.ADOQuery3. Close; 
forml6.ADOQuery3.SQL.Text:='delete from animal where 

animal_id='+#39+forml6.Editl.Text+#39; 
forml6.ADOQuery3.ExecSQL; 
showmessage('RECORD DELETED'); 
form 16. SpeedButton6. Click; 

END; 
end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TForml6.SpeedButton6Click(Sender: TObject); 
begin 
form 16 .Edit 1. Clear; 
forml6.Edit2.Clear; 
forml 6.Edit3. Clear; 
forml6.Edit4.Clear; 
forml6.Edit5.Clear; 
form 16.DateTimePicker l .Date:=date; 
forml6.ComboBoxl.Text:='Select One'; 
form l 6.Edit6. Clear; 
forml6.Edit7.Clear; 
form 16 .Edit8. Clear; 
forml6.Edit9.Clear; 
forml6.ComboBox2.Text:='Select One'; 
forml6.Memol.Clear; 
forml6.Memo2.Clear; 
forml6.Memo3.Clear; 
forml6.Memo4.Clear; 
FORM16.Edit2.SetFocus; 
FORMl 6. SpeedButton3 .Enabled:=TRUE; 
FORMl 6. SpeedButton4.Enabled:=TRUE; 

FORM16.ADOQueryl .Close; 
FORM16.ADOQueryl.SQL.Text:='select 

animal id,animal name,animal kind,animal race,owner no,animal sex,animal color,a - - - - - - - 
nimal _ weight,animal_ mark,animal _ alergy,acronic _ medicine,collar _ no,earning_ no,life _ 
state,a _ note from animal'; 
form 16. ADOQuery 1. Open; 

130 



end; 

procedure TForm16.SpeedButton1Click(Sender: TObject); 
begin 
FORM40.SHOW; 
end; 

procedure TForm16.ForrnHide(Sender: TObject); 
begin 
forml 6. SpeedButton6.Click; 
form16.AD0Queryl .Close; 
form16.ADOQuery2.Close; 
form16.ADOQuery3.Close; 

end; 

procedure TForm16.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
form16.SpeedButton6.Click; 
form16.AD0Queryl.Close; 
form16.AD0Query2.Close; 
form16.ADOQuery3.Close; 

end; 

procedure TForm16.DBGrid1CellClick(Column: 'I'Column); 
begin 
IF FORM16.ADOQueryl.RecordCount <> 0 THEN 
BEGIN 
FORM16.Editl.Text:=FORM16.DBGridl.Fields[O].Text; 
FORM16.Edit2.Text:=FORM16.DBGridl.Fields[l].Text; 
FORM16.Edit3.Text:=FORM16.DBGridl.Fields[2].Text; 
FORM16.Edit4.Text:=FORM16.DBGridl.Fields[3].Text; 
FORM16.Edit5.Text:=FORM16.DBGridl.Fields[4].Text; 
FORM16.ComboBoxl.Text:=FORM16.DBGridl.Fields[5].Text; 
FORM16.Edit6.Text:=FORM16.DBGridl.Fields[6].Text; 
FORM16.Edit7.Text:=FORM16.DBGridl.Fields[7].Text; 
FORMl 6.Memo 1. Text:=FORMl 6.DBGrid 1.Fields[8]. Text; 
FORMl 6.Memo2. Text:=FORMl 6.DBGrid 1.Fields[9]. Text; 
FORM16.Memo3.Text:=FORM16.DBGridl.Fields[10].Text; 
FORMl 6.Edit8. Text:=FORMl 6.DBGrid 1.Fields[l 1]. Text; 
FORM16.Edit9.Text:=FORM16.DBGridl.Fields[12].Text; 
FORM16.ComboBox2.Text:=FORM16.DBGridl.Fields[13].Text; 
FORM16.Memo4.Text:=FORM16.DBGridl.Fields[14].Text; 
end; 
end; 

end. 

131 



FORM 17 CODES 

unit Unitl 7; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Grids, DBGrids, LbSpeedButton, Ex:tCtrls, ComCtrls, StdCtrls, 
Buttons, Menus, DB, ADODB; 

type 
TForml 7 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Edit 1 : TEdit; 
ComboBoxl: TComboBox; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
Edit2: TEdit; 
Edit3: TEdit; 
Edit4: TEdit; 
SpeedButtonl: TSpeedButton; 
Memol: TMemo; 
SpeedButton2: TSpeedButton; 
StatusBarl: TStatusBar; 
Panel 1 : TPanel; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
DBGrid 1: TDBGrid; 
ADOQueryl: TADOQuery; 
Data Source 1 : TDataSource; 
AD0Query2: T ADOQuery; 
AD0Query3: T ADOQuery; 
ADOQuery4: TADOQuery; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
DataSource4: TDataSource; 
procedure SpeedButtonlClick(Sender: TObject); 
procedure FormShow(Sender: TObject); 

132 



procedure FormCreate(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 
procedure EditlChange(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure DBGridlCellClick(Column: TColumn); 
procedure LbSpeedButton3Click(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forml 7: TForml 7; 
SS17:WORD; 

implementation 

uses UnitlO, Unit38, Unit39; 

{$R *.dfm} 

procedure TUAHQ; 
begin 
form 17. ComboBox I .Items. Clear; 
FORM I 7 .ADOQuery4. Close; 
FORM17.AD0Query4.SQL.Text:='select vaccine_name from vaccines'; 
form 17. AD0Query4. Open; 
while not form17.AD0Query4.Eof do 
begin 
form 17. ComboBox I .Items.Add( forml 7. AD0Query4['vaccine _ name']); 
forml 7.ADOQuery4.Next; 
end; 

END; 

procedure TForml 7.SpeedButtonlClick(Sender: TObject); 
begin 
form38.show; 
TA:=17; 
end; 

procedure TForml 7.FormShow(Sender: TObject); 
begin 
forml 7.ADOQueryl .Close; 
forml 7.ADOQueryl.SQL.Text:='select * from vaccinate'; 
form 17. ADOQuery 1. Open; 
TUAHQ; 

133 



end; 

procedure TForml 7.Form.Create(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 
FORMl 7 .DateTimePickerl .Date:=DATE; 
FORMl 7.DateTimePicker2.Date:=DATE; 

end; 

procedure TForml 7.LbSpeedButtonlClick(Sender: TObject); 
begin 

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

if (forml 7.Editl.Text <> ") and (forml 7.ComboBoxl.Text <> 'Select One') and 
(forml 7.Edit4.Text <>")AND (DATETOSTR(FORMl 7.DateTimePickerl.Date) <> 
DATETOSTR(FORMl 7.DateTimePicker2.Date)) THEN 
begin 
forml 7.ADOQuery2.Close; 
form17.AD0Query2.SQL.Text:='select * from vaccinate where 

vaccine_ serialno='+#3 9+form 17 .Edit2. Text+#3 9; 
forml 7. ADOQuery2. Open; 
ifform17.ADOQuery2.RecordCount = 0 then 
begin 
forml 7. ADOQuery2. Close; 
forml 7.ADOQuery2.SQL.Text:='insert into vaccinate 

(animal _id, vaccine_ name, vaccinate_ date,next _ vaccinatedate, vaccine_ serialno, vaccine_ 
producer,applied _ staff, v _note) values 
f+#39+form 17 .Edit 1. Text+#39+', '+#39+form 17. Combo Box 1. Text+#39+', '+#3 9+dateto 
str(forml 7 .DateTimePickerl .Date )+#39+', '+#39+datetostr(forml 7 .DateTimePicker2.Da 
te)+#39+','+#39+forml 7.Edit2.Text+#39+','+#39+forml 7.Edit3.Text+#39+','+#39+for 
m17.Edit4.Text+#39+','+#39+form17.Memol.Text+#39+')'; 

form17.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
forml 7.ADOQueryl .Close; 
forml 7.ADOQueryl.SQL.Text:='select * from vaccinate where 

animal_id='+#39+forml 7.Editl .Text+#39; 
form 17. ADOQuery 1. Open; 
TU AHO; 

END 
ELSE 
SHOWMESSAGE('THE VACCINATE SAVED BEFORE'); 

END 
ELSE if form 17 .Edit 1. Text = " then 

134 



showmessage('PLEASE CHOOSE THE ANIMAL ID') 
ELSE ifform17.Edit4.Text =" then 
showmessage('PLEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

procedure TF orml 7. SpeedButton2Click(Sender: TObject ); 
begin 
FORM39.SHOW; 
ANI:=17; 

end; 

procedure TForml 7.EditlChange(Sender: TObject); 
begin 
forml 7.ADOQueryl .Close; 
form17.ADOQueryl.SQL.Text:='select * from vaccinate where 

animal_id='+#39+form 17.Editl .Text+#39; 
form 17. ADOQuery 1. Open; 
TU AHO; 

end; 

procedure TForml 7.LbSpeedButton2Click(Sender: TObject); 
begin 

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

IF (FORM17.Editl.Text <>")AND (FORM17.Edit2.Text <>")AND 
(FORM17.ComboBoxl.Text <> 'Select One') THEN 
BEGIN 
FORMl 7.AD0Query3.Close; 
FORM17.ADOQuery3.SQL.Text:='UPDATE vaccinate set 

Animal_id='+#39+forml 7.Editl.Text+#39+', 
Vaccine_ name='+#39+form 17. ComboBox 1. Text+#39+', 
Vaccinate_ date='+#3 9+datetostr( form 17 .DateTimePicker I .Date )+#3 9+', 
ext_ vaccinatedate='+#3 9+datetostr(form 17 .DateTimePicker2.Date )+#39+', 

Vaccine_ serialno='+#3 9+form 17 .Edit2. Text+#3 9+', 
Vaccine_producer='+#39+forml 7.Edit3.Text+#39+', 
Applied_staff='+#39+forml 7.Edit4.Text+#39+', 
V note='+#39+forml 7.Memol.Text+#39+' where 
Animal_id='+#39+form17.DBGridl.Fields[O].Text+#39+' and 
Vaccine_ name='+#3 9+form 17 .DBGrid 1. Fields[ 1]. Text+#3 9+' and 
Vaccinate_date='+#39+form17.DBGridl.Fields[2].Text+#39+' and 
Vaccine_serialno='+#39+form17.DBGridl.Fields[4].Text+#39; 

form17.ADOQuery3.ExecSQL; 
showmessage('RECORD UPDATED'); 
FORMl 7.LbSpeedButton4.Click; 

END 

135 



ELSE 
SHOWMESSAGE('PLEASE CHOOSE VACCINATE FROM LIST'); 

end; 

procedure TForm17.DBGrid1CellClick(Column: TColumn); 
begin 
IF FORM17.ADOQueryl.RecordCount <> 0 THEN 
BEGIN 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'ddlmm/yyyy'; 

FORMl 7.Editl.Text:=FORMl 7.DBGridl .Fields[O].Text; 
FORMl 7.ComboBoxl. Text:=FORMl 7.DBGrid 1.Fields[l ].Text; 

FORMl 7 .DateTimePicker 1.Date:=STRTODATE(FORMl 7 .DB Grid 1.Fields[2]. Text); 

FORMl 7.DateTimePicker2.Date:=STRTODATE(FORM17.DBGridl.Fields[3].Text); 
FORMl 7.Edit2.Text:=FORM17.DBGridl .Fields[4].Text; 
FORMl 7.Edit3.Text:=FORM17.DBGridl .Fields[S].Text; 
FORMl 7 .Edit4. Text:=FORMl 7 .DBGrid I .Fields[ 6]. Text; 
FORMl 7 .Memo 1. Text:=FORMl 7 .DBGridl .Fields[7]. Text; 

END; 

end; 

procedure TForml 7.LbSpeedButton3Click(Sender: TObject); 
begin 
IF (FORM17.Editl.Text <> 11) AND (FORM17.comboboxl.Text <> 'Select One') 

AND (FORM17.Edit4.Text <> 11) then 
BEGIN 
SS17:=MESSAGEDLG('ARE YOU SURE TO DELETE II ANIMAL ID: 

'+FORM17.Editl.Text+'; VACCINE:' +FORM17.COMBOBOX1.Text+' ; 
VACCINATE DATE: '+DATETOSTR(FORMl 7.DateTimePickerl .Date)+' 11 

. ,MTW ARNING,[MBYES ,MBNO],O); 
IF SS17 = MRYES then 
BEGIN 
FORMl 7.AD0Query3.Close; 
form17.AD0Query3.SQL.Text:='delete from vaccinate where 

animal id='+#39+forml 7.Editl.Text+#39+' and 
vaccine_ name='+#3 9+form 17. ComboBox 1. Text+#39; 

IIFORMI 7.ADOQuery3.SQL.Text:='DELETE FROM vaccinate where 
Animal id='+#39+forml 7.Editl.Text+#39+' and 
Vaccine name='+#39+form 17. ComboBox 1. Text+#39+' and 
Vaccinate_ date='+#3 9+datetostr( form 17 .DateTimePicker I .Date )+#3 9+' and 
Vaccine_serialno='+#39+forml 7.Edit2.Text+#39; 

forml 7.ADOQuery3.ExecSQL; 
showmessage('RECORD DELETED'); 
Forml 7 .LbSpeedButton4. Click; 

136 



END; 
end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TForml 7.LbSpeedButton4Click(Sender: TObject); 
begin 
FORMl 7 .Edit 1. Clear; 
FORMl 7.ComboBoxl .Text:='Select One'; 
form 17 .DateTimePicker l .Date:=date; 
form 17 .DateTimePicker2 .Date: =date; 
FORMl 7 .Edit2. Clear; 
FORMl 7.Edit3.Clear; 
FORMl 7.Edit4.Clear; 
FORMl 7 .Memo 1. Clear; 
forml 7.ComboBoxl. SetFocus; 
Forml 7.LbSpeedButtonl .Enabled:=TRUE; 
Forml 7.LbSpeedButton2.Enabled:=TRUE; 

forml 7.ADOQueryl .Close; 
forml 7.ADOQueryl.SQL.Text:='select * from vaccinate'; 
form 17. ADOQuery 1. Open; 

end; 

procedure TForml 7.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
forml7.LbSpeedButton4.Click; 
forml 7.ADOQueryl .Close; 
forml 7.AD0Query2.Close; 
forml 7.ADOQuery3.Close; 
forml 7.AD0Query4.Close; 

end; 

procedure TForml 7.FormHide(Sender: TObject); 
begin 
forml 7.LbSpeedButton4.Click; 
form 17. ADOQuery 1. Close; 
forml 7.ADOQuery2.Close; 
forml 7.ADOQuery3.Close; 
forml 7.ADOQuery4.Close; 

end; 

end. 

137 



FORM 18 CODES 

unit Unitl8; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Grids, DBGrids, ExtCtrls, ComCtrls, Buttons, StdCtrls, Menus, 
DB,ADODB; 

type 
TForml8 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3 : TLabel; 
Label4: TLabel; 
Label5: TLabel; 
Label6: TLabel; 
Editl : TEdit; 
ComboBox 1: TComboBox; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
Edit2: TEdit; 
Memo 1: TMemo; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
StatusBarl: TStatusBar; 
Panel 1 : TPanel; 
SpeedButton3: TSpeedButton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedButton; 
SpeedButton6: TSpeedButton; 
DBGrid 1: TDBGrid; 
Label7: TLabel; 
ADOQuery 1: T ADO Query; 
ADOQuery2: TADOQuery; 
ADOQuery3: TADOQuery; 
ADOQuery4: TADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
DataSource4: TDataSource; 
Edit3 : TEdit; 
procedure FormShow(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure SpeedButtonl Click(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject); 

138 



procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure SpeedButton6Click(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 
procedure F ormCreate(Sender: TObj ect ); 
procedure EditlChange(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form18: TForm18; 
SS 1·8·:WORD; 

implementation 

uses UnitlO, Unit39, Unit38; 

{$R *.dfm} 

PROCEDURE TUAHINQ; 
BEGIN 
forml·8.ComboBoxl.Items.Clear; 
FORM18.AD0Query4.Close; 
FORM18.AD0Query4.SQL.Text:='select drug_name from drugs where 

drug_ kind='+#39+'INNER P ARAS1TE'+#39; 
form 18. ADOQuery4. Open; 
while not form18.AD0Query4.Eof do 
begin 
form 18. ComboBox 1.Items.Add(form 18.ADOQuery4['drug_ name'[); 
form 18.ADOQuery4 .Next; 

end; 
END; 

procedure TForm18.FormShow(Sender: TObject); 
begin 
form 18. ADOQuery 1. Close; 
form18.ADOQueryl .SQL.Text:='select * from ipdrug'; 
form 18. ADOQuery 1. Open; 
TUAHIN(); 

end; 

procedure TForm18.SpeedButton3Click(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyy/rnrn/dd'; 

139 



if (form18.Editl.Text <> ") and (forml8.ComboBoxl.Text <> 'Select One') and 
(form18.Edit2.Text <>")AND (DATETOSTR(FORM18.DateTimePickerl.Date) <> 
DATETOSTR(FORM18.DateTimePicker2.Date)) THEN 
begin 
form18.AD0Query2.Close; 
form18.AD0Query2.SQL.Text:='select * from ipdrug where 

animal id='+#39+form 18 .Edit 1. Text+#39+'and 
ip _ drugname='+#39+form 18. ComboBox 1. Text+#3 9+' and 
ip _ drugdate='+#39+datetostr(form 18 .DateTimePicker I .Date )+#39+' and 
ip _ nextdrugdate='+#3 9+datetostr( form 18 .DateTimePicker2.Date )+#3 9; 

form 18. ADOQuery2. Open; 
ifform18.ADOQuery2.RecordCount = 0 then 
begin 
form18.AD0Query2.Close; 
form18.ADOQuery2.SQL.Text:='insert into ipdrug 

(animal _id,ip _ drugname,ip _ drugdate,ip _ nextdrugdate,applied _staff,ip _ drugnote) values 
('+#39+form18.Editl.Text+#39+','+#39+form18.ComboBoxl.Text+#39+','+#39+dateto 
str(form18.DateTimePickerl.Date)+#39+','+#39+datetostr(form18.DateTimePicker2.Da 
te)+#39+','+#39+form18.Edit2.Text+#39+','+#39+form18.Memol.Text+#39+')'; 

form18.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
forml 8.ADOQueryl .Close; 
form18.ADOQueryl.SQL.Text:='select * from ipdrug where 

animal _id='+#39+form 18.Edit 1. Text+#39; 
form 18. ADOQuery 1. Open; 
TUAHINQ; 

END 
ELSE 
SHOWMESSAGE('THE INNER PARASITE APPLICATION SAVED BEFORE'); 

END 
ELSE if form18.Editl.Text ="then 
showmessage('PLEASE CHOOSE THE ANIMAL ID') 

ELSE ifforml8.Edit2.Text ='' then 
showmessage('PLEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

procedure TForml8.-SpeedButtonlClick(Sender: TObject); 
begin 
form39. show; 
ANI:=18; 
end; 

procedure TForml8.SpeedButton2Click(Sender: TObject); 
begin 
form38.show; 
TA:=18; 

end; 

140 



procedure TF orm 18. S peedButton4Click(Sender: TObj ect ); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

IF (FORMl8.Edit1.Text <> 11) AND (FORM18.Edit3.Text <> 11) AND 
(FORM18.Edit2.Text <> 11) AND (FORM18.ComboBoxl.Text <> 'Select One') THEN 
BEGIN 
FORMl 8.ADOQuery3. Close; 
FORM18.ADOQuery3.SQL.Text:='UPDATE ipdrug set 

Animal_id='+#39+form18.Editl.Text+#39+', 
ip _ drugname='+#39+form 18. Combo Box 1. Text+#39+', 
ip _ drugdate='+#3 9+datetostr( form 18 .Date TimePicker I .Date )+#3 9+', 
ip _ nextdrugdate='+#39+datetostr(form 18.DateTimePicker2.Date)+#39+', 
Applied_stafI='+#39+form18.Edit2.Text+#39+', 
ip _ drugnote='+#39+form 18.Memo 1. Text+#39+' where 
Ip_id='+#39+form18.Edit3.Text+#39; 

forml 8. ADOQuery3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
FORMl 8. SpeedButton6. Click; 
END 
ELSE 
SHOWMESSAGE('PLEASE SELECT INNER PARASITE APPLICATION FROM 

LIST'); 
end; 

procedure TF orm 18. S peedButton5Click(Sender: TObj ect ); 
begin 
IF (FORM18.Editl.Text <>")AND (FORM18.Edit3.Text <>")then 
BEGIN 
SS18:=MESSAGEDLG('ARE YOU SURE TO DELETE II ANIMAL ID: 

'+FORM18.Editl.Text+'; INNER DRUG:' +FORM18.COMBOBOX1.Text+' ; IP 
DRUG DATE: '+DATETOSTR(FORM18.DateTimePickerl.Date)+' 11 

?',MTW ARNING,[MBYES ,MBNO],O); 
IF SS18 = MR.YES then 
BEGIN 
FORMl 8.ADOQuery3 .Close; 
form18.ADOQuery3.SQL.Text:='delete from ipdrug where 

Ip _id='+#39+form 1~.Edit3. Text+#39; 
form 18. ADOQuery3 .ExecSQL; 
showmessage('RECORD DELETED'); 
Forml 8. SpeedButton6.Click; 

END· ' end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

141 



procedure TForm18.DBGrid1CellClick(Column: TColumn); 
begin 
IF FORMl 8.ADOQuery I .Record Count<> O THEN 
BEGIN 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacacy pekle donubturdum. .. 

shortdateformat := 'ddlmm/yyyy'; 

FORM18.Edit3.Text:=FORM18.DBGridl.Fields[O].Text; 
FORM18.Editl.Text:=FORM18.DBGridl.Fields[l].Text; 
FORM18.ComboBoxl.Text:=FORM18.DBGridl.Fields[2].Text; 

FORM18.DateTimePickerl.Date:=STRTODATE(FORM18.DBGridl.Fields[3].Text); 

FORM18.DateTimePicker2.Date:=STRTODATE(FORM18.DBGridl.Fields[4].Text); 
FORMl 8.Edit2. Text:=FORMl 8.DBGrid 1.Fields[S]. Text; 
FORM18.Memol.Text:=FORM18.DBGridl.Fields[6].Text; 

END; 
end; 

procedure TForm18.SpeedButton6Click(Sender: TObject); 
begin 
FORMl 8.Edit3 .Clear; 
FORM18.Editl.Clear; 
FORM18.ComboBoxl.Text:='Select One'; 
form 18.DateTimePickerl .Date:=date; 
form 18 .DateTimePicker2.Date: =date; 
FORM18.Edit2.Clear; 
FORM18.Memol.Clear; 
form 18. ComboBoxl. SetFocus; 
Form18.SpeedButton3.Enabled:=TRUE; 
Form18.SpeedButton4.Enabled:=TRUE; 

form 18. ADOQuery 1. Close; 
form18.AD0Queryl.SQL.Text:='select * from ipdrug'; 
form 18. ADOQuery I .Open; 

end; 

procedure TForm18.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
FORM18.SpeedButton6.Click:; 
FORM18.ADOQueryl.Close; 
FORM I 8 .ADOQuery2. Close; 
FORM I 8.ADOQuery3. Close; 
FORMI 8.AD0Query4.Close; 

end; 

procedure TForm18.FormHide(Sender: TObject); 

142 



begin 
FORMl 8. SpeedButton6. Click; 
FORM18.ADOQueryl .Close; 
FORM I 8.ADOQuery2. Close; 
FORM I 8.ADOQuery3. Close; 
FORM18.AD0Query4.Close; 

end; 

procedure TForm 18 .F orrncreatetsenoer: TObject ); 
begin 
dateseparator := '-'; II Burada tarih'in ayra9laryny MySql database sistemintn 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 
FORM18.DateTimePickerl.Date:=DATE; 
FORM18.DateTimePicker2.Date:=DATE; 

end; 

procedure TFortn.18.EditlChange(Sendet: TObject); 
begin 
fotrn18.ADOQuetyl.Close; 
forml8.ADOQueryl.SQL.Text:='select * from ipdrug where 

animal id='+#39+forml8.Editl .Text+#39; 
form 18. ADOQuery 1. Open; 
TUAHIN(); 

end; 

it Unit19; 

s 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, StdCtrls, Menus, Grids, DBGrids, LbSpeedButton, 
ExtCtrls, Buttons, DB, ADODB; 

TForm19 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 

143 



StatusBarl: TStatusBar; 
Edit 1: TEdit; 
Combolsox 1: TComboBox; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
Edit2: TEdit; 
Memo 1: TMemo; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
Panel 1: TPanel; 
LbSpeedButtonl '. TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
DBGrid 1: TDBGrid; 
Label?: TLabel; 
Edit3: TEdit; 
ADOQueryl: T ADOQuery; 
ADOQuery2: T ADO Query; 
AD0Query3: T ADOQuery; 
AD0Query4: TADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
DataSource4: TDataSource; 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure FormShow(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure LbSpeedButton3Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure EditlChange(Sender: TObject); 
ivate 
{ Private declarations } 
blic 

{ Public declarations } 
aid; 

UnitlO, Unit18, Unit39, Unit38; 

144 



{$R *.dfm} 

PROCEDURE itJAHOUT(); 
BEGIN 
form 19. Combolsox I .Items. Clear; 
FORMl 9 .AD0Query4. Close; 
FORM19.ADOQuery4.SQL.Text:='select drugname from drugs where 

drug_ kind='+#39+'0UTER P ARASITE'+#3 9; 
form 19. ADOQuery4. Open; 
while not form 19. ADOQuery4 .Eof do 
begin 
form 19. ComboBox I .Items.Add( form 19. ADOQuery4['drug_ name']); 
forml 9.AD0Query4.Next; 

end; 
END· ' 

procedure TForm19.LbSpeedButton1Click(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

if'(form lv.EditlText <> ") and (form19.ComboBoxl.Text <> 'Select One') and 
(form19.Edit2.Text <>")AND (DATETOSTR(FORM19.DateTimePickerl.Date) <> 
DATETOSTR(FORMl 9 .Date'I'imel'ickerz.Datej) THEN 
begin 
form19.ADOQuety2.Close; 
form19.ADOQuery2.SQL.Text:='select * from opdrug where 
· mal id='+#39+form 19 .Edit 1. Text+#39+'and 
_ drugname='+#39+form 19. ComboBoxl. Text+#39+' and 
_ drugdate='+#39+datetostr(form 19 .Date'I'imel'icker I .nate )+#3 9+' and 
_ nextdrugdate='+#39+datetostr(form 19 .DateTimePicker2.Date )+#3 9; 
form 19. ADOQuery2. Open; 
if form19.ADOQuery2.RecordCount = 0 then 
begin 
form19.AD0Query2.Close; 
fotrn19.ADOQuery2.SQL.Text:='insert into opdtug 

animal _id, op_ drugname, op_ drugdate,op _ nextdrugdate,applied _ staff, op_ drugnote) 
'ftlues 
'+#39+forml 9 .Edit 1. Text+#39+', '+#3 9+form 19. ComboBox 1. Text+#39+', '+#3 9+dateto 
form19.DateTimePicketl.Date)+#39+','+#39+datetostr(form19.DateTimePicker2.Da 

:)+#39+','+#39+form19.Edit2.Text+#39+','+#39+form19.Memol.Text+#39+')'; 
form19.ADOQuety2.ExecSQL; 
showmessage('RECORD SAVED'); 
forml 9.ADOQuetyl .Close; 
form19.ADOQueryl.SQL.Text:='select * from opdrug where 

· mal_id='+#39+fonrtl 9.Editl .Text+#39; 
form 19. ADOQuery 1. Open; 
TUAHOUT(); 

145 



END 
ELSE 
SHOWMESSAGE('THE INNER P ARASI'l'E APPLICATION SAVED BEFORE\ 

END 
ELSE ifform.19.Editl.Text =" then 
showmessage('PLEASE CHOOSE THE ANIMAL ID') 

ELSE if formlv.Editz.Text =" then 
showmessage('PLEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

procedure TFortn19.Fbrrn.Show(Sender: TObject); 
begin 
form19.ADOQueryl .Close; 
form19.ADOQueryl.SQL.Text:='select * from opdrug'; 
form 19 .ADOQuery 1. Open; 
TUAHOUT(); 

end; 

procedure Tliorm 19 .LbSpeedButton2Click(Sender: TObject ); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

IF (FORM19.Editl.Text <>")AND (FORM19.Edit3.Text <>")AND 
(FORM19.Edit2.Text <>")AND (FORM19.ComboBoxl.Text <> 'Select One') THEN 
BEGIN 
FORMl 9 .ADOQuery3. Close; 
FORM19.ADOQuery3.SQL.Text:='UPDATE opdrug set 

Animal_ id='+#3 9+form 19 .Edit 1. Text+#3 9+', 
op_drugname='+#39+form19.ComboBoxl.Text+#39+', 
op_drugdate='+#39+datetostr(form19.DateTimePickerl.Date)+#39+', 
op_ nextdrugdate='+#3 9+datetostr(form 19 .Date TimePicket2 .Date )+#3 9+', 
Applied_staff='+#39+form19.Edit2.Text+#39+', 
op_ drUgnote='+#3 9+form 19 .Memo 1. Text+#39+' where 
Op _id='+#39+form 19 .Edit3. Text+#39; 

form 19. ADOQuery3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
Form 19 .tbSpeedButton4. Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE SELECT OUTER PARASITE APPLICATION FROM 

LIST'); 
end; 

procedure TFOnh19.LbSpeedButtori3Click(Sender: TObject); 
begin 
IF (FORM19.Editl.Text <>")AND (FORM19.Edit3.Text <>")then 

146 



BEGIN 
SS 19:=MESSAGEDLG('ARE YOU SURE TO DELETE " ANIMAL ID: 

'+FORM19.Editl.Text+'; OUTER DRUG:' +FORM19.COMBOBOX1.Text+' ; OP 
DRUG DATE: '+DATETOSTR(FORM19.DateTimePickerl.Date)+'" 
?',MTW ARNING,[MBYES ,MBNO],O); 

IF SS19 = !\1RYES then 
BEGIN 
FORMl 9 .ADOQuery3. Close; 
form.19.ADOQuety3.SQL.Text:='delete from opdrug where 

Op_id='+#39+form19.Edit3.Text+#39; 
rormt 9.ADOQUety3 .ExecSQL; 
showmessage('RECORD DELETED'); 
Form19.LbSpeedButton4.Click; 

END; 
end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TForm19.DBGrid1CellClick(Column: TColumn); 
begin 
IF FORM19.ADOQuery1.RecordCount <> 0 THEN 
BEGIN 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminirt 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'ddlmm/yyyy'; 

FORM19.Edit3.Text:=FORM19.DBGridl.Fields[O].Text; 
FORM19.Editl.Text:=FORM19.DBGridl.Fields[l].Text; 
FORM19.ComboBoxl.Text:=FORM19.DBGridl.Fields[2].Text; 

FORM19.DateTimePickerl.Date:=STRTODATE(FORM19.DBGridl.Fields[3].Text); 

FORM19.DateTimePicker2.Date:=STRTODATE(FORM19.DBGridl.Fields[4].Text); 
FORM19.Edit2.Text:=FORM19.DBGridl.Fields[5].Text; 
FORM19.Memol.Text:=FORM19.DBGridl.Fields[6].Text; 

END· ' aid· , 

ocedure TFonh 19 .Lb Speedlsutton+Clicki Sender: TObject ); 
ltegin 
FORMl 9 .Edit3. Clear; 
FORMl 9 .Edit 1. Clear; 
FORM19.ComboBoxl.Text:='Select One'; 
form19.DateTimePickerl.Date:=date; 
form 19 .DateTimePicker2.Date:=date; 
FORMl 9 .Edit2. Clear; 
FORMl 9 .Memo 1. Clear; 

147 



forml 9.Comb6Boxl. SetFocus; 
F orml 9 .LbSpeedButton 1.Enabled:=TRUE; 
Form19.LbSpeedButton2.Enabled:=TRUE; 

form 19. ADOQuery 1. Close; 
form19.ADOQueryl.SQL.Text:='select * from opdrug'; 
form 19. ADOQuery 1. Open; 

end; 

procedure TForm.19.SpeedButtonlClick(Sertder: TObject); 
begin 
form39.show; 
AN1:=19; 

end; 

procedure TF orm 19. S peedButton2Click( Sender: TObj ect); 
begin 
form38.show; 
TA:=19; 

end; 

procedure TForm19.FotmClose(Sendet: TObject, vat Action: 'I'CloseAction); 
begin 
FORM19.LbSpeedButton4.Click; 
FORMl 9 .ADOQuery 1. Close; 
FORMl 9 .ADOQuety2.Close; 
FORM19.ADOQuery3.Close; 
FORMl 9 .ADOQuery4. Close; 

end; 

procedure TForm19.FormHide(Sender: TObject); 
begin 
FORMl 9 .LbSpeedBUUon4. Click; 
FORMl 9 .ADO Query 1. Close; 
FORM19.ADOQuery2.Close; 
FORM19.ADOQuery3.Close; 
FORM1'9.AD0Query4.Close; 

end; 

procedure TFotrn.19.Fotrn.Create(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum. .. 
shortdateformat := 'yyyylmm/dd'; 
FORMl 9 .DateTimePickerl .Date:=DATE; 
FORMl 9 .DateTimePicker2.Date:=DATE 

end; 

procedure TF orm 19 .Editl Change/Sender: TObject ); 
begin 

148 



forth 19. ADOQuery 1. Close; 
form19.ADOQueryl.SQL.Text:='select * from opdrug where 

anirnal , id='+#3 9+form 19 .Edit 1. Text+#3 9; 
form 19 .ADOQuery 1. Open; 
TUAHOUTQ; 

end; 

end. 

FORM 20 CODES 

unit Unit20; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Grids, DBGrids, ComCtrls, ExtCtrls, Buttons, StdCtrls, Menus, 
DB,ADODB; 

type 
TForm20 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Label5: Tl.abel; 
Edit 1 : TEdit; 
ComboBoxl: TComboBox; 
DateTimePickerl: TDateTimePicker; 
Edit2: TEdit; 
Memo 1: TMemo; 
Speedlsuttonl : TSpeedlsutton; 
SpeedButton2: TSpeedButton; 
Speedlsuttons: TSpeedlsutton; 
SpeedButton4: TSpeedButton; 
SpeedButton5: TSpeedlsutton; 
SpeedButton6: TSpeedButton; 
Panel 1: TPanel; 
StatusBarl: TStatusBar; 
DBGridl: TDBGrid; 
Label6: TLabel; 
Edit3: TEdit; 
ADOQueryl: TADOQuery; 
ADOQuety2: TADOQuery; 
AD0Query3: T ADOQuery; 
ADOQuery4: T ADO Query; 

149 



DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
DataSource4: TDataSource; 
procedure Speedlsutton.IClickf Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeedButton5Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure Speedlsutton 1 Click(Sender: TObject ); 
procedure SpeedButton2Click(Sender: TObject); 
procedure Form.Show(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure Forml-lidet Sender: TObject); 
procedure EditlChange(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form20: TForm20; 
SS20:WORD; 

implementation 

uses UnitlO, Unit18, Unit39, Unit38; 

{$R *.dfm} 

PROCEDURE TUAHMEDQ; 
BEGIN 
form20. Cornbolsoxl .Items. Clear; 
FORM20.ADOQuery4.Close; 
FORM20.ADOQuery4.SQL.Text:='select drug_name from drugs where 

drug_ kind='+#39+'GENERAL DRUG'+#39; 
fofrn.20. ADOQuery4. Open; 
while not form20.ADOQuery4.Eof do 
begin 
form20.ComboBoxl.Items.Add(form20.ADOQuery4['drug_name']); 
form20.AD0Query4.Next; 

end; 
END; 

procedure TF orm20. S peedButton3 Click( Sender: TObj ect ); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum, .. 
shortdateformat := 'yyyylmm/dd'; 

150 



if (fotrh20.Editl.Text <> ") and (fotm20.ComboBoxl.Text <> 'Select One') and 
(form20.Edit2.Text <>")THEN 
begin 
form20 .ADOQuery2. Close; 
form20.ADOQuety2.SQL.Text:='select * from medicinate where 

animal id='+#3 9+form20 .Edit 1. Text+#3 9+'and 
drug_ name='+#39+form20. Combolsox 1. Text+#39+' and 
medicinate _ date='+#39+datetostr(form20 .DateTimePicker I .Date )+#39; 

form20 .ADOQuety2. Open; 
ifform20.ADOQuery2.RecordCount = 0 then 
begin 
form20.ADOQuery2.Close; 
form20. ADOQuety2. SQL. Text: =insert into medicinate 

( animal _id, drug_ name, medicinate _ date, applied_ staff,M _note) values 
('+#39+form20 .Edit 1. Text+#39+', '+#3 9+fotm20. Combolsox 1. Text+#3 9+', '+#3 9+dateto 
str(form20 .DateTimePicker I .Date )+#39+', '+#3 9+form20 .Edit2. Text+#3 9+', '+#39+form 
20.Memo 1. Text+#39+')'; 

form20. ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
form20. ADO Query 1. Close; 
fotm.20.ADOQuetyl.SQL.Texe='select * from medtclnate where 

animal_id='+#39+form20.Editl.Text+#39; 
form20. ADOQuery 1. Open; 
TUAHMEDQ; 

END 
ELSE 
SHOWMESSAGE('TRE MEDICINAiE APPLICATION SAVED BEFORE'); 

END 
ELSE if'formzu.Edit l.Text =" then 
showmessage('PLEASE CHOOSE THE ANIMAL ID') 

ELSE ifform20.Edit2.Text ="then 
showmessage('PLEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

procedure TF otin20. F orrrtCreate( Sender: TObj ect ); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 
FORM20 .DateTimePicker l .Date:=DATE; 

end; 

procedure TF otm20. S peedButton4Click(Sender: TObj ect ); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

151 



IF (FORM20.Editl.Text <>")AND (FORM20.Edit3.Text <>")AND 
(FORM20.Edit2.Text <>")AND (FORM20.ComboBoxl.Text <> 'Select One') THEN 
BEGIN 
FORM20.AD0Query3.Close; 
FORM20.ADOQuery3.SQL.Text:='UPDATE medicinate set 

Animal_id='+#39+form20.Editl.Text+#39+', 
drug_ name='+#39+form20. Combofsox 1. Text+#3 9+', 
medicinate _ date='+#39+datetostr(form20 .DateTimePicker I .Date )+#3 9+', 
Applied_staff='+#39+form20.Edit2.Text+#39+', 
M note='+#39+form20.Memol.Text+#39+' where 
medicifiate_id='+#39+form20.Edit3.Text+#39; 

form20. AD0Query3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
Form20.SpeedButton6.Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE SELECT MEDICINATE APPLICATION FROM 

LIST'); 
end; 

procedure TForm20.SpeedButton5Click(Sender: TObject); 
begin 
IF (FORM20.Editl.Text <> n) AND (FORM20.Edit3.Text <>'')then 
BEGIN 
SS20:=MESSAGEDLG('ARE YOU SURE TO DELETE " ANIMAL ID: 

'+FORM20.Editl.Text+'; MEDICINE:' 
+FORM20.COMBOBOX1.Text+#13+'MEDICINATE DATE: 
'+DATETOSTR(FORM20.DateTimePickerl.Date)+' " ?',MTW ARNING,[MBYES 
,MBNO),O); 
IF SS20 = MRYES then 
BEGIN 
FORM20 .ADOQuery3. Close; 
fotni20.ADOQuety3.SQL.Text:='delete from medicinate where 

medicinate_id='+#39+form20.Edit3.Text+#39; 
form20.ADOQuery3.ExecSQL; 
showmessage('RECORD DELETED'); 
Form20.SpeedButton6.Click; 
END; 
end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TF orm20. SpeedButton6Click( Sender: TObj ect ); 
begin 
FORM20 .Edit3. Clear; 
FORM20 .Edit 1. Clear; 
FORM20.ComboBoxl.Text:='Select One'; 

152 



form20 .DateTimePicker I .Date: =date; 
FORM20 .Edit2. Clear; 
FORM20 .Memo 1. Clear; 
form20. ComboBox 1. SetFocus; 
Fofm20.SpeedButton3.Enabled:=TRUE; 
Form20.SpeedButton4.Enabled:=TRUE; 

fotm20.ADOQueryl .Close; 
form20.ADOQueryl.SQL.Text:='select * from medicinate'; 
fotm20.ADOQuery 1. Open; 
TUAHMED0; 

end; 

procedure TFotm20.DBGtid1CellClick(Column: TColumn); 
begin 
IF FORM20.AD0Queryl .RecordCount <> 0 THEN 
BEGIN 

dateseparator := '. '; II Burada tarih'ln ayra~laryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'ddlmm/yyyy'; 

FORM20 .Edit3. Text:=FORM20 .DBGrid 1.Fields[O]. Text; 
FORM20 .Edit 1. Text:=FORM20 .DBGrid I .Fields[ 1]. Text; 
FORM20.ComboBoxl.Text:=FORM20.DBGridl.Fields[2].Text; 

FORM20.DateTimePicketl.Date:=STRTODATE(FORM20.DBGtidl.Fields[3].Text); 
FORM20.Edit2.Text:=FORM20.DBGridl.Fields[4].Text; 
FORM20.Memol.Text:=FORM20.DBGridl.Fields[S].Text; 

END; 
end; 

procedure TF orm20. Speedlsutton 1 Click/Sender: 'robject); 
begin 
FORM39.SHOW; 
ANI:=20; 

end; 

procedure TF otm20. s peedButton.2Click(Sender: TObj ect ); 
begin 
FORM38.SHOW; 
TA:=20; 

end; 

procedure TFotm20.Forrn.Show(Sender: TObject); 
begin 
fortn.20. ADOQuery 1. Close; 
form20.ADOQueryl.SQL.Text:='select * from medicinate'; 
form20. ADOQuety 1. Open; 
TUAHMED0; 

153 



end; 

procedure TForm20.FormClose(Sender: TObject; var Action: T'CloseAction); 
begin 
F orm20. s peedlsuttono. Click; 
FORM20 .ADO Query 1. Close; 
FORM20.ADOQuety2.Close; 
FORM20.ADOQuery3.Close; 
FORM20.AD0Query4.Close; 

end; 

procedure TForm20.ForrnHide(Sender: TObject); 
begin 
Form20.SpeedButtofi6.Click; 
FORM20 .ADO Query 1. Close; 
FORM20 .ADOQuery2. Close; 
FORM20 .ADOQuery3. Close; 
FORM20.AD0Query4.Close; 

end; 

procedure TForm20.Edit1Change(Sender: TObject); 
begin 
fonn20.ADOQueryl.Close; 
form20.ADOQueryl.SQL.Text:='select * from medicinate where 

animal_id='+#39+form20.Editl. Text+#39; 
form20. ADOQuery 1. Open; 
TUAHMEDQ; 

end; 

end. 

FORM 21 CODES 

unit Unit21; 

interface 

uses 
Windows, Messages, Sysl.Itils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Grids, DBGrids, ExtCtrls, ComCtrls, LbSpeedButton, Buttons, 
StdCtrls, Menus, DB, ADODB; 

type 
TForm21 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 

154 



Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 
Edit 1 : TEdit; 
ComboBoxl: TComboBox; 
DateTimePickerl: TDateTimePicker; 
ComboBox2: TComboBox; 
Edit2: TEdit; 
Memo 1: TMemo; 
SpeedButtonl: TSpeedButton; 
Speedlsuttonz: TSpeedlsutton; 
LbSpeedButtonl: TLbSpeedButton; 
LbSpeedButton2: TLbSpeedButton; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
StatusBarl: TStatusBar; 
Panel I : TPanel; 
DB Grid 1: TDBGrid; 
Edit3: TEdit; 
Label7: TLabel; 
ADOQuery 1: T ADO Query; 
ADOQuery2: TADOQuery; 
ADOQuery3: T ADOQuery; 
ADOQuery4: T ADOQuery; 
Data Source 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
DataSource4: TDataSource; 
ADOQuery5: T ADO Query; 
DataSourceS: TDataSource; 
procedure FormCreate(Sender: TObject), 
procedure FormShow(Sender: TObject); 
procedure LbSpeedButtonIClick(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure LbSpeedBmton3Click(Sender: TObJ ect ); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure DBGrid I CellClick(Column: 'I'Column); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure Speedlsutton I Click/Sender: TObjeet ); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure FormHide(Sender: TObject); 
procedure EditlChange(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
F orm21: TF orm21; 

155 



SS21:WORD; 
implementation 

uses UnitlO, Unit20, Unit39, Unit38; 

{$R *.dfm} 

PROCEDURE TUAHAPl>DRUG(); 
BEGIN 
fotni.21. Combolsoxz.Items, Clear; 
FORM21.ADOQuery4.Close; 
FORM21.ADOQuety4.SQL.Text:='select drug name from drugs where 

drug_ kind='+#39+'GENERAL DRUG'+#39; 
fotni.21. ADOQuety4. Open; 
while not form21.ADOQuery4.Eof do 
begin 
form21. ComboBox2.Items.Add(forrn21.ADOQuery4['drug_ name']); 
form21.AD0Query4.Next; 

end; 
END; 

PROCEDURE TUAHAPPOPR.(); 
BEGIN 
formz l. ComboBox I .Items. Cleat; 
FORM21.ADOQuery5. Close; 
FORM2 I .ADOQuery5. SQL. Text.=select operation , name from operations'; 
form21. ADOQuery5. Open; 
while not forni21. ADOQuety5 .Eof do 
begin 
fotrn21. Combolsox 1. Items. Add( fotm21. ADOQuety5 [operation _name']); 
form21.ADOQuery5 .Next; 

end; 
END; 

procedure TFofib21.FormCteate(Senclet: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayra.9laryny MySql database sisteminin 

anlayacaoy pekle donupturdurn ... 
shortdateformat := 'yyyylmm/dd'; 
FORM21.DateTimePickerl .Date:=DATE; 

end; 

procedure TFoi'Ifi21.FotrnShow(Sender: TObject); 
begin 
formz I. ADOQuefy 1. Close; 
form21.ADOQueryl.SQL.Text:='select * from appliedoperation'; 
fotm21. ADOQuery 1. Open; 
TUAHAPPOPR(); 

156 



TUAHAPPDRUG(); 
end; 

procedure Tl-ormz l.Lb Speedlsuttonl ClicktSender: 'I'Object); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny My'Sql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyy/mm/dd'; 

if (fotm21.Editl.Text <> 11) and (form21.ComboBoxl.Text <> 'Select One') and 
(form21.Edit2.Text <> 11) THEN 
begin 
form21.AD0Query2. Close; 
fotm21.ADOQuery2.SQL.Text:='select * from appliedoperation where 

animal id='+#3 9+form21.Edit 1. Text+#3 9+'and 
operation , name='+#3 9+form21. Combolsox 1. Text+#3 9+' and 
operation_ date='+#39+datetostr(form21.DateTimePickerl .Date )+#39; 

fotm21. ADOQuety2. Open; 
ifform21.ADOQuery2.RecordCount = 0 then 
begin 
form21.ADOQuery2. Close; 
fotm21. ADOQuery2. SQL. Text.=insert into appliedoperation 

( animal _id, operation_ name, operation_ date, drug_ name, applied_ staff, 0 _note) values 
('+#39+form21.Edit 1. Text+#3 9+', '+#3 9+form21. ComboBox 1. Text+#3 9+', '+#3 9+dateto 
str(form21.DateTimePicker I .Date )+#39+', '+#39+form21. ComboBox2. Text+#39+', '+#3 
9+fotm21.Edit2. Text+#39+', '+#39+fotm21.Memo 1. Text+#39+')'; 

form21. ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
form21. ADOQuery 1. Close; 
fotm21.ADOQueryl.SQLText:='select * from appliedoperation where 

animal_id='+#39+form21.Editl.Text+#39; 
formz l. ADOQuety 1. Open; 
TUAHAPPOPRQ; 
TDAHAPPDRUG(); 

END 
ELSE 
SHOWMESSAGE('THE OPERATION SAVED BEFORE'); 

END 
ELSE if form21.Editl.Text = 11 then 
showmessage(1>LEASE CHOOSE THE ANIMAL ID;) 

ELSE if form21.Edit2.Text = 11 then 
showmessage('J>LEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

end; 

procedure TF orm21.LbSpeedButton2Click(Sender: TObject ); 
begin 
dateseparator := '-'; II Burada tarih'in ayravlaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 

157 



shortdateformat := 'yyyy/mm/dd'; 

IF (FORM21.Editl.Text <> 11) AND (FORM21.Edit3.Text <> 11) AND 
(FORM21.Edit2.Text <> 11) AND (FORM21.ComboBoxl.Text <> 'Select One') THEN 
BEGIN 
FORM2 l .ADOQuery3. Close; 
FORM21.ADOQuety3.SQL.Texr='UPDATE appliedoperation set 

Animal_ id='+#3 9+form2 l .Edit 1. Text+#3 9+', 
operation , fiame='+#39+fotm2 l .Combolsoxl Text+#39+', 
operation_ date='+#3 9+datetostr( form2 l .DateTimePicker I .Date )+#3 9+', 
drug_ name='+#39+fotm.2 l. ComboBox2. Text+#39+', 
Applied_staff='+#39+form21.Edit2.Text+#39+', 
o hote='+#39+fotm2 l .Memo 1. Text+#39+' where 
aop _id='+#39+form2 l .Edit3. Text+#39; 

foffi12 l. ADOQuery3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
Form21.tbSpeedButton4.Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE SELECT OPERATION FROM LIST'); 

end; 

procedure TFortn2 l .LbSpeedButton3Click(Sender: TObject); 
begin 
IF (FORM21.Editl.Text <>,;)AND (FORM21.Edit3.Text <> ii) then 
BEGIN 
SS21:=MESSAGEDLG('ARE YOU SURE TO DELETE II ANIMAL ID: 

'+FORM21.Editl.Text+'; OPERATION NAME: ' 
+FORM2 l .COMBOBOX1. Text+# 13+'0PERATION DATE: 
'+DATETOSTR(FORM2 l .DateTimePickerl .Date)+' 11 ?',MTW ARNING,[MBYES 
,MBNO],O); 

IF SS21 = MRYES then 
BEGIN 
FORM2 l .ADOQuery3. Close; 
form2 l .ADOQuety3. SQL. Text=delete from appliedoperation where 

aop _id='+#39+form2 l .Edit3. Text+#39; 
fofih2 l .ADOQuery3 .ExecSQL; 
showmessage('RECORD DELETED'); 
F orm2 l .LbSpeedButton4. Click; 

END; 
end 
else 
shoWmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TForm2 l .LbSpeedButton4Click(Sender: TObject); 
begin 
FORM2 l .Edit3. Clear; 
FORM2 l .Editl. Clear; 

158 



FORM2 l. ComboBox 1. Text:='Select One'; 
form21.DateTimePicker 1.Date:=date; 
FORM21.ComboBox2.Text:='Select One'; 
FORM21.Edit2. Clear; 
FORM21.Memo 1. Clear; 
form21. ComboBox 1. SetFocus; 
F offii21.LbSpeedButtofi I .Enabled :=TRUE; 
F orm21.LbSpeedButton2.Enabled:=TRUE; 

form21. ADOQuery 1. Close; 
form21. ADOQuery 1. SQL. Text:='select * from appliedoperation'; 
form21. ADO Query 1. Open; 
TUAHAPPOPRQ; 
TUAHAPPDRUGQ; 

end; 

procedure TFoffh21.DBGtid1CellClick(Column: TColumn): 
begin 
IF FORM21.ADOQuery1.RecordCount <> 0 THEN 
BEGIN 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'ddlmm/yyyy'; 

FORM21.Edit3. Text:=FORM21.DBGrid 1.Fields[O]. Text; 
FORM21.Edit 1. Text:=FORM21.DBGrid I .Fields[ 1]. Text; 
FORM21. ComboBoxl. Text:=FORM21.DBGrid 1.Fields[2]. Text; 

FORM21.DateTimePickerl.Date:=STRTODATE(FORM21.DBGridl.Fields[3].Text); 
FORM21.ComboBox2.Text:=FORM21.DBGridl.Fields[4].Text; 
FORM21.Edit2.Text:=FORM21.DBGridl.Fields[5].Text; 
FORM21.Memol.Text:=FORM21.DBGridl.Fields[6].Text; 

END; 
end; 

procedure TF orm21. SpeedfsuttonzClick/Sender: 'robjecr ); 
begin 
form39.show; 
ANI:=21; 

end; 

procedure TFortn21.SpeedButton1Click(Sender: TObject); 
begin 
form38.show; 
TA:=21; 

end; 

procedure TForm21.FotrnClose(Sender: 'robject; var Action: 'I'Close.Action); 
begin 

159 



F ormz l.Lbxpeedlsutton-l. Click; 
FORM21.ADOQuery 1. Close; 
FORM21.ADOQuery2. Close; 
FORM21.ADOQuery3. Close; 
FORM21.ADOQuety4. Close; 
FORM21.ADOQuery5. Close; 

end; 

procedure TForni21.FormHide(Sendet: TObject); 
begin 
F otm21.LbSpeedButton.4. Click; 
FORM21.ADOQuery 1. Close; 
FORM21.ADOQuety2. Close; 
FORM21.ADOQuery3. Close; 
FORM21.ADOQUety4. Close; 
FORM21.ADOQuery5. Close; 

end; 

procedure TForm21.Edit1Change(Sender: TObject); 
begin 
fortn21.ADOQuery 1. Close; 
form21.ADOQueryl.SQL.Text:='select * from appliedoperation where 

animal_id='+#39+form21.Editl.Text+#39; 
form21. ADOQuery 1. Open; 
TUAHAPPOPRQ; 
TUAHAPPDRUG(); 

end; 

end. 

FORM 22 CODES 

unit U nit22; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Buttons, StdCtrls, ComCtrls, Menus, ToolWin, LbSpeedButton, 
dxCore, dxButton, Grids, DBGrids, ExtCtrls, DB, ADODB; 

type 
TForm22 = class(TForm) 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Label 1: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 

160 



Labels: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Edit 1 : TEdit; 
Edit2: TEdit; 
DateTimePickerl: TDateTimePicker; 
Edit3: TEdit; 
Memo 1: TMemo; 
Memo2: TMemo; 
Edit4: TEdit; 
Memo3: TMemo; 
Speedlsutton l: TSpeedButton; 
SpeedButton2: TSpeedButton; 
Speedlsuttons: TSpeedlsutton; 
SpeedButton4: TSpeedButton; 
Speedlsuttono: TSpeedButton; 
SpeedButton6: TSpeedButton; 
Panel 1 : TPanel; 
DB Grid 1: TDBGrid; 
Statuslsar l: TStatuslsar; 
SpeedButton7: TSpeedButton; 
ADOQuery 1: T ADO Query; 
ADOQuery2: TADOQuery; 
ADOQuery3: T ADOQuery; 
ADOQuery4: TADOQuery; 
DataSource 1 : TDataSource; 
DataSource2: TDataSource; 
DataSource3: TDataSource; 
DataSource4: TDataSource; 
SpeedButton8: TSpeedButton; 
EditS: TEdit; 
Label9: TLabel; 
procedure SpeedButton2Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: 'I'Object); 
procedure SpeedButton8Click(Sender: TObject); 
procedure FotrnCreate(Sender: TObject); 
procedure SpeedButton3Click(Sender: TObject); 
procedure Edit2Change(Sendet'. TObject); 
procedure EditlChange(Sender: TObject); 
procedure FotmShow(Sender: 'robject), 
procedure SpeedButton4Click(Sender: TObject); 
procedure SpeeclButtonSCiick(Sender TObject); 
procedure SpeedButtonlClick(Sender: TObject); 
procedure SpeedButton7Click(Sender: TObject ); 
procedure DBGrid 1 CellClick(Column: TColumn); 
procedure FormClose(Sender'. TObject; vat Action: TClose.Actlon); 
procedure FormHide(Sender: TObject); 

private 
{ Private declarations } 

161 



public 
{ Public declarations } 

end; 

var 
Form22: TForm22; 
SS22:WORD; 
pn,yn, tbm :integer; 
spn, spn 1,spn2, yspn, tamdt,prcdt 1,prcdt2, prcdt3, prcdt4: string; 

implementation 

uses UnitlO, Unit39, Unit38; 

{$R *.dfm} 

procedure TF orm22. SpeedButton2Click(Sender: TObj ect ); 
begin 
if form22. SpeedButton2. Caption='r' then 
begin 
form22.Edit2. Clear; 
form22.Edit2.Enabled:=false; 
form22.Edit2.Read0nly:=true;; 
form22. SpeedButton2. Caption:='b'; 
//tbm:=O; 
end 
else if form22. SpeedButton2. Caption='b' then 
begin 
form22.Edit2. Clear; 
form22.Edit2.Enabled:=true; 
form22.Edit2.Read0nly:=false; 
form22. SpeedButton2. Caption:='r'; 
//tbm:=1; 
end; 
FORM22. SpeedButton3 .Enabled:=F ALSE; 

end; 

procedure TForm22.SpeedButton6Click(Sender: TObject); 
begin 
FORM22.Edit5. Clear; 
FORM22.Edit 1. Clear; 
FORM22.Edit2. Clear; 
form22.DateTimePickerl .Date:=date; 
FORM22.Edit3. Clear; 
FORM22.Edit4. Clear; 
FORM22.Memo 1. Clear; 
FORM22.Memo2.Clear; 
FORM22.Memo3. Clear; 
form22.DateTimePickerl. SetFocus; 
Form22.SpeedButton3.Enabled:=TRUE; 

162 



Form22. SpeedButton4 .Enabled:=TRUE; 

form22.ADOQueryl .Close; 
form22.ADOQueryl.SQL.Text:='select * from illnesses'; 
form22. ADOQuery 1. Open; 
form22.Edit2.Enabled:=false; 
form22.Edit2.Read0nly:=true;; 
form22. SpeedButton2. Caption:='b'; 
FORM22. SpeedButton3 .Enabled:=TRUE; 

end; 

procedure TF orm22. SpeedButton8Click(Sender: TObj ect ); 
begin 
if form22. SpeedButton2.Caption='b' then 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum. .. 
shortdateformat := 'yyyylmm/dd'; 

form22.ADOQuery4.Close; 
form22.ADOQuery4.SQL.Text:='select max(protocol_no) from illnesses where 

date='+#39+datetostr(FORM22.DateTimePicker I .Date )+#39; 
form22.ADOQuery4.0pen; 
if form22.ADOQuery4['max(protocol_ no)'] <> null then 
begin 
pn:=form22. ADOQuery4['max(protocol_ no)']; 
spn:=inttostr(pn); 

llshowmessage('maxprotocol:='+spn); 
spnl :=copy(spn, 1,8); 

llshowmessage('ilk tarih kysmy=s'+spn l ); 
spn2: =copy( spn, 9 ,length( spn) ); 

llshowmessage('numara kysmyr=+spnz); 
yn:=strtoint(spn2)+ 1; 

I I showmessage('yeni numara kysmy: ='+inttostr(yn) ); 
yspn: =spn 1 +inttostr(yn); 

llshowmessage('yeni protocol no:='+yspn); 
end 
else 
begin 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'ddlmm/yyyy'; 

tamdt:=datetostr(FORM22.DateTimePicker I .Date); 
I lshowmessage('bugunun tarihi :='+tamdt ); 
prcdtl :=copy(tamdt, 1,2); 
I lshowmessage('tarihin giinii:='+prcdt 1 ); 
prcdt2: =copy( tamdt, 4 ,2 ); 
I lshowmessage('tarihin ayy: ='+prcdt2); 

163 



prcdt3 :=copy( tamdt, 7 ,2 ); 
llshowmessage('yylyn ilk parcasy=s'{prcdt'I}; 
prcdt4:=copy(tamdt,9,2); 

llshowmessage('yylyn son parcasy=t+prcdt-l); 
yspn: =prcdt3+prcdt 1 +prcdt4+prcdt2+' l '; 
llshowmessage('yeni protocol no:='+yspn); 
end; 
FORM22.Edit2. Text:=yspn; 
end 
else 
showmessage('PLEASE DISABLE THE PROTOCOL NO BUTTON'); 

end; 

procedure TForm22.FormCreate(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 
FORM22.DateTimePicker 1.Date:=DATE; 
end; 

procedure TForm22.SpeedButton3Click(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmm/dd'; 

if (form22.Editl.Text <> ") and (form22.Edit2.Text <>")and (form22.Edit4.Text <> 
THEN 
begin 
form22.ADOQuery2. Close; 
form22.ADOQuery2.SQL.Text:='select * from illnesses where 

animal id='+#39+form22.Editl. Text+#39+'and 
illness='+#39+form22.Edit3. Text+#39+' and 
date='+#3 9+datetostr( form22.DateTimePicker 1.Date )+#3 9; 

form22. ADOQuery2. Open; 
ifform22.ADOQuery2.RecordCount = 0 then 
begin 
form22.ADOQuery2.Close; 
form22.ADOQuery2.SQL.Text:='insert into illnesses 

(animal _id,protocol_ no,date,illness,applied _ staff, treatment,laboratory _result,i _note) 
values 
'+#39+form22.Editl.Text+#39+','+#39+form22.Edit2.Text+#39+','+#39+datetostr(for 
m22.DateTimePickerl.Date)+#39+','+#39+form22.Edit3.Text+#39+','+#39+form22.Edi 
t4.Text+#39+','+#39+form22.Memol.Text+#39+','+#39+form22.Memo2.Text+#39+','+ 
39+form22.Memo3. Text+#39+')'; 

form22.ADOQuery2.ExecSQL; 
showmessage('RECORD SAVED'); 
Form22.SpeedButton6.Click; 

164 



END 
ELSE 
SHOWMESSAGE('THE ILLNESS SAVED BEFORE'); 

END 
ELSE if form22.Editl.Text = 11 then 
showmessage('PLEASE CHOOSE THE ANIMAL ID') 

ELSE ifform22.Edit2.Text = 11 then 
showmessage('PLEASE FILL THE PROTOCOL NO') 

ELSE ifform22.Edit4.Text = 11 then 
showmessage('PLEASE CHOOSE THE STAFF ID') 

else 
SHOWMESSAGE('BE SURE TO FILL THE EMPTY PLACE'); 

{ dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyy/mm/dd'; 
if form22.Edit2.Text <> 11 then 
begin 
form22.AD0Query2.Close; 
form22.ADOQuery2.SQL.Text:='insert into illnesses (protocol_no,date) values 

f+#3 9+ FORM22.Edit2. Text+#3 9+', '+#3 9+datetostr( form22 .Date TimePicker I .Date )+#3 
9+')'; 
form22. ADOQuery2.ExecSQL; 
form22. ADOQuery 1. Close; 
form22.ADOQueryl.SQL.Text:='select protocol_no from illnesses'; 
form22. ADOQuery 1. Open; 
end; 
form22.Edit2. Clear;} 

end; 

procedure TForm22.Edit2Change(Sender: TObject); 
begin 
//if tbm = 1 then 
ifform22.SpeedButton2.Caption = 'r' then 
begin 
form22.ADOQueryl .Close; 
form22.ADOQueryl.SQL.Text:='select * from illnesses where protocol_no 

like'+#39+'%'+form22.Edit2.Text+'%'+#39; 
form22.ADOQuery 1. Open; 
end; 

end; 

procedure TForm22.Edit1Change(Sender: TObject); 
begin 
form22. ADOQuery 1. Close; 
form22.ADOQueryl.SQL.Text:='select * from illnesses where 

animal_id='+#39+form22.Editl.Text+#39; 
form22. ADOQuery 1. Open; 

end; 

165 



procedure TForm22.FormShow(Sender: TObject); 
begin 
form22. ADOQuery 1. Close; 
form22.ADOQueryl.SQL.Text:='select * from illnesses'; 
form22.AD0Query 1. Open; 

end; 

procedure TForm22.SpeedButton4Click(Sender: TObject); 
begin 
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin 

anlayacaoy pekle donupturdum ... 
shortdateformat := 'yyyylmrn/dd'; 

IF (FORM22.Editl.Text <>")AND (FORM22.Edit2.Text <>")AND 
(FORM22.Edit5.Text <> ") AND (FORM22.Edit4.Text <>")THEN 
BEGIN 
FORM22.ADOQuery3. Close; 
FORM22.ADOQuery3.SQL.Text:='UPDATE illnesses set 

Animal_id='+#39+form22.Editl.Text+#39+', 
protocol_no='+#39+form22.Edit2.Text+#39+', 
date='+#39+datetostr(form22.DateTimePicker I .Date )+#3 9+', 
illness='+#39+form22.Edit3. Text+#39+', 
Applied_staff='+#39+form22.Edit4.Text+#39+', 
treatment='+#39+form22.Memol.Text+#39+', 
laboratory _result='+#3 9+form22.Memo2. Text+#3 9+', 
i_note='+#39+form22.Memo3.Text+#39+' where ill_id='+#39+form22.Edit5.Text+#39; 

form22. ADOQuery3 .ExecSQL; 
showmessage('RECORD UPDATED'); 
Form22.SpeedButton6.Click; 

END 
ELSE 
SHOWMESSAGE('PLEASE SELECT JLLNESS FROM LIST'); 

end; 

procedure TForm22.SpeedButton5Click(Sender: TObject); 
begin 
IF (FORM22.Editl.Text <> ") AND (FORM22.Edit2.Text <>")AND 

(FORM22.Edit5.Text <>")AND (FORM22.Edit4.Text <>")then 
BEGIN 
SS22:=MESSAGEDLG('ARE YOU SURE TO DELETE " ANIMAL ID: 

'+FORM22.Editl.Text+'; JLLNESS: '+FORM22.EDIT3.Text+' ; PROTOCOL NO: 
'+FORM22.Edit2.Text+'" ?',MTW ARNING,[MBYES ,MBNO],O); 

IF SS22 = MRYES then 
BEGIN 
FORM22.ADOQuery3. Close; 
form22.ADOQuery3. SQL. Text:='delete from illnesses where 

ill _id='+#39+form22.Edit5. Text+#39; 
form22. AD0Query3 .ExecSQL; 
showmessage('RECORD DELETED'); 

166 



Form22.SpeedButton6.Click; 
END; 

end 
else 
showmessage('PLEASE BE SURE TO SELECT DATA THAT YOU WILL 

DELETE'); 
end; 

procedure TF orm22. SpeedButton 1 Click(Sender: TObject ); 
begin 
FORM39.SHOW; 
AN1:=22; 

end; 

procedure TForm22.SpeedButton7Click(Sender: TObject); 
begin 
FORM38.SHOW; 
TA:=22; 

end; 

procedure TForm22.DBGrid 1 CellClick(Column: TColumn); 
begin 
IF FORM22.ADOQueryl.RecordCount <> 0 THEN 
BEGIN 

dateseparator := '.'; II Burada tarih'in ayraclaryny MySql database sisteminin 
anlayacaoy pekle donupturdum ... 

shortdateformat := 'dd/mm/yyyy'; 

FORM22.Edit5. Text:=FORM22.DBGrid l .Fields[O]. Text; 
FORM22.Editl.Text:=FORM22.DBGridl.Fields[l].Text; 
FORM22.Edit2. Text:=FORM22.DBGrid l .Fields[2]. Text; 

FORM22.DateTimePickerl.Date:=STRTODATE(FORM22.DBGridl.Fields[3].Text); 
FORM22.Edit3. Text:=FORM22.DBGrid I .Fields[ 4]. Text; 
FORM22.Edit4. Text:=FORM22.DBGrid l .Fields[7]. Text; 
FORM22.Memo 1. Text:=FORM22.DBGrid I .Fields[ 5]. Text; 
FORM22.Memo2. Text:=FORM22.DBGrid I .Fields[ 6]. Text; 
FORM22.Memo3.Text:=FORM22.DBGridl.Fields[8].Text; 
END; 
end; 

procedure TForm22.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
Form22.SpeedButton6.Click; 
FORM22.ADOQueryl .Close; 
FORM22.ADOQuery2.Close; 
FORM22.ADOQuery3 .Close; 
FORM22.ADOQuery4. Close; 
end; 

167 



procedure TForm22.FormHide(Sender: TObject); 
begin 
F orm22. S peedButton6. Click; 
FORM22.AD0Query 1. Close; 
FORM22.AD0Query2. Close; 
FORM22.ADOQuery3. Close; 
FORM22.ADOQuery4.Close; 

end; 

end. 

FORM 23 CODES 

unit Unit23; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Menus, ComCtrls, Buttons, StdCtrls, Grids, DBGrids, ExtCtrls, 
LbSpeedButton, DB, ADODB; 

type 
TForm23 = class(TForm) 
PageControl 1: TPageControl; 
TabSheetl: TTabSheet; 
TabSheet2: TTabSheet; 
TabSheet3: TTabSheet; 
TabSheet4: TTabSheet; 
TabSheet5: TTabSheet; 
Edit 1 : TEdit; 
ComboBoxl: TComboBox; 
Edit4: TEdit; 
Edit5: TEdit; 
Label 1: TLabel; 
Panel 1 : TPanel; 
DBGrid 1: TDBGrid; 
SpeedButtonl: TSpeedButton; 
StatusBarl: TStatusBar; 
MainMenu 1: TMainMenu; 
F 1: TMenultem; 
Panel2: TPanel; 
Edit2: TEdit; 
Panel3: TPanel; 
Label2: TLabel; 
Panel4: TPanel; 
DBGrid2: TDBGrid; 
LbSpeedButtonl: TLbSpeedButton; 

168 



LbSpeedButton2: TLbSpeedButton; 
S peedButton2: TS peedButton; 
Panels: TPanel; 
Label3: TLabel; 
SpeedButton4: TSpeedButton; 
Panel6: TPanel; 
DBGrid3: TDBGrid; 
Panel7: TPanel; 
Panel8: TPanel; 
Label4: TLabel; 
LbSpeedButton3: TLbSpeedButton; 
LbSpeedButton4: TLbSpeedButton; 
DBGrid4: TDBGrid; 
Pane19: TPanel; 
Panell 0: TPanel; 
Labels: TLabel; 
SpeedButton6: TSpeedButton; 
DBGridS: TDBGrid; 
TabSheet7: TTabSheet; 
Panel 13: TPanel; 
DBGrid7: TDBGrid; 
ADOQuery 1: T ADOQuery; 
DataSource 1 : TDataSource; 
procedure CheckBoxl Click(Sender: TObject); 
procedure EditlChange(Sender: TObject); 
procedure SpeedButton 1 Click(Sender: TObject ); 
procedure SpeedButton2Click(Sender: TObject ); 
procedure Edit2Change(Sender: TObject); 
procedure LbSpeedButtonlClick(Sender: TObject); 
procedure LbSpeedButton2Click(Sender: TObject); 
procedure TabSheetlShow(Sender: TObject); 
procedure ComboBoxlChange(Sender: TObject); 
procedure Edit4Change(Sender: TObject); 
procedure EditSChange(Sender: TObject); 
procedure TabSheet7Show(Sender: TObject); 
procedure TabSheetSShow(Sender: TObject); 
procedure TabSheet4Show(Sender: TObject); 
procedure TabSheet3Show(Sender: TObject); 
procedure TabSheet2Show(Sender: TObject); 
procedure SpeedButton4Click(Sender: TObject); 
procedure LbSpeedButton4Click(Sender: TObject); 
procedure SpeedButton6Click(Sender: TObject); 
procedure LbSpeedButton3Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 

169 



Form23: TForm23; 

implementation 

uses UnitlO; 

{$R *.dfm} 

procedure TF orm23. CheckBox 1 Click(Sender: TObject ); 
begin 
{ if form23. CheckBox 1. Checked=true then 
begin 
form23 .Label3 .Enabled:=false; 
form23. ComboBox 1.Enabled:=false; 
form23 .RadioButton5 .Enabled: =true; 
form23 .RadioButton6.Enabled:=true; 
FORM23 .Edit3 .Enabled:=TRUE; 

end 
else ifform23.CheckBoxl.Checked=false then 
begin 
form23 .Label3 .Enabled:=true; 
form23. ComboBoxl .Enabled:=true; 
form23 .RadioButton5 .Enabled: =false; 
form23 .RadioButton6 .Enabled: =false; 
form23 .RadioButton5. Checked:=false; 
form23 .RadioButton6. Checked:=false; 
FORM23.Edit3.Enabled:=FALSE; 
form23 .Edit3. Clear; 

end;} 
end; 

procedure TForm23.Edit1Change(Sender: TObject); 
begin 
form23. ADOQuery 1. Close; 
form23.ADOQueryl.SQL.Text:='select * from customer where cname 
like'+#39+'%'+form23 .Edit 1. Text+'%'+#39; 
form23 .ADOQuery 1. Open; 
end; 

procedure TF orm23. SpeedButton 1 Click(Sender: TObj ect ); 
begin 
form23 .ADOQuery 1. Close; 
form23.ADOQueryl.SQL.Text:='select * from customer where 

cname='+#39+form23 .Edit 1. Text+#3 9; 
form23 .ADOQuery 1. Open; 

end; 

procedure TF orm23. SpeedButton2Click(Sender: TObject ); 
begin 
FORM23 .Edit 1. Clear; 

170 



form.23. ADOQuery 1. Close; 
end; 

procedure TForm23.Edit2Change(Sender: TObject); 
begin 
form.23.ADOQueryl.Close; 
form.23.ADOQueryl.SQL.Text:='select * from customer where csurname 
like'+#39+'%'+form23.Edit2.Text+'%'+#39; 
form.23 .ADOQuery 1. Open; 
end; 

procedure TForm.23 .LbSpeedButtonl Click(Sender: TObject); 
begin 
form.23. ADOQuery 1. Close; 
form.23.ADOQueryl.SQL.Text:='select * from customer where 

csumame='+#39+form23.Edit2.Text+#39; 
form.23 .ADOQuery 1. Open; 

end; 

procedure TForm23.LbSpeedButton2Click(Sender: TObject); 
begin 
FORM23 .Edit2. Clear; 
form.23. ADOQuery 1. Close; 
end; 

procedure TForm.23.TabSheetlShow(Sender: TObject); 
begin 
form23 .Edit 1. Clear; 
form.23. ADOQuery 1. Close; 
end; 

procedure TForm.23.ComboBoxlChange(Sender: TObject); 
begin 
form.23.ADOQueryl.Close; 
form.23.ADOQueryl.SQL.Text:='select * from customer where city 
like'+#39+'%'+form23. ComboBox 1. Text+'%'+#3 9; 
form.23. ADOQuery 1. Open; 
end; 

procedure TForm23.Edit4Change(Sender: TObject); 
begin 
form.23.ADOQueryl .Close; 
form.23.ADOQueryl.SQL.Text:='select * from customer where town 

like'+#39+'%'+form23.Edit4.Text+'%'+#39; 
form.23. ADOQuery 1. Open; 

end; 

procedure TForm23.Edit5Change(Sender: TObject); 
begin 
form.23. ADOQuery 1. Close; 

171 



form23 .ADOQuery 1. SQL. Text:='select * from customer where customer _id 
like'+#39+'%'+form23 .Edit5. Text+'%'+#39; 
form23. ADOQuery 1. Open; 

end; 

procedure TF orm23. TabSheet7Show(Sender: TObject ); 
begin 
form23. ADOQuery 1. Close; 
form23.ADOQueryl.SQL.Text:='select * from customer'; 
form23. ADOQuery 1. Open; 
end; 

procedure TForm23.TabSheet5Show(Sender: TObject); 
begin 
form23 .Edit5. Clear; 
form23. ADOQuery 1. Close; 
end; 

procedure TForm23.TabSheet4Show(Sender: TObject); 
begin 
form23 .Edit4. Clear; 
form23. ADOQuery 1. Close; 
end; 

procedure TForm23.TabSheet3Show(Sender: TObject); 
begin 
form23. ComboBoxl. Text:='Select One'; 
form23. ADOQuery 1. Close; 
end; 

procedure TF orm23. TabSheet2Show(Sender: TObject ); 
begin 
form23 .Edit2. Clear; 
form23. ADOQuery 1. Close; 
end; 

procedure TF orm23. SpeedButton4Click(Sender: TObj ect ); 
begin 
form23. ComboBoxl. Text:='Select One'; 
form23. ADOQuery 1. Close; 
end; 

procedure TF orm23 .LbSpeedButton4Click(Sender: TObject ); 
begin 
form23 .Edit4. Clear; 
form23 .ADOQuery 1. Close; 
end; 

procedure TF orm23. SpeedButton6Click(Sender: TObj ect ); 
begin 

172 



form23 .EdirS. Clear; 
form23. ADOQuery 1. Close; 
end; 

eryI.Close; 
eryl.SQL.Text:='select * from customer where 
~~~~~" 

~ ~~~~~'\.~~~~.,

end.

FORM 24 CODES

unit Unit24;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, LbSpeedButton, StdCtrls, Buttons, ExtCtrls, Grids, DBGrids,
ComCtrls, Menus, DB, ADODB;

type
TForm24 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
StatusBarl: TStatusBar;
PageControll: TPageControl;
DBGrid 1: TDBGrid;
DBGrid2: TDBGrid;
Panel 1 : TPanel;
Panel2: TPanel;
TabSheet2: TTabSheet;
TabSheet3: TTabSheet;
TabSheet4: TTabSheet;
TabSheetS: TTabSheet;
TabSheet6: TTabSheet;
TabSheet7: TTabSheet;
Panel3: TPanel;
Panel4: TPanel;
Panels: TPanel;
Panel6: TPanel;
Panel7: TPanel;
Panel8: TPanel;
Label2: TLabel;
LbSpeedButton2: TLbSpeedButton;

173

LbSpeedButton4: TLbSpeedButton;
LbSpeedButton6: TLbSpeedButton;
Label3: TLabel;
Edit3: TEdit;
SpeedButton4: TSpeedButton;
Label4: TLabel;
Edit4: TEdit;
Label5: TLabel;
Edit5: TEdit;
SpeedButton6: TSpeedButton;
Label6: TLabel;
Edit6: TEdit;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
ADOQuery2: T ADOQuery;
DataSource2: TDataSource;
Edit2: TEdit;
DBGrid3: TDBGrid;
Panel9: TPanel;
DBGrid4: TDBGrid;
Panell 0: TPanel;
Panel 11: TPanel;
DBGrid5: TDBGrid;
DBGrid6: TDBGrid;
DBGrid7: TDBGrid;
Panell2: TPanel;
Panel 13: TPanel;
ADOQuery3: T ADOQuery;
ADOQuery4: T ADOQuery;
ADOQuery5: T ADOQuery;
ADOQuery6: TADOQuery;
ADOQuery7: TADOQuery;
DataSource3: TDataSource;
DataSource4: TDataSource;
DataSource5: TDataSource;
DataSource6: TDataSource;
DataSource7: TDataSource;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure Edit5Change(Sender: TObject);
procedure Edit6Change(Sender: TObject);
procedure DBGridlCellClick(Column: TColumn);
procedure LbSpeedButton2Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure LbSpeedButton6Click(Sender: TObject);
procedure TabSheet2Show(Sender: TObject);

174

procedure TabSheet3Show(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure TabSheet5Show(Sender: TObject);
procedure TabSheet6Show(Sender: 'TObject);
procedure TabSheet7Show(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
F orm24: TF orm24;

implementation

uses UnitlO, Unit23;

{$R *.dfm}

procedure TForm24.EditlChange(Sender: TObject);
begin
form24.ADOQueryl .Close;
form24.ADOQueryl.SQL.Text:='select * from animal where cname

like'+#39+'%'+form23 .Edit 1. Text+'%'+#39;
form24. ADOQuery 1. Open;

end;

procedure TF orm24 .Edit2Change(Sender: TObject);
begin
form24. ADOQuery 1. Close;
form24.ADOQueryl.SQL.Text:='select * from animal where animal name

like'+#39+'%'+form24 .Edit2. Text+'%'+#39;
form24. ADOQuery 1. Open;

end;

procedure TForm24.Edit3Change(Sender: TObject);
begin
form24. ADOQuery 1. Close;
form24.ADOQueryl.SQL.Text:='select * from animal where collarno

like'+#39+'%'+form24 .Edit3. Text+'%'+#39;
form24 .ADOQuery 1. Open;

end;

procedure TForm24.Edit4Change(Sender: TObject);
begin
form24. ADOQuery 1. Close;

175

form24.ADOQueryl.SQL.Text:='select * from animal where eaming_no
like'+#39+'%'+form24.Edit4.Text+'%'+#39;
form24. ADO Query 1. Open;

end;

procedure TForm24.Edit5Change(Sender: TObject);
begin
form24. ADOQuery 1. Close;
form24.AD0Queryl.SQL.Text:='select * from animal where animal_id

like'+#39+'%'+form24.Edit5. Text+'%'+#39;
form24. ADOQuery 1. Open;
end;

procedure TForm24.Edit6Change(Sender: TObject);
begin
form24. ADOQuery 1. Close;
form24.AD0Queryl .SQL.Text:='select * from animal where animal_race

like'+#39+'%'+form24.Edit6.Text+'%'+#39;
form24. ADOQuery 1. Open;
end;

procedure TForm24.DBGrid1CellClick(Column: TColumn);
begin
if(form24.ADOQueryl.IsEmpty <> true) then
begin
FORM24.ADOQuery2. Close;
FORM24.AD0Query2.SQL.Text:='select * from vaccinate where

animal_id='+#39+form24.DBGridl.Fields[O].Text+#39;
form24 .ADOQuery2. Open;
FORM24.ADOQuery3.Close;
FORM24.ADOQuery3.SQL.Text:='select * from ipdrug where

animal_id='+#39+form24.DBGridl.Fields[O].Text+#39;
form24 .ADOQuery3. Open;
FORM24.AD0Query4.Close;
FORM24.ADOQuery4.SQL.Text:='select * from opdrug where

animal_id='+#39+form24.DBGridl .Fields[O].Text+#39;
form24. ADOQuery4. Open;
FORM24.AD0Query5.Close;
FORM24.ADOQuery5.SQL.Text:='select * from illnesses where

animal id='+#39+form24.DBGridl.Fields[O].Text+#39;
form24. ADOQueryS. Open;
FORM24.ADOQuery6.Close;
FORM24.ADOQuery6.SQL.Text:='select * from medicinate where

animal_id='+#39+form24.DBGridl.Fields(O].Text+#39;
form24. ADOQuery6. Open;
FORM24.ADOQuery7.Close;
FORM24.ADOQuery7.SQL.Text:='select * from appliedoperation where

animal id='+#39+form24.DBGridl.Fields[O].Text+#39;
form24. AD0Query7. Open;
end;

176

end;

procedure TForm24.LbSpeedButton2Click(Sender: TObject);
begin
FORM24 .Edit2. Clear;
forrn24. ADOQuery 1. Close;
form24.ADOQuery2.Close;
forrn24. ADOQuery3. Close;
form24. ADOQuery4. Close;
form24. AD0Query5. Close;
form24. ADOQuery6. Close;
forrn24. ADOQuery7. Close;

end;

procedure TF orm24. SpeedButton4Click(Sender: TObj ect);
begin
FORM24 .Edit3. Clear;
forrn24. ADOQuery 1. Close;
form24.ADOQuery2.Close;
form24. ADOQuery3. Close;
form24. AD0Query4. Close;
form24.ADOQuery5.Close;
form24.AD0Query6.Close;
forrn24 .ADOQuery7. Close;

end;

procedure TForm24.LbSpeedButton4Click(Sender: TObject);
begin
FORM24 .Edit4. Clear;
form24.ADOQueryl .Close;
form24.ADOQuery2.Close;
form24 .ADOQuery3. Close;
form24.ADOQuery4.Close;
form24. ADOQuery5. Close;
form24.ADOQuery6.Close;
form24. AD0Query7. Close;

end;

procedure TF orm24. SpeedButton6Click(Sender: TObj ect);
begin
FORM24 .Edit5. Clear;
form24. ADOQuery 1. Close;
form24.ADOQuery2.Close;
form24. ADOQuery3. Close;
form24. ADOQuery4. Close;
form24. ADOQuery5. Close;
form24.ADOQuery6.Close;
form24. AD0Query7. Close;

end;

177

procedure TF orm24 .LbSpeedButton6Click(Sender: TObject);
begin
FORM24 .Edit6. Clear;
form24.ADOQueryl .Close;
form24.AD0Query2.Close;
form24. ADOQuery3. Close;
form24. ADOQuery4. Close;
form24. AD0Query5. Close;
form24.ADOQuery6.Close;
form24. ADOQuery7. Close;

end;

procedure TForm24.TabSheet2Show(Sender: TObject);
begin
Form24.LbSpeedButton2.Click;

end;

procedure TForrn24.TabSheet3Show(Sender: TObject);
begin
F orm24. SpeedButton4. Click;

end;

procedure TForm24.TabSheet4Show(Sender: TObject);
begin
F orm24 .LbSpeedButton4. Click;

end;

procedure TForm24.TabSheet5Show(Sender: TObject);
begin
Form24.SpeedButton6.Click;

end;

procedure TF orm24. TabSheet6Show(Sender: TObject);
begin
Form24.LbSpeedButton6.Click;

end;

procedure TForm24.TabSheet7Show(Sender: TObject);
begin
forrn24. ADO Query 1. Close;
form24.ADOQueryl.SQL.Text:='select * from animal';
forrn24. ADOQuery 1. Open;
form24. AD0Query2. Close;
form24. ADOQuery3. Close;
form24.ADOQuery4.Close;
form24. ADOQuery5. Close;
form24.ADOQuery6.Close;
form24. ADOQuery7. Close;

end;

178

procedure TForm24.FormClose(Sender: TObject; var Action: TCloseAction);
begin
FORM24 .Edit2. Clear;
FORM24 .Edit3. Clear;
FORM24 .Edit4. Clear;
FORM24 .Edits. Clear;
FORM24 .Edit6. Clear;
FORM24 .ADO Query 1. Close;
FORM24.AD0Query2.Close;
FORM24.ADOQuery3. Close;
FORM24 .AD0Query4. Close;
FORM24.ADOQueryS. Close;
FORM24.ADOQuery6.Close;
FORM24.AD0Query7.Close;

end;

procedure TForm24.FormHide(Sender: TObject);
begin
FORM24 .Edit2. Clear;
FORM24 .Edit3. Clear;
FORM24 .Edit4. Clear;
FORM24 .saus. Clear;
FORM24 .Edit6. Clear;
FORM24.AD0Queryl .Close;
FORM24.ADOQuery2.Close;
FORM24.AD0Query3 .Close;
FORM24 .ADOQuery4. Close;
FORM24 .ADOQueryS. Close;
FORM24.ADOQuery6.Close;
FORM24.ADOQuery7.Close;

end;

end.

FORM 25 CODES

unit Unit2S;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, ComCtrls, Grids, DBGrids, Menus, Buttons,
LbSpeedButton, DB, ADODB;

type
TForm2S = class(TForm)
MainMenu 1: TMainMenu;
Fl: TMenultem;

179

PageControl 1: TPageControl;
TabSheetl: TTabSheet;
TabSheet2: TTabSheet;
TabSheet3: TTabSheet;
TabSheet4: TTabSheet;
TabSheetS: TTabSheet;
TabSheet6: TTabSheet;
TabSheet7: TTabSheet;
TabSheet9: TTabSheet;
DBGrid 1: TDBGrid;
StatusBar 1 : TStatusBar;
Panel 1 : TPanel;
Label I : TLabel;
Edit 1 : TEdit;
Panel 13: TPanel;
LbSpeedButton2: TLbSpeedButton;
LbSpeedButton4: TLbSpeedButton;
LbSpeedButton6: TLbSpeedButton;
LbSpeedButton8: TLbSpeedButton;
Label2: TLabel;
Edit2: TEdit;
S peedButton2: TS peedButton;
Label3: TLabel;
Edit3: TEdit;
Label4: TLabel;
SpeedButton3: TSpeedButton;
Labels: TLabel;
EditS: TEdit;
Label6: TLabel;
DateTimePickerl: TDateTimePicker;
SpeedButton6: TSpeedButton;
Label7: TLabel;
DateTimePicker2: TDateTimePicker;
Panel2: TPanel;
Panel3: TPanel;
Panel4: TPanel;
Panels: TPanel;
Panel6: TPanel;
Panel7: TPanel;
Panel9: TPanel;
ComboBoxl: TComboBox;
ADOQueryl: T ADOQuery;
DataSource I : TDataSource;
procedure CheckBoxl Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure ComboBoxlChange(Sender: TObject);
procedure EditSChange(Sender: TObject);
procedure TabSheet6Show(Sender: TObject);

180

procedure DateTimePicker 1 Change(Sender: TObject);
procedure DateTimePicker2Change(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure TabSheet9Show(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure LbSpeedButton6Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure LbSpeedButton8Click(Sender: TObject);
procedure TabSheetlShow(Sender: TObject);
procedure TabSheet2Show(Sender: TObject);
procedure TabSheet3Show(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure TabSheet5Show(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form25: TForm25;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForm25.CheckBox1Click(Sender: TObject);
begin
{ if form25. CheckBox 1. Checked=true then
begin
form25 .Label8 .Enabled:=false;
form25. ComboBoxl .Enabled:=false;
form25 .RadioButton 11.Enabled: =true;
form25.RadioButton12.Enabled:=true;
FORM25.Edit6.Enabled:=TRUE;
end
else ifform25.CheckBoxl.Checked=false then
begin
form25 .Label8.Enabled:=true;
form25. ComboBoxl .Enabled:=true;
form25 .RadioButton 11.Enabled: =false;
form25 .RadioButton 12.Enabled: =false;
form25 .RadioButtonl 1. Checked:=false;

181

form25 .RadioButton 12. Checked:=false;
FORM25 .Edit6.Enabled:=F ALSE;
form25 .Edit6. Clear;

end;}
end;

procedure TF orm25 .Edit 1 Change(Sender: TObject);
begin
form25. ADOQuery 1. Close;
form25.ADOQueryl.SQL.Text:='select * from staffwhere staff _name

like'+#39+'%'+form25 .Edit 1. Text+'%'+#39;
form25. ADOQuery 1. Open;

end;

procedure TForm25.Edit2Change(Sender: TObject);
begin
form25.ADOQueryl.Close;
form25.AD0Queryl.SQL.Text:='select * from staff where staff_surname

like'+#39+'%'+form25 .Edit2. Text+'%'+#39;
form25 .ADOQuery 1. Open;

end;

procedure TForm25.Edit3Change(Sender: TObject);
begin
form25. ADOQuery 1. Close;
form25.AD0Queryl.SQL.Text:='select * from staffwhere staff_id

like'+#39+'%'+form25 .Edit3. Text+'%'+#39;
form25 .ADOQuery 1. Open;

end;

procedure TF orm25. ComboBox 1 Change(Sender: TObj ect);
begin
form25.ADOQueryl.Close;
form25.AD0Queryl.SQL.Text:='select * from staff where staff_task

like'+#39+'%'+form25. ComboBox 1. Text+'%'+#3 9;
form25 .ADOQuery 1. Open;

end;

procedure TForm25.Edit5Change(Sender: 'TObject);
begin
form25 .ADOQuery 1. Close;
form25.ADOQueryl.SQL.Text:='select * from staff where university

like'+#39+'% '+form25 .Edit5. Text+'%'+#3 9;
form25. ADOQuery 1. Open;

end;

procedure TForm25.TabSheet6Show(Sender: TObject);
begin
F orm25. S peedButton6. Click;

182

dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylmm/dd';

end;

procedure TForm25 .DateTimePicker 1 Change(Sender: TObject);
begin
form25. ADOQuery 1. Close;
form25.AD0Queryl.SQL.Text:='select * from staffwhere s_workstartdate

like'+#39+'%'+datetostr(form25 .DateTimePicker I .Date)+'%'+#39;
form25 .ADOQuery 1. Open;

end;

procedure TF orm25 .DateTimePicker2Change(Sender: TObject);
begin
form25 .ADOQuery 1. Close;
form25.ADOQueryl.SQL.Text:='select * from staff where s_birthdate

like'+#3 9+'% '+datetostr(form25 .DateTimePicker2 .Date)+'% '+#3 9;
form25 .ADOQuery 1. Open;

end;

procedure TForm25.TabSheet7Show(Sender: TObject);
begin
F orm25 .LbSpeedButton8. Click;
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

anlayacaoy pekle donubturdum ...
shortdateformat := 'yyyylmm/dd';

end;

procedure TForm25.TabSheet9Show(Sender: TObject);
begin
form25. ADOQuery 1. Close;
form25.ADOQueryl.SQL.Text:='select * from staff;
form25.ADOQueryl .Open;

end;

procedure TF orm25 .LbSpeedButton2Click(Sender: TObject);
begin
FORM25 .Edit 1. Clear;
form25.ADOQueryl .Close;

end;

procedure TF orm25. SpeedButton2Click(Sender: TObject);
begin
FORM25.Edit2.Clear;
form25 .ADOQuery 1. Close;

end;

procedure TF orm25 .LbSpeedButton4Click(Sender: TObject);

183

begin
FORM25 .Edit3. Clear;
form25. ADO Query 1. Close;

end;

procedure TF orm25. S peedButton3 Click(Sender: TObj ect);
begin
FORM25.ComboBoxl.Text:='Select One';
form25 .ADOQuery 1. Close;

end;

procedure TForm25.LbSpeedButton6Click(Sender: TObject);
begin
FORM25 .Edit5. Clear;
form25. ADOQuery 1. Close;

end;

procedure TForm25.SpeedButton6Click(Sender: TObject);
begin
form25 .DateTimePicker l .Date:=date;
form25 .ADOQuery 1. Close;

end;

procedure TForm25.LbSpeedButton8Click(Sender: TObject);
begin
form25 .DateTimePicker2.Date:=date;
form25. ADOQuery 1. Close;

end;

procedure TForm25.TabSheetlShow(Sender: TObject);
begin
Form25 .LbSpeedButton2. Click;
end;

procedure TForm25.TabSheet2Show(Sender: TObject);
begin
Form25. SpeedButton2. Click;
end;

procedure TForm25.TabSheet3Show(Sender: TObject);
begin
Form25 .LbSpeedButton4. Click;
end;

procedure TForm25.TabSheet4Show(Sender: TObject);
begin
F orm25. SpeedButton3. Click;

end;

procedure TForm25.TabSheet5Show(Sender: TObject);

184

begin
F orm25 .LbSpeedButton6. Click;

end;

procedure TForm25.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form25 .Edit 1. Clear;
form25 .Edit2. Clear;
form25 .Edit3. Clear;
form25. ComboBoxl. Text:='Select One';
form25 .Edit5. Clear;
form25 .DateTimePicker 1.Date:=date;
form25 .DateTimePicker2.Date:=date;
form25.ADOQueryl.Close;

end;

procedure TForm25.FormHide(Sender: TObject);
begin
form25 .Edit 1. Clear;
form25 .Edit2. Clear;
form25 .Edit3. Clear;
form25. ComboBoxl. Text:='Select One';
form25 .Edit5. Clear;
form25 .DateTimePicker 1.Date:=date;
form25 .DateTimePicker2.Date:=date;
form25 .ADOQuery 1. Close;

end;

end.

FORM 26 CODES

unit Unit26;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, StdCtrls, Grids, DBGrids, ExtCtrls, ComCtrls, Menus,
DB,ADODB;

type
TForm26 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
StatusBarl: TStatusBar;
PageControl 1: TPageControl;
Tab Sheet 1: TTabSheet;
TabSheet2: TTabSheet;
Panel 1: TPanel;

185

DBGrid 1: TDBGrid;
TabSheet3: TTabSheet;
Label 1: TLabel;
Edit 1 : TEdit;
SpeedButton2: TSpeedButton;
Panels: TPanel;
Panel2: TPanel;
Label2: TLabel;
Edit2: TEdit;
SpeedButton4: TSpeedButton;
Panel3: TPanel;
ADOQueryl: T ADOQuery;
DataSource 1 : TDataSource;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure TabSheet3Show(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure TabSheetlShow(Sender: TObject);
procedure TabSheet2Show(Sender: 'I'Object);
procedure FormHide(Sender: TObject);
procedure Form.Close(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form.26: TForm26;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForm26.EditlChange(Sender: TObject);
begin
form.26.ADOQueryl .Close;
form.26.ADOQueryl.SQL.Text:='select * from vaccines where vaccine_name

like'+#39+'%'+form26.Edit 1. Text+'%'+#39;
form.26. ADOQuery 1. Open;

end;

procedure TForm26.Edit2Change(Sender: TObject);
begin
form.26.ADOQuery 1. Close;
form26.ADOQueryl.SQL.Text:='select * from vaccines where vaccine_id

like'+#39+'%'+form26.Edit2. Text+'%'+#39;

186

form26. ADOQuery 1. Open;
end;

procedure TForm26.TabSheet3Show(Sender: TObject);
begin
form26.ADOQueryl .Close;
form26.ADOQuery 1. SQL. Text:='select * from vaccines';
form26. ADOQuery 1. Open;

end;

procedure TF orm26. SpeedButton2Click(Sender: TObject);
begin
FORM26.Edit 1. Clear;
form26. ADOQuery 1. Close;

end;

procedure TF orm26. S peedButton4Click(Sender: TObj ect);
begin
FORM26.Edit2. Clear;
form26.ADOQueryl .Close;

end;

procedure TForm26.TabSheet1Show(Sender: TObject);
begin
Form26.SpeedButton2.Click;
end;

procedure TForm26.TabSheet2Show(Sender: TObject);
begin
Form26.SpeedButton4.Click;
end;

procedure TForm26.FormHide(Sender: TObject);
begin
form26.Edit 1. Clear;
form26.Edit2. Clear;
form26.ADOQuery 1. Close;

end;

procedure TForm26.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form26 .Edit 1. Clear;
form26 .Edit2. Clear;
form26.AD0Queryl .Close;

end;

end.

187

FORM 27 CODES

unit Unit27;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, ComCtrls, StdCtrls, ExtCtrls, Grids, DBGrids, Menus,
LbSpeedButton, DB, ADODB;

type
TForm27 = class(TForm)
MainMenu 1: TMainMenu;
F 1: TMenultem;
StatusBarl: TStatusBar;
PageControl l: TPageControl;
TabSheetl: TTabSheet;
TabSheet2: TTabSheet;
TabSheet3: TTabSheet;
TabSheet4: TTabSheet;
TabSheet7: TTabSheet;
DBGridl: TDBGrid;
Panel I: TPanel;
RadioButtonl: TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
Label I: TLabel;
DateTimePickerl: IDateTimePicker;
DateTimePicker2: TDateTimePicker;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
Panels: TPanel;
Label2: TLabel;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
DateTimePicker3: TDateTimePicker;
DateTimePicker4: TDateTimePicker;
RadioButtonS: TRadioButton;
RadioButton6: TRadioButton;
RadioButton7: TRadioButton;
RadioButton8: TRadioButton;
Panel2: TPanel;
Panel3: TPanel;
Label3: TLabel;
Edit 1 : TEdit;
SpeedButton4: TSpeedButton;
Panel4: TPanel;
Label4: Tl.abel;

188

LbSpeedButton4: TLbSpeedButton;
Panel": TPanel;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
Edit2: TEdit;
procedure LbSpeedButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButtonlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure RadioButton6Click(Sender: TObject);
procedure RadioButton5Click(Sender: TObject);
procedure RadioButton7Click(Sender: TObject);
procedure RadioButton8Click(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure TabSheetl Show(Sender: TObject);
procedure TabSheet2Show(Sender: TObject);
procedure TabSheet3Show(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form27: TForm27;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForm27.LbSpeedButton3Click(Sender: TObject);
begin
SHOWMESSAGE('SELAMUN ALEYKUM');
end;

189

procedure TForm27.RadioButton4Click(Sender: TObject);
begin
if form27.RadioButton4.Checked = true then
form27 .DateTimePicker2.Enabled:=true

else
form27 .DateTimePicker2.Enabled:=false;

end;

procedure TForm27.RadioButton3Click(Sender: TObject);
begin
form27 .DateTimePicker2.Date:=date;
form2 7 .DateTimePicker2 .Enabled:=false;

end;

procedure TForm27.RadioButton2Click(Sender: TObject);
begin
form27 .DateTimePicker2.Date:=date;
form27 .DateTimePicker2.Enabled:=false;

end;

procedure TForm27.RadioButton1Click(Sender: TObject);
begin
form27.DateTimePicker2.Date:=date;
form27 .DateTimePicker2.Enabled:=false;

end;

procedure TForm27.FormCreate(Sender: TObject); 1

begin
form27 .DateTimePicker 1.Date:=date;
form2 7 .DateTimePicker2 .Date:=date;
form27 .DateTimePicker3 .Date:=date;
form27 .DateTimePicker4 .Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaoy pekle donupturdum ...
shortdateformat := 'yyyylm/d';
end;

procedure TF orm27. S peedButton 1 Click(Sender: TObj ect);
begin
if (form27 .RadioButton 1. Checked = true) then
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_drugdate <

'+#3 9+datetostr(form27 .DateTimePicker 1.Date)+#3 9;
form27. ADOQuery 1. Open;

end
else if (form27.RadioButton2.Checked = true) then
begin
form27. ADOQuery 1. Close;

190

form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_drugdate >
'+#39+datetostr(form27 .DateTimePicker 1.Date)+#39;

form27 .ADOQuery 1. Open;
end
else if (form27.RadioButton3.Checked = true) then
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_drugdate =

'+#39+datetostr(form27.DateTimePickerl.Date)+#39;
form27. ADOQuery 1. Open;

end
else if (form27.RadioButton4.Checked = true) then
begin
form27 .ADOQuery 1. Close;
form27.AD0Queryl.SQL.Text:='select * from ipdrug where ip_drugdate between

'+#3 9+datetostr(form27 .DateTimePicker 1.Date)+#39+' and
'+#3 9+datetostr(form27 .DateTimePicker2.Date)+#39;

form27. ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TForm27.SpeedButton2Click(Sender: TObject);
begin
FORM27 .DateTimePicker 1.Date:=DATE;
FORM27 .DateTimePicker2.Date:=DATE;
FORM27 .DateTimePicker2.Enabled:=F ALSE;
FORM27.RadioButtonl.Checked:=FALSE;
FORM27 .RadioButton2. Checked:=F ALSE;
FORM27.RadioButton3.Checked:=FALSE;
FORM27 .RadioButton4. Checked:= FALSE;
FORM27.ADOQueryl .Close;

end;
1'.

procedure TForm27.RadioButton6Click(Sender: TObject);
begin
if form27.RadioButton6.Checked = true then
form27 .DateTimePicker4 .Enabled:=true

else
form27 .DateTimePicker4 .Enabled :=false;

end;

procedure TF orm27 .RadioButton5Click(Sender: TObject);
begin
form27 .DateTimePicker4 .Date:=date;
form27 .DateTimePicker4 .Enabled:=false;

end;

procedure TForm27.RadioButton7Click(Sender: TObject);

191

begin
form27 .DateTimePicker4 .Date:=date;
form27 .DateTimePicker4 .Enabled: =false;

end;

procedure TF orm27 .RadioButton8Click(Sender: TObject);
begin
form27 .DateTimePicker4 .Date:=date;
form27 .DateTimePicker4 .Enabled:=false;

end;

procedure TF orm27 .LbS peedButton 1 Click(Sender: TObj ect);
begin
if (form27 .RadioButtonS. Checked = true) then
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_nextdrugdate <

'+#39+datetostr(form27 .DateTimePicker3 .Date)+#39;
form27 .ADOQuery 1. Open;

end
else if (form27.RadioButton7.Checked = true) then
begin
form27 .ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_nextdrugdate >

'+#3 9+datetostr(form27 .DateTimePicker3 .Date)+#39;
form27. ADOQuery 1. Open;

end
else if (form27 .RadioButton8. Checked = true) then
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_nextdrugdate =

'+#39+datetostr(form27 .DateTimePicker3 .Date)+#39;
form27 .ADOQuery 1. Open;

end
else if (form27.RadioButton6.Checked = true) then
begin
form27. ADOQuery 1. Close;
form27.AD0Queryl.SQL.Text:='select * from ipdrug where ip_nextdrugdate

between '+#39+datetostr(form27 .DateTimePicker3 .Date)+#39+' and
'+#39+datetostr(form27 .DateTimePicker3 .Date)+#39;

form27. ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TForm27.LbSpeedButton2Click(Sender: TObject);
begin
FORM27 .DateTimePicker3 .Date:=DA TE;
FORM27.DateTimePicker4.Date:=DATE;

192

FORM27.DateTimePicker4.Enabled:=F ALSE;
FORM27 .RadioButton5. Checked:=F ALSE;
FORM27 .RadioButton6. Checked:=F ALSE;
FORM27 .RadioButton7. Checked:=F ALSE;
FORM27 .RadioButton8. Checked:=F ALSE;
FORM27.ADOQueryl.Close;

end;

procedure TForm27.Edit1Change(Sender: TObject);
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where animal_id

like'+#39+'%'+form27 .Editl. Text+'%'+#39;
form27. ADOQuery 1. Open;

end;

procedure TForm27.Edit2Change(Sender: TObject);
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug where ip_drugname

like'+#39+'%'+form27 .Edit2. Text+'%'+#39;
form27 .ADOQuery 1. Open;

end;

procedure TForm27.TabSheet7Show(Sender: TObject);
begin
form27. ADOQuery 1. Close;
form27.ADOQueryl.SQL.Text:='select * from ipdrug';
form27 .ADOQuery 1. Open;

end;

procedure TForm27.LbSpeedButton4Click(Sender: TObject);
begin
form2 7 .Edit2. Clear;
form27. ADOQuery 1. Close;
end;

procedure TF orm27. SpeedButton4Click(Sender: TObject);
begin
form27 .Edit 1. Clear;
form27.ADOQueryl .Close;
end;

procedure TForm27.TabSheet1Show(Sender: TObject);
begin
F orm27. SpeedButton2. Click;

end;

procedure TForm27.TabSheet2Show(Sender: TObject);
begin

193

F orm27.LbSpeedButton2. Click;
end;

procedure TForm27.TabSheet3Show(Sender: TObject);
begin
F orm27. SpeedButton4. Click;
end;

procedure TForm27.TabSheet4Show(Sender: TObject);
begin
F orm27 .LbSpeedButton4. Click;
end;

procedure TForm27.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form27 .Edit 1. Clear;
form27 .Edit2. Clear;
form27 .ADOQuery 1. Close;
form27.RadioButtonl.Checked:=false;
form27 .RadioButton2. Checked: =false;
form27 .RadioButton3. Checked:=false;
form27.RadioButton4.Checked:=false;
form27 .RadioButtonS. Checked:=false;
form27 .RadioButton6. Checked=false;
form27 .RadioButton7. Checked=false;
form27.RadioButton8. Checked:=false;
form27.DateTirnePicker2.Enabled:=false;
form27 .DateTimePicker4 .Enabled:=false;

end;

procedure TForm27.FormHide(Sender: TObject);
begin
form27 .Edit 1. Clear;
form27 .Edit2. Clear;
forrn27. ADOQuery 1. Close;
form27 .RadioButton 1. Checked=false;
form27 .RadioButton2. Checked:=false;
form27 .RadioButton3. Checked:=false;
form27 .RadioButton4. Checked: =false;
form27.RadioButton5.Checked:=false;
form27 .RadioButton6. Checked:=false;
form27 .RadioButton7. Checked:=false;
form27 .RadioButton8. Checked: =false;
form27.DateTime:Picker2.Enabled:=false;
form2 7 .DateTimePicker4 .Enabled:=false;

end;

end.

194

FORM 28 CODES

unit Unit28;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Grids, DBGrids, StdCtrls, LbSpeedButton, ExtCtrls,
ComCtrls, Buttons, DB, ADODB;

type
TForm28 = class(TForm)
StatusBarl: TStatusBar;
PageControl 1 : TPageControl;
TabSheetl: TTabSheet;
Labell: TLabel;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
RadioButton 1: TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Pane12: TPanel;
TabSheet2: TTabSheet;
Label2: TLabel;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
Panels: TPanel;
DateTirnePicker3: TDateTimePicker;
DateTimePicker4: TDateTimePicker;
RadioButtonS: TRadioButton;
RadioButton6: TRadioButton;
RadioButton7: TRadioButton;
RadioButton8: TRadioButton;
TabSheet4: TTabSheet;
Label4: TLabel;
LbSpeedButton4: TLbSpeedButton;
Panel4: TPanel;
TabSheetS: TTabSheet;
Labels: TLabel;
SpeedButton6: TSpeedButton;
Panel6: TPanel;
Edit2: TEdit;
TabSheet7: TTabSheet;
Panel7: TPanel;
DB Grid 1: TDBGrid;
Panell: TPanel;

195

MainMenu 1: TMainMenu;
F 1: TMenultem;
TabSheet3: TTabSheet;
Label3: TLabel;
SpeedButton4: TSpeedButton;
Panel3: TPanel;
Edit 1 : TEdit;
Edit3: TEdit;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
procedure RadioButtonlClick(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: TObject);
procedure SpeedButtonl Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure RadioButton6Click(Sender: TObject);
procedure RadioButton5Click(Sender: TObject);
procedure RadioButton7Click(Sender: TObject);
procedure Ra:dlioButton8Click(Sender: TObj ect);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure: E'dit2Change(Sender: TObj:ect);
procedure Edit 1 Change(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure LbSpeedButton4Click(Sender: 'I'Object);
procedure SpeedB111tton6Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure T abSheet 1 Show(Sender: TObject);
procedure TabSheet2Show{Sender: TObject);
procedure. TabSheet4Show(Sender: TObject);
procedure TabSheet5Show(Sender.: TObject);
procedure TabSheet3 Show(Sender: 'I'Object);
procedure. FonnCfose(Sender: TObject; var Action: TCloseAction);
procedure F'ormCreate(Sender: TObject);.
procedure FormHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn28: TForrn28;

implementation

uses UnitlO;

196

{$R *.dfm}

procedure TF orm28 .RadioButton 1 Click(Sender: TObject);
begin
form28.DateTimePicker2.Date:=date;
form28.DateTimePicker2.Enabled:=false;

end;

procedure TForm28.RadioButton2Click(Sender: TObject);
begin
form28.DateTimePicker2.Date:=date;
form28.DateTimePicker2.Enabled:=false;

end;

procedure TForm28.RadioButton3Click(Sender: TObject);
begin
form28.DateTimePicker2.Date:=date;
form28.DateTimePicker2.Enabled:=false;

end;

procedure TForm28.RadioButton4Click(Sender: TObject);
begin
if form28.RadioButton4.Checked = true then
form28.DateTimePicker2.Enabled:=true

else
form28.DateTimePicker2.Enabled:=false;

end;

procedure TF orm28. SpeedButton 1 Click(Sender: TObj ect);
begin
if (form28 .RadioButton 1. Checked = true) then
begin
form28. ADOQuery 1. Close;
form28.ADOQueryl.SQL.Text:='select * from vaccinate where vaccinate_date <

'+#39+datetostr(form28.DateTimePicker I .Date)+#39;
form28.AD0Query 1. Open;

end
else if (form28.RadioButton2.Checked = true) then
begin
form28.ADOQuery I .Close;
form28.ADOQueryl.SQL.Text:='select * from vaccinate where vaccinate_date >

'+#3 9+datetostr(form28 .DateTimePicker I .Date)+#3 9;
form28.AD0Queryl .Open;

end
else if (form28.RadioButton3.Checked = true) then
begin
form28.AD0Query 1. Close;
forrn28.AD0Queryl.SQL.Text:='sdect * from vaccinate where vaccinate_date =

'+#39+datetostr(form28.DateTimePickerl .Date)+#39;
form28.AD0Query I .Open;

197

end
else if (form28.RadioButton4.Checked = true) then
begin
form28.AD0Query 1. Close;
form28.ADOQueryl.SQL.Text:='select * from vaccinate where vaccinate_date

between '+#3 9+datetostr(form28 .DateTimePicker 1.Date)+#3 9+' and
1+#39+datetostr(form28.DateTimePicker2.Date)+#39;

form28.ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TForm28.SpeedButton2Click(Sender: TObject);
begin
FORM28.DateTimePickerl .Date:=DATE;
FORM28.DateTimePicker2.Date:=DATE;
FORM28.DateTimePicker2.Enabled:=F ALSE;
FORM28.RadioButton 1. Checked:=F ALSE;
FORM28.Radio:Button2.Checked:=F ALSE;
FORM28.Ra;di:o:Butto:n3 .Checked:=FALSE;
FORM28.RadioButton4 .Checked=F ALSE;
FORM28.AD0Queryl .Close;

end;

procedure TForm28.RadioButton6Click(Sender: TObject);
begin
if form2&.RadioButton6. Checked = true· then
form28 . .DateTimeP'icker4.Enabled:=true

else
form28 .DateTimePicker4 .Enabled:=false;

end;

procedure TForm28 .RadioButton5Click(Sender: TObject);
begin
form28.DateTimePicker4.Date:=date;
fonn28.DateTimePicker4.Enabled:=faise;

end;

procedure TForm28.RadioButton7Click(Sender: TObject);
begin
form28.DateTimePicker4 .Date:=date;
form28 .DateTimePicker4 Enabled=false;

end;

procedure TForm28.RadioButton8Click(Sender: TObject);
begin
form28 . .DateTimePicker4 .Date=date;
form28.DateffimeJ.>iicker4.Enabled: =false;

end;

198

procedure TForm28.LbSpeedButton1Click(Sender: TObject);
begin
if (form28 .RadioButton5. Checked = true) then
begin
form28.AD0Queryl .Close;
form28.AD0Queryl.SQL.Text:='select * from vaccinate where next_vaccinatedate <

'+#39+datetostr(form28.DateTimePicker3 .Date)+#39;
form28.ADOQuery 1. Open;

end
else if (form28.RadioButton7.Checked = true) then
begin
form28.ADOQueryl .Close;
form28.ADOQuery 1. SQL. Text:='select * from vaccinate where next_ vaccinatedate >

'+#3 9+datetostr(form28 .DateTimePicker3 .Date)+#3 9;
form28. ADOQuery 1. Open;

end
else if (form28.RadioButton8.Checked = true) then
begin
form28.AD0Query 1. Close;
form28 .. ADOQuery I. SQL.Text:=''select * from vaccinate where next _vaccinatedate =

'+#39+datetostr(form28.DateTimePicker3 .. Date)+#39;
form28.ADOQuery 1. Open;

end
else if (form28.Ra:dioButton6.Checked = true) then
begin
form28.AD0Query 1. Close;
form28..AD0Query].SQL.Text:='se1ect * from vaccinate where next_vaccinatedate

between "+#39'+datetostr(form28.Date:TimeP'icker3 .Date)+#39+'' and
'+#3 9+datetostr(form28 .DateTimePicker3.Bate)+#39;

form28.ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TForm28.LbSpeedButton2Ctick(Sender: TObject);
begin
FORM28.DateTimePicker3.Date:=DATE;
FORM28.DateTimePicker4.Date:=DATE;
FORM28.DateTimePicker4.Enabled:.=F ALSE;
FORM28 .. R.adioButton6 .. Checked:=F ALSE;
FORM28.RadioButton6. Checked:=F ALSE;
FORM28.RadioButton7 .Checked=F ALSE;
FORM28.RadioButton8.Checked:= FALSE;.
FORM28.ADOQueryI .Close;

end;

procedure TForm28..Edit3Change(Sender: TObject);
begin

199

form28. ADOQuery 1. Close;
form28.ADOQueryl.SQL.Text:='select * from vaccinate where vaccine_name

like'+#39+'%'+form28 .Edit3. Text+'%'+#39;
form28.AD0Query 1. Open;

end;

procedure TForm28.Edit2Change(Sender: TObject);
begin
form28. ADOQuery 1. Close;
form28.AD0Queryl.SQL.Text:='select * from vaccinate where vaccine_serialno

like'+#39+'%'+form28.Edit2.Text+'%'+#39;
form28.ADOQuery]. Open;

end;

procedure TForm28.EditlChange(Sender: TObject);
begin
form28.ADOQueryl.Close;
form28.ADOQueryl.SQL.Text:='select * from vaccinate where animal_id

like1+#39+'%'+form28.Editl.Text+'%'+#39;
form28.ADOQuery] .. Open;

end;

procedure TForm28.TabSheet7Show(Sender: TObject);
begin
form28.ADOQueryl .Close;
form28.ADOQueryl.SQL.Text:='select * from vaccinate';
form28 .. AD0Query I. Open;

end;

procedure TForm28.LbSpeedButton4Click(Sender: TObject);
begin
form28.EditJ. Clear;
form28. ADOQuery I .. Close;
end;

procedure TForm28.SpeedButton6Click(Sender: TObject);
begin
form28 .Edit2. Clear;
form28.ADOQueryl .Close;
end;

procedure TForm28.SpeedButton4Click(Sender: TObject);
begin
form28.Edit1 .. Clear;
e: · 2°' AD· 'OQ 11 Cl .1orm o. , , · . uery 1 . . ose;
end;

procedure TForm28. TabSheetl Show(Sender: TObject);
begin
Form28.SpeedButton2.Click;

200

end;

procedure TForm28.TabSheet2Show(Sender: TObject);
begin
Form28.LbSpeedButton2.Click;
end;

procedure TForm28.TabSheet4Show(Sender: TObject);
begin
F orm28.LbSpeedButton4. Click;
end;

procedure TForm28.TabSheet5Show(Sender: TObject);
begin
Form28.SpeedButton6.Click;
end;

procedure TForm28.TabSheet3Show(Sender: TObject);
begin
F orm28. SpeedButton4. Click;
end;

procedure TForm28.FormCiose(Sender: TObject; var Action: TCloseAction);
begin
form28.Editl .Clear;
form28 .Edit2. Clear;
form28.Edit3. Clear;
form28'..ADOQueryl .Close;
form28.RadioButtonl.Checked:=false;
form28.RadioButton2.Checked:=false;
form28.RadioButton3 .Checked:=false;
form28.Radio:Button4.Checked:=fa1se;
form28.RadioButton5 .Checked=false;
form28.RadioButton6.Checked:=false;
form2.8.RadioButton7.Checked:.=false;
form2,S.RadioB'u:rton8;_ched(ed: =false;
form28.DateTimePicker2.Enabled:=false;
form28.DateTimePicker4.Enabled:=false;

end;

procedure TForm28.FormCreate(Sender.: TObject);
begin
form28.DateTimeP'icker lDate.=date;
form28.DatceTimePicker2.Date::=date;
form28.DateTimePicker3.Date:=date;
form28.DateTimePicker4.Date.:=date;
dateseparator := '-\ II Burada tarih'in ayra~laryny MySql database sisterninin
aniayaca6y J>elde doniipturdum.. .. . ·
shortdateformat := 'yyyy/m/d';
end;

201

procedure TForm28.FormHide(Sender: TObject);
begin
form28.Editl .Clear;
forrn28 .Edit2. Clear;
form28.Edit3. Clear;
form28. ADOQuery 1. Close;
form28.RadioButton 1. Checked: =false;
form28.RadioButton2. Checked:=false;
form28.RadioButton3. Checked:=false;
form28 .RadioButton4. Checked=false;
form28.RadioButton5 .. Checked:.=false;
form28.Rad!ioButton6. Cheeked=false;
form28.RadioButton7.Checked:=false;
form28.RadioButton8. Checked=false;
form28:.nateTimePicker2 .. Bnabled=false;
form28.DateTime:P'icker4.EnaMed:.=fa1se;

end;

end.

FORM 29 CODES

unit Unit29;

interface

uses
Windows,. Messages, SysUtas., Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Grids, DBGrids, StdCtrls, LbSpeedButton, ExtCtrls,
ComCtrls, Buttons, DB, ADODB;

type
TForm29 = dass(TForm)
StatusBarl: TStatusBar;
PageControl l : TPageControl;
TabSheet] :. TTabSheet;
Labelf: TLabel;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
RadioButtonl: TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
DateTimePickerl :. TDateTimePicker;
DateTimePicker2.: TDateTimeP'icker;
Panel2: TPanel;
TabSheet2.: TTabSheet;
Label2.:: TLabel;

202

LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
Panel5: TPanel;
DateTimePiicker3: TDateTimePicker;
DateTimePicker4: TDateTimePicker;
RadioButtonS: TRadioButton;
RadioButton6: TRadioButton;
RadioButton7: TR.adioButton;
RadioButton8: TRadioButton;
TabSheet3: TTabSheet;
Label3: TLabel;.
SpeedButton4: T'SpeedButton;
Panel3: TPanel;
Edit 1 : TEdit;
TabSheet4: TTabSheet;
Label-l: TLabel;
LbSpeedButton4: TLbSpeedButton;
Panel4: TPanel;
TabSheet7: TTabSheet;
Pand7: TJ>'and;
DBGridl: TDBGrid;
Panel 1 : TPanel;
MainMenu 1: 'fMainMenu;.
F]: TMenultem;
Edit2: TEdit;
ADOQueryl: T ADOQuery;
DataSourcel: TDataSource;
procedure. RadfoButton] Cfick(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: 'I'Object);
procedure SpeedButtonlCiick(Sender: TObj;e'Ct);.
procedure SpeedButton2Click(Sender: TObject);
procedure RadioButton5Click(Sender: TObject);
procedure RadioButton7Click(Sender: 'I'Object);
procedure RadioButton8Click(Sender: 'I'Object);
procedure RadioButton6Click(Sender: TObject)~
procedure LbSpeedButton1Ciick(Semier: TObject);
procedure LbSpeedButton2Click(Sender: 'I'Object);
procedure Tab Sheet 1 Show(Sender: TObject);
procedure TabSheet2Show(Sender: TObject)~
procedure SpeedButton4Click(Sender: TObject);
procedure Edit 1 Change(Sender: TObject);
procedure Edit2Change(Sender:. 'I'Object);
procedure LbSpeedButton4Click(Sender: TObject);
procedure TabSheet3Show(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure TabSheet7Show(Sender: TObjeet);
procedure FormCreate(Sender: 'I'Object);
procedure FormClose(Sender: 'I'Object; var Action: 'I'Closcaction);

203

procedure FormHide(Sender: TObject);
private

{ Private declarations }
public
{ Public declarations }

end;

var
:Form29: 1'Form29;

implementation

usesUniOO;

{$R *.dfm}

procedure TForm29 . .RadioButton 1 Click(Sender: TObject);
begin
form29 .DateTimePicker2.Date:=date;
form29.DateTimePicker2.Enabled:=false;

end;

procedure TForm29.RadioButton2Click(Sender: TObject);
begin
form29.DateTimePicker2.Date:=date,;
form29.DateTjimePfoker2.EnabJed:=false;

end;

procedure TForm29.RadioButton3Click(Sender: TObject);
begiin
form29 .DateTimePicker2.Date:=date;
form29.DateTimePicker2.Enabled:=false;

end;

procedure TForm29.RadioButton4Click(Sender: TObject);
begin
if form29.RadioButton4. Checked = true then
form29.DateTime:Picker2.Enafuled:=true

else
form29.DateTimePicker2.Enabled.:=false;

end;

procedure TForm29. SpeedButton 1 Click(Sender: TObject);
begin
if (form29.RadioButtonLChecked = true) then
begin
form29.ADOQueryl .Close;
form29.AD0Queryl.SQL.Text:='select * from opdrug where op_drugdate <

'+#39+datetostr(form29 .DateTimePicker I . .Date),+#39;,
form29.AD0Queryl. Opee;

204

end
else if (form29.RadioButton2.Checked = true) then
begin
form29.ADOQuery 1 .. Close;
form29.AD0Queryl.SQL.Text:='select * from opdrug where op_drugdate >

'+#3 9+datetostr(form29 .DateTimePicker 1.Date)+#39;
form29.ADOQueryl .Open;

end
else if (form29.RadioButton3.Checked = true) then
begin
form29.AD0Query1 .Close;
form29.ADOQuery 1. SQL..Text:=''select * from opdrug where op'.__drngdate =

'+#3 9+datetostr(form29 .DateTimePicker l.Date)+#3 9;
form29 .ADOQuery I.Open;

end
else if(form29.RadioButton4 . Checked = true) then
begin
form29 .ADOQueryl. Close;
form29.ADOQueryl .SQL.Text:='select * from opdrug where op_drugdate between

'+#39+datetostr(form29.DateTimeP'ickerl.Date)+#39+'' and
'+#39+datetostr(form29.DateTimePicker2.Date)+#39;

form29 .ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TForm29. SpeedButton2Ciick(Sender: TObjeet);
begin
FORM29.DateTimePickerl .Date:=DATE;
FORM29.DateTimePicker2.Date:=DATE;
FORM29 .DateTimePicker2.Enabled:=F ALSE;
FOIDv129.RadioButtonl. Checked:=F ALSE;
FORM29. RadioButton2. Checked=F A LSE~
FORM29.RadioButton3 .Check:ed:=F ALSE;
J;'{)l)?\,f')Q l),,Ain~ntfnn'1 ('1,,.,..1,-,.A·=k AT Qp .
..I.. '--'..l..'--1.V..&..A.o'/ • ..&."llr.UU.J.V.L.ol'WL,l,..V.J..J. 1.~.1.n,,v.n .. """U- ..I. .l. ,J,. __ L.[r,.J .•....•. ,

FORM29.ADOQueryl. Close;
end;

procedure TForm29 .RadioBurton5Click(Sender: TObject);
begin
form29 .DateTimePicker4 .Date:=date;
form29.DateTimePicker4 .Enabled=false;

end;

procedure TForm29.RadioButton7Click(Sender: 'I'Object);
begin
form29 .DateTimePicker4 .Date.=date;
furm29 .DateTimePicker4 .Enabled=false;

end;

205

procedure TForm29.RadioButton8Click(Sender: TObject);
begin
form29.DateTimePicker4.Date:.=date;
form29.DateTimePicker4.EnaMed:=false;

end;

procedure TForm29.RadioButton6Click(Sender: TObject);
begin
ifform29.RadioButton6.Checked = true then
form29 .DateTimePicker4 .Enabled:=true

else
form29.Date:TimeP'icker4.Enabred:=false;.

end;

procedure TForm29.LbSpeedButton 1 Click(Sender: TObject);
begin
if (form29.RadioButton5.Checked = true) then
begin
form29 .ADOQuery t.Close;
form29. ADOQuery 1. SQL. Text.=select *' from opdrug where op_nextdrugdate <

'+#39+datetostr(form29.DateTimePicker3.Date)+#39;
form29.AD0Query I .Open;

end
else if (form29.RadioButton7.Checked = true) then
begin
form29 .ADOQuery 1. Close;
form29.ADOQueryLSQL.Text:='select * from opdrug where op_nextdrugdate >

'+#39+datetostr(form29 .DateTimePickerJ .Date)+#39;
form29 .ADOQuery 1. Open;

end
else if (form29.RadioButton8.Checked = true) then
begin
form29 .ADOQuery I .Close;
form29.AD0Queryl.SQL.Text:='select * from opdrug where op nextdrugdate =

'+#3 9+datetostr(form29 .DateTimePicker3 .Date)+#3 9;
fomi.29 .ADOQuerf 1. Open;
end
else if (form29 .RadioButton6.Checked = true) then
begin
form29 .ADOQuery 1. Close;
form29.AD0Queryl.SQL.Text:='select * from opdrug where opnextdrugdate

between '+#39+datetostr(form29 .DateTimePicker3 .Date)+#39+' and
'+#3 9+datetostr(fcrrr?9.DateTimePicker3 .Date)+#3 9;

form29 .A...DOQuery 1. Open;
end
01'0:.a. ~, •. ~ •.....
showmessaset'Pl "Q· A CP SPT £r''T' CP ARr'U cru· 'T'l'.,·ru· ·1 A 1\. ,:u.1. VY u.u..,.:,.:,, 5'-"\ . .1.. J ... d •. ..,,".J.. ~.L.I' i ... ,dJ. ·'-' ..1. •... :u-.1 J...L '-'..1. .1. · ..1. .1.-J· · · ~ i.. J,

end;

2.06

procedure TForm29 .LbSpeedButton2Click(Sender: TObject);
begin
FORM29.DateTimePicker3 .Date:=DATE;
FORM29.DateTimePicker4.Date:=DATE;
FORM29 .DateTimePicker4 .Enabled:=F ALSE;
FORM29 .Radio Buttons. Checked:=F ALSE;
FORM29 . .RadioButton6. Checked=F ALSE;
F'ORM29.Radtio:Buttolll7.Checkedi:=F'ALSE;
FORM29.RadioButton8.Checked:=F ALSE;
FORM29 .ADOQueryl. Close;

end;

procedure TForm29.TabSheet1Show(Sender: TObject);
begin
Form29.SpeedButton2. Click;
end;

procedure TForm29.TabSheet2Show(Sender: TObject);
begin
Forrn29 .. LbSpeedButton2.Click;
end;

procedure TForm29. SpeedButton4Click(Sender: TObject);
begin
form29 .Editl . Clear;
form29. ADOQuery] .Close;
end;

procedure TForm29.EditlChange(Sender: TObject);
begin
form29. ADOQuery 1. Close;
form29.ADOQueryl.SQL.Text:='select * from opdrug where animal_id

like•+#394-'%'+form29 .Editl .. Text+'%'+#39;.
form29 .. AD0Query] .. Open;

end;

procedure TF orm29.Edit2Change(Sender: TObject);
begiin.
form29.AD0Queryl .Close;
form29.AD0Queryl.SQL.Text::=:'select * from opdrug where op_drugname

like'+#39+'%'+form29 .. Edit2. Text+'%'+#39;.
form29.AD0Query] .Open;

end;

procedure TForm29.LbSpeedButton4Click{Sender: TObject);
begin
form29 .Edit2. Clear;
form29.ADOQuery I .Close;
end;

207

procedure TForm29.TabSheet3Show(Sender: TObject);
begin
Form29.SpeedButton4.Click;
end;

procedure TForm29.TabSheet4Show(Sender: TObject);
begin
Form29.LbSpeedButton4 .. Click;
end;

procedure TForm29.TabSheet7Show(Sender: TObject);
begin
form29 .ADOQuery I .Close;
formZ9.ADOQuery].SQLText=''seiect * frorn opdrug';
form29 .ADOQuery 1. Open;

end;

procedure TForm29.FormCreate(Sender: TObject);
begin
form29 .Date'I'imef'icker 1.Date:=date;
form29 .DateTimePicker2.Date:=date;
form29.DateTimePicker3.Date:=date,;
form29.Date'fimeP'icker4 . Daee=dete;
dateseparator := '-'; l/Burada tarih'in ayraclaryny MySql database sisteminin
anlayacaby pekle denapturdum ...
shortdateformat := ''yyyy/rn/d';
end;

procedure TForm29.FormClose(Sender.: TObject; var Action: 'I'CloseAction);
begin
form29.Edit I .. Clear;
form29 .. Edit2.Clear;
form29 .ADOQuery 1. Close;
form29.RadioButtonl .Checked=false;
form29 .RadioButton2. Checked=false;
form29 .RadioButton3. Checked=false;
form29.RadioButton4. Checked=false;
form29 .RadioButtonS .Checked=false;
form29 .RadioButton6. Checked=false;
form29 .RadioButton7. Checked.=false;
form29.RadioButton8.Checked:=false;
form29 .DateTimePicker2.Enabled:=false;
form29.DateTimePicker4.Enabled:=false;
end;

procedure TForm29.FonnHide(Sender: TObject);
begin
form29 .Editl. Clear;
form29.Edit2.Ciear;
form29.AD0Query I .Close;

208

form29.RadioButtonl.Checked:=false;
form29 .RadioButton2. Checked:=false;
form29 .RadioButton3. Checked: =false;
form29.RadioButton4 .. Checked:=faJS'e\
form29 .RadioButtonS. Checked=false;
form29 .RadioButton6. Checked:=false;
form29 .RadioButton 7. Checked=false;
form29 .. RadioButton8.Checked:.=false;.
form29.DateTimePicker2.Enabled:=false;
form29.DateTimePicker4 .Enabled=false;

end;.

end.

FORM 30 CODES

unit Unit30;

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls,. Menus, Grids, DBGrids,. ExtCtrls,. Buttons, ComCtrlis;,
DB,ADODB;

type
TForm.30 = class(TForm)
StatusBarl: TStatusBa:r~
PageControII: TPageContml;
TabSheet I : TT ab Sheet;
Label I: TLabel;
SpeedButton2: TSpeedButton;
Edit I : TEdit;
Panel5: TPanel;
TabSheet2: TTabSheet;
Label2: TLabel;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
Edit2: TEdit;
TabSheet3: TTabSheet;
Panell:. TPanet
DBGridl: TDBGrid;
MainMenu 1: TMairuv1enu;
FI: TMenultem;
TabSheet4: TTabSheet;
Panel3: TPanel;
Panel4: TPanel;
Label3: TLabe};
Combo Box I: TComboBox;

209

SpeedButton6: TSpeedButton;
ADOQuery 1: T ADO Query;
DataSource 1 : TDataxource;

d ·Ed.']C'll. · (S d TObi) pmce ure· , , ·1t, ·. uange,. en er: · · · ject ;
procedure Edit2Change(Sender: TObject);
procedure ComboBox1Change(Sender: TObject);
procedure TabSheet4Show(Sender:. TObjeca);
procedure- SpeedButton2Ciick(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure FormClose(Sender: 'I'Object; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure Tab Sheet l Show(Sender: TObject);
procedure T abSheet2Show(Sender: 'I'Object);
procedure TabSheet3Show(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form30: TForm30;

implementation

uses UnitlO;

{$R *'.dfmJ

procedure TForm30.EditlChange(Sender: TObject);
begin
form30.ADOQueryl.Close;
form30.ADOQueryl.SQL.Text:='seiect * from drugs where drugname

like1+#39+1%'+form30.Edit l. Text+'%'+#39;
form30.ADOQuery 1. Open;
end;

procedure TForm30.Edit2Change(Sender: TObject);
begin
formsO. ADOQuery 1. Close;
fom130.ADOQueryl.SQL.Text:=1select * from drugs where drug_id

like'+#39+'%'+forrn30.Edit2.Text+'%'+#39;
...,,_~m)A A T'\Q"uenrl "pen· l.Ul' V ••. "1..1.J '<_ •J .>J ,

end;

procedure TForm30. ComboBoxl Change(Sender: TObject);
begin
form30.AD0Queryl .Close;

210

form30.ADOQueryl.SQL.Text:='select * from drugs where drug_kind
like'+#39+'%'+form30. ComboBoxl. Text+'%'+#39;
form30 .ADOQuery 1. Open;

end;

procedure TForm30.TabSheet4Show(Sender: TObject);
begin
form30.AD0Queryl .Close;
formJO.ADOQueryl .SQL.Text=''select * from drugs.';
form30.ADOQueryl.Open;

end;

procedure TForm30.SpeedButton2Click(Sender: TObject);
begin
form30 .Editl. Clear;
form30.ADOQuery 1. Close;
end;

procedure TF orm30. S peedButton4Click(Sender: TObject);
begin
form30 .Edit2. Clear;
form30.AD0Queryt .Close;
end;

procedure TForm30. SpeedButton6Click(Sender: 'I'Object);
begin
form30.ComboBoxl.Text:='Select One';
form30.AD0Query 1. Close;
end;

procedure TForm30.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form30.Edit 1. Clear;
form30.Edit2.Clear;.
form30.ComboBoxl.Text:='Select One';
form30.AD0Queryl.Close;

end;

procedure TForm30.FormHide(Sender: TObject);
begin
form30.Editl .Clear;
form3 0 .Edit2 .. Clear;
form30.ComboBoxl.Text:='Select One';
form30.ADOQueryl .Close;
end;

procedure TForm30.TabSheet1Show(Sender: TObject);
begin
Form30. SpeedButton2.Click;
end;

211

procedure TForm30.TabSheet2Show(Sender: TObject);
begin
Form30.SpeedButton4.Click;
end;

procedure TForm30.TabSheet3Show(Sender: TObject);
begin
Form30.SpeedButton6.Click;.
end;

end.

FORM 3·1 COUES

unit Unit31;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Grids, DBGrids,. ExtCtrls,. StdCtrts., Buttons, ComCtrls,
DB,, ADODB;,

type
TForm31 = class(TForm)
StatusBarI: TStatusBar;
Pag:eControil: TPag:eContml;.
TabSheetl: TTabSheet;
Label 1.: TLabel;
SpeedButton2: TSpeedButton;
Editl :. TEdit;.
Paneb: TPanel;
TabSheet2: TTabSheet;
Label2: TLabel~
SpeedButton4: TSpeedButton;
Pane12: TPanel~
Edit2: TEdit;
TabSheet3: TTabSheet;
Pane13: TPanel;
Panell: TPanel;
DBGridl: TDBGrid;
Mainlvlenu 1: TMainMenu;
F 1: TMenultem;
ADOQueryl: T ADOQuery;
DataSource 1 : TDataSource;
procedure Edit2Change(Sender: TObject);
procedure EditlChange(Sender: TObject);
prooedure TabSheet3Show(Sender: TObject);

2]2

procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure TabSheetl Show(Sender: 'I'Object);
procedure TabSheet2Show(Sender: 'I'Object);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations: }

public
{ Public declarations }

end;

var
Form31: TForm31;

implementation

uses UnitlO;

{$R * .. dfm}

procedure TForm3 l .Edit2Change(Sender: TObject);
begin
form3 l .AD0Query1 .Close;
form3 I .ADOQueryl. SQL. Texr=sel ect * from operations. where operaeion jd

like'+#39+'%'+form3 I .Edit2. Text+'%'+#39;
form3 l. ADOQuery 1. Open;
end;

procedure TF orm3 I .Edit I Change(Sender: TObject);
begin
form3 I .ADOQuery I .Close;
form3 l.AD0Queryl.SQL.Text:='select * from operations where operation_name

Iike'+#39+'%'+form3I.EditI.Text+'%'+#39;
form3 I .AD0Query I .Open;
end;

procedure TForm3 l.TabSheet3Show(Sender: TObject);
begin
form31.ADOQuery 1. Close;
form3 l.ADOQueryl.SQL.Text:='select * from operations';
form31.AD0Query 1. Open;

end;

procedure TForm3 l .SpeedButton2Click(Sender: TObject);
begin
form3 l. Edit 1. Clear;
form31.ADOQuery 1. Close;
end;

213

procedure TForm3 l .SpeedButton4Click(Sender: TObject);
begin
forrn3 l .Edit2.Clear;
form3] .ADOQuery]. Close;
end;

procedure TForm3 l .TabSheetl Show(Sender: TObject);
begin
Forrn3 l.SpeedButton2.Click;
end;

procedure TForm31.TabSheet2Show(Sender: TObject);
begin
Form3 l .Speedlsutton-l.Click;
end;

procedure TForm3 I .ForrnHide(Sender: TObject);.
begin
form3 l.Editl.Clear;
form31.Edit2. Clear;
form3 I. ADOQuery I .Close;

end;

procedure TForrn31.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form31.Editl .. Clear;
forrn3 I .Edit2 .Clear;
forrn3 l.ADOQueryl .Close;

end;

end.

FORM 32 CODES

unit Um02;

interface

uses
Windows, Messages, Sysl.ltils, Variants, Classes, Graphics, Ccntrols, Forms,
Dialogs, Menus, Grids, DBGrids, StdCtrls, LbSpeedButton, ExtCtrls,
ComCtrls, Buttons, DB, ADODB;

type
TForrn32 = class(TForm)
StatusBarl: TStatusBar;
PageControll: TPageControl;
TabSheetl: TTabSheet;
Labell: TLabel;

214

SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
RadioButton 1 : TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Panel2: TPanel;
TabSheet3: TTabSheet;
Label3: TLabel;
SpeedButton4: TSpeedButton;
Panel3: TPanel;
Edit 1: TEdit;
TabSheet4: TTabSheet;
Label4: TLabel;
LbSpeedButton4: TLbSpeedButton;
Panel4: TPanel;
TabSheet7: TTabSheet;
Panel?: TPanel;
DBGrid 1: TDBGrid;
Panel 1: TPanel;
MainMenu 1: TMainMenu;
F 1: TMenultem;
Edit2: TEdit;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
procedure RadioButtonlClick(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: TObject);
procedure SpeedButton 1 Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure TabSheetlShow(Sender: TObject);
procedure TabSheet3 Show(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

215

var
Form32: TForm32;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForm32.RadioButtonlClick(Sender: TObject);
begin
form3 2 .DateTimePicker2.Date:=date;
form32.DateTimePicker2.Enabled:=false;

end;

procedure TForm32.RadioButton2Click(Sender: TObject);
begin
form3 2.DateTimePicker2.Date:=date;
form32.DateTimePicker2.Enabled:=false;

end;

procedure TForm32.RadioButton3Click(Sender: TObject);
begin
form32.DateTimePicker2.Date:=date;
form32.DateTimePicker2.Enabled:=false;

end;

procedure TForm32.RadioButton4Click(Sender: TObject);
begin
if form32.RadioButton4.Checked = true then
form32.DateTimePicker2.Enabled:=true

else
form32.DateTimePicker2.Enabled:=false;

end;

procedure TForm32.SpeedButtonlClick(Sender: TObject);
begin
if (form3 2 .RadioButton 1. Checked = true) then
begin
form32.AD0Queryl .Close;
form32.ADOQueryl.SQL.Text:='select * from medicinate where medicinate_date <

'+#3 9+datetostr(form3 2.Date TimePicker I .Date)+#3 9;
form32. ADOQuery 1. Open;

end
else if (form32.RadioButton2.Checked = true) then
begin
form32.ADOQueryl.Close;
form32.ADOQueryl.SQL.Text:='select * from medicinate where medicinate_date >

'+#39+datetostr(form32.DateTimePicker I .Date)+#39;
form32. ADOQuery 1. Open;

216

end
else if (form32.RadioButton3.Checked = true) then
begin
form3 2.ADOQuery 1. Close;
form32.ADOQueryl.SQL.Text:='select * from medicinate where medicinate_date =

'+#39+datetostr(form32.DateTimePicker I .Date)+#39;
form32. ADOQuery 1. Open;

end
else if (form3 2.RadioButton4. Checked = true) then
begin
form32.AD0Queryl .Close;
form32.AD0Queryl.SQL.Text:='select * from medicinate where medicinate_date

between '+#3 9+datetostr(form3 2 .Date TimePicker I.Date)+#3 9+' and
'+#39+datetostr(form32.DateTimePicker2.Date)+#39;

form32. ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TF orm32. SpeedButton2Click(Sender: TObject);
begin
FORM32.DateTimePickerl.Date:=DATE;
FORM32.DateTimePicker2.Date:=DATE;
FORM32.DateTimePicker2.Enabled:=F ALSE;
FORM32.RadioButtonl .Checked:=F ALSE;
FORM32.RadioButton2.Checked:=F ALSE;
FORM32.RadioButton3. Checked:=F ALSE;
FORM3 2.RadioButton4. Checked:=F ALSE;
FORM32.ADOQuery 1. Close;

end;

procedure TForm32.Edit1Change(Sender: TObject);
begin
form32.ADOQueryl .Close;
form32.ADOQueryl.SQL.Text:='select * from medicinate where animal jd

like'+#39+'%'+form3 2.Edit 1. Text+'%'+#39;
form32. ADOQuery 1. Open;

end;

procedure TForm32.Edit2Change(Sender: TObject);
begin
form3 2. ADOQuery 1. Close;
form32.ADOQueryl.SQL.Text:='select * from medicinate where drug_name

like'+#39+'%'+form32.Edit2.Text+'%'+#39;
form3 2. ADOQuery 1. Open;

end;

procedure TForm32.TabSheet7Show(Sender: TObject);
begin

217

form32.ADOQueryl.Close;
form32.ADOQueryl.SQL.Text:='select * from medicinate';
form32.AD0Queryl .Open;

end;

procedure TF orm32. SpeedButton4Click(Sender: TObject);
begin
form32.Editl .Clear;
form32.ADOQueryl.Close;
end;

procedure TForm32.LbSpeedButton4Click(Sender: TObject);
begin
form32.Edit2.Clear;
form3 2. ADOQuery 1. Close;
end;

procedure TF orm32. Tab Sheet 1 Show(Sender: TObject);
begin
Form32.SpeedButton2.Click;
end;

procedure TForm32.TabSheet3Show(Sender: TObject);
begin
Form32.SpeedButton4.Click;
end;

procedure TForm32.TabSheet4Show(Sender: TObject);
begin
Form32.LbSpeedButton4.Click;
end;

procedure TForm32.FormHide(Sender: TObject);
begin
form32.Edit 1. Clear;
form32.Edit2.Clear;
form32. ADOQuery 1. Close;
form32.RadioButton 1. Checked:=false;
form3 2 .RadioButton2. Checked: =false;
form3 2 .RadioButton3. Checked: =false;
form32.RadioButton4.Checked:=false;
form32.DateTimePicker2.Enabled:=false;

end;

procedure TForm32.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form3 2.Edit 1. Clear;
form3 2 .Edit2. Clear;
form32. ADOQuery 1. Close;
form32.RadioButtonl.Checked:=false;

218

form32.RadioButton2.Checked:=false;
form32.RadioButton3.Checked:=false;
form.32.RadioButton4. Checked:=false;
form.32.DateTimePicker2.Enabled:=false;

end;

procedure TForm.32.Form.Create(Sender: TObject);
begin
form32.DateTimePicker 1.Date:=date;
form32.DateTimePicker2.Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclarini MySql database sisteminin
anlayacagi sekle donusturdum ...
shortdateformat := 'yyyylm/d';
end;

end.

FORM 33 CODES

unit Unit33;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Grids, DBGrids, StdCtrls, LbSpeedButton, ExtCtrls,
ComCtrls, Buttons, DB, ADODB;

type
TForm.33 = class(TForm)
StatusBarl: TStatusBar;
PageControll: TPageControl;
TabSheetl: TTabSheet;
Label 1 : TLabel;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
RadioButtonl: TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Panel2: TPanel;
TabSheet3: TTabSheet;
Label3: TLabel;
SpeedButton4: TSpeedButton;
Panel3 : TPanel;
Edit 1 : TEdit;
TabSheet4: TTabSheet;

219

Label4: TLabel;
LbSpeedButton4: TLbSpeedButton;
Panel4: TPanel;
TabSheet7: TTabSheet;
DBGridl: TDBGrid;
Panell: TPanel;
MainMenu 1: TMainMenu;
F 1: TMenultem;
TabSheet2: TTabSheet;
Panel?: TPanel;
Panels: TPanel;
Label2: TLabel;
Edit2: TEdit;
LbSpeedButton2: TLbSpeedButton;
Edit3: TEdit;
ADOQueryl: TADOQuery;
Dataxourcel: TDataSource;
procedure SpeedButton 1 Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure Tab Sheet 1 Show(Sender: TObject);
procedure TabSheet3 Show(Sender: TObj ect);
procedure TabSheet4Show(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure TabSheet2Show(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure RadioButtonlClick(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form33: TForm33;

implementation

uses UnitlO;

220

{$R *.dfm}

procedure TF orm3 3. SpeedButton 1 Click(Sender: TObj ect);
begin
if (form33.RadioButtonl.Checked = true) then
begin
form33.ADOQueryl .Close;
form33.ADOQueryl.SQL.Text:='select * from appliedoperation where

operation_ date < '+#39+datetostr(form33 .DateTimePickerl .Date)+#39;
form3 3. ADOQuery 1. Open;

end
else if (form33.RadioButton2.Checked = true) then
begin
form3 3. ADOQuery 1. Close;
form33.AD0Queryl.SQL.Text:='select * from appliedoperation where

operation_ date> '+#39+datetostr(form33 .DateTimePickerl .Date)+#39;
form3 3. ADOQuery 1. Open;

end
else if (form33.RadioButton3.Checked = true) then
begin
form33.AD0Queryl .Close;
form33.ADOQueryl.SQL.Text:='select * from appliedoperation where

operation_ date = '+#39+datetostr(form33 .DateTimePickerl .Date)+#39;
form3 3 .ADOQuery 1. Open;

end
else if (form33.RadioButton4.Checked = true) then
begin
form3 3 .ADOQuery 1. Close;
form33.AD0Queryl.SQL.Text:='select * from appliedoperation where

operation_ date between '+#39+datetostr(form3 3 .Date TimePicker I .Date)+#3 9+' and
'+#39+datetostr(form3 3 .DateTimePicker2.Date)+#39;

form3 3 .ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TF orm33. SpeedButton2Click(Sender: TObject);
begin
FORM33 .DateTimePickerl .Date:=DATE;
FORM33.DateTimePicker2.Date:=DATE;
FORM33 .DateTimePicker2.Enabled:=F ALSE;
FORM33 .RadioButtonl .Checked:=F ALSE;
FORM33 .RadioButton2. Checked:=F ALSE;
FORM33 .RadioButton3. Checked:=F ALSE;
FORM33.RadioButton4.Checked:=FALSE;
FORM33.ADOQueryl .Close;

end;

procedure TForm33.Edit1Change(Sender: TObject);

221

begin
form33.ADOQueryl .Close;
form33.ADOQueryl.SQL.Text:='select * from appliedoperation where animal_id

like'+#39+'%'+form33 .Editl. Text+'%'+#39;
form33. ADOQuery 1. Open;

end;

procedure TForm33.Edit3Change(Sender: TObject);
begin
form3 3 .ADOQuery 1. Close;
form33.ADOQueryl.SQL.Text:='select * from appliedoperation where drug_name

like'+#39+'%'+form33 .Edit3. Text+'%'+#39;
form3 3 .ADOQuery 1. Open;

end;

procedure TForm33.Edit2Change(Sender: TObject);
begin
form3 3. ADOQuery 1. Close;
form33.ADOQueryl.SQL.Text:='select * from appliedoperation where

operation_ name like'+#39+'%'+form33 .Edit2. Text+'%'+#39;
form3 3 .ADOQuery 1. Open;

end;

procedure TF orm3 3 .LbSpeedButton2Click(Sender: TObject);
begin
form33 .Edit2.Clear;
form3 3. ADOQuery 1. Close;
end;

procedure TF orm3 3 .LbSpeedButton4Click(Sender: TObject);
begin
form3 3 .Edit3. Clear;
form3 3 .ADOQuery 1. Close;
end;

procedure TF orm3 3. S peedButton4Click(Sender: TObj ect);
begin
form3 3 .Edit 1. Clear;
form33. ADOQuery 1. Close;
end;

procedure TForm33.TabSheet1Show(Sender: TObject);
begin
Form33.SpeedButton2.Click;
end;

procedure TF orm33. TabSheet3 Show(Sender: TObject);
begin
Form33.SpeedButton4.Click;
end;

222

procedure TForm33.TabSheet4Show(Sender: TObject);
begin
Form33 .LbSpeedButton4. Click;
end;

procedure TForm33.TabSheet7Show(Sender: TObject);
begin
F orm3 3 .LbS peedButton2. Click;
end;

procedure TForm33.TabSheet2Show(Sender: TObject);
begin
form33 .ADOQuery 1. Close;
form33.ADOQueryl.SQL.Text:='select * from appliedoperation';
form33 .ADOQuery 1. Open;

end;

procedure TForm33.FormCreate(Sender: TObject);
begin
form3 3 .DateTimePicker 1.Date:=date;
form33 .DateTimePicker2.Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclanni MySql database sisteminin
anlayacagi sekle donusturdum ...
shortdateformat := 'yyyylm/d';
end;

procedure TForm33.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form33 .Edit 1. Clear;
form33 .Edit2. Clear;
form3 3 .ADOQuery 1. Close;
form3 3 .RadioButton 1. Checked: =false;
form3 3 .RadioButton2. Checked:=false;
form33 .RadioButton3. Checked:=false;
form33.RadioButton4.Checked:=false;
form33 .DateTimePicker2.Enabled:=false;

end;

procedure TForm33.FormHide(Sender: TObject);
begin
form3 3 .Edit 1. Clear;
form33 .Edit2. Clear;
form33 .ADOQuery 1. Close;
form33 .RadioButtonl. Checked:=false;
form3 3 .RadioButton2. Checked: =false;
form3 3 .RadioButton3. Checked :=false;
form3 3 .RadioButton4. Checked:=false;
form3 3 .DateTimePicker2.Enabled: =false;

end;

223

procedure TF orm33 .RadioButton 1 Click(Sender: TObject);
begin
form33 .DateTimePicker2.Date:=date;
form3 3 .Date TimePicker2 .Enabled: =false;

end;

procedure TF orm3 3 .RadioButton2Click(Sender: TObject);
begin
form3 3 .DateTimePicker2 .Date:=date;
form33 .DateTimePicker2.Enabled:=false;

end;

procedure TForm33.RadioButton3Click(Sender: TObject);
begin
form3 3 .DateTimePicker2 .Date: =date;
form3 3 .Date TimePicker2 .Enabled:=false;

end;

procedure TF orm3 3 .RadioButton4Click(Sender: TObject);
begin
if form33.RadioButton4.Checked = true then
form3 3 .DateTimePicker2.Enabled :=true

else
form3 3 .DateTimePicker2. Enabled: =false;

end;

end.

FORM 34 CODES

unit Unit34;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Menus, Grids, DBGrids, LbSpeedButton, ExtCtrls,
ComCtrls, Buttons, DB, ADODB;

type
TForm34 = class(TForm)
StatusBarl: TStatusBar;
PageControl 1 : TPageControl;
TabSheetl: TTabSheet;
Label 1 : TLabel;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
RadioButtonl: TRadioButton;

224

RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Panel2: TPanel;
TabSheet3: TTabSheet;
Label3: TLabel;
SpeedButton4: TSpeedButton;
Panel3: TPanel;
Edit 1: TEdit;
TabSheet4: TTabSheet;
Label4: TLabel;
LbSpeedButton4: TLbSpeedButton;
Panel4: TPanel;
TabSheet7: TTabSheet;
Label2: TLabel;
LbSpeedButton2: TLbSpeedButton;
Panels: TPanel;
Edit2: TEdit;
TabSheet2: TTabSheet;
Panel?: TPanel;
DBGrid 1: TDBGrid;
Panel 1: TPanel;
MainMenu 1: TMainMenu;
F 1: TMenultem;
Memo 1: TMemo;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
procedure RadioButton 1 Click(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: TObj ect);
procedure SpeedButton 1 Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure MemolChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure TabSheet2Show(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure LbSpeedButton4Click(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure TabSheetlShow(Sender: TObject);
procedure TabSheet3Show(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);

private

225

{ Private declarations }
public

{ Public declarations }
end;

var
Form34: TForm34;

implementation

uses UnitlO;

{$R *.dfm}

procedure TF orm34 .RadioButton 1 Click(Sender: TObject);
begin
form34 .DateTimePicker2.Date: =date;
form34.DateTimePicker2.Enabled:=false;

end;

procedure TForm34.RadioButton2Click(Sender: TObject);
begin
form34.DateTimePicker2.Date:=date;
form34 .DateTimePicker2.Enabled:=false;

end;

procedure TForm34.RadioButton3Click(Sender: TObject);
begin
form34 .DateTimePicker2.Date:=date;
form34.DateTimePicker2.Enabled:=false;

end;

procedure TForm34.RadioButton4Click(Sender: TObject);
begin
if form34.RadioButton4.Checked = true then
form34.DateTimePicker2.Enabled:=true

else
form34 .DateTimePicker2.Enabled:=false;

end;

procedure TForm34.SpeedButton1Click(Sender: TObject);
begin
if (form34.RadioButtonl.Checked = true) then
begin
form34. ADOQuery 1. Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses where date<

'+#39+datetostr(form34.DateTimePickerl.Date)+#39;
form34. ADOQuery 1. Open;

end
else if (form34.RadioButton2.Checked = true) then

226

begin
form34.ADOQueryl.Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses where date>

'+#39+datetostr(form34 .DateTimePicker I .Date)+#39;
form34 .ADOQuery 1. Open;

end
else if (form34.RadioButton3.Checked = true) then
begin
form34. ADOQuery 1. Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses where date=

'+#39+datetostr(form34.DateTimePickerl.Date)+#39;
form34. ADOQuery 1. Open;

end
else if (form34.RadioButton4.Checked = true) then
begin
form34. ADOQuery 1. Close;
form34.AD0Queryl.SQL.Text:='select * from illnesses where date between

'+#39+datetostr(form34 .DateTimePicker I .Date)+#39+' and
'+#3 9+datetostr(form34 .DateTimePicker2 .Date)+#3 9;

form34 .ADOQuery 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TF orm34. SpeedButton2Click(Sender: TObject);
begin
FORM34.DateTimePickerl.Date:=DATE;
FORM34 .DateTimePicker2.Date:=DA TE;
FORM34.DateTimePicker2.Enabled:=F ALSE;
FORM34 .RadioButton 1. Checked:=F ALSE;
FORM34 .RadioButton2. Checked:= FALSE;
FORM34.RadioButton3 .Checked:=F ALSE;
FORM34.RadioButton4.Checked:=FALSE;
FORM34.AD0Queryl.Close;

end;

procedure TForm34.EditlChange(Sender: TObject);
begin
form34.ADOQueryl .Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses where animal_id

like'+#39+'%'+form34.Editl.Text+'%'+#39;
form34. ADOQuery 1. Open;

end;

procedure TF orm34 .Memo 1 Change(Sender: TObject);
begin
form34.ADOQueryl .Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses where illness

like'+#39+'%'+form34.memol.Text+'%'+#39;

227

form34. ADOQuery 1. Open;
end;

procedure TForm34.Edit2Change(Sender: TObject);
begin
form34.AD0Queryl .Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses where protocol_no

like'+#39+'%'+form34.Edit2.Text+'%'+#39;
form34. ADOQuery 1. Open;

end;

procedure TForm34.TabSheet2Show(Sender: TObject);
begin
form34. ADOQuery 1. Close;
form34.ADOQueryl.SQL.Text:='select * from illnesses';
form34 .ADOQuery 1. Open;

end;

procedure TForm34.SpeedButton4Click(Sender: TObject);
begin
form34.Editl .Clear;
form34. ADOQuery 1. Close;
end;

procedure TF orm34 .LbSpeedButton4Click(Sender: TObject);
begin
form34.Memol.Clear;;
form34. ADOQuery 1. Close;
end;

procedure TF orm34 .LbSpeedButton2Click(Sender: TObject);
begin
form34 .Edit2. Clear;
form34.ADOQueryl .Close;
end;

procedure TF orm34. Tab Sheet 1 Show(Sender: TObject);
begin
Form34.SpeedButton2.Click;
end;

procedure TForm34. TabSheet3Show(Sender: TObject);
begin
F orm34. SpeedButton4. Click;
end;

procedure TForm34.TabSheet4Show(Sender: TObject);
begin
Form34.LbSpeedButton4.Click;
end;

228

procedure TForm34.TabSheet7Show(Sender: TObject);
begin
Form34 .LbSpeedButton2. Click;
end;

procedure TForm34.FormCreate(Sender: TObject);
begin
form34 .DateTimePicker 1.Date:=date;
form34.DateTimePicker2.Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclanm MySql database sisteminin
anlayacagi sekle donusturdum ...
shortdateformat := 'yyyylm/d';
end;

procedure TForm34.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form34 .Edit 1. Clear;
form34.Edit2.Clear;
form34 .Memo 1. Clear;
form34 .ADOQuery 1. Close;
form34.RadioButtonl.Checked:=false;
form34.RadioButton2.Checked:=false;
form34 .RadioButton3. Checked:=false;
form34.RadioButton4.Checked:=false;
form34.DateTimePicker2.Enabled:=false;

end;

procedure TForm34.FormHide(Sender: TObject);
begin
form34 .Edit 1. Clear;
form34 .Edit2. Clear;
form34 .Memo 1. Clear;
form34 .ADOQuery 1. Close;
form34 .RadioButton 1. Checked:=false;
form34 .RadioButton2. Checked :=false;
form34 .RadioButton3. Checked:=false;
form34 .RadioButton4. Checked: =false;
form34.DateTimePicker2.Enabled:=false;

end;

end.

FORM 35 CODES

unit Unit35;

interface

229

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Menus, Grids, DBGrids, ExtCtrls, Buttons, ComCtrls,
DB,ADODB;

type
TForm35 = class(TForm)
StatusBarl: TStatusBar;
PageControl 1: TPageControl;
TabSheetl: TTabSheet;
Label 1 : TLabel;
SpeedButton2: TSpeedButton;
Editl : TEdit;
Panel5: TPanel;
TabSheet2: TTabSheet;
Label2: TLabel;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
Edit2: TEdit;
TabSheet3: TTabSheet;
Panel 1: TPanel;
DBGrid 1: TDBGrid;
MainMenu 1: TMainMenu;
F 1: TMenuitem;
TabSheet4: TTabSheet;
Panel3: TPanel;
Panel4: TPanel;
Label3: TLabel;
ComboBox 1: TComboBox;
SpeedButton6: TSpeedButton;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure ComboBoxlChange(Sender: TObject);
procedure TabSheet4Show(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure SpeedButton6Click(Sender: TObject);
procedure TabSheetlShow(Sender: TObject);
procedure TabSheet2Show(Sender: TObject);
procedure TabSheet3Show(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

230

var
Form35: TForm35;

implementation

uses UnitlO;

{$R *.dfm}

procedure TF orm3 5 .Edit 1 Change(Sender: TObject);
begin
form3 5 .ADOQuery 1. Close;
form35.ADOQueryl.SQL.Text:='select * from users where user_name

like'+#39+'% '+form3 5 .Edit 1. Text+'%'+#3 9;
form3 5. ADOQuery 1. Open;

end;

procedure TF orm3 5 .Edit2Change(Sender: TObject);
begin
form3 5. ADOQuery 1. Close;
form35.ADOQueryl.SQL.Text:='select * from users where staff_id

like'+#39+'%'+form35.Edit2.Text+'%'+#39;
form3 5. ADOQuery 1. Open;

end;

procedure TForm35.ComboBox1Change(Sender: TObject);
begin
form3 5 .ADOQuery 1. Close;
form35.ADOQueryl.SQL.Text:='select * from users where staff_state

like'+#39+'%'+form35.ComboBoxl.Text+'%'+#39;
form3 5. ADOQuery 1. Open;

end;

procedure TF orm3 5. TabSheet4Show(Sender: TObject);
begin
form35.ADOQueryl.Close;
form35.ADOQueryl.SQL.Text:='select * from users';
form3 5. ADOQuery 1. Open;

end;

procedure TForm35.SpeedButton2Click(Sender: TObject);
begin
form3 5 .Edit 1. Clear;
form3 5. ADOQuery 1. Close;
end;

procedure TF orm3 5. SpeedButton4Click(Sender: TObject);
begin
form3 5 .Edit2. Clear;
form35.ADOQueryl .Close;

231

end;

procedure TF orm3 5. SpeedButton6Click(Sender: TObj ect);
begin
form35.ComboBoxl.Text:='Se1ect One';
form35.ADOQueryl .Close;
end;

procedure TForm35.TabSheetlShow(Sender: TObject);
begin
F orm3 5. SpeedButton2. Click;
end;

procedure TForm35.TabSheet2Show(Sender: TObject);
begin
F orm3 5. S peedButton4. Click;
end;

procedure TForm35.TabSheet3Show(Sender: TObject);
begin
Form35.SpeedButton6.Click;
end;

procedure TForm35.FormHide(Sender: TObject);
begin
form3 5 .Edit 1. Clear;
form3 5 .Edit2. Clear;
form35. ComboBox 1. Text:='Select One';
form3 5. ADOQuery 1. Close;

end;

procedure TForm35.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form3 5 .Edit 1. Clear;
form3 5 .Edit2. Clear;
form35.ComboBoxl.Text:='Select One';
form3 5. ADOQuery 1. Close;

end;

end.

FORM 36 CODES

unit Unit36;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

232

Dialogs, StdCtrls, Mask, Menus, Grids, DBGrids, LbSpeedButton, ExtCtrls,
ComCtrls, Buttons, DB, ADODB;

type
TForm36 = class(TForm)
StatusBarl: TStatusBar;
PageControl 1: TPageControl;
TabSheetl: TTabSheet;
Label 1: TLabel;
RadioButtonl: TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Panel2: TPanel;
TabSheet7: TTabSheet;
Panel7: TPanel;
DBGrid 1: TDBGrid;
Panel 1 : TPanel;
MainMenu 1: TMainMenu;
F 1: TMenultem;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
procedure RadioButton 1 Click(Sender: TObject);
procedure RadioButton2Click(Sender: TObject);
procedure RadioButton3Click(Sender: TObject);
procedure RadioButton4Click(Sender: TObject);
procedure TabSheet7Show(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure LbSpeedButton2Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure TabSheetlShow(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form36: TForm36;

implementation

uses UnitlO;

233

{$R *.dfm}

procedure TForm36.RadioButton1Click(Sender: TObject);
begin
form36.DateTimePicker2.Date:=date;
form36.DateTimePicker2.Enabled:=false;

end;

procedure TForm36.RadioButton2Click(Sender: TObject);
begin
form36.DateTimePicker2.Date:=date;
form36.DateTimePicker2.Enabled:=false;

end;

procedure TForm36.RadioButton3Click(Sender: TObject);
begin
form36.DateTimePicker2.Date:=date;
form36.DateTimePicker2.Enabled:=false;

end;

procedure TForm36.RadioButton4Click(Sender: TObject);
begin
ifform36.RadioButton4.Checked = true then
form36.DateTimePicker2.Enabled:=true

else
form36.DateTimePicker2.Enabled:=false;

end;

procedure TForm36.TabSheet7Show(Sender: TObject);
begin
form36.ADOQueryl .Close;
form36.ADOQueryl.SQL.Text:='select * from wrongpasswords';
form36.ADOQuery 1. Open;
end;

procedure TForm36.LbSpeedButton1Click(Sender: TObject);
begin
if (form36.RadioButtonl .Checked= true) then
begin
form36.ADOQueryl .Close;
form36.ADOQueryl.SQL.Text:='select * from wrongpasswords where try_date <

'+#3 9+datetostr(form3 6.DateTimePicker 1.Date)+#39;
form36. ADOQuery 1. Open;
end
else if (form36.RadioButton2.Checked = true) then
begin
form36.ADOQueryl .Close;
form36.AD0Queryl.SQL.Text:='select * from wrongpasswords where try_date >

'+#39+datetostr(form36.DateTimePicker 1.Date)+#39;
form36. ADOQuery 1. Open;

234

end
else if (form36.RadioButton3.Checked = true) then
begin
form36.AD0Queryl .Close;
form36.ADOQueryl.SQL.Text:='select * from wrongpasswords where try_date =

'+#39+datetostr(form36.DateTimePickerl.Date)+#39;
form36. ADOQuery 1. Open;
end
else if (form36.RadioButton4.Checked = true) then
begin
form36.AD0Queryl .Close;
form36.AD0Queryl.SQL.Text:='select * from wrongpasswords where try_date

between '+#39+datetostr(form36.DateTimePicker I.Date)+#3 9+' and
'+#3 9+datetostr(form3 6 .Date TimePicker2.Date)+#3 9;

form36.AD0Query 1. Open;
end
else
showmessage('PLEASE SELECT SEARCH CRITERIA');

end;

procedure TForm36.FormClose(Sender: TObject; var Action: TCloseAction);
begin
form36. ADOQuery 1. Close;
form3 6 .RadioButton 1. Checked: =false;
form3 6 .RadioButton2. Checked: =false;
form36 .RadioButton3. Checked: =false;
form36.RadioButton4.Checked:=false;
form36.DateTimePicker2.Enabled:=false;
end;

procedure TForm36.FormHide(Sender: TObject);
begin
form36.AD0Queryl.Close;
form36.RadioButton 1. Checked:=false;
form3 6 .RadioButton2. Checked: =false;
form36.RadioButton3. Checked:=false;
form36.RadioButton4. Checked:=false;
form36.DateTimePicker2.Enabled:=false;
end;

procedure TF orm36.LbSpeedButton2Click(Sender: TObject);
begin
FORM36.DateTimePickerl.Date:=DATE;
FORM36.DateTimePicker2.Date:=DA TE;
FORM36.DateTimePicker2.Enabled:=F ALSE;
FORM36.RadioButtonl.Checked:=FALSE;
FORM36.RadioButton2.Checked:=FALSE;
FORM36.RadioButton3 .Checked:=F ALSE;
FORM36.RadioButton4.Checked:=FALSE;
FORM36.AD0Query 1. Close;

235

end;

procedure TForm36.FormCreate(Sender: TObject);
begin
forrn36.DateTirnePicker 1.Date:=date;
forrn36.DateTirnePicker2.Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclanm MySql database sisterninin
anlayacagi sekle donusturdum ...
shortdateformat := 'yyyylrn/d';
end;

procedure TForm36.TabSheet1Show(Sender: TObject);
begin
Form36.LbSpeedButton2.Click;
end;

end.

FORM 37 CODES

unit Unit37;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, StdCtrls, CornCtrls, Grids, DBGrids, ExtCtrls, Menus,
DB,ADODB;

type
TForm37 = class(TForrn)
PageControl 1: TPageControl;
MainMenu 1: TMainMenu;
F 1: TMenultern;
StatusBarl: TStatusBar;
TabSheetl: TTabSheet;
TabSheet2: TTabSheet;
TabSheet3: TTabSheet;
Panel 1: TPanel;
DBGridl: TDBGrid;
Panel2: TPanel;
Panel3: TPanel;
DBGrid2: TDBGrid;
DBGrid3: TDBGrid;
Panel4: TPanel;
DateTirnePickerl: TDateTirnePicker;
Label 1: TLabel;
SpeedButton2: TSpeedButton;
Panels: TPanel;

236

SpeedButtonl: TSpeedButton;
ADOQueryl: TADOQuery;
Data Source 1 : TDataSource;
AD0Query2: T ADOQuery;
DataSource2: TDataSource;
ADOQuery3: TADOQuery;
DataSource3: TDataSource;
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormHide(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form37: TForm37;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForm3 7. SpeedButtonl Click(Sender: TObject);
begin

form3 7. ADOQuery 1. Close;
form37.AD0Queryl.SQL.Text:='select * from vaccinate where next_vaccinatedate =

'+#39+datetostr(form37.DateTimePickerl.Date)+#39;
form3 7 .ADOQuery 1. Open;
form3 7. AD0Query2. Close;
form37.ADOQuery2.SQL.Text:='select * from ipdrug where ip_nextdrugdate =

'+#39+datetostr(form37.DateTimePickerl.Date)+#39;
form3 7 .ADOQuery2. Open;
form3 7 .ADOQuery3. Close;
form37.ADOQuery3.SQL.Text:='select * from opdrug where op_nextdrugdate =

'+#39+datetostr(form3 7 .DateTimePicker I .Date)+#39;
form3 7. ADOQuery3. Open;

end;

procedure TF orm3 7. SpeedButton2Click(Sender: TObject);
begin
form3 7 .DateTimePicker l .Date:=date;
form3 7 .ADOQuery 1. Close;
form3 7 .ADOQuery2. Close;
form37.AD0Query3.Close;

end;

237

procedure TForm37.FormClose(Sender: TObject; var Action: TCloseAction);
begin
F orm3 7. SpeedButton2. Click;
end;

procedure TForm37.FormHide(Sender: TObject);
begin
Form37.SpeedButton2.Click;
end;

procedure TForm37.FormCreate(Sender: TObject);
begin
form3 7 .DateTimePicker 1.Date:=date;
dateseparator := '-'; II Burada tarih'in ayraclanm MySql database sisteminin
anlayacagi sekle donusturdum ...
shortdateformat := 'yyyylm/d';
end;

end.

FORM 38 CODES

unit Unit38;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, Grids, DBGrids, ExtCtrls, DB, ADODB;

type
TForm38 = class(TForm)
Panel 1 : TPanel;
DBGrid 1: TDBGrid;
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
ADOConnection 1: T ADOConnection;
ADOQuery 1: T ADOQuery;
DataSource 1 : TDataSource;
procedure FormShow(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }

238

end;

var
Form38: TForm38;
TA: integer;

implementation

uses UnitlO, Unit 14, Unitl 7, Unit 18, Unit 19, Unit20, Unit21, Unit22;

{$R *.dfm}

procedure TForm38.FormShow(Sender: TObject);
begin
FORM38.ADOQueryl.SQL.Text:='select
Staff id,Staff name,Staff surname,S birthdate from staff; - - - -
form3 8. ADOQuery 1. Open;
end;

procedure TForm38.SpeedButtonlClick(Sender: TObject);
begin
ifform38.ADOQueryl.RecordCount <> 0 then
begin
if TA= 10 then
form10.editl.text:=form38.DBGridl.Fields[O].Text
else if TA= 14 then
form14.editl.text:=form38.DBGridl.Fields[O].Text
else if TA= 17 then
forml 7 .edit4.text:=form38.DBGrid 1.Fields[O].Text
else if TA= 18 then
form18.edit2.text:=form38.DBGridl.Fields[O].Text
else if TA= 19 then
form19.edit2.text:=form38.DBGridl.Fields[O].Text
else if TA = 20 then
form20.edit2.text:=form38.DBGridl.Fields[O].Text
else if TA= 21 then
form21.edit2.text:=form38.DBGridl.Fields[O].Text
else if TA = 22 then
form22.edit4.text:=form38.DBGridl.Fields[O].Text;
form38.Hide;
TA:=O;
end
else
showmessage('THERE IS NO RECORD IN DATABASE');

end;

procedure TF orm3 8. SpeedButton2Click(Sender: TObject);
begin
form38.ADOQueryl .Close;
FORM38.ADOQueryl.SQL.Text:='select
Staff_id,Staff_name,Staff_surname,S_birthdate from staff;

239

form3 8. ADOQuery 1. Open;
end;

procedure TForm38.SpeedButton3Click(Sender: TObject);
begin
form38.AD0Queryl.Close;
FORM38.Hide;
end;

end.

FORM 39 CODES

unit Unit39;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, ADODB, Buttons, Grids, DBGrids, ExtCtrls;

type
TForm39 = class(TF orm)
Panel 1: TPanel;
DBGrid 1: TDBGrid;
DBGrid2: TDBGrid;
SpeedButtonl: TSpeedButton;
Panel2: TPanel;
Panel3: TPanel;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
Panel4: TPanel;
ADOQuery 1: T ADOQuery;
AD0Query2: T ADOQuery;
DataSource 1 : TDataSource;
DataSource2: TDataSource;
procedure FormShow(Sender: TObject);
procedure DBGrid2CellClick(Column: TColumn);
procedure DBGrid 1 CellClick(Column: TColumn);
procedure SpeedButtonlClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure SpeedButton3Click(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }

end;

240

var
Form.39: TForm39;
ANI:INTEGER;

implementation

uses Unit 10, Unitl 7, Unitl8, Unit 19, Unit20, Unit21, Unit22;

{$R *.dfm}

procedure TForm.39.Form.Show(Sender: TObject);
begin
FORM39. ADO Query 1. Close;
FORM39 .ADOQuery 1. SQL. Text:='select customer _id,Cname,Csurname,Mobilphone

from customer';
form.39. ADOQuery 1. Open;

end;

procedure TForm.39.DBGrid2CellClick(Column: TColumn);
begin
if form39.DBGrid2.Fields[O].IsNull = false then
begin
form.39.AD0Query2.Close;
form39.ADOQuery2.SQL.Text:='select Animal_id,Animal_name from animal where

owner_ no='+#39+form39 .DBGrid2.Fields[O]. Text+#39;
form.39 .AD0Query2. Open;

end
else
showmessage('THERE IS NO CUSTOMER IN DAT ABASE');

end;

procedure TForm.39.DBGridlCellClick(Column: TColumn);
begin
if form39.DBGridl.Fields[O].IsNull = false then
FORM39.Panel4.Caption:=FORM39.DBGridl.Fields[O].Text
ELSE
SHOWMESSAGE('PLEASE SELECT A CUSTOMER FROM CUSTOMER LIST');

end;

procedure TForm.39.SpeedButtonlClick(Sender: TObject);
begin
IF FORM39.Panel4.Caption <> " THEN
BEGIN
IF ANI=l7 THEN
FORMl 7.EDIT1.TEXT:=FORM39.Panel4.Caption
ELSE IF ANI=l8 THEN
FORM18.EDIT1.TEXT:=FORM39.Panel4.Caption
ELSE IF ANI=l9 THEN

241

FORM19.ED1T1.TEXT:=FORM39.Panel4.Caption
ELSE IF ANI=20 THEN
FORM20.ED1Tl.TEXT:=FORM39.Panel4.Caption

ELSE IF ANI=21 THEN
FORM2l.ED1Tl.TEXT:=FORM39.Panel4.Caption

ELSE IF ANI=22 THEN
F0RM22.ED1Tl.TEXT:=FORM39.Panel4.Caption;

FORM39.Hide;
ANI:=O;

END
ELSE
SHOWMESSAGE('SELECT AN ANIMAL FROM ANIMAL LIST');

end;

procedure TF orm.39. SpeedButton2Click(Sender: TObj ect);
begin
FORM3 9 .ADO Query 1. Close;
FORM39.ADOQueryl.SQL.Text:='select customer_id,Cname,Csurname,Mobilphone

from customer';
form.39 .ADOQuery 1. Open;
FORM39.ADOQuery2.Close;
FORM39.Panel4.Caption:=";

end;

procedure TForm.39.FormHide(Sender: TObject);
begin
FORM39 .ADOQuery 1. Close;
FORM39.ADOQuery2. Close;
FORM39.Panel4.Caption:=";

end;

procedure TForm.39.Form.Close(Sender: TObject; var Action: TCloseAction);
begin
FORM39.AD0Queryl.Close;
FORM39.ADOQuery2. Close;
FORM39.Panel4.Caption:=";

end;

procedure TForm.39.SpeedButton3Click(Sender: TObject);
begin
FORM39.Close;

end;

end.

242

FORM 40 CODES

unit Unit40;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, ADODB, Grids, DBGrids, ExtCtrls, Buttons;

type
TForm40 = class(TForm)
SpeedButtonl: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
Panel 1 : TPanel;
DBGridl: TDBGrid;
ADOConnection 1: T ADOConnection;
ADOQueryl: T ADOQuery;
DataSource 1 : TDataSource;
procedure SpeedButton 1 Click(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form40: TForm40;

implementation

uses Unit16;

{$R *.dfm}

procedure TF orm40. SpeedButtonl Click(Sender: TObj ect);
begin
if form40.ADOQueryl .RecordCount <> 0 then
begin
FORM16.EDIT5.TEXT:=FORM40.DBGridl.Fields[O].Text;
form40.Hide;

END
ELSE
SHOWMESSAGE('THERE IS NO RECORD IN DATABASE');

end;

243

procedure TF orm.40 .F orm.Show(Sender: TObject);
begin
FORM40.AD0Queryl .Close;
FORM40.ADOQueryl.SQL.Text:='SELECT customer_id,cname,csumame FROM

customer';
form.40. ADOQuery 1. Open;

end;

procedure TF orm.40. SpeedButton2Click(Sender: TObject);
begin
FORM40 .ADO Query 1. Close;
FORM40.AD0Queryl.SQL.Text:='SELECT customer_id,cname,csumame FROM

customer';
form40. ADOQuery 1. Open;

end;

procedure TForm.40.SpeedButton3Click(Sender: 'I'Object);
begin
form.40 .ADOQuery 1. Close;
FORM40.Hide;

end;

end.

FORM 41 CODES

unit Unit41;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, LbSpeedButton, ExtCtrls, StdCtrls, jpeg, DB, ADODB;

type
TForm41 = class(TForm)
Image 1: Tlmage;
Edit 1 : TEdit;
Label 1 : TLabel;
Label2: TLabel;
Edit2: TEdit;
Panel2: TPanel;
Panel3: TPanel;
Panel4: TPanel;
Panels: TPanel;
Panel6: TPanel;
Panel7: TPanel;
Panel8: TPanel;
Panel9: TPanel;

244

PanellO: TPanel;
LbSpeedButtonl: TLbSpeedButton;
LbSpeedButton2: TLbSpeedButton;
Timer 1: TTimer;
ADOQueryl: T ADOQuery;
DataSource 1 : TDataSource;
ADOQuery2: TADOQuery;
DataSource2: TDataSource;
procedure Timer! Timer(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure LbSpeedButtonlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure LbSpeedButton2Click(Sender: TObject);
procedure FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

procedure Panel2Click(Sender: TObject);
procedure Panel3Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form41: TForm41;
renk,num:integer;

implementation

uses UnitlO, Unit3, Unit2, Unitl, Unit4, Unit6, Unit7, Unit9;

{$R *.dfm}

procedure TForm41.TimerlTimer(Sender: TObject);
begin
renk:=renk+ 1;
if renk = 1 then
begin
form41.Panel2. Color:=clblack;
form41.Panel2 .Font. Color:=clwhite;

end
else if renk = 2 then
begin
form41.Panel3. Color:=clblack;
form41.Panel3 .Font. Color:=clwhite;

end
else if renk = 3 then
begin
form41.Panel4.Color:=clblack;

245

form4 l .Panel4 .Font. Color:=clwhite;
end
else ifrenk = 4 then
begin
form4 l .Panel5. Color:=clblack;
form4 l .Panel5 .Font. Color:=clwhite;

end
else if renk = 5 then
begin
form4 l .Panel6. Color:=clblack;
form4 l .Panel6.Font.Color:=clwhite;

end
else if renk = 6 then
begin
form4 l .Panel7. Color:=clblack;
form4 l .Panel7 .Font. Color:=clwhite;

end
else if renk = 7 then
begin
form4 l .Panel8. Color:=clblack;
form4 l .Panel 8 .Font. Color:=clwhite;

end
else if renk = 8 then
begin
form4 l .Panel9. Color:=clblack;
form4 l .Panel9 .Font. Color=clwhite;

end
else if renk = 9 then
begin
form4 l .Panel 10. Color:=clblack;
form4 l .Panel 10 .Font. Color.=clwhite;

end
else if renk = 10 then
begin
form4 l .Panell O.Color:=clwhite;
form4 l .Panel 1 O.Font. Color:=clblack;

end
else if renk = 11 then
begin
form4 l .Panel9. Color:=clwhite;
form4 l .Panel9 .Font. Color: =cl black;

end
else ifrenk = 12 then
begin
form4 l .Panel8. Color:=clwhite;
form4 l .Panel8.F ont. Color:=clblack;

end
else ifrenk = 13 then
begin
form4 l .Panel7. Color:=clwhite;

246

form41.Panel 7 .Font. Color=clblack;
end
else if renk = 14 then
begin
form41.Panel6. Color=clwhite;
form41.Panel6.Font. Color.=clblack;

end
else if renk = 15 then
begin
form41.Panel5. Color: =clwhite;
form41.Panel5 .Font. Color.=clblack;

end
else if renk = 16 then
begin
form41.Panel4.Color:=clwhite;
form41.Panel4.Font.Color:=clblack;

end
else if renk = 17 then
begin
form41.Panel3. Color.=clwhite;
form41.Panel3 .Font. Color:=clblack;

end
else if renk = 18 then
begin
form41.Panel2. Color:=clwhite;
form41.Panel2.F ont. Color:=clblack;

end
else if renk = 19 then
renk=O;

end;

procedure TForm41.FormShow(Sender: TObject);
begin
renk.=O;
num.=O;
end;

procedure TForm41.LbSpeedButtonl Click(Sender: TObject);
begin
if(form41.Editl.Text <>")and (form41.Edit2.Text <>")then
begin
if num <> 3 then //Her Butona basihsmda sorguluyor. num 3 ise 91k1~1 saghyor.
begin //Ifkullanmamm nedeni butona basihyor olmasmdan. For dongusunde

daima doguye giriyor ve direkt progranu sonlandmyor. ..
FORM41.ADOQuery 1. Close;
form41.AD0Queryl.SQL.Text:='select * from users where

user name='+#3 9+form41.Edit 1. Text+#3 9+' and
password='+#39+form41.Edit2. Text+#39;

form41.ADOQueryl.Open; //Kullarnct adi ve sifre sorgulamasi yaprhyor..

247

if (form41.ADOQueryl['user_name'] = Null) and (form41.ADOQueryl['password'] =
Null) or (form41.ADOQueryl['user_name'] = Null) or
(form41.ADOQueryl['password'] = Null) then

begin
showmessage('WRONG USER NAME OR PASSWORD.PLEASE TRY AGAIN');
num:=num+ 1; //yanh~ girislerin sayismi hesaphyor. her seferinde 1 arttmyor.

END;
if(form41.AD0Queryl['user_name'] <> Null) and (form41.AD0Queryl['password']

<> Null) then
begin
if (form41.AD0Queryl['staff_state'] = 'WORKING') then
begin
if (form41.AD0Queryl['staff__pozition'] = 'MANAGER') then
begin
form3.SpeedButtonl2.Enabled:=false;
//form6.SpeedButtonl5.Enabled:=false;

end
else if (form41.AD0Queryl['staff__pozition'] = 'VETERINERIAN) then
begin
form2. SpeedButtonS .Enabled:=false;
form3. SpeedButton6.Enabled:=false;
form3. SpeedButton 12.Enabled:=false;
form6. SpeedButton7 .Enabled:=false;
//form6.SpeedButtonl5.Enabled:=false;
form2.SpeedButtonl.Enabled:=false;
form3. SpeedButton 14 .Enabled:=false;

end
else if (form41.AD0Queryl['staff__pozition'] = 'USER') then
begin
form2. SpeedButtonS .Enabled:=false;
form3. SpeedButton6.Enabled:=false;
form 1. SpeedButton2.Enabled:=false;
//form3.SpeedButton7.Enabled:=false;
form3.SpeedButtonl2.Enabled:=false;
//form6.SpeedButton7.Enabled:=false;
//form6.SpeedButton15.Enabled:=false;
form2. SpeedButtonl .Enabled:=false;
form3. SpeedButton 14 .Enabled:=false;
form7. SpeedButton l .Enabled:=false;
form7. SpeedButton2.Enabled:=false;
forml.SpeedButton4.Enabled:=false;
form3 .SpeedButtonl .Enabled:=false;
form3.SpeedButtonl4.Enabled:=false;
forml .SpeedButton6.Enabled:=false;

end
else if (form4 l. ADOQuery 1 ['staff __pozition'] = 'TEMPORARY') then
begin
forml .SpeedButtonl .Enabled:=false;
forml.SpeedButton2.Enabled:=false;
forml.SpeedButton4.Enabled:=false;

248

forml.SpeedButtonS.Enabled:=false;
forml. SpeedButton6.Enabled:=false;
form3. SpeedButton 1.Enabled:=false;
form3. SpeedButton7 .Enabled:=false;
form3.SpeedButton14.Enabled:=false;
form3. SpeedButton2.Enabled:=false;
form3.SpeedButton15.Enabled:=false;
form3. SpeedButtonS .Enabled:=false;
form3. SpeedButton3 .Enabled:=false;
form3.SpeedButton10.Enabled:=false;
form3. SpeedButton8.Enabled:=false;
form3. SpeedButton 11.Enabled:=false;
form3. SpeedButton6.Enabled:=false;
form3. SpeedButton 12.Enabled:=false;
form3. SpeedButton 13 .Enabled:=false;

end;
FORMl.SHOW;
FORM41.Hide;

end
else if (form41. ADOQuery 1 ['staff_ state'] = 'LEFT') then
begin
showmessage('YOU CAN NOT ENTER SYSTEM. YOUR ACCOUNT HAS

BLOCKED');
FORM41.ADOQuery2.Close;
FORM41.AD0Query2. SQL. Text:='insert into wrongpasswords

(wuser _name, w _password, try_ date, try_ time) values
('+#39+form41.Editl.Text+#39+','+#39+form41.Edit2.Text+#39+','+#39+datetostr(date
)+#3 9+', '+#3 9+timetostr(time)+#3 9+')';

form41.ADOQuery2.ExecSQL;
form41.Editl. Clear;
form41.Edit2. Clear;

end;
end;

end;
if num=3 then
BEGIN
FORM41.ADOQuery2.Close;
FORM41.ADOQuery2. SQL. Text:='insert into wrongpasswords

(wuser _ name, w _password, try_ date, try_ time) values
('+#39+form41.Edit 1. Text+#39+','+#39+form41.Edit2. Text+#39+', '+#39+datetostr(date
)+#3 9+', '+#39+timetostr(time)+#39+')';

form41.ADOQuery2.ExecSQL;
showmessage('YOU TRIED THREE TIMES TO ENTER SYSTEM.'+#13+'THE

APPLICATION PROGRAM WILL BE TERMINATE');
form41.Edit 1. Clear;
form41.Edit2. Clear;
FORM41. Close;

END;
end
else

249

showmessage('FILL THE USER NAME AND PASSWORD');
end;

procedure TForm41.FormCreate(Sender: TObject);
begin
dateseparator := '-'; II Burada tarih'in ayraclanm MySql database sisteminin
anlayacagi sekle donusturdum ...
shortdateformat := 'yyyylm/d';
end;

procedure TForm41.FormClose(Sender: TObject; var Action: TCloseAction);
begin
ifform9.CheckBoxl.Checked <> true then
AnimateWindow(Forml.Handle, 1000, AW _HOR_POSITIVE or
AW _HOR_ NEGATIVE or AW_ Hide);
end;

procedure TForm41.LbSpeedButton2Click(Sender: TObject);
begin
form41. Close;
end;

procedure TForm41.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
if key= 13 then
begin
Form41.LbSpeedButtonl. Click;
end;
if key= 27 then
form41. Close;

end;

procedure TForm41.Panel2Click(Sender: TObject);
begin
form41. Timer 1.Enabled:=true;
end;

procedure TForm41.Panel3Click(Sender: TObject);
begin
form41.Timerl .Enabled:=false;
end;

end.

VETAP PROJECT CODES

program vetap;

250

uses
Forms,
windows,
Unitl in 'Unitl.pas' {Forml },
Unit2 in 'Unit2.pas' {Forrn2},
Unit3 in 'Unit3.pas' {Form3},
Unit4 in 'Unit4.pas' {Form4},
Unit5 in 'Unit5.pas' {Form5},
Unit6 in 'Unit6.pas' {Form6},
Unit7 in 'Unit7.pas' {Form7},
Unit8 in 'Unit8.pas' {Form8},
Unit9 in 'Unit9.pas' {Form9},
UnitlO in 'UnitlO.pas' {FormlO},
Unitll in 'Unitll.pas' {Formll},
Unit12 in 'Unit12.pas' {Form12},
Unit13 in 'Unit13.pas' {Form13 },
Unit14 in 'Unit14.pas' {Form14},
Unit15 in 'Unit15.pas' {Form15},
Unit16 in 'Unit16.pas' {Form16},
Unit17 in 'Unit17.pas' {Form17},
Unit18 in 'Unit18.pas' {Form18},
Unit19 in 'Unit19.pas' {Form19},
Unit20 in 'Unit20.pas' {Forrn20},
Unit21 in 'Unit21.pas' {Forrn21 },
Unit22 in 'Unit22.pas' {Forrn22},
Unit23 in 'Unit23.pas' {Forrn23},
Unit24 in 'Unit24.pas' {Forrn24},
Unit25 in 'Unit25.pas' {Forrn25},
Unit26 in 'Unit26.pas' {Forrn26},
Unit27 in 'Unit27.pas' {Forrn27},
Unit28 in 'Unit28.pas' {Forrn28},
Unit29 in 'Unit29.pas' {Forrn29},
Unit30 in 'Unit30.pas' {Form30},
Unit31 in 'Unit31.pas' {Form31},
Unit32 in 'Unit32.pas' {Form32},
Unit33 in 'Unit33.pas' {Form33},
Unit34 in 'Unit34.pas' {Form34 },
Unit35 in 'Unit35.pas' {Form35},
Unit36 in 'Unit36.pas' {Form36},
Unit37 in 'Unit37.pas' {Form37},
Unit38 in 'Unit38.pas' {Form38},
Unit39 in 'Unit39.pas' {Form39},
Unit40 in 'Unit40.pas' {Form40},
Unit41 in 'Unit41.pas' {Form41 };

{$R *.res}

begin
Application.Initialize;

251

Application. CreateF orm(TF orm4 l, F orm4 l);
Application. CreateF orm(TF orm 1, Form 1);
Application. CreateF orm(TF orm2, F orm2);
Application.CreateForm(TForm3, Form3);
Application. CreateF orm(TF orm4, F orm4);
Application. CreateF orm(TF ormS, F orm5);
Application. CreateF orm(TF orm6, F orm6);
Application.CreateForm(TForm7, Form7);
Application. CreateF orm(TF orm9, F orm9);
Application.CreateForm(TFormlO, FormlO);
Application.CreateForm(TForml 1, Forml l);
Application.CreateForm(TForml2, Forml2);
Application.CreateForm(TForm13, Form13);
Application.CreateForm(TForml4, Forml4);
Application.CreateForm(TFormlS, FormlS);
Application. CreateF orm(TF orm 16, Form 16);
Application.CreateForm(TForml 7, Forml 7);
Application.CreateForm(TForml8, Forml8);
Application.CreateForm(TForml9, Forml9);
Application. CreateF orm(TF orm20, F orm20);
Application. CreateF orm(TF orm2 l, F orm2 l);
Application.CreateForm(TForm22, Form22);
Application. CreateF orm(TF orm23, F orm23);
Application. CreateF orm(TF orm24, F orm24);
Application. CreateF orm(TF orm25, F orm25);
Application. CreateF orm(TF orm26, F orm26);
Application.CreateForm(TForm27, Form27);
Application.CreateForm(TForm28, Form28);
Application.CreateForm(TForm29, Form29);
Application.CreateForm(TForm30, Form30);
Application.CreateForm(TForm3 l, Form3 l);
Application.CreateForm(TForm32, Form32);
Application.CreateForm(TForm33, Form33);
Application.CreateForm(TForm34, Form34);
Application. CreateF orm(TF orm3 5, F orm3 5);
Application.CreateForm(TForm36, Form36);
Application. CreateF orm(TF orm3 7, F orm3 7);
Application.CreateForm(TForm38, Form38);
Application.CreateForm(TForm39, Form39);
Application. CreateForm(TF orm40, Form40);
form8 :=Tform8. Create(Application);
form8.Show;
form8.Update;
sleep(3000);

form8.Hide;
form8.Free;
II Application. CreateF orm(TF orm8, F orm8);
Application.Run;

end.

252

DATABASE CREATION CODES

Host: localhost

Database: vetap

Table: 'animal'

CREA TE TABLE 'animal' (

"Animal jd' int(l2) NOT NULL auto_increment,

'Anlmalname' varchar(SO) NOT NULL default",

'Animalkind' varchar(SO) NOT NULL default",

'Animal race' varchar(SO) NOT NULL default",

"owner no' varchar(l2) NOT NULL default",

"Alsirthdate' date NOT NULL default '0000-00-00',

'Animal jsex' varchar(6) NOT NULL default",

'Animalcolor' varchar(20) NOT NULL default",

"Animal weight' varchar(lO) NOT NULL default",

'Animal jnark varchar(lOO) NOT NULL default",

'Animal_alergy' varchar(lOO) NOT NULL default",

'ACronic_medicine' varchar(lOO) NOT NULL default",

"Collarno' varchar(l5) NOT NULL default",

'Earning jto' varchar(l5) NOT NULL default",

'A_note' varchar(lOO) NOT NULL default",

'Lifestate' varchar(lO) NOT NULL default",

PRIMARY KEY C Animal jd)

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'appliedoperation'

CREATE TABLE "appliedoperation' (

'Aop _id' int(l2) NOT NULL auto _increment,

253

'Animal_id' int(l2) NOT NULL default 'O',

'Operation_name' varchar(50) NOT NULL default",

'Operation_date' date NOT NULL default '0000-00-00',

'Drugname' varchar(50) NOT NULL default",

'Applied_staff int(l2) NOT NULL default 'O',

'O_note' varchar(lOO) NOT NULL default",

PRIMARY KEY ('Aop_id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'customer'

CREATE TABLE 'customer' (

'Customer_id' int(12) NOT NULL auto_increment,

"Cname' varchar(50) NOT NULL default",

'Csurname' varchar(50) NOT NULL default",

'Homephone varchar(14) NOT NULL default",

'Mobilphone' varchar(14) NOT NULL default",

'Workphone' varchar(14) NOT NULL default",

'Fax' varchar(14) NOT NULL default",

'Address' varchar(IOO) NOT NULL default",

'City' varchar(50) NOT NULL default",

'Town' varchar(50) NOT NULL default",

'Country' varchar(50) NOT NULL default",

'Email' varchar(50) NOT NULL default",

'Web' varchar(SO) NOT NULL default",

'Recorddate' date NOT NULL default '0000-00-00',

'Recordtime' time NOT NULL default '00:00:00',

'C_note' varchar(IOO) NOT NULL default",

PRIMARY KEY ('Customer_id')

) TYPE=MyISAM;

254

Host: localhost

Database: vetap

Table: 'drugs'

CREATE TABLE 'drugs' (

'Drug jd int(12) NOT NULL auto_increment,

'Drugname' varchar(50) NOT NULL default",

'Drugduration' int(2) NOT NULL default 'O',

'Drug kind varchar(20) NOT NULL default",

PRIMARY KEY ('Drug_id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'illnesses'

CREATE TABLE 'illnesses' (

'ill_id' int(12) NOT NULL auto_increment,

'Animal jd' int(l2) NOT NULL default 'O',

'Protocol no' int(14) NOT NULL default 'O',

'Date' date NOT NULL default '0000-00-00',

'Illness' varchar(50) NOT NULL default",

'Treatment' varchar(lOO) NOT NULL default",

'Laboratory result' varchar(lOO) NOT NULL default",

'Applied_staff int(12) NOT NULL default 'O',

'i_note' varchar(lOO) NOT NULL default",

PRIMARY KEY ('ill_id')

) TYPE=MyISAM;

255

Host: localhost

Database: vetap

Table: 'illnesses'

CREATE TABLE 'illnesses' (

'ill_id' int(12) NOT NULL auto_increment,

'Animal jd' int(12) NOT NULL default 'O',

'Protocol no int(14) NOT NULL default 'O',

'Date' date NOT NULL default '0000-00-00',

'Illness' varchar(50) NOT NULL default",

'Treatment' varchar(lOO) NOT NULL default",

'Laboratory _result' varchar(l 00) NOT NULL default ",

'Applied_staff int(12) NOT NULL default 'O',

'i_note' varchar(lOO) NOT NULL default",

PRIMARY KEY ('ill_id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'ipdrug'

CREATE TABLE "ipdrug' (

'Ip_id' int(12) NOT NULL auto_increment,

'Animal_id' int(12) NOT NULL default 'O',

"Ipdrugname' varchar(50) NOT NULL default",

'Ip_ drugdate date NOT~ LJLL defauh '0000-00-00',

'Ip jiextdrugdate' date ~OT ~LJLL default '0000-00-00',

'Applied_staff im(12) ~OT NULL default 'O',

"Ip jirugnote' varchar(lOO) NOT NULL default",

P.Rr-.!ARY KEY (Tp jd)

256

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'medicinate'

CREATE TABLE 'medicinate' (

'Medicinate jd' int(12) NOT NULL auto_increment,

'Animal_id' int(12) NOT NULL default 'O',

'Drug' name' varchar(SO) NOT NULL default",

'Medicinatedate' date NOT NULL default '0000-00-00',

'Applied_staff int(12) NOT NULL default 'O',

'M_note' varchar(lOO) NOT NULL default",

PRIMARY KEY ('Medicinate_id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'opdrug'

CREATE TABLE "opdrug' (

'Op_id' int(12) NOT NULL auto_increment,

'Animal jd' int(12) NOT NULL default 'O',

'Op_drugname' varchar(SO) NOT NULL default",

'Op_ drugdate' date NOT NULL default '0000-00-00',

"Op nextdrugdate' date NOT NULL default '0000-00-00',

'Applied_staff int(12) NOT NULL default 'O',

'Op_drugnote' varchar(lOO) NOT NULL default",

PRIMARY KEY ('Op_id')

) TYPE=MyISAM;

257

Host: localhost

Database: vetap

Table: 'operations'

CREATE TABLE 'operations' (

'Operation jd' int(12) NOT NULL auto_increment,

'Operationname' varchar(50) NOT NULL default",

PRIMARY KEY ('Operation_id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'staff

CREATE TABLE 'staff (

'Staff_id' int(l2) NOT NULL auto_increment,

"Staff' name' varchar(50) NOT NULL default",

"Staff' surname' varchar(50) NOT NULL default",

'Staff _task' varchar(50) NOT NULL default",

'University' varchar(IOO) NOT NULL default",

"Gradestate' varchar(50) NOT NULL default",

'S_workstartdate' date NOT NULL default '0000-00-00',

'S _ birthdate' date NOT NULL default '0000-00-00',

'S _ TCidno' varchar(l 5) NOT NULL default ",

'S_homephone' varchar(l4) NOT NULL default",

'S _ mobilphone' varchar(l 4) NOT NULL default ",

'S_address' varchar(IOO) NOT NULL default",

'S_city' varchar(50) NOT NULL default",

'S_town' varchar(50) NOT NULL default",

'S _ country' varchar(50) NOT NULL default",

258

'S_email' varchar(SO) NOT NULL default",

'S_web' varchar(SO) NOT NULL default",

'S _leavingdate' date NOT NULL default '0000-00-00',

'S_note' varchar(lOO) NOT NULL default",

PRIMARY KEY (' Staff _id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'users'

CREATE TABLE 'users' (

'Username' varchar(SO) NOT NULL default",

'Password' varchar(20) NOT NULL default",

"Staff jd' int(12) NOT NULL default 'O',

'Staff _state' varchar(20) NOT NULL default ",

'Staff_pozition' varchar(SO) NOT NULL default",

PRIMARY KEY ('User_name')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'vaccinate'

CREATE TABLE 'vaccinate' (

'Animal jd' int(12) NOT NULL default 'O',

'Vaccinename' varchar(SO) NOT NULL default",

'Vaccinatedate' date NOT NULL default '0000-00-00',

'Next_vaccinatedate' date NOT NULL default '0000-00-00',

"Vaccine jserialno varchar(20) NOT NULL default",

'Vaccineproducer' varchar(SO) NOT NULL default",

'Applied_staff int(12) NOT NULL default 'O',

259

'V _note' varchar(lOO) NOT NULL default",

PRIMARY KEY (' Animal jd,' Vaccine_ name',' Vaccinate_ date',' Vaccine_ serialno)

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'vaccines'

CREATE TABLE 'vaccines' (

'Vaccine jd' int(l2) NOT NULL auto_increment,

'Vaccine name' varchar(SO) NOT NULL default",

'Vaccineduration' int(2) NOT NULL default 'O',

PRIMARY KEY ('Vaccine_id')

) TYPE=MyISAM;

Host: localhost

Database: vetap

Table: 'wrongpasswords'

CREATE TABLE 'wrongpasswords' (

'Wuser jiarne' varchar(SO) NOT NULL default",

'W _password' varchar(SO) NOT NULL default ",

"Iry date' date NOT NULL default '0000-00-00',

"Trytime' time NOT NULL default '00:00:00'

) TYPE=MyISAM;

260

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Tables
	Table 1

	Page 3
	Titles
	16

	Tables
	Table 1

	Page 4
	Titles
	31

	Tables
	Table 1

	Page 5
	Tables
	Table 1

	Page 6
	Tables
	Table 1

	Page 7
	Titles
	ACKNOWLEDGMENT

	Page 8
	Titles
	ABSTRACT

	Page 9
	Titles
	INTRODUCTION

	Page 10
	Titles
	CHAPTER 1

	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Images
	Image 1

	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1

	Page 38
	Images
	Image 1

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Titles
	CHAPTER2
	DATABASE

	Images
	Image 1

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Titles
	CHAPTER3

	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Tables
	Table 1

	Page 55
	Images
	Image 1

	Page 56
	Titles
	47
	# To start the MySQL Monitor, enter:
	The MySQL service was started successfully.
	The MySql service is starting.
	# To install mysql as a service (Windows 2000), enter:
	C: \mysql\bin> mysqld-nt --install
	C:\>NET START MySQL C:\>NET STOP MySQL
	C:\>cd \mysql
	C: \mysql>bin\mysql
	Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id
	Now you can start and stop mysqld as follows:
	You should see the below print messages:
	# To install mysqld as a standalone program, enter:
	Make sure you're in the right directory (C:\>cd \mysql\bin),
	C: \mysql\bin> mysqld-max --standalone

	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Tables
	Table 1

	Page 3
	Titles
	16

	Tables
	Table 1

	Page 4
	Titles
	31

	Tables
	Table 1

	Page 5
	Tables
	Table 1

	Page 6
	Tables
	Table 1

	Page 7
	Titles
	ACKNOWLEDGMENT

	Page 8
	Titles
	ABSTRACT

	Page 9
	Titles
	INTRODUCTION

	Page 10
	Titles
	CHAPTER 1

	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Images
	Image 1

	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1

	Page 38
	Images
	Image 1

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Titles
	CHAPTER2
	DATABASE

	Images
	Image 1

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Titles
	CHAPTER3

	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Tables
	Table 1

	Page 55
	Images
	Image 1

	Page 56
	Titles
	47
	# To start the MySQL Monitor, enter:
	The MySQL service was started successfully.
	The MySql service is starting.
	# To install mysql as a service (Windows 2000), enter:
	C: \mysql\bin> mysqld-nt --install
	C:\>NET START MySQL C:\>NET STOP MySQL
	C:\>cd \mysql
	C: \mysql>bin\mysql
	Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id
	Now you can start and stop mysqld as follows:
	You should see the below print messages:
	# To install mysqld as a standalone program, enter:
	Make sure you're in the right directory (C:\>cd \mysql\bin),
	C: \mysql\bin> mysqld-max --standalone

	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Titles
	->
	·:.~ ·-~
	'"'

	Images
	Image 1
	Image 2
	Image 3

	Page 62
	Images
	Image 1

	Page 63
	Titles
	CHAPTER4
	USER MANUAL

	Images
	Image 1
	Image 2
	Image 3

	Page 64
	Titles
	COMSOFTAND SCIENCES
	*

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 65
	Titles
	ANDC
	ROU
	II ""i." I
	' (9 !

	Images
	Image 1
	Image 2

	Page 66
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 67
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 68
	Titles
	.c
	.[

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 69
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 71
	Titles
	~AND
	l\

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 72
	Titles
	AOO""I I
	-·------...........,.,.~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 73
	Titles
	N0ffŁr
	__ _____.
	""""' '~-------'
	'"'""''"!-- ~·· l ~-------'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 74
	Images
	Image 1
	Image 2
	Image 3

	Page 75
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 76
	Titles
	NAM~·
	c= _

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 77
	Titles
	ANIMAL NAME: ;dogo

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 78
	Titles
	'
	,~,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 79
	Titles
	J

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 80
	Titles
	It

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 81
	Titles
	PE,RFORNIING DATE:[05.01.2007

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 82
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 83
	Titles
	r ~. ifil ~ ci, wmet I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 84
	Titles
	r.wla,jrm r.Jasooerrn
	75
	Figure 4.24
	t'.lfflNITHlNS
	I .ŁŁŁ. ~ II~ 0
	- -~.. ·~ ::ro ~gel~,~~
	'fil Mw,w.,;;
	~ e::i

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 85
	Titles
	CONCLUSION

	Images
	Image 1

	Page 86
	Titles
	APPENDIX
	VETARINERIAN APPLICATION PROGRAM SOURCE CODE

	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Images
	Image 1

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1

	Page 92
	Images
	Image 1

	Page 93
	Images
	Image 1

	Page 94
	Images
	Image 1

	Page 95
	Images
	Image 1

	Page 96
	Images
	Image 1

	Page 97
	Images
	Image 1

	Page 98
	Images
	Image 1

	Page 99
	Images
	Image 1

	Page 100
	Images
	Image 1

	Page 101
	Images
	Image 1

	Page 102
	Images
	Image 1

	Page 103
	Images
	Image 1

	Page 104
	Images
	Image 1

	Page 105
	Images
	Image 1

	Page 106
	Images
	Image 1

	Page 107
	Images
	Image 1

	Page 108
	Images
	Image 1

	Page 109
	Images
	Image 1

	Page 110
	Images
	Image 1

	Page 111
	Images
	Image 1

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Tables
	Table 1

	Page 3
	Titles
	16

	Tables
	Table 1

	Page 4
	Titles
	31

	Tables
	Table 1

	Page 5
	Tables
	Table 1

	Page 6
	Tables
	Table 1

	Page 7
	Titles
	ACKNOWLEDGMENT

	Page 8
	Titles
	ABSTRACT

	Page 9
	Titles
	INTRODUCTION

	Page 10
	Titles
	CHAPTER 1

	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Images
	Image 1

	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1

	Page 38
	Images
	Image 1

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Titles
	CHAPTER2
	DATABASE

	Images
	Image 1

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Titles
	CHAPTER3

	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Tables
	Table 1

	Page 55
	Images
	Image 1

	Page 56
	Titles
	47
	# To start the MySQL Monitor, enter:
	The MySQL service was started successfully.
	The MySql service is starting.
	# To install mysql as a service (Windows 2000), enter:
	C: \mysql\bin> mysqld-nt --install
	C:\>NET START MySQL C:\>NET STOP MySQL
	C:\>cd \mysql
	C: \mysql>bin\mysql
	Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id
	Now you can start and stop mysqld as follows:
	You should see the below print messages:
	# To install mysqld as a standalone program, enter:
	Make sure you're in the right directory (C:\>cd \mysql\bin),
	C: \mysql\bin> mysqld-max --standalone

	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Titles
	->
	·:.~ ·-~
	'"'

	Images
	Image 1
	Image 2
	Image 3

	Page 62
	Images
	Image 1

	Page 63
	Titles
	CHAPTER4
	USER MANUAL

	Images
	Image 1
	Image 2
	Image 3

	Page 64
	Titles
	COMSOFTAND SCIENCES
	*

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 65
	Titles
	ANDC
	ROU
	II ""i." I
	' (9 !

	Images
	Image 1
	Image 2

	Page 66
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 67
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 68
	Titles
	.c
	.[

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 69
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 71
	Titles
	~AND
	l\

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 72
	Titles
	AOO""I I
	-·------...........,.,.~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 73
	Titles
	N0ffŁr
	__ _____.
	""""' '~-------'
	'"'""''"!-- ~·· l ~-------'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 74
	Images
	Image 1
	Image 2
	Image 3

	Page 75
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 76
	Titles
	NAM~·
	c= _

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 77
	Titles
	ANIMAL NAME: ;dogo

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 78
	Titles
	'
	,~,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 79
	Titles
	J

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 80
	Titles
	It

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 81
	Titles
	PE,RFORNIING DATE:[05.01.2007

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 82
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 83
	Titles
	r ~. ifil ~ ci, wmet I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 84
	Titles
	r.wla,jrm r.Jasooerrn
	75
	Figure 4.24
	t'.lfflNITHlNS
	I .ŁŁŁ. ~ II~ 0
	- -~.. ·~ ::ro ~gel~,~~
	'fil Mw,w.,;;
	~ e::i

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 85
	Titles
	CONCLUSION

	Images
	Image 1

	Page 86
	Titles
	APPENDIX
	VETARINERIAN APPLICATION PROGRAM SOURCE CODE

	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Images
	Image 1

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1

	Page 92
	Images
	Image 1

	Page 93
	Images
	Image 1

	Page 94
	Images
	Image 1

	Page 95
	Images
	Image 1

	Page 96
	Images
	Image 1

	Page 97
	Images
	Image 1

	Page 98
	Images
	Image 1

	Page 99
	Images
	Image 1

	Page 100
	Images
	Image 1

	Page 101
	Images
	Image 1

	Page 102
	Images
	Image 1

	Page 103
	Images
	Image 1

	Page 104
	Images
	Image 1

	Page 105
	Images
	Image 1

	Page 106
	Images
	Image 1

	Page 107
	Images
	Image 1

	Page 108
	Images
	Image 1

	Page 109
	Images
	Image 1

	Page 110
	Images
	Image 1

	Page 111
	Images
	Image 1

	Page 112
	Images
	Image 1

	Page 113
	Images
	Image 1

	Page 114
	Images
	Image 1

	Page 115
	Images
	Image 1

	Page 116
	Images
	Image 1

	Page 117
	Images
	Image 1

	Page 118
	Images
	Image 1

	Page 119
	Images
	Image 1

	Page 120
	Images
	Image 1

	Page 121
	Images
	Image 1

	Page 122
	Images
	Image 1

	Page 123
	Images
	Image 1

	Page 124
	Images
	Image 1

	Page 125
	Images
	Image 1

	Page 126
	Images
	Image 1

	Page 127
	Images
	Image 1

	Page 128
	Images
	Image 1

	Page 129
	Images
	Image 1

	Page 130
	Images
	Image 1

	Page 131
	Images
	Image 1

	Page 132
	Images
	Image 1

	Page 133
	Images
	Image 1

	Page 134
	Images
	Image 1

	Page 135
	Images
	Image 1

	Page 136
	Images
	Image 1

	Page 137
	Images
	Image 1

	Page 138
	Images
	Image 1

	Page 139
	Images
	Image 1

	Page 140
	Images
	Image 1

	Page 141
	Images
	Image 1

	Page 142
	Images
	Image 1

	Page 143
	Titles
	end;
	end;
	TU AHO;

	Images
	Image 1

	Page 144
	Images
	Image 1

	Page 145
	Images
	Image 1

	Page 146
	Images
	Image 1

	Page 147
	Images
	Image 1

	Page 148
	Titles
	end;

	Images
	Image 1

	Page 149
	Images
	Image 1

	Page 150
	Titles
	END·
	'

	Images
	Image 1

	Page 151
	Images
	Image 1

	Page 152
	Titles
	end;
	end;

	Images
	Image 1

	Page 153
	Images
	Image 1

	Page 154
	Titles
	'

	Images
	Image 1

	Page 155
	Titles
	END
	dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

	Images
	Image 1

	Page 156
	Titles
	'
	aid·
	,

	Images
	Image 1

	Page 157
	Images
	Image 1

	Page 158
	Images
	Image 1

	Page 159
	Images
	Image 1

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Tables
	Table 1

	Page 3
	Titles
	16

	Tables
	Table 1

	Page 4
	Titles
	31

	Tables
	Table 1

	Page 5
	Tables
	Table 1

	Page 6
	Tables
	Table 1

	Page 7
	Titles
	ACKNOWLEDGMENT

	Page 8
	Titles
	ABSTRACT

	Page 9
	Titles
	INTRODUCTION

	Page 10
	Titles
	CHAPTER 1

	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Images
	Image 1

	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1

	Page 38
	Images
	Image 1

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Titles
	CHAPTER2
	DATABASE

	Images
	Image 1

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Titles
	CHAPTER3

	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Tables
	Table 1

	Page 55
	Images
	Image 1

	Page 56
	Titles
	47
	# To start the MySQL Monitor, enter:
	The MySQL service was started successfully.
	The MySql service is starting.
	# To install mysql as a service (Windows 2000), enter:
	C: \mysql\bin> mysqld-nt --install
	C:\>NET START MySQL C:\>NET STOP MySQL
	C:\>cd \mysql
	C: \mysql>bin\mysql
	Welcome to the MySQL Monitor. Commands end with; or \g. Your MySQL connection id
	Now you can start and stop mysqld as follows:
	You should see the below print messages:
	# To install mysqld as a standalone program, enter:
	Make sure you're in the right directory (C:\>cd \mysql\bin),
	C: \mysql\bin> mysqld-max --standalone

	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Titles
	->
	·:.~ ·-~
	'"'

	Images
	Image 1
	Image 2
	Image 3

	Page 62
	Images
	Image 1

	Page 63
	Titles
	CHAPTER4
	USER MANUAL

	Images
	Image 1
	Image 2
	Image 3

	Page 64
	Titles
	COMSOFTAND SCIENCES
	*

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 65
	Titles
	ANDC
	ROU
	II ""i." I
	' (9 !

	Images
	Image 1
	Image 2

	Page 66
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 67
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 68
	Titles
	.c
	.[

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 69
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 71
	Titles
	~AND
	l\

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 72
	Titles
	AOO""I I
	-·------...........,.,.~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 73
	Titles
	N0ffŁr
	__ _____.
	""""' '~-------'
	'"'""''"!-- ~·· l ~-------'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 74
	Images
	Image 1
	Image 2
	Image 3

	Page 75
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 76
	Titles
	NAM~·
	c= _

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 77
	Titles
	ANIMAL NAME: ;dogo

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 78
	Titles
	'
	,~,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 79
	Titles
	J

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 80
	Titles
	It

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 81
	Titles
	PE,RFORNIING DATE:[05.01.2007

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 82
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 83
	Titles
	r ~. ifil ~ ci, wmet I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 84
	Titles
	r.wla,jrm r.Jasooerrn
	75
	Figure 4.24
	t'.lfflNITHlNS
	I .ŁŁŁ. ~ II~ 0
	- -~.. ·~ ::ro ~gel~,~~
	'fil Mw,w.,;;
	~ e::i

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 85
	Titles
	CONCLUSION

	Images
	Image 1

	Page 86
	Titles
	APPENDIX
	VETARINERIAN APPLICATION PROGRAM SOURCE CODE

	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Images
	Image 1

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1

	Page 92
	Images
	Image 1

	Page 93
	Images
	Image 1

	Page 94
	Images
	Image 1

	Page 95
	Images
	Image 1

	Page 96
	Images
	Image 1

	Page 97
	Images
	Image 1

	Page 98
	Images
	Image 1

	Page 99
	Images
	Image 1

	Page 100
	Images
	Image 1

	Page 101
	Images
	Image 1

	Page 102
	Images
	Image 1

	Page 103
	Images
	Image 1

	Page 104
	Images
	Image 1

	Page 105
	Images
	Image 1

	Page 106
	Images
	Image 1

	Page 107
	Images
	Image 1

	Page 108
	Images
	Image 1

	Page 109
	Images
	Image 1

	Page 110
	Images
	Image 1

	Page 111
	Images
	Image 1

	Page 112
	Images
	Image 1

	Page 113
	Images
	Image 1

	Page 114
	Images
	Image 1

	Page 115
	Images
	Image 1

	Page 116
	Images
	Image 1

	Page 117
	Images
	Image 1

	Page 118
	Images
	Image 1

	Page 119
	Images
	Image 1

	Page 120
	Images
	Image 1

	Page 121
	Images
	Image 1

	Page 122
	Images
	Image 1

	Page 123
	Images
	Image 1

	Page 124
	Images
	Image 1

	Page 125
	Images
	Image 1

	Page 126
	Images
	Image 1

	Page 127
	Images
	Image 1

	Page 128
	Images
	Image 1

	Page 129
	Images
	Image 1

	Page 130
	Images
	Image 1

	Page 131
	Images
	Image 1

	Page 132
	Images
	Image 1

	Page 133
	Images
	Image 1

	Page 134
	Images
	Image 1

	Page 135
	Images
	Image 1

	Page 136
	Images
	Image 1

	Page 137
	Images
	Image 1

	Page 138
	Images
	Image 1

	Page 139
	Images
	Image 1

	Page 140
	Images
	Image 1

	Page 141
	Images
	Image 1

	Page 142
	Images
	Image 1

	Page 143
	Titles
	end;
	end;
	TU AHO;

	Images
	Image 1

	Page 144
	Images
	Image 1

	Page 145
	Images
	Image 1

	Page 146
	Images
	Image 1

	Page 147
	Images
	Image 1

	Page 148
	Titles
	end;

	Images
	Image 1

	Page 149
	Images
	Image 1

	Page 150
	Titles
	END·
	'

	Images
	Image 1

	Page 151
	Images
	Image 1

	Page 152
	Titles
	end;
	end;

	Images
	Image 1

	Page 153
	Images
	Image 1

	Page 154
	Titles
	'

	Images
	Image 1

	Page 155
	Titles
	END
	dateseparator := '-'; II Burada tarih'in ayraclaryny MySql database sisteminin

	Images
	Image 1

	Page 156
	Titles
	'
	aid·
	,

	Images
	Image 1

	Page 157
	Images
	Image 1

	Page 158
	Images
	Image 1

	Page 159
	Images
	Image 1

	Page 160
	Images
	Image 1

	Page 161
	Images
	Image 1

	Page 162
	Images
	Image 1

	Page 163
	Images
	Image 1

	Page 164
	Images
	Image 1

	Page 165
	Images
	Image 1

	Page 166
	Images
	Image 1

	Page 167
	Images
	Image 1

	Page 168
	Images
	Image 1

	Page 169
	Images
	Image 1

	Page 170
	Images
	Image 1

	Page 171
	Images
	Image 1

	Page 172
	Images
	Image 1

	Page 173
	Images
	Image 1

	Page 174
	Images
	Image 1

	Page 175
	Images
	Image 1

	Page 176
	Images
	Image 1

	Page 177
	Images
	Image 1

	Page 178
	Images
	Image 1

	Page 179
	Images
	Image 1

	Page 180
	Images
	Image 1

	Page 181
	Images
	Image 1

	Page 182
	Titles
	~~~~~" 

	Images
	Image 1


	Page 183
	Images
	Image 1


	Page 184
	Images
	Image 1


	Page 185
	Images
	Image 1


	Page 186
	Images
	Image 1


	Page 187
	Images
	Image 1


	Page 188
	Images
	Image 1


	Page 189
	Images
	Image 1


	Page 190
	Images
	Image 1


	Page 191
	Images
	Image 1


	Page 192
	Images
	Image 1


	Page 193
	Images
	Image 1


	Page 194
	Images
	Image 1


	Page 195
	Images
	Image 1


	Page 196
	Images
	Image 1


	Page 197
	Images
	Image 1


	Page 198
	Images
	Image 1


	Page 199
	Images
	Image 1


	Page 200
	Images
	Image 1


	Page 201
	Images
	Image 1


	Page 202
	Images
	Image 1


	Page 203
	Images
	Image 1


	Page 204
	Images
	Image 1


	Page 205
	Images
	Image 1


	Page 206
	Titles
	197 

	Images
	Image 1


	Page 207
	Images
	Image 1


	Page 208
	Images
	Image 1


	Page 209
	Images
	Image 1


	Page 210
	Images
	Image 1


	Page 211
	Images
	Image 1


	Page 212
	Images
	Image 1


	Page 213
	Images
	Image 1


	Page 214
	Images
	Image 1


	Page 215
	Titles
	form29 .A...DOQuery 1. Open; 

	Images
	Image 1


	Page 216
	Images
	Image 1


	Page 217
	Images
	Image 1


	Page 218
	Images
	Image 1
	Image 2


	Page 219
	Images
	Image 1


	Page 220
	Images
	Image 1


	Page 221
	Images
	Image 1


	Page 222
	Titles
	{$R * .. dfm} 

	Images
	Image 1


	Page 223
	Titles
	unit Um02; 

	Images
	Image 1


	Page 224
	Images
	Image 1


	Page 225
	Images
	Image 1


	Page 226
	Images
	Image 1


	Page 227
	Images
	Image 1


	Page 228
	Images
	Image 1


	Page 229
	Images
	Image 1


	Page 230
	Images
	Image 1


	Page 231
	Images
	Image 1


	Page 232
	Images
	Image 1


	Page 233
	Images
	Image 1


	Page 234
	Images
	Image 1


	Page 235
	Images
	Image 1


	Page 236
	Images
	Image 1


	Page 237
	Images
	Image 1


	Page 238
	Images
	Image 1


	Page 239
	Images
	Image 1


	Page 240
	Images
	Image 1


	Page 241
	Images
	Image 1


	Page 242
	Images
	Image 1


	Page 243
	Images
	Image 1
	Image 2


	Page 244
	Images
	Image 1


	Page 245
	Images
	Image 1


	Page 246
	Images
	Image 1
	Image 2


	Page 247
	Images
	Image 1


	Page 248
	Images
	Image 1


	Page 249
	Images
	Image 1


	Page 250
	Images
	Image 1


	Page 251
	Images
	Image 1


	Page 252
	Images
	Image 1
	Image 2


	Page 253
	Images
	Image 1


	Page 254
	Images
	Image 1


	Page 255
	Images
	Image 1


	Page 256
	Images
	Image 1


	Page 257
	Images
	Image 1


	Page 258
	Images
	Image 1


	Page 259
	Images
	Image 1


	Page 260
	Images
	Image 1
	Image 2


	Page 261
	Images
	Image 1
	Image 2


	Page 262
	Images
	Image 1
	Image 2


	Page 263
	Images
	Image 1
	Image 2
	Image 3


	Page 264
	Images
	Image 1


	Page 265
	Images
	Image 1


	Page 266
	Images
	Image 1


	Page 267
	Images
	Image 1
	Image 2
	Image 3


	Page 268
	Images
	Image 1


	Page 269
	Images
	Image 1
	Image 2



