NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Database System for aiCpmputer Part Sales

Compal)y

Graduation Project

CQM 400

Student: Muhammad Rabyan Ghayas

Supervisor: Assist. Prof. Dr. Firudin Muradov

Nicosia .., 2001



ACKNOWLED~MENTS

So very many People to thank! It's pretty hard to figure out where to start, so here it

goes..
"First, I would like t6 thattk my Supervisor Assist.'Pfof. Dr. Fitudin Muradov for his

invaluable advice and beliefin:itty work.

Second,fwcfiild']iketo thank my family for theirtéritfiines support and for always

encouraging me especially i.1fthis project

Finally, | would like'td thank my friends Malik..& KK for their outmost support, advice

arid for guiding me in the making of this project.



ABSTRACT

Data, gathered around us as a collection of facts, is of no use unless it is organized and
represented 1N some meaningful form. Data represented in some meaningful form like,
tables, charts, or graphs become information, which can be easily processed. The collection
of data, usually refereed t o as the database, contains information about one particular
enterprise. These days database are used by a variety of users and organizations, which are
important tools in>dataprocessing DBMS, are designed to manage large bodies of database
information.

This project has asits goal to develop software, processing information about activities of a
computer-part sales company. Software developed in this project contains both employee
information, aud<uuférrri.ation associated with sales and purchase of computer parts. I wish

to develop this software for processing all activities ofthe company.



TABLE OF CONTENTS

ACKNOWLEDGMENT |'
ABSTRACT il
TABLE OF CONTENTS iii
LIST OF ABBREVIATIONS viii

INTRODUCTION 1

CHAPTER ONEfINTRODUCTION TO DBMS 2

1.1 Database 2

1.2 WhatMakes Up a DBMS 3

1.3 Database Management System 3

1.4 Data Model 4

1.4.1 Relational Model 5

1.4.2 Network Model 5

1.4.3 Hierarchal Model 5

1.5  Advantages of DBMS 5

1.6 The3 Level Architecture 6

1.6.1 External Level 6

1.6.2 Conceptual Level 7

1.63 Internal Level 7

1.7  Properties of DBMS Data 7

1.8 Who uses a DBMS 8

1.9 Hardware for a DBMS 8

1.10 Database Security 8

1.11 How Data is Stored 9

1.12  Definition of Entity 9




1.13

CHAPTER

2.1
2.2

2.3
2.4

2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
CHAPTER

3.1
3.2

Database Application Life Cycle

1.13.1 Database planning
1.13.2 System Definition
1.13.3 Requirements Collection and Analysis

1.13.4 Database Design
TWO: RELATIONAL DATABASE

MANAGEMENT SYSTEM
What is an RDBMS?

The relational Database Model

2.2.1 Hierarchical Model; NetwoflfModel
2.22 Relational Model
RDBMS Components

Relational Database Management Issues
2:4.1 --Security

Countermeasures (Computer Based)
2.5.1 Authorization

Countermeasures (Cont)

Read, Write & Modify Access Controls

Countermeasures (cont)

CA@termeasures(cont)

Associated Procedures

Non-Computer Counter Measures

Privacy in Oracle

Integrity

THREE: A PATTERN LANGUAGE FOR
OBJECT- RDBMS INTEGRATION

The Static Patterns

Tables Design Time

v

10

"
12
12
13

15
15
16

16
16
17

17
17
18
18
18

18
18
19
19
19
20
20

22
22
22



3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11

3.12

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Representing Objects as Tables

Representing Object Relationships as Tables
Representing Inheritance in a Relation Database
Representing Collections in a Relational Database
Object Identifier

Foreign-Key reference

Static Patterns (Object Side)

Foreign Key Versus Direct Reference

A Design Patterns Experience Report
3.1 1.1 The patterns

3.11.2 State

3.11.3 Memento

3.11.4 Composite

3.11.5\Mediatoand Adapter
OtherPatterns

3.12.1. Erroras Objects
3.12.2 Broker

The Type Object Pattern

Structure

The Disadvantages ofthe Type Object Pattern
Otherlssues

Video Store-Nested Type Objects

Video Store-Dynamic Type Change

Video Store-Independent Sub classing
KnowUses

Sample Type and Samples

Related Patterns

322.1 Type Objectvs. Strategy and state

23
24
25
27
28
29
30
30
32

33
33
36
37
39
40

40
41

41
45
48
49
52
53
53
58
59
60
60



3222 Type Object and reflective Architecture 61

3.22.3 Type Object vs. Bridge 61
3.22.4 Type Object vs. decorator 61
3.22.5 Type Object vs. Flyweight 61

3.23 Pattern Language for Relational Database and Smalltalk 62
3.24 What motivated us to write a Pattern Language? 62
'3.25 How did we find our Patterns? 63

3.26 The Patterns of Crossing Chasms-architectural Patterns 65

3.27 Pattern: Four-layer Architecture 65
3.28 Pattern: Table Design Time 66
3.29 Pattern: Representing Object as table 67
3.30 Pattern: Object Identifier 67
3.31 Pattern: Foreign Key Reference 68
3.32 Pattern: RepresentingCollections 68
3.33 Dynamic Patterns 69
3.34 Pattern: Broker 69
3.35 Pattern: Object Metadata 70
3.36  Pattern: Query Object 70
3.37 Pattern: Client Synchronization 72
3.38 Pattern: Cache Management 73
3.39 Crossing Chasmas 14
3.40 Pattern name: Three- Tier Architecture 76
3.41 Pattern: name: Phase-In Tiers 79
3.42 Pattern name: Trim and Fit Client 80
CHAPTER FOUR: DATABASE OPTION OF THE CO'r'APUTER
SALESPATS COMPANY 83

4.1 BasicInformationAboutTables, Form,

vi




Reports & Queries 83

4.1.1 Tables 83
4.1.2  Forms &4
4.1.3  Reports 85
4.1.4  Queries 86
4.2 Description ofthe Software 87
4.3 Main Form Page 88
4.3.1  Company ID and Name Information 88
4.3.2  Product ID and Name Information ]8
4.3.3  Purchase Detail 89
4.3.4  Order Information 89
4.3.5 Voucher Detail 90
4.3.6  Customer Information 91
4.3.7  Employee Information 91
4.4 Main Form Page for Reports 92
CONCLUSION 103

REFERENCES 104

vii




LIST OF ABBREVIATIONS

DBMS Data Base ManagementSystem

RDBMS Relational Data Base Management System
GUI Graphic User Interface

SQL Structure Query Language

DDL Data Definition Language

DCL Data Control Language

DML Data Manipulation Language

1/0 Input/Output

IT Infoimation Technology

ISO International Standard Organization

ANSI American National Standards Organization
SEQUEL Structured English Query Language

CPU Central Processing Unit

OLAP On Line Analytical Processing

CGI Common Gateway Interface

ER Entity-Relation

VB Visual Basic

OooP Object Oriented Programming

viil




INTRODUCTION

A Database management system (DBMS) is a collection of programs that enable users
to create and maintain a database.

A DBMS is a computerized record-keeping system that stores, maintains and provides
access to information. A database system involves four major components DATA,
HARDWARE, SOFTWARE, USERS. DBMS are used by any reasonably self-
contained commercial, scientific, technical <or other organization from a single
individual to a large company and a DBMS may be used for many reasons. The
objective of this project was to design software fora company, which deals with the
computer sales and purchase, so fully qualified software. has been made, and at the
making of the software two companies, was visited to understand the. requirements. And
the problem these types of company may have. The Software is .fully capable to store
any computer parts with the manufacture name. For the simplicity purpose a
manufacture ID and Product ID has been generated, the first digit consists of
manufacture name and the rest of it contains the product name. How ever both (ID and
NAME) has been entered in the form. As for the mentioned problem from one of the
company, employee information is also entered in the software, so that the complete
information about the Company employee can also be maintained. Voucher is also
design to minimize the handwork The project consists of introduction, 4 chapter and
conclusion.

Chapter One: Introduction to DBMS contains brief information about the database, data
model, advantages of database the architecture ofthe DBMS, properties of DBMS data
and further different information related to DBMS.

Chapter TWO: Relational Database Management System describes that what is
RDBMS , components of RDBMS and the Issues.

Chapter Three: Describes pattern language for Object - RDBMS

Chapter Four: Help Option, contain the help information about the software which also
describe the tables, form, quires, reports in general, and how to use the software option
which contain the pictures of'the software for the helpdesk.

Finally, the conclusion section presents the knowledge gain during the making of the

project.



Chapter 1

INTRODUCTION TO DBMS
1.1 DATABASE

In a typical file.processing environment, each user area, such as payroll, personnel, and
the speakers' bureau, has it own collection of files and programs that access files. Since
there is usually overlap of data between user areas, there is redinidancy in the system.

The address of a faculty member can occur ifrini1n1yp1a~es,Le. whilethis is certainly
wasteful, trying to produce reports or respond t0 qUCI'iCS thinfspan user areas can be
extremely difficult. These problems lead to the id~1. 6:fa poold:fdatii.; Of data.base, rather

than separate collections of individual files.

Payroll Payroll files

Program >

Personnel Personnel

Program Files

Speakers

Bureau TIEEE . | Speakers
Bureau Files

Figure 1.1 Database



1.2 WHAT MAKES UP A DBMS?

A DBMS is a computerized record-keeping system that stores, maintains and provides
access to information. A database system involves four major components, which are as
follows.

1. DATA

2. HARDWARE

3. SOFTWARE

4. USERS
DBMS are used by any reasonably self-contained corriinercial, scientific, technical or
other organization from a single individual t0 a.large company and a DBMS may be
used for many reasons. Data itself consists of individual entities, in addition to which
there will be relationships between entity types linking them together. Given an
enterprise with a nebulously defined collection of data, the mapping of this collection
onto the real DBMS is done based on a data model. Various architectures ex.its for
databases and various models have been purposed including the relational, network, and

hierarchic models.

CJ 5 =k
Appllcatlon : : : End-users

pragnims

Figure: 1.2 [web_pagecsl 11 notesDBMS.htm]

1.3 DATABASE MANAGEMENT SYSTEM

Fortunately, software package called database management system can do the job of
manipulating actual database for us. A database management system (or DBMS), at its
simplest, is a software product through which users interact with a database. The actual

manipulating of the underlying database structures is handled by the DBMS.




Payroll

Program
Personnel DATABASE
Program DEMS
o
|
Speakers
Bureau

Figure: 1.3 Database Management

1.4 DATAMODEL

The model of data that they follow characterizes database management systems. A Data
model has two components-structure and operations. The structure refers to the way the
system structures data or, at least, the way the users of the DBMS feel that the data is
structured. The operations re the facilities given to the users of the DBMS to manipulate
data within the database. What is crucial is the way things feel to the user, it does not
matter how the designers of the DBMS choose o implement these facilities behind the
scenes.
There are three models, or categories, for the vast majority of DBMS' s :

1 Relational model

* Network model

e Hierarchical model.



14.1 Relational Model
The user as begin just a collection of tables perceives a relational model database.
Formally, these tables are called relations, and this is where the relational model gets its

name. Relationships are implanted through common columns in two or more tables.

1.4.2  Network Model

The user as a collection of record types. an relationships between these record types
perceive a network model database such a structure is a network, and it is form this that
the model takes its name. In contrast to the relational model, in which relationships were
implicit (being derived from matching columns in the tables), in the networks model the

relationships are explicit (presented as part of the structure itself).

[.4.3 Hierarchal Model

A user as a collection of hierarchies (or trees) perceives a hierarchies model database. A
hierarchy is really a network with am added restriction; no box can have more than one
arrow entering the box. (it doesn't matter how'many arrows leave a box). A hierarchy is

thus a more restrictive structure than a network.

1.5 ADVANTAGES OF DBMS

The main advantages of using a DBMS is that the formalism of the model of data
unde£1ying the DBMS is imposed upon the data set to yield a logical and structured
erganization of the data. Given a fuzzy, real.world data set, when a model's formalism
1s imposed in that data set the result is easier to manage, define an manipulate. Different
models of data lead to different organizations. In general the relational model is the
most popular because that model is the most abstract and easiest to apply to data:while
still begin powerful.
Therefore, using a DBMS we have the following advantages.

* Clear picture oflogical organiz.ationof data set.

* Centralization for multi-users.

» Data independence.



1.6 THE 3 LEVEL ARCHITECTURE

The three level architecture is an architecture for a DBMS to provide a framework for
describing database concepts and structures. Not all DBMS fit neatly into this
architecture, but most do. The model has been proposed by ANSI/SP ARC and has three
levels. Mappings exist between the three levels and it is the responsibility ofthe DBA to
ensure these mappings are correct.

» External level (individual users view)

* Conceptual level (community user view)

+ Internal level (storage)

.
"

Figure: 1.4. Three Level Architecture [www.compapp.dcu.ie]

1.6~1 External Level

The external level ofthe three level architecture is the individual user level. At this level
each user has a language at their disposal of which they will use a "data sub language"
i.e. a subset of the total language that is concerned specifically with database operations
and objects. For the application programmer, the language will be a conventional
language e.g, COBOL with embedded SQL, or a specific one e.g. dBASE. For the end
user, it will normally be a query language like SQL or a special purpose language. In
principle, any given data sub language consists of a DDL (to declare data objects) and a
DML (data manipulation language) to manipulate these objects

An individual user's view is an external view, which is thus the content ofthe database
as seen by that particular user. There will thus be multiple occurrences of multiple types
of external records. The external view is defined by an external schema, which in turn is

defined by the DDL part of the user's data sub language



1.6.2  Conceptual level

The conceptual level of the three level architecture is essentially a representation of the
entire information content of the database-in a form abstracted from physical storage. It
may also be quit different or similar to external views held by a particular user. It is data
as it really is. Rather than as users are forced to see it- it is multiple occurrences of

multiple types of conceptual. records.

The conceptual schema is defined by the conceptual data definition language (DDL).
There is no reference in the conceptual DDL to stored record concepts, sequences,
indexing, hash addressing, pointers etc. the references are solely to the definition of
information content, in order to preserve data independence.

Conceptual schemas will also include security and integrity constraints as wen as data
definitions. Normally the conventional schema is little more than a union of all

individual external schemas, plus some security/integrity checks.

1.6.3 Internallevel

The internal level of the three level architecture is a low level representation of the
entire database; it consists of multiple types of internal record. It does not deal with
block/pages or device-dependant concepts like cylinders and tracks. The internal system
defines types of stored records and indexes, how fields are represented, various storage
structures used, whether they use pointer chains or hashing, what sequence they are in,
and so on. The internal schema is written using yet another data definition'language, the
internal DOL.

Programs accessing this level-directly (i.e. utility programs) are dangerous .since they
have by-passed the security and integrity checks which the DBMS program normally

takes responsibility for.

1.7 PROPERTIES OF DBMS DATA

DBMS are available on any machine, from small micros to large mainframes, and can

be single or multi-user obviously, there will be special problem in multi-user



environments in order to make other users invisible, but these problems are internal to
DBMS.

Data may be shared over many databases, giving a distributed DBMS, though quite
often it is centralized and stored in just one database on one machine. In general, the

data in the database, at least in a large system, will be both integrated and shared.

1.8  WHO USES A DBMS

There are three broad classes ofusers who use a DBMS
* Application programmers
* End users

» Database administrator

1.9 HARDWARE FOR A DBMS

Conventional DBMS hardware consists of secondary storage devices, usually hard
disks, on which the database physically resides, together with the associated I/O

devices, device controllers, I/O channels and so forth. Databases run on a range of
machines, from microcomputers to large mainframes.

Other hardware issues for a DBMS includes database machines, which is hardware

designed specifically to support a database system.

1.10 DATABASE SECURITY

The DBA can set up the DBMS such that only certain users or certain application
programs are allowed perform certain operations to the dataset e.g. only admissions are
allowed create records for students, only library are allowed to create records. for books
etc. Different checks can be established for each type of access to each type of
information in the database. Different users should have different access rights to
different objects.

SQL provides two methods for implementing security restrictions. These are:

* Views - can be provided to hide sensitive data.
* GRANT/REVOKE - grant or remove access privileges to specific users for

specific tables.



There is, however, a major drawback to SQL security

1.11 HOW DATA IS STORED

A data ~odel is defined as a set of guidelines for representing the logical organization
of data in the database; a pattern according to which data and relationships can be
organized; an underlying mathematical - formulation for building logical data
organizations.
A data model consists of

* A named logical unit (record type, data item)

» Relationships among logical units
A data item is the smallest logical unit of data, an instance of which is known as a data
item value.
A record type is a collection of data items, and a record is hence defined as an instance
of arecord type.
Note: A data model does not specify the data, data implementations or physical

organization only the way it can be logically organized.

1.12 DEFINITION OF ENTITY

An entity is any distinguishable real world object that is to be represented in the
database; each entity will have attributes or properties e.g.
The entity lecture has the properties place and time. A set of similar entities is known as

an entity type.



DATABASE APPLICATION LIFE CYCLE

Database planning
Systems definition

Requirements collection

Conceptual design

DBMS selection

Logical design Application design

Physical design

Prototyping Implementation

Data loading and conversion
Testing

]

Operational maintenance

Figure: 1.5 fwww.compapp,dcu.ie]

+ Database system is a fundamental component of the larger organization
information system. Therefore associated with the information system
lifecycleDatabase Planning -involves planning how the stages of the lifecycle

can be realized most efficiently and effectively

10




System definition - scope and boundaries of application, users, areas
Requirements - from users and previous applications

Database Design - of the database itself

DBMS Selection - optional and involves getting a suitable product for
application

Application Design-programswhichusedatabase

Prototyping - optional, working modefofapplication for designers and users
Implementation - creating conceptual, external and internal database definitions
and application programs

Data Conversion and loading - old systen)replacement, directly or with new
format. Application programs may also have to beadjusted

Testing - against the user requirements

Operational maintenance - constantly monitored and maintained. New

requirements go through cycle again.

1. 13.1DAT ABASE PLANNING

3 main components:

-Work to be don

-Resources

-Money

Must be integrated with organizations' overall planning strategy.

Therefore influenced by the broader IS/IT strategies

3 main issues concerning IS strategies:

-Identification = of business plans and goal with subsequent determination of
information systems needs

-Evaluation of current information systems to determine existing strengths and
weaknesses

-Appraisal of IT opportunities that might yield competitive advantage.

A corporate data model can be developed showing main entities and

relationships of the organization and functional areas of the organization.

11



R
80 A o

gy o 3
o 5,15

I b i G A NG S
o £ By afie 4 e sBrpl G i el
i i el e o5 il il sihostiriBib v W Wy o A sty ik

R T LA TR R P

o

. N
e i ey e

Figure: 1.6 Data base Planning Architecture [www.compapp.dcu.ie]

» The functional areas may be assigned priority in line with the corporate strip:egy
to define scope of the database for system development.
* Database Administrator can develop plans to achieve this,
» Standards may be developed
-How data is collected
-Necessary documentation
-Design and implementation procedures
* Good for training staff and quality control
* Legal or company requirements concerning data should b3 documented e.g

confidentiality.

1.13.2SYSTEM DEFINITION

* Identify boundary of the system
» Identify how it interfaces with other parts ofthe information systems
* Include current users and application areas

* Future users and application areas

1.13.3 Requirements Collection and Analysis

e Qathered:

-Interviewing

12




-Observation
-Examination of documents (record and display information)
-Questionnaires to users
-Experience form the design of similar systems.
* Results in users' requirements specification of the enteiprise.
i Perhaps from many viewpoints
* Too much study too soon - Paralysis by analysis
* Too little - unnecessary waste of time and money

+ Convertto formal requirements specification (DFD's and CASE tools etc.)

1.13.4DAT ABASE DESIGN

*  Major aims;
-Represent data and relationships required by all application areas and user
groups
-Provide data model that supports transactions required on the data
-Specify a. design, which will achieve. stated performance requirements for the
system e.g. response time.

* Bottom-up approach - good for simple databases
-Starts with data fields
=Normalization

* Top-down approach - good for complex database systems
-Development of data models
-Refine to identify lower-level entities, fields and relationships
-ER modeling

+ DBMS Selection
-Selection could be done at any tie prior to logical design
-Based on system requirements

* Performance

w Ease ofrestructuring

* Security

* Integrity

* Application Design
-May not be able to complete application design until db design finished

-Must match requirements

13




-User interfaces
*  Prototyping
-Does not normally have complete functionality
-Allows users to identify, which parts work well or not
-Suggest changes/improvements
-Inexpensive but time Gonsuming-iaskaiser, get feedback, fix, ask user....)
-Useful if clarification of user' requirements is required. before implementation
of a high cost, high risk or new technology.
* Implementation
-Achieved using;
« DDL
-Complied and used to create database schemas and empty<database files and
define user views
* Application programs implemented usingdGL orDML oftargefDBMSorhoth
» Security and .integrity controls implemented
* Conversion and Loading-If new database system is replacing old system
(legacy)
-Common to have conversion utilities

-Plan transition

14




Chapter 2

INTRODUCTION TO RDBMS
2.1  WHATISANRDBMS?

In recent years, database management systems (DBMS) have established themselves as
the primary means of data storage for information system ranging from large
commercial transaction processing applications to PC-based desktop applications. At
the heart of most of today's information systems is a relational database management

system (RDBMS)o

RDBMS' s have been the workhorse fro data management operatidttsi.frPiOYt!r ~ decade
and continue to eyolve and mature, providing .sophisticated storage,'il'~1:rieyf!g., and
distribution functions to enterprise-wide data processing and informatiollnianiagement
system. Compared to the file systems, relational database management system provides
organization data into meaningful information systems. The evolution of high~pQ;w:irt:;gel
database engines has fostered the development of advanced "enabling" technql9gigs
including client/server, data warehousing, and online analytical processing all pf'whic:p.

comprise the core oftoday's state-of-the-art information management systems.

Examine the components of the term relational database management system. First, a
database is an integrated collection of related data. Given a specific data item, the
structure of a database facilitates the access to data related to it, such as a student and all
of his registered courses or an employee and his dependents. Next, a relational data."bit.se
is a type of database based in the relational model; non-relational database conimouly
use a hierarchical, network, or object-oriented model as their basis. Finally, a relational
database management system is the software that manages a relational database. These
systems come in several varieties, ranging form single-user desktop systems to full

featured, global, enterprise-wide systems,

15



2.2 THE RELATIONAL DATABASE MODEL

Most of the database management systems used by commercial applications today are
based on one ofthree basic models:

1. Hierarchical Model; Network Model OR

2. Relational Model

2.2.1 Hierarchical Model

The first commercially available database management systems were of the
CODEASYL type, and many of them are still in use with mainframe-based, COBOL
applications. Both network and hierarchical database are quite-complex in that they rely
on the use of permanent internal pointers to relate records to each other. i.e. in an
accounts payable application, a vendor record might contain a physical pointer in its
record structure that points to purchase order records. Each purchase order record in

tum contains pointers to purchase order line item records.

The process of inserting, updating and deleting records using these types of database
required synchronization of the pointers, a task that must be performed by the
application. As you might imagine, this pointer maintenance required a significant
amount of application code (usually written in COBOL) that at times could be quite

cumbersome.

2.2.2 Relational Model
.Relational database rely on the actual attribute values as opposed to internal pointers to
link records. Instead of using an internal pointer from the vendor record to purchase
order records, you would link the purchase order record to the.vendor record using a
common attributer form each record, such as the vendor identification number,
Although the concepts of academic theory underlying the relational model are
somewhat complex, you should be familiar with are some basic concepts and
terminology.
Essentially, there are three basic components of the relational model:

1. Relation Data Structure

2. Constraints that Govern the Organization ofthe Structure

3. Operations that are Perform on the Data Structure.

16



2.3  RDBMSCOMPONENTS

Two important pieces of RDBMS architecture are the Kernel, which is the software, and
the data dictionary, which consists of the system-level data structures used by the kernel

to manage the database.

2.4  Relational Data Base Management Issues
* Integrity
» Security
1 Recovery

1 Concurrency

24.1 Security

The advantage of having shared access to data is in fact a disadvantage also

Secure off-efle storage [mmbyhsmm
buitding equipseant roons perpiorel equiparent
non-computer-tesed

contiale

Figure: 2.1 Security [Aptech]

» Consequences: loss of competitiveness, legal action from individual

» Restrictions
-Unauthorized users seeing data

-Corruption due to deliberate incorrect updated

17




-Corruption due to accidental incorrect updated
» Reading ability allocated to those who have a right to know

*  Writing capabilities restricted for the casual user - who may accidentally corrupt

data due to lack of understanding

* Authorization is restricted to the chosen few to avoid deliberate corruption

2.5 Countermeasures (computer based)

2.5.1  Authorization
-Determine user is who they claim to be
-Privileges

Passwords

-Low storage overhead
-Many passwords and users forget them - write them downl!
-User time high - type in many passwords

-Held in file and encrypted.

2.6 Countermeasures (cont.)
-Initial password entry to system
-User name checked against control list
-The access control list has very limited access, superuser

-Ifmany users and applications and data then list can be large

2.7 READ, WRITE, and MODIFY access controls

-Restrictions at many levels
-Database Level: 'Adds a new DB'
-Record Level: 'delete a new record'

-Data Level: 'delete an attribute'

* Remember there are overheads with security mechanisms

2.8  Countermeasures (cont.)

*  Views

18




Subschema

Dynamic result of one or more relational operations operating on base relations
to produce another relations

Virtual relation - doesn't exist but is produce at runtime

Back-up

Periodic copy of.database and log file (programs) onto offline storage

Stored in secure location

Countermeasures (cont.)

Keeping log file of all changes made to database to enable recovery in the event
of failure

Check pointing

-Synchronization point where all buffers in the DBMS is force-written to
secondary storage

Integrity (see later)

-Encryption

-Data encoding by special algorithm that render data unreadable without
Decryption key

-Degradation in performance

-Good for communication

Countermeasures (cont.) Associated procedures
Specify procedures for authorization and backup/recovery
Audit: auditor observe manual and computer procedures
Installation/upgrade procedures

Contingency plan

Escrow agreement.

Non-Computer Counter Measures
Establishment of security policy and contingency plan
Personnel controls

Secure positing of equipment, data and software
Escrow agreements (3rd party holds source code)

Maintenance agreements

19




Physical access controls
Building controls

Emergency arrangements.

Privacyin Oracle

User gets a password and user name

Privileges:

Connect: users can read and update tables (can't create)
Resource: create tables, grant privileges and control auditing
OBA: any table in complete DB

User owns tables they create

They grant other users privileges:

Select: retrieval

Insert: new rows

Update: existing rows

Delete: rows

Alter. column def.

Index: on tables

Owner can offer GRANT to other users as well

This can be revoked

Users can get audits of:

-List of successful/unsuccessful attempts to access tables
-Selective audit e.g, update only

-Control level of detail reported

OBA has this and logon, logoff oracle, grants/revolts privilege
Audit is stored in the Data Dictionary.

Integrity
Introduction

Basic concepts
Integrity constraints
Relation constraints

Domain constraints

20



Referential integrity
Explicit constraints

Static and Dynamic Constraint

21



CHAPTER3

A Pattern Language for Object-RD:13MSIntegration

3.1  The Static Patterns

The Static Patterns for the relational side deal with when and how to best define a
database schema to support an object m()del. The identity of the objects, their
relationships (inheritance, aggregation, semantic associ:itions} and their state must be
preserved in the tables of a relational database. Table I)C;!sign Time deals. with when is
the best time during development to actually design therc,11:1tj9,;1al.schernaRepresenting
Objects as Tables, Representing Object Relationships .?§/ "I'tilfis, .,ll~esenting
Inheritance in a Relational Database, Representing Collections 111.\~[ {~latfonalDatabase
and Foreign-Key Reference deal with defining the relationships between objects and
defining each object's state. Object Identifier (OID) defines how to establish object

identity in a relational database.

3.2 TableDesignTime

Problem.

When is the best time to design your relational database during object-ori~p,t¢

development?

Forces.

-Assume no legacy database exists prior to development or if one does exist, it is
extremely flexible (i.e., it can.be changed according to application needs). When the
database design is kept foremost in mind during development, the object modeL'\Vill
tend to be data driven while the behavior and responsibilities of the objects. will 1Je
deprived of the thought and energy they deserve. Consequently, the object modeEwill
tend to have separate data objects and controller objects. This leads to a design tha.tliti.g
heavy-duty controller objects and stupid data objects rather than a better,>>ttidre,.
distributed, less-centralized design. If the database design is completely ignored/until
the application is completed the project may suffer. Since 25% to 50% of the code in
such applications often deals with object-database integration, the design ofthe database

is crucial and should be considered early in development. Consequently:

22



Solution.

Design the tables based on your object model after you have implemented it in an

architectural prototype but before the application is in full-stage production.

Discussion,

Definition of domain object behavior and properties is in reality a first pass at the
database design. A stopgap persistency approach .(perhaps using flat ASCII files) is
often "good enough" for an architectural prototype. A benefit of this approach is that
legacy ‘data can be quickly exported from existing databases to an ASCII file. The
prototype can then be easily demonstrated on stand-alone workstations that may not

have a relational database and still show "real" data familiar to customers.

3.3 Representing Objects as Tables

Problem

How do you map an object structure into a relational database schema?

Forces

Objects do not map neatly into tables. For instance, object classes do not have keys.
Tables do not have the same identity property that objects do. The data types of tables in
arelational database do not match the classes in the object model. Complex objects can

reference other complex objects and collections of objects.

Solution

Begin by creating a table for each persistent object in your object model. Determine
what type of object each instance variable is likely to contain. For each object thafis
represent able in a database as a base data type (i.e., String, Character, Integer, Float,
Date, Time) create a. column in the table corresponding to that instance variable, naming
it the same as the instance variable. If an instance variable contains a Collection
subclass, use 1 Representing Collections in a Relational Database. If an instance

variable contains any other value, use 1 Foreign-Key

Discussion

23



The design of the database may need modification (for instance, denormalization)
depending upon the access patterns required for particular scenarios. Remember that
this design is an iterative process. There are several variations of mappings between

classes and tables. These are:

| Object Class maps to | table

I Object Class maps to multiple tables
« Multiple object classes' map to | table.
* Collections ofthe same class map to a 1 table

* Multiple object classes map to multiple tables

The Database Access Architecture must handle each ofthese variations.

3.4 Representing Object Relationships as Tables

Problem

How do you represent object relationships in a relational database schema?

Forces

A variety ofrelationships exist between classes in an object model. These relationships

maybe:

e [to | (husband - wife)

e | to many (mother-child)

« Many to many (ancestor - child)

» Ternary (or n-ary) associations (student - class - professor)

* Qualified associations (company- office -person)

A Qualified association is an association between two objects where the association is
constrained or identified in some way. For example a Company car1 be associated witha
Person through a position held by that Person. The position qualifies the association
between the Company and the Person.

The association between objects may represent containment, associated properties or
have come special semantic meaning in their own right (e.g., a marriage is a special
relationship between a man and a woman).

The choices for | to 1, and [ to many relationships are either to merge the association

into a class or to create a class based on the association.

24



It is important to remember that the semantics of relationship between objects can be
significant. It is often is useful to create classes to represent the associations, especially
if the relationship has values of its own. These classes will be represented as tables in
the relational database. For many to many, | to many and | to | associations, when an
association has a meaningful existence in the problem domain, create a class for the
association. A meaningful existence is when the relationship itself can have value such
as the relationship itself possessing properties such as duration, quality or type. A
marriage 1s a relationship between a man and a woman that can have all -these

properties.

Solution

Merge | to | associations with no special meaning into one of the tables. If it has special
meaning create a table based on the class derived from the association.

For 1 to many associations, create a relationship table (see Representing Collectionsiit.a
Database).

A many to many relationship always maps to a table that contains columns referenced
by the foreign keys ofthe two objects.

Ternary and n-ary associations should have their own table that references the
participating classes by foreign key.

A qualified association should have its own table.

Discussion
Consideration of the forces of this pattern will often result in changes to a first..:pass
object model. This is desirable, since it will often generate a more general and flexible

solution.

Related Patterns
1. Representing Inheritance in a Relational Database

2. Representing Collections in a Relational Database

3.5 Representing Inheritancein a Relational Database

Problem

25



How do you represent a set of classes in an inheritance hierarchy in a relational

database?

Forces

Relational databases do not provide support for inheritance of attributes. Itis impossible
to do atrue 1-1 mapping between a relational table and a class when that class .inherits
attributes from another class, or if other classes inherit from it.

There are two possible contexts that are used in this pattern, depending upon what is
more important to your particular application, speed of queries, or maintainability and

flexibility of your relational schema.

Solution

(When ease of schema modification is paramount)

Create one table for each class in your hierarchy that has attributes. This will iuclude

both concrete and abstract classes. The tables will contain columns for each Offiie
attributes defined in that class, plus an additional column that represents -tlie.cominon
key shared between all subclass tables. An instance of a concrete subclass is rfltij~yed
by doing a relational JOIN of all ofthe tables in a path to the root with the commonkey

as the join parameter.

Discussion

This is a direct mapping, which makes it easy to change if a class anywhere in. tlie
hierarchy changes. If a class changes, you must change at most one ta.ble.
Unfortunately, the overhead of doing multi-table joins can become a problem if you

have even a moderately deep hierarchy.

Solution

(When speed of queries is more important)

Create one table for each concrete subclass of your hierarchy that contains ALL of the
attributes defined in that subclass or inherited from its super classes. An instance is

retrieved by querying that table.

Discussion

26



This avoids the joins of the previous solution., making queries more efficient. This is
also a simple mapping, but has the drawback that if a super class is changed, then many
tables must be modified. It is also difficult to infer the object design from the relational
schema.

There is a third solution that may be more appropriate in a multiple-inheritance

environment, but that does not have much to recommend itself beyond that. It is
possible to create a single table that represents ALL of the super class's andsubclasses

attributes, with SELECT statements picking out only those that are.appropriate for each

class. Unfortunately, this can lead to a large numberof"Nilll's in your database, wasting

space.

3.6  Representing Collections in a Relational Rztzherss

Problem

How do you represent Collection subclasses in a relational database? .

Forces
The first normal form rule of Relational Databases prevents a relation from cor:itain:ing

"Multivalued" attribute, or what we would normally think of in Object terms as a
Collection. The kind of 1-N relationships represented in 00 languages by collection
classes are represented in a very different form in a relational database.

Collection classes in Smalltalk often convey additional information besides the
relationship between the objects contained-in the collection, and the object that contains

the collection. Order, sorting methods, and type of the contained objects are all

problems that must be addressed.

Solution

llepresent each collection in your object model (where one object class is related to

~other object class by a 1"N has-a relationship) by a relationship table. The table may

also contain additional attributes that address the other issues.

basic solution involves creating a table that consists of at least two columns, one,
represents the primary key (usually the OID) of'the containing object (the object

' that holds the collection) and another which represents the primary key ofthe contained

ok~ects (the objects held in the collection). Each entry in the table shows a relationship

21



between the contained object and the containing object. The primary key of the
relationship table is comprised of both columns. A third column may be needed which
indicates either the class of the object or the table that the object is located in.

Collections may contain objects of various classes.

Discussion

There are other possible representations of the I-N relationships, including back-
pointers. Back pointers have the drawback that itis difficult to have an object be
contained in more than one collection at the same time+when.the:- two collections are
contained in different instances of the same class. The simpfost~<aiidmost coi:1imon.
additional information to include in @ relationship table is @ t(5fi.in:in<that indicates the
type ofthe contained object. This is necessary when a Collectionmay/6e.hetefogenedus.

If an Ordered Collection is utilized, and the order is signiﬁcant,i~~t~~~i!~~i0~i~e
object in the collection may be stored in an additional column. It must be n9tedrthat

unless a distinguishing column indicating a position or OID is added to d relation ta.hie
and made part of its primary key then the basic solution represents a Setffatherttliania

more general collection, since the key constraint of relational databases prevenfa tuple

from occurring more than once in the same table.

3.7 , Object Identifier (OID)

Problem

How do you represent an object's individuality in a relational database?

Forces

In object-oriented languages, objects are uniquely identifiable. In Smalltalk, an
equivalence comparison (-) determines if two objects are exactly identical. This is
accomplished through the comparison of their Object Pointers (OOPs) which are
uniquely assigned to each object when it is instantiated.

In an environment where objects may become persistent, some way of identifying what
particular persistent structure (be it a row in a relational database, or a structure in an
OODBMSY) corresponds to that object has to be added to the mix. OOPs are reassigned

:and reclaimed by the system, precluding their use as an object identifier.

28




Solution
Assign an identifier (an Object IDentifer or OID) to each object that is guaranteed to be
unique across image invocations. This identifier will be part of the object, and will be

used to identify it during query operations, and update operations.

Discussion

OID's can be generated -either internally to your application, or externally. Some
relational databases include a sequence number generator that can be used to generate
OID's, and it is preferable to use that option when available. OID's only need be unique
within a class, as long as some other way of identifying the class of an object is
provided by the persistence scheme. OID's are customarily long integers.

If an OID is generated within the application, it is often common to have a table that
represents the latest available OID for each class. The table will be locked, queried,
updated and unlocked whenever a new OID is required, To improve performance,
sometimes an entire block of OID numbers can be acquired at once.

OID's can include type information encoded into the identifier. In this case, it may be

more appropriate to use a char or varchar column rather than an integer.

3.8 Foreign-KeyReference
Problem
How do you represent the fact that in an object model an object can contain not only

"base datatypes" like Strings, Characters, Integers and Dates, but other objects as well?

Forces
Given that the first normal form (1 NF) rule of relational databases specifically excludes
a tuple from containing another tuple you must use another representation of an object

that can be represented by a legal value that a column can contain.

Solution

Assign each object in your object model a unique OID (See pattern OID). Add a column
for each instance variable that contains an object that is not either:

a collection object a "base datatype" In this column, store the OID of object contained in

the previous object. If your database supports the feature, declare the column to be a

29



foreign key to the table that represents the class of object whose OID is stored in.that

column.

Discussion

This restriction (the INF rule) is both strength, and the Achilles’ heel of the relational
model. When this pattern is used in self-similar objects (i.e., a Person has children, who
are also Persons) it is exceedingly difficult to retrieve a tree of connected objects rooted
on a single object in a single SQL query.

If you find that the vast majority of columns in your database schema arise from this
pattern, you may wish to reconsider the decision to use a relational database as a

persistent object store.

3.9 StaticPatterns(ObjectSide)

The previous section discussed the relationships and the.definition of class properties as
defined in the relational database schema However, we must also consider the
definition of the object model on the client. Foreign Key versus Direct Reference
addresses how to best define the relationships of complex objects to be instantiated in

the object image.

3.10 Foreign Key versus Direct Reference

Problem
In the domain object model when should you reference objects with a "foreign key" and

'when should you have direct reference with pointers?

Forces

In general, the object model should closely reflect the problem domain and its behavior.
However, the network of objects that support this model can be complex and large.
Modeling a large corporation with its numerous organizations and branches, may
require hundreds of thousands of objects and multiple levels. of objects of different
classes.

In object models, objects usually directly reference one another. This make navigation

among the object network direct and easier than via foreign-key reference.

30



Objects can reference other objects by using their foreign keys" When this.is the case,
the objects must also have methods to dereference the foreign key to get the referenced
object. This makes maintaining the object relationships in the object model more
complex. If foreign keys are used to reference the objects then more searches and more
caches are required to support the accessing methods. However, using/the :fd:reigh key
makes it easier to map the domain objects to the database tables during their
instantiation and passivity. Relying on foreign keys alone with the object model can
result in recursive relations and may also result in extremely poor performance
problems as large collections of objects are needed to represent a complex object.

In many cases, the application simply requires a list of names to peruse in order to
locate the object of interest. The number of potential objects in such a list may be in the
millions. This puts a heavy strain on the memory requirements of such a system. A great
majority of the time the application just requires a foreign key for display and selection
purposes. This means keeping the supporting application domain models "light," whe:re

they contain only those attributes necessary for display purposes.

Solution

An object model should use direct reference as much as possible. This permits fast
navigation over the object structures. Build the object network piece by piece as
required using Proxy objects to minimize storage. Make the associations only as
comp,lex as necessary. When dealing with large collections or a set of complex objects
use foreign keys and names to represent the objects for user interface display and
‘selection. After selection is made, instantiate the complex object depending upon

memory constraints and performance.

Discussion

If each domain object maps to a single table then there is probably a table model in the
domain object layer. You may be adding complexity to the whole system. Ifthe domain
objects have no behavior other then being information holders, you may consider
getting them out ofthe way. Instead, have the application model refer directly to broker
' ’gbjects. This way you do not have an object cache to keep in sync with the relational
tatles. If domain behavior is required (which it probably will be) then you can add
_ domain objects as required. Make the domain objects "prove" themselves. In reference

o using foreign keys within the object model instead of direct references, one developer

31




learning Smalltalk said: "What the hell good is objects if you do not hold real objects?

You might as well use PowerBuilder."

3.11 UsingPatterns in Order Management Systems: A Design

Patterns Experience Report

The Problem

Our particular project was for a major pharrn.acT~~~.~ .conipany's IS department. Our
" team was tasked with building an order management systenit,gbe used by employees of
the company in placing orders for consumable resources. ~~[?~t;n1 is int;ndecl to
allow employees to order resources by selecting the type, subtype, and vendor of the
resource as well as the delivery date, and various other delivery details. The user is
allowed to change orders after they are placed, to view the unconsumed resourcese that

are still allocated to him, and to transfer unconsumed resources to other users.

The Constraints

i Qur design faced several constraints:

* We had to deliver a workable application within 3 1/2 months from the inception
of the project.
» There was & limited amount of 00 and Smalltalk knowledge in our group. Our
team consisted of me, one team member that had 6 months of 00 experience
. (having been through a KSC Smalltalk Apprentice Program (STAP)) and three
team members with only minimal Smalltalk training and no formal OOA&D
training.
* We were required to use an existing Oracle database as our repository. We were
free to use any appropriate object design, but it had to work with the existing

database tables and Oracle Forms applications.

Solution

_As the chief architect of this project, I had two things working for me as I began. The
first was that we had earlier prototyped a subset of this application in an apprentice
_program, so we had a good feel for what objects were involved in the system. The

second was that I had just finished developing a tutorial for Smalltalk Solutions '95 that

32



drew heavily from , so | was very familiar with those patterns. The two factors
converged to let me begin the design process by picking out some appropriate patterns

that | felt would be useful in this domain, and then letting the developers discover how

these patterns could be applied to our specific design.

3.11.1 The Patterns

From my previous experience in this domain, I knew immediately that two patterns
from would be useful; State and Memento. At the start of the design process, I described
the patterns to the group and then wertt on to develop a solution utilizing them. Later in
the design process, problems came up that were well described by Composite, Mediator,
and Adapter as will be shown in sections 4.4 and 4.5. Finally, two rules-of-thumb that

were used in this project were phrased (after the fact) as patterns.

3.11.2 State

One of the more common problems found in many MIS systems is the idea of a
workflow. In a workflow objects move from person to person within a workgroup, with
each person changing, annotating, or modifying the object before it is passed along to
| next person. This project was no exception. The analysis of the project done before

design phase of the project begn described the workflow of the various types of
Otders in some detail. After reviewing this, I determined that the workflow could be
described as a state machine, with different submissions and modifications of the order

dﬁsmrﬂn@ iy the transitions between states. The states Orders can occupy are shown in the

below Figure

33



~utinn

submit

NenSixe b IfedSie

e

puyersubmit

Figure 3.11.2: Order States [http://www.dbmsmag.com]

Once we had determined to represent work.flowofan order as a finite state machine, the
design of a significant part of our Order object "fell out" of the State pattern.. We
determined that an Order could be in several different states, depending upon where
within the workflow it resided. We also determined that the Order should behave
differently to the common messages save, delete, and notify depending upon its state.
For example, when an order was in Submitted state, it was known (so far) only to the
person placing the order; the buyer (the next person in the workflow) had not yet
reviewed it. A delete message sent to the Order should physically remove it from the
database when it is in this state. On the other hand, if an Order is in Ordered state, then.a
delete message should only log the fact that that particular order has been removed. A
deletion in this state will necessitate the buyer resubmitting a corrected VendorOrderto
the vendor.

Likewise, when an Order is in New state, the buyer should be notified (by E-Mail) when
the Order receives the submit message and moves to Submitted state. A different
notification should be sent out when a change is made to an Ordered order. Once an
order is in ChangedOrdered state, no more notifications are necessary.

We were able to use the following design to represent the state machine portion of our

domain model (see Figure 2: State design). Just as described in, we used an abstract

34



class State that implemented the messages notifyWith:, saveWith: and deleteWith:,
the argument to each of these messages being the ConsumablesOrder. Each of the
messages in ConsumablesOrder that differed by state were implemented by calling the
corresponding message in the Order's current state. For example, let's. look at the
following implementation:

(Consuniablesiirder> >delete)

delete

"do whatever is appropriate for your current state"

self currentState delete With: self.

(SubmittedState> >delete With:)

deleteWitb: aConsumablesOrder

"tell your consumables order to remove himself

aConsuniablesOrder remove.

(OrderedState>>delete With:)

deleteWith: aConsmnablesOrder

"tell this consumablesOrder to become deleted (i.e. record the fact in the aatanaS¢)'l
aConsuniablesOrder becomeDeleted.

(DeletedState> >delete With:)

delete With: aConsumablesOrder

"anOrder is already deleted. Do nothing"

"self

Figure 3.11.2 State design [http://wvi.Ivv.dbmsmag.com/]

35




The only substantial difference from our design to the design from was the addition ofa
StateMachine object between the Consumablesiirder (the Context) and the State. In
retrospect, we could probably have done without this object. It was only used to aid in
construction of the State connections, and for error handling in the case where a
transition wasn't defined in the current state. This responsibility could easily have been
absorbed into the abstract State class.

The State pattern was the big success story in this application. Its use cut tlitc>tlgh a.lot
of complexity in the domain that would otherwise have been handled by several
conditional branches spread throughout the code. The pattern was easy to explain to the
developers, and the implementation was quick and painless. It proved to be féaisﬂ'y
extensible (when we began implementing we only knew about JeleteWith: and

notify With: -- saveWith: was added later) and flexible.

3.11.3 Memento
Going into the design of this application, we were aware that we would need to SHPPOITTF
one-level undo for a Consuinablesiirder. For instance, if a buyer rejects a aﬁmge to an
Order, then the order should revert back to the state it was previously in (Ordered) and
all ofthe changes should be erased. We felt intuitively that the correct solution would be

a variant ofthe Memento pattern, and we discussed possible implementations dunng the
early design sessions, starting with the design example presented in . Hmwwmr, ln\’
contrast to how easily we adopted the State pattern, adopting Memento proved tobe
~more challenging.

We were a bit confused by the Caretaker object in the pattern being external-to the
Originator object, although reviewing it further did clarify it a bit. In our case, there
were no external clients of the Originator that needed to know about the existence ofa
memento, and only one copy of the memento needed to exist at any time. \We :fitally
assumed that this was a degenerate case of Memento not covered in . Our :resulting

Aegr is shown in Figure 3: Memento class structure.

36




Consum ables Consim shles
Croer 20, | 1 Croer

Figure 3.11.3: Memento class structure [http://www.dbmsmag.COI'TI]

We rolled the Originator and Caretaker objects into a single object, the
Consumablesiirder. The basic flow of messages, and the structure of the classes, is the
same as in once this change is made. When an outside object sends a ni.essageto 'a
Consumablesorder that would change its state, it issues itself a makeNilem.enfii .m.e§sage.
This creates the memento and sets its state appropriately (this is donea.l.Fat'6Gnceby>a
deepCopy message). Whenever an outside object sends a IESSAZC >to >a
Consuinablesiirder that would necessitate reverting back to its original-Sta'[e'(SUCh>aS
cancelChanges) it sends itself the revert message, which resets the state to6'the stored
previous state by copying all of'the values of'the instance variables in the mementcfoack
into the original order.

This case was unique in that the Memento pattern did no provide us the solution
directly, but led us to an acceptable solution that fit our requirements. Even though the
particular solution provided by the pattern's example code didn't work for us, the
thought process we went

Through in trying to use the pattern did lead us to an acceptable solution.

3.11.4 Composite
After getting more deeply into our design and implementation, we realized that an
unforeseen client requirement was easily solved by. application of another pattern,

Composite. In our initial design we identified three subclasses of the class Resource:

* OrderResource -- this represents a resource that has been ordered, but not
received. It is sort of a "virtual" resource, and doesn't share many of the

attributes (disposition, receivedfiate, etc.) of an "actual" resource.

37



* IndividualResource -- this represents a specific, received resource of a certain

type. Some resources are tracked individually, with specific ID numbers. A
Chair, or a Forklift, or something ofthis sort is an IndividualR.esource.

* GroupedResource -- a grouped resource is a set of resources that are not
uniquely identifiable. For instance, a bag of bolts might be considered a
Groupedkesource in that it contains several bolts, but each bolt is not important
enough to represent individually. However, the entire bag is interesting enough

to track.

In our original design, the user was shown a list of IndividualResources and
GroupedResources that were allocated to them. In subsequent user interviews, it came
to our attention that the users would prefer to see all of the IndividualResources that
were ordered from the same order as a single line item in this list, then drill-down to see
the Individual resources. After some consideration, we decided the easiest way to
achieve this was to use the Composite pattern, and refactor the hierarchy fo.create some
new classes. First, we divided Resource into two classes, Abstractkesources' which
defined a resource's protocol, but not its implementation, and Acnialkesource; which
defined the implementation used by the preexisting Resource subclasses. We then

defined one more class:

* CompositeResource -- a CompositeResource is a subclass of AbstractResource
that responds to the same protocol as an ActualResource, but which is
implemented quite differently. It contains a collection of IndividualResources,
and implements its protocol by passing through many of its messages to a
representative element of that collection. A CompositeResource can answer its

type, subtype, etc. just as can an instance of a subclass of ActualResource.

The full Resource hierarchy is shown in Figure 4: Resource Hierarchy.

The great thing about using Composite was that our user interface code did not change
at an-when we refactored the hierarchy. Since a CompositeResource responded to the
same protocol as an IndividuaJResource or a GroupedResource, the display logic was
identical. We were able to easily add new drill-down capabilities through additional UI

code that was specific to CompositeResources.

38



Figure 3.11.4: Resource Hierarchy [http://www.dbmsmag.com/]
An important lesson learned through the application of this pattern was that the
interface of an object is different than its implementation. One of the programmers
really struggled with why we were refactoring the hierarchy and separating.the.int~r.fac~
(in AbstractR.esource} from its implementation (in Compositekesource, 1.4
ActualResource). The "light came on" in this programmer's mind after we had I'()ligh~cl
out the first iteration of code for the new hierarchy and then started up the user interface
without having modified any UI code. This was a key lesson in 00 design in that for
the first time the programmer realized what it meant for a class to be abstract, and why

-abstractsuperclasses were useful.

3.11.5 Mediator and Adapter

Our use of these two patterns was more simplistic than the other patterns. - our ta:rget
language, Smalltalk/V, the ViewManager class provides a Mediation interface between
its component SubPanes. It also serves as an Adapter between the SubPanes and the
objects of the domain model . The two patterns were used more in spirit than in fact.
Whenever any code was written in a ViewManager subclass it was carefully reviewed
to see if it fulfilled either the role of Mediator or Adapter. Any code that attempted to do

something other than coordinate SubPane display, or adapt SubPane events to domain

model methods was rejected in the code review as violating our rules. As an example, at

39



one point a programmer was planning to place some Unit of Measure conversion code
in a specific ViewManager. After a code review, she agreed that this was neither
mediating between SubPanes, nor adapting to the domain model. She then developed a
more general UnitOfMeasure class for handling the conversions, and wrote only enough
code in the ViewManager to adapt this class to the input and output.Ill~Ocls of the
SubPanes. This allowed her to extend the UnitOfMeasure class to handle simi}ar, but

unforeseen cases later in the project without changing the ViewManager code.

3.12 Other Patterns

In developing this system, there were two more "rules of thumb" that we folldwed
during the design, that, while not in pattern. form at the time oftlie develdpriie:ritwefe

pattemizable after the fact. Each solution had all the earmarks of a pattern:

+ It was a solution to a general problem within a set of constraints
» It had been used several times in other projects

» It was easily explainable in a few sentences

All that remained was for the solution to be written in pattern form. The description of
the heuristics we used follows. I have since rewritten them in pattern form, and used
them as part of "Crossing Chasms" a pattern language for object to relational database

interface design.

3.12.1 Errors as Objects

-In a previous project I had seen an interesting way of separating concerns 'in<)l:lje
ViewManager classes from domain-layer considerations with respect to errors.. I this
approach, domain validations (range checks, type checks, etc.) were done in thedd:main,
and the results were passed back to the ViewManager as an ErrorSet. In thiiway )76u
could distribute the responsibility for validation among several objects, with;tli.e ern;,r
set being passed around and added to whenever a validation failed. 'This des~gn
preserved model and view separation, and allowed the user to intervene in the handling
of recoverable errors.

When the top-level message returned, the ErrorSet was displayed by the U, and each

Warning (which represents a potentially recoverable error) was flagged as to whether or

40



not it was proceed.able. The entire ErrorSet was then P the domain, which

used it to determine if it should allow the next action.

3.12.2 Broker

A second design heuristic that we used was the concept of a Database broker.

acts as an Adapter between a persistent domain object and the classes that ra;maes&mt the
physical database and the query language. It translates "domainish" requests
"databasish" queries and helps in mapping SQL rows and columns to objects and
instance variables. It provides a needed separation of concerns that isolate the domain
classes from the purely database-oriented classes. This architecture allowed us to meet
our requirement that we use the existing Oracle tables, while at the same time freeing us
to use a fully 00 design in our domain classes.

While these solutions were not written down as patterns when. we were-designing our
system, I nevertheless presented them to the developers just as I had presented 'the
patterns from . This process of explaining them in this way helped immensely when I

sat down to write them in pattern form later.

3.13 The Type Object Pattern

Intent

Decouple instances from their classes so that those classes can be implemented as
instances of a class. Type Object allows new "classes" to be created dyna:ri:iically at
runtime, lets a system provide its own type-checking rules, and can lead to s1mpler,

smaller systems.

Motivation

Sometimes a class requires not only an unknown number of instances, but an uikn.owi
number of subclasses as well. Although an object system can create new instances
demand, it usually cannot create new classes without recompilation. A design in which
a class has an unknown number of subclasses can be converted to one in which the class

has an unknown number of’instances.

41




Consider a system for tracking the videotapes in a video rental store's inventory. The
system will obviously require a class called "Videotape." Each instance of Videotapewill
represent one of the videotapes in the store's inventory. However, since. many of the
videotapes are very similar, the Videotape instances will contain a lot of redundant
information. For example, all copies of Star Warshave the same title, rental price,
MPAA rating, and so forth. This information is different for The Terminator, but
multiple copies of The Terminator also have identical data. Repeating this information

for all copies of Star Warsor all copies of The Terminator is redundant

One way to solve this problem is to create a subclass of Videotapdor each movie. Thus
two of'the subclasses would be StarWarsTapeand TerminatorTapeThe class itself would
keep the information for that movie. So the information common to all copies of Star
Warswould be stored only once. It might be hardcoded on the instance side<6f
StarWarsTapeor stored in variables on the class side or in an object assigned to the class
for this purpose. Now Videotapewould be an abstract class; the system would notc:reate
instances of it. Instead, when the store bought anew copy of The Terminatorvideotape
and started renting it, the system would create an instance ofthe class for that movie, an.

instance of Tesminater'T'ape,

This solution works, but not very well. One problem is that if the store stocks lots of
different movies, Videotape could require a huge number of subclasses. Another
problem is what would happen when, with the system deployed, the store starts stocking
a new movie-perhaps Independence Day. There is no IndependenceDayTaptass in the
system. Ifthe developer did not predict this situation, he would have to modify .fhe.~f.

to add a new IndependenceDayTape class, recompile the system; and redeploy.it~If ffi~
developer did predict this situation, he could provide a special subclass ofViileo~pe"7"
such as UnknownTape-andhe system would create an instance of'it for all video~~S)B~
the new movie. The problem with UnknownTapeis that it has the same lack of flexibility
that Vid,eotapehad. Just as Videotaperequired subclasses, so will UnknownTape,

so Unkno"".nTapeis not a very good solution.

Instead, since the number of types of videotapes is unknown, each type of videotape
needs to be an instance of a class. However, each videotape needs to be an instance 0fa.
type of videotape. Class-based object languages give support for instances of classes,

but they do not give support for instances of instances of classes. So to implement this

42



solution in a typical class-based language, you need to implement two classes: one to
represent a type of videotape (Movie) and one to represent a videotape (Videotape). Each

instance of Videotape would have a pointer to its corresponding instance of Movie.

. /

aMovie a¥ideotape h!

Stair Woars Johi's Star Wars
® movie /

alloYie /sVideotape 3

The -Teiminalor |_Sue's Starwars |
(: motiie /

Figure 3.13 {a}

This class diagram illustrates how each instance of Videotape has a corresponding
instance of Movie. It shows how properties defined by the type of videotape are
separated from those which differ for each particular videotape. In this case, the movie's
title and how much it costs to rent are separated from whether the tape is rented and

who is currently renting it.

llol'ie ._mouic | Video~
lille0 ~Renw!O
1entalP iic:e 0 1anmrQ

Figure: 3.13 {b}

This. instance diagram shows how there is an instance of Movie to represent each type ~f
videotape and an instance of Videotape to represent each video the store stocks. $tar
Wars and The Terminator are movies; videotapes are the copy of Star Wars that}C>:1:fi.js
renting versus the one that Sue is renting. It also shows how each Videotape knows what

type it is because of'its relationship to a particular instance of Movie.

Ifa new movie, such as Independence Day, were to be rented to Jack, the system would
create a new Movie and a new Videotape that points to the Movie. The movie
is Independence Day and the tape is the copy of Independence Day that Jack ends. 11p

renting.

43



Videotape, Movie, and the is-instance-of relationship between them (a Videotape is an
instance of a Movie) is an example of the Type Object pattern. It is used to create
instances of a set of classes when the number of classes is unknown. It allows an
application to create new "classes" at runtime because the classes are really instances of
a class. The application must then maintain the relationship between the real instances

and their class-like instances.

The key to the Type Object pattern is two concrete classes, one whose instances
represent the application's instances and another whose instances represent types of

application instances. Each application instance has a pointer to its corresponding type.

Keys
A framework that incorporates the Type Object pattern has the following features:

» Two classes, a type class and an instance class.
» The instance class has an instance variable whose type is the type class.
* The instance class delegates its type behavior to the type class via the instance

variable.
The framework may also include these variations on the pattern:

. The system may maintain a list of'its type class instances.

* The type class instances may maintain a list of their instances.
Applicability

» Use the Type Object pattern when:

» Instances of a class need to be grouped together according to their &R7"7%w™
attributes and/or behavior.

» . The class needs a subclass for each group to implement that group's common
attributes and behavior.

* The class requires a large number of subclasses and/or the total variety of
subclasses that may be required is unknown.

* You want to be able to create new groupings at nnitime that were not predicted

during design.

44




* You want to be able to change an object's subclass after its been instantiated
without having to mutate it to a new class.

*  You want to be able to nest groupings recursively so that a group is itself an item

in another group.

3.14 Structure

s _—— r A Oaau

Figure: 3.14 {a}

The Type Object pattern has two concrete classes, one that represents .objects arid

another that represents their types. Each object has a pointer to its correspondingtype.

aTypeOan SOHi
TypeObiectl Obiectl A

(=)

Figure: 3.14 {b}

allane
ObjectiB

For example, the system uses a TypeObject to represent each type in the system.. and an
Object to represent each of the instances of those TypeObjects. Each {dhjast has a

pointer to its TypeObject.

Participants

* TypeClass (Movie)
* isthe class ofTypeObject.
+ has a separate instance for each type of Object.
» TypeObject (Star Wars, The Terminator, Independence Day)

* is an instance of TypeClass.

45



+ represents a type of Object,
+ Establishes all properties of an Object that are the same for all Objects of
the same type.
» Class {Videotape)
+ 1is the class of Object.
+ represents instances of TypeClass.
* Object (John's Star Wars, Sue's Star Wars)
+ isan instance of Class.
* represents a unique item that has a unique context.
+ Establishes all properties of'that item that can differ between items ofthe
same type.
* has an associated TypeObject that describes its type.
+ Delegates properties defined by its type to its TypeObject.

TypeClass and Class are classes. TypeObject and Object are instances of their
respective classes. As with any instance, a Typetiibject or Object knows what its class
is. In addition, an Object has a pointer to its TypeObject so that it knows what its
TypeObject is. The Object uses its TypeObject to define its type behavior. When the
Object receives requests that are type specific but not instance specific, it déiékgéteg
those 'requests to its TypeObject. A TypeObject can also have pointers to all Of its
Objects. o

Thus Movie is a TypeClass and Videotape is a Class. Instances of Movie like Stw Wdl”S,'
‘The Terminator, and Independence Day are TypeObjects. Instances of Videofapelik.e
John's Star Warsand Sue's Star Wars are Objects. Since an Object has a poinl:el'tdit:s
jTypeiibject, John's videotape and Sue's videotape have pointers to their correspd:i:icling
Movie, which in this case is Star Wars for both videotapes. That is how the videotapes

know that they contain Star Wars and not some other movie.

Collaborations

* An Object gets two categories of requests: those defined by its instance and
those defined by its type. It handles the instance requests itself and delegates the
type requests to its TypeObject.

46



* Some clients may want to interact with the TypeObjects directly. For example,
rather than iterate through all of the Videotapes the store has in stock, a renter
might want to browse all of the Movies that the store offers.

» If necessary, the TypeObject can have a set of pointers to its Objects. Tiiis way
the system can easily retrieve an Object that fits a TypeObject's descripti)n. Tlis
would be similar to the alllnstances message that Smalltalk classes-illi:plement.
For example, once a renter finds an appealing Movie, he would then wanLto

know which videotapes the store has that fit the description.

Consequences

The advantages of the Type Object pattern are:

* Runtime class creation.The pattern allows new '"classes" to be creatediat
runtime. These new classes are not actually classes, they are instances: called
TypeObjects that are created by the TypeClass just like any instance is created
by its class.

* Avoids subclass explosion. The system no longer needs numerous subclassescfo
represent different types of Objects. Instead of numerous subclasses, the(systerii
can use one TypeClass and numerous TypeObjects.

* Hides separation of instance and type. An Object's clients does not need to/be

. aware of the separation between Object and TypeObject The client niakes
requests ofthe Object, and the Object in tum decides which requests to forward
to the TypeObject. Clients that are aware of the TypeObjects may collaborate
with them directly without going through the Objects.

* Dynamic type change. The pattern allows the Object to dynamically c~g~).i-ts
TypeObject, which has the effect of changing its class. This is simplettli~r1
mutating an object to a new class. [DeKezel96]

* Independent subclassingTypeClass and Class can be subclassed
independently.

* Multiple Type Objects. The pattern allows an Object to have mllltiple
TypeObjects where each defines some part ofthe Object's type. The Objecfmust
then decide which type behavior to delegate to which TypeObject.

47




3.15 The disadvantages ofthe Type Object pattern are:

* Design complexity. The pattern factors one logical object into two classes. T~~ir
relationship, a thing and its type, is difficult to understand. This is confusing for
modelers and programmers alike. It is difficult to recognize or explain the
relationship between a TypeObject and an Object. This confusion foirts
simplicity and maintainability. In a nutshell: "Use inheritance; it's easier."

» Implementation complexity. The pattern moves implementation differences out
of the subclasses and into the state of the TypeObject instances. Whereas each
subclass could implement a method differently, now the TypeCll 1SSvF@<.6:nly
implement the method one way and each TypeObject's state ntusffoake the
instance behave differently.

* Reference management. Each Object must keep a reference to its TypeObj~.
Just as an object knows what its class is, an Object knows what its Ty.pe()bject
is. But whereas the object system or language automatically establisb.es/aoo
maintains the class-instance relationship, the application must itself establisb.and

maintain the TypeObject-Object relationship.

Implementation

There are several issues that you must always address when implementing the Type

.Object pattern:

»  Object references TypeObject. Each Object has a reference to its TypeObject,
and delegates some of its responsibility to the TypeObject. An Object's
TypeObject must be specified when the Object is created.

* Object behavior vs. TypeObject behavior. An Object's behavior can either be
implemented in its class or can be delegated to its TypeObject. The TypeObject
implements behavior common to the type, while the Object implements beh1ivio:f
that differs for each instance ofa type. When the Object delegates behavior to i-:

TypeObject, it can pass a reference to itself so that the TypeObject can access its

data or behavior. The Object may decide to perform additional operations before

48




3.16

and after forwarding the request, similar to the way a Decorator can enhance the
requests it forwards to its Component [GHIV9S5, page 175].

TypeObject is not multiple inheritance. The Class-not the TypeObject-is the
template for the new Object. The messages that Object understands are defined
by its Class, not by its TypeObject. The Class' implementation decides which
messages to forward to the TypeObject; the Object does not: imiienf the
TypeObject's messages. Whenever you add behavior to TypeCiass, you rriust
also add a delegating method to Class before the behavior is available to the

Objects.

There are other issues you may need to consider when implementing

the Type Object pattern:

Object creation using a TypeOhject. Often, a new Object is created by senning

request to the appropriate TypeObject. This Is notable because the TypeObject is
an instance and instance creation requests are usually sent to a class, not an
instance. But the TypeObject is like a class to the Object, so it often has thf?

responsibility of creating new Objects.

Multiple TypeObjects. An Object can have more than one TypeObject, butthls
is unusual. In this case, the Class would have to decide which TypeObj‘eé;t"ty‘O’
delegate each request to. ‘ =

Changing TypeObject. The Type Object pattern lets an object dynam1¢a1 ly

change its "class," the type object. It is simpler for an object to change its pomtér

to a different type object (a different instance of the same class) tham to

to a new class. For example, suppose that a shipment to the video store is

supposed to contain three copies of The Terminator and two copies of Star

Wars, so those objects are entered into the system. When the snipment alTIVGS, it
really contains two copies of The Terminator and three copies of Star Wars. So
one of the three new copies of The Terminatorin the system needs to be
changed to a copy of Star Wars. This can easily be done by chang.irig the
videotape's Movie pointer from The Terminator to Star Wars.

Subclassing Class and TypeClass. It is possible to subclass either Class or
TypeClass. The video store could support videodisks by making zw~ther Class

49



called Videodisk. A new Videodisk instance would point to its Movie instance
just like a Videotape would. Ifthe store carried three tapes and two disks of the

same movie, three Videotapes and two Videodisks would all share the same

Movie.

The hard part of Type Object occurs after it has been used. There an almost
irresistible urge to make the Typeilibjects more composable, and to build tools that let
non-programmers specify new Typeiibjects. These tools can get quite complex, and the
structure of the Typeiibjects can get quite complex. Avoid any complexity {iiless it

brings a big payoff.

Sample Code

Video Store

Start with two classes, Movie and Videotape.
Object O

Movie (title rentalPrice rating)

Videotape (movie isRented renter)

Notice how the attributes are factored between the two classes. If there are several
videotapes of the same movie, some can be rented while others are not. Various copi
can cyertainly be rented to different people. Thus the attributes isRented and renter are
assigned at the Videotape level. On the other hand, if all of the videotapes in the group
contain the same movie, they will all have the same name, will rent for the same price,
.and will have the same rating. Thus the attributes title, rentalPrice, and rating are assigned
at the Movie level. This is the general technique for factoring the Typeiibject out of the
Object: Divide the attributes that vary for each instance from those that are the samey‘fc’:r
a given type.
YOU create a new Movie by specifying Its title. In tum, a Movie knows how to ¢Create a
new Videotape.
Movie class>>title: aString
"selfnew initTitle: aString
Movie>>initTitle: aString
title := aString
Movie>>new Videotape
AVideotape movie: self

Videotape class>>movie: aMovie

50



"self new initMovie: aMovie
Videotape>>initMovie: ~ aMovie

movie :=aMovie

Since Movie is Videotape's TypeClass, Videotape has a movie attribute that contains a
pointer to its corresponding Movie instance. This is how a Videotape knows what its
Movie is. The movie attribute is set when the Videotape instance is created by
Videotape cluiss>>movie:.

A Videotape knows how to be rented. It knows whether it is already being rented.
Although it does not know its price directly, it knows how to determine its price.

Videotape>>rentTo: aCustomer
self checkNotRented.
aCustomer addRental: self.
self makeRentedTo: aCustomer

Videotape>>checkNotRented

isRented iffrue: ["self error]

Customer>>addRental: aVideotape
rentals add: aVideotape.
self chargeForRental: aVideotape renta!Price
Videotape>>rentalPrice
"selfmovie rentalPrice
Videotape>>movie
"movie
Movie>>renta!Price
ArentalPrice
Videotape>>makeRentedTo: aCustomer
isRented :=true.

renter ;= aCustomer

Thus it chooses to implement its is Rentedbehavior itself but delegates
its rentalPrice behavior to its Type Object.

When Independence Day is released on home video, the system creates a Movie for itOHIt
gathers the appropriate information about the new movie (title, rental price, rating;etct)
via a GUI and executes the necessary code. The system then creates ktlie

new Videotapes using the new Movie.

51



3.17 Video Store-Nested Type Objects

The Type Object pattern can be nested recursively. For example, many video stores
have categories of movies-such as New Releases (high price), General Releases
(standard price), Classics (low price), and Children's (very low price). If the store
wanted to raise the price on all New Release rentals from $3.00 to $3.50, it would haVe
to iterate through all of the New Release movies and raise their rental price. It would be
easier to store the rental price for a New Release in one place and have all of the New
Release movies reference that one place.

Thus the system needs a MovieCategory class that has four instances. The
MovieCategory would store its rental price and each Movie would delegate to its
corresponding MovieCategory to determine its price. Thus a MovieCategory is the Type
Object for a Movie, and a Movie is the Type Object for a Videotape.

A MovieCat~ory class requires refactoring MQvie's behavior.
Object O

MovieCategory (name rentalPrice)
Movie (category title rating)

*Vidcotapc.(movic  isRentcd renter)

Before, rentalPrice was a attribute of Movie because all videotapes of the same 1110vie
had the same price. Now all movies in the same category will have the same price/SQ
rental~ce becomes an attribute of MovieCategory. Since Movie now has a type object,.Ht
has an attribute-category-to point to its type object.

Now behavior like rentalPrice gets delegated in two stages and implemented by the third.
Videotape>>renta!Price
"'self movie rentaiPrice
Movie>::;, .rentalPrice
"'self category rentalPriceMovie
Category>>rentalPrice

"rental Price

This example nests the Type Object pattern recursively where each Mov1eCateg0ry has
Movie instances and each Movie has Videotape instances. The system still works pmmag‘lﬁy

with Videotapes, but they delegate their,type behavior to Movies, which-in tum delegate

their type behavior to Mo.vieCategorys. Videotape hides from the rest ofthe systefit Where

each set of beh.a,vim: is irriplemen.ted. Each piece of i u.f<mnat.imi ~QolJt 1, tape. is stored in

52



74
f

:lff-m.

{

o
&{«

just one place, not duplicated by various tapes. The system can eas ,@d" u%w ”

L o
MavieCategorys, Mavies, and Videotapes when necessary by creating new m'atance%\ §

3.18 Video Store-Dynamic Type Change

Once Independence Day is no longer a New Release, its category can easily he changed
to a General Release because its category is a Type Object and not its class.

Movie>>changeCategoryTo: ~ aMovieCategory
self ~te.gory .remove.Movie.: self.
self category: aMovieCategory.
self category addMovie: self

With the Type Object pattern, an Object can easily change its Type Object when

desired,

3.19 Video Store-Independent Subclassinis

The system could also support videodisks. The commonalities of videotapes .and
videodisks are capfiired iri. the abstract superclass Rentableltem, where Videotape arid
Videodisk ara subclasses. Both concrete classes delegate their typo behavior to Movie,

so M;ovie. does not need to be subclassed,
Object O
IvlovieCategory (mi.me rentall'riee)
Movie (category title rating)
Rentableltem (mo:vie isRented renter)
Videotape (isRewound)
Videodisk (ninnberOIDisks)

Most of Videotape's behavior and implementation is moved to Rentableit-em. ‘Now
Videodisk inherits this. code for free.

Movie. may tum out to be a specific example of a more general Title class. Title)night
have subclasses like Movie, Documentary, and HowTo. Movies have ratings vvh~
documentary and how-to videos often do not. How-to videos often come in a series ot
collection that is rented all at once whereas movies and documentaries -do not. Thus
Titlemight also need a Composite [GHIV95, page. 163} subclass such as HowToSeries.
Movie itself might also have subclasses like RatedMovie for those movies that have

MP AA ratings and UnratedMovie for movies that don't.

53



Object()
MovieCategory (name rentalPrice)
Title. (cqte.gory title)
Documentary O
HQWTo ()
Movie O
RuJe.<l:rvtovie(rating)
UnratedMovie ()
Title.Composite (titles)
HowToSeries O
Ren.table.[te.m(ti.tl.e isRetited ren.ter)
Videotape (isRewound)
Vidisgel i si<_ (ng;;mbe. TQIDi~L.<.5)

The code above and the diagram below show the final set of classes in this framework

HoxieCatagery caegory. | T8 Jo fr | RMuti |
e B
A
1 I L
Oocurerry ” tota HouTo } TeCampoin
Urmrsaiforia HouTaSerier Videotzps Videodink
{ isReromd nnberdfDisks

Figure 3.19 {a} [http://www.dhmsmag.com]

Movie and Titlecan be subclassed without affecting the way Rumtableit~mruid
Vi~cotap.care  subclassed, This ability to independeatly —subclass Title. and
Rentableltem would be impossible to achieve if the videotape object had not first been
divided into Movie and Videotape components. Obviously, all of this nesting and
subclassing can get complex, hut it shows the flexibility the Type Object pattern can

give you-flexibility that would be impossible without the pattern.

54



Manufacturing

Consider a factory with many different machines manufacturing many different
products. Every order has to specify the kinds of products it requires. Each kind of
product has a list of parts and a list of the kinds of machines needed to make it. One
approach is to make a class hierarchy for the kinds of machines and the kinds of
products. But this means that adding a new kind of machine or product requires
programming, since YOU have tO define @ new class, Moreover, the main difference
between different products is how they are made. You can probably s~ecify a new kind
of product just by specifying its parts and the sequence of machine tools that is needed
to make it.

It is better to make objects that represent "kind of product” and "kind of'machine," They
are both examples of type objects. Thus, there will be classes such as Machine, Product,
MacbineType, and ProductType. A ProductType has a "manufacturing plan" which knows
the MachineTypesthat make it. But a particular instance of Productwas made .on .a
particular set of Machines, This lets you identify which machine 1is at fault when a
product is defective.

Suppose we want to schedule orders for the factory. When an order comes in, the
system will figure out the earliest that it can fill the order. Each order knows what kind
of product it is going to produce. For simplicity, we'll assume each order consists ofone
kind of product. We'll also assume that each kind of product is made on one kindoof
machine. But that product is probably made up of other products, which will probably
require many other machines. Thus, Product is an example of the Composite iplittern
fGHJIV9S5, page 163) (not shown below). For example, a hammer consists of d handle
and a head, which are combined at an assembly station. The wooden handle is carved .t
one machine, and the head is cast at another, P.i'OductTypeand Omer are also COHlpéSIiGS,

but are not shown.



DotieCalegory cagory | e ffe | RMOiJritmi
file

R
A

| | | |

ties
Dosumeniery l Hode l HwTo } TrfeCompesite
Rsl&dllorie L . Yideodi tk
Lmuiidlotie HowToSeriot P
nmberOfilisks

Figure 3.19 {b}[http://www.dbmsmag.com/]

There are six main classes:

Object
. MachineType (name machines)
. Machine (type location age schedule)
. ProductType (manufacturingMacbine duration parts)
. Product {typecreationDate manufacturedOn parts)
. Order (productType dueDate requestor parts item)
. Factory {machinesorders)

We will omit all the accessing methods, since they are similar to those in the video store
example. Instead, we will focus on how a factory schedules an order.
A factory acts as a Facade [GHIN95, page 185], creating the order and then schedtili:rig
it.
Factory>>orderProduct: aType by: aDate for: aCustomer
| order |
order := Order product: aType by: aDate for: aCustomer.
order scheduleFor: self.
"order
Order>>scheduleFor: aFactory
| partDate earliestDate |
part.Date := dueDate minusDays: productType duration.
parts :=productType parts collect: [:cachType |
aFactory
orderProduct:eachType

56



by: partDate
for: order].
product Type
schedule: self
between: self datePartsAreReady
and: dueDate
ProductType>>schedule:  anOrder between: startDate and: dueDate
(startDate plusDays: duration)> dueDate
ifTrue: [aniirder fix.Schedule].
manufiicturingMachine
schedule: anOrder
between: startDate

and: dueDate

There are at least two different subclasses of ProductType, one for machines that <dan
only be used to make one product at a time, and one for assembly lines and Other
machines that can be pipelined and so make several products at a time. A non-pipelin.cil
machine type is scheduled by finding a machine with a schedule with enough free time

open between the startDate and the dueDate.
NonpipelinedMachineType>>schedule; aniirder between: startDate and: dueDate

machines do: [:each || theDate |

theDate :=each schedule
slotOfSize: anOrder duration
freeBetween: startDate
and: dueDate.

theDate notNil ifTrue:

["each schedule: anOrder at: theDatelJJ.

antuirder fixSchedule

A pipelined machine type is scheduled by finding a machine with an open slot behveen

the startDate and the dueDate.
PipelinedMac.hineType>>schedule:anOrder between: startDate and: dueDate

machines do: [reach| | theDate |

theDate :=each schedule
slotOlISize: |
freeBetween: startDate
and: dueDate.

theDate notNil iffrue:

["each schedule: anOrder at: theDate]].

57



anOrder fix.Schedule

This design lets you define new ProductTypes without programming. This lets product
managers, who usually aren't programmers, specify a new product type. It will be
possible to design a tool that product managers can use to define a new product type.by
specifying the manufacturing plan, defining the labor and raw materials needed,
determining the price of the final product, and so on. As long as a new kind ofi:[pdtict
can be defined without subclassing Product, it will be possible for product managers to
do their work without depending on programmers.

There are constraints between types. For example, the sequence of actual
MachineTools that manufactured a Product must match the MachineToo!Types ii1' the
manufacturing plan of its Produet'lype. This is a form of type checking, but it canibe
done only at runtime. It might not be necessary to check that the types match when the
sequence of MachineTools is assigned to a Product, because this sequence will be built by
iterating over a manufacturing plan to find the available MaehineToos. Howevel‘
scheduling can be complex and errors are likely, so it is probably a good idea to-double

check that a Product's sequence of MacbineTools matches what its ProduetType S3ys it
should be.

3.20 Known Uses
Coad-
Coad's Item Description pattern is the Type Object pattern except that hc ’only

emphasized the fact that a Type holds values that all its Instances have in common.

N

used an "aircraft description" object as an example. [Coad92]

Hay
Hay uses Type Object in many of his data modeling patterns, and ’diSdiiS’SéS it as a
modeling principle, but doesn't call it a separate pattern. He uses it to define 'CYpe‘SnyI
activities, products, assets (a supertype of product), incidents, acCOunts’, tests,

documents, and sections of a Material Safety Data Sheet. [Hay96]

Fowler
Fowler talks about the separate Object Type and Object worlds, and calls these/the
"knowledge level" and the "operational level." He uses Type Object to define types for

58



organizational units, accountability relationships, parties involved in relationships,
contracts, the terms for contracts, and measurements, as well as many of the things that

Hay discussed. [Fowler97]

Odell

Odell's Power Type pattern is the Type Object pattern plus the ability for. subtypes
(implemented as subclasses) to have different behavior. He illustrates it with .the
example of tree species and tree. A tree species describes a type of tree such .as
American elm, sugar maple, apricot, or saguaro. A tree represents a particular.trecjia.gly
front yard or the one in your back yard. Each tree has a corresponding tree spegit!~ tliat

describes what kind of'tree it is. [M095]

3.21 Sample Types and Samples

The Type Object pattern has been used in the medical field to model medical samples.

A sample has four independent properties:

* The system it is taken from (e.g., John Doe)
* The subsystem (e.g., blood, urine, sputum)
* The collection procedure (aspiration, drainage, scraping)

* The preservation additive (heparin, EDTA)

This is easily modeled as a Sample object with four attributes: system,
subsystem, collection procedure, and additive. Although the systems (the person

who gave the sample) is different for almost all samples, the triplet (subsystem,

collection procedure, and additive) is shared by a lot of samples. For examp e,

medical  technicians refer to a  "blood" sample, meamng a
blood/aspiration/EDTA sample. Thus the triplet attributes can be gathered into a

single Sample'lype object.

A SampleType is responsible for creating new Sample objects. There are about 5,000
different triplet combinations possible, but most of them don't make any sense, so>the
system just provides the most common SampleTypes. If another SampleType is r:1~ded,
the users can create a new one by specifying its subsystem, collection procedure,.and

additive. While the system tracks tens of thousands of Samples, it only needs to track

59




about one-hundred Sample'lypes. So the SampleTypes are TypeObjects and the Samples
are their Objects. [DeKezel96]

Signals and Exceptions

The Type Object pattern is more common in domain framewdrk.s(t:flan Pv~ridor

frameworks, but one vendor example is the Signal/Exception framework in

VisualWorks Smalltalk. When Smalltalk code encounters an error, it cari raise an

Exception. The Exception records the context of where the error occurred for debugging

purposes. Yet the Exception itself doesn't know what went wrong, just whe:reJc;iit

delegates the what information to a Signal. Each Signal describes a potentiaj.Ycypejqf
problem such as user-interrupt, message-not-understood, and subscript-out-of-botirids.
Thus two message-not-understood errors create two separate Exception instances/that

point to the same Signal instance. Signalis the TypeClass and Exception is the iClass.

[VW95]

Reflection

Type Object is present in most reflective systems, where a type object is oﬁen~‘:§aﬁéd:?'a
metaobject. The class/instance separation in Smalltalk is an example of the Type Object
pattern. Programmers can manipulate classes directly, adding methods, “heing the
class hierarchy, and creating new classes. By far the most common use of a class is to
make instances, but the other uses are part ofthe culture and otten discussed, even if not
.oftenused. [KRB91]

Reflection has a well-deserved reputation for being-hard to understand. Type OBJGC’L
pattern shows that it does not have to be difficult, and can be an easy entrance mto the

more complex world ofreflective programming.

3.22 Related Patterns

3.22.1 Type Object vs. Strategy and State

The Type Object pattern is similar to the Strategy and State patterns [GHNO95, page
315 and page 305]. All three patterns break an object into pieces and the creal objecti
delegates to the new object-either the Type Object, the Strategy, or the State. Strategy

60



and State are usually pure behavior, while a Type Object often holds a lot of shared
state. States change frequently, while Type Objects rarely change. State solves the
problem of an object needing to change class, whereas Type Object solves the problem
of needing an unlimited number of classes. A Strategy usually has one main
responsibility, while a Type Object usually has many responsibilities. So, the patterns

are not exactly the same, even though their object diagrams are similar.

3.22.2 Type Object and Reflective Architecture
Any system with a Type Object is well on its way to having a Reflective Architecture
[BMRSS96J. Often a Type Object holds Strategies for its instances. This is agoodway

to define behavior in a type.

3.22.3 Type Object vs. Bridge

A Type Object implementation can become complex enough that there are Class and
Type Class hierarchies. These hierarchies look a lot like the Abstraction and
Implementor hierarchies in the Bridge pattern [GHNO95, page 151], where ClaSSISﬂle

abstraction and Type Class is the implementation. However, clients can c‘(')"I:,I“yly\,ifo)l"’;lte

directly with the Type Objects, an interaction that usually doesn't occur WIth ;Cdnc‘:ijé“:

Implementors.

3.22.4 Type Object vs. Decorator N
An Object can seem to be a Decorator [GHNOS5, page 175] for its Type Object. An

.Object and its Type Object have similar interfaces and the Object chooses T+

messages to forward to its Type Object and which ones to enhance. HoWéVgi;a

Decorator does not behave like an instance ofits Component.

3.22.5 Type Object vs. Flyweight e
The Type Objects can seem like Flyweights /[GHN95, page 195] to their Ob_}cts
However, Type Object does not involve a Flyweight Factory that provides acceés.‘tO a
Flyweight Pool. Nevertheless, two Objects using the same Type Object might think that
they each have their own copy, but instead are sharing the same one. Thus it is

important that neither Object change the intrinsic state ofthe Type Object.

61



3.22.6 Type Object and Prototype
Another way to make one object act like the type of another is with the Prototype
pattern [GHN95, page 117], when each object keeps track of its prototype and

delegates requests to it that it does not know how to handle.

3.23 Pattern Language for Relational Databases and Smalltalk

Early in 1995 we (two experienced Smalltalk programmers) began a project in analysis
and design that wouldtax our abstraction abilities to their limits. The result of this
ongoingexercise is a pattern language we call Crossing Chasms. This article describes
Crossing Chasms as well as exploring the thought processes that led us to write it, what

we discovered in its writing, and how we have used the document since its creation.

3.24 What motivated us to write a pattern language?

The business of companies like Knowledge Systems Corporation (KSC) and The Object
People is to transfer information about the process of building objest myatmms ﬁ’om
consultants to clients. One of the most common themes running tnrouzgh many of the

object systems our two companies have built over the past five years is the need to

integrate Smalltalk with relational database technology. We have found that thechents
of our training and consulting businesses are extremely {mtars=te in this area,;‘ andoﬁen

need guidance to understand how these two technologies combine.

In early 1995 we were both involved in creating new material for cliei1,t,..g~t1t~re4
mentoring and classroom education. We felt the need to include some infomia,tiou.1.pout
relational databases, but were uncertain as to how to organize that information. Eacfocff
the Smalltalk vendors (Digitalk, Parcplace, and IBM) had their own, unique class
libraries for handling relational database queries. On the surface, there did not appear to

be much commonality among the three.

Over the past several years we had built many systems using Smalltalk and relational
databases with major corporate clients. KSC's first such effort had been with a

government organization in early 1992, followed by projects for a national bank, a

62




major telecommunications company, a telecommunications equipment 1:nantifactiirer,
and a pharmaceutical company. We had learned many lessons about building this kind
of system, and had found out what worked and what didn't. Although.each,system,was
unique, we felt that there were some commonalties among all of them, .In .facl}ithe
design for each usually incorporated the best ideas from all the previous oriesrieven
though none ofthe systems shared any code.

It was this desire to record our lessons learned, to be better equipped for future projects,
and to find unity among the disparate vendor implementations, that led us to explore
pattern languages as an avenue for recording this design and implementation
information. A pattern language is a set of related patterns that guidesa reader.through.a
set of closely linked problems and their solutions. »

The pattern is a literary form invented by the architect Christéplieri<J¥lé:xaiitiet
describe the decisions involved in designing and building communities and buildings
The shortest way to- describe the essence of a pattern is "A solution to a problem in a
context". It records how the interplay of different "forces" on a pummularproblem can
lead to their resolution in a template solution. The pattern form was introduced into the

software community by Ward Cunningham and Kent Beck in the early 1980 It has

become popular in recent years due in large part to the work of Gamma; >{"ﬁa‘u"
others.

We chose to begin writing a pattern language because the pattern form seemedfto best
captulre the spirit of the notions that we had, We felt that a pattern language‘ﬂiét could
lead readers in a non-linear fashion from one topic to the next could bring togetﬁér'*ﬂié
interconnected threads of thought that we had. It also provides a structure in which to
study the issues and their solutions by naming and isolating the essence‘bf*‘e‘éch
problem. We were also interested in exploring the issues involved in writing.pafter.iis

in this sense Crossing Chasms was an experiment in writing a large pattern langnageZ

3.25 How did we find our patterns?

We first wanted to identify all the issues and problems that arise in dz=igm ;in’jg‘s and
building a framework marrying relational databases and Smalltalk. R
In reviewing the process of building such a system it became apparent that we could

split the set of problems roughly in two. The problems of defining the tables andobject

63



models we categorized as "static" patterns. Those involved in resolving the runtime
problems of object-table mapping we put in a category called "dynamic" patterns. We
then realized that a number of the problems we were identifying were not so much
directly related to the object-table mismatch but were really client-server issues. These
problem-solution pairs were generic enough to be applicable to any client-server
architecture, object-oriented or not, so we developed a third category ("client-server"

patterns) for them.

Lastly we saw that the decision to go with a client-server model was just one
fundamental architectural decision out of many. Many other architectural issues must
also be resolved, including the modularization of functionality into application layers
and the choice ofthe number of tiers that the system would include. These-patterns we

termed "architectural" patterns.

Crossing Chasms grew in size and complexity as new problems were identified. 'To
discover the patterns we first immersed ourselves in the literature and subject area. We
found our patterns in numerous places. Our own experience in building systems ledus

to identifying most of the major ones. Studying the documentation of existing
frameworks, both commercial and proprietary, added to the list as well. Reading theOO
literature that addressed the subject, (Rumbaugh, Jacobson, Gamma, and others)ialsd
contributed some patterns'to the list, particularly in the static category.

‘Eventually after defining the basic patterns and formulating them as a pattern 'amisg~
_we came up with some new ones based on feedback from our colleagues. This whole
process followed the 3 I Paradigm of mastering a subject area First you lunlli¢1"se

yourself in a field. This leads you to Imitate the solutions of others, until finally you can
Innovate and come up with your own solutions.

As mentioned above, Crossing Chasm's patterns are categorized .into four groups:
architectural, static, dynamic and client-server. In the following tions we will
introduce a few of the most important patterns in the language in their respective
categories. Unfortunately, we can only present a taste of our language as 8 whole. Our
current version of the language is over 90 pages long and very dense in text and
diagrams. We have discovered almost forty patterns, of which we introduce eleven here,
The presentations of the individual patterns here are by necessity very brief; the pattern

language goes into much more depth in each pattern.

64



3.26 The Patterns of Crossing Chasms Architectural Patterns

When a project needs to use both Smalltalk and relational technology there are a group
of issues at a very high architectural level that need to be addressed. Surprisingly, we
did not recognize many of these issues until well after we had written the rest of the
patterns in Crossing Chasms. These issues so pervaded our thinking that it took a
second look at the problem to even recognize their existence.

One of the most important decisions to make about the design of a system is its overall

software architecture. This decision determines the direction that development will take.
3~27 Pattern; Four-Layer Architecture

Problem:
What is the appropriate structure and grouping of classes in a Smalltalk client-server

system? What architecture is most appropriate?

Figure 3.27 Four. Layer Architecture

Solution:

Employ a four-layer architecture consisting of'a view layer; an. application model layer,
a domain layer, and a supporting infrastructure layer (see Figure I: Four Layer
Architecture). Determine the iritenaceS betweenthe layers well ahead of time and keep
the communications paths well-defined-Enforce the .layering through design and code

Ircviews.

Layered architectures are a well-known idea in Computer Science, but it is rare that

new Smalltalk programmers see their designs in terms of well-defined layers.

65



Nevertheless, proper layering is important for reusability and maintainability. Brown

[96] deals with this issue at length.

Another key decision that has to be made is the order in which development events must
occur. It is especially difficult for first-time users of Object Technology 16 develop an
ordered development process. After seeing several bad decisions made iri<pfdj~ts -We

had observed, we recognized this pattern in retrospect.
3.28 Pattern: Table Design Time

Problem
When is the best time to develop your relational database schema? In what order do

object design and schema design occur?

Solution;

Design the relational database schema based upon a first-pass object model done using
a behavioral modeling technique. It may be more prudent to wait until after an
architectural prototype has been built before designing the schema (see Figure 2:
Development Lifecycle). Remember that an 00 design is in reality a first-pass v‘\'(jﬁﬁi.éi*‘
design. Doing things in the reverse order (schema first) often lead to a poorly faétoré

00 design with separate "function" and "data" objects.
g p ]

Figure 3.28 Development Lifec'/cle

006



Static Patterns

One of the fundamental problems in developing a total enterprise solution using Object
Technology is the development of relational database schemas from object models. Vie
were lucky in finding that this is a well-represented area of research that had been
covered well over the past several years. Our job in developing the static patterns was to
pick the "best of breed" of the available approaches and integrate them into a complete,

self-consistent method.

3.29 Pattern: Representing objects as tables

Problem: R
How do you map a set of objects into a relational database schema? Conslﬂiﬁpggﬂiat
complex objects do not map neatly into tables, objects do not have keys, iab}es)de not
have identity, and the datatypes do not match between worlds, how do you petfori:ti

mapping?

Solution:

Start with a table for each persistent object. Determine the "type" of each instance

variable and create a column for each that have "base" datatypes. Use the Refireser

Collections pattern to handle collections. Use the Foreign Key refexenge f}a:em' o

handle other non-base datatype objects. Finally, use the Object Identifier patt@fﬁ;

3.30 Pattern: Object Identifier

Problem:

How do you preserve an object's identity in a relational database? Each md 'dual

object's identity must be preserved in the database and there should be nenstluyri:()'lyl‘ﬁ&_

duplicates.

Solution:
Assign an independent identifier (called an Object Identifier, or OID) to each persistent

object. An easy way to do this is to use a sequence number generator if one is available

67



in your particular database. If not, an OID table can be used. OIDs are usually simply

long integers that are guaranteed to be unique for a particular class of objects.

3.31 Pattern: Foreign Key Reference

Problem:
How do you represent objects that reference other objects that are not "base datatypes"?
The First Normal Form Rule (INF) excludes tuples from containing other tuples;

therefore Object relationships must be represented using only legal column values.

Solution:
Assign each object a unique OID. You then add a column for each instance variable that
is not a base daiatype or a collection. In that column store the OID of the referenced

object, then declare the column as a foreign key.

3.32 Pattern: Representing Collections

Problem:

How do you represent Smalltalk collections in a relational database? The first normal
form rule of relational databases forbids tuples from containing sets of other elements.
Other properties of Smalltalk collections also prove bothersome. For instance, objects
may be contained in many collections (M-N relationships). Also, collections have
special properties (sort order, duplicates). Finally, Smalltalk. collections can.be either

heterogeneous or homogenous

Solution:

Create a relationship table for each collection. A relationship table maps. the primary
keys .of the containing objects to the primary keys of the contained objects. The
relationship table: may store other information as well, for instance the class of
contained object, or the position of object (OrderedCollection, SortedCollection). If a
collection is heterogeneous, then the class of each element is also stored in that

table.Other static patterns in Crossing Chasms dealt with the issues of representing

68



inheritance in a relational database and determining to what extent a domain model

must be modified to handle database issues.

3.33 Dynamic Patterns

In addition to the static and architectural parts of Crossing Chasms, we found

important to record what we had learned about writing Smalltalk code to handle
relational database connection. This section of Crossing Chasms we referred to as the
"dynamic" patterns, since they deal with the movement of information in and out of the

database, as opposed to the static database schema.

One of'the first patterns we recorded was Broker.

3.34 Pattern: Broker

Problem:

How do you separate the domain-specific parts of an application from ﬂledatabase-

specific parts?

Solution:

and writing objects to the database.

The Broker idea is a popular one in 00 circles and many papers hai(é been Wntten ,'
about its use. However, it is still not being used as often as it should. We féel is is
due 1 part to poor examples in the Smalltalk vendor's documentatiort that tend to shcw
simplistic examples of database connectivity that mix domain ﬁmcth 12 tyw:th
database functionality. Developers new to Object Technology, or who come "‘ to.

Smalltalk from Visual Basic or Powerlhiilder backgrounds often miss thé} 1§ubﬂétybf

69



why Brokers are important. However, they are central to maintaining the integrity of the
layers in a 1 Four-Layer Architecture.
As we looked back on the broker implementations we had built, we found that two more

patterns occurred in the best implementations; Query Object and Object Metadata.

3.35 Pattern: Object Metadata

Problem:
How do you define the mapping between the elements of an object class and the

corresponding parts of’a relational schema?

Solution:
Reify the mapping into a set of Map classes that map object relationships into rdiiﬁ"o,n&l

equivalents. Map objects also map column names to instance variable selectors in

domain objects.

3.36 Pattern: Query Object

Problem:

How do you handle the generation and execution of common SQL statefi:i';ﬁnts(and?

minimize the amount of duplicated.code between broker classes?

Solution: o

Write a set of generic classes that generate SQL statements from comn1.om t& A

hierarchy of classes representing SQL statements can generate the appfoprise Q ,

given a domain object and its Map object metadata representation.

70




Domdin
Object

Columi
viap

Figure 3.36: Broker Interactions [Ms Access]

The three previous patterns, when combined, make up a powerful mini-arcliitecfiire.
Each domain object will have a set of Map Gbjects that represent its object rela.tio11Slips
as meta.data. The Broker classes that are responsible for saving and restoring those
objects can use Query Objects to generate the appropriate SQL statements from the data
held in the Maps. In this way, proper layering can be preserved since the objects in the
Domain layer are not directly knowledgeable about the internals of the SQL generation,
while' the Brokers themselves obtain information about their domain classes only
indirectly through the Map objects. A diagram of the interactions of these classes is

shown in Figure 3: Broker Interactions.

While the Broker architecture worked well to allow us to move objects in and outofthe
database, the performance of some of our early attempts was less than adequate. ilri
particular, early versions often spent too much time reading in data from the database
that was never subsequently used. In trying to resolve this, we found that the il
Prd~ pattern from Gamma provided us with an effective solution, We could. ofteti~~
Proxy as a placeholder for information that had not yet"been read in from the dat~~~-:1t
When that information was needed, the Proxy would collaborate with the Broker to read

it In, and then replace itself with the new object.

4l



Other topics addressed by the dynamic patterns included handling database transactions
and the order in which connected objects must be written to or restored from the

database.

Client-Server Patterns

As we mentioned previously, there were many issues we discovered thatw~re 110t
specific to Smalltalk, or even 00 in general, but were rather applicable to any client-
server systems. Two of these patterns were | Client Synchronizationand | Cache

Management.

3.37 Pattern: CHent Synchronization

Problem:
How do you handle resynchronizing the client image and database when there Jire
errors? What do you do if you change the value of data held in the client's memdl'Y<ahd

the corresponding request to the database fails?

this case any error is deemed to be catastrophic and you must start a new sessﬂ@ﬂ T}IIS&S

not ayery robust solution; butit is a quickly implement able one.

A second solution is a playback mechanism that has a logging facility. Each change is
-logged in a local log. If there is a failure the cache is flushed and you nﬂﬁlaylﬁ all 'the

events as needed. This solution is more robust, but it is not trivial to m:lplement. ‘

Solution; -
Mark the objects appropriately as deleted, added or updated during the session. If t};e
update to the database succeeds then remove the mark. If it fails théﬁ féti‘y‘f,‘the

transaction. If it continually fails (e.g., times out) note the error and flush th

With the changed objects marked it is possible to recover to the original state b}' ﬁ!mg
out the changed objects to local storage and performing recovery at a more propitious

time.

72



3.38 Pattern: Cache Management

Problem:

How do you best manage the lifetime of persistent objects stored in dll RDB? Caches
can increase client performance, but they also increase client memory size. Caches can
become out of date, necessitating frequent updates. Caching also generally increases

application complexity.

Solution:
Use a Session object that has a bounded lifetime and is responsible for identity cache
management of a limited set of objects. Balance speed vs. space by flushing the cache

as appropriate. Use a query before write (timestamp) technique to keep caches accurate.

How have we used Crossing Chasms?

Since writing Crossing Chasms we have successfully applied its patterns in a number of
different instances. It has proven to be a very useful teaching aid - we subsequently have
developed several lectures for classroom use from the pattern language. The structure of
the pattern language proved to be a useful :framework for discussing the different
concepts in object to relational connectivity. The topics of the lectures we developed
from the pattern language paralleled the organization of the language. In addition, some
of the’ patterns have been used as a basis for other lecture topics in our classrodin
education. We have also found that students like having the pattern language as an aﬁer—,
the-fact reference after seeing presentations based on it. hi this way, we can mesam a
high-level overview and then allow the students to investigate the deeper issues at then'

own pace.

Several companies have used the patterns in Crossing Chasms as part of their objéét-
relational architectures as a result of our presenting them as part of our i ,g We
have /found that addressing the issues covered in Crossing Chasms in the
development process can preclude many of the missteps that first 00 projects“ often
take.

We have also developed a conference tutorial based upon the pattern language arid

presented it at Smalltalk Solutions '96 in New York. Again, we have had feedback that

73



students appreciate using the pattern language to gain deeper understanding ofthe issues

after the presentation.

The static portion of Crossing Chasms was presented at the Plop (Pattern Languages of
Programs) '95 conference in September 1995. Those patterns have been published in

Brown [96].

3.39 Crossing Chasms: The Architectural PatternsPAITERN
NAME: FOUR LAYER ARCHITECTURE

Problem:
When designing an object system for a client-server environment what is the most

appropriate way to structure the overall application architecture?

Forces:

When designing the software architecture in a client-server system, you must come up -
with a way to divide the labor among team members. Your architecture must also be
simple enough to be easily explainable to new team members, so they can understand

where their work fits.

In looking for application architecture, many developers have looked to the pioneering
MVC architecture. However, MVC is not the be-all and end-all of object design. While
a proper architecture should address the concerns addressed by tv!VC, and may trace its
descent from MVC, modern software systems must also address issues not covered by

classic MVC.

MVC promoted reuse by factoring out the Ul widget away from the domain 9bjects.
Modernrclass libraries derived from MVC have also discovered yet another .set\of
potentially useful and reusable abstractions in separating out the aspect of mediating

between views and adapting views to domain models into another set of classes.

14



However, this still does not address the connection of the domain to the outside world
(i.e., object persistency mechanisms, network protocols, etc.). A complete architecture

for client-server systems must address these issues as well. Therefore:

Solution:
Factor your application classes into four layers in the following way (see Figure T: Four
Layer Architecture):
* The View layer. This is the layer where the physical window and widget objects
live. It may also contain Controller classes as in classical MVC. Any new user
interface widgets developed for this application are put in this layer. In most

cases today thislayer is completely generated by a window-builder tool.

* The Application Model layer. This layer mediates between the various user

interface components on a GLIl-screen and translates the messages thafthey

understand into messages understood by the objects in the domain model. Ifis
responsible for the flow of the application and controls navigation :from window
to window. This layer is often partially 'generatedby -a -window-buildef an.U
partially coded by the developer.

« The Domain Model layer. This is thelayer where most obiects found in'an 00

analysis and design will reside. To a great extent, the objects in this Iayer‘ca;i“ﬁe

application-independent. Examples of the types of objects found in this 13.Yer

may be Orders, Employees, Sensors, or whatever is appropriate to the problen

domain.

* The Infrastructure layer. This is where the objects that represent coriti.¢¢tiotis
to entities outside the application (specifically those outside the mb}ect ﬁoﬂd}

reside.

Discussion:

This choice of layers can have many beneficial effects on your application if it is

applied in the proper way. First, since the architecture is so simple, it is easy to explain

to team members and so demonstrate where each object's role fits into the "big picture".

75




If a designer is very strict about clearly defining where objects fit within the layers, and
the interfaces between the layers, then the potential for reuse of many objects in the
system can be greatly increased. A common problem with many object designs is that

they are too tightly constrained to the limits of the particular application being built.

Many novice designers tend to put too much of the logic of an application in the
Application Model layer. In this case, there are few, if any, domain objects that are
potentially available for reuse in other applications.

Another benefit of this layering is that it makes it easy to divide work along layer
boundaries. Woolf demonstrates how a "layered and sectioned architecture" can be
made the basis of a source-code control system. It is easy to assign different teams or
individuals to the work of coding the layers in four-layer architectures, since the
interfaces are identified and understood well in advance of coding.

Finally, a four-layer architecture makes it possible to code the bulk of yoursystem(in
the domain model and application model layers) to be independent of the choice of
persistence mechanism and windowing system.

Sources:

Layering is not a new idea in computer science - Tannenbaum mentions it in
conjunction with the OSI seven-layers communications model. Shaw discusses layering
as an architectural choice.

Hendley discusses the benefits in portability gained by additional layering in the View
and Application Model layers in Smalltalk. Brown further investigates the reasons for
applying four-layer architectures for Smalltalk.

Related Patterns:

Trim and Fit Client shows how a four-layer architecture can be used in conjunction with

a 3-tier machine architecture in a distributed object environment.

3.40 PATTERN NAME: THREE-TIERARCHITECTURE

Problem:
How do you distribute responsibility among the different machines in an enterprise to

best take advantage of each platform's unique capabilities?

Forces:

76



Many organizations plan large-scale client-server projects by planning for a large
capital purchase of desktop machines and network servers, to be purchased along with
the development of new software. However, the technology used to develop the
software will often change faster than the plan anticipates. Several releases ofahe target
operating system may occur between the time a large project is started and its final

delivery.

Because of the above, the client machines purchased are often not up to the final size of
the software that is produced. It is not uncommon to see client-server applications in
production today where the total amount of client code resident- in memory at any Jime
is 12 megabytes or higher.

It must also be kept in mind that the number ofclients in a wyurm.. Will be from one to
three orders of magnitude greater than Jthe number of servers maSYSfﬁm ThlS
multiplier will heavily weight the cost.of a system towards that of the‘CIiéﬁtQ If the
choice is to buy additional memory and a faster processor for 100 -H=wnts; or for one

server, the choice is fairly obvious. Therefore:

Solution:
Utilize a machine architecture that splits responsibility into three "tiers" of computation.
These tiers are:

*- The Client. The client should be primarily responsible fur the displayiand
interpretation of information. It is the focal point for user intera.cti.on..with the
system a@sa whole. As such, the client can be optimized for display arid fast
network access, but may not need to have the memory and computatio:cial p@WGl‘

available'in other tiers.

* The Departmental server. The departmental server is usually a dedicatedfiigli ..
end PC-style machine or a specialized UNIX. workstation. The server is ca.pa.bl¢
of handling many more computations per S~0.p.gtqathe clients, and ofteriih.asa
much, much greater amount of physical memory and disk space. This makes<it
valuable as a localized cache of information shared among many clients. This
relieves the burden of storage and computation on the client, and can reduce the

network traffic to the Enterprise server.

Tl



* The Enterprise server. This is traditionally a mainframe. While mainframes
have gone out of fashion in the past few years, the fact still remains that for
high-volume, high-speed transaction processing, there is no better technology.
Organizations have invested a great deal of time and money in these machines
and their software -- it isin their interest to preserve as much of that investment

as is possible, while still keeping all options open for the future.

Discussion:

A three-tier approach (see Figure 2: Three-tier architecture) gives the best solution for
new development, while still supporting existing systems. Ifitisimplemetitedcorrectly;

the clients are completely de-coupled from the mainframe, Irtteffliediate?s~etrcode can
be developed in such a way as to minimize dependence Ori the :r:tiairifi:m:rie<sothal:itcan
be phased out over tiine ifthat is desired.

Related Patterns:

Phase-In Tiers shows how to move from a two-tier client-server approach to a three-tier

one.

Enterprise Server

Departmental Server

Client

Relational Store

Relational or Object Store

Figure 3.40: Three-tier architecture

78




3.41 PATTERN NAME: PHASE-IN TIERS

Problem:
You must come up with a solution that supports both your current and planned network
architecture, and yet leverages your investment in object technology to produce results

quickly.

Forces:

You need to best utilize existing and new computing and network resources. You would
like to move to a client-server set of solutions as quickly as possible, but there is no way
that everything can be replaced at once. The cost of a total redevelopment effort is
prohibitive, and your staff could not complete the effort in a reasonable length of time.

Therefore:

Solution:

A good approach is to begin all development on the client (sometimes resulting in a
prototype "fat client") and then push the code from the bottom two layers of a four layer
architecture onto a server as development progresses. In this way you can add tiers over
time, starting with a two-tiered system (i.e., a "fat client") and moving to a three-tiered

system later.

*Discussion:

Modern distributed object technologies like CORBA, GemStone, IBM Visual. Age
Distributed Option, and PP-D Distributed Smalltalk make it possible (in fact;:relativ-ely
easy) to move processing from client machines on to servers. Using thesetecbncfiilgies;
early releases can be made with fewer tiers than later releases without necessitatir:1.CBig

changes in the code of a system,

Using distributed object technology does not preclude using either relationali'br
OODBMS technology as appropriate for object persistence on the server(s) inanyof'the
upper tiers. In fact, one common solution is to utilize an ODBMS for object persistende

between tiers one and two, and an RDBMS for persistence between tiers two and three;

79



Related Patterns:
Trim and Fit Client discusses how to distribute behavior between client and server. Four
Layer Architecture discusses how to distribute behavior among the layers of software

architecture.

3.42 PATIERN NAME: TRIM AND FIT CLIENT (OR DISTRIBUTE
LAYERS TWO BY TWO)

Problem:

Having seen that both "fat" and "thin" clients are not appropriate, what is the proper,
"healthy" division of behavior between client and server? How do you design a system
such that the system 1is responsive on a client's machine, and yet maintainable and

architecturally sound?

Forces:

Correctly distributing behavior in a client *server system is a difficult task. When PC's
were first introduced to major companies, they were most often used as terminal
emulator front-ends to existing mainframe programs. These so-called "thin" clients did
not take advantage of the capabilities or processing power of the new PC clients, and
could- not allow for complex user interaction to occur on the client side.

In a response to this, the first generation of client-server systems often overloaded the
client by placing all of the domain and display logic on the client. These so-called "fat"
clients were often characterized by being big, slow, and inefficient at utilizing machine
resources (network traffic, CPU horsepower, etc.). In a response to this, the "thin" client
model is back in vogue. This time the client consist™ of a Web browser that accesses
dynamically generated HTI\IL pages from a central host. This "Web 3270" approach
has the same problems as the original terminal-emulator approach in that the entire

processing takes place on the server end, and complex user interactim:1_isnotru.lg.Yr'ly,d,.

The price of memory, hard-drive space and processor speed come down almost daily.
However, it is apparent that the requirements placed on these resources by modern
software are expanding at an even faster rate. It is not uncommon to see large-scale

client-server programs that take up 15 or more megabytes of memory by themselves. At

80



the same time, these same advances that make client machines more powerful are also
making multiprocessor servers more cost-effective. However, most current client-server
systems do not take full advantage of this processing power, as the server is most often

used only as a data or file server. Therefore:

Solution:

Break the system for distribution between the Application Model and Domain Model
layers, or at some appropriate point inside the Domain Model layer (see Figure 3:
Distributed layers). The upper two layers will reside on the client. The lower two layers
will reside on the server. This will allow the code that receives the most user interaction
(the upper two layers) to handle these close to the user. On the other hand, the code that
handles the business logic will reside on the server. 'This makes it easier to design the
interaction between the objects in your system if you know ahead oftime where in the

network these objects will reside.

Discussion:

This solution minimizes the amount of processing that must be done on a Client, and
can reduce its need for memory and computational power. Note that once a system is
broken up this way it does not require that the top two layers be implemented in the
same language as the bottom two layers. A heterogeneous system will work if some
type of object-to-object communication is provided. It would be perfectly acceptable to
write the top two layers in Java, and the bottom two in C++ or Smalltalk, or have the
entire system written from top to bottom in one language. So long as an object
communication technology like CORBA or SOM can be used to provide intra-machine
message passing, there should not be any restrictions put on the choice of language or

platform.

Sources:

Texas Instrument's Control WORKS project was the first large-scale project I have seen
that successfully implemented this method. Since then many companies have broken
their applications up in this way -- it is in fact recommended by Gemstone as the best

use oftheir product.

Related Patterns:

81



Four-layer architecture demonstrates why systems should have clear layer boundaries

and how that helps make systems more manageable.

-

G

82




Chapter 4

DATABASE OPTION OF THE COMPUTER SALES PARTS
COMPANY

4.1  Basic Information aboutTables, Forms, Reports and Queries

4.1.1 Tables
A table is a collection of data about a specific topic, such as products or suppliers. Using
a separate table for each topic means that you store that data only once, which makes

your database more efficient, and reduces data-entry errors

Suppliers table

Pmdur;t fahle

Chai ) | 39

Chang 1 17
Aniseed Syrup 1 13
Camaivon Tigenii; 2 53

Figure: 3.1 {a} Tables organize data into columns (called fields)and rows (called

records): [Ms:.Acc.ess].

83



Each field 1n)he P.rr:lductstable contains the
same type>ofinformation .for every product,
such as the product's name.

Each record in the Products table contains
all the information about one product, such
as the product's name, supplier ID number,
units in stock, and so on.

Figure: 3.1 {b} Tables organize data into columns (called fields) and rows (called

records) [Ms Access].

4.1.2 Forms

You can use forms for a variety ofpurposes.

Create a data-entry
forrnto enter daiz
into a table.

Creat1? a customdialog
box to;ieceptuser
input and then cany
autan action based

Create a swilchbaard on lhat input.

formin apen ofher
forms or reporis.

Figure 3.2 {a}: Form Example [Ms Access]

&4




Most of the information in a form comes from an underlying record source. Other

information in the form is stored in the form's design.

Graphic elements,
such aslingsand
reclangles, are
stored in the fornrs
design.

Formview

Descriptive
text is
stared in Data comes from
the form's the fields in the
design. underlying record

source.

A calculation comes
from an expression,
Which is stored in
the form's design.

Figure 3.2 {b}: Form Example [Ms Access]

4.1.3 Reports
A report is an effective way to present your data in a printed format. Because you have

control over the size and appearance of everything on a report, you can display the

information the way you want to see it.

Creste maiing lsbels.
Add alogo . — Show totals
ar pichma.\ [ — ine chuirt.
o
Northwind Traders S,
o Grggg " Seles by Date :
racoros it ;
cetegariess e o Sales by Category
\ Sippel Date _ Gader IB: __ Sale st 15k B
# 10840 1 il , ——
10846 oog 171 Amras SerenBliee
10848 As00
Calculate 10850 1300 Lk exs : /
totals. - ~ T i #ozzas ( L
5480 Ehia
10853 "
10853

Figure: 3.3 {a} Example ofReports [Ms Access]

&5




u
(]
The reriort titie and
column headings
ere stored Inthe

report's design.

Figure: 3.3 {b} Example of Reports [Ms Access]

4.1.3 Queries
You use queries to view, change, and analyze data in different ways. You can also use
themas the source of records for forms, reports, and data access pages.

Bring together deda from multiple tables and soit # in @ particuler order.

Perfarm ceitulstions
of gralgs af recorgs.

Fardoea, Lid.
Exolic Liguids

Cfllculate G sull, cciunl:, or
arnither type ot ta!Eil, enet
then group the results bytwo
types of infonmiticio-one
dawn the left side of the
iitfitiefl .ind MNinClthier
ecrossthe top.

$7 696.11| $26 942 16| $13,800.18
526622 9544580 95868400 3
$7.737.14  '$6,175.75 $17,118.93 Si:
81366587 $10.494.94 $15921.14 $2

$11,624.00 $9,160.84 $3,S8!i07 $_f-

Figure: 3.4 {a} Example of Queries [Ms Access

86




The most common type of query is a select query. A selecLquery.retiieyes data from
one or more tables by using criteria you specify and then displays if ihithe order you

want.

Vlilten yiiurun the query,.Micl'asatt Access
retrieves the records you specify ...

Product Name

Figure: 3.4 {b} Example of'Queries [Ms Access]

4.2  Descriptiomfthe software
This software is design for those companies who deals with Computer hardware Sales
and P, urchase items. In addition the information about the company employees can also

be maintained in this program .

.A Main Menu consist of two (2) Option and they are as follows:

~ Main Form Page where you can add or delete data

~ Main Form Page where you can View different Report

87



Figure: 3.5 Software Examples

43  Main Form Page where youcad./adcl~ delete data

This is a main entrance for the main form page where you can add, delete or edit the
data. The main form pages consist ofthe following Option.
1. Company ID and Name Information
Product ID and Name Information
Purchase Detail (Add, Edit or Delete)
Order Information (Add, Edit or Delete)
Voucher Information (Add, Edit or Delete)

Customer Information (Add, Edit or Delete)

N v A L

Employee Information (Add, Edit or Delete)

43.1 Company ID and Name Information
In the Company information you canjust view the Company code and the Name of the
Company, you cannot ADD, EDIT or DELETE the information from there,.as these

information are Locked.

4.3.2 Product ID and NAME Information
In the Product information you can just view the Product code and the Name of the
Product, you cannot ADD, EDIT or DELETE the information from there, as these

information are Locked.

88



4.3.3 Purchase Detail
In this window all the information about Purchase is listed which gives the information
about what have been purchase. The information from this window can be edit, add or

deleted ifnecessary (e.g.)

Figure: 3.6.Spftware Examples

* Purchase ID : The ID of'the PurchaseOrder (Auto define}

e+ Company ID : The Code of the Company from which the Item has been
Purchase.

 Company Name: The Name of the Company from which the item has been
Purchase.

*  Product ID : The Code ofthe Product which has been Purchase.

e  Product Name : The Name ofthe Product Which has been Purchase.

4.3.4 Order Information

Order Information Option contain all the information about the Company name and ID
the product and ID that has been order, Date at which it has been ordered, Quantity of
the Item, Sales price, Discount%, Discount Amount and the Total Mount which has to

be paid.

89




e o

Figure: 3.7 Software Examples

4.3.5 Voucher'Detail

Voucher Contailltheil 1fofination about Ord.er Item .Purchase Method, this-windows give

the option to add, edit.ordelete the data if necessary which include

1215

FoR e e

There will be no Due date

Figure: 3.8 Software Examples

1
.

.

s

e Order ID, which can be selected from the list

-

* Payment Amount, which can also be selected from the list
* Payment Date

« Payment method

« Check number ifthe payment is done from the check

« Credit card type

* Credit card NO

e Credit card Holder name

90




Credit card Expiree date

Notes ifany.

43.6 Customer Information

Customer Information Contain all the Necessacyjriforttiation about the Customer, only

the Customer ID Field is Auto generated else rest Giﬁiﬁ Field s filled manually.

Figure: 3.9 Software Examples

4.3.7 Employee Information
Employee Information form Contain the information about he Company employees.
This form contains  various Sub-options, which cover all the information that is

necessary. Only the Em.ployee ID fieldis Auto Generated else the other en.lre field is

manual.

91



Figure: 3.10 Software Examples

4.4  Main Form Page where you can View different Report

At this stage we can view all the information about the dara, which has been entered in
the table with the help of the form, all the form has there own reports which can be view
or can be print if necessary. All the report shows date for the further information.

An example how to view the reports are shown in the below figure

Figure: 3.11 Software Examples




Just click the number 2 where it is written (main form pages where you can view

different report

After clicking it, other window will be open where all the reports are listed below,

e.g.

T

Figure: 3.12 Software Examples

Below are the examples of how the Reports are look like

93




S

Sy

Intel
Super
S3

100
101
102

£~TPX, 17

Sony

103

Sunny

104

As5s

105

Pro

106

Tosiba

107

Seagate
Quake

108

109
110

Acer

o
-

LG
TEC

111

112

IBM

113

Casper

114

Creative

115

Fugi

115

Mega
Netgate

116
117

Kenwood

HP

118

N S

119

Pro

120

AMD

121




Customer ID

}Company Name Contact First Name Contact Last Namé o

IIATP. LTd

john K .
State/Province  PostalCode 1ICountry
Mersin 00000-0010 1Cyprus
Extension fax Number

201 (090) 046-5464




et lovee,0  Ii=irsiName | iddie Name lLast Name

, [khan lo

TMiit;.,;re~-~~~

salesman

Address
State/Province Region Postal Code
~jhkj hklj 10456-4654
Home Phone Work Phone

Cyprus (446) 464-6464 (646) 464-6546

i:B-irthdate DateHired -!Salary Deductions IEmrgcyContact Name

3/14/78 9/4/01 $500.00

'Emrgcy Contact Phone

Photograph Notes
,There bas been two-deduction
after the term is over




EmployedD  FirstName MiddleName LastName
2/Kamran k

tTitle

~ales~

Address

432, block 6 alta

City IState/Province Region IPostalCode

kera liula 45646-4654

Country IHomePhone IWorkPhone

Cyp1us 1(134)~43-4646 1(464) 913-1646

Birthdate !Date Hired !Salary IDeductions.|[Emrg€&ontactName
6/211751 9/5/201 $6,520.00 | OIKamran

ErtirggyContactPhone
(466) 646-4644

'Photograph Notes




Employee 10 -1:ist Name . Middle Name 7 Last Name

31Salman khan :Ajdsflk
Title
ldaruiger
Address
kljhl
[ QN v, A— J-state /P ro vince  .Reglon +P-osta--» ,-Cod e,
jlk Ulkj jlkjl 156465-4464
pountry !Home Phone Work Phone
C~ypnis 1(646) 165-4619 (646) 131-6464
Birthdate IDate Hired ISalary Deductions IEmrgcy Contact Name
6/10/201 6/2/50 $9,650.00

Emrgcy Contact Phone

Photograph Notes




0ICIEN0 ISt soid  \Quantity

2 4/1/20
;Companilame IProducName

I00ICPU

SalePrice  !sumPric~~ JDiscount
L }PQIQL ‘
orde”O 'DateSold  !Quantity

31 6/4/01
\Companiame IProducName
\ 104 Monitors
IsaiePrice SumPrice Discount

$200.00 . scomsmsn,

JCustomeédame
41Imran
ProductD
9i
IDiscounfmountline Total
$100.00

Slaslam
'ProductD
Ti
DiscounAmountLineTotal
...53200.00:

........




ProductNgme

ProductiD

Disk drive

CD ROM
Display Cards
Floppy Disk
Keyboard

Mouse
Networking Cards
CPU

2

RAM

10

Power Adapte

1

Printer

12
13

Scanner

Speaker

14

Monitors




Purchase ID jCompany_ID Company Name
1 |OOlintel

{Product Name IPrice

;CD ROM

Purchase _ID [Company_ID Company Name
2 1041Sunny

‘ Product Name IPrice
;Floppy Disk




Order 10-

PaymentAmOunt-w-- 1
;CheckNumberjCredit Card Type jCreditcard #

Card Exp. Date

‘Notes
There will be noDue date

-w-.-Payment Date".-Payment.vigtho<t
2 $100.00

~12/5/01cash
I~rc:thglder Name

zon:terD . . PaymentAmount . Payrriiinfoatej>~ymerifMethod |
‘ 3 $200.00 9/1/16~ Card
/CheckNumber Credit Card Type CreditCard # Cardhélder Name

isa 421545236598-5632 John

\Card Exp. Date
jiN




CONCLUSION

Practically implementation of software for business though it is related to any field needs a
devoted and complete life cycle. In this project I personally visit two companies, which
deal with computer parts sales and purchase, so that I can understand their requirements
and the problems, which may occur in the implementation. The most important think that I
would like to mention, is the attitude (behavior), which has to be face during the life cycle
of the Company or Organization. And according to my point of view the reason of most

unsuccessful project is misunderstanding between the two parties.

The software was created after the deep analyst,iso th.a.tall.1Ifii.portant requirement of the
company those who dealing with computer sales and purchase can be accomplished.
‘Company and product, name and ID have been added in the program to over come the
mistakes, which may occurs. Plus a lock table and form has been generated which contain
the entire ID with name, so by mistake it cannot be merged with each other. Reports are
also generated with the help of the Queries for the update purpose. Which contain all
information with dates. Help file is also written so that there will be no problem while
handling the software.

The chapters of the software are also organized in such a manner so that all the information
related to DBMS can be understood easily, i.e. chapter one and two are the introductory
chapter, which give detail information about DBMS, chapter three contain a advance

information and chapter four contain information about the software with the help file.

103




REFERENCES

Reference to Book:

[1] Aptech Limited, Oracle 8.0

[2] Ms Access, Help

Reference to Electronic Source- Online source from Web:

[I]  DBMS and Internet Systems (http. llwww.dbmsmag.com/)
Miller Freeman, Inc.

[2]  http://www.csusm.edu/hylin/csl 11/notes/dbms.htm

Reference to Proceedings:

1] C. Dr Julie A. McCann, 1999, secton 2 "Database Application Lifecycle."
[2]  C.DrlJuliec A. McCann, 1999, secton 2 " Relational Data Base

Management Issues.

104




	Page 1
	Titles
	Faculty of Engineering 

	Images
	Image 1


	Page 2
	Titles
	ACKNOWLED~MENTS 

	Images
	Image 1


	Page 3
	Titles
	ABSTRACT 

	Images
	Image 1


	Page 4
	Titles
	TABLE OF CONTENTS 
	. 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 9
	Titles
	IT 
	LIST OF ABBREVIATIONS 
	Visual Basic 

	Images
	Image 1


	Page 10
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 11
	Titles
	Chapter l 
	INTRODUCTION TO DBMS 
	1.1 DATABASE 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 12
	Titles
	lc:>1 * 
	ıc::,ı & 
	·~ 
	CJ 
	1.3 DATABASE MANAGEMENT SYSTEM 
	1.2 WHAT MAKES UP A DBMS? 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Titles
	l 
	i 
	1.4 DATA MODEL 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 14
	Titles
	1.5 ADVANTAGES OF DBMS 

	Images
	Image 1


	Page 15
	Titles
	1.6 THE 3 LEVEL ARCHITECTURE 
	- 
	/ 
	- 
	t 
	t 
	- 
	- 
	' 
	l.6~1 External Level 

	Images
	Image 1
	Image 2


	Page 16
	Titles
	1. 7 PROPERTIES OF DBMS DAT A 

	Images
	Image 1


	Page 17
	Titles
	1.8 WHO USES A DBMS 
	1.9 HARDWARE FOR A DBMS 
	1.1 O DAT ABASE SECURITY 

	Images
	Image 1


	Page 18
	Titles
	1.11 HOW DATA IS STORED 
	1.12 DEFINITION OF ENTITY 

	Images
	Image 1


	Page 19
	Titles
	DATABASE APPLICATION LIFE CYCLE 

	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Titles
	l. 13. l DAT ABASE PLANNING 
	• 
	• 
	• 
	• 
	• 
	• 
	• 
	• 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 21
	Titles
	1.13.2SYSTEM DEFINITION 
	1.13 .3 Requirements Collection and Analysis 

	Images
	Image 1
	Image 2


	Page 22
	Titles
	l.13.4DAT ABASE DESIGN 
	• 
	• 

	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Titles
	Chapter 2 
	INTRODUCTION TO RDBMS 

	Images
	Image 1


	Page 25
	Titles
	2.2 THE RELATIONAL DAT ABASE MODEL 

	Images
	Image 1


	Page 26
	Titles
	2.3 RDBMS COMPONENTS 
	Relational Data Base Management Issues 
	17 
	• 
	2.4 

	Images
	Image 1
	Image 2


	Page 27
	Titles
	2.5 Countermeasures ( computer based) 
	2.6 Countermeasures (cont.) 
	2. 7 READ, WRITE, and MODIFY access controls 
	2.8 Countermeasures (cont.) 

	Images
	Image 1


	Page 28
	Titles
	19 
	Countermeasures (cont.) 
	Non-Computer Counter Measures 
	• 
	• 
	• 
	2.1 O Countermeasures (cont.) Associated procedures 
	2.9 

	Images
	Image 1


	Page 29
	Titles
	2.12 Privacy in Oracle 
	2.13 Integrity 

	Images
	Image 1


	Page 30
	Images
	Image 1


	Page 31
	Titles
	CHAPTER3 
	A Pattern Language for Object-RD:13MS Integration 
	3.1 The Static Patterns 
	3 .2 Table Design Time 

	Images
	Image 1


	Page 32
	Titles
	3.3 Representing Objects as Tables 

	Images
	Image 1


	Page 33
	Titles
	3 .4 Representing Object Relationships as Tables 

	Images
	Image 1


	Page 34
	Images
	Image 1


	Page 35
	Titles
	. 

	Images
	Image 1


	Page 36
	Titles
	3.6 Representing Collections in a Relational .ua.ı..a.ua..:,.;, 

	Images
	Image 1
	Image 2


	Page 37
	Titles
	3.7 , Object Identifier (OID) 

	Images
	Image 1


	Page 38
	Titles
	3.8 Foreign-Key Reference 

	Images
	Image 1


	Page 39
	Titles
	3.9 Static Patterns (Object Side) 
	3.10 Foreign Key versus Direct Reference 

	Images
	Image 1


	Page 40
	Images
	Image 1
	Image 2


	Page 41
	Titles
	3 .. 11 Using Patterns in Order Management Systems: A Design 

	Images
	Image 1


	Page 42
	Images
	Image 1


	Page 43
	Images
	Image 1
	Image 2


	Page 44
	Titles
	~~ 
	, ~,..~ 
	Figure 3.11.2 State design [http://wvı.ıvv.dbmsmag.com/] 

	Images
	Image 1
	Image 2


	Page 45
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 46
	Images
	Image 1
	Image 2
	Image 3


	Page 47
	Images
	Image 1


	Page 48
	Titles
	---- 

	Images
	Image 1
	Image 2


	Page 49
	Titles
	3.12 Other Patterns 

	Images
	Image 1


	Page 50
	Titles
	3.13 The Type Object Pattern 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 51
	Images
	Image 1


	Page 52
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1


	Page 53
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 54
	Titles
	(~~~= ) 
	I:=~ r ~ 
	3.14 Structure 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 55
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 56
	Images
	Image 1


	Page 57
	Titles
	3.15 The disadvantages of the Type Object pattern are: 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 58
	Titles
	3.16 There are other issues you may need to consider when implementing 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13


	Page 59
	Titles
	Sample Code 
	50 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 60
	Titles
	renter ::= aCustomer 
	Thus it chooses to implement its is Rented behavior itself but delegates 
	51 

	Images
	Image 1


	Page 61
	Titles
	each set of beh.a,vim: is irrıplemen.ted. Each piece of i_u.f<mnat.imı ~QolJt ı,ı tape. is 
	3.17 Video Store-Nested Type Objects 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 62
	Titles
	3.18 Video Store-Dynamic Type Change 
	3.19 Video Store-Independent Subclassinış 

	Images
	Image 1
	Image 2


	Page 63
	Titles
	54 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 64
	Images
	Image 1


	Page 65
	Titles
	56 
	Figure 3.19 {b}[http://www.dbmsmag.com/] 
	Object 
	There are six main classes: 
	We will omit all the accessing methods, since they are similar to those 
	. A factory acts as a Facade [GHN95, page 185], creating the order and then schedtili:rıg 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 66
	Titles
	A pipelined machine type is scheduled by finding a machine with an open 

	Images
	Image 1
	Image 2


	Page 67
	Titles
	3.20 Known Uses 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 68
	Titles
	3 .21 Sample Types and Samples 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 69
	Titles
	Signals and Exceptions 
	3 .22 Related Patterns 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 71
	Titles
	3.24 What motivated us to write a pattern language? 
	3.23 Pattern Language for Relational Databases and Smalltalk 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 72
	Titles
	. 
	3.25 How did we find our patterns? 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 73
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11


	Page 74
	Titles
	3.26 The Patterns of Crossing Chasms Architectural Patterns 
	3~27 Pattern; Four-Layer Architecture 
	Figure 3.27 · Four. Layer Architecture 

	Images
	Image 1
	Image 2


	Page 75
	Titles
	----------- 
	Figure 3.28 Development Lifec'/cle 
	3.28 Pattern: Table Design Time 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 76
	Titles
	3.30 Pattern: Object Identifier 
	Static Patterns 
	3.29 Pattern: Representing objects as tables 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 77
	Titles
	3.31 Pattern: Foreign Key Reference 
	3.32 Pattern: Representing Collections 

	Images
	Image 1


	Page 78
	Titles
	3.34 Pattern: Broker 
	3.33 Dynamic Patterns 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 79
	Titles
	3.35 Pattern: Object Metadata 
	3.36 Pattern: Query Object 
	. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 80
	Titles
	Figure 3.36: Broker Interactions [Ms Access] 

	Images
	Image 1
	Image 2


	Page 81
	Titles
	72 
	3.37 Pattern: CHent Synchronization 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 82
	Titles
	3.38 Pattern: Cache Management 
	. 

	Images
	Image 1
	Image 2
	Image 3


	Page 83
	Titles
	3.39 Crossing Chasms: The Architectural PatternsPAlTERN 

	Images
	Image 1


	Page 84
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 85
	Titles
	3.40 PATTERN NAME: THREE-TIER ARCHITECTURE 

	Images
	Image 1


	Page 86
	Titles
	77 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 87
	Titles
	Departmental Server 
	Relational or Object Store 
	78 
	Figure 3.40: Three-tier architecture 
	Relational Store 
	Enterprise Server 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 88
	Titles
	3.41 PATTERN NAME: PHASE-IN TIERS 

	Images
	Image 1


	Page 89
	Titles
	3.42 PATIERN NAME: TRIM AND FIT CLIENT (OR DISTRIBUTE 

	Images
	Image 1


	Page 90
	Titles
	. 

	Images
	Image 1


	Page 91
	Images
	Image 1


	Page 92
	Titles
	Çhapter 4 
	DATABASE OPTION OF THE COMPUTER SALES PARTS 
	4.1 Basic Information aboutTables, Forms, Reports and Queries 

	Images
	Image 1
	Image 2
	Image 3


	Page 93
	Titles
	Figure 3.2 {a}: Form Example [Ms Access] 

	Images
	Image 1
	Image 2
	Image 3


	Page 94
	Images
	Image 1
	Image 2
	Image 3


	Page 95
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 96
	Titles
	atımı 
	4.2 Description of the software 

	Images
	Image 1
	Image 2


	Page 97
	Titles
	4.3 Main Form Page where youcaô./adcl ~t delete data 

	Images
	Image 1
	Image 2


	Page 98
	Images
	Image 1
	Image 2


	Page 99
	Images
	Image 1
	Image 2
	Image 3


	Page 100
	Images
	Image 1
	Image 2
	Image 3


	Page 101
	Titles
	Figure: 3. 10 Software Examples 
	4.4 Main Form Page where you can View different Report 

	Images
	Image 1
	Image 2


	Page 102
	Images
	Image 1
	Image 2


	Page 103
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 104
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 105
	Titles
	I 
	einı,ıovee·,o ıı=irsiName 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 106
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 107
	Titles
	jlk Ülkj jlkjl 156465-4464 
	:Ajdsflk 
	Last Name 
	(646) 131-6464 
	Work Phone 
	Deductions IEmrgcy Contact Name 
	$9,650.00 
	khan 
	w 'Middle Name 
	Notes 
	6/10/201 6/2/50 
	Address 
	31Salman 
	kljhl 
	Title 
	Ç~ypnıs !(646) 165-4619 
	pountry !Home Phone 
	Birthdate !Date Hired !Salary 
	;--C-ity-----------,1-sta_te_/P_ro_v_in_ce __ .,.....IR-eg_i_o_n -r-lP-osta-- --> ,-c o_d_e _ __, 
	Emrgcy Contact Phone 
	ldaruıger 
	Employee ·10 ·1ı:ıist Name 

	Images
	Image 1
	Image 2


	Page 108
	Titles
	\ l 04 Monitors Ii 
	Isaıe Price Sum Price Discount Discount Amount Line Total 
	$200.00 30.00% - $200.00 :: 
	9i 
	!Discount Amount iline Total 
	JCustomer Name 
	Product ID 
	41Imran 
	5laslam 
	········-·· . ··]customer Name 
	Date Sold !Quantity 
	iriste soıd \Quantity 
	lOOICPU 
	21 4/1/20 
	31 6/4/01 
	\Company Name !Product Name !Product ID 
	Le }.!PQ:9Q . .J. . . 1 
	Sale Price !sum Pric~~ JDiscount 
	;Company Name !Product Name 
	orderıo· ····,······ · ····· ········· · ······· 
	;oicıerıo 

	Images
	Image 1
	Image 2
	Image 3


	Page 109
	Titles
	Product ID Product Name 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 110
	Titles
	;CD ROM 

	Images
	Image 1
	Image 2


	Page 111
	Titles
	\Card Exp. Date 
	Card Exp. Date 
	Notes 
	There will be no Due date 
	jlN 
	;Check Number jCredit Card Type jCredit card # ı~rc:ıhglder Name 
	Order 10······ PaymentAmÔunt·w·· .•.·.•. ··.·w·.·.··Payment Date··.·Payment.ivietho<f . 
	2 $100.00 12/5/01 cash 
	::on:ıer ID . . . PaymentAmount . . Payrriiinfôatej>~yınerıfMethod [ 
	. 3 $200.00 9/1/16 ç~ Çard := 
	/Check Number Credit Card Type CredıtCard # . Cardhôlder Name . 
	isa 42154523 .. 6598-5632 John 

	Images
	Image 1
	Image 2
	Image 3


	Page 112
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 113
	Titles
	REFERENCES 
	Reference to Book: 
	Reference to Electronic Source- Online source from Web: 
	Reference to Proceedings: 

	Images
	Image 1
	Image 2



