
• 

NEAR EAST 
UNIVERSITY 

Faculty of Engineering 
Department of Computer Engineering 

PARALLEL PROGRAMMING 

GRADUATION PROJECT 
COM400 

G0NESOZKAYA 
940846 

COM. ENG. 

SUPERVISOR: 
MISS BESiME ERiN 



ACKNOWLEDGEMENT 

I would like to thank Miss. Besime Erin for accepting to be my supervisor and her 

support for this project. 

I am so grateful to my parents who had always shown patience and understanding to me. 

Also, I would like to tkank all the lecturers for helping me see this graduation term. 

And finally, I would like to thank all my friends for their support in school and in social 

life. 

Gunes Ozkaya 

./ 

1 



ABSTRACT 

• 
Ever since conventional serial computers were invented, their speed has steadily 

increased to match the needs of emerging applications. However, the fundamental physical 

limitation imposed by the speed oflight makes it impossible to achieve further improvements in 

the speed of such computers indefinitely. Recent trends show that the performance of these 

computers is beginning to saturate. A natural way to circumvent this saturation is to use an 

ensemble of processors to solve problems. 

The transition point has become sharper with the passage of time, primarily as a result of 

advances in very large scale integration (VLSI) technology. It is now possible to construct very 

fast, low-cost processors. This increases the demand for and production of these processors, 

resulting in lower prices. 

Currently, the speed of off-the-shelf microprocessors is within one order of magnitude of 

the speed of the fastest serial computers. However, microprocessors cost many orders of 

magnitude less. This implies that, by connecting only a few microprocessors together to form a 

parallel computer, it is possible to obtain raw computing power comparable to that of the fastest 

serial computers. Typically, the cost of such a parallel computer is considerably less. 

Furthermore, connecting a large number of processors into a parallel computer overcomes the 

saturation point of the computation rates achievable by serial computers. Thus, parallel 

computers can provide much higher raw computation rates than the fastest serial computers as 

long as this power can be translated into high computation rates for actual applications. 

11 



TABLE OF CONTENTS 

• 
AC.KN'"OWLEDGEMENT i 

ABSllt\..CT ii 

TABLE OF CONTENTS iii 

INTRODUCTION vi 

Clli\J>T:E:Jl 1 1 

1 What is Parallel Computing? 1 

2 The Scope of Parallel Computing 2 

3 Issues in Parallel Computing 3 

3.1 Design of Parallel Computers 3 

3.2 Design of Efficient Algorithms .3 

3 .3 Methods for Evaluating Parallel Algorithms .4 

3 .4 Parallel Computer Languages .4 

3.5 Parallel Programming Tools .4 

3.6 Portable Parallel Programs .4 

3. 7 Automatic Programming of Parallel Computers .4 

CHAPTER 2 6 

1 Parallelism and Computing 6 

2 The National Vision for 

Parallel Computation 6 

3 Trends in Applications 9 

4 Trends in Computer Design 10 

5 Trends in Networking 12 

6 Summary of Trends 12 

111 



CHAPTER 3 14 

1 Flynn's Taxonomy ~ 14 

1.1 SISD computer organization 14 

1.2 SIMD computer organization 14 

1.3 MISD computer organization 15 

1.4 MIMD computer organization 15 

2 A Taxonomy of Parallel Architectures 15 

2.1 Control Mechanism 15 

3 A Parallel Machine 19 

CHAPTER 4 22 

1 Parallel Programming 22 

2 Parallel Programming Paradigms 22 
' 

2.1 Explicit versus Implicit Parallel Programming 22 

2.2 Shared-Address-Space versus Message-Passing 23 

2.3 Data Parallelism versus Control Parallelism 25 

3 Primitives for the Message-Passing 

Programming Paradigm 2 7 

3 .1 Basic Extensions 27 

3.2 nCUBE 2 30 

3.3 iPSC 860 32 

3.4 CM-5 33 

4 Data-Parallel Languages 36 

4.1 Data Partitioning and Virtual Processors 37 

4.2 C* 38 

lV 



4.2.1 Parallel Variables 38 

4.2.2 Parallel Operations ·"····················· .40 

4.2.3 Choosing a Shape .42 

4.2.4 Setting the Context .42 

4.2.5 Commun.ication 43 

4.3 CM Fortran 45 

4.3.1 Conformable Arrays .46 

4.3.2 Selecting Array Elements 46 

4.3.3 Communication 47 

5 Primitives for the Shared-Address-Space 

Programming Paradigm 48 

5 .1 Primitives to Allocate Shared Variables .48 

5.2 Primitives for Mutual Exclusion and Synchronization 49 

5 .3 Primitives for Creating Processes 49 

5.4 Sequent Symmetry 50 

6 Fortran D 51 

6.1 ProblemMapping 52 

6.2 Machine Mapping 54 

CONCLUSION 57 

REFERAN CES 58 

V 



INTRODUCTION ,, 

The technological driving force behind parallel computing is VLSI, or very large scale 

integration-the same technology that created the personal computer and workstation market over 

the last decade. In 1980, the Intel 8086 used 50,000 transistors; in 1992, the latest Digital alpha 

RISC chip contains 1,680,000 transistors-a factor of 30 increase. The dramatic improvement in 

chip density comes together with an increase in clock speed and improved design so that the 

alpha performs better by a factor of over one thousand on scientific problems than the 8086-8087 

chip pair of the early 1980s. 

High-performance computers are increasingly in demand in the areas of structural 

analysis, weather forecasting, petroleum exploration, medical diagnosis, aerodynamics 

simulation, artificial intelligence, expert systems, genetic engineering, signal and image 

processing, among many other scientific and engineering applications. Without superpower 

computers, many of these challenges to advance human civilization cannot be made within a 

reasonable time period. Achieving high performance depends not only on using faster and more 

reliable hardware devices but also on major improvements in computer architecture and 

processing techniques. 

There are a number of different ways to characterize the performance of both parallel 

computers and parallel algorithms. Usually, the peak performance of a machine is expressed in 

units of millions of instructions executed per second (MIPS) or millions of floating point 

operations executed per second (MFLOPS). However, in practice, the realizable performance is 

clearly a function of the match between the algorithms and the architecture. 

VI 



• CHAPTER I 

1 What is Parallel Computing? 

Consider the problem of stacking (reshelving) a set of library books A single worker 

trying to stack all the books in their proper places cannot accomplish the task faster than a certain 

rate. We can speed up this process, however, by employing more than one worker. Assume that 

the books are organized into shelves and that the shelves are grouped into bays. One simple way 

to assign the task to the workers is to divide the books equally among them. Each worker stacks 

the books one at a time. This division of work may not be the most efficient way to accomplish 

the task, since the workers must walk all over the library to stack books. An alternate way to 

divide the work is to assign a fixed and disjoint set of bays to each worker. As before, each 

worker is assigned an equal number of books arbitrarily. If a worker finds a book that belongs to 

a bay assigned to him or her, he or she places that book in its assigned spot. Otherwise, he or she 

passes it on to the responsible for the bay it belongs to. The second approach requires less effort 

from individual workers. 

The preceding example shows how a task can be accomplished faster by dividing it into a 

set of subtasks assigned to multiple workers. Workers cooperate, pass the books to each other 

when necessary, and accomplish the task in unison. Parallel processing works on precisely the 

same principles. Dividing a task among workers by assigning them a set of books is an instance 

of task partitioning. Passing books to each other is an example of communication between 

subtasks. 

Problems are parallelizable to different degrees. For some problems, assigning partitions 

to other processors might be more time-consuming than performing the processing locally. Other 

problems may be completely serial. For example, consider the task of digging a post hole. 

Although one person can dig a hole in a certain amount of time, employing more peop'e does not 

reduce this time. Because it is impossible to partition this task, it is poorly suited to parallel 

processing. Therefore, a problem may have different parallel formulations, which result m 

varying benefits, and all problems are not equally amenable to parallel processing. 

1 



• 2 The Scope of Parallel Computing 

Parallel processing is making a tremendous impact on many areas of computer 

application. With the high raw computing power of parallel computers, it is now possible to 

address many applications that were until recently beyond the capability of conventional 

computing techniques. 

Many applications, such as weather prediction, biosphere modeling, and pollution 

monitoring, are modeled by imposing a grid over the domain being modeled. The entities within 

grid elements are simulated with respect to the influence of other entities and their surroundings. 

In many cases, this requires solutions to large systems of differential equations. The granularity 

of the grid determines the accuracy of the model. Since many such systems are evolving with 

time, time forms an additional dimension for these computations. Even for a small number of grid 

points, a three-dimensional coordinate system, and a reasonable discretized time step, this 

modeling process can involve trillions of operations. Thus, even moderate-sized instances of 

these problems take an unacceptably long time to solve on serial computers. 

Parallel processing makes it possible to predict the weather not only faster but also more 

accurately. If we have a parallel computer with a thousand workstation-class processors, we can 

partition the 1011 segments of the domain among these processors. Each processor computes the 

parameters for 108 segments. Processors communicate the value of the parameters in their 

segments to other processors. Assuming that the computing power of this computer is 100 million 

instructions per second, and this power is efficiently utilized, the problem can be solved in less 

than 3 hours. The impact of this reduction in processing time is two-fold. First, parallel 

computers make it possible to solve a previously unsolvable problem. Second, with the 

availability of even larger parallel computers, it is possible to model weather using finer grids. 

This enables more accurate weather prediction. 

The acquisition and processing of large amounts of data from sources such as satellites and oil 

wells form another class of computationally expensive problems. Conventional satellites collect 

billions of bits per second of data relating to parameters such as pollution levels, the thickness of 

the ozone layer, and weather phenomena. Other applications of satellites that require processing 

of large amounts of data include remote sensing and telemetry. The computational rates required 

for handling this data effectively are well beyond the range of conventional serial computers. 

2 



. . 

Discrete optimization problems include such computationally intensive problems as planning, 

scheduling, VLSI design, logistics, and control. Discrete optimization problems can be solved by 

using state-space search techniques. For many of these problems, the size of the state-space 

increases exponentially with the number of variables. Problems that evaluate trillions of states are 

fairly commonplace in most such applications. Since processing each state requires a nontrivial 

amount of computation, finding solutions to large instances of these problems is beyond the 

scope of conventional sequential computing. Indeed, many practical problems are solved using 

approximate algorithms that provide suboptimal solutions. 

Other applications that can benefit significantly from parallel computing are semi-conductor 

material modeling, ocean modeling, computer tomography, quantum chromodynamics, vehicle 

design and dynamics, analysis of protein structures, study of chemical phenomena, imaging, 

ozone layer monitoring, petroleum exploration, natural language understanding, speech 

recognition, neural network learning, machine vision, database query processing, and automated 

discovery ofconcepts and patterns from large databases. Many of the applications mentioned are 

considered grand challenge problems. A grand challenge is a fundamental problem in science or 

engineering that has a broad economic and scientific impact, and whose solution could be 

advanced by applying high performance computing techniques and resources. 

3 Issues in Parallel Computing 

To use parallel computing effectively, we need to examine the following issues: 

3.1 Design of Parallel Computers 
It is important to design parallel computers that can scale up to a large number of 

processors and are capable of supporting fast communication and data sharing among processors. 

This is one aspect of parallel computing that has seen the most advances and is the most mature. 

3.2 Design of Efficient Algorithms 
A parallel computer is of little use unless efficient parallel algorithms are available. The 

issues in designing parallel algorithms are very different from those in designing their sequential 

3 



counterparts. A significant amount of work is being done to develop efficient parallel algorithms 

for a variety of parallel architectures. 

3.3 Methods for Evaluating Parallel Algorithms 
Given a parallel computer and a parallel algorithm running on it, we need to evaluate the 

performance of the resulting system. Performance analysis allows us to answer questions such as 

How fast can a problem be solved using parallel processing? and How efficiently are the 

processors used? 

3.4 Parallel Computer Languages 
Parallel algorithms are implemented on parallel computers usmg a programmmg 

language. This language must be flexible enough to allow efficient implementation and must be 

easy to program in. New languages and programming paradigms are being developed that try to 

achieve these goals. 

3.5 Parallel Programming Tools 
To facilitate the programming of parallel computers, it is important to develop 

comprehensive programming environments and tools. These must serve the dual purpose of 

shielding users from low-level machine characteristics and providing them with design and 

development tools such as debuggers and simulators. 

3.6 Portable Parallel Programs 

Portability is one of the main problems with current parallel computers. Typically, a 

program written for one parallel computer requires extensive modification to make it run on 

another parallel computer. This is an important issue that is receiving considerable attention. 

3. 7 Automatic Programming of Parallel Computers 
Much work is being done on the design of parallelizing compilers, which extract implicit 

parallelism from programs that have not been parallelized explicitly. Such compilers are expected 

4 



to allow us to program a parallel computer like a serial computer. We speculate that this approach 

has limited potential for exploiting the power oflarge-scale parallel computers. 

5 



CHAPTER2 

1 Parallelism and Computing 

A parallel computer is a set of processors that are able to work cooperatively to solve a 

computational problem. This definition is broad enough to include parallel supercomputers that 

have hundreds or thousands of processors, networks of workstations, multiple-processor 

workstations, and embedded systems. Parallel computers are interesting because they offer the 

potential to concentrate computational resources-whether processors, memory, or I/0 bandwidth 

on important computational problems. 

Parallelism has sometimes been viewed as a rare and exotic subarea of computing, 

interesting but of little relevance to the average programmer. A study of trends in applications, 

computer architecture, and networking shows that this view is no longer tenable. Parallelism is 

becoming ubiquitous, and parallel programming is becoming central to the programming 

enterprise. 

2 The National Vision for 

Parallel Computation 

The technological driving force behind parallel computing is VLSI, or very large scale 

integration-the same technology that created the personal computer and workstation market over 

the last decade. In 1980, the Intel 8086 used 50,000 transistors; in 1992, the latest Digital alpha 

RISC chip contains 1,680,000 transistors-a factor of 30 increase. The dramatic improvement in 

chip density comes together with an increase in clock speed and improved design so that the 

alpha performs better by a factor of over one thousand on scientific problems than the 8086-8087 

chip pair of the early 1980s. 

The increasing density of transistors on a chip follows directly from a decreasing feature 

size which is now for the alpha. Feature size will continue to decrease and by the year 2000, 

chips with 50 million transistors are expected to be available. What can we do with all these 

transistors? 

6 



r: 

With around a million transistors on a chip, designers were able to move full mainframe 

functionality to about of a chip. This enabled the personal computing and workstation 

revolutions, The next factors of ten increase in transistor density must go into some form of 

parallelism by replicating several CPUs on a single chip. 

By the year 2000, parallelism is thus inevitable to all computers, from your children's 

ideo game to personal computers, workstations, and supercomputers. Today we see it in the 

larger machines as we replicate many chips and printed circuit boards to build systems as arrays 

f nodes, each unit of which is some variant of the microprocessor. An nCUBE parallel 

supercomputer with 64 identical nodes on each board-each node is a single-chip CPU with 

ditional memory chips. To be useful, these nodes must be linked in some way and this is still a 

matter of much research and experimentation. Further, we can argue as to the most appropriate 

de to replicate; is it a "small" node as in the nCUBE, or more powerful "fat" nodes such as 

se offered in CM-5 and Intel Touchstone, where each node is a sophisticated multichip printed 

circuit board. However, these details should not obscure the basic point: Parallelism allows one to 

mild the world's fastest and most cost-effective supercomputers. 

Parallelism may only be critical today for supercomputer vendors and users. By the year 

_000, all computers will have to address the hardware, algorithmic, and software issues implied 

,y parallelism. The reward will be amazing performance and the opening up of new fields; the 

rice will be a major rethinking and reimplementation of software, algorithms, and applications. 

This vision and its consequent issues are now well understood and generally agreed. They 

provided the motivation in 19 81 when CP's first roots were formed. In those days, the vision was 

lurred and controversial. Many believed that parallel computing would not work. 

President Bush instituted, in 1992, the five-year federal High Performance Computing and 

Communications (HPCC) Program. The activities of several federal agencies have been 

coordinated in this program. The Advanced Research Projects Agency (ARP A) is developing the 

basic technologies which is applied to the grand challenges by the Department of Energy (DOE), 

the National Aeronautics and Space Agency (NASA), the National Science Foundation (NSF), 

the National Institute of Health (NIH), the Environmental Protection Agency (EPA), and the 

National Oceanographic and Atmospheric Agency (NOAA). Selected activities include the 

mapping of the human genome in DOE, climate modeling in DOE and NOAA, coupled structural 

and airflow simulations of advanced powered lift and a high-speed civil transport by NASA 

7 



• More generally, it is clear that parallel computing can only realize its full potential and be 

commercially successful if it is accepted in the real world of industry and government 

applications. The clear U.S. leadership over Europe and Japan in high-performance computing 

offers the rest of the U.S. industry the opportunity of gaining global competitive advantage. 

We note some interesting possibilities which include: use in the oil industry for both seismic 

analysis of new oil fields and the reservoir simulation of existing fields; environmental modeling 

of past and potential pollution in air and ground; fluid flow simulations of aircraft, and general 

vehicles, engines, air-conditioners, and other turbomachinery; integration of structural analysis 

with the computational fluid dynamics of airflow; car crash simulation; integrated design and 

manufacturing systems; design of new drugs for the pharmaceutical industry by modeling new 

compounds; simulation of electromagnetic and network properties of electronic systems-from 

new components to full printed circuit boards; identification of new materials with interesting 

properties such as superconductivity; simulation of electrical and gas distribution systems to 

optimize production and response to failures; production of animated films and educational and 

entertainment uses such as simulation of virtual worlds in theme parks and other virtual reality 

applications; support of geographic information systems including real-time analysis of data from 

satellite sensors in NASA's "Mission to Planet Earth." 

A relatively unexplored area is known as '' command and control" in the military area and 

"decision support" or "information processing" in the civilian applications. These combine large 

databases with extensive computation. In the military, the database could be sensor information 

and the processing a multitrack Kalman filter. Commercially, the database could be the nation's 

medicaid records and the processing would aim at cost containment by identifying anomalies and 

inconsistencies. 

Servers in multimedia networks set up by cable and telecommunication companies. These 

servers will provide video, information, and simulation on demand to home, education, and 

industrial users. CP did not address such large-scale problems. Rather, we concentrated on major 

academic applications. This fit the experience of the Caltech faculty who led most of the CP 

teams, and further academic applications are smaller and cleaner than large-scale industrial 

problems. One important large-scale CP application was a military simulation and produced by 

Caltech's Jet Propulsion Laboratory. CP chose the correct and only computations on which to cut 

its parallel computing teeth. In spite of the focus on different applications, there are many 

8 



• similarities between the vision and structure ofCP and today's national effort. It may even be that 

today's grand challenge teams can learn from CP's experience. 

3 Trends in Applications 

As computers become ever faster, it can be tempting to suppose that they will eventually 

become "fast enough" and that appetite for increased computing power will be sated. However, 

history suggests that as a particular technology satisfies known applications, new applications 

will arise that are enabled by that technology and that will demand the development of new 

technology. As an amusing illustration of this phenomenon, a report prepared for the British 

government in the late 1940s concluded that Great Britain's computational requirements could be 

met by two or perhaps three computers. In those days, computers were used primarily for 

computing ballistics tables. The authors of the report did not consider other applications in 

science and engineering, let alone the commercial applications that would soon come to dominate 

computing. Similarly, the initial prospectus for Cray Research predicted a market for ten 

supercomputers; many hundreds have since been sold. 

Traditionally, developments at the high end of computing have been motivated by 

numerical simulations of complex systems such as weather, climate, mechanical devices, 

electronic circuits, manufacturing processes, and chemical reactions. However, the most 

significant forces driving the development of faster computers today are emerging commercial 

applications that require a computer to be able to process large amounts of data in sophisticated 

ways. These applications include video conferencing, collaborative work environments, 

computer-aided diagnosis in medicine, parallel databases used for decision support, and advanced 

graphics and virtual reality, particularly in the entertainment industry. For example, the 

integration of parallel computation, high-performance networking, and multimedia technologies 

is leading to the development of video servers, computers designed to serve hundreds or 

thousands of simultaneous requests for real-time video. Each video stream can involve both data 

transfer rates of many megabytes per second and large amounts of processing for encoding and 

decoding. In graphics, three-dimensional data sets are now approaching volume elements (1024 

on a side). At 200 operations per element, a display updated 30 times per second requires a 

computer capable of 6.4 operations per second. 

9 



•• Although commercial applications may define the architecture of most future parallel 

computers, traditional scientific applications will remain important users of parallel computing 

technology. Indeed, as nonlinear effects place limits on the insights offered by purely theoretical 

investigations and as experimentation becomes more costly or impractical, computational studies 

of complex systems are becoming ever more important. Computational costs typically increase as 

the fourth power or more of the "resolution" that determines accuracy, so these studies have a 

seemingly insatiable demand for more computer power. They are also often characterized by 

large memory and input/output requirements. For example, a ten-year simulation of the earth's 

climate using a state-of-the-art model may involve floating-point operations, ten days at an 

execution speed of floating-point operations per second (10 gigaflops ). This same simulation can 

easily generate a hundred gigabytes ( bytes) or more of data. Yet scientists can easily imagine 

refinements to these models that would increase these computational requirements 10,000 times. 

In summary, the need for faster computers is driven by the demands of both data 

intensive applications in commerce and computation-intensive applications in science and 

engineering. Increasingly, the requirements of these fields are merging, as scientific and 

engineering applications become more data intensive and commercial applications perform more 

sophisticated computations. 

4 Trends in Computer Design 

The performance of the fastest computers has grown exponentially from 1945 to the 

present, averaging a factor of 10 every five years. While the first computers performed a few tens 

of floating-point operations per second, the parallel computers of the mid-1990s achieve tens of 

billions of operations per second. Similar trends can be observed in the low-end computers of 

different eras: the calculators, personal computers, and workstations. There is little to suggest that 

this growth will not continue. However, the computer architectures used to sustain this growth 

are changing radically from sequential to parallel. 

The performance of a computer depends directly on the time required to perform a basic 
:1 

operation and the number of these basic operations that can be performed concurrently. The time 

to perform a basic operation is ultimately limited by the "clock cycle" of the processor, that is, 

the time required to perform the most primitive operation. However, clock cycle times are 

10 



decreasing slowly and appear to be approaching physical limits such as the speed of light. We 

cannot depend on faster processors to provide increased computational performance. 

To circumvent these limitations, the designer may attempt to utilize internal concurrency 

in a chip, for example, by operating simultaneously on all 64 bits of two numbers that are to be 

multiplied. However, a fundamental result in Very Large Scale Integration (VLSI) complexity 

theory says that this strategy is expensive. This result states that for certain transitive 

computations (in which any output may depend on any input), the chip area A and the time T 

required to perform this computation are related so that must exceed some problem-dependent 

function of problem size. This result can be explained informally by assuming that a computation 

must move a certain amount of information from one side of a square chip to the other. The 

amount of information that can be moved in a time unit is limited by the cross section of the chip. 

This gives a transfer rate of, from which the relation is obtained. To decrease the time required to 

move the information by a certain factor, the cross section must be increased by the same factor, 

and hence the total area must be increased by the square of that factor. 

This result means that not only is it difficult to build individual components that operate 

faster, it may not even be desirable to do so. It may be cheaper to use more, slower components. 

For example, if we have an area of silicon to use in a computer, we can either build components, 

each of size A and able to perform an operation in time T, or build a single component able to 

perform the same operation in time T In. The multicomponent system is potentially n times faster. 

Computer designers use a variety of techniques to overcome these limitations on single computer 

performance, including pipelining (different stages of several instructions execute concurrently) 

and multiple function units (several multipliers, adders, etc., are controlled by a single instruction 

stream). Increasingly, designers are incorporating multiple "computers," each with its own 

processor, memory, and associated interconnection logic. This approach is facilitated by 

advances in VLSI technology that continue to decrease the number of components required to 

implement a computer. As the cost of a computer is (very approximately) proportional to the 

number of components that it contains, increased integration also increases the number of 

processors that can be included in a computer for a particular cost. The result is continued growth 

in processor counts. 

11 



5 Trends in Networking 

Another important trend changing the face of computing is an enormous increase in the 

capabilities of the networks that connect computers. Not long ago, high-speed networks ran at 1.5 

Mbits per second; by the end of the 1990s, bandwidths in excess of 1000 Mbits per second will 

be commonplace. Significant improvements in reliability are also expected. These trends make it 

feasible to develop applications that use physically distributed resources as if they were part of 

the same computer. A typical application of this sort may utilize processors on multiple remote 

computers, access a selection of remote databases, perform rendering on one or more graphics 

computers, and provide real-time output and control on a workstation. 

e emphasize that computing on networked computers ("distributed computing") is not just a 

subfield of parallel computing. Distributed computing is deeply concerned with problems such as 

reliability, security, and heterogeneity that are generally regarded as tangential in parallel 

computing. (As Leslie Lamport has observed, "A distributed system is one in which the failure of 

a computer you didn't even know existed can render your own computer unusable.") Yet the 

basic task of developing programs that can run on many computers at once is a parallel 

computing problem. In this respect, the previously distinct worlds of parallel and distributed 

computing are converging. 

6 Summary of Trends 

This brief survey of trends in applications, computer architecture, and networking 

suggests a future in which parallelism pervades not only supercomputers but also workstations, 

personal computers, and networks. In this future, programs will be required to exploit the 

multiple processors located inside each computer and the additional processors available across a 

network. Because most existing algorithms are specialized for a single processor, this situation 

implies a need for new algorithms and program structures able to perform many operations at 

once. Concurrency becomes a fundamental requirement for algorithms and programs. 

This survey also suggests a second fundamental lesson. It appears likely that processor counts 

will continue to increase perhaps, as they do in some environments at present, by doubling each 

12 



• 
year or two. Hence, software systems can be expected to experience substantial increases in 

processor count over their lifetime. In this environment, scalability resilience to increasing 

processor counts is as important as portability for protecting software investments. A program 

able to use only a fixed number of processors is a bad program, as is a program able to execute on 

only a single computer. 



• CHAPTER3 

1 Flynn's Taxonomy 

In general, digital computers may be classified into four categories, according to the 

multiplicity of instruction and data streams. This scheme for classifying computer organizations 

was introduced by Michael J. Flynn. The essential computing process is the execution of a 

sequence of instructions on a set of data. The term stream is used here to denote a sequence of 

items (instructions or data) as executed or operated upon by a single processor. Instructions or 

data are defined with respect to a referenced machine. An instruction stream is a sequence of 

instructions as executed by the machine; a data stream is a sequence of data including input, 

partial, or temporary results, called for the instruction stream. 

Computer organizations are characterized by the multiplicity of the hardware provided to service 

the instruction and data streams. Listed below are Flynn's four machine organizations: 

1. Single instruction stream single data stream (SISD) 

2. Single instruction stream multiple data stream (SIMD) 

3. Multiple instruction stream single data stream (MISD) 

4. Multiple instruction stream multiple data stream (MIMD) 

1.1 SISD computer organization 

This organization represents most serial computers available today. Instructions are 

executed sequentially but may be overlapped in their execution stages. 

1.2 SIMD computer organization 

In this organization, there are multiple processing elements supervised by the same 

control unit. All PE's receive the same instruction broadcast from the control unit but operate on 

different data sets from distinct data streams. 

14 



• 

1.3 MISD computer organization 

There are n processor units, each receiving distinct instructions operating over the same 

data stream and its derivatives. The results ( output) of one processor become the input (operands) 

of the next processor in the macropipe. 

1.4 MIMD computer organization 

Most multiprocessor systems and multiple computer systems can be classified in this 

ategory. MIMD computer implies interactions among the n processors because all memory 

streams are derived from the same data space shared by all processors. If then data streams were 

from disjointed subspaces of the shared memories, then we would have the so-called multiple 

SISD (MSISD) operation, which is nothing but a set of n independent SISD uniprocessor 

systems. 

The last three classes ofcomputer organization are the classes of parallel computers. 

2 A Taxonomy of Parallel Architectures 

There are many ways in which parallel computers can be constructed. These computers 

differ along various dimensions. 

2.1 Control Mechanism 

Processing units in parallel computers either operate under the centralized control of a 

single control unit or work independently. In architectures referred to as stream, multiple data 

stream (SIMD), a single control unit dispatches instructions to each processing unit. Figure 2.2(a) 

illustrates a typical SIMD architecture. In an SIMD parallel computer, the same instruction is 

executed synchronously by all processing units. Processing units can be selectively switched off 

15 



• uring an instruction cycle. Examples of SIMD parallel computers include the Illiac IV, MPP, 

DAP, CM-2, MasPar MP- I, and MasPar MP-2. 

Computers in which each processor is capable of executing a different program 

nv1PnP.ndent of the other processors are called multiple instruction stream, multiple data stream 

•• flMD) computers. Figure 2.2(b) depicts a typical MIMD computer. Examples of MIMD 

mputers include the Cosmic Cube, nCUBE 2, iPSC, Symmetry, FX-8, FX-2800, TC-2000, 

m-5, KSR-1, and Paragon XP/S. 

PE: Processing Element 
I 
z z -l -l ['t1 ['t1 ,., ,., 
(") 

PE (") 
0 + 0 z z z z 
6 tT1 

Global l ~ ~ 
control ~ 0 z 
unit z z 

~ 
~ ~ PE 

0 + 0 :::0 ,., 
"' ;,:; - PE 

+ 

(a) (b) 

Figure 2.2 A typical SIMD architecture (a) and a typical MIMD architecture (b ). 

SIMD computers require less hardware than MIMD computers because they have only 

one global control unit. Furthermore, SIMD computers require less memory because only one 

copy of the program needs to be stored. In contrast, MIMD computers store the program and 

operating system at each processor. SIMD computers are naturally suited for data-parallel 

programs; that is, programs in which the same set of instructions are executed on a large data set. 

Furthermore, SIMD computers require less startup time for communicating with neighboring 

16 



• processors. This is because the communication of a word of data is just like a register transfer 

(due to the presence of a global clock) with the destination register in the neighboring processor. 

A drawback of SIMD computers is that different processors cannot execute different instructions 

in the same clock cycle. For instance, in a conditional statement, the code for each condition must 

be executed sequentially. This is illustrated in Figure 2.3. The conditional statement in Figure 

2.3(a) is executed in two steps. In the first step, all processors that have B equal to zero execute 

the instruction C = A All other processors are idle. In the second step, the 'else' part of the 

instruction (C = A/B) is executed. The processors that were active in the first step now become 

idle. Data-parallel programs in which significant parts of the computation are contained in 

conditional statements are therefore better suited to MIMD computers than to SIMD computers. 

Individual processors in an MIMD computer are more complex, because each processor has its 

own control unit. It may seem that the cost of each processor must be higher than the cost of a 

SIMD processor. However, it is possible to use general-purpose microprocessors as processing 

units in MIMD computers. In contrast, the CPU used in SIMD computers has to be specially 

designed. Hence, due to the economy of scale, processors in MIMD computers may be both 

cheaper and more powerful than processors in SIMD computers. 

, SIMD computers offer automatic synchronization among processors after each instuction 

execution cycle. Hence, SIMD computers are better suited to parallel programs that require 

frequent synchronization. Many MIMD computers have extra hardware to provide fast 

synchronization, which enables them to operate in SIMD mode as well. Examples of such 

computers are the DADO and CM-5. 

17 



if (B ==0) 

C=A; 
else 

C:A/B; -- 
(a) 

A C]J A C:I) Al I I Al ol 
B CJiJ B C1J Bl I I Bl o I 
CI O l C CJiJ cl o I cl o I 
ProccssorO Processor l Processor 2 Processor 3 

Initial values 

Idle Idle 

,A c=iJ A~ Al Al I I ol 
B CJiJ BC1] Bl I I Bl ol 
cc=i] C CJiJ cl oj cl ol 
ProccssorO Processor I Processor 2 Processor 3 

Step I 

Idle Idle 

A§] ACJiJ Al I I Al o I 
Bl O I se1J Bl I I Bl oj 
ec=i] C C1J cl I I cl oj 
ProccssorO Processor l Processor 2 Processor 3 

Step2 

(b) 

Figure 2.3 executing a conditional statement on an SIMD computer with four processors: (a) The 

conditional statement; (b) The execution of the statement in two steps. 

18 



3. A Parallel Machine 

The Intel Paragon is a particular form of parallel machine, which makes concurrent computation 

available at relatively low cost. It consists of a set of independent processors, each with its own 

memory, capable of operating on its own data. Each processor has its own program to execute 

and processors are linked by communication channels. 

The hardware consists of a number of nodes, disk systems, communications networks all 

mounted together in one or several cabinets with power supply for the whole system. Each node 

is a separate board, rather like a separate computer. Each node has memory, network interface, 

expansion port, cache and so on. The nodes are linked together through a back plane, which 

provides high-speed communications between them. 

Each node has its own operating system, which can be considered as permanently 

resident. It takes care of all the message passing, and also allows more than one executable 

program, or process as they will be called, to be active on each node at any time. Strictly 

speaking, it is node processes that communicate with other node processes rather than the nodes 

themselves. 

NodeO Node L!i 

I Memory 1------------------------------------------------------------------------------------------I 11;1.cmory 

Prue 1 Pree 1 

Pree 2 Prue 2 

Messages 

Figure 1.1: PmM!~ oonurmnitation cm the nodl'J! 

Remember, nodes use their own copy of the program and have their own memory allocation. No 

variables are shared between nodes or even between processes on the same node. Data can only 

be shared by sending them as messages between processes. 

19 



• The Paragon supercomputer is a distributed-memory multicomputer. The system can 

accommodate more than a thousand heterogeneous nodes connected in a two-dimensional 

rectangular mesh. A lightweight MACH 3.0 based microkemel is resident on each node, which 

provides core operating system functions. Transparent access to file systems is also provided. 

Nodes communicate by passing messages over a high-speed internal interconnect network. A 

general-purpose MIMD (Multiple Instruction, Multiple Data) architecture supports a choice of 

programming styles and paradigms, including true MIMD and Single Program Multiple Data 

(SPMD). 

We will adopt the SPMD programming paradigm (Single Program Multiple Data) i.e. 

each process is the same program executing on different processors. Each program executes 

essentially the same algorithms, but different branches of the code may be active in different 

processors. The general architecture of the machine is illustrated in figure 1.2.In the illustration, 

nodes are arranged in a 2D mesh. Each compute node consists of two i860XP processors. One of 

these is an application processor and the other a dedicated communication processor. User 

applications will normally run using the application processor. The figure illustrates that each 

compute node may pass messages to neighbouring nodes through a bi-directional communication 

channel. When messages are to be passed indirectly between non-neighbouring processors, the 

operating system will handle routing the message between intermediate processors. 

File system support and high-speed parallel file access is provided through the nodes labelled 

service and 1/0 in the diagram. Access to the parallel file system is made through standard OSF 

library routines ( opem), closet), read 0, writeQ, etc.,). 
When a user is logged in to the Paragon system, the operating system will allocate the login 

session to one of the service nodes. Exactly which service node is in use is totally transparent to 

the user. The user will usually edit files, and compile, link and run applications while logged in to 

one of the service nodes. Note also that most sites will have available a so-called cross 

environment which allows most of the program development stages - editing, compiling, linking 

and debugging - to be carried out on a workstation away from the paragon system. Using the 

cross-environment is highly recommended, as the available capacity for such operations is 

usually greater on a workstation than on the service nodes. Consult your local system 

administrator to find out how to use this facility. 

20 



Figure 1.~: Overview ol. the Paragon 111yskm 

21 

• 



• 
CHAPTER4 

1 Parallel Programming 

To run the algorithms on a parallel computer, we need to implement them in a 

programming language. In addition to providing all the functionality of a sequential language, a 

language for programming parallel computers must provide mechanisms for sharing information 

among processors. It must do so in a way that is clear, concise, and readily accessible to the 

programmer. A variety of parallel programming paradigms have been developed. This chapter 

discusses the strengths and weaknesses of some of these paradigms, and illustrates them with 

examples. 

2 Parallel Programming Paradigms 

Different parallel programming languages enforce different programming paradigms. The 

variations among paradigms are motivated by several factors. First, there is a difference in the 

amount of effort invested in writing parallel programs. Some languages require more work from 

the programmer, while others require less work but yield less efficient code. Second, one 

programming paradigm may be more efficient than others for programming on certain parallel 

computer architectures. Third, various applications have different types of parallelism, so 

different programming languages have been developed to exploit them. This section discusses 

these factors in greater detail. 

2.1 Explicit versus Implicit Parallel Programming 

One way to develop a parallel program is to code an explicitly parallel algorithm. This approach, 

called explicit parallel programming , requires a parallel algorithm to explicitly specify how the 

processors will cooperate in order to solve a specific problem. The compiler's task is 

straightforward. It simply generates code for the instructions specified by the programmer. The 

programmer's task, however, is quite difficult. 

22 



• 
Another way to develop parallel programs is to use a sequential programming language and have 

the compiler insert the constructs necessary to run the program on a parallel computer. This 

approach, called implicit parallel programming, is easier for the programmer because it places a 

majority of the burden of parallelization on the compiler. 

Unfortunately, the automatic conversion of sequential programs to efficient parallel ones 

is very difficult because the compiler must analyze and understand the dependencies in different 

parts of the sequential code to ensure an efficient mapping onto a parallel computer. The 

compiler must partition the sequential program into blocks and analyze dependencies between the 

blocks. The blocks are then converted into independent tasks that are executed on separate 

processors. Dependency analysis is complicated by control structures such as loops, branches, 

and procedure calls. Furthermore, there are often many ways to write a sequential program for a 

given application. Some sequential programs make it easier than others for the compiler to 

generate efficient parallel code. Therefore, the success of automatic parallelization also depends 

on the structure of the sequential code. Some recent languages, such as Fortran D, allow the 

programmer to specify the decomposition and placement of data among processors. This makes 

the job performed by parallelizing compilers somewhat simpler. 

2.2 Shared-Address-Space versus Message-Passing 

In the shared-address-space programming paradigm, programmers view their programs as 

a collection of processes accessing a central pool of shared variables. The shared-address-space 

programming style is naturally suited to shared-address-space computers. A parallel program on a 

shared-address-space computer shares data by storing it in globally accessible memory. Each 

processor accesses the shared data by reading from or writing to shared variables. However, more 

than one processor might access the same shared variable at a time, leading to unpredictable and 

undesirable results. For example, assume that x initially contains the value 5 and that processor P 
1 

increases the value of x by one while processor P2 decreases it by one. Depending on the 

sequence in which the instructions are executed, the value of x can become 4, 5, or 6. For 

example, if P1 reads the value ofx before P2 decreases it, and stores the increased value after P2 

stores the decreased value, x will become 6. We can conrect the situation by preventing the 

second processor from decreasing x while it is being increased by the first processor. 

23 



• Shared-address-space programming languages must provide primitives to resolve such mutual- 

exclusion problems. 

In the message-passing programming paradigm, programmers view their programs as a 

collection of processes with private local variables and the ability to send and receive data 

between processes by passing messages. In this paradigm, there are no shared variables among 

processors. Each processor uses its local variables, and occasionally sends or receives data from 

other proctssors. The message-passing programming style is naturally suited to message-passing 

computers. 

Shared-address-space computers can also be programmed using the message-passing 

paradigm. Since most practical shared-address-space computers are nonuniform memory access 

architectures, such emulation exploits data locality better and leads to improved performance for 

tnany applications. On shared-address-space computers, in which the local memory of each 

processor is globally accessible to all other processors (Figure 2.5(a)), this emulation is done as 

follows. Part of the local memory of each processor is designated as a communication buffer, and 

the processors read from or write to it when they exchange data. On shared-address-space 

computers in which each processor has local memory in addition to global memory, message 

passing can be done as follows. The local memory becomes the logical local memory, and a 

designated area of the global memory becomes the communication buffer for message passing. 

Many parallel programming languages for shared-address-space or message-passing 

MIMD computers are essentially sequential languages augmented by a set of special system calls. 

These calls provide low-level primitives for message passing, process synchronization, process 

creation, mutual exclusion, and other necessary functions. Extensions to C, Fortran, and C++ 

have been developed for various parallel computers including nCUBE2, iPSC 860, Paragon XP/S 

CM-5, TC 2000, KSR- 1, and Sequent Symmetry. In order for these programming languages to 

be used on a parallel computer, information stored on different processors must be explicitly 

shared using these primitives. As a result, programs may be efficient, but tend to be difficult to 

understand, debug, and maintain. Moreover, the lack of standards in many of the languages 

makes programs difficult to port between architectures. Parallel programming libraries, such as 

PVM, Paraso:ft EXPRESS, P4, and PICL, try to address some of these problems by offering 

vendor-independent low-level primitives. These libraries offer better code portability compared 

24 



• to earlier vendor-supplied programming languages. However, programs are usually still difficult 

to understand, de bug, and maintain. 

2.3 Data Parallelism versus Control Parallelism 

In some problems, many data items are subject to identical processing. Such problems can 

be parallelized by assigning data elements to various processors, each of which performs 

identical computations on its data. This type of parallelism is called data parallelism. An example 

of a problem that exhibits data parallelism is matrix multiplication. When multiplying two n x n 

matrices A and B to obtain matrix C = (c, ,j ), each element Ci,j is computed by performing a dot 

product of the ith row of A with the l column ofB. Therefore, each element Ci,j is computed by 

performing identical operations on different data, which is data parallel. 

Several programming languages have been developed that make it easy to exploit data 

parallelism. Such languages are called data-parallel programming languages and programs 

written in these languages are called data-parallel programs. A data-parallel program contains a 

single sequence of instructions, each of which is applied to the data elements in lockstep. Data 

parallel programs are naturally suited to SIMD computers. 

A global control unit broadcasts the instructions to the processors, which contain the data. 

Processors execute the instruction stream synchronously. Data-parallel programs can also be 

executed on MINID computers. However, the strict synchronous execution of a data-parallel 

program on an MIMD computer results in inefficient code since it requires global 

synchronization after each instructions. One solution to this problem is to relax the synchronous 

execution of instructions. In this programming model, called single program, multiple data or 

SPMD, each processor executes the same program asynchronously. Synchronization takes place 

only when processors need to exchange data. Thus, data parallelism can be exploited on an 

MINID computer even without using an explicit data-parallel programming language. 

Control parallelism refers to the simultaneous execution of different instruction streams. 

Instructions can be applied to the same data stream, but more typically they are applied to 

different data streams. An example of control parallelism is pipelining. In pipelining, 

computation is parallelized by executing a different program at each processor and sending 

25 



• 
intermediate results to the next processor. The result is a pipeline of data owing between 

processors. Algorithms for problems requiring control parallelism usually map well onto MIMD 

parallel computers because control parallelism requires multiple instruction streams. In contrast, 

SIMD computers support only a single instruction stream and are not able to exploit control 

parallelism efficiently. 

Many problems exhibit a certain amount of both data parallelism and control parallelism. 

The amount of control parallelism available in a problem is usually independent of the size of the 

problem and is thus limited. In contrast, the amount of data parallelism in a problem increases 

with the size of the problem. Therefore, in order to use a large umber of processors efficiently, it 

is necessary to exploit the data parallelism inherent in an application. 

Note that not all data-parallel applications can be implemented using data-parallel 

programming languages nor can all data-parallel applications be executed on SIMD computers. 

In fact, many of them are more suited for MIMD computers. For example, the search problem has 

data parallelism, since successors must eventually be generated for all the nodes in the tree. 

However, the actual code for generating successor nodes contains many conditional statements. 

Thus, depending upon the code being generated, different instructions are executed. As shown in 

Figure 2.3, such programs perform poorly on SIMD computers. In some data-parallel 

applications, the data elements are generated dynamically in an unstructured manner, and 

distribution of data to processors must be done dynamically. For example, in the tree-search 

problem, nodes in the tree are generated during the execution of the search algorithm, and the tree 

grows unpredictably. To obtain a good load balance, the search space must be divided 

dynamically among processors. Data-parallel programs can perform data redistribution only on a 

global scale; that is, they do not allow some processors to continue working while other 

processors redistribute data among themselves. Hence, problems requiring dynamic distribution 

are harder to program in the data-parallel paradigm. 

Data-parallel languages offer the programmer high-level constructs for sharing infor 

mation and managing concurrency. Programs using these high-level constructs are easier to write 

and understand. Some examples of languages in this category are Dataparallel C and C*. 

However, code generated by these high-level constructs is generally not as efficient as 

handcrafted code that uses low-level primitives. In general, if the communication patterns 

26 



• 
required by the parallel algorithm are not supported by the data-parallel language, then the data 

parallel program will be less efficient. 

3 Primitives for the Message-Passing 

Programming- Paradigm 

Existing sequential languages can easily be augmented with library calls to provide 

message-passing services. This section presents the basic extensions that a sequential language 

must have in order to support the message-passing programming paradigm. 
' 

Message passing is often associated with MIMD computers, but SIMD computers can be 

programmed using explicit message passing as well. However, due to the synchronous execution 

ofa single instruction stream by SIMD computers, the explicit use of message passing sometimes 

results in inefficient programs. 

3.1 Basic Extensions 

The message-passing paradigm is based on just two primitives: SEND and RECEIVE. 

SEND transmits a message from one processor to another, and RECEIVE reads a message from 

another processor. 

The general form of the SEND primitive is 

SEND(message, messagesize, target, type, flag) 

Message contains the data to be sent, and messagesize is its size in bytes. Target is the label of 

the destination processor. Sometimes, target can also specify a set of processors as the recipient 

of the message. For example, in a hypercube-connected computer, target may specify certain 

subcubes, and in a mesh-connected computer it may specify certain submeshes, rows, or columns 

of processors. 

27 



• 
The parameter type is a user-specified constant that distinguishes various types of 

messages. For example, in the matrix multiplication algorithm described in Section there are at 

least two distinct types of messages. 

Usually there are two forms of SEND. One allows processing to continue immediately 

after a message is dispatched, whereas the other suspends processing until the message is 

received by the target processor. The latter is called a blocking SEND, and the former a 

nonblocking SEND. The flag parameter is sometimes used to indicate whether the SEND 

operation is blocking or nonblocking. 

When a SEND operation is executed, the operating system performs the following steps. 

It copies the data stored in message to a separate area in the memory, called the communication 

buffer. It adds an operating-system-specific header to the message that includes type, flag, and 

possibly some routing information. Finally, it sends the message. In newer parallel computers, 

these operations are performed by specialized routing hardware. When the message arrives at the 

destination processor, it is copied into this processor's communication buffer and a system 

variable is set indicating that a message has arrived. In some systems, however, the actual 

transfer of data does not occur until the receiving processor executes the corresponding 

RECEIVE operation. 

The RECEIVE operation reads a message from the communication buffer into user memory. The 

general form of the RECEIVE primitive is 

RECEIVE(message, messagesize, source, type, flag) 

There is a great deal of similarity between the RECEIVE and SEND operations because they 

perform complementary operations. The message parameter specifies the location at which the 

data will be stored and messagesize indicates the maximum number of bytes to be put into 

message. At any time, more than one message may be stored in the communication buffer. These 

messages may be from the same processor or different processors. The source parameter specifies 

the label of the processor whose message is to be read. The source parameter can also be set to 

special values, indicating that a message can be read from any processor or a set of processors. 

After successfully completing the RECEIVE operation, source holds the actual label of the 

processor that sent the message. 

28 



• 
The type parameter specifies the type of the message to be received. There may be more 

than one message in the communication buffer from the source processor(s). The type parameter 

selects a particular message to read. It can also take on a special value to indicate that any type of 

message can be read. After the successful completion of the RECEIVE operation, type will store 

the actual type of the message read. 

As with SEND, the RECEIVE operation can be either blocking or nonblocking. In a 

blocking RECEIVE, the processor suspends execution until a desired message arrives and is read 

from the communication buffer. In contrast, nonblocking RECEIVE returns control to the 

program even if the requested message is not in the communication buffer. The flag parameter 

can be used to specify the type of RECEIVE operation desired. 

Both blocking and nonblocking RECEIVE operations are useful. If a specific piece of 

data from a specific processor is needed before the computation can proceed, a blocking 

RECEIVE is used. Otherwise, it is preferable to use a nonblocking receive. For example, if a 

processor must receive data from several processors, and the order in which these data arrive is 

not predetermined, nonblocking RECEIVE is usually better. 

Most message-passing extensions provide other functions in addition to SEND and 

RECEIVE. These functions include system status querying, global synchronization, and setting 

mode for communication. Another important function is WHOAMI. The WHOAMI function 

returns information about the system and the processor itself The general form of the WHOAMI 

function is: 

WHO AMI (processorid, numofprocessor s) 

Processorid returns the label of the processor, and numofprocessor s returns the total number of 

processors in the parallel computer. The processarid is the value used for the target and source 

parameters of the RECEIVE and SEND operations. The total number of processors helps 

determine certain characteristics of the topology of the parallel computer (such as the number of 

dimensions in a hypercube or the number ofrows and columns in a mesh). 

Most message-passing parallel computers are programmed using either a host--node 

model or a hostless model. In the host-node model, the host is a dedicated processor in charge of 

loading the program onto the remaining processors (the nodes). The host also performs 

29 



housekeeping tasks such as interactive input and output, termination detection, and process 

termination. In contrast, the hostless model has no processor designated for such housekeeping 

tasks. However, the programmer can program one of the processors to perform these tasks as 

required. 

The following sections present the actual functions used by message passing for some 

commercially-available parallel computers. 

3.2 nCUBE 2 

The nCUBE 2 is an MIMD parallel computer developed by nCUBE Corporation. Its processors 

are connected by a hypercube interconnection network. A fully configured nCUBE 2 can have up 

to 8192 processors. Each processor is a 32-bit RISC processor with up to 64MB oflocal memory. 

Early versions of the nCUBE 2's system software supported the host-node programming model. 

A recent release of the system software primarily supports the hostless model. 

The nCUBE 2's message-passing primitives are available for both the C and Fortran 

languages. The nCUBE 2 provides nonblocking SEND with the use of the nwrite function. 

C int nwrite ( char *message, int messagesize, int target, int type, int *fiag) 

Fortran integer function nwrite(message, messagesize, target, type, flag) 

dimension message (*) 

integer messagesize, target, type, flag 

The functions of nwrite's parameters are similar to those of the SEND operation. The 

main difference is that the flag parameter is unused. The nCUBE 2 does not provide a blocking 

SEND operation. 

The blocking RECEIVE operation is performed by the nread function. 

C int nread(char *message, int messagesize, int *source, int *type, int *flag) 

Fortran integer function nread (message, messsgesize, source, type, flag) 

30 



dimension reasage (*) 

integer messagesize, source, type, flag 

The nread function's parameters are similar to those of RECEIVE with the exception of 

the flag parameter, which is unused. The nCUBE 2 emulates a nonblocking RECEIVE by calling 

a function to test for the existence of a message in the communication buffer. If the message is 

present, nread can be called to read it. The ntest function tests for the presence of messages in the 

communication buffer. 

C int ntest ( int *source, int *type) 

Fortran integer function ntest (source, type) 

integer source, type 

The ntest function checks to see if there is a message in the communication buffer from 

processor source of type type. If such a message is present, ntest returns a positive value, 

indicating success; otherwise it returns a negative value. When the value of source or type (or 

both) is set 

to-1, ntest checks for the presence of a message from any processor or of any type. After the 

function is executed, type and source contain the actual source and type of the message in the 

communication buffer. 

The functions npid and ncubesize implement the WHOAMI function. 

c int npidt) 

int ncubesizet) 

Fortran integer function npidt) 

integer function ncubesizet) 

The npid function returns the processor's label, and ncubesize returns the number of 

processors in the hypercube. 

31 



,, 

3.3 iPSC 860 

Intel's iPSC 860 is an MIMD message-passing computer with a hypercube 

interconnection network. A fully configured iPSC 860 can have up to 128 processors. Each 

processor is a 32-bit i860 RISC processor with up to 16MB oflocal memory. One can program 

the iPSC using either the host-node or the hostless programming model. The iPSC provides 

message-passing extensions for the C and Fortran languages. The same message-passing 

extensions are also available for Intel Paragon XP/S, which is a mesh-connected computer. 

The iPSC's nonblocking SEND operation is called csend. 

C csend (long type, char *message, long messagesize, long target, 

long flag) 

Fortran subroutine csend (type, message, messagesize, target, flag) 

integer type 

integer message (*) 

integer messagesize, target, flag 

The parameters of csend are similar to those of SEND. The flag parameter holds the 

process identification number of the process receiving the message. This is useful when there are 

multiple processes running on the target processor. The IPSC does not provide a blocking SEND 

operation. We can perform blocking RECEIVE by using the crecv function. 

C crecv (long type, char *message, long messagesize) 

Fortran subroutine crecv (type, message, messagesize) 

integer type 

32 



• 
integer message (*) 

integer messagesize 

Comparing the crecv function with the RECEIVE operation, we see that the source and 

flag parameters are not available in crecv. However, crecv allows information about the source 

processor to be encoded in the type parameter. The iPSC provides nonblocking RECEIVE by 

using a function called irecv. The arguments ofirecv are similar to crecv, with the exception that 

irecv returns a number that is used to check the status of the receive operation. The program can 

wait for a nonblocking receive to complete by calling the msgwait function. It takes the number 

returned by irecv as its argument and waits until the nonblocking RECEIVE operation has 

completed. 

The iPSC functions rnynade and numnodes are similar to WHOAMI. They return the 

label of the calling processor and the number of processors in the hypercube, respectively. 

C long mynodet) 

long numnodest) 

integer function mynodei) 

integer function numnodesi) 

Fortran 

3.4 CM-5 

The CM-5, developed by Thinking Machines Corporation, supports both the MIMD and SIMD 

models ofcomputation. A fully configured CM-5 can have up to 16384 processors connected by 

a fat tree interconnection network. The CM-5 also has a control network, used for operations 

involving many or all processors. Each CM-5 node has a SP ARC RISC processor and four vector 

units with up to 32MB oflocal memory. One can program the CM-5 using either the host-node or 

hostless programming models. 

When the CM-5 is used in MIMD mode, it is programmed with the use of message 

passing primitives that are available for the C, Fortran, and C++ languages. 

The CM-5's blocking SEND function is CMMD_send_lack. 

33 



C int CMMD _send_ block (int target, int type, void *message, 

int messagesize) 

Fortran integer function CMMD _send_ block (target, type, message, messagesize) 

integer target, type 

integer message(*) 

integer messagesize 

The parameters of CMMD_send_block are similar to those for the generic SEND 

primitive. The CM-5's nonblocking SEND operation is CMMD_send_async. 

C CMMD _mcb CMMD _send_async (int target, int type, void *message, 

int messagasize, void (*handler) (CMMD_mcb)) 

Fortran integer funotion CMMD _send_ asyno (target, type, message, 

messagesize, handler) 

integer target, type 

integer message (*) 

integer messagesize, handler 

Most of the parameters required by CMMD _send_ async are similar to those required by 

the SEND operation. The CMMD _send_async function returns a pointer to a message control 

block (CMMD _ mcb) after it has queued the message for transmission. The programmer is 

responsible for preserving the data in the buffer pointed to by message, and for freeing the 

CMMD _ mcb when the message has been sent. The parameter handler allows the programmer to 

define a handler routine that is invoked automatically when the message has been sent. 

The CM-5 provides blocking RECEIVE with the CMMD_receive_block function 

C int CMMD _receive_ blook(int source, int type, void *message, 

int message size) 

34 



• 
Fortran integer function CMMD_receive_block (source, type, message, 

message size) 

integer source, type 

integer message (*) 

integer messagesize 

A nonblocking RECEIVE operation is provided by the function CMMD _receive_ async. 

C CMMD _ mcb CMMD _receive_ async (int source, int type, void *message, 

int messagesize, void (*handler) (CMMD _mcb )) 

Fortran integer function CMMD_receive_async (source, type, message, 

messagesize, handler) 

integer source, type 

integer message (*) 

integer messagesize, handler 

The parameters of the CMMD_receive_lock and CMMD_receive_async operations are 

similar to those for the corresponding CMMD _ send _lock and CMMD _send_ async operations. 

On the CM-5, the send function does not actually send the message until the destination 

node invokes a receive function, indicating that it is ready to receive a message. Furthermore, the 

CMMD send functions send no more data than the receiver has signaled it can accept. Thus, the 

number of bytes sent is the smaller of the number of bytes requested (that is, the messagesize of 

the send function) and the number of bytes the receive function allows (that is, the messagesize of 

the receive function). 

The CM-5 provides the functionality of WHOAMI with the functions 

CMMD_self_address and CMMD_partition_size. These functions return the label of the calling 

processor and the total number of processors. 

C int CMMD _self_addressO 

int CMMD _partition_ size() 

35 



• 

Fortran int function CMMD self address 

int function CMMD _partition_ size 

4 Data-Parallel Uanguages 

The main emphasis of data-parallel languages is to make it easier for the programmer to 

express the data parallelism available within a program in a manner that is independent of the 

architectural characteristics of a given parallel computer. A data-parallel language has the 

following characteristics: 

( 1) It generates only a single instruction stream. 

(2) It implies the synchronous execution ofinstructions. Hence, it is much easier to write and 

debug data-parallel programs, since race conditions and deadlocks are impossible. 

It requires the programmer to develop code that explicitly specifies parallelism. 

(3) . It associates a virtual processor with the fundamental unit of parallelism. The programmer 

expresses computation in terms of operations performed by virtual processors. The advantage of 

virtual processors is that programmers need not be concerned with the number of physical 

processors available on a parallel computer. They simply specify how many processors they 

need. However, using virtual processors inappropriately may result in inefficient parallel 

programs. 

(4) It allows each processor to access memory locations in any other processor. This 

characteristic creates the illusion of a shared address-space and simplifies programming since 

programmers do not have to perform explicit message passing. 

Since data-parallel languages hide many architectural characteristics from the pro 

grammer, writing data-parallel programs is generally easier than writing programs for explicit 

message passing. However, the ease of programming comes at the expense ofincreased compiler 

complexity. Compilers for data-parallel languages must map virtual processors onto physical 

processors, generate code to communicate data, and enforce synchronous instruction execution. 

36 



• 

4.1 Data Partitioning and Virtual Processors 

In a data-parallel language, data are distributed among virtual processors. The virtual 

processors must be mapped onto the physical processors at some point. If the number of virtual 

processors is greater than the number of physical processors, then several virtual processors are 

emulated by each physical processor. In that case, each physical processor partitions its memory 

into blocks-one for each virtual processor it emulates-and executes each instruction in the 

program once for each of the virtual processors. For example, assume that an instruction 

increments the value of a variable by one and that three virtual processors are emulated by each 

physical processor. The physical processors execute the instruction by performing three 

consecutive increment operations, one for each virtual processor. These operations affect the 

memory blocks of each virtual processor. 

The amount of work done by each physical processor depends on the number of virtual 

pmcessors it emulates. If VPR is the ratio of virtual to physical processors. then the work 

performed by each physical processor for each program instruction is greater by a factor ofVPR. 

This is because each physical processor has to execute VPR instructions for each program 

instruction. However, the amount of communication performed may be smaller or larger than 

VPR. For instance, if the virtual processors are mapped so that neighboring virtual processors 

reside on physical processors that are farther away, the communication requirements will be 

higher than VPR. In most cases, however, it is possible to map virtual processors onto physical 

processors so that nearest-neighbor communication is preserved. If this is the case. some virtual 

processors may need to communicate with virtual processors mapped onto the same physical 

processor. Depending on how smart the emulation is, this may lead to lower communication 

requirements. 

Some data-parallel languages contain primitives that allow the programmer to specify the 

desired mapping of virtual processors onto physical processors. This is essential in developing 

efficient parallel programs. The efficiency of a mapping depends on both the data communication 

37 



• 
patterns of the algorithm, and the interconnection network of the target computer. For example, a 

mapping suited to a hypercube-connected parallel computer may not be suited to a mesh 

connected parallel computer. 

4.2 C* 

C* is a data-parallel programming language that is an extension of the C programming 

language. C* was designed by Thinking Machines Corporation for the CM-2 parallel computer. 

The CM-2 is a fine-grain SIMD computer with up to 65,536 processors. Each CM-2 processor is 

one bit wide, and supports up to 1 Mbit of memory. C* is also available for the CM-5. 

C* adheres to the ANSI standard for C, so programs written in ANSI C compile and run 

correctly under C*. In addition, C* provides new features for specifying data parallelism. The 

features of C* include the following 

(1) A method to describe the size and the shape of parallel data and to create parallel variables. 

(2) Operators and expressions for parallel data that provide functionality such as data 

broadcasting and reduction. Some of these operators require communication. 

(3) Methods to specify data points within selected parallel variables on which C* code is to 

operate. 

4.2.1 Parallel Variables 

C* has two types of variables. A scalar variable is identical to an ordinary C variable; scalar 

variables are allocated in the host processor. A parallel variable is allocated on all node 

processors. A parallel variable has as many elements as the number of processors. 

A parallel variable has a shape in addition to a type. A shape is a template for parallel data-a way 

to configure data logically. It defines how many parallel elements exist and how they are 

organized. A shape has a specific number of dimensions, referred to as its rank, with a given 

number of processors or positions in each dimension. A dimension is called an axis. For example, 

38 



• the following statement declares a shape called mesh, of rank two and having 1,048,576 

positions: 

shape [1024] [1024] mesh; 

Similarly, the following statement declares a shape of rank four with two positions along each 

axis: 

shape [ 2 ] [ 2 ] [ 2 ] [ 2] fourcube; 

The fourcube shape declaration declares a template containing a total of 2 x 2 x 2 x 2 = 16 
positions. A shape should reflect the most logical organization of the problem's data. For 

example, a graphics program might use the mesh shape to represent the two-dimensional images 

that it is going to process. However, not all possible configurations can be declared using the 

shape primitive. For example, shape does not allow us to declare a triangular-shaped or a 

diamond-shaped mesh. However, we can do this by declaring a larger shape and using only a 

portion of it. For example, we can obtain a triangular shape by declaring a square shape and using 

only half of it. 

C* does not allow the programmer to specify virtual-to-physical processor mappings explicitly. 

C* maps virtual processors onto physical processors so that neighboring virtual processors are 

mapped onto neighboring physical processors. However, C* allows us to specify across which 

dimensions of the shape communication will. be performed more frequently. The compiler uses 

this information to reduce communication cost. 

After a shape is specified, parallel variables of that shape can be declared. Parallel variables have 

a type, a storage class, and a shape. The following statement declares the parallel variable count 

of type int and shape ring: 

shape [8192] ring; 

int: ring count; 

This declaration creates a parallel variable count with 8192 positions each of which is allocated to 

a different processor. We can access individual elements of the parallel variable count by using 

left indexing. For example, [1] count accesses the value of the count that resides on the second 

39 



• processor (numbering is from O to 8191 ). Figure 13 .1 illustrates the differences between scalar 
and parallel variables. .r 

Any standard or user-defined data type can be used with parallel variables. For example, an entire 

C structure can be a parallel variable. As another example, int: fourcube a [1000] declares the 16- 

position parallel variable a, in which each element is an array of 1000 integers. 

4.2.2 Parallel Operations 

C* supports all standard C operations and a few new operations for data-parallel programming. 

In addition, C* defines additional semantics for standard C operations when they are used with 

parallel variables. 

If the operands of an operation are scalar, then C* code behaves exactly like standard C code and 

the operation is performed on the host computer. The situation is different when one or more 

operands are parallel variables. For example, consider a simple assignment statement of the form 

x + = y, where both x and y are parallel variables. This assignment adds the value of y at each 

shape position to the value of x at the corresponding shape position. All additions take place in 

parallel. Note that an expression that evaluates to a parallel variable must contain parallel 

variables of the same shape as the resulting parallel variable. Hence, in this example, x and y 

must be of the same shape. In a statement of the form x = a, where a is a scalar variable, the value 

of a is stored in each position of x. This is similar to a broadcast operation. 

A more interesting situation arises when the left side of an assignment operation is a scalar 

variable and the right side is a parallel variable. There are two cases in which this assignment 

makes sense. In the first case, the parallel variable is fully left indexed. For instance, if a is a 

scalar variable and x is a parallel variable of rank one, then a= [4]x is a valid statement and 

assigns to a the value of x at the fifth position of the shape. In the second case, the operation is 

one of those shown in Table 13 .1. The result of these operations is a reduction. For instance, a+ 

= x sums all the values ofx and stores the result in a. 

40 



• 

shape [1024] ring 

shape [1024] [1024] mesh 

int ring: a 

int mesh: b 

int flag 

0 l , 

a I l T I 10~3 

D OEEE{J. 1 2: ..••• •••••• 1§023 
l . . .. , . 
•••... · ········· •. J h 

nag D 

Figure 13.1 Examples of parallel and scalar variables. a and b are parallel variables of different 

shapes, and flag is a scalar variable. Courtesy of Thinking Machines Corporation. 

Table 13.1 C* reduction operations. 

I= 

Meaning 

Sum of values of parallel variable elements 

Negative of the sum of values 

Bitwise AND of values 

Bitwise XOR of values 

Bitwise OR of values 

Operator 

+= 

&= 

<?= Minimum of values 

Maximum of values >?= 

41 



4.2.3 Choosing a Shape 

The with statement enables operations on parallel data by setting the current shape. Operations 

are performed on parallel variables of the current shape. In the following example, the With 

statement is required for performing the parallel addition: 

shape [8192) ring; 

int: ring x, y,z 

with (ring) 

x=y+z; 

4.2.4 Setting the Context 

C* has a where statement that restricts the positions ofa parallel variable on which operations are 

performed. The positions to be operatedon are called active positions. Selecting the active 

positions of a shape is called setting the context. For example, the where statement in the 

following code avoids division by zero: 

with (ring) { 

where (z != 0) 

x = y I z; 
} 

The where statement can include an else clause. The else clause complements the set of active 

positions. Specifically, the positions that were active when the where statement was executed are 

deactivated, and the inactive positions are activated. For example, 

with (ring) { 

where (z != 0) 

x = y I z; 

else 

X =y; 

} 

42 



• 

On the CM-2 (since it is an SIMD machine) the where and else clauses are executed serially. One 

should limit the use of the where-else clause because multiple context setfings degrade 

performance substantially. 

4.2.5 Communication 

C* supports two methods of interprocessor communication. The first is called grid 

communication, in which parallel variables of the same type can communicate in regular patterns. 

The second method is called general communication, in which the value of any element of a 

parallel variable can be sent to any other element, whether or not the parallel variables are of the 

same shape. The regularity of grid communication makes it considerably faster than general 

communication on many architectures. In particular, on CM-2, grid communication can be 

mapped onto the underlying interconnection network quite efficiently. 

Data communication in C* uses left indexing, but instead of using a scalar value to left-index a 

parallel variable, a parallel variable is used. This operation is called parallel left indexing. A 

parallel left index rearranges the elements of the parallel variable based on the values stored in 

the elements of the parallel index. The index must be of the current shape. 

<lest= [index] source [index] <lest= source 

0l.Z34$ 

f 2~/.4ofs l.}ol O Ji.o} 
[ 3:r~:'i}{s-r~··ro J 
Ci~f·s 1401 ~~i 0J ~~I 

index 

dese. 

A get operation A send operation 

Figure 13.2 Examples of the send and get general communication operations. Courtesy of 

Thinking Machines Corporation. 

43 



• C* allows both send and get operations. If index, <lest, and source are parallel variables of rank 

one, the general form of the send operation is 

[index ]<lest = source; 

and the general form of the get operation is 

dest = [index ]source; 
These operations are illustrated in Figure 13 .2. 

For general communication, the values of the index variable can he arbitrary. For grid 

communication, C* uses a new function called pcoord to provide a self-index for a parallel 

variable along a specified axis. In grid communication, data can be sent only a fixed distance 

along each dimension. For example, 

destid = [pcoord(O)+l] sourceld; 

shifts the elements stored in sourceld by one to the right, 

destid = [pcoord(0)-2]sourceld; 
shifts the elements by two to the left, and 

dest2d = [pcoord(O)+ 1] [pcoord(l )+ 1 ]source2d; 

shifts the elements of source2d by one to the left and up. Note that destld and sourceld are one 

dimensional shapes, whereas dest2d and source2d are two-dimensional shapes. Wraparound 

shifts are achieved by using the modulus operation. For example, 

dest2d = [(pcoord(O)+ 1)%%4][(pcoord(l)+ 1)%%3]source2d; 

shifts the elements by one to the right and down. The elements that fall off the two-dimensional 

shape are wrapped around. Note that the numbers 4 and 3 used in the modulus operation, are the 

number of positions along the corresponding axis. The operator '% %' is similar to C's '%' 

operator but works with negative values as well. 

To summarize, in general we can say that data-parallel programs tend to be smaller than 

explicit message-passing programs. Furthermore, prograras that use the virtual-processor 

paradigm tend to be simpler to implement. 



• 

4.3 CM Fortran 

Thinking Machines Corporation has developed a Fortran-based data-parallel language that 

runs on both the CM-2 and CM-5 parallel computers. The CM Fortran language is an extension 

of Fortran 77 supplemented with array-processing extensions from Fortran 90. The array 

processing features map easily onto the SIMD architecture of the CM-2, as well as the CM-5 

running in SIMD mode. 

The essence of the Fortran 90 array-processing features is that they treat arrays as first 

class objects. ~ array can be referenced by name in an expression or assignment and passed as 

an argument to any Fortran intrinsic function; the operation is performed on every element of the 

array. For example, 

REAL A(40,40,40) 

A=8.0 

A=A*2.0 

A= SQRT(A) 

! Sets all 64,000 elements to 8.0 

! All 64,000 elements Contain 16.0 

! All 64,000 elements Contain 4.0 

The serial implementation of Fortran 90 treats arrays as objects but generates serial code. The 

Connection Machine stores each array element in the memory of a separate virtual processor and 

operates on all elements simultaneously. 

In contrast to C*, CM Fortran does not provide new data types to support parallelism; thus, we 

need not take any special action to use the processors of the CM-2 or the CM-5. The CM Fortran 

compiler allocates arrays on either the host or the processors, depending on how they are used. 

The rules are as follows: 

(1) Arrays that are used only in Fortran 77 constructs in a program, as well as all scalar data, 

reside on the host. Essentially, the host executes all of the Fortran 77 code. 

45 



• (2) Arrays that are used in array operations anywhere in a program reside on the processors. The 

processors execute all of the Fortran 90 code. 

CM Fortran supplies a rich set of intrinsic functions for transforming arrays. The array 

transformations that can be performed are data movement. array reduction. array construction, 

and array multiplication. 

4.3.1 Conformable Arrays 

When an expression or an assignment involves two or more arrays, the arrays must be 

conformable; that is, they must be of the same size and shape. Scalars can be used freely in array 

assignments and array-valued expressions, since Fortran 90 defines a scalar as conformable with 

any array. Arrays of different sizes and shapes can coexist in the memory of the processors (in 

different sets of virtual processors), but conformable arrays are always stored in the same set of 

processors in the same order. For instance, if A, B, and Care one-dimensional arrays of size 10, 

then elements A(l), B(l), and C(l) all reside in the memory ofthe same processor, as doA(2), 

B(2), and C(2), and so forth. Each processor executes operations on its own set of array elements; 

no data motion occurs between processors. If arrays are not conformable, then corresponding 

array elements do not reside in the memory of the same processor. This fact suggests one of the 

basic principles of CM Fortran programming: operations on corresponding elements of 

conformable arrays use the system the most efficiently. 

4.3.2 Selecting Array Elements 

Data parallelism requires that some operations be performed only on certain data elements. An 

array assignment can be made conditional on an array's values by enclosing the assignment in a 

WHERE statement. WHERE is the array-processing extension of the Fortran IF statement and is 

46 



• 
similar to the where statement in C*. For example, the following statement prevents division by 
zero: 

WHERE (A. NE. 0) C =B/A 

4.3.3 Communication 

Like C *, CM Fortran provides two types of communication: grid communication, which moves 

data in a regular fashion, and general communication, which allows arbitrary data movement. 

Fortran 90 defines triplet subscripts, a new construct for specifying a sequence of subscripts in an 

array reference. The subscript sequence indicates the subset, or section, of the array to be 

operated on. The triplet subscript has the following form: 

array-name (first: 1 ast: stride) 

A triplet indicates the first element, the last element, and an increment interval. The first and last 

subscripts default to the declared bounds of the array, and stride defaults to one. In CM Fortran, 

array sections are particularly useful for moving data in regular grid patterns. Data elements are 

moved by assigning one section of an array to another section of the same array or another array. 

As with all array operations, array sections must be conformable. For example, if A and Bare 

one-dimensional arrays, then the statement 

A(2:9:1) = B(3:10:1) 

shifts the first eight elements of B after position two by one position to the left, and assigns them 

to A. 

A vector-valued subscript is a form of array section that uses a vector as a subscript. The 

values of the vector need not be ordered, and there is no fixed stride. This construct specifies an 

arbitrary selection of array values along a dimension. Vector-valued subscripts are useful for 

vector permutations and for indexing into a vector or an array. This type of communication is 

similar to C* 's get operation. 

47 



Besides single-dimension communication, CM Fontran also provides general com 

munication between dimensions by using the FORALL statement. A FORALL statement defines 

one or more index variables and uses them in an assignment, thus indicating an action that 

depends on the positions of the target array elements. FORALL is a powerful feature for 

expressing data motion. For example, FORALL can perform, in parallel, arbitrary permutations 

of multidimensional arrays. The following statement indexes into matrix H, using index arrays X 

and Y: 

FORALL (I=l: N,J=l: M) G(I,J) = H(X(I,J), Y(I,J)) 

5 Primitives for the Shared-Address-Space 

Programming Paradigm 

The primitives required for the shared-address-space programming paradigm fall into three 

categories: (1) primitives to allocate shared variables, (2) primitives for mutual exclusion and 

synchronization, and (3) primitives for creating processes. 

5.1 Primitives to Allocate Shared Variables 

The shared-address-space programming paradigm has two kinds of variables: shared and local. 

Shared variables are accessible to all processes, but local variables can be accessed only by the 

process that declared them. In the following discussion we use two keywords, shared and private, 

to specify the type of variables. For example, the following code fragment declares a shared array 

b and a private integer variable i: 

shared int b [10000] 

private int i; 

48 



• 
5.2 Primitives for Mutual Exclusion and Synchronization 

When separate processes access shared variables, it is important that the operations do not 

conflict with each other. A critical section contains code that must be executed by only one 

process at a time. Languages using the shared-address-space programming paradigm provide 

locks to help the programmer enforce mutual exclusion for critical section execution. These locks 

are usually implemented by using a special type of shared variable that can be manipulated only 

by atomic operations. An operation is atomic ifit cannot be interrupted by another process. Each 

lock can be owned by at most one process at any time. The process that owns the lock can 

execute the corresponding critical section. When a process leaves the critical section, it releases 

the lock. If a process tries to acquire a lock that is currently owned by another process, it enters a 

busy-wait cycle or suspends execution. In a busy-wait cycle, a processor continuously checks the 

lock, waiting for it to be released. When a process suspends execution, it joins a queue associated 

with the lock it tried to acquire. The process becomes active again when the lock has been 

released and the process is at the front of the queue. 

Besides locks, other mechanisms, such as semaphores and monitors, are also provided by 

languages using the shared-address-space programming paradigm to help the programmer 

enforce mutual exclusion in more complicated situations. 

During the concurrent execution of processes, there are situations in which the processes need to 

synchronize before the end of the execution. Synchronization is achieved by a barrier 

synchronization primitive. This primitive is executed when the processes need to synchronize, 

and operates as follows. Each processes wait at the barrier for every other processes. After 

synchronization, all processes proceed with their execution. 

5.3 Primitives for Creating Processes 

In the shared-address-space programming paradigm, process creation is done by a system 

call that creates processes identical to the parent process. These processes share the variables 

declared shared by the parent process, as well as the locks declared and initialized by the parent 

process. Once created, subprocesses can perform independent computations. After the 

subprocesses have been created, the single execution thread is partitioned into several threads 

49 



• 
with access to shared data. Creating subprocesses is similar to spawning new processes in any 

multitasking operating system. On most shared-address-space computers, this operation is called 

fork (after a similar system call in the UNIX operating system). The parent process continues 

execution after creating its subprocesses. When the subprocesses terminate, they merge by using 

another primitive, typically called join. 

Instead of creating processes at the beginning of the execution. we can also have a single process, 

usually called the master process. When the master process needs to perform a task in parallel it 

can create a predetermined number of other processes that work in parallel to perform the task. 

These processes are usually called slave processes. When the task is complete, the slave 

processes terminate and control returns to the master process. Later, the master can create slave 

processes again. For example. consider a program that consists of a sequence of computationally 

intensive loops separated by some bookkeeping computations. Using the master-slave approach, 

the master performs the bookkeeping and creates slave processes to perform the computations 

required by each loop. We assume that there is a function called slave-spawn (func) that creates 

a predetermined number of slave processes, each executing the function func. Slave processes 

partition the work done by func in a predetermined way. 

5.4 Sequent Symmetry 

The Sequent Symmetry is a shared-address-space computer that runs the DYNIX operating 

system, a multiprocessor version of UNIX. The Symmetry is a bus-based system that can use up 

to thirty 32-bit processors. Even if no effort is made to parallelize a user application, all DYNIX 

processes potentially run in parallel. In addition, users can specify explicit parallelism. The entire 

main memory is equally accessible to all processors. Each processor also has some local cache 

memory. 

The Symmetry is programmed in languages such as C and Fortran. These languages include 

extensions that allow programs to specify explicit parallelism. Shared variables are declared in C 

by using the shared data-type modifier. Shared variables are declared in Fortran by putting all the 

shared data into the same COMMON block, then giving compiler directives indicating that the 

COMMON block is to reside in shared memory. All other variables are private. 

50 



,, 
The Symmetry supports two different ways of creating processes. The first is called multitasking 

and the other is called microtasking. We create multitasks by using the fork function and 

microtasks by using the m_fork function. Fork is the standard UNIX process creation function 

that creates an identical copy of the calling process. M _ fork takes the function that will be 

executed by all the processes as an argument. For microtasking, the user specifies how many 

processes to create with the m _ set_procs function. The processes take significantly less time to be 

created compared to the time required for the fork function. The number of processes that can be 

created is limited by the number of available physical processors in the system. However, this 

does not impose any limit on the computational granularity assigned to each process. Processes 

can be assigned small amounts of computation and request more work when they run out. 

The Symmetry provides two new data types for C to allow locks and barrier synchronization. 

These data types are slock_t for locks and sbarrier_t for barrier synchronization. The operations 

defined on these types depend on whether microtasking or multitasking is used. The operations 

are shown in Table 13.2. 

6 Fortran D 

Several parallel programming languages have been proposed that lie between explicit and 

implicit parallel languages. These languages provide facilities that enable the compiler to 

generate efficient parallel code. Fortran Dis one such language. 

Fortran D programs specify how the data (such as Fortran arrays) are assigned to processors. The 

compiler uses this information to generate parallel programs. Although Fortran D exploits data 

parallelism, it is not a data-parallel programming language. In pure data-parallel programming 

languages, the programmer specifies the code to be executed by each processor, and the code is 

replicated in all the processors. In Fortran D, the programmer describes the computation as a 

single program. The programmer does not specify how data elements are moved between 

processors; the compiler uses Imowledge about how the data are distributed to generate code for 

each processor. The facilities provided by Fortran D for data decomposition and distribution are 

significantly richer than those provided by conventional data-parallel languages (such as the 

shape primitive of 

C*). 

51 



• 
The problem of mapping arrays onto processors is approached at two levels: problem mapping 

and machine mapping. Problem mapping determines the alignment of arrays with respect to each 

other. The problem mapping is influenced by the structure of the underlying computation. If a 

computation requires corresponding elements from two separate arrays, it is better to align the 

arrays. This ensures that, after the distribution of arrays on different processors, these elements 

will belong to the same processor. As an example, consider the problem of matrix addition. In 

order to avoid any communication, the matrices to be added must be aligned with each other. 

Machine mapping determines the distribution of the data on the actual parallel machine. This 

distributio~ is influenced by hardware characteristics such as the topology and communication 

mechanism. 

Fortran D supports problem mapping with the DECOMPOSITION and ALIGN statements, and 

machine mapping with the DISTRIBUTE statement. These capabilities are described in the 

following subsections. In addition to these statements, Fortran D also provides irregular data 

distribution and dynamic data decomposition (that is, the ability to change the alignment or 

distribution of a decomposition at any point in the program). 

6.1 Problem Mapping 

The DECOMPOSITION statement declares the name, dimensionality, and size of a 

decomposition. A decomposition is simply an abstract layout or index domain. For example, the 

following statements declare a one-dimensional decomposition of size N called A, and a two 

dimensional decomposition of size NxN called B. 

DECOMPOSITION A (N) 

DECOMPOSITION B (N, N) 

The ALIGN statement maps arrays with respect to a decomposition. There are a variety of 

possible alignments in Fortran D. The simplest alignment occurs when the array is mapped 

exactly onto the decomposition. For example, ifwe want to align a two-dimensional array X (N, 

N) with the two-dimensional decomposition B, the syntax is 

52 



• ALIGN X(I,J) with B(I,J) 

The indices I and J play the role of placeholders, indicating that element (I , J) of matrix X is 

mapped to element (I, J) of the decomposition. Exact matching may be a good way to align the 

data with the decomposition. One such algorithm is matrix multiplication, in which a two 

dimensional decomposition is a natural choice, and exact matching of the arrays to the 

decomposition provides the data distribution. 

The user can specify an alignment offset for any dimension of an array. For example, to shift the 

elements of matrix X in the previous example by two in the first dimension and by three in the 

second dimension, the syntax of the ALIGN statement is 

ALIGN X(I,J) with B(I+2, J+3) 

In general, any positive or negative constants can be added to the placeholders to indicate the 

desired offset. 

The ALIGN statement can be specified with a stride to achieve a mapping in which 

consecutive array elements are mapped onto nonconsecutive decomposition elements. For 

example, if we want to map a one-dimensional array Y (N) onto the one-dimensional 

decomposition A such that there is a stride of three for successive array elements, then the syntax 

of the ALIGN statement is 

ALIGN Y(I) with A(3*I) 

The ALIGN construct also allows the user to permute the dimensions between arrays and 

decompositions. For example, this ability can be used to map the transpose of an array onto a 

decomposition: 

ALIGN X(I,J), with B(J,I) 

53 



It is sometimes convenient to ignore 

a decomposition. All data elements · 

location in the decomposition. 

Conversely, it may be necessary to map arrays with fewer dimensions onto the decomposition. In 

this case, it is necessary to specify the mapping for each dimension of the array and the actual 

position of the array in the unmapped dimensions of the decomposition. One example is mapping 

a vector onto a two-dimensional decomposition in matrix-vector multiplication. This can be done 

• 
dimensions of the array when mapping an array onto 

igned dimensions are mapped onto the same 

by using the following statement: 

ALIGN Y(I) with B(I,N) 

This statements aligns the vector Y with the umn of the decomposition. 

In many of the ALIGN statements presemed. 

decomposition. In this case, Fortran D allow 

should be truncated or wrapped around. 

e of the array elements do not fit within the 

programmer to specify whether the elements 

6.2 Machine Mapping 

The DISTRIBUTE statement takes a decomposition and distributes it to available processors. 

Each dimension of a decomposition can be distributed differently. Three types of distributions are 

supported by Fortran D: BLOCK, CYCLIC and BLOCK_CYCLIC. If p is the number of 

processors and n is the size of a dimension in the decomposition, the distributions are described 
as follows: 

(1) BLOCK distribution divides the decomposition into contiguous chunks of size n I P, 

assigning one block to each processor. For example, if B (N, N) is a two-dimensional 

decomposition, then the statement DISTRIBUTE B (BLOCK, BLOCK) assigns blocks of (Ni...Jp 

x (N/-,/p) elements to each processor. The BLOCK decomposition can be used to map elements 

onto processors in a blocked style. If the decomposition is one-dimensional, then this distribution 

54 



corresponds to block-striped mapping. If the decomposition is two-dimensional, then this 

distribution corresponds to block-checkerboard mapping. 

(2) CYCLIC distribution specifies a round-robin division of the decomposition, assigning every 

pth element to the same processor. The statement DISTRIBUTE B (CYCLIC, CYCLIC) 

distributes the elements of the decomposition in a manner similar to thcyclic mapping. If the 

decomposition is one-dimensional, then this distribution corresponds to cyclic-striped mapping . 

If the decomposition is two-dimensional, then this distribution corresponds to cyclic 

checkerboard mapping. 

(3) BLOCK_ CYCLIC is similar to CYCLIC but takes a parameter m. It first divides the 

dimension into contiguous chunks of size m and then assigns these chunks in the same fashion as 

CYCLIC. If the decomposition is one-dimensional, then this distribution corresponds to block 

cyclic-striped mapping. If the decomposition is two-dimensional, then this distribution 

corresponds to block-cyclic checkerboard mapping. For example, DISTRIBUTE B 

(BLOCK_CYCLIC (2), BLOCK_CYCLIC (2)) distributes the elements in a block-cyclic 

checkerboard mapping mapping with block size of two. 

Any one of these three types of distributions can be assigned for each dimension of the 

decomposition. For multidimensional decompositions, different combinations of distribution 

patterns may be assigned to distinct dimensions. The asterisk (*) denotes dimensions that are 

assigned locally ; these dimensions are not distributed. 

For example, to implement Dijkstra's single-source shortest-paths algorithm, we must 

map the rows of the adjacency matrix onto the processors. Ifx (N, N) is the adjacency matrix and 

A (N,N) is the two-dimensional decomposition, this can he done by the following statements: 

ALIGN X(I,J) with A(I,.J) 

DISTRIBUTE A (BLOCK, *) 

Fortran D also allows us to specify processor allocations. where the allocation gives the number 

of processors assigned to each dimension of the decomposition. This allows the user to change 



the default assignment of the compiler, which is to assign an equal number of processors to each 
dimension. 

56 



CONCLUSION 

The increasing density of transistors on a chip follows directly from a decreasing feature 

size, which is now for the alpha. Feature size will continue to decrease and by the year 2000, 

chips with 50 million transistors are expected to be available. What can we do with all these 

transistors? With around a million transistors on a chip, designers were able to move full 

mainframe functionality to about of a chip. This enabled the personal computing and workstation 

revolutions. The next factors of ten increase in transistor density must go into some form of 

parallelism by replicating several CPUs on a single chip. 

By the year 2000, parallelism is thus inevitable to all computers, from your children's 

video game to personal computers, workstations, and supercomputers. Today we see it in the 

larger machines as we replicate many chips and printed circuit boards to build systems as arrays 

of nodes, each unit of which is some variant of the microprocessor. Parallelism allows one to 

build the world's fastest and most cost-effective supercomputers. 

Parallelism may only be critical today for supercomputer vendors and users. By the year 

2000, all computers will have to address the hardware, algorithmic, and software issues implied 

by parallelism. The reward will be amazing performance and the opening up of new fields; the 

price will be a major rethinking and re-implementation of software, algorithms, and applications. 

57 



REFERANCES 

[(Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis I Univ. of Minnesota) 

"Introduction to Parallel Computing" The Benjamin/Cummings Publishing company Inc. 

Copyright© 1994 by The Benjamin/Cummings Publishing Company Inc.] 

[(M.E.C. Hull I Univ. ofUlster, D. Crookes I The Queen's Univ., Belfast, P.J. Sweeney I Univ. of 

Ulster)" P~llel Processing" Addison-Wesley Publishing Company 

Copyright© 1994 Addison-Wesley Publishers Ltd. 
Copyright© Addison-Wesley Publishing Company Inc. 

[(Rza E. Bashirov/Eastem Mediterranean Univ.)" Lecture Notes on Parallel Processing" 

58 


	Page 1
	Titles
	NEAR EAST 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	ACKNOWLEDGEMENT 

	Images
	Image 1


	Page 3
	Titles
	ABSTRACT 
	Ł 

	Images
	Image 1


	Page 4
	Titles
	Ł 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Titles
	INTRODUCTION 
	,, 

	Images
	Image 1


	Page 8
	Titles
	Ł 
	CHAPTER I 
	1 What is Parallel Computing? 

	Images
	Image 1


	Page 9
	Titles
	Ł 
	2 The Scope of Parallel Computing 

	Images
	Image 1


	Page 10
	Titles
	. . 
	3 Issues in Parallel Computing 
	3.1 Design of Parallel Computers 
	3.2 Design of Efficient Algorithms 

	Images
	Image 1


	Page 11
	Titles
	3.3 Methods for Evaluating Parallel Algorithms 
	3.4 Parallel Computer Languages 
	3.5 Parallel Programming Tools 
	3.6 Portable Parallel Programs 
	3. 7 Automatic Programming of Parallel Computers 

	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Titles
	CHAPTER2 
	1 Parallelism and Computing 
	2 The National Vision for 

	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Titles
	Ł 

	Images
	Image 1


	Page 16
	Titles
	Ł 
	3 Trends in Applications 

	Images
	Image 1


	Page 17
	Titles
	4 Trends in Computer Design 

	Images
	Image 1


	Page 18
	Images
	Image 1


	Page 19
	Titles
	5 Trends in Networking 
	6 Summary of Trends 

	Images
	Image 1


	Page 20
	Titles
	Ł 

	Images
	Image 1


	Page 21
	Titles
	Ł 
	CHAPTER3 
	1 Flynn's Taxonomy 
	1.1 SISD computer organization 
	1.2 SIMD computer organization 

	Images
	Image 1


	Page 22
	Titles
	Ł 
	1.3 MISD computer organization 
	1.4 MIMD computer organization 
	2 A Taxonomy of Parallel Architectures 
	2.1 Control Mechanism 

	Images
	Image 1


	Page 23
	Titles
	Ł 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 24
	Titles
	Ł 

	Images
	Image 1


	Page 25
	Titles
	Figure 2.3 executing a conditional statement on an SIMD computer with four processors: (a) The 
	18 

	Images
	Image 1

	Tables
	Table 1


	Page 26
	Titles
	3. A Parallel Machine 
	I Memory 1------------------------------------------------------------------------------------------I 11;1.cmory 

	Images
	Image 1
	Image 2


	Page 27
	Titles
	Ł 

	Images
	Image 1


	Page 1
	Titles
	Ł 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	Ł 
	CHAPTER4 
	1 Parallel Programming 
	2 Parallel Programming Paradigms 
	2.1 Explicit versus Implicit Parallel Programming 

	Images
	Image 1


	Page 3
	Titles
	Ł 
	2.2 Shared-Address-Space versus Message-Passing 

	Images
	Image 1


	Page 4
	Titles
	Ł 

	Images
	Image 1


	Page 5
	Titles
	Ł 
	2.3 Data Parallelism versus Control Parallelism 

	Images
	Image 1


	Page 6
	Titles
	Ł 

	Images
	Image 1


	Page 7
	Titles
	Ł 
	3 Primitives for the Message-Passing 
	3.1 Basic Extensions 

	Images
	Image 1


	Page 8
	Titles
	Ł 

	Images
	Image 1


	Page 9
	Titles
	Ł 

	Images
	Image 1


	Page 10
	Titles
	3.2 nCUBE 2 

	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Titles
	3.3 iPSC 860 
	,, 

	Images
	Image 1


	Page 13
	Titles
	Ł 
	C 
	3.4 CM-5 

	Images
	Image 1


	Page 14
	Titles
	C 

	Images
	Image 1


	Page 15
	Titles
	Ł 
	C 

	Images
	Image 1


	Page 16
	Titles
	Ł 
	4 Data-Parallel Uanguages 

	Images
	Image 1
	Image 2


	Page 17
	Titles
	Ł 
	4.1 Data Partitioning and Virtual Processors 

	Images
	Image 1


	Page 18
	Titles
	Ł 
	4.2 C* 

	Images
	Image 1
	Image 2
	Image 3


	Page 19
	Titles
	Ł 

	Images
	Image 1


	Page 20
	Titles
	Ł 

	Images
	Image 1
	Image 2


	Page 1
	Titles
	Ł 
	a I l T I 
	D 
	ŁŁŁ... · ········· Ł. J h 
	I= 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	} 

	Images
	Image 1


	Page 3
	Titles
	Ł 
	f 2~/.4ofs l.}ol O Ji.o} 
	[ 3:r~:'i}{s-r~··ro J 
	Ci~f·s 1401 ~~i 0J ~~I 

	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Titles
	Ł 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	Ł 
	4.3 CM Fortran 

	Images
	Image 1


	Page 6
	Titles
	Ł 

	Images
	Image 1
	Image 2


	Page 7
	Titles
	Ł 

	Images
	Image 1
	Image 2


	Page 8
	Titles
	5 Primitives for the Shared-Address-Space 
	5.1 Primitives to Allocate Shared Variables 

	Images
	Image 1


	Page 9
	Titles
	Ł 
	5.2 Primitives for Mutual Exclusion and Synchronization 
	5.3 Primitives for Creating Processes 

	Images
	Image 1
	Image 2


	Page 10
	Titles
	Ł 
	5.4 Sequent Symmetry 

	Images
	Image 1
	Image 2


	Page 11
	Titles
	,, 
	6 Fortran D 

	Images
	Image 1
	Image 2


	Page 12
	Titles
	Ł 
	6.1 Problem Mapping 

	Images
	Image 1


	Page 13
	Titles
	Ł 

	Images
	Image 1


	Page 14
	Titles
	Ł 
	6.2 Machine Mapping 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 15
	Images
	Image 1


	Page 16
	Images
	Image 1


	Page 17
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 18
	Titles
	REFERANCES 

	Images
	Image 1



