
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Database System for a iCpmputer Part Sales

Compal)y

Graduation Project

CQM 400

Student: Muhammad Rabyan Ghayas

Supervisor: Assist. Prof. Dr. Firudin Muradov

Nicosia .., 2001



ACKNOWLED~MENTS

So very many People to thank! It's pretty hard to figure out where to start, so here it

goes ..

"First, I would like tô thaıık my Supervisor Assist.'Pfôf. Dr. Fitudin Muradov for his

invaluable advice and beliefin:ıtıy work.

Second,fwcfüld']iketo thank my family for theirtöritfüııes support and for always

encouraging me especially i.ıfthis project

Finally, I would like'tô thank my friends Malik ..& KK for their outmost support, advice

arıd for guiding me in the making of this project.



ABSTRACT

Data, gathered around us as a collection of facts, is of no use unless it is organized and

represented in some meaningful form. Data represented in some meaningful form like,

tables, charts, or graphs become information, which can be easily processed. The collection

of data, usually refereed t o as the database, contains information about one particular

enterprise. These days database are used by a variety of users and organizations, which are

important tools in>dataprocessing DBMS, are designed to manage large bodies of database

information.

This project has asits goal to develop software, processing information about activities of a

computer-part sales company. Software developed in this project contains both employee

information, aııd<ıııfôrrri.ation associated with sales and purchase of computer parts. I wish

to develop this software for processing all activities of the company.

11



TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

INTRODUCTION

CHAPTER ONEfINTRODUCTION TO DBMS

1.1 Database

1.2 WhatMakes Up a DBMS

1.3 Database Management System

1.4 Data Model

l .4.1 Relational Model

1.4.2 Network Model

1.4.3 HierarchalModel

1.5 Advantages of DBMS

1.6 The3Level Architecture
1.6.1 External Level

1.6.2 Conceptual Level

1.63 InternalLevel

1.7 Properties of DBMS Data

1.8 Who uses a DBMS

1.9 Hardware for a DBMS

1.1 O Database Security

1.11 How Data is Stored

1.12 Definition of Entity

.
I

ii

iii

viii

1

2

2

3

3

4
5

5

5

5

6
6

7

7

7

8

8

8

9

9

iii



1.13 Database Application Life Cycle

1.13.1 Database planning

1.13 .2 SystemDefinition

1.13.3 Requirements Collection and Analysis

1.13.4 Database Design

CHAPTER TWO: RELATIONAL DATABASE

MANAGEMENT SYSTEM

2.1 What is an RDBMS?

2 .2 The relational Database Model
2.2.1 HierarchicalModel; NetwôflfModel

2.22 Relational Model

2.3 RDBMS Components

2.4 Relational Database Management Issues
2:4.l ··Security

2 .5 Countermeasures (ComputerBased)
2.5.1 Authorization

10

11

12

12

13

15

15

16
16

16

17

17
17

18

2.6

2.7
· 2.8

2.9

Countermeasures (Cont)

Read, Write &Modify Access Controls

Countermeasures (cont)

CA@termeasures(cont)

18

18

18

18

19

2. 1O Associated Procedures 19

2.11 Non-Computer Counter Measures 19

2.12 Privacy in Oracle 20

2.13 Integrity 20

CHAPTER THREE: A PATTERN LANGUAGE FOR

OBJECT- RDBMS INTEGRATION 22

3.1 The Static Patterns

3.2 Tables Design Time

22

22

iv



3.3 Representing Objects as Tables 23

3.4 Representing Object Relationships as Tables 24

3 .5 Representing Inheritance in a Relation Database 25

3.6 Representing Collections in a Relational Database 27

3.7 Object Identifier 28

3.8 Foreign-Key reference 29

3.9 Static Patterns (Object Side) 30

3.10 Foreign Key Versus Direct Reference 30

3.11 A Design Patterns Experience Report 32

3.1 ı.ı The patterns 33

3.11.2State 33

3.11.3 Memento 36
3.11.4 Cômposite 37

3.11.5\MediatorandAdapter 39

3.12 OtherPatterns 40

3.12.l..ErrorasObjects 40
3.12.2 Broker 41

3.13 The Type Object Pattern 41

3.14 Structure 45

3.15 The Disadvantages of the Type Object Pattern 48

3.16 OtherIssues 49

3 .I 7 Video Store-Nested Type Objects 52

3.18 Video Store-Dynamic Type Change 53

3.19 Video Store-Independent Sub classing 53

3 .20 KnowUses 58

3 .21 Sample Type and Samples 59

3 .22 Related Patterns 60

322.1 Type Object vs. Strategy and state 60

V



3 222 TypeObject and reflectiveArchitecture

3.22.3 Type Object vs. Bridge

61

61

3.22.4 TypeObject vs. decorator 61

3.22.5 Type Object vs. Flyweight 61

3 .23 Pattern Language for Relational Database and Smalltalk 62

3.24 What motivated us to write a Pattern Language? 62

· 3 .25 How did we find our Patterns? 63

3.26 The Patterns of Crossing Chasms-architectural Patterns 65

3.27 Pattern: Four-layer Architecture 65

3 .28 Pattern: Table Design Time 66

3 .29 Pattern: Representing Object as table 67

3 .30 Pattern: Object Identifier 67

3.31 Pattern: Foreign Key Reference

3 .32 Pattern: RepresentingCollections

3.33 Dynamic Patterns

3 .34 Pattern: Broker

3.35 Pattern: Object Metadata

3 .36 Pattern: Query Object

3.37 Pattern: Client Synchronization

3.38 Pattern: Cache Management

3 .39 Crossing Chasmas

3 .40 Pattern name: Three- Tier Architecture

3.41 Pattern: name: Phase-In Tiers

3.42 Pattern name: Trim and Fit Client

68

68

69

69

70

70

72

73

74

76

79

80

CHAPTER FOUR: DATABASE OPTION OF THE CO'.r'APUTER

SALESPATSCOMPANY 83

4.1 BasicInformationAboutTables, Form,

vi



Reports & Queries 83
4.1.1 Tables 83
4.1.2 Forms 84
4.1.3 Reports 85
4.1.4 Queries 86

4.2 Description of the Software 87
4.3 Main Form Page 88

4.3.1 Company ID and Name Information 88
4.3.2 Product ID and Name Information 88
4.3.3 Purchase Detail 89
4.3.4 Order Information 89
4.3.5 Voucher Detail 90
4.3.6 Customer Information 91
4.3.7 Employee Information 91

4.4 Main Form Page for Reports 92
CONCLUSION 103
REFERENCES 104

vii



LIST OF ABBREVIATIONS

DBMS

RDBMS

GUI

SQL

DDL

DCL

DML

1/0

IT

ISO

ANSI

SEQUEL

CPU

OLAP

CGI

ER

VB

OOP

Data Base ManagementSystem

Relational Data Base Management System

Graphic User Interface

Structure Query Language

Data Definition Language

Data Control Language

Data Manipulation Language

Input/Output

Infoımation Technology

International Standard Organization

American National Standards Organization

Structured English Query Language

Central Processing Unit

On Line Analytical Processing

Common Gateway Interface

Entity-Relation

Visual Basic

Object Oriented Programming

viii



INTRODUCTION

A Database management system (DBMS) is a collection of programs that enable users

to create and maintain a database.

A DBMS is a computerized record-keeping system that stores, maintains and provides

access to information. A database system involves four major components DATA,

HARDWARE, SOFTWARE, USERS. DBMS are used by any reasonably self

contained commercial, scientific, technical <or other organization from a single

individual to a large company and a DBMS may be used for many reasons. The

objective of this project was to design software fora company, which deals with the

computer sales and purchase, so fully qualified software. has . been made, and at the

making of the software two companies, was visited to understand the. requirements. And

the problem these types of company may have. The Software is .fully capable to store

any computer parts with the manufacture name. For the simplicity purpose a

manufacture ID and Product ID has been generated, the first digit consists of

manufacture name and the rest of it contains the product name. How ever both (ID and

NAME) has been entered in the form. As for the mentioned problem from one of the

company, employee information is also entered in the software, so that the complete

information about the Company employee can also be maintained. Voucher is also

design to minimize the handwork The project consists of introduction, 4 chapter and

conclusion.

Chapter One: Introduction to DBMS contains brief information about the database, data

model, advantages of database the architecture of the DBMS, properties of DBMS data

and further different information related to DBMS.

Chapter TWO: Relational Database Management System describes that what is

RDBMS , components ofRDBMS and the Issues.

Chapter Three: Describes pattern language for Object - RDBMS

Chapter Four: Help Option, contain the help information about the software which also

describe the tables, form, quires, reports in general, and how to use the software option

which contain the pictures of the software for the helpdesk.

Finally, the conclusion section presents the knowledge gain during the making of the

project.



Chapter l

INTRODUCTION TO DBMS

1.1 DATABASE
In a typical file...processing environment, each user area, such as payroll, personnel, and

the speakers' bureau, has it own collection of files and programs that access files. Since

there is usually overlap of data between user areas, there is redınıdancy in the system.

The address of a faculty member can occur ifriniınıypla~es,Le. whilethis is certainly

wasteful, trying to produce reports or respond to queries tlınfspan user areas can be

extremely difficult. These problems lead to the id~ıı. ô:fa poölô:fdatıı.;ofdata.base, rather
than separate collections of individual files.

Payroll
Program

Payroll files

Personnel
Program

Personnel
Files

Speakers
Bureau ..ıııı---------• I Speakers

Bureau Files

Figure 1. l Database

2



1.2 WHATMAKES UP A DBMS?
A DBMS is a computerized record-keeping system that stores, maintains and provides

access to information. A database system involves four major components, which are as

follows.

1. DATA

2. HARDWARE

3. SOFTWARE

4. USERS

DBMS are used by any reasonably self-contained corriinercial, scientific, technical or

other organization from a single individual tô a.large company and a DBMS may be

used for many reasons. Data itself consists of individual entities, in addition to which

there will be relationships between entity types linking them together. Given an

enterprise with a nebulously defined collection of data, the mapping of this collection

onto the real DBMS is done based on a data model. Various architectures ex.its for

databases and various models have been purposed including the relational, network, and

hierarchic models.

Database

lc:>1 *
IC)( ~
ıc::,ı &

·~CJ
Appllcatlon
pragnıms

End-users

Figure: 1.2 [web_pagecsl 11 notesDBMS.htm]

1.3 DATABASE MANAGEMENT SYSTEM
Fortunately, software package called database management system can do the job of

manipulating actual database for us. A database management system (or DBMS), at its

simplest, is a software product through which users interact with a database. The actual

manipulating of the underlying database structures is handled by the DBMS.

3



l
Payroll
Program

Personnel
Program DBMS DATABASE

iSpeakers
Bureau

Figure: 1.3 Database Management

1.4 DATAMODEL
The model of data that they follow characterizes database management systems. A Data

model has two components-structure and operations. The structure refers to the way the

system structures data or, at least, the way the users of the DBMS feel that the data is

structured. The operations re the facilities given to the users of the DBMS to manipulate

data within the database. What is crucial is the way things feel to the user, it does not

matter how the designers of the DBMS choose o implement these facilities behind the

scenes.

There are three models, or categories, for the vast majority of DBMS' s :

11 Relational model

• Network model

• Hierarchical model.

4



1.4.1 Relational Model

The user as begin just a collection of tables perceives a relational model database.

Formally, these tables are called relations, and this is where the relational model gets its

name. Relationships are implanted through common columns in two or more tables.

1 .4.2 Network Model

The user as a collection of record types. an relationships between these record types

perceive a network model database such a structure is a network, and it is form this that

the model takes its name. In contrast to the relational model, in which relationships were

implicit (being derived from matching columns in the tables), in the networks model the

relationships are explicit (presented as part of the structure itself).

I .4.3 Hierarchal Model

A user as a collection of hierarchies (or trees) perceives a hierarchies model database. A

hierarchy is really a network with am added restriction; no box can have more than one

arrow entering the box. (it doesn't matter how'many arrows leave a box). A hierarchy is

thus a more restrictive structure than a network.

1.5 ADVANTAGES OF DBMS
The main advantages of using a DBMS is that the formalism of the model of data

+

underlying the DBMS is imposed upon the data set to yield a logical and structured

erganization of the data. Given a fuzzy, real...world data set, when a model's formalism

. is imposed in that data set the result is easier to manage, define an manipulate. Different

models of data lead to different organizations. In general the relational model is the

most popular because that model is the most abstract and easiest to apply to data:while

still begin powerful.

Therefore, using a DBMS we have the following advantages.

• Clear picture of logical organiz.ationof data set.

• Centralization for multi-users.

• Data independence.

5



1.6 THE 3 LEVEL ARCHITECTURE

The three level architecture is an architecture for a DBMS to provide a framework for

describing database concepts and structures. Not all DBMS fit neatly into this

architecture, but most do. The model has been proposed by ANSI/SP ARC and has three

levels. Mappings exist between the three levels and it is the responsibility of the DBA to

ensure these mappings are correct.

• External level (individual users view)

• Conceptual level (community user view)

• Internal level (storage)

-
'

-
/

-t
t-

Figure: 1.4. Three Level Architecture [www.compapp.dcu.ie]

l.6~1 External Level
The external level of the three level architecture is the individual user level. At this level

each user has a language at their disposal of which they will use a "data sub language"

i.e. a subset of the total language that is concerned specifically with database operations

and objects. For the application programmer, the language will be a conventional

language e.g, COBOL with embedded SQL, or a specific one e.g. dBASE. For the end

user, it will normally be a query language like SQL or a special purpose language. In

principle, any given data sub language consists of a DDL (to declare data objects) and a

DML (data manipulation language) to manipulate these objects

An individual user's view is an external view, which is thus the content of the database

as seen by that particular user. There will thus be multiple occurrences of multiple types

of external records. The external view is defined by an external schema, which in turn is

defined by the DDL part of the user's data sub language

6



1.6.2 Conceptual level

The conceptual level of the three level architecture is essentially a representation of the

entire information content of the database-in a form abstracted from physical storage. It

may also be quit different or similar to external views held by a particular user. It is data

as it really is. Rather than as users are forced to see it- it is multiple occurrences of

multiple types of conceptual. records.

The conceptual schema is defined by the conceptual data definition language (DDL).

There is no reference in the conceptual DDL to stored record concepts, sequences,

indexing, hash addressing, pointers etc. the references are solely to the definition of

information content, in order to preserve data independence.

Conceptual schemas wilİ also include security and integrity constraints as wen as data

definitions. Normally the conventional schema is little more than a union of all

individual external schemas, plus some security/integrity checks.

1.6.3 Internallevel

The internal level of the three level architecture is a low level representation of the

entire database; it consists of multiple types of internal record. It does not deal with

block/pages or device-dependant concepts like cylinders and tracks. The internal system

defines types of stored records and indexes, how fields are represented, various storage

structures used, whether they use pointer chains or hashing, what sequence they are in,

and so on. The internal schema is written using yet another data definition'Ianguage, the

internalDOL.

Programs accessing this level·directly (i.e. utility programs) are dangerous .since they

have by-passed the security and integrity checks which the DBMS program normally

takes responsibility for.

1.7 PROPERTIES OF DBMS DATA
DBMS are available on any machine, from small micros to large mainframes, and can

be single or multi-user obviously, there will be special problem in multi-user

7



environments in order to make other users invisible, but these problems are internal to

DBMS.

Data may be shared over many databases, giving a distributed DBMS, though quite

often it is centralized and stored in just one database on one machine. In general, the

data in the database, at least in a large system, will be both integrated and shared.

1.8 WHOUSES A DBMS
There are three broad classes of users who use a DBMS

• Application programmers

• End users

• Database administrator

1.9 HARDWARE FOR A DBMS

Conventional DBMS hardware consists of secondary storage devices, usually hard

disks, on which the database physically resides, together with the associated I/O

· devices, device controllers, I/O channels and so forth. Databases run on a range of

machines, from microcomputers to large mainframes.

Other hardware issues for a DBMS includes database machines, which is hardware

designed specifically to support a database system.

1.1O DATABASE SECURITY
The DBA can set up the DBMS such that only certain users or certain application

programs are allowed perform certain operations to the dataset e.g. only admissions are

allowed create records for students, only library are allowed to create records.for books

etc. Different checks can be established for each type of access to each type of

information in the database. Different users should have different access rights to

different objects.

SQL provides two methods for implementing security restrictions. These are:

• Views - can be provided to hide sensitive data.

• GRANT/REVOKE - grant or remove access privileges to specific users for

specific tables.

8



There is, however, a major drawback to SQL security

1.11 HOW DATA IS STORED
A data ~odel is defined as a set of guidelines for representing the logical organization

of data in the database; a pattern according to which data and relationships can be

organized; an underlying mathematical ··.·· formulation for building logical data

organizations.

A data model consists of

• A named logical unit (record type, data item)

• Relationships among logical units

A data item is the smallest logical unit of data, an instance of which is known as a data

item value.

A record type is a collection of data items, and a record is hence defined as an instance

of a record type.

Note: A data model does not specify the data, data implementations or physical

organization only the way it can be logically organized.

1.12 DEFINITION OF ENTITY
An entity is any distinguishable real world object that is to be represented in the

database; each entity will have attributes or properties e.g.

The entity lecture has the properties place and time. A set of similar entities is known as

an entity type.

9



DATABASE APPLICATION LIFE CYCLE

Database planning

Systems definition

Requirements collection

Conceptual design

DBMS selection

Logical design Application design

Physical design

Prototyping Implementation

Data loading and conversion

Operational maintenance

Figure: I .5 fwww.compapp,dcu.ie]

• Database system is a fundamental component of the larger organization

information system. Therefore associated with the information system

IifecycleDatabase Planning -involves planning how the stages of the lifecycle

can be realized most efficiently and effectively

10



• System definition - scope and boundaries of application, users, areas

Requirements - from users and previous applications

Database Design - of the database itself

DBMS Selection - optional and involves getting a suitable product for

II

•
•

application

• Application Design-programswhichusedatabase

• Prototyping - optional, working modefofapplication for designers and users

Implementation - creating conceptual, external and internal database definitions

and application programs

Data Conversion and loading - old systeın)replacement, directly or with new

format. Application programs may also have to beadjusted

Testing - against the user requirements

Operational maintenance - constantly monitored and maintained. New

requirements go through cycle again.

•

•

•
•

l. 13. l DATABASE PLANNING
• 3 main components:

-Work to be don

-Resources

-Money

111 Must be integrated with organizations' overall planning strategy.

• Therefore influenced by the broader IS/IT strategies

• 3 main issues concerning IS strategies:

-Identification of business plans and goal with subsequent determination of

information systems needs

-Evaluation of current information systems to determine existing strengths and

weaknesses

-Appraisal of IT opportunities that might yield competitive advantage.

'" A corporate data model can be developed showing main entities and

relationships of the organization and functional areas of the organization.

11



Figure: 1.6 Data base Planning Architecture [www.compapp.dcu.ie]

• The functional areas may be assigned priority in line with the corporate strıµ:eğy

to define scope of the database for system development.

• Database Administrator can develop plans to achieve this,

• Standards may be developed

-How data is collected

-Necessary documentation

-Design and implementation procedures

• Good for training staff and quality control

• Legal or company requirements concerning data should b3 documented e.g

confidentiality.

1.13.2SYSTEM DEFINITION

• Identify boundary of the system

• Identify how it interfaces with other parts of the information systems

• Include current users and application areas

• Future users and application areas

1.13.3 Requirements Collection and Analysis

• Gathered:

-Interviewing

12



•

-Observation

-Examination of documents (record and display information)

-Questionnaires to users

-Experience form the design of similar systems.

Results in users' requirements specification of the enteıprise .

Perhaps from many viewpoints
Too much study too soon - Paralysis by analysis

il

•
• Too little - unnecessary waste of time andmoney

• Convert to formal requirements specification (DFD's and CASE tools etc.)

l.13.4DATABASE DESIGN
• Major aims;

-Represent data and relationships required by all application areas and user

groups

-Provide data model that supports transactions required on the data

-Specify a. design, which will achieve. stated performance requirements for the

system e.g. response time.

• Bottom-up approach - good for simple databases

-Starts with data fields

=Normalization

• Top-down approach - good for complex database systems

-Development of data models

-Refine to identify lower-level entities, fields and relationships

-ER modeling

• DBMS Selection

-Selection could be done at any tie prior to logical design

-Based on system requirements

• Performance

Iii Ease of restructuring

• Security

• Integrity

• Application Design

-May not be able to complete application design until db design finished

-Must match requirements

13



-User interfaces

• Prototyping

-Does not normally have complete functionality

-Allows users to identify, which parts work well or not

-Suggest changes/improvements

-Inexpensive but time öonsuming-ıaskaıser, get feedback, fix, ask user ....)

-Useful if clarification of user' requirements is required. before implementation

of a high cost, high risk or new technology.

• Implementation

-Achieved using;

• DDL

-Complied and used to create database schemas and empty<database files and

define user views

• Application programs implemented using4GL orDML oftargefDBMSorhoth

• Security and .integritycontrols implemented

• Conversion and Loading-If new database system is replacing old system

(legacy)

-Common to have conversion utilities

-Plan transition

14



Chapter 2

INTRODUCTION TO RDBMS

2.1 WHATISANRDBMS?
In recent years, database management systems (DBMS) have established themselves as

the primary means of data storage for information system ranging from large

commercial transaction processing applications to PC-based desktop applications. At

the heart of most of today's information systems is a relational database management

system (RDBMS)o

RDBMS' s have been the workhorse fro data management operatiôttsi.frPiOYt!r ~ decade

and continue to eyolve and mature, providing .sophisticated storage,·i1'~1:rieyf!ğ.,.· and

distribution functions to enterprise-wide data processing and informatiollniaııagement

system. Compared to the file systems, relational database management system provides

organization data into meaningful information systems. The evolution of high~pQ;w:ırı:;ççl

database engines has fostered the development of advanced "enabling" technql9giçş

including client/server, data warehousing, and online analytical processing all pf'whic:p.

comprise the core of today's state-of-the-art information management systems.

Examine the components of the term relational database management system. First, a

database is an integrated collection of related data. Given a specific data item, the

structure of a database facilitates the access to data related to it, such as a student and all

of his registered courses or an employee and his dependents. Next, a relational data."bıı.şe

is a type of database based in the relational model; non-relational database conımoııly

use a hierarchical, network, or object-oriented model as their basis. Finally, a relational

database management system is the software that manages a relational database. These

systems come in several varieties, ranging form single-user desktop systems to full

featured, global, enterprise-wide systems,

15



2.2 THE RELATIONAL DATABASE MODEL

Most of the database management systems used by commercial applications today are

based on one of three basic models:

1. Hierarchical Model; Network Model OR

2. Relational Model

2.2. 1 Hierarchical Model

The first commercially available database management systems were of the

CODEASYL type, and many of them are still in use with mainframe-based, COBOL

applications. Both network and hierarchical database are quite·complex in that they rely

on the use of permanent internal pointers to relate records to each other. i.e. in an

accounts payable application, a vendor record might contain a physical pointer in its

record structure that points · to purchase order records. Each purchase order record in

tum contains pointers to purchase order line item records.

The process of inserting, updating and deleting records using these types of database

required synchronization of the pointers, a task that must be performed by the

application. As you might imagine, this pointer maintenance required a significant

amount of application code (usually written in COBOL) that at times could be quite

cumbersome.

2.2.2 Relational Model

.Relational database rely on the actual attribute values as opposed to internal pointers to

link records. Instead of using an internal pointer from the vendor record to · purchase

order records, you would link the purchase order record to the. vendor record using a

common attributer form each record, such as the vendor identification number,

Although the concepts of academic theory underlying the relational model are

somewhat complex, you should be familiar with are some basic concepts and

terminology.

Essentially, there are three basic components of the relational model:
1. Relation Data Structure

2. Constraints that Govern the Organization of the Structure

3. Operations that are Perform on the Data Structure.

16



2.3 RDBMSCOMPONENTS
Two important pieces of RDBMS architecture are the Kernel, which is the software, and

the data dictionary, which consists of the system-level data structures used by the kernel

to manage the database.

2.4 Relational Data Base Management Issues
Integrity•

• Security

11 Recovery

11 Concurrency

2.4. l Security

The advantage of having shared access to data is in fact a disadvantage also

Figure: 2.1 Security [Aptech]

• Consequences: loss of competitiveness, legal action from individual

• Restrictions

-Unauthorized users seeing data

-Corruption due to deliberate incorrect updated

17



-Corruption due to accidental incorrect updated

• Reading ability allocated to those who have a right to know

• Writing capabilities restricted for the casual user - who may accidentally corrupt

data due to lack of understanding

• Authorization is restricted to the chosen few to avoid deliberate corruption

2.5 Countermeasures (computer based)

2.5.1 Authorization

-Determine user is who they claim to be

-Privileges
Passwords

-Low storage overhead

-Many passwords and users forget them - write them downl!

-User time high - type in many passwords

-Held in file and encrypted.

2.6 Countermeasures (cont.)
-Initial password entry to system
-User name checked against control list

-The access control list has very limited access, superuser

-Ifmany users and applications and data then list can be large

2.7 READ, WRITE, and MODIFY access controls
-Restrictions at many levels

-Database Level: 'Adds a new DB'

-Record Level: 'delete a new record'

-Data Level: 'delete an attribute'

• Remember there are overheads with security mechanisms

2.8 Countermeasures (cont.)

• Views

18



2.9

• Subschema

• Dynamic result of one or more relational operations operating on base relations

to produce another relations

• Virtual relation - doesn't exist but is produce at runtime

• Back-up

· • Periodic copy of.database and log file (programs) onto offline storage

• Stored in secure location

Countermeasures (cont.)
Keeping log file of all changes made to database to enable recovery in the event

of failure

Check pointing

-Synchronization point where all buffers in the DBMS is force-written to

secondary storage

• Integrity (see later)

•

•

-Encryption

-Data encoding by special algorithm that render data unreadable without

Decryption key

-Degradation in performance

-Good for communication

2.1O Countermeasures (cont.) Associated procedures
• Specify procedures for authorization and backup/recovery

• Audit: auditor observe manual and computer procedures

• Installation/upgrade procedures

• Contingency plan

• Escrow agreement.

Non-Computer Counter Measures
• Establishment of security policy and contingency plan

• Personnel controls

• Secure positing of equipment, data and software

Escrow agreements (3rd party holds source code)

Maintenance agreements

19



• Physical access controls

• Building controls

• Emergency arrangements.

2.12 Privacyin Oracle
• User gets a password and user name

• Privileges:

Connect: users can read and update tables (can't create)

Resource: create tables, grant privileges and control auditing
OBA: any table in complete DB

• User owns tables they create

They grant other users privileges:

Select: retrieval

Insert: new rows

Update: existing rows

Delete: rows

Alter. column def.

Index: on tables

• Owner can offer GRANT to other users as well

This can be revoked

• Users can get audits of:

-List of successful/unsuccessful attempts to access tables

-Selective audit e.g, update only

-Control level of detail reported

• OBA has this and logon, logoff oracle, grants/revolts privilege

• Audit is stored in the Data Dictionary.

2.13 Integrity
• Introduction

• Basic concepts
• Integrity constraints

• Relation constraints

• Domain constraints

20



• Referential integrity

• Explicit constraints

• Static and Dynamic Constraint

21



CHAPTER3

A Pattern Language for Object-RD:13MSIntegration

3.1 TheStatic Patterns
The Static Patterns for the relational side deal with when and how to best define a

database schema to support an object m()del. The identity of the objects, their

relationships (inheritance, aggregation, semantic associ:ıtions} and their state must be

preserved in the tables of a relational database. Table I)C;!şign Time deals.with when is

the best time during development to actually design therc,ıı:ıtj9,;ıal.scherna.Representing

Objects as Tables, Representing Object Relationships .?§/ ':I'ı:ılfü,s, .,ll~esenting

Inheritance in a Relational Database, Representing Collections İıl.\~[{~latfonalDatabase

and Foreign-Key Reference deal with defining the relationships between objects and

defining each object's state. Object Identifier (OID) defines how to establish object

identity in a relational database.

3 .2 TableDesignTime

Problem.

When is the best time to design your relational database during object-ori~p,t¢

development?

Forces.

-Assume no legacy database exists prior to development or if one does exist, it is

extremely flexible (i.e., it can. be changed according to application needs). When the

database design is kept foremost in mind during development, the object modeL'\Vİll

tend to be data driven while the behavior and responsibilities of the objects.will lJe
deprived of the thought and energy they deserve. Consequently, the object modeEwill

tend to have separate data objects and controller objects. This leads to a design tlıa.tlıtı.ş

heavy-duty controller objects and stupid data objects rather than a better,>>ttıôre,.

distributed, less-centralized design. If the database design is completely ignored/until

the application is completed the project may suffer. Since 25% to 50% of the code in

such applications often deals with object-database integration, the design of the database

is crucial and should be considered early in development. Consequently:

22



Solution.

Design the tables based on your object model after you have implemented it in an

architectural prototype but before the application is in full-stage production.

Discussion,

Definition of domain object behavior and properties is in reality a first pass at the

database design. A stopgap persistency approach .. (perhaps using flat ASCII files) is

often "good enough" for an architectural prototype. A benefit of this approach is that

legacy · data can be quickly exported from existing databases to an ASCII file. The

prototype can then be easily demonstrated on stand-alone workstations that may not

have a relational database and still show "real" data familiar to customers.

3.3 Representing Objects as Tables
Problem

How do you map an object structure into a relational database schema?

Forces

Objects do not map neatly into tables. For instance, object classes do not have keys.

Tables do not have the same identity property that objects do. The data types of tables in

a relational database do not match the classes in the object model. Complex objects can

reference other complex objects and collections of objects.

Solution

Begin by creating a table for each persistent object in your object model. Determine

what type of object each instance variable is likely to contain. For each object thafis

represent able in a database as a base data type (i.e., String, Character, Integer, Float,

Date, Time) create a. column in the table corresponding to that instance variable, naming

it the same as the instance variable. If an instance variable contains a Collection

subclass, use l Representing Collections in a Relational Database. If an instance

variable contains any other value, use l Foreign-Key

Discussion

23



The design of the database may need modification (for instance, denormalization)

depending upon the access patterns required for particular scenarios. Remember that

this design is an iterative process. There are several variations of mappings between

classes and tables. These are:

• I Object Class maps to ,ı table
• 1 Object Class maps to multiple tables

• Multiple object classes' map to 1 table.

• Collections of the same class map to a 1 table

• Multiple object classes map to multiple tables

The Database Access Architecture must handle each of these variations.

3 .4 Representing Object Relationships as Tables
Problem

How do you represent object relationships in a relational database schema?

Forces

A variety of relationships exist between classes in an object model. These relationships

maybe:

• I to 1 (husband - wife)

• 1 to many (mother-child)

• Many to many (ancestor - child)

• Ternary (or n-ary) associations (student - class - professor)

• Qualified associations (company- office -person)

A Qualified association is an association between two objects where the association is

constrained or identified in some way. For example a Company carı be associated witha

Person through a position held by that Person. The position qualifies the association

between the Company and the Person.

The association between objects may represent containment, associated properties or

have come special semantic meaning in their own right (e.g., a marriage is a special

relationship between a man and a woman).

The choices for 1 to 1, and I to many relationships are either to merge the association

into a class or to create a class based on the association.

24



It is important to remember that the semantics of relationship between objects can be

significant. It is often is useful to create classes to represent the associations, especially

if the relationship has values of its own. These classes will be represented as tables in

the relational database. For many to many, 1 to many and 1 to 1 associations, when an

association has a meaningful existence in the problem domain, create a class for the

association. A meaningful existence is when the relationship itself can have value such

as the relationship itself possessing properties such as duration, quality or type. A

marrıage ıs a relationship between a man and a woman that can have all -these
properties.

Solution

Merge 1 to 1 associations with no special meaning into one of the tables. If it has special

meaning create a table based on the class derived from the association.

For 1 to many associations, create a relationship table (see Representing Collectionsiiı.a

Database).

A many to many relationship always maps to a table that contains columns referenced

by the foreign keys of the two objects.

Ternary and n-ary associations should have their own table that references the

participating classes by foreign key.

A qualified association should have its own table.
'

Discussion

Consideration of the forces of this pattern will often result in changes to a first..:pass

object model. This is desirable, since it will often generate a more general and flexible

solution.

Related Patterns

1. Representing Inheritance in a Relational Database

2. Representing Collections in a Relational Database

3.5 RepresentingInheritancein a RelationalDatabase
Problem

25



How do you represent a set of classes in an inheritance hierarchy in a relational

database?

Forces

Relational databases do not provide support for inheritance of attributes. It is impossible

to do a true 1- 1 mapping between a relational table and a class when that class .inherits

attributes from another class, or if other classes inherit from it.

There are two possible contexts that are used in this pattern, depending upon what is

more important to your particular application, speed of queries, or maintainability and

flexibility of your relational schema.

Solution

(When ease of schema modification is paramount)

Create one table for each class in your hierarchy that has attributes. This will iııclude

both concrete and abstract classes. The tables will contain columns for each ôf füe
attributes defined in that class, plus an additional column that represents ·tlıe.comınôn

key shared between all subclass tables. An instance of a concrete subclass is rf!tıj~yed

by doing a relational JOIN of all of the tables in a path to the root with the commonkey

as the join parameter.

.
Discussion

This is a direct mapping, which makes it easy to change if a class anywhere in. tlie

hierarchy changes. If a class changes, you must change at most one ta.ble.

Unfortunately, the overhead of doing multi-table joins can become a problem if you

have even a moderately deep hierarchy.

Solution

(When speed of queries is more important)

Create one table for each concrete subclass of your hierarchy that contains ALL of the

attributes defined in that subclass or inherited from its super classes. An instance is

retrieved by querying that table.

Discussion

26



This avoids the joins of the previous solution., making queries more efficient. This is

also a simple mapping, but has the drawback that if a super class is changed, then many

tables must be modified. It is also difficult to infer the object design from the relational

schema.

There is a third solution that may be more appropriate in a multiple-inheritance

environment, but that does not have much to recommend itself beyond that. It is

possible to create a single table that represents ALL of the super class's andsubclasses

attributes, with SELECT statements picking out only those that are. appropriate for each

class. Unfortunately, this can lead to a large numberof"Nilll's in your database, wasting

space.

3.6 Representing Collections in a Relational .ua.ı..a.ua..:,.;,

Problem

How do you represent Collection subclasses in a relational database? .

Forces

The first normal form rule of Relational Databases prevents a relation from côı:itain:inga

"Multivalued" attribute, or what we would normally think of in Object terms as a

Collection. The kind of 1-N relationships represented in 00 languages by collection

classes are represented in a very different form in a relational database.

Collection classes in Smalltalk often convey additional information besides the

relationship between the objects contained·in the collection, and the object that contains

the collection. Order, sorting methods, and type of the contained objects are all

problems that must be addressed.

llepresent each collection in your object model (where one object class is related to

~other object class by a l '"N has-a relationship) by a relationship table. The table may
also contain additional attributes that address the other issues.

basic solution involves creating a table that consists of at least two columns, one,

represents the primary key (usually the OID) of the containing object (the object

holds the collection) and another which represents the primary key of the contained

~ects (the objects held in the collection). Each entry in the table shows a relationship

27



between the contained object and the containing object. The primary key of the

relationship table is comprised of both columns. A third column may be needed which

indicates either the class of the object or the table that the object is located in.

Collections may contain objects of various classes.

Discussion

There are other possible representations of the 1-N relationships, including back

pointers. Back pointers have the drawback that itis difficult to have an object be

contained in more than one collection at the same time+when.the· two collections are

contained in different instances of the same class. The simpfost~<aııdmost coı:ıımon.

additional information to include in a relationship table is a t(5fı.ın:ın<that indicates the

type of the contained object. This is necessary when a Collectiônmay/ôe.heteföğeneôus.

If an Ordered Collection is utilized, and the order is significant,i~~t~~~i!~~i0~i~e
object in the collection may be stored in an additional column. It must be n9tedrthat

unless a distinguishing column indicating a position or OID is added to a relation ta.hie

and made part of its primary key then the basic solution represents a Setffatherttliania

more general collection, since the key constraint of relational databases prevenfa tuple

from occurring more than once in the same table.

3.7 , Object Identifier (OID)
Problem

How do you represent an object's individuality in a relational database?

Forces

In object-oriented languages, objects are uniquely identifiable. In Smalltalk, an

equivalence comparison (-) determines if two objects are exactly identical. This is

accomplished through the comparison of their Object Pointers (OOPs) which are

uniquely assigned to each object when it is instantiated.

In an environment where objects may become persistent, some way of identifying what

particular persistent structure (be it a row in a relational database, or a structure in an

OODBMS) corresponds to that object has to be added to the mix. OOPs are reassigned

:and reclaimed by the system, precluding their use as an object identifier.

28



Solution

Assign an identifier (an Object IDentifer or OID) to each object that is guaranteed to be

unique across image invocations. This identifier will be part of the object, and will be

used to identify it during query operations, and update operations.

Discussion

OID's can be generated either internally to your application, or externally. Some

relational databases include a sequence number generator that can be used to generate

OID's, and it is preferable to use that option when available. OID's only need be unique

within a class, as long as some other way of identifying the class of an object is

provided by the persistence scheme. OID's are customarily long integers.

If an ÖID is generated within the application, it is often common to have a table that

represents the latest available OID for each class. The table will be locked, queried,

updated and unlocked whenever a new OID is required, To improve performance,

sometimes an entire block of OID numbers can be acquired at once.

OID's can include type information encoded into the identifier. In this case, it may be

more appropriate to use a char or varchar column rather than an integer.

3.8 Foreign-KeyReference
Problem

How do you represent the fact that in an object model an object can contain not only

"base datatypes" like Strings, Characters, Integers and Dates, but other objects aswell?

Forces

Given that the first normal form (1NF) rule of relational databases specifically excludes

a tuple from containing another tuple you must use another representation of an object

that can be represented by a legal value that a column can contain.

Solution

Assign each object in your object model a unique OID (See pattern OID). Add a column

for each instance variable that contains an object that is not either:

a collection object a "base datatype" In this column, store the OID of object contained in

the previous object. If your database supports the feature, declare the column to be a

29



foreign key to the table that represents the class of object whose OID is stored in.that

column.

Discussion

This restriction (the 1NF rule) is both strength, and the Achilles' heel of the relational

model. When this pattern is used in self-similar objects (i.e., a Person has children, who

are also Persons) it is exceedingly difficult to retrieve a tree of connected objects rooted

on a single object in a single SQL query.

If you find that the vast majority of columns in your database schema arise from this

pattern, you may wish to reconsider the decision to use a relational database as a

persistent object store.

3.9 StaticPatterns(ObjectSide)
The previous section discussed the relationships and the ..definition of class properties as

defined in the relational database schema However, we must also consider the

definition of the object model on the client. Foreign Key versus Direct Reference

addresses how to best define the relationships of complex objects to be instantiated in

the object image.

3.10 Foreign Key versus Direct Reference

Problem

In the domain object model when should you reference objects with a "foreign key" and

'when should you have direct reference with pointers?

Forces

In general, the object model should closely reflect the problem domain and its behavior.

However, the network of objects that support this model can be complex and large.

Modeling . a large corporation with its numerous organizations and branches, may

require hundreds of thousands of objects and multiple levels. of objects of different

classes.
In object models, objects usually directly reference one another. This make navigation

among the object network direct and easier than via foreign-key reference.

30



Objects can reference other objects by using their foreign keys" When this.is the case,

the objects must also have methods to dereference the foreign key to get the referenced

object. This makes maintaining the object relationships in the object model more

complex. If foreign keys are used to reference the objects then more searches and more

caches are required to support the accessing methods. However, using/the :fd:reigh key

makes it easier to map the domain objects to the database tables during their

instantiation and passivity. Relying on foreign keys alone with the object model can

result in recursive relations and may also result in extremely poor performance

problems as large collections of objects are needed to represent a complex object.

In many cases, the application simply requires a list of names to peruse in order to

locate the object of interest. The number of potential objects in such a list may be in the

millions. This puts a heavy strain on the memory requirements of such a system. A great

majority of the time the application just requires a foreign key for display and selection

purposes. This means keeping the supporting application domain models "light," whe:re

they contain only those attributes necessary for display purposes.

Solution

An object model should use direct reference as much as possible. This permits fast

navigation over the object structures. Build the object network piece by piece as

required using Proxy objects to minimize storage. Make the associations only as
,

complex as necessary. When dealing with large collections or a set of complex objects

use foreign keys and names to represent the objects for user interface display and

selection. After selection is made, instantiate the complex object depending upon

memory constraints and performance.

If each domain object maps to a single table then there is probably a table model in the

domain object layer. You may be adding complexity to the whole system. Ifthe domain

objects have no behavior other then being information holders, you may consider

getting them out of the way. Instead, have the application model refer directly to broker

çbjects. This way you do not have an object cache to keep in sync with the relational

Ies. If domain behavior is required (which it probably will be) then you can add

domain objects as required. Make the domain objects "prove" themselves. In reference

foreign keys within the object model instead of direct references, one developer

31



learning Smalltalk said: "What the hell good is objects if you do not hold real objects?

You might as well use PowerBuilder."

3..11 Using Patterns in Order Management Systems: A Design

Patterns Experience Report

The Problem

Our particular project was for a major pharrn.acT~~~.~ .conıpany's IS department. Our

team was tasked with building an order management systenıt,qbe used by employees of

the company in placing orders for consumable resources. ~~[?~t;nı is int;ndecl to

allow employees to order resources by selecting the type, subtype, and vendor of the

resource as well as the delivery date, and various other delivery details. The user is

allowed to change orders after they are placed, to view the unconsumed resources• that

are still allocated to him, and to transfer unconsumed resources to other users.

The Constraints

111 Our design faced several constraints:

• We had to deliver a workable application within 3 1/2 months from the inception

of the project.

• There was a: limited amount of 00 and Smalltalk knowledge in our group. Our

team consisted of me, one team member that had 6months of 00 experience

(having been through a KSC Smalltalk Apprentice Program (STAP)) and three

team members with only minimal Smalltalk training and no formal OOA&D

training.

• We were required to use an existing Oracle database as our repository. We were

free to use any appropriate object design, but it had to work with the existing

database tables and Oracle Forms applications.

Solution

As the chief architect of this project, I had two things working for me as I began. The

first was that we had earlier prototyped a subset of this application in an apprentice

program, so we had a good feel for what objects were involved in the system. The

second was that I had just finished developing a tutorial for Smalltalk Solutions '95 that

32



drew heavily from , so I was very familiar with those patterns. The two factors

converged to let me begin the design process by picking out some appropriate patterns

that I felt would be useful in this domain, and then letting the developers discover how

these patterns could be applied to our specific design.

3. 1 1 .1 The Patterns

From my previous experience in this domain, I knew immediately that two patterns

from would be useful; State and Memento. At the start of the design process, I described

the patterns to the group and then wertt on to develop a solution utilizing them. Later in

the design process, problems came up that were well described by Composite, Mediator,

and Adapter as will be shown in sections 4.4 and 4.5. Finally, two rules-of-thumb that

were used in this project were phrased (after the fact) as patterns.

3. I 1.2 State

One of the more common problems found in many MIS systems is the idea of a

workflow. In a workflow objects move from person to person within a workgroup, with

each person changing, annotating, or modifying the object before it is passed along to

next person. This project was no exception. The analysis of the project done before

design phase of the project begn described the workflow of the various types of

'-"ıu•..ı.:, in some detail. After reviewing this, I determined that the workflow could be
uı;;;:;ı.;uut;;u as a state machine, with different submissions and modifications of the order

describing the transitions between states. The states Orders can occupy are shown in the

Figure

33



~utınıı

Figure 3.11.2: Order States [http://www.dbmsmag.com]

Once we had determined to represent work.flowof an order as a finite state machine, the

design of a significant part of our Order object "fell out" of the State pattern.. We

determined that an Order could be in several different states, depending upon where

within the workflow it resided. We also determined that the Order should behave

differently to the common messages save, delete, and notify depending upon its state.

For example, when an order was in Submitted state, it was known (so far) only to the

person placing the order; the buyer (the next person in the workflow) had not yet

reviewed it. A delete message sent to the Order should physically remove it from the

database when it is in this state. On the other hand, if an Order is in Ordered state, then.a

delete message should only log the fact that that particular order has been removed. A

deletion in this state will necessitate the buyer resubmitting a corrected VendorOrderto

the vendor.

Likewise, when an Order is in New state, the buyer should be notified (by E-Mail) when

the Order receives the submit message and moves to Submitted state. A different

notification should be sent out when a change is made to an Ordered order. Once an

order is in ChangedOrdered state, no more notifications are necessary.

We were able to use the following design to represent the state machine portion of our

domain model (see Figure 2: State design). Just as described in, we used an abstract

34



class State that implemented the messages notifyWith:, saveWith: and deleteWith:,

the argument to each of these messages being the ConsumablesOrder. Each of the

messages in ConsumablesOrder that differed by state were implemented by calling the

corresponding message in the Order's current state. For example, let's. look at the

following implementation:

(Consunıablesürder> >delete)

delete

"do whatever is appropriate for your current state''

self currentState delete With: self.

(SubmittedState> >delete With:)

deleteWitb: aConsumablesOrder

"tell your consumables order to remove himself'

aConsunıablesOrder remove.

(OrderedState>>delete With:)

deleteWith: aConsmnablesOrder

"tell this consumablesOrder to become deleted (i.e. record the fact in the aatana5¢)'1

aConsunıablesOrder becomeDeleted.

(DeletedState> >delete With:)

delete With: aConsumablesOrder

"anOrder is already deleted. Do nothing"

"self

~~'v--5 ... _ y
, ~,..~

Figure 3.11.2 State design [http://wvı.ıvv.dbmsmag.com/]

35



The only substantial difference from our design to the design from was the addition of a

StateMachine object between the Consumablesürder (the Context) and the State. In

retrospect, we could probably have done without this object. It was only used to aid in

construction of the State connections, and for error handling in the case where a

transition wasn't defined in the current state. This responsibility could easily have been

absorbed into the abstract State class. ·

The State pattern was the big success story in this application. Its use cut tlıtc>t1glı a.lot

of complexity in the domain that would otherwise have been handled by several

conditional branches spread throughout the code. The pattern was easy to explain tô the

developers, and the implementation was quick and painless. It proved

extensible (when we began implementing we only knew about

notifyWith: -- saveWith: was added later) and flexible.

3.11.3 Memento

Going into the design of this application, we were aware that we would

one-level undo for a Consuınablesürder. For instance, if a buyer rejects a cfüııı.ge

Order, then the order should revert back to the state it was previously in (Ordered'

all of the changes should be erased. We felt intuitively that the correct solution

a variant of the Memento pattern, and we discussed possible implementations dtırirıg

early design sessions, starting with the design example presented in . Hnwıw#.ı'
'

contrast to how easily we adopted the State pattern, adopting Memento nT,wı>rı

more challenging.

We were a bit confused by the Caretaker object in the pattern being external-to the

Originator object, although reviewing it further did clarify it a bit. In our case, there

were no external clients of the Originator that needed to know about the existence ofa

memento, and only one copy of the memento needed to exist at any time. We :f:tt:ıally
assumed that this was a degenerate case of Memento not covered in . Our :resulting

"'"':u..eU is shown in Figure 3: Memento class structure.

36



o, 1

Figure 3.11.3: Memento class structure [http://www.dbmsmag.COl'Tl]

We rolled the Originator and Caretaker objects into a single object, the

Consumablesürder. The basic flow of messages, and the structure of the classes, is the

same as in once this change is made. When an outside object sends a nı.essağe tô 'a
Consumablesörder that would change its state, it issues itself a makeNılem.enfü .m.e§sage.
This creates the memento and sets its state appropriately (this is donea.1.Fat'önceby>a

deepCopy message). Whenever an outside object sends a message >to >a

Consuınablesürder that would necessitate reverting back to its original·state'(such>as
cancelChanges) it sends itself the revert message, which resets the state tô'the stôred

previous state by copying all of the values of the instance variables in the mementcfoack

into the original order.

This case was unique in that the Memento pattern did no provide us the solution

directly, but led us to an acceptable solution that fit our requirements. Even though the

particular solution provided by the pattern's example code didn't work for us, the

thought process we went

Through in trying to use the pattern did lead us to an acceptable solution.

3 .1 I .4 Composite

After getting more deeply into our design and implementation, we realized that an

unforeseen client requirement was easily solved by. application of another pattern,

Composite. In our initial design we identified three subclasses of the class Resource:

• OrderResource -- this represents a resource that has been ordered, but not

received. It is sort of a "virtual" resource, and doesn't share many of the

attributes (disposition, receivedfıate, etc.) of an "actual" resource.

37



* IndividualResource -- this represents a specific, received resource of a certain

type. Some resources are tracked individually, with specific ID numbers. A

Chair, or a Forklift, or something of this sort is an IndividualR.esource.

• GroupedResource -- a grouped resource is a set of resources that are not

uniquely identifiable. For instance, a bag of bolts might be considered a

Groupedkesource in that it contains several bolts, but each bolt is not important

enough to represent individually. However, the entire bag is interesting enough

to track.

In our original design, the user was shown a list of IndividualResources and

GroupedResources that were allocated to them. In subsequent user interviews, it came

to our attention that the users would prefer to see all of the IndividualResources that

were ordered from the same order as a single line item in this list, then drill-down to see

the Individual resources. After some consideration, we decided the easiest way to

achieve this was to use the Composite pattern, and refactor the hierarchy fô.create some

new classes. First, we divided Resource into two classes, Abstractkesourceş' which

defined a resource's protocol, but not its implementation, and Acnıalkesource; which

defined the implementation used by the preexisting Resource subclasses. We then

defined one more class:

• CompositeResource -- a CompositeResource is a subclass of AbstractResource

that responds to the same protocol as an ActualResource, but which is

implemented quite differently. It contains a collection of IndividualResources,

and implements its protocol by passing through many of its messages to a

representative element of that collection. A CompositeResource can answer its

type, subtype, etc. just as can an instance of a subclass ofActualResource.

The full Resource hierarchy is shown in Figure 4: Resource Hierarchy.

The great thing about using Composite was that our user interface code did not change
at an·when we refactored the hierarchy. Since a CompositeResource responded to the

same protocol as an IndividuaJResource or a GroupedResource, the display logic was

identical. We were able to easily add new drill-down capabilities through additional UI

code that was specific to CompositeResources.

38



Figure 3.11.4: Resource Hierarchy [http://www.dbmsmag.com/]

An important lesson learned through the application of this pattern was that the

interface of an object is different than its implementation. One of the programmers

really struggled with why we were refactoring the hierarchy and separating.the.int~r.fac~

(in AbstractR.esource} from its implementation (in Compositekesource, . t!IJ.4

ActualResource). The "light came on" in this programmer's mind after we had I'()llgh~cl

out the first iteration of code for the new hierarchy and then started up the user interface

without having modified any UI code. This was a key lesson in 00 design in that for

the first time the programmer realized what it meant for a class to be abstract, and why

·abstractsuperclasses were useful.

3.11.5 Mediator and Adapter
----

Our use of these two patterns was more simplistic than the other patterns. ın· our ta:rğet

language, Smalltalk/V, the ViewManager class provides a Mediation interface between

its component SubPanes. It also serves as an Adapter between the SubPanes and the

objects of the domain model . The two patterns were used more in spirit than in fact.

Whenever any code was written in a ViewManager subclass it was carefully reviewed

to see if it fulfilled either the role ofMediator or Adapter. Any code that attempted to do

something other than coordinate SubPane display, or adapt SubPane events to domain

model methods was rejected in the code review as violating our rules. As an example, at

39



one point a programmer was planning to place some Unit of Measure conversion code

in a specific ViewManager. After a code review, she agreed that this was neither

mediating between SubPanes, nor adapting to the domain model. She then developed a

more general UnitOfMeasure class for handling the conversions, and wrote only enough

code in the ViewManager to adapt this class to the input and output.Ill~Ocls •.. of the

SubPanes. This allowed her to extend the UnitOfMeasure class to handle siıııi}ar, but

unforeseen cases later in the project without changing the ViewManager code.

3.12 Other Patterns
In developing this system, there were two more "rules of thumb" that we fôlldwed

during the design, that, while not in pattern. form at the time oftlıe develôprıie:rit;wefe

pattemizable after the fact. Each solution had all the earmarks of a pattern:

• It was a solution to a general problem within a set of constraints

• It had been used several times in other projects

• It was easily explainable in a few sentences

All that remained was for the solution to be written in pattern form. The description of

the heuristics we used follows. I have since rewritten them in pattern form, and used

them as part of "Crossing Chasms" a pattern language for object to relational database

interface design.

3.12.1 Errors as Objects

-In a previous project I had seen an interesting way of separating concerns •• iıı<)l:lje

ViewManager classes from domain-layer considerations with respect to errors.. Iıı this

approach, domain validations (range checks, type checks, etc.) were done in thedô:main,

and the results were passed back to the ViewManager as an ErrorSet. In thiiway )7ôu

could distribute the responsibility for validation among several objects, with;tlı.e ern;,r

set being passed around and added to whenever a validation failed. • This des~gn

preserved model and view separation, and allowed the user to intervene in the handling

of recoverable errors.

When the top-level message returned, the ErrorSet was displayed by the UI, and each

Warning (which represents a potentially recoverable error) was flagged as to whether or

40



not it was proceed.able. The entire ErrorSet was then

used it to determine if it should allow the next action.

domain, which

3.12.2 Broker

A second design heuristic that we used was the concept of a Database

acts as an Adapter between a persistent domain object and the classes that renre~ent

physical database and the query language. It translates "domainish" requests

''databasish" queries and helps in mapping SQL rows and columns to objects and

instance variables. It provides a needed separation of concerns that isolate the domain

classes from the purely database-oriented classes. This architecture allowed us to meet

our requirement that we use the existing Oracle tables, while at the same time freeing us

to use a fully 00 design in our domain classes.

While these solutions were not written down as patterns when.we were·designing our

system, I nevertheless presented them to the developers just as I had presented •. the

patterns from . This process of explaining them in this way helped immensely when I

sat down to write them in pattern form later.

3.13 The Type Object Pattern

Intent

Decouple instances from their classes so that those classes can be implemented as

instances of a class. Type Object allows new "classes" to be created dyna:rı:ıically at

runtime, lets a system provide its own type-checking rules, and can lead to sımpıer;

smaller systems.

Motivation

Sometimes a class requires not only an unknown number of instances, but an uııkn.ôwıı
number of subclasses as well. Although an object system can create new instances

demand, it usually cannot create new classes without recompilation. A design in which

a class has an unknown number of subclasses can be converted to one in which the class

has an unknown number of instances.

41



Consider a system for tracking the videotapes in a video rental store's inventory. The

system will obviously require a class called "Videotape." Each instance of Videotapewill

represent one of the videotapes in the store's inventory. However, since. many of the

videotapes are very similar, the Videotape instances will contain a lot of redundant

information. For example, all copies of Star Warshave the same title, rental price,

MPAA rating, and so forth. This information is different for The Terminator, but

multiple copies of The Terminator also have identical data. Repeating this information

for all copies ofStar Warsor all copies of The Terminator is redundant

One way to solve this problem is to create a subclass of Videotapefor each movie. Thus

two of the subclasses would be StarWarsTapeand TerminatorTape.The class itself would

keep the information for that movie. So the information common to all copies of Star

Warswould be stored only once. It might be hardcoded on the instance side<ôf

StarWarsTapeor stored in variables on the class side or in an object assigned to the class
for this purpose. Now Videotapewould be an abstract class; the system would notc:reate

instances of it. Instead, when the store bought anew copy of The Terminatorvideôtape

and started renting it, the system would create an instance of the class for that movie, an.

instance of Tesminater'I'ape,

This solution works, but not very well. One problem is that if the store stocks lots of

different movies, Videotape could require a huge number of subclasses. Another

problem is what would happen when, with the system deployed, the store starts stocking

a new movie-perhaps Independence Day. There is no lndependenceDayTapeclass in the

system. If the developer did not predict this situation, he would have to modify .fhe.ı~f.
to add a new IndependenceDayTape class, recompile the system; and redeploy.it~If ffi~
developer did predict this situation, he could provide a special subclass ofViı.leo~pe"7"

such as UnknownTape-andthe system would create an instance of it for all video~~Ş)B~

the new movie. The problem with UnknownTapeis that it has the same lack of flexibility

that Vid,eotapehad. Just as Videotape required subclasses, so will UnknownTape,

so Unkno"".nTapeis not a very good solution.

Instead, since the number of types of videotapes is unknown, each type of videotape

needs to be an instance of a class. However, each videotape needs to be an instance öf a.
type of videotape. Class-based object languages give support for instances of classes,

but they do not give support for instances of instances of classes. So to implement this

42



solution in a typical class-based language, you need to implement two classes: one to

represent a type of videotape (Movie) and one to represent a videotape (Videotape). Each

instance of Videotape would have a pointer to its corresponding instance ofMovie.

alloYie
The ·Teıminalor

sVideotape
Sue's Star wars

moııie

Figure 3.13 {a}

This class diagram illustrates how each instance of Videotape has a corresponding

instance of Movie. It shows how properties defined by the type of videotape are

separated from those which differ for each particular videotape. In this case, the movie's
title and how much it costs to rent are separated from whether the tape is rented and

who is currently renting it.

llol'ie - moııie Video~-
1i11eO ~Renw!O
ıentalP ıic:e0 ıanmrO

Figure: 3.13 {b}

This. instance diagram shows how there is an instance ofMovie to represent each type ~f

videotape and an instance of Videotape to represent each video the store stocks. $tar
Wars and The Terminator are movies; videotapes are the copy of Star Wars that}Ç>:1:fü.jş

renting versus the one that Sue is renting. It also shows how each Videotape knows what

type it is because of its relationship to a particular instance ofMovie.

If a new movie, such as Independence Day, were to be rented to Jack, the system would

create a new Movie and a new Videotape that points to the Movie. The movie

is Independence Day and the tape is the copy of Independence Day that Jack ends. ııp

renting.

43



Videotape, Movie, and the is-instance-of relationship between them (a Videotape is an

instance of a Movie) is an example of the Type Object pattern. It is used to create

instances of a set of classes when the number of classes is unknown. It allows an

application to create new "classes" at runtime because the classes are really instances of

a class. The application must then maintain the relationship between the real instances

and their class-like instances.

The key to the Type Object pattern is two concrete classes, one whose instances

represent the application's instances and another whose instances represent types of

application instances. Each application instance has a pointer to its corresponding type.

Keys

A framework that incorporates the Type Object pattern has the following features:

• Two classes, a type class and an instance class.

• The instance class has an instance variable whose type is the type class.

• The instance class delegates its type behavior to the type class via the instance

variable.

The framework may also include these variations on the pattern:

• . The system may maintain a list of its type class instances.

• The type class instances may maintain a list of their instances.

Applicability

• Use the Type Object pattern when:

• Instances of a class need to be grouped together according to their wm., •.uvu

attributes and/or behavior.

• . The class needs a subclass for each group to implement that group's common

attributes and behavior.

• The class requires a large number of subclasses and/or the total variety of

subclasses that may be required is unknown.

• You want to be able to create new groupings at nnıtime that were not predicted

during design.

44



• You want to be able to change an object's subclass after its been instantiated

without having to mutate it to a new class.

• You want to be able to nest groupings recursively so that a group is itself an item

in another group.

3.14 Structure

I:=~ r ~ Oaau

Figure: 3.14 {a}

The Type Object pattern has two concrete classes, one that represents .objects arid
another that represents their types. Each object has a pointer to its correspondinğtype.

aTypeOan
Type0biect1

SOHi
Obiect1A

(~~~= )

Figure: 3.14 {b}

For example, the system uses a TypeObject to represent each type in the svstem

Object to represent each of the instances of those TypeObjects. Each vuıı;;wı:

pointer to its TypeObject.

Participants

• TypeClass (Movie)

• is the class ofTypeObject.

• has a separate instance for each type ofObject.

• TypeObject (Star Wars, The Terminator, Independence Day)

• is an instance of TypeClass.

45



• represents a type of Object,

• Establishes all properties of an Object that are the same for all Objects of

the same type.

• Class {Videotape)

• is the class of Object.

• represents instances ofTypeClass.

• Object (John's Star Wars, Sue's Star Wars)

• is an instance ofClass.

• represents a unique item that has a unique context.

• Establishes all properties of that item that can differ between items of the

same type.

• has an associated TypeObject that describes its type.

• Delegates properties defined by its type to its TypeObject.

TypeClass and Class are classes. TypeObject and Object are instances of their

respective classes. As with any instance, a Typeübject or Object knows

is. In addition, an Object has a pointer to its TypeObject so that it

TypeObject is. The Object uses its TypeObject to defıne its type behavior.

Object receives requests that are type specific but not instance specific, it delegates

those 'requests to its TypeObject. A TypeObject can also have pointers to

Objects.

Thus Movie is a TypeClass and Videotape is a Class. Instances of Movie like Stw Wars;
·The Terminator, and Independence Day are TypeObjects. Instances of Videofapeli.k.e

John's Star Wars and Sue's Star Wars are Objects. Since an Object has a poin1:el'tôit:s

jTypeübject, John's videotape and Sue's videotape have pointers to their correspô:ı:iclınğ

Movie, which in this case is Star Wars for both videotapes. That is how the videotapes

know that they contain Star Wars and not some other movie.

Collaborations

• An Object gets two categories of requests: those defined by its instance and

those defined by its type. It handles the instance requests itself and delegates the

type requests to its TypeObject.

46



• Some clients may want to interact with the TypeObjects directly. For example,

rather than iterate through all of the Videotapes the store has in stock, a renter

might want to browse all of the Movies that the store offers.

• If necessary, the TypeObject can have a set of pointers to its Objects. Tiıis way

the system can easily retrieve an Object that fits a TypeObject's descripti()n. TJıis

would be similar to the alllnstances message that Smalltalk classes·iIIı:plement.

For example, once a renter finds an appealing Movie, he would then wanLto

know which videotapes the store has that fit the description.

Consequences

The advantages of the Type Object pattern are:

• Runtime class creation.The pattern allows new "classes" to be creatediat

runtime. These new classes are not actually classes, they are instances· called

TypeObjects that are created by the TypeClass just like any instance is created

by its class.

• Avoids subclass explosion. The system no longer needs numerous subclassescfô

represent different types of Objects. Instead of numerous subclasses, the(systerii

can use one TypeClass and numerous TypeObjects.

• Hides separation of instance and type. An Object's clients does not need to/be

. aware of the separation between Object and TypeObject The client nıakes

requests of the Object, and the Object in tum decides which requests to forward

to the TypeObject. Clients that are aware of the TypeObjects may collabörate

with them directly without going through the Objects.

• Dynamic type change. The pattern allows the Object to dynamically c~g~).i-ts

TypeObject, which has the effect of changing its class. This is simplettlı~rı ·.

mutating an object to a new class. [DeKezel96]

• Independent subclassing.TypeClass and Class can be subclassed

independently.

• Multiple Type Objects.The pattern allows an Object to have m11ltiple

TypeObjects where each defines some part of the Object's type. The Objecfmust

then decide which type behavior to delegate to which TypeObject.

47



3.15 The disadvantages of the Type Object pattern are:

• Design complexity. The pattern factors one logical object into two classes. T~~ir

relationship, a thing and its type, is difficult to understand. This is confusing for

modelers and programmers alike. It is difficult to recognize or explain the

relationship between a TypeObject and an Object. This confusion föırts
simplicity and maintainability. In a nutshell: "Use inheritance; it's easier."

• Implementation complexity. The pattern moves implementation differences out

of the subclasses and into the state of the TypeObject instances. Whereas each

subclass could implement a method differently, now the TypeÇl11SSvF@<.ô:nly

implement the method one way and each TypeObject's state ntusfföake the

instance behave differently.

• Reference management. Each Object must keep a reference to its TypeObj~.

Just as an object knows what its class is, an Object knows what its Ty.pe()bject

is. But whereas the object system or language automatically establisb.es/aoo

maintains the class-instance relationship, the application must itself establisb.and

maintain the TypeObject-Object relationship.

Implementation

There are several issues that you must always address when implementing

. Object pattern:

• Object references TypeObject. Each Object has a reference to its

and delegates some of its responsibility to the TypeObject.

TypeObject must be specified when the Object is created.

• Object behavior vs. TypeObject behavior. An Object's behavior can either be

implemented in its class or can be delegated to its TypeObject. The TypeObject

implements behavior common to the type, while the Object implements behıiviô:f

that differs for each instance of a type. When the Object delegates behavior to i-Ü:
TypeObject, it can pass a reference to itself so that the TypeObject can access its

data or behavior. The Object may decide to perform additional operations before

48



and after forwarding the request, similar to the way a Decorator can enhance the

requests it forwards to its Component [GHJV95, page 175].

• TypeObject is not multiple inheritance. The Class-not the TypeObject-is the

template for the new Object. The messages that Object understands are defined

by its Class, not by its TypeObject. The Class' implementation decides which

messages to forward to the TypeObject; the Object does not· i:ııİıerıf the

TypeObject's messages. Whenever you add behavior to TypeCiass, you rrıust

also add a delegating method to Class before the behavior is available tô the

Objects.

3.16 There are other issues you may need to consider when implementing

the Type Object pattern:

• Object creation using a TypeOhject. Often, a new Object is created by sennıng

request to the appropriate TypeObject. This Is notable because the

an instance and instance creation requests are usually sent to a class,

instance. But the TypeObject is like a class to the Object, so it often

responsibility of creating new Objects.

• Multiple TypeObjects. An Object can have more than one

is unusual. In this case, the Class would have to decide which

delegate each request to.

• Changing TypeObject. The Type Object pattern lets an object dynami¢al.ly

change its "class," the type object. It is simpler for an object to change

to a different type object (a different instance of the same class) than

to a new class. For example, suppose that a shipment to the

supposed to contain three copies of The Terminator and two copıes

Wars, so those objects are entered into the system. When the snıpment

really contains two copies of The Terminator and three copies of

one of the three new copies of The Terminator in the system

changed to a copy of Star Wars. This can easily be done by chanğ.ırig

videotape's Movie pointer from The Terminator to Star Wars.

• Subclassing Class and TypeClass. It is possible to subclass either

TypeClass. The video store could support videodisks by making ,ıuv •..•.•.., .•.

49



called Videodisk. A new Videodisk instance would point to its Movie instance

just like a Videotape would. If the store carried three tapes and two disks of the

same movie, three Videotapes and two Videodisks would all share the same

Movie.

The hard part of Type Object occurs after it has been used. There an almost

irresistible urge to make the Typeübjects more composable, and to build tools that let

non-programmers specify new Typeübjects. These tools can get quite complex, and the

structure of the Typeübjects can get quite complex. Avoid any complexity üıiless it

brings a big payoff.

Sample Code
Video Store

Start with two classes, Movie and Videotape.

Object O
Movie (title rentalPrice rating)

Videotape (movie isRented renter)

Notice how the attributes are factored between the two classes. If there

videotapes of the same movie, some can be rented while others are not.

can certainly be rented to different people. Thus the attributes isRented
'

assigned at the Videotape level. On the other hand, if all of the videotapes in

contain the same movie, they will all have the same name, will rent for the

. and will have the same rating. Thus the attributes title, rentalPrice, and rating

at the Movie level. This is the general technique for factoring the Typeübject

Object: Divide the attributes that vary for each instance from those that are

a given type.

YOU create a new Movie by specifying İts title. In tum, a Movie knows how

new Videotape.

Movie class>>title: aString

"selfnew initTitle: aString

Movie>>initTitle: aString

title := aString

Movie>>newVideotape

/\Videotape movie: self

Videotape class>>movie: aMovie

50



"self new initMovie: aMovie

Videotape>>initMovie: aMovie

movie :=aMovie

Since Movie is Videotape's TypeClass, Videotape has a movie attribute that contains a

pointer to its corresponding Movie instance. This is how a Videotape knows what its

Movie is. The movie attribute is set when the Videotape instance is created by

Videotape clııss>>movie:.

A Videotape knows how to be rented. It knows whether it is already being rented.

Although it does not know its price directly, it knows how to determine its price.
Videotape>>rentTo: aCustomer

self checkNotRented.

aCustomer addRental: self.

self makeRentedTo: aCustomer

Videotape>>checkNotRented

isRented iffrue: ["self error]

Customer>>addRental: aVideotape

rentals add: aVideotape.

self chargeForRental: aVideotape renta!Price
Videotape>>rentalPrice

"selfmovie rentalPrice

Videotape>>movie

"movie

Movie>>renta!Price

ArentalPrice

Videotape>>makeRentedTo: aCustomer

isRented :=true.

renter ::= aCustomer

Thus it chooses to implement its is Rented behavior itself but delegates

its rentalPrice behavior to its Type Object.

When Independence Day is released on home video, the system creates a Movie for it0Hlt

gathers the appropriate information about the new movie (title, rental price, rating;etct)

via a GUI and executes the necessary code. The system then creates ktlıe

new Videotapes using the new Movie.

51



3.17 Video Store-Nested Type Objects
The Type Object pattern can be nested recursively. For example, many video stores

have categories of movies-such as New Releases (high price), General Releases

(standard price), Classics (low price), and Children's (very low price). If the store

wanted to raise the price on all New Release rentals from $3.00 to $3.50, it would have
to iterate through all of the New Release movies and raise their rental price. It would be

easier to store the rental price for a New Release in one place and have all of the New

Release movies reference that one place.

Thus the system needs a MovieCategory class that has four instances. · The

MovieCategory would store its rental price and each Movie would delegate to its

corresponding MovieCategory to determine its price. Thus a MovieCategory is the Type

Object for a Movie, and a Movie is the Type Object for a Videotape.

A MovieCat~ory class requires refactoring MQvie'sbehavior.
Object O

MovieCategory (name rentalPrice)

Movie (category title rating)

· Vidcotapc.(movic isRcntcd renter)

Before, rentaIPriee was a attribute of Movie because all videotapes of the same ııiövie
had the same price. Now all movies in the same category will have the same price/SQ

rental~ce becomes an attribute of MovieCategory. Since Movie now has a type object,.Ht
has an attribute-category-to point to its type object.

Now behavior like rentalPrice gets delegated in two stages and implemented by
Videotape>>renta!Price

"'self movie rentaıPrice

Movie>::;,.rentalPrice

"'self category rentalPriceMovie

Category>>rentalPrice

"rental Price

This example nests the Type Object pattern recursively where each

Movie instances and each Movie has Videotape instances. The system still works prlmı:gi

with Videotapes, but they delegate their, type behavior to Movies, which·in tum deiegate

their type behavior to Mo.vieCategorys. Videotape hides from the rest of the system

each set of beh.a,vim: is irrıplemen.ted. Each piece of i_u.f<mnat.imı ~QolJt ı,ı tape. is

52



3.18 Video Store-Dynamic Type Change

Once Independence Day is no longer a New Release, its category can easily he changed

to a General Release because its category is a Type Object and not its class.

Movie>>changeCategoryTo: aMovieCategory

self ~te.gory .remove.Movie.: self.

self category: aMovieCategory.

self category addMovie: self

With the Type Object pattern, an Object can easily change its Type Object when

desired,

3.19 Video Store-Independent Subclassinış
The system could also support videodisks. The commonalities of videotapes .· and

videodisks are capfııred iri. the abstract superclass Rentableltem, where Videotape arıd

Videodisk ara subclasses. Both concrete classes delegate their typo behavior to Movie,

so M;ovie. does not need to be sııbclassed,
Object O

IvJovieCategory (mı.me rentall'riee)

Movie (category title rating)

Rentableltem (mo:vie isRented renter)

Videotape (isRewound)

Videodisk (nınnberOIDisks)

Most of Videotape's behavior and implementation is moved to Rentableit-em. · Now
Videodisk inherits this. code for free.

Movie. may tum out to be a specific example of a more general Title class. Title)ınight

have subclasses like Movie, Documentary, and HowTo. Movies have ratings vvh~

documentary and how-to videos often do not. How-to videos often come in a series ot

collection that is rented all at once whereas movies and documentaries -do not. Thus

Titlemight also need a Composite [GHJV95, page. l 63} subclass such as HowToSeries.

Movie itself might also have subclasses like RatedMovie for those movies that have

MPAA ratings and UnratedMovie for movies that don't.

53



Object()

MovieCategory (name rentalPrice)

Title. (çqte.gory title)
Documentary O
HQWTo ()

Movie O
RııJe.<l:rvtovie(rating)
UnratedMovie ()

Title.Composite (titles)
HowToSeriesO

Ren.table.[te.m(ti.tl.e işRetıted ren.ter)
Videotape (isRewound)

Vidı:;qc!,i_şl<_ (nı;ı;mbe.TQIDi.~l.<..s)

The code above and the diagram below show the final set of classes in

],ıı ft! I RMııtıfll!iıJ I

Videodiıık

Figure 3.19 {a} [http://www.dhmsmag.com]

Movie and Title can be subclassed without affecting the way Rıımtableit~mruid

Vi~eotap.eare subclassed, This ability to independeatly subclass Title. and
Rentableltem would be impossible to achieve if the videotape object had not first been
divided into Movie and Videotape components. Obviously, all of this nesting and

subclassing can get complex, hut it shows the flexibility the Type Object pattern can

give you-flexibility that would be impossible without the pattern.

54



Manufacturing

Consider a factory with many different machines manufacturing many different

products. Every order has to specify the kinds of products it requires. Each kind of

product has a list of parts and a list of the kinds of machines needed to make it. One

approach is to make a class hierarchy for the kinds of machines and the kinds of

products. But this means that adding a new kind of machine or product requires

programming, since you have to define a new class, Moreover, the main difference

between different products is how they are made. You can probably s~ecify a new kind

of product just by specifying its parts and the sequence of machine tools that is needed

to make it.

It is better to make objects that represent "kind of product" and "kind of'machine," They

are both examples of type objects. Thus, there will be classes such as Machine,_ Product,

MacbineType, and ProductType. A ProductType has a "manufacturing plan" which knows

the MachineTypesthat make it. But a particular instance of Productwas made .on .a

particular set of Maehines, This lets you identify which machine is at fault when a

product is defective.

Suppose we want to schedule orders for the factory. When an order comes in, the

system will figure out the earliest that it can fiİİ the order. Each order knows what kind

of product it is going to produce. For simplicity, we'll assume each order consists of one

kind of product. We'll also assume that each kind of product is made on one kiııôôf

machine. But that product is probably made up of other products, which will probably

require many other machines. Thus, Product is an example of the Composite ipıittern
fGHJV95, page İ63) (not shown below). For example, a hammer consists of a handle

and a head, which are combined at an assembly station. The wooden handle is carved .at
one machine, and the head is cast at another, P.i'OductType and Omer are also conıpöSİieS,
but are not shown.



~ ffe I RMOi:Jrltmı IDoıieCalegory

HwTo

Rsl&dllorie
Lmıiıdloıie HowToSerioı

Figure 3.19 {b}[http://www.dbmsmag.com/]

There are six main classes:

Object

• MachineType (name machines)

• Machine (type location age schedule)

• ProductType (manufacturingMacbine duration parts)

• Product {typecreationDate manufacturedOn parts)

• Order (productType dueDate requestor parts item)

• Factory {machinesorders)

We will omit all the accessing methods, since they are similar to those

example. Instead, we will focus on how a factory schedules an order.

.A factory acts as a Facade [GHN95, page 185], creating the order and then schedtili:rıg

it.

Factory>>orderProduct: aType by: aDate for: aCustomer

I order I
order := Order product: aType by: aDate for: aCustomer.

order scheduleFor: self.

"order

Order>>scheduleFor: aFactory

I partDate earliestDate I
part.Date := dueDate minusDays: productType duration.

parts :=productType parts collect: [:eachType I
aFactory

orderProduct:eachType

56



by: partDate

for: order].

product Type

schedule: self

between: self datePartsAreReady

and: dueDate

ProductType>>schedule: anOrder between: startDate and: dueDate

(startDate plusDays: duration)> dueDate

ifTrue: [anürder fix.Schedule].

manufiıcturingMachine

schedule: anOrder

between: startDate

and: dueDate

There are at least two different subclasses of ProductType, one for machines that <dan
only be used to make one product at a time, and one for assembly lines and Other
machines that can be pipelined and so make several products at a time. A non-pipelın.cil

machine type is scheduled by finding a machine with a schedule with enough free time

open between the startDate and the dueDate.

NonpipelinedMachineType>>scheduJe; anürder between: startDate and: dueDate

machines do: [:each I I theDate I
theDate := each schedule

slotOfSize: anOrder duration

freeBetween: startDate

and: dueDate.

theDate notNil ifTrue:

["each schedule: anOrder at: theDateJJ.

anürder fixSchedule

A pipelined machine type is scheduled by finding a machine with an open

the startDate and the dueDate.
PipelinedMac.hineType>>schedule:anOrder between: startDate and: dueDate

machines do: [reach I I theDate I
theDate :=each schedule

slotOISize: 1

freeBetween: startDate

and: dueDate.

theDate notNil iffrue:

["each schedule: anOrder at: theDate]].

57



anOrder fix.Schedule

This design lets you define new ProductTypes without programming. This lets product

managers, who usually aren't programmers, specify a new product type. It will be

possible to design a tool that product managers can use to define a new product type.by

specifying the manufacturing plan, defining the labor and raw materials needed,

determining the price of the final product, and so on. As long as a new kind ofı:[pdtıct

can be defined without subclassing Product, it will be possible for product managers to

do their work without depending on programmers.

There are constraints between types. For example, the sequence of actual

MachineTools that manufactured a Product must match the MachineToo!Types iiı • the

manufacturing plan of its Produet'Iype. This is a form of type checking, but it canibe

done only at runtime. It might not be necessary to check that the types match

sequence of MachineTools is assigned to a Product, because this sequence will be

iterating over a manufacturing plan to find the available MaehineTooıs.

scheduling can be complex and errors are likely, so it is probably a good idea

check that a Product's sequence of MacbineTooJs matches what its ProduetTvne

should be.

3.20 Known Uses
Coad·

Coad's Item Description pattern is the Type Object pattern except

emphasized the fact that a Type holds values that all its Instances

used an "aircraft description" object as an example. [Coad92]

Hay

Hay uses Type Object in many of his data modeling patterns,

modeling principle, but doesn't call it a separate pattern. He uses it

activities, products, assets (a supertype of product), incidents,

documents, and sections of a Material Safety Data Sheet. [Hay96]

Fowler

Fowler talks about the separate Object Type and Object worlds, and calls these/the

"knowledge level" and the "operational level." He uses Type Object to define types for

58



organizational units, accountability relationships, parties involved in relationships,

contracts, the terms for contracts, and measurements, as well as many of the things that

Hay discussed. [Fowler97]

Odell

Odell's Power Type pattern is the Type Object pattern plus the ability for. subtypes

(implemented as subclasses) to have different behavior. He i11ustrates it with . the

example of tree species and tree. A tree species describes a type of tree . such .as

American elm, sugar maple, apricot, or saguaro. A tree represents a particular.treçjia.gıy
front yard or the one in your back yard. Each tree has a corresponding tree speğit!~ tlıat

describes what kind of tree it is. [M095J

3 .21 Sample Types and Samples
The Type Object pattern has been used in the medical field to model medical samples.

A sample has four independent properties:

• The system it is taken from (e.g., John Doe)

• The subsystem (e.g., blood, urine, sputum)

• The collection procedure (aspiration, drainage, scraping)

• The preservation additive (heparin, EDTA)

This is easily modeled as a Sample object with four

subsystem, collection procedure, and additive. Although the <:v<:Tf':m

who gave the sample) is different for almost all samples, the triplet

collection procedure, and additive) is shared by a lot of samples.

medical technicians refer to a "blood" sample,

blood/aspiration/EDTA sample. Thus the triplet attributes can be gathered

single Sample'Iype object.

A SampleType is responsible for creating new Sample objects. There are about 5,000

different triplet combinations possible, but most of them don't make any sense, so>the

system just provides the most common SampleTypes. If another SampleType is r:ı~ded,

the users can create a new one by specifying its subsystem, collection procedure,.and

additive. While the system tracks tens of thousands of Samples, it only needs to track

59



about one-hundred Sample'Iypes. So the SampleTypes are TypeObjects and the Samples

are their Objects. [DeKezel96]

Signals and Exceptions
The Type Object pattern is more common in domain framewôrk.s(..t:fiaıı Pv~ridör
frameworks, but one vendor example is the Signal/Exception framework in

VisualWorks Smalltalk. When Smalltalk code encounters an error, it cari raise an

Exception. The Exception records the context of where the error occurred for debugging

purposes. Yet the Exception itself doesn't know what went wrong, just whe:reJc;ıit

delegates the what information to a Signal. Each Signal describes a potentiaj.Ycypejqf

problem such as user-interrupt, message-not-understood, and subscript-out-of-bötırids.

Thus two message-not-understood errors create two separate Exception instances/that

point to the same Signal instance. Signal is the TypeClass and Exception is the iClass.

[VW95]

Reflection

Type Object is present in most reflective systems, where a type object is

metaobject. The class/instance separation in Smalltalk is an example of the

pattern. Programmers can manipulate classes directly, adding methods, "'ua.ı..ıf;;ıu0

class hierarchy, and creating new classes. By far the most common use of

make instances, but the other uses are part of the culture and otten discussed,

.oftenused. [KRB91]

Reflection has a well-deserved reputation for being·hard to understand.

pattern shows that it does not have to be difficult, and can be an easy entrance

more complex world of reflective programming.

3.22 Related Patterns

3.22.l Type Object vs. Strategy and State

The Type Object pattern is similar to the Strategy and State patterns [GHN95, page
315 and page 305]. All three patterns break an object into pieces and the creal objecti

delegates to the new object-either the Type Object, the Strategy, or the State. Strategy

60



and State are usually pure behavior, while a Type Object often holds a lot of shared

state. States change frequently, while Type Objects rarely change. State solves the

problem of an object needing to change class, whereas Type Object solves the problem

of needing an unlimited number of classes. A Strategy usually has one main

responsibility, while a Type Object usually has many responsibilities. So, the patterns

are not exactly the same, even though their object diagrams are similar.

3.22.2 Type Object and Reflective Architecture

Any system with a Type Object is well on its way to having a Reflective Architecture

[BMRSS96J. Often a Type Object holds Strategies for its instances. This is agoodway

to define behavior in a type.

3.22.3 Type Object vs. Bridge

A Type Object implementation can become complex enough that there are

Type Class hierarchies. These hierarchies look a lot like the

Implementor hierarchies in the Bridge pattern [GHN95, page 151], where

abstraction and Type Class is the implementation. However, clients can cöHıiööl"'1te

directly with the Type Objects, an interaction that usually doesn't occur

Implementors.

3 .22.4 Type Object vs. Decorator

An Object can seem to be a Decorator [GHN95, page 175] for its Type

.Object and its Type Object have similar interfaces and the Object cnooses Yt'Lll'-'U

messages to forward to its Type Object and which ones to ennance. However,

Decorator does not behave like an instance of its Component.

3.22.5 Type Object vs. Flyweight

The Type Objects can seem like Flyweights [GHN95, page 195] to

However, Type Object does not involve a Flyweight Factory that provides access

Flyweight Pool. Nevertheless, two Objects using the same Type Object

they each have their own copy, but instead are sharing the same one. Thus it is
important that neither Object change the intrinsic state of the Type Object.

61



3.22.6 Type Object and Prototype

Another way to make one object act like the type of another is with the Prototype

pattern [GHN95, page 117], when each object keeps track of its prototype and

delegates requests to it that it does not know how to handle.

3.23 Pattern Language for Relational Databases and Smalltalk

Early in 1995 we (two experienced Smalltalk programmers) began a project in analysis

and design that wouldtax our abstraction abilities to their limits. The result of this

ongoingexercise is a pattern language we call Crossing Chasms. This article describes

Crossing Chasms as well as exploring the thought processes that led us to write it, what

we discovered in its writing, and how we have used the document since its creation.

3.24 What motivated us to write a pattern language?

The business of companies like Knowledge Systems Corporation

People is to transfer information about the process of building object !ô:V,;m~rm:

consultants to clients. One of the most common themes running tnrouzn

object systems our two companies have built over the past five years

integrate Smalltalk with relational database technology. We

of our training and consulting businesses are extremely um,n,., ••.."

need guidance to understand how these two technologies combine.

In early 1995 we were both involved in creating new material for clieiı,t, ..ç~tıt~re4
mentoring and classroom education. We felt the need to include some infomıa,tiou.ı.pôut
relational databases, but were uncertain as to how to organize that information. Eacföcff

the Smalltalk vendors (Digitalk, Parcplace, and IBM) had their own, unique class

libraries for handling relational database queries. On the surface, there did not appear to
be much commonality among the three.

Over the past several years we had built many systems using Smalltalk and relational

databases with major corporate clients. KSC's first such effort had been with a

government organization in early 1992, followed by projects for a national bank, · a

62



major telecommunications company, a telecommunications equipment ı:nantıfactı.ırer,

and a pharmaceutical company. We had learned many lessons about building this kind

of system, and had found out what worked and what didn't. Although.each,system,was

unique, we felt that there were some commonalties among all of them, .In .fac1}ithe

design for each usually incorporated the best ideas from all the previous orıesrieven

though none of the systems shared any code.
It was this desire to record our lessons learned, to be better equipped for future projects,

and to find unity among the disparate vendor implementations, that led us to explore

pattern languages as an avenue for recording this design and implementation

information. A pattern language is a set of related patterns that guidesa reader.through.a

set of closely linked problems and their solutions.

The pattern is a literary form invented by the architect Christôplieri<J¥le:xaiitiet

describe the decisions involved in designing and building communities

The shortest way to· describe the essence of a pattern is "A solution to

context". It records how the interplay of different "forces" on a mım,m

lead to their resolution in a template solution. The pattern form

software community by Ward Cunningham and Kent Beck in the

become popular in recent years due in large part to the work of Gamma; >\...,uau.;,

others.

We chose to begin writing a pattern language because the pattern form seemedfö.
capture the spirit of the notions that we had, We felt that a pattern language

lead readers in a non-linear fashion from one topic to the next could

interconnected threads of thought that we had. It also provides a structure

study the issues and their solutions by naming and isolating the essence

problem. We were also interested in exploring the issues involved in writinğ.pafter.iıs

in this sense Crossing Chasms was an experiment in writing a large pattern IangııageZ

3.25 How did we find our patterns?

We first wanted to identify all the issues and problems that arise in uı,:;~•ı,;.ı.ıı..ı.t5

building a framework marrying relational databases and Smalltalk.

In reviewing the process of building such a system it became apparent that

split the set of problems roughly in two. The problems of defining the tables

63



models we categorized as "static" patterns. Those involved in resolving the runtime

problems of object-table mapping we put in a category called "dynamic" patterns. We

then realized that a number of the problems we were identifying were not so much

directly related to the object-table mismatch but were really client-server issues. These

problem-solution pairs were generic enough to be applicable to any client-server

architecture, object-oriented or not, so we developed a third category ("client-server"

patterns) for them.

Lastly we saw that the decision to go with a client-server model was just one

fundamental architectural decision out of many. Many other architectural issues must

also be resolved, including the modularization of functionality into application layers

and the choice of the number of tiers that the system would include. These·patterns we

termed "architectural" patterns.

Crossing Chasms grew in size and complexity as new problems were identified.. 'To

discover the patterns we first immersed ourselves in the literature and subject area. We

found our patterns in numerous places. Our own experience in building systems ledus

to identifying most of the major ones. Studying the documentation of existing

frameworks, both commercial and proprietary, added to the list as well. Reading theOO
literature that addressed · the subject, (Rumbaugh, Jacobson, Gamma, · and others) ialsô

contributed some patterns'to the list, particularly in the static category.

· Eventually after defining the basic patterns and formulating them as a pattern ı.au!::ıu%~

_we came up with some new ones based on feedback from our colleagues.

process followed the 3 I Paradigm of mastering a subject area First you lı:nIIı¢ı"se

yourself in a field. This leads you to Imitate the solutions of others, until

Innovate and come up with your own solutions.

As mentioned above, Crossing Chasm's patterns are categorized - into

architectural, static, dynamic and client-server. In the following

introduce a few of the most important patterns in the language in

categories. Unfortunately, we can only present a taste of our language as

current version of the language is over 90 pages long and very dense

diagrams. We have discovered almost forty patterns, of which we introduce

The presentations of the individual patterns here are by necessity very brief;

language goes into much more depth in each pattern.

64



3.26 The Patterns of Crossing Chasms Architectural Patterns

When a project needs to use both Smalltalk and relational technology there are a group

of issues at a very high architectural level that need to be addressed. Surprisingly, we

did not recognize many of these issues until well · after we had written the rest of the

patterns in Crossing Chasms. These issues so pervaded our thinking that it took a

second look at the problem to even recognize their existence.

One of the most important decisions to make about the design of a system is its overall

software architecture. This decision determines the direction that development will take.

3~27 Pattern; Four-Layer Architecture

Problem:

What is the appropriate structure and grouping of classes in a Smalltalk client-server

system? What architecture is most appropriate?

Figure 3.27 · Four. Layer Architecture

Solution:

Employ a four-layer architecture consisting of a view layer; an. application model layer,

a domain layer, and a supporting infrastructure layer (see Figure I: Four Layer

Architecture). Determine the iritenaceS betweenthe layers well ahead of time and keep

the communications paths well·defined-Enforce the .layering through design and code

revıews.

Layered architectures are a well-known idea in Computer Science, but it is rare that

new Smalltalk programmers see their designs in terms of well-defined layers.

65



Nevertheless, proper layering is important for reusability and maintainability. Brown

[96] deals with this issue at length.

Another key decision that has to be made is the order in which development events must

occur. It is especially difficult for first-time users of Object Technology tô develop an

ordered development process. After seeing several bad decisions made iri<pföj~ts -We
had observed, we recognized this pattern in retrospect.

3.28 Pattern: Table DesignTime

Problem

When is the best time to develop your relational database schema? In what order do

object design and schema design occur?

Solution;

Design the relational database schema based upon a first-pass object model done using

a behavioral modeling technique. It may be more prudent to wait until after an

architectural prototype has been built before designing the schema (see Figure 2:

Development Lifecycle). Remember that an 00 design is in reality a first-pass w:ıu:ı.=~

design. Doing things in the reverse order (schema first) often lead to a

00 design with separate "function" and "data" objects.

' ' -
/,' ' ' V•, - ~---- . -- - - -----
' ' '"
,/., , :; ··--- --- - ----'

-----------' ' '- ' "' ' -
:::,_. :-~~::: ~--- -: --~ - -~:-,-~~-

- ------- .- - --
' /.' ' -
,hf'v.• ---------------=/ -

Figure 3.28 Development Lifec'/cle

66



Static Patterns

One of the fundamental problems in developing a total enterprise solution using Object

Technology is the development of relational database schemas from object models. Vie

were lucky in finding that this is a well-represented area of research that had been

covered well over the past several years. Our job in developing the static patterns was to

pick the "best of breed" of the available approaches and integrate them into a complete,

self-consistent method.

3.29 Pattern: Representing objects as tables

Problem:

How do you map a set of objects into a relational database schema? Consideripğ

complex objects do not map neatly into tables, objects do not have keys, r~nıpc;o.

have identity, and the datatypes do not match between worlds, how do you petfôrı:tı

mapping?

Solution:

Start with a table for each persistent object. Determine the "type" of

variable and create a column for each that have "base" datatypes. Use the Repr~sentmg
Collections pattern to handle collections. Use the Foreign Key reference

handle other non-base datatype objects. Finally, use the Object Identifier pattetfü

3.30 Pattern: Object Identifier

Problem:

How do you preserve an object's identity in a relational database?

object's identity must be preserved in the databaseand there should be nenstıuriôl1$
duplicates.

Solution:

Assign an independent identifier (called an Object Identifier, or OID) to

object. An easy way to do this is to use a sequence number generator if one

67



in your particular database. If not, an OID table can be used. OIDs are usually simply

long integers that are guaranteed to be unique for a particular class of objects.

3.31 Pattern: Foreign Key Reference

Problem:

How do you represent objects that reference other objects that are not "base datatypes"?

The First Normal Form Rule (INF) excludes tuples from containing other tuples;

therefore Object relationships must be represented using only legal column values.

Solution:

Assign each object a unique OID. You then add a column for each instance variable that

is not a base daıatype or a collection. In that column store the OID of the referenced

object, then declare the column as a foreign key.

3.32 Pattern: Representing Collections

Problem:

How do you represent Smalltalk collections in a relational database? The first normal
,

form rule of relational databases forbids tuples from containing sets of other elements.

Other properties of Smalltalk collections also prove bothersome. For instance, objects

may be contained in many collections (M-N relationships). Also, collections have

special properties (sort order, duplicates). Finally, Smalltalk. collections can. be either

heterogeneous or homogenous

Solution:

Create a relationship table for each collection. A relationship table maps. the primary

keys .of the containing objects to the primary keys of the contained objects. The

relationship table· may store other information as well, for instance the class of

contained object, or the position of object (OrderedCollection, SortedCollection). If a

collection is heterogeneous, then the class of each element is also stored in that

table.Other static patterns in Crossing Chasms dealt with the issues of representing

68



inheritance in a relational database and determining to what extent a domain model

must be modified to handle database issues.

3.33 Dynamic Patterns

In addition to the static and architectural parts of Crossing Chasms,

important to record what we had learned about writing Smalltalk code

relational database connection. This section of Crossing Chasms we referred

"dynamic" patterns, since they deal with the movement of information in

database, as opposed to the static database schema.

One of the first patterns we recorded was Broker.

3.34 Pattern: Broker

Problem:

How do you separate the domain-specific parts of an application

specific parts?

Solution:

Connect the database-specific (vendor) classes and the domaın-specıtıc

.with an intermediate layer of Broker objects. Brokers mediate between

and domain objects and are ultimately responsible for reading object

and writing objects to the database.

The Broker idea is a popular one in 00 circles and many papers

about its use. However, it is still not being used as often as it should.

due in part to poor examples in the Smalltalk vendor's documentation

simplistic examples of database connectivity that mix domain

database functionality. Developers new to Object Technology, or

Smalltalk from Visual Basic or Powerlhıilder backgrounds often miss

69



why Brokers are important. However, they are central to maintaining the integrity of the

layers in a 1 Four-Layer Architecture.

As we looked back on the broker implementations we had built, we found that two more

patterns occurred in the best implementations; Query Object and Object Metadata.

3.35 Pattern: Object Metadata

Problem:

How do you define the mapping between the elements of an object class and the

corresponding parts of a relational schema?

Solution:

Reify the mapping into a set ofMap classes that map object relationships

equivalents. Map objects also map column names to instance variable

domain objects.

3.36 Pattern: Query Object

Problem:.
How do you handle the generation and execution of common SQL statefü.€

minimize the amount of duplicated.code between broker classes?

Solution:

Write a set of generic classes that generate SQL statements from comnı.ôn

hierarchy of classes representing SQL statements can generate the anôfoôrittfe

given a domain object and its Map object metadata representation.

70



Figure 3.36: Broker Interactions [Ms Access]

The three previous patterns, when combined, make up a powerful mini-arcliitecfüre.

Each domain object will have a set of Map öbjects that represent its object rela.tiô11Slıips

as meta.data. The Broker classes that are responsible for saving and restoring those

objects can use Query Objects to generate the appropriate SQL statements from the data

held in the Maps. In this way, proper layering can be preserved since the objects in the

Domain layer are not directly knowledgeable about the internals of the SQL generation,

while' the Brokers themselves obtain information about their domain classes only

indirectly through the Map objects. A diagram of the interactions of these classes is

shown in Figure 3: Broker Interactions.

While the Broker architecture worked well to allow us to move objects in and outofthe

database, the performance of some of our early attempts was less than adequate. i!ri
particular, early versions often spent too much time reading in data from the database
that was never subsequently used. In trying to resolve this, we found that the il
Prd~ pattern from Gamma provided us with an effective solution, We could. oftetı~~
Proxy as a placeholder for information that had not yet''been read in from the dat~~~-:ıt
When that information was needed, the Proxy would collaborate with the Broker to read

it In, and then replace itself with the new object.

71



Other topics addressed by the dynamic patterns included handling database transactions

and the order in which connected objects must be written to or restored from the

database.

Client-Server Patterns

As we mentioned previously, there were many issues we discovered thatw~re ııot

specific to Smalltalk, or even 00 in general, but were rather applicable to any client

server systems. Two of these patterns were l Client Synchronization and 1 Cache

Management.

3.37 Pattern: CHent Synchronization

Problem:

How do you handle resynchronizing the client image and database when there Jıre

errors? What do you do if you change the value of data held in the client's memöl'Y<ahd

the corresponding request to the database fails?

One solution is to just note the error to the user and flush any cached i:rrtot.ırut.tf9n;;;,m

this case any error is deemed to be catastrophic and you must start a new sessiç:rit

not a yery robust solution; but it is a quickly implement able one.

A second solution is a playback mechanism that has a logging facility.

-Iogged in a local log. If there is a failure the cache is flushed and you rP.riliivic

events as needed. This solution is more robust, but it is not trivial

Solution;
Mark the objects appropriately as deleted, added or updated · during

update to the database succeeds then remove the mark. If it fails
transaction. If it continually fails (e.g., times out) note the error and

With the changed objects marked it is possible to recover to the original

out the changed objects to local storage and performing recovery at a

time.

72



3.38 Pattern: Cache Management

Problem:

How do you best manage the lifetime of persistent objects stored in an RDB? Caches

can increase client performance, but they also increase client memory · size. Caches can

become out of date, necessitating frequent updates. Caching also generally increases

application complexity.

Solution:

Use a Session object that has a bounded lifetime and is responsible for identity cache

management of a limited set of objects. Balance speed vs. space by flushing the cache

as appropriate. Use a query before write (timestamp) technique to keep caches accurate.

How have we used Crossing Chasms?

Since writing Crossing Chasms we have successfully applied its patterns in a number of

different instances. It has proven to be a very useful teaching aid - we subsequently have

developed several lectures for classroom use from the pattern language. The structure of

the pattern language proved to be a useful :framework for discussing the different

concepts in object to relational connectivity. The topics of the lectures we developed

from the pattern language paralleled the organization of the language. In addition, some.
of the patterns have been used as a basis for other lecture topics in our c!assroöın

education. We have also found that students like having the pattern language

the-fact reference after seeing presentations based on it. hı this way, we can rırP.ı;:füıt

high-level overview and then allow the students to investigate the deeper

own pace.

Several companies have used the patterns in Crossing Chasms as part of their ooıect

relational architectures as a result of our presenting them as part of our uauuu,,,.

have /found that addressing the issues covered in Crossing Chasms

development process can preclude many of the missteps that first 00 projects

take.

We have also developed a conference tutorial based upon the pattern language arid

presented it at Smalltalk Solutions '96 in New York. Again, we have had feedback that

73



students appreciate using the pattern language to gain deeper understanding of the issues

after the presentation.

The static portion of Crossing Chasms was presented at the Plop (Pattern Languages of

Programs) '95 conference in September 1995. Those patterns have been published in

Brown [96].

3.39 Crossing Chasms:The Architectural PatternsPAlTERN

NAME: FOUR LAYER ARCHITECTURE

Problem:

When designing an object system for a client-server environment what is the most

appropriate way to structure the overall application architecture?

Forces:

When designing the software architecture in a client-server system, you must come up ·

with a way to divide the labor among team members. Your architecture must also be

simple enough to be easily explainable to new team members, so they can understand

where their work fits.

In looking for application architecture, many developers have looked to the pioneering

MVC architecture. However, MVC is not the be-all and end-all of object design. While

a proper architecture should address the concerns addressed by tv!VC, and may trace its

descent from MVC, modern software systems must also address issues not covered by

classic MVC.

MVC promoted reuse by factoring out the UI widget away from the domain 9bjects.

Modernrclass libraries derived from MVC have also discovered yet another .set\of
potentially useful and reusable abstractions in separating out the aspect of mediating

between views and adapting views to domain models into another set of classes.

74



However, this still does not address the connection of the domain to the outside world

(i.e., object persistency mechanisms, network protocols, etc.). A complete architecture

for client-server systems must address these issues as well. Therefore:

Solution:

Factor your application classes into four layers in the following way (see Figure T: Four

Layer Architecture):

• The View layer. This is the layer where the physical window and widget objects

live. It may also contain Controller classes as in classical MVC. Any new user

interface widgets developed for this application are put in this layer. In most

cases today thislayer is completely generated by a window-builder tool.

• The Application Model layer. This layer mediates between the various user

interface components on a Gl.Il-screen and translates the messages thafthey

understand into messages understood by the objects in the domain model. Ifis

responsible for the flow of the application and controls navigation :from window
to window. This layer is often partially 'generatedby -a -window-buildef an.Ü
partially coded by the developer.

• The Domain Model layer. This is thelayer where most obıects

analysis and design will reside. To a great extent, the objects in

application-independent. Examples of the types of objects found

may be Orders, Employees, Sensors, or whatever is appropriate

domain.

• The Infrastructure layer. This is where the objects that represent coı:ıtı.¢¢tıotıs

to entities outside the application (specifically those outside the nhıı:>M

reside.

Discussion:

This choice of layers can have many beneficial effects on your

applied in the proper way. First, since the architecture is so simple, it is easy

to team members and so demonstrate where each object's role fits into the "big pictııre

75



If a designer is very strict about clearly defining where objects fit within the layers, and

the interfaces between the layers, then the potential for reuse of many objects in the

system can be greatly increased. A common problem with many object designs is that

they are too tightly constrained to the limits of the particular application being built.

Many novice designers tend to put too much of the logic of an application in the

Application Model layer. In this case, there are few, if any, domain objects that are

potentially available for reuse in other applications.

Another benefit of this layering is that it makes it easy to divide . work along layer

boundaries. Woolf demonstrates how a "layered and sectioned architecture" can be

made the basis of a source-code control system. It is easy to assign different teams or

individuals to the work of coding the layers in four-layer architectures, since the

interfaces are identified and understood well in advance of coding.

Finally, a four-layer architecture makes it possible to code the bulk of yoursystem(in

the domain model and application model layers) to be independent of the choice of

persistence mechanism and windowing system.

Sources:

Layering is not a new idea in computer science - Tannenbaum mentions it in

conjunction with the OSI seven-layers communications model. Shaw discusses layering

as an architectural choice.

Hendley discusses the benefits in portability gained by additional layering in the View
'

and Application Model layers in Smalltalk. Brown further investigates the reasons for

applying four-layer architectures for Smalltalk.

Related Patterns:

Trim and Fit Client shows how a four-layer architecture can be used in conjunction with

a 3-tier machine architecture in a distributed object environment.

3.40 PATTERN NAME: THREE-TIERARCHITECTURE
Problem:

How do you distribute responsibility among the different machines in an enterprise to

best take advantage of each platform's unique capabilities?

Forces:

76



Many organizations plan large-scale client-server projects by planning for a large

capital purchase of desktop machines and network servers, to be purchased along with

the development of new software. However, the technology used to develop the

software will often change faster than the plan anticipates. Several releases ofahe target

operating system may occur between the time a large project is started and its final

delivery.

Because of the above, the client machines purchased are often not up to the final size of

the software that is produced. It is not uncommon to see client-server applications in

production today where the total amount of client code resident· in memory at any Jime

is 12 megabytes or higher.

It must also be kept in mind that the number ofclients in a =r<ltPtn

three orders of magnitude greater than ) the number of servers

multiplier will heavily weight the cost.of a system towards that of

choice is to buy additional memory and a faster processor for l 00 ..,•.•,...m.»,

server, the choice is fairly obvious. Therefore:

Solution:

Utilize a machine architecture that splits responsibility into three "tiers" of computatiön.

These tiers are:

• · The Client. The client should be primarily responsible fur the displayiand

interpretation of information. It is the focal point for user intera.cti.on..with the

system asa whole. As such, the client can be optimized for display aı:ıd fast
network access, but may not need to have the memory and computatio:cıal pôwer
available'in other tiers.

• The Departmental server. The departmental server is usually a dedicatedfiiğli ..

end PC-style machine or a specialized UNIX. workstation. The server is ca.pa.bl¢
of handling many more computations per S~o.p.gtqanthe clients, and ofterıih.asa

much, much greater amount of physical memory and disk space. This makes<it

valuable as a localized cache of information shared among many clients. This

relieves the burden of storage and computation on the client, and can reduce the

network traffic to the Enterprise server.

77



• The Enterprise server. This is traditionally a mainframe. While mainframes

have gone out of fashion in the past few years, the fact still remains that for

high-volume, high-speed transaction processing, there is no better technology.

Organizations have invested a great deal of time and money in these machines

and their software -- it isin their interest to preserve as much of that investment

as is possible, while still keeping all options open for the future.

Discussion:

A three-tier approach (see Figure 2: Three-tier architecture) gives the best solution for

new development, while still supporting existing systems. If itisimplemetıtedcôrrectly;

the clients are completely de-coupled from the mainframe, Irtteffliediate?s~etrcode can
be developed in such a way as to minimize dependence Ori the :r:tıairıfı:m:rie<sotha1:itcaıı

be phased out over tiıne if that is desired.

Related Patterns:

Phase-In Tiers shows how to move from a two-tier client-server approach to a three-tier

one.

Enterprise Server
Departmental Server

Relational Store

Relational or Object Store

Figure 3.40: Three-tier architecture

78



3.41 PATTERN NAME: PHASE-IN TIERS

Problem:

You must come up with a solution that supports both your current and planned network

architecture, and yet leverages your investment in object technology to produce results

quickly.

Forces:

You need to best utilize existing and new computing and network resources. You would

like to move to a client-server set of solutions as quickly as possible, but there is no way

that everything can be replaced at once. The cost of a total redevelopment effort is

prohibitive, and your staff could not complete the effort in a reasonable length of time.

Therefore:

Solution:

A good approach is to begin all development on the client (sometimes resulting in a

prototype "fat client") and then push the code from the bottom two layers of a four layer

architecture onto a server as development progresses. In this way you can add tiers over

time, starting with a two-tiered system (i.e., a "fat client") and moving to a three-tiered

system later.

· Discussion:

Modern distributed object technologies like CORBA, GemStone, IBM Visual.Age
Distributed Option, and PP-D Distributed Smalltalk make it possible (in fact;:relativ-ely

easy) to move processing from client machines on to servers. Using thesetecbncfü1gies;

early releases can be made with fewer tiers than later releases without necessitatir:ı.ğCBig

changes in the code of a system,

Using distributed object technology does not preclude using either relationali'br

OODBMS technology as appropriate for object persistence on the server(s) inanyof'the

upper tiers. In fact, one common solution is to utilize an ODBMS for object persistende

between tiers one and two, and an RDBMS for persistence between tiers two and three;

79



Related Patterns:

Trim and Fit Client discusses how to distribute behavior between client and server. Four

Layer Architecture discusses how to distribute behavior among the layers of software

architecture.

3.42 PATIERN NAME: TRIM AND FIT CLIENT (OR DISTRIBUTE

LAYERS TWO BY TWO)
Problem:

Having seen that both "fat" and "thin" clients are not appropriate, what is the proper,

"healthy" division of behavior between client and server? How do you design a system

such that the system is responsive on a client's machine, and yet maintainable and

architecturally sound?

Forces:

Correctly distributing behavior in a client •.server system is a difficult task. When PC's

were first introduced to major companies, they were most often used as terminal

emulator front-ends to existing mainframe programs. These so-called "thin" clients did

not take advantage of the capabilities or processing power of the new PC clients, and

could· ııot allow for complex user interaction to occur on the client side.

In a response to this, the first generation of client-server systems often overloaded the

client by placing all of the domain and display logic on the client. These so-called "fat"

· clients were often characterized by being big, slow, and inefficient at utilizing machine

· resources (network traffic, CPU horsepower, etc.). In a response to this, the "tlıin'' client

model is back in vogue. This time the client consist'> of a Web browser that accesses

dynamically generated HTI\1L pages from a central host. This "Web 3270" approach

has the same problems as the original terminal-emulator approach in that the entire

processing takes place on the server end, and complex user interactim:ı_isnotru.Ig.Yr"ıy,d,.

The price of memory, hard-drive space and processor speed come down almost daily.

However, it is apparent that the requirements placed on these resources by modern

software are expanding at an even faster rate. It is not uncommon to see large-scale

client-server programs that take up 15 or more megabytes of memory by themselves. At

80



the same time, these same advances that make client machines more powerful are also

making multiprocessor servers more cost-effective. However, most current client-server

systems do not take full advantage of this processing power, as the server is most often

used only as a data or file server. Therefore:

Solution:

Break the system for distribution between the Application Model and Domain Model

layers, or at some appropriate point inside the Domain Model layer (see Figure 3:

Distributed layers). The upper two layers will reside on the client. The lower two layers

will reside on the server. This will allow the code that receives the most user interaction

(the upper two layers) to handle these close to the user. On the other hand, the code that

handles the business logic will reside on the server. 'This makes it easier to design the

interaction between the objects in your system if you know ahead of time where in the

network these objects will reside.

Discussion:

This solution minimizes the amount of processing that must be done on a Client, and

can reduce its need for memory and computational power. Note that once a system is

broken up this way it does not require that the top two layers be implemented in the

same language as the bottom two layers. A heterogeneous system will work if some.
type of object-to-object communication is provided. It would be perfectly acceptable to

write the top two layers in Java, and the bottom two in C++ or Smalltalk, or have the

entire system written from top to bottom in one language. So long as an object

communication technology like CORBA or SOM can be used to provide intra-machine

message passing, there should not be any restrictions put on the choice of language or

platform.

Sources:

Texas Instrument's Control WORKS project was the first large-scale project I have seen

that successfully implemented this method. Since then many companies have broken

their applications up in this way -- it is in fact recommended by Gemstone as the best

use of their product.

Related Patterns:

81



Four-layer architecture demonstrates why systems should have clear layer boundaries

and how that helps make systems more manageable.

82



Çhapter 4

DATABASE OPTION OF THE COMPUTER SALES PARTS

COMPANY

4.1 Basic Information aboutTables, Forms, Reports and Queries

4. 1 .1 Tables

A table is a collection of data about a specific topic, such as products or suppliers. Using

a separate table for each topic means that you store that data only once, which makes

your database more efficient, and reduces data-entry errors

Suppliers table

Chai

Chang

Aniseed Syrup

Camaıvon Tigenıı;

39
17
13

53

1
1

1

2

Figure: 3.1 {a} Tables organize data into columns (called fıelds)and rows (called

records): [Ms·.Acc.ess].

83



Each field 1n)he P .rr:ıducts table contains the
same type>of information .for every product,
such as the product's name.

Prmhıcts :-Table -
'ı.,,l~ı~'1:'=- ~ t-: ~wt ..,.,tı1-,·;;m·1= l<.fil'ı j·-~·1r:~•;"a(~,,-=w

Each record in the Products table contains
all the information about one product, such
as the product's name, supplier ID number,
units in stock, and so on.

Figure: 3.1 {b} Tables organize data into columns (called fields) and rows (called

records) [MsAccess].

4.1.2 Forms

You can use formsfor a variety of purposes.

Creatı? a customdialog
box to;ıeceptuser
input and then cany
autan action based
on lhat input.

Figure 3.2 {a}: Form Example [Ms Access]

84



Most of the information in a form comes from an underlying record source. Other

information in the form is stored in the form's design.

Descriptive
text is

stared in
the form's

design.

Figure 3.2 {b}: Form Example [Ms Access]

Data comes from
the fields in the
underlying record
source.
A calculation comes
from an expression,
Which is stored in
the form's design.

4.1.3 Reports

A report is an effective way to present your data in a printed format. Because you have

control over the size and appearance of everything on a report, you can display the

information the way you want to see it.

Figure: 3.3 {a} Example ofReports [Ms Access]

85

Show totals
ine clıı:ırt.



The reı:ıort t1tıe and ·[Sal
column headings 8-Mar
ere stored In the
report's design. ======

Shipped D:at,
4-Mar

10924
10927
10966

Figure: 3.3 {b} Example of Reports [Ms Access]

4.1.3 Queries

You use queries to view, change, and analyze data in different ways. You can also

themas the source of records for forms, reports, and data access pages.

Cfllculate G SUlll, ccıunl:, or
arnıther type ot ta!Eil, enet

then group the results by two
types of infonmıticıo-one

dawn the left side of the
ı::lı:ıtfltıef! .ıınd l!lnC!tlıer

ecross the top.
$7.737.14 '$6,175.75 $17,118.93 Si1:
$13,665.87 $10,494.94 $15,921.1.4 $2

ı-----ı----+-----1-- -·
$11,624.00 $9,160.84 $3,S8!i07 $f

Figure: 3.4 {a} Example of Queries [Ms Access

86



The most common type of query is a select query. A selecLquery.retiieyes data from

one or more tables by using criteria you specify and then displays if ihithe order you

want.

Vlıl1en yı:ıu run the query,.Micl'asatt Access
retrieves the records you specif.y ...

atımı

Figure: 3.4 {b} Example of'Queries [Ms Access]

4.2 Descriptionof the software
This software is design for those companies who deals with Computer hardware Sales

and P,_urchase items. In addition the information about the company employees can also

be maintained in this program .

.A Main Menu consist of two (2) Option and they are as follows:

~ Main Form Page where you can add or delete data

~ Main Form Page where you can View different Report

87



Figure: 3:5 Software Examples

4.3 Main Form Page where youcaô./adcl~t delete data
This is a main entrance for the main form page where you can add, delete or edit the

data. The main form pages consist of the following Option.

1. Company ID and Name Information

2. Product ID and Name Information

3. Purchase Detail (Add, Edit or Delete)

4. Order Information (Add, Edit or Delete)

5. Voucher Information (Add, Edit or Delete)

6. Customer Information (Add, Edit or Delete)

7. Employee Information (Add, Edit or Delete)

4.3.l Company ID and Name Information

In the Company information you can just view the Company code and the Name of the

Company, you cannot ADD, EDIT or DELETE the information from there, .. as these

information are Locked.

4.3.2 Product ID and NAME Information

In the Product information you can just view the Product code and the Name of the

Product, you cannot ADD, EDIT or DELETE the information from there, as these

information are Locked.

88



4.3.3 Purchase Detail

In this window all the information about Purchase is listed which gives the information

about what have been purchase. The information from this window can be edit, add or

deleted if necessary (e.g.)

Figure: 3.6.Şpftware Examples

• Purchase_ID : The ID of the PurchaseOrder (Auto define}

• Company_ ID : The Code of the Company from which the Item has been

Purchase.

• Company Name: The Name of the Company from which the item has been

Purchase.

• Product_ID : The Code of the Product which has been Purchase.

• Product Name : The Name of the Product Which has been Purchase.

4.3.4 Order Information

Order Information Option contain all the information about the Company name and ID

the product and ID that has been order, Date at which it has been ordered, Quantity of

the Item, Sales price, Discount%, Discount Amount and the Total Mount which has to

be paid.

89



Figure: 3.7 Software Examples

4.3.5 Voucher'Detail

Voucher Contaillthei11fofination about Ord.er Item .Purchase Method, this-windows give

the option to add, edit.ordelete the data if necessary which include

Figure: 3.8 Software Examples

• Order ID, which can be selected from the list

• Payment Amount, which can also be selected from the list

• Payment Date

• Payment method

• Check number if the payment is done from the check

• Credit card type

• Credit card NO

• Credit card Holder name

90



111 Credit card Expiree date

• Notes if any.

4 .3 .6 Customer Information

Customer Information Contain all the

the Customer ID Field isAuto generated

ecessacyjriförttıation about the Customer, only

is filled manually.

Figure: 3.9 Software Examples

4.3.7 Employee Information

Employee Information form Contain the information about he Company employees.

This form contains . various Sub-options, which . cover all the information that is

necessary. Only the Em.plôyee ID fieldis Auto Generated else the other en.üre field is

manual.

91



Figure: 3. 10 Software Examples

4.4 Main Form Page where you can View different Report
At this stage we can view all the information about the dara, which has been entered in

the table with the help of the form, all the form has there own reports which can be view

or can be print if necessary. All the report shows date for the further information.

An example how to view the reports are shown in the below figure

Figure: 3.11 Software Examples

92



Just click the number 2 where it is written (main form pages where you can view

different report

After clicking it, other window will be open where all the reports are listed below,

e.g.

Figure: 3.12 Software Examples

Below are the examples of how the Reports are look like

93



£,~,TP!~X.,~!!?.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,,,.,.,,.,.,9-.?..~P!~.Y ... ~~~,!,.,.,.,,,,,,.,,.,.,.,.,.,.,.,, ..·.·.·.·.·.·.·-·.·.

100 Intel

101 Super

102 S3

103 Sony

104 Sunny

105 As5s

106 Pro

107 Tosiba

108 Seagate

109 Quake

ııo Acer

111 LG

112 TEC

113 IBM

114 Casper

115 Creative

115 Fugi

116 Mega

117 Netgate

118 Kenwood

119 HP

120 Pro

121 AMD



IIATP. LTd

State/Province PostalCode !Country
Mersin 00000-001O !Cyprus
Extension fax Number
201



einı,ıovee·,o ıı=irsiName .•.•.•.•.•.•.•.•.•.•.•.•,•.•,·,·,-,•.-.·.······

Middle Name
khan

·:·TMıit;.,;re~-~~~ I
salesman
Address

City State/Province Region Postal Code
~jhkj hklj 10456-4654

Country HomePhone Work Phone
(446) 464-6464 (646) 464-6546

i:B-irthdate DateHired · !Salary Deductions IEmrgcyContact Name
3/14/78 9/4/01 $500.00

Emrgcy Contact Phone

Notes
,There bas been two·deduction
after the term is over

.,
.·.-.•.•.•.•.·.·-·-·-·.·.·.·.·.•.•,•.•.•.•.•,•,•.•. .·.•.·.••,•.•.•.•.•,•.·.·.·.·.·.·.-.•.·,•,•,•,•,•.•.•,•,-,•.·,······,•,•,•,•,•:•



,,,.·.·.·.·.·.·.·.··.···.•.••.•.•.·.·.·.·.··.•.•.•.•.•.·.·.· .··.·.·,.
EmployeeID FirstName

·······.·.··•.•.•.•.•.•.•.•.·•·,···-····

MiddleName LastName

tTitle
2/Kamran k

~ales~
Address
432, block 6 alta

City !State/Province Region !PostalCode
kera Iiula 45646-4654
Country IHomePhone IWorkPhone

:=~
Cypıus !(134)~43-4646 1(464) 913-1646
Birthdate !Date Hired !Salary !Deductions.!EmrgcyContactName

6/211751 9/5/201 $6,520.00 I OIKamran
ErtırğçyContactPhone :
(466) 646-4644 ,:
!Photograph Notes



Employee ·10 ·1ı:ıist Name ···•.•.·.•.•·.··.·-·.·.-.··.•.·,·.·.-.-.···.·.•.•,·.•,•,·.·.-.-.•.•,·.•.•.·.·.·-··.·····

Last Namew 'Middle Name
31Salman :Ajdsflkkhan

Title
ldaruıger
Address
kljhl

<·;--C-ity-----------,1-sta_te_/P_ro_v_in_ce __ .,.....IR-eg_i_o_n -r-lP-osta-- --> ,-co_d_e_ __,

jlk Ülkj jlkjl 156465-4464
pountry !Home Phone Work Phone

(646) 131-6464Ç~ypnıs !(646) 165-4619
Birthdate !Date Hired !Salary Deductions IEmrgcy Contact Name

6/10/201 6/2/50 $9,650.00
Emrgcy Contact Phone

Notes

:::.•.•.•.•.•,·.•.•,•,·.•,•,-,•.-.·.-.-.-.•.·.·--.-.-.•.·.-.·-·.·.·-•.•.•.•.•.• ,•.•.•,•.·.-.-.·.•,•,•.-.-.-.•.•.•,•. •.•.•. ·.-.·.·.·.·- •.•.•.'· -~-. •.•,•.•. •,•,·.•.•,-. •. -.-.•. -.-.•.•,•.•. •, •. •.•. -.\ •, •,•_•. •.•,-.-.•. -.·.•.•.•••.••-.·.-.-.•,•,•. -.·.·····-·.•.•.·.•.•.•.•.•.•,•,•.•,•.•.!,•. •,•.•. •,•.•.·.•••.•.•.•••.•. •. •,·.•. •.•.•, •.•,•.•. •.•.•.•.•,•,•.•.•.•.•. •. •,•,·.•.•.••·.•,•.•.•.•••••••••••.•.•,•,•.•.·.•.•.•.•,•,•.•.•,•.•.•••.•••.,.•.·.•.-.·.·.·.••••••••-•••••••-.-:-



;oicıerıo iriste soıd \Quantity JCustomerName
21 4/1/20 41Imran

;CompanyName !ProductName ProductID
lOOICPU 9i

SalePrice !sumPric~~ JDiscount !DiscountAmountiline Total
Le }.!PQ:9Q..J. . . 1

orderıo· ····,······ · ····· ········· · ······· ········-·· . ··]customerNameDateSold !Quantity
31 6/4/01 5laslam

\CompanyName !ProductName !ProductID
\ l04Monitors Ii
IsaıePrice SumPrice Discount DiscountAmountLineTotal

$200.00 30.00% - $200.00 ::
:•:•.·.·.·.-•.•.•••.•·.·.·.·.·.•.•,•,•,•.•.•.·.·,•,•.•.•.•.•.·.·.•,·.-,•.•,••• •.•.·.-.·.·,•.•.·,•.·.·.·,•,'•'•"•"•"•"•"•'•'•"•'•"•"•"•"•"•"•"•"•"•'•"•'••'•'•"•''•'•'•'•'•'•'•"•'•'•'•'•'•"•'•"•'•'•'•'•'•'•'•'•"•'•'N,'.·,·.·.·,·.·.·.· '•'•'•'•'•'•'•'•'•"•'•"•'•'•'•'•'•'•'•"•'•'•'•'•'•'•'•'••'•'•"•'NN,'.','•'•'•'•''•'•'•'.tN.','.",',','.".".-.-,·,·:.·.·.·.·.·,•,:.· •• •.·.·.•.·.·.·.·.•,·,c,·,·.·,·.·.·.•.·,·.•.•.•,•.·.·.·.·.•.'•'·0-•.•.·.·.·.•.·.•.•.•.•.•"



ProductID ProductName
·'.·'.·'.·:•:-:,:-:.:.:•:•:-:-:-:-:-:-:,:-:·:•:-:-:• . : . :-:·:-:-:-:-:-·-:-:-;.;.·.·-·.·-·.·.·.·-:.;-:-:-:-:-:-:-}:•:•:,~:-:-:-:•:-:-:-:-:-:-:-:•:,:-:-:-:-:-:•:-:-:-:-:-:-:-:-:-:-:-:-:-:•:•:,:•:-;,;.;,;,;-:-:-:-:-:·:•:•:-:-:-:-:-:.;,;.:,:-:-'.':-:-:-:-:,:,:.:-:-~:

2 Disk drive

3 CD ROM
4 Display Cards

5 Floppy Disk

6 Keyboard

7 Mouse
8 Networking Cards
9 CPU

10 RAM

11 Power Adapte
12 Printer

13 Scanner

14 Speaker

I Monitors



Purchase _ID jCompany_lD CompanyName
1 lOOIIntel

{Product Name IPrice
;CD ROM

CompanyName
2 1041Sunny

Product Name IPrice
;Floppy Disk
•.·.·.·.·.-.-.·.·.·.···-·.·.·.·,.-.·.·.·.·.·.·.·.·.·.·.·-·-·-·.·-·-·-·-·-·.·.·-·.·.·.·.·.·-····· ! ····· .



Order 10······ PaymentAmÔunt·w·· .•.·.•. ··.·w·.·.··Payment Date··.·Payment.ivietho<f .
2 $100.00 12/5/01cash

-- --- - -- -----~

;CheckNumber jCreditCardType jCredit card # ı~rc:ıhglder Name

Card Exp. Date

Notes
::;

There will be noDue date

.....·.-.-...-...-. ....-.·.·.·.·.·-·--.-:-.-.-.-.·.·.·-·-·.-.•.·-··'······;·.·.·-·-·-·-·-·.·.-.-.•:•.-.-.-.-.-...-.-.-.·-·-·=·

::on:ıerID . . . PaymentAmount . . Payrriiinfôatej>~yınerıfMethod [
. 3 $200.00 9/1/16ç~ Çard :=

/CheckNumber Credit Card Type CredıtCard # . Cardhôlder Name .
isa 42154523..6598-5632 John

\CardExp. Date
(::

jlN

:::....-.·.·-·-·-·-·-·.·-·-·····-·-·.·.·-·.·-·-·-·-·-·-·-·.·-·-·.·-·-·-·.·-·-·.·-·-·-·.·-·.....·.·.·.·.·.· ..•..·.·-·-·.·.·-·.·.·-·-·.·-·.·.·-·-·-·-·.·.·-·.-•,.·.·-·.·.··-·.-,.·.·.·-· .....·.·-·.·····-···-··-·-·.·.·-·-·.·.·-·-·.·-·-·.·-·-·-·.·············-·.·.·.·.·.·.·.·-·.·.···-·.·.···-·-·· ................•...•·.·:.-.-.-.·.·.--·.·.·.-.·.·.·.·-··-·-·.·.·-·.·.·-·-·.·.·-·.·-·-·-·-·.·-·-·.·.·-·.-.·.·-·-·-·_:;



CONCLUSION

Practically implementation of software for business though it is related to any field needs a

devoted and complete life cycle. In this project I personally visit two companies, which

deal with computer parts sales and purchase, so that I can understand their requirements

and the problems, which may occur in the implementation. The most important think that I

would like to mention, is the attitude (behavior), which has to be face during the life cycle

of the Company or Organization. And according to my point of view the reason of most

unsuccessful project is misunderstanding between the two parties.

The software was created after the deep analyst,iso th.a.tall.1Ifü.portant requirement of the

company those who dealing with computer sales and purchase can be accomplished.

·Company and product, name and ID have been added in the program to over come the

mistakes, which may occurs. Plus a lock table and form has been generated which contain

the entire ID with name, so by mistake it cannot be merged with each other. Reports are

also generated with the help of the Queries for the update purpose. Which contain all

information with dates. Help file is also written so that there will be no problem while

handling the software.

The chapters of the software are also organized in such a manner so that all the information

related to DBMS can be understood easily, i.e. chapter one and two are the introductory

chapter, which give detail information about DBMS, chapter three contain a advance

information and chapter four contain information about the software with the help file.

103



104

REFERENCES

Reference to Book:

[I] Aptech Limited, Oracle 8.0
[2] Ms Access, Help

.,
Reference to Electronic Source- Online source from Web:
[I] DBMS and Internet Systems (http:llwww.dbmsmag.com/)

Miller Freeman, Inc.
[2] http://www.csusm.edu/hylin/csl 11/notes/dbms.htm

Reference to Proceedings:

[I] C. Dr Julie A. McCann, 1999, secton 2 "Database Application Lifecycle."

[2] C. Dr Julie A. McCann,1999, secton 2 " Relational Data Base
· Management Issues.


	Page 1
	Titles
	Faculty of Engineering 

	Images
	Image 1


	Page 2
	Titles
	ACKNOWLED~MENTS 

	Images
	Image 1


	Page 3
	Titles
	ABSTRACT 

	Images
	Image 1


	Page 4
	Titles
	TABLE OF CONTENTS 
	. 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 9
	Titles
	IT 
	LIST OF ABBREVIATIONS 
	Visual Basic 

	Images
	Image 1


	Page 10
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 11
	Titles
	Chapter l 
	INTRODUCTION TO DBMS 
	1.1 DATABASE 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 12
	Titles
	lc:>1 * 
	ıc::,ı & 
	·~ 
	CJ 
	1.3 DATABASE MANAGEMENT SYSTEM 
	1.2 WHAT MAKES UP A DBMS? 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Titles
	l 
	i 
	1.4 DATA MODEL 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 14
	Titles
	1.5 ADVANTAGES OF DBMS 

	Images
	Image 1


	Page 15
	Titles
	1.6 THE 3 LEVEL ARCHITECTURE 
	- 
	/ 
	- 
	t 
	t 
	- 
	- 
	' 
	l.6~1 External Level 

	Images
	Image 1
	Image 2


	Page 16
	Titles
	1. 7 PROPERTIES OF DBMS DAT A 

	Images
	Image 1


	Page 17
	Titles
	1.8 WHO USES A DBMS 
	1.9 HARDWARE FOR A DBMS 
	1.1 O DAT ABASE SECURITY 

	Images
	Image 1


	Page 18
	Titles
	1.11 HOW DATA IS STORED 
	1.12 DEFINITION OF ENTITY 

	Images
	Image 1


	Page 19
	Titles
	DATABASE APPLICATION LIFE CYCLE 

	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Titles
	l. 13. l DAT ABASE PLANNING 
	• 
	• 
	• 
	• 
	• 
	• 
	• 
	• 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 21
	Titles
	1.13.2SYSTEM DEFINITION 
	1.13 .3 Requirements Collection and Analysis 

	Images
	Image 1
	Image 2


	Page 22
	Titles
	l.13.4DAT ABASE DESIGN 
	• 
	• 

	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Titles
	Chapter 2 
	INTRODUCTION TO RDBMS 

	Images
	Image 1


	Page 25
	Titles
	2.2 THE RELATIONAL DAT ABASE MODEL 

	Images
	Image 1


	Page 26
	Titles
	2.3 RDBMS COMPONENTS 
	Relational Data Base Management Issues 
	17 
	• 
	2.4 

	Images
	Image 1
	Image 2


	Page 27
	Titles
	2.5 Countermeasures ( computer based) 
	2.6 Countermeasures (cont.) 
	2. 7 READ, WRITE, and MODIFY access controls 
	2.8 Countermeasures (cont.) 

	Images
	Image 1


	Page 28
	Titles
	19 
	Countermeasures (cont.) 
	Non-Computer Counter Measures 
	• 
	• 
	• 
	2.1 O Countermeasures (cont.) Associated procedures 
	2.9 

	Images
	Image 1


	Page 29
	Titles
	2.12 Privacy in Oracle 
	2.13 Integrity 

	Images
	Image 1


	Page 30
	Images
	Image 1


	Page 31
	Titles
	CHAPTER3 
	A Pattern Language for Object-RD:13MS Integration 
	3.1 The Static Patterns 
	3 .2 Table Design Time 

	Images
	Image 1


	Page 32
	Titles
	3.3 Representing Objects as Tables 

	Images
	Image 1


	Page 33
	Titles
	3 .4 Representing Object Relationships as Tables 

	Images
	Image 1


	Page 34
	Images
	Image 1


	Page 35
	Titles
	. 

	Images
	Image 1


	Page 36
	Titles
	3.6 Representing Collections in a Relational .ua.ı..a.ua..:,.;, 

	Images
	Image 1
	Image 2


	Page 37
	Titles
	3.7 , Object Identifier (OID) 

	Images
	Image 1


	Page 38
	Titles
	3.8 Foreign-Key Reference 

	Images
	Image 1


	Page 39
	Titles
	3.9 Static Patterns (Object Side) 
	3.10 Foreign Key versus Direct Reference 

	Images
	Image 1


	Page 40
	Images
	Image 1
	Image 2


	Page 41
	Titles
	3 .. 11 Using Patterns in Order Management Systems: A Design 

	Images
	Image 1


	Page 42
	Images
	Image 1


	Page 43
	Images
	Image 1
	Image 2


	Page 44
	Titles
	~~ 
	, ~,..~ 
	Figure 3.11.2 State design [http://wvı.ıvv.dbmsmag.com/] 

	Images
	Image 1
	Image 2


	Page 45
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 46
	Images
	Image 1
	Image 2
	Image 3


	Page 47
	Images
	Image 1


	Page 48
	Titles
	---- 

	Images
	Image 1
	Image 2


	Page 49
	Titles
	3.12 Other Patterns 

	Images
	Image 1


	Page 50
	Titles
	3.13 The Type Object Pattern 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 51
	Images
	Image 1


	Page 52
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1


	Page 53
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 54
	Titles
	(~~~= ) 
	I:=~ r ~ 
	3.14 Structure 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 55
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 56
	Images
	Image 1


	Page 57
	Titles
	3.15 The disadvantages of the Type Object pattern are: 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 58
	Titles
	3.16 There are other issues you may need to consider when implementing 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13


	Page 59
	Titles
	Sample Code 
	50 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 60
	Titles
	renter ::= aCustomer 
	Thus it chooses to implement its is Rented behavior itself but delegates 
	51 

	Images
	Image 1


	Page 61
	Titles
	each set of beh.a,vim: is irrıplemen.ted. Each piece of i_u.f<mnat.imı ~QolJt ı,ı tape. is 
	3.17 Video Store-Nested Type Objects 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 62
	Titles
	3.18 Video Store-Dynamic Type Change 
	3.19 Video Store-Independent Subclassinış 

	Images
	Image 1
	Image 2


	Page 63
	Titles
	54 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 64
	Images
	Image 1


	Page 65
	Titles
	56 
	Figure 3.19 {b}[http://www.dbmsmag.com/] 
	Object 
	There are six main classes: 
	We will omit all the accessing methods, since they are similar to those 
	. A factory acts as a Facade [GHN95, page 185], creating the order and then schedtili:rıg 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 66
	Titles
	A pipelined machine type is scheduled by finding a machine with an open 

	Images
	Image 1
	Image 2


	Page 67
	Titles
	3.20 Known Uses 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 68
	Titles
	3 .21 Sample Types and Samples 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 69
	Titles
	Signals and Exceptions 
	3 .22 Related Patterns 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 71
	Titles
	3.24 What motivated us to write a pattern language? 
	3.23 Pattern Language for Relational Databases and Smalltalk 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 72
	Titles
	. 
	3.25 How did we find our patterns? 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 73
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11


	Page 74
	Titles
	3.26 The Patterns of Crossing Chasms Architectural Patterns 
	3~27 Pattern; Four-Layer Architecture 
	Figure 3.27 · Four. Layer Architecture 

	Images
	Image 1
	Image 2


	Page 75
	Titles
	----------- 
	Figure 3.28 Development Lifec'/cle 
	3.28 Pattern: Table Design Time 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 76
	Titles
	3.30 Pattern: Object Identifier 
	Static Patterns 
	3.29 Pattern: Representing objects as tables 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 77
	Titles
	3.31 Pattern: Foreign Key Reference 
	3.32 Pattern: Representing Collections 

	Images
	Image 1


	Page 78
	Titles
	3.34 Pattern: Broker 
	3.33 Dynamic Patterns 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 79
	Titles
	3.35 Pattern: Object Metadata 
	3.36 Pattern: Query Object 
	. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 80
	Titles
	Figure 3.36: Broker Interactions [Ms Access] 

	Images
	Image 1
	Image 2


	Page 81
	Titles
	72 
	3.37 Pattern: CHent Synchronization 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 82
	Titles
	3.38 Pattern: Cache Management 
	. 

	Images
	Image 1
	Image 2
	Image 3


	Page 83
	Titles
	3.39 Crossing Chasms: The Architectural PatternsPAlTERN 

	Images
	Image 1


	Page 84
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 85
	Titles
	3.40 PATTERN NAME: THREE-TIER ARCHITECTURE 

	Images
	Image 1


	Page 86
	Titles
	77 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 87
	Titles
	Departmental Server 
	Relational or Object Store 
	78 
	Figure 3.40: Three-tier architecture 
	Relational Store 
	Enterprise Server 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 88
	Titles
	3.41 PATTERN NAME: PHASE-IN TIERS 

	Images
	Image 1


	Page 89
	Titles
	3.42 PATIERN NAME: TRIM AND FIT CLIENT (OR DISTRIBUTE 

	Images
	Image 1


	Page 90
	Titles
	. 

	Images
	Image 1


	Page 91
	Images
	Image 1


	Page 92
	Titles
	Çhapter 4 
	DATABASE OPTION OF THE COMPUTER SALES PARTS 
	4.1 Basic Information aboutTables, Forms, Reports and Queries 

	Images
	Image 1
	Image 2
	Image 3


	Page 93
	Titles
	Figure 3.2 {a}: Form Example [Ms Access] 

	Images
	Image 1
	Image 2
	Image 3


	Page 94
	Images
	Image 1
	Image 2
	Image 3


	Page 95
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 96
	Titles
	atımı 
	4.2 Description of the software 

	Images
	Image 1
	Image 2


	Page 97
	Titles
	4.3 Main Form Page where youcaô./adcl ~t delete data 

	Images
	Image 1
	Image 2


	Page 98
	Images
	Image 1
	Image 2


	Page 99
	Images
	Image 1
	Image 2
	Image 3


	Page 100
	Images
	Image 1
	Image 2
	Image 3


	Page 101
	Titles
	Figure: 3. 10 Software Examples 
	4.4 Main Form Page where you can View different Report 

	Images
	Image 1
	Image 2


	Page 102
	Images
	Image 1
	Image 2


	Page 103
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 104
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 105
	Titles
	I 
	einı,ıovee·,o ıı=irsiName 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 106
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 107
	Titles
	jlk Ülkj jlkjl 156465-4464 
	:Ajdsflk 
	Last Name 
	(646) 131-6464 
	Work Phone 
	Deductions IEmrgcy Contact Name 
	$9,650.00 
	khan 
	w 'Middle Name 
	Notes 
	6/10/201 6/2/50 
	Address 
	31Salman 
	kljhl 
	Title 
	Ç~ypnıs !(646) 165-4619 
	pountry !Home Phone 
	Birthdate !Date Hired !Salary 
	;--C-ity-----------,1-sta_te_/P_ro_v_in_ce __ .,.....IR-eg_i_o_n -r-lP-osta-- --> ,-c o_d_e _ __, 
	Emrgcy Contact Phone 
	ldaruıger 
	Employee ·10 ·1ı:ıist Name 

	Images
	Image 1
	Image 2


	Page 108
	Titles
	\ l 04 Monitors Ii 
	Isaıe Price Sum Price Discount Discount Amount Line Total 
	$200.00 30.00% - $200.00 :: 
	9i 
	!Discount Amount iline Total 
	JCustomer Name 
	Product ID 
	41Imran 
	5laslam 
	········-·· . ··]customer Name 
	Date Sold !Quantity 
	iriste soıd \Quantity 
	lOOICPU 
	21 4/1/20 
	31 6/4/01 
	\Company Name !Product Name !Product ID 
	Le }.!PQ:9Q . .J. . . 1 
	Sale Price !sum Pric~~ JDiscount 
	;Company Name !Product Name 
	orderıo· ····,······ · ····· ········· · ······· 
	;oicıerıo 

	Images
	Image 1
	Image 2
	Image 3


	Page 109
	Titles
	Product ID Product Name 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 110
	Titles
	;CD ROM 

	Images
	Image 1
	Image 2


	Page 111
	Titles
	\Card Exp. Date 
	Card Exp. Date 
	Notes 
	There will be no Due date 
	jlN 
	;Check Number jCredit Card Type jCredit card # ı~rc:ıhglder Name 
	Order 10······ PaymentAmÔunt·w·· .•.·.•. ··.·w·.·.··Payment Date··.·Payment.ivietho<f . 
	2 $100.00 12/5/01 cash 
	::on:ıer ID . . . PaymentAmount . . Payrriiinfôatej>~yınerıfMethod [ 
	. 3 $200.00 9/1/16 ç~ Çard := 
	/Check Number Credit Card Type CredıtCard # . Cardhôlder Name . 
	isa 42154523 .. 6598-5632 John 

	Images
	Image 1
	Image 2
	Image 3


	Page 112
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 113
	Titles
	REFERENCES 
	Reference to Book: 
	Reference to Electronic Source- Online source from Web: 
	Reference to Proceedings: 

	Images
	Image 1
	Image 2



