
NEAR EAST

1988

UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

COM 400 Graduation Project

DISPLAY OF THREE DIMENSIONAL CURVED LINES
AND SURFACES IN COMPUTER GRAPHICS

Submitted to : MEHRDAD KHALEDI

Submit by : Hakan Bozbay 940728

CONTENTS

•:• INTRODUCTION

•!• CONVERSION BETWEEN SPLINE REPRESENTATIONS

•!• DISPLAYING SPLINE CURVES AND SURFACES

•!• POLYGON SURFACES

•!• PLANE EQUATIONS

•!• CURVED LINES AND SURFACES

•!• QUADRIC SURFACES

•!• SPHERE

•!• SPLINE REPRESENTATIONS

•:• INTERPOLATION AND APPROXIMATION SPLINES

•!• PARAMETRIC CONTINUITY CONDITIONS

•!• GEOMETRIC CONTINUITY CONDITIONS

•!• BEZIER CURVES AND SURFACES

•!• BEZIER CURVES

•:• DESIGN TECHNIQUES USING BEZIER CURVES

•:• B-SPLINE CURVES AND SURFACES
,

•!• CUBIC, PERIODIC B-SPLINES

•!• RATIONAL SPLINES

•!• SURFACES AND RENDERINGS

•:• THE RECEPTION OF LIGHT

•:• INSERTION OF SURFACE FACETS

•!• SWEEP OPERATIONS

•!• FACETED APPROXIMATIONS OF CURVED SURFACES

•!• SURFACE PATCHES

•!• FRACTAL SURFACES

- I -
1-fAl(AN BOZBAY

COI\JTEI\JTS

•:• TOPOGRAPHIC SURFACES

•:• SURFACE INTERSECTING AND CUTIING

•:• RENDERING

•:• VISIBLE-SURFACE DETERMINATION

•:• BASIC SHADING

•:• SMOOTH SHADING OF CURVED SURFACES

•:• CAST SHADOWS, TRANSPARENCY, AND REFLECTIONS

•:• DIFFUSE GLOBAL ILLUMINATION EFFECTS

•:• SURFACE DETAILS AND TEXTURES

•:• NATURAL PHENOMENA AND LANDSCAPE COMPOSITION

•:• RETOUCHING AND PAINTING SHADED IMAGES

•:• COMBINING SYNTHESIZED AND CAPTURED IMAGES

•:• OUTPUT AND PRESENTATION TECHNOLOGY

•:• USES AND LIMITATIONS OF SURFACE MODELING AND RENDERING

•:• DRAFTED LINES

•:• COORDINATE SYSTEMS

•:• POINT SPECIFICATION

•:• REPERTOIRES OF LINE TYPES

•:• CHAINS OF LINES

•:• BASIC OPERATIONS ON LINES

•:• GEOMETRIC CONSTRUCTIONS

•:• SELECTING, TRANSFORMING, AND DUPLICATING SUBSHAPES

•:• REPEATABLE STANDARD SHAPES

•:• PARAMETRIC VARIATION

•:• CONSTRAINT SOLVING

•:• SYNTAX-DIRECTED EDITING

- II -
1-f AKAN BOZBAY

CONTENTS

•!• INTERFACE DYNAMICS

•!• STRUCTURING DRAWINGS

•!• FORMATTING DRAWINGS

•!• PRINTING AND PLOTTING

•!• AUTOMATED MEASUREMENT AND ANALYSIS

•!• USES AND LIMITATIONS OF TWO-DIMENSIONAL DRAWINGS

•!• GEOMETRY OF CURVED SPACE

•!• COSMOS CURVATURES

•!• CAN WE MEASURE THE CURVATURE?

•!• LINES (AND PLANES)

•!• INTERSECTION OF A LINE AND A (HYPER)PLANE

•!• VISUALISATION DATA AND ITS REPRESENTATION

•!• CHARACTERISING DATA

•!• ATTRIBUTE TYPES

•!• LINES IN SPACE

•!• CONSTRUCTION PLANES

•!• GLASS-SHEET MODELS

•!• THREE-DIMENSIONAL GEOMETRIC TRANSFORMATIONS

•!• SWEEPING POINTS

•!• SPACE CURVES

•!• STRUCTURING WIREFRAME MODELS

•!• VIEWING

•!• ORTHOGRAPHIC PROJECTIONS

•!• AXONOMETRIC PROJECTIONS

•!• OBLIQUE PROJECTIONS

•!• PERSPECTIVE PROJECTIONS

- III -
I-IAK.AN BOZBAY

CONTENTS

•!• CLIPPING AND SECTIONING

•!• SPATIAL AMBIGUITY AND DEPTHCUES

•!• PRODUCING DRAWINGS FROM WIREFRAME MODELS

•!• DIMENSIONAL CONTROL

•!• USES AND LIMITATIONS OF WIREFRAME MODELS AND VIEWS

•!• ASSEMBLIES OF SOLIDS

•!• VOXEL REPRESENTATION

•!• BOUNDARY REPRESENTATION

•!• VOCABULARIES OF SOLID BUILDING BLOCKS

•!• SWEEP OPERATIONS

•!• SKINNING AND TWEAKING OPERATIONS

•!• FEATURES AND GEOMETRICCONSTRUCTIONS

•!• THE SPATIAL SET OPERATIONS

•!• REGULARIZING THE SPATIAL SET OPERATIONS

•!• CONSTRUCTIVE SOLID-GEOMETRY REPRESENTATIONS

•!• POWERSETS OF SOLIDS

•!• VOLUMETRIC AND ENGINEERING ANALYSIS

•!• ASSEMBLIES

•!• NONMANIFOLD ASSEMBLIES

•!• PRODUCINGGRAPHICOUTPIJT

•!• AUTOMATED PRODUCTION OF PHYSICAL MODELS

•!• USES AND LIMITATIONS OF SOLID MODELS

•!• MOTION MODELS

•!• KEYFRAMES

•!• TRANSLATIONAL MOTION PATHS

•!• RATES OF CHANGE

- IV -
J...4Al(AN BOZBAY

CONTENTS

•!• MOTION VOCABULARIES AND COMPOSITIONS

•!• HIERARCHIES OF MOTIONS

•!• ARTICULATED MOTION OF THE HUMAN BODY

•!• MECHANICAL JOINTS AND KINEMATIC CHAINS

•!• SIMULATION OF PHYSICAL BEHAVIOR

•!• USES AND LIMITATIONS OF MOTION MODELS

- V -
1-fAl(AN BOZBAV

DhPJ.AY OF ~ırnFF l)ll,,ffSSlO"AJ. CllfC.,T.D J l"'\FS ,\'•if) sı T.f \(F'·, ıx C(l\'.PlITFR (if' f'HJCS

INTRODUCTION

Graphics scenes can contain many different kinds of objects: trees, flowers,

clouds, rocks, water, bricks, wood paneling, rubber, paper, marble, steel, glass, plastic, and

cloth, just to mention a few. So it is probably not too surprising that there is no one method

that we can use to describe objects that will include all characteristics of these different

materials. And to produce realistic displays of scenes, we need to use representations that

accurately model object characteristics.

Polygon and quadric surfaces provide precise descriptions for simple Euclidean

objects such as polyhedrons and ellipsoids; spline surfaces and construction techniques are

useful for designing aircraft wings, gears, and other engineering structures with curved

surfaces; procedural methods, such as fractal constructions and particle systems, allow us

to give accurate representations for clouds, clumps of grass, and other natural objects;

physically based modeling methods using systems of interacting forces can be used to

describe the nonrigid behavior of a piece of cloth or a glob ofjello ; octree encodings are

used to represent internal features of objects, such as those obtained from medical CT

images; and isosurface displays, volume renderings, and other visualization techniques are

applied to three-dimensional discrete data sets to obtain visual representations of the data.

Representation schemes for solid objects are often divided into two broad

categories, although not all representations fall neatly into one or the other of these two

categories. Boundary representations (B-reps) describe a three-dimensional object as a set

of surfaces that separate the object interior from the environment. Typical examples of

boundary representations are polygon facets and spline patches. Space-partitioning
'

representations are used to describe interior properties, by partitioning the spatial region

containing an object into a set of small, nonoverlapping, contiguous solids (usually cubes).

A common space-partitioning description for a three-dimensional object is an octree

representation. in this chapter, we consider the features of the various representation

schemes and how they are used in applications.

CONVERSION BETWEEN SPLINE REPRESENTATIONS

Sometimes it is desirable to be able to switch from one spline representation to

other. For instance, a Bezier representation is the most convenient one for subdividing a

spline curve, while a B-spline representation offers greater design flexibility So we might

design a curve using B-spline sections, then we can convert to an equivalent Bezier

representation to display the object using a recursive subdivision procedure to locate

coordinate positions along the curve.

Suppose we have a spline description of an object that can be expressed with the

following matrix product:

P(U) = U+ Msplinel+Mgeoml

where Msplinel is the matrix characterizing the spline representation, and

Mgeoml is the column matrix of geometric constraints (for example, control-point coordi

nates). To transform to a second representation with spline matrix - we need to determine

the geometric constraint matrix Mgeom2 that produces the same vector point function for

the object. That is,

P(u) = U * Mspline2 * Mgeom2

Or

U * MSpline2 * Mgeom2 = U * Msplinel * Mgeoml

Solving for Mgeom2, we have :

Mgeom2 = M-1 Sline2 * Msplinel * Mgeoml

=Msj , s2 * Mgeoml

and the required transformation matrix that converts from the first spline repre

sentation to the second is then calculated as :

'}

Msl,s2= Mspline2 * Msplinel

A non-uniform B-spline cannot be characterized with a general spline matrix. But

we can rearrange the knot sequence to change the non-uniform B-spline to a Bezier

Tepresentation. Then the Bezier matrix could be converted to any other form.

DISPLAYING SPLINE CURVES AND SURFACES

To display a spline curve or surface, we must determine coordinate positions on

the curve or surface that project to pixel positions on the display device. This means that

we must evaluate the parametric polynomial spline functions in certain increments over the

range of the functions. There are several methods we can use to calculate positions over the

range of a spline curve or surface. The simplest method for evaluating a polynomial, other

than a brute-force calculation of each term in succession, is Homer's rule, which performs

the calculations by successive factoring. This requires one multiplication and one addition

at each step. For a polynomial of degree n, there are n steps.

POLYGON SURFACES

The most commonly used boundary representation for a three-dimensional

graphics object is a set of surface polygons that enclose the object interior. Many graphics

systems store all object descriptions as sets of surface polygons. This simplifies and speeds

up the surface rendering and display of objects, since all surfaces are described with linear

equations. For this reason, polygon descriptions are often referred to as "standard graphics

objects." In some cases, a polygonal representation is the only one available, but many

packages allow objects to be described with other schemes, such as spline surfaces, that are

then converted to polygonal representations for processing.

A polygon representation for a polyhedron precisely defines the surface features

of the object. But for other objects, surfaces are tesselated (or tiled) to produce the

polygon-mesh approximation. The surface of a cylinder is represented as a polygon mesh.

Such representations are common in design and solidmQdeling applications, since the

wireframe outline can be displayed quickly to give a general indication of the surface

structure. Realistic renderings are produced by interpolating shading patterns

across the polygon surfaces to eliminate or reduce the presence of polygon edge

boundaries. And the polygon-mesh approximation to a curved surface can be improved by

dividing the surface into smaller polygon facets.

We specify a polygon surface with a set of vertex coordinates and associated at

tribute parameters. As information for each polygon is input, the data are placed into tables

that are to be used in the subsequent processing, display, and manipulation of the objects in

a scene. Polygon data tables can be organized into two groups: geometric tables and

attribute tables. Geometric data tables contain vertex coordinates and parameters to

identify the spatial orientation of the polygon surfaces. Attribute information for an object

includes parameters specifying the degree of transparency of the object and its surface

reflectivity and texture characteristics.

A convenient organization for storing geometric data is to create three lists:

A vertex table, an edge table, and a polygon table. Coordinate values for each

vertex in the object are stored in the vertex table. The edge table contains pointers back

into the vertex table to identify the vertices for each polygon edge. And the polygon table

contains pointers back into the edge table to identify the edges for each polygon. This

scheme is illustrated two adjacent polygons on an object surface. In addition, individual

objects and their component polygon faces can be assigned object and facet identifiers for

easy reference.

Listing the geometric data in three tables, provides a convenient reference to the

individual components (vertices, edges, and polygons) of each object. Also, the object can

be displayed efficiently by using data from the edge table to draw the component lines. An

alternative arrangement is to use just two tables: a vertex table and a polygon table. But

this scheme is less convenient, and some edges could get drawn twice. Another possibility

is to use only a polygon table, but this duplicates coordinate information, since explicit

coordinate values are listed for each vertex in each polygon. Also edge information would

have to be reconstructed from the vertex listings in the polygon table.

'- "t"

We can add extra information to the data tables of faster information extraction.

For instance, we could expand the edge table to include forward pointers into the polygon

table so that common edges between polygons could be identified more rapidly. This is

particularly useful for the rendering procedures that must vary surface shading smoothly

across the edges from one polygon to the next. Similarly, the vertex table could be

expanded so that vertices are cross-referenced to corresponding edges.

Additional geometric information that is usually stored in the data tables includes

the slope for each edge and the coordinate extents for each polygon. As vertices are input,

we can calculate edge slopes, and we can scan the coordinate values to identify the

minimum and maximum x, y, and z values for individual polygons. Edge slopes and

bounding-box information for the polygons are needed in subsequent processing, for

example, surface rendering. Coordinate extents are also used in some visible-surface

determination algorithms.

Plane Equations

To produce a display of a three-dimensional object, we must process the input

data representation for the object through several procedures. These processing steps

include transformation of the modeling and world-coordinate descriptions to viewing

coordinates, then to device coordinates; identification of visible surfaces; and the

application of surface-rendering procedures. For some of these processes, we need

information about the spatial orientation of the individual surface components of the

object. This information is obtained from the vertex-coordinate values and the equations

that describe the polygon planes.

When polygons are specified with more than three vertices, it is possible that the

vertices may not all lie in one plane. This can be due to numerical errors or errors in

selecting coordinate positions for the vertices. One way to handle this situation is simply to

divide the polygons into triangles. Another approach that is sometimes taken is to

approximate the plane parameters A, B, and C. We can do this with averaging methods or

we can project the polygon onto the coordinate planes. Using the projection method, we

take A proportional to the area of the polygon projection on the y-z plane, B proportional

~· j

DhPL\Y OF TlinFF Dllı,ff"\:Sl(f\AL Cl lK\,T.D JT\T.S .·\'\D sımr \CFS l'i CO'\/P\TF.R (;R.\f'HJCS

to the projection area on the x-z plane, and C proportional to the projection area

on the x-y plane.

High-quality graphics systems typically model objects with polygon meshes and

set up a database of geometric and attribute information to facilitate processing of the

polygon facets. Fast hardware-implemented polygon renderers are incorporated into such

systems with the capability for displaying hundreds of thousands to one million or more

shaded polygons per second (usually triangles), including the application of surface texture

and special lighting effects.

CURVED LINES AND SURFACES

Displays of three-dimensional curved lines and surfaces can be generated from an

input set of mathematical functions defining the objects or from a set of user specified data

points. When functions are specified, a package can project the defining equations for a

curve to the display plane and plot pixel positions along the path of the projected function.

For surfaces, a functional description is often tesselated to produce a polygon-mesh

approximation to the surface. Usually, this is done with triangular polygon patches to

ensure that all vertices of any polygon are in one plane. Polygons specified with four or

more vertices may not have all vertices in a single plane. Examples of display surfaces

generated from functional descriptions include the quadrics and the superquadrics.

When a set of discrete coordinate points is used to specify an object shape, a

functional description is obtained that best fits the designated points according to the

constraints of the application. Spline representations are examples of this class of curves

and surfaces. These methods are commonly used to design new object shapes, to digitize

drawings, and to describe animation paths. Curve-fitting methods are also used to display

graphs of data values by fitting specified curve functions to the discrete data set, using

regression techniques such as the least-squares method.

Curve and surface equations can be expressed in either a parametric or a

nonparametric form. Appendix A gives a -summary and comparison of parametric and

nonparametric equations. For computer graphics applications, parametric representations

are generally more convenient.
~ Ö···

QUADRIC SURFACES

A frequently used class of objects are the quadric surfaces, which are described

with second-degree equations (quadratics). They include spheres, ellipsoids, tori ,

paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellipsoids, are

common elements of graphics scenes, and they are often available in graphics packages as

primitives from which more complex objects can be constructed.

Sphere

In Cartesian coordinates, a spherical surface with radius r centered on the coordi

nate origin is defined as the set of points (x, y, z) that satisfy the equation

We can also describe the spherical surface in parametric form,using latitude and

longitude angles:

X = r cos O cos O

Y = r cos O sin O

Z = r sinO

The parametric representation provides a symmetric range for the angular

parameters O and 4). Alternatively, we could write the parametric equations using standard

spherical coordinates, where angle O is specified as the colatitude . Then, O is defined over

the range O<= O <=pi and O is often taken in the range O<= O<=. We could also set up the

representation using parameters U and V defined over the range from O to 1 by substituting

O= pi(U) and O= 2pi(u).

SPLINE REPRESENTATIONS

In drafting terminology, a spline is a flexible strip used to produce a smooth curve

through a designated set of points. Several small weights are distributed along the length of

the strip to hold it in position on the drafting table as the curve is drawn. The term spline

'.i I _..• i' '; .,., I -,··~~-.,,,---;r { • i,_ •••• '

curve originally referred to a curve drawn in this manner. We can mathematically

describe such a curve with a piecewise cubic polynomial function whose first and second

derivatives are continuous across the various curve sections. In computer graphics, the

term spline curve now refers to any composite curve formed with polynomial sections

satisfying sped-fled continuity conditions at the boundary of the pieces. A spline surface

can be described with two sets of orthogonal spline curves. There are several different

kinds of spline specifications that are used in graphics applications. Each individual

specification simply refers to a particular type of polynomial with certain specified

boundary conditions.

Splines are used in graphics applications to design curve and surface shapes, to

digitize drawings for computer storage, and to specify animation paths for the objects or

the camera in a scene. Typical CAD applications for splines include the design of

automobile bodies, aircraft and spacecraft surfaces, and ship hulls.

Interpolation and Approximation Splines

We specify a spline curve by giving a set of coordinate positions, called control

points, which indicates the general shape of the curve. These control points are then fitted

with piecewise continuous parametric polynomial functions in one of two ways. When

polynomial sections are fitted so that the curve passes through each control point, the

resulting curve is said to interpolate the set of control points. On the other hand, when the

polynomials are fitted to the general control-point path without necessarily passing through

any control point, the resulting curve is said to approximate the set of control points.

Interpolation curves are commonly used to digitize drawings or to specify

animation paths. Approximation curves are primarily used as design tools to structure

object surfaces. Approximation spline surface created for a design application. Straight

lines connect the control-point positions above the surface.

A spline curve is defined, modified, and manipulated with operations on the

control points. By interactively selecting spatial positions for the control points, a designer

can set up an initial curve. After the polynomial fit is displayed for a given set of control

points, the designer can then reposition some or all of the control points to restructure the
"- {:<,;•·•

shape of the curve. In addition, the curve can be translated, rotated, or scaled with

transformations applied to the control points. CAD packages can also insert extra control

points to aid a designer adjusting the curve shapes.

The convex polygon boundary that encloses a set of control points is called the

convex hull. One way to envision the shape of a convex hull is to imagine a rubber band

stretched around the positions of the control points so that each control point is either on

the perimeter of the hull or inside. Convex hulls provide a measure for the deviation of a

curve or surface from the region bounding the control points. Some splines are bounded by

the convex hull, thus ensuring that the polynomials smoothly follow the control points

without erratic oscillations. Also, the polygon region inside the convex hull is useful ın

some algorithms as a clipping region.

A polyline connecting the sequence of control points for an approximation spline

ıs usually displayed to remind a designer of the control-point ordering. This set of

connected line segments is often referred to as the control graph of the curve. Other names

for the series of straight-line sections connecting the control points in the order specified

are control polygon and characteristic polygon.

Parametric Continuity Conditions

To ensure a smooth transition from one section of a piecewise parametric curve to

the next, we can impose various continuity conditions at the connection points. Zero-order

parametric continuity, described as c0 continuity, means simply that the curves meet. That

is, the values of x, y, and z evaluated at u2 for the first curve section are equal, respectively,

to the values ofx, y, and z evaluated at u- for the next curve section. First-order parametric

continuity, referred to as continuity, means that the first parametric derivatives (tangent

lines) of the coordinate functions two successive curve sections are equal at their joining

point. Second-order parametric continuity, or C2 continuity, means that both the first and

second parametric derivatives of the two curve sections are the same at the intersection.

Higher-order parametric continuity conditions are defined similarly.

; •. -. l'. • ":., ' ,.-~ .•.• -.,.,--·;t·,-·-; " ·1., ,!

With second-order continuity, the rates of change of the tangent vectors for

connecting sections are equal at their intersection. Thus, the tangent line transitions

smoothly from one section of the curve to the next . But with first-order continuity, the

rates of change of the tangent vectors for the two sections can be quite different, so that the

general shapes of the two adjacent sections can change abruptly. First-order continuity is

often sufficient for digitizing drawings and some design applications, while second-order

continuity is useful for setting up animation paths for camera motion and for many preci

sion CAD requirements. A camera traveling along the curve path with equal steps in

parameter U would experience an abrupt change in acceleration at the boundary of the two

sections, producing a discontinuity in the motion sequence. But if the camera were

traveling along the path , the frame sequence for the motion would smoothly transition

across the boundary.

Geometric Continuity Conditions

An alternate method for joining two successive curve sections is to specify condi

tions for geometric continuity. In this case, we only require parametric derivatives of the

two sections to be proportional to each other at their common boundary instead of equal to

each other.

Zero-order geometric continuity, described as G0 continuity, is the same as zero

order parametric continuity. That is, the two curves sections must have the same coordinate

position at the boundary point. First-order geometric continuity, or G1 continuity, means

that the parametric first derivatives are proportional at the intersection of two, successive

sections. If we denote the parametric position on the curve as P(u), 'the direction of the

tangent vector P (u), but not necessarily its magnitude, will be the same for two successive

curve sections at their joining point under continuity. Second-order geometric continuity,

or G2 continuity, means that both the first and second parametric derivatives of the two

curve sections are proportional at their boundary. Under G2 continuity, curvatures of two

~ curve sections will match at the joining position.

A curve generated with geometric continuity conditions is similar to one

generated with parametric continuity, but with slight differences in curve shape. Provides

a comparison of geometric and parametric continuity. With geometric continuity, the curve

is pulled toward the section with the greater tan-gent vector.

BEZIER CURVES AND SURFACES

This spline approximation method was developed by the French engineer Pierre

Bezier for use in the design of Renault automobile bodies. Bezier splines have a number of

properties that make them highly useful and convenient for curve and surface design. They

are also easy to implement. For these reasons, Be zier splines are widely available in

various CAD systems, in general graphics packages (such as GL on Silicon Graphics

systems), and in assorted drawing and painting packages (such as Aldus SuperPaint and

Cricket Draw).

Bezier Curves

In general, a Bezier curve section can be fitted to any number of control points.

The number of control points to be approximated and their relative position determine the

degree of the Be zier polynomial. As with the interpolation splines, a Bezier curve can be

specified with boundary conditions, with a characterizing matrix, or with blending

functions. For general Bezier curves, the blending-function specification is the most

convenient.As a rule, a Be zier curve is a polynomial of degree one less than the number of

control points used: Three points generate a parabola, four points a cubic curve, and so

forth. Demonstrates the appearance of some Bezier curves for various selections of control

points in the xy plane (z = O). With certain control-point placements, however, we

obtain degenerate Bezier polynomials. For example, a Bezier curve generated with three

collinear control points is a straight-line segment. And a set of control points that are all at

the same coordinate position produces a Bezier "curve" that is a single point.

Design Techniques Using Bezier Curves

Closed Bezier curves are generated by specifying the first and last control points

at the same position. Also, specifying multiple control points at a single coordinate

.. 11-

position gives more weight to that position. A single coordinate position is input

as two control points, and the resulting curve is pulled nearer to this position.

We can fit a Bezier curve to any number of control points, but this requires t

calculation of polynomial functions of higher degree. When complicated curves are to be

generated, they can be formed by piecing several Bezier sections of lower degree together.

Piecing together smaller sections also gives us better control over the shape of the curve in

small regions. Since Bezier curves pass through endpoints, it is easy to match curve

sections (zero-order continuity). Also, Bezier curves have the important property that the

tangent to the curve at an endpoint is along the line joining that endpoint to the adjacent

control point. Therefore, to obtain first-order continuity between curve sections, we can

pick control points P'o and P'i of a new section to be along the same straight line as control

points Pi and pof the previous section. When the two curve sections have the same number

of control points, we obtain C1 continuity by choosing the first control point of the new

section as the last control point of the previous section and by positioning the second

control point of the new section at position Thus, the three control points are collinear and

equally spaced.

We obtain C2 continuity between two Bezier sections by calculating the püsition

of the third control point of a new section in terms of the positions of the last three-control

points of the previous section as

Pn-2 + 4(pn - Pn-1)

Requiring second-order continuity of Bezier curve sections can be unnecessarily

restrictive. This is especially true with cubic curves, which have only four control points

per section. In this case, second-order continuity fixes the position of the first three control

-points and leaves us only one point that we can use to adjust the shape of the curve

segment.

B-SPLINE CURVES AND SURFACES

These are the most widely used class of approximating splines. B-splines have

two advantages over Bezier splines: (1) the degree of a B-spline polynomial can be set

independently of the number of control points (with certain limitations), and (2) B-splines

-,, ..~~ ,~·,,;,--~..---....-~····~.r,·-ı,ı

DISPLAY OF TlffiFF Dllı,fFSSlO"':Al. Cl TR\TD u:·:rs .,\'·:DStTifACFS p; COVf't'TER CiRAPlilCS

allow local control over the shape of a spline curve or surface. The trade-off is

that B-splines are more complex than Bezier splines. There are several differences between

this B-spline formulation and that for Bezier splines. The range of parameter U now

depends on how we choose the B-spline parameters. And the B-spline blending functions

Bk ,d are polynomials of degree d - 1, where parameter d can be chosen to be any integer

value in the range from 2 up to the number of control points, n + 1. (Actually, we can also

set the value of d at 1, but then our "curve" is just a point plot of the control points.) Local

control for B-splines is achieved by defining the blending functions over subintervals of

the total range of U.

The selected set of subinterval endpoints U is referred to as a knot vector. We can

choose any values for the subinterval endpoints satisfying the relation Uı - Uı+ı- Values

for Umin and Umax then depend on the number of control points we select, the value we

choose for parameter d, and how we set up the subintervals (k not vector). Since it is

possible to choose the elements of the knot vector so that the denominators in the previous

calculations can have a value of O, this formulation assumes that any terms evaluated as 0/0

are to be assigned the value O.

Demonstrates the local-control characteristics of B-splines. In addition to local

control, B-splines allow us to vary the number of control points used to design a curve

without changing the degree of the polynomial. Also, any number of control points can be

added or modified to manipulate curve shapes. Similarly, we can increase the number of

values in the knot vector to aid in curve design. When we do this, however, we also need to

add control points since the size of the knot vector depends on parameter n.

B-spline curves have the following properties:

• The polynomial curve has degreed - 1 and Cd-2 continuity over the range of

u.

• For n + 1 control points, the curve is described with n + 1 blending func-

tions.

• Each blending function Bk4 is defined over d subintervals of the total range

of U, starting at knot value Uk.

• The range of parameter U is divided into n + d subintervals by the n + d + I

values specified in the knot vector.

A plot of the four periodic, quadratic blending functions, which demonstrates the

local feature ofB-splines. The first control point is multiplied by blending function Bo,3(u).

Therefore, changing the position of the first control point only effects the shape of the

curve up to U = 3. Similarly, the last control point influences the shape of the spline curve

in the interval where B3 is defined.

Illustrates the limits of the B-spline curve for this example. All blending functions

are present in the interval from Ud - I = 2 to U-+1 = 4. Below 2 and above 4, not all

blending functions are present. This is the range of the polynomial curve, and the interval;

Thus, the sum of all blending functions is 1 within this interval. Outside this interval, we

cannot sum all blending functions, since they are not all defined below 2 and above 4.

Since the range of the resulting polynomial curve is from 2 to 4, we can deter

mine the starting and ending positions of the curve by evaluating the blending functions at

these points to obtain Thus, the curve starts at the midposition between the first two control

points and ends at the mid-position between the last two control points. We can also

determine the parametric derivatives at the starting and ending positions of the curve.

In the preceding example, we noted that the quadratic curve starts between the

first two control points and ends at a position between the last two control points. This

result is valid for a quadratic, periodic B-spline fitted to any number of distinct control

points. In general, for higher-order polynomials, the start and end positions are each

weighted averages of 4 - 1 control points. We can pull a spline curve closer to any control

point position by specifying that position multiple times.

General expressions for the boundary conditions for periodic B-splines can be

obtained by reparameterizing the blending functions so that parameter U is mapped onto

the unit interval from O to 1. Beginning and ending conditions are then obtained at U = O

and U= 1.

Cubic, Periodic B-Splines

Since cubic, periodic B-splines are commonly used in graphics packages, we con

sider the formulation for this class of splines. Periodic splines are particularly useful for

generating certain closed curves. For example, the closed curve can be generated in

sections by cyclically specifying four of the six control

RA TIO NAL SPLINES

A rational function is simply the ratio of two polynomials. Thus, a rational spline

is the ratio of two spline functions . Rational splines have two important advantages

compared to non-rational splines. First, they provide an exact representation for quadric

curves (conics), such as circles and ellipses. Non-rational splines, which are polynomials,

can only approximate conics. This allows graphics packages to model all curve shapes with

one representation rational splines without needing a library of curve functions to handle

different design shapes. Another advantage of rational splines is that they are invariant

with respect to a perspective viewing transformation . This means that we can apply a

perspective viewing transformation to the control points of the rational curve, and we will

obtain the correct view of the curve. Non-rational splines, on the other hand, are not

invariant with respect to a perspective viewing transformation. Typically, graphics design

packages use non-uniform knot-vector representations for constructing rational B-splines.

These splines are referred to as NURB 's (non-uniform rational B-splines).

Homogeneous coordinate representations are used for rational splines, since the

denominator can be treated as the homogeneous factor in a four-dimensional representation

of the control points. Thus, a rational spline can be thought of as the projection of a four

dimensional non-rational spline into three-dimensional space.

Constructing a rational B-spline representation is carried out with the same

procedures for constructing a non-rational representation. Given the set of control points,

the degree of the polynomial, the weighting factors, and the knot vector, we apply the

recurrence relations to obtain the blending functions.

... 15-

Other sections of a unit circle can be obtained with different control-point posi

tions. A complete circle can be generated using geometric transformation in the x y plane.

For example, we can reflect the one-quarter circular arc about the x and y axes to produce

the circular arcs in the other three quadrants.

In some CAD systems, we construct a conic section by specifying three points on

an arc. A rational homogeneous-coordinate spline representation is then determined by

computing control-point positions that would generate the selected conic type.

SURFACES AND RENDERINGS

Earlier we saw how Alberti, in his Ten Books on Architecture, defined designs

as abstractions separated from physical matter, but serving to specify how the physical

matter of a building was to be organized and ordered. It followed, then, that a design

consisted of "lines and angles" and that the designer's task was to make "a firm and

graceful pre-ordering of the lines and angles." Correspondences between lines on paper

and lines in space could be established systematically through use of projection

techniques--in particular, perspective. This view provides the theoretical foundation for

design by line construction in the plane (drafting) and for design by wireframe modeling.

In another of his works, On Painting (1435), Alberti pointed out that there was an

alternative approach. "Mathematicians," he wrote, "measure with their minds alone the

forms of things separated from all matter." But speaking as a painter, he then continued,

"Since we wish the object to be seen, we will use a more sensate wisdom."

The· Reception of Light

Alberti's concern as a painter was not with abstract geometry as specified by

lines in space, but with the appearances of solid objects as they present themselves to the

eye. Such objects, in his terminology, have "skins" composed of an outline (orlo)

bounding a "plane" (superfıcie). The superfıcie is that "certain external part of a body

which is known not by its depth but only by its length and breadth and by its quality."

These external parts may, he says, be divided into four kinds according to their

- 16-

nısr-ı J,,· OF TlTnFF DllvfFSfilCf~AL Cl lR\T.D l J:\'FS ,\',D Si.'RfACFS r-: CO\'f'1.TTER CiRAf'HlCS

curvatures: flat ("that which a straight ruler will touch in every part if drawn over

it"), spherical ("any part of that body is equidistant from its center"), hollowed ("as in the

interior of an egg shell"), and compound ("in one part flat and in another hollowed or

spherical like those on the interior of reeds or on the exterior of columns"). Appearances,

he notes, are determined not only by properties of outline and curvature, but also by the

positions of bodies relative to the observer: "as soon as the observer changes his position

these planes appear larger, of a different outline, or of a different color." And there is one

more thing "which makes the plane appear to change." It is "the reception of light."

Alberti elaborates: You see that spherical and concave planes have one part dark and

another part bright when receiving light. Even though the distance and position of the

centric line are the same, when the light is moved those parts which were first bright now

become dark, and those bright which were dark. Where there are more lights, according to

their number and strength, you see more spots of light and dark. Thus the painter's

fundamental intellectual program, as formulated by Alberti, was to study the appearances

of surfaces in light --a matter of outline and surface geometry, lighting conditions, and

observer position. In one important sense the history of European painting, over the span

from Alberti to the Impressionists, can be understood as an elaboration and working out

of this program. Successive generations of painters observed and found accurate ways to

render increasingly complex and subtle effects of surface revealed in light. Since the

emergence of high-quality raster graphic display devices, which can render surfaces in

light on a cathode ray tube as a painter does with pigments deployed on canvas, this

intellectual program has been reconstructed in a new form. Software has been developed

for modeling three-dimensional objects not just in terms of their edge lines, but as

collections of surfaces described by their outlines and curvatures. Such surface-modeling

systems can produce not only wireframe images, but also hidden-surface views showing

opaque surfaces in light. They allow information specifying surface properties (color,

specularity, texture, and so on) to be associated with surface elements and allow the

properties of light sources to be specified. From the geometric database, information

about surface and lighting properties, and specified values for viewing parameters, they

render effects such as shading, cast shadows, highlights, and reflections. The

incorporation of increasingly sophisticated rendering algorithms, taking advantage of

msı-ı .xv OF THREE Dlll.!FSS!O:-:-Al. C!TR\r'.D ı .P,FS A'·J) sı 'RL\CF.S rx CO\rPt'TFR GRAPHICS

increasingly powerful computer resources, has enabled them to produce images

that more and more closely approach photorealism. Just as drafting and wireframe

modeling software enables us to explore architectural composition as Alberti conceived it

in his Ten Books on Architecture--as the organization of lines and angles that specify the

essential geometry of a building--so surface modeling supports architectural composition

as it was defined in another way by Le Corbusier in Vers une architecture: Architecture is

the masterly, correct and magnificent play of masses brought together in light. Our eyes

are made to see forms in light; light and shade reveal these forms.

Insertion of Surface Facets

Illustrates two plates from Sebastiano Serlio's Architettura, which was published

just a few years after Alberti's treatise on painting. The first shows an octagonal well in

wireframe perspective. In the second, opaque surfaces_have been inserted into the

wireframe such that polygons found within the frame have become outlines of surface

elements. Serlio remarks that the solid body thus shown "is the same that is before

shewed, both form and measure, but all the lines which cannot outwardly be seen are

hidden." The wireframe has served as an ordering skeleton over which the solid has been

constructed: Serlio notes that they who "well understand and perfectly bear in mind the

hidden lines shall better understand the art than others who content themselves with the

outer superfıcies." So it is with surface-modeling software: the user first constructs lines,

then employs these to guide development and positioning of surfaces. The most basic

surface-insertion operation is a generalization of the basic line-insertion operation. Just as

a one-dimensional straight line segment is specified by its zero-dimensional boundaries

(end points), so a two-dimensional plane polygon is specified by its one-dimensional

boundaries (edge lines). Thus an obvious way to insert a plane polygon into a surface

model is to indicate its boundary points in sequence. A typical database format_for a

simple surface-modeling system, which is closely related to the basic surface-insertion

operation, is illustrated in figure 1 O. 3. There is a vertex list, an edge list, and a facet list.

The vertex list records X and Y coordinates of vertices, the edge list specifies pairs of

vertices linked by edges, and the facet list specifies sequences of edges bounding surface

facets.

- 18-

ı l .. __ . _ ·ı f .~ r ,· ·, -,. r "l...,,..-..,,~;rr, A ",;

DJSPJ .AY OF 'l-IRF.F. Dll\!FSSIO"\"AL Cl.TRYF.D J .l'-;F.S A'-;D SlTR.F.\CF.S rx COMPUTER OR.\PHJCS

Sweep Operations

Another way to look at a straight line (as we saw earlier) is as the path swept out

by a translated point. Similarly, we can regard a rectangular surface as the shape swept

out by a translated straight line. It follows that we can specify such a surface by indicating

a straight line and specifying a translation. More generally, we can specify assemblages of

surfaces by sweeping arbitrary chains of lines. Most surface-modeling systems provide

such translational sweep operations for surface insertion. A combination of facet

bounding and translational sweep operations can be used to model an open rectangular

box. First the rectangular plan is constructed and swept to create the four upright sides.

Then the vertices of the plan shape are picked off in sequence to create the bottom facet.

Singly curved surfaces can be constructed by performing translational sweep operations

on plane curves. Sweeping a circle, for example, constructs an open-ended cylinder. More

complex profiles can be swept to construct the forms of architectural moldings. In

addition to translational sweeps, surface-modeling systems usually provide rotational

sweep operations in which line shapes are swept along arcs of circles. Cylindrical and

conical surfaces, for example, can be produced by sweeping straight lines. Both spherical

and toroidal surfaces can result from rotational sweeps of arcs. The combination of

translational and rotational sweep operations is very powerful. Almost all classical and

Gothic architectural elements (columns, piers, entablatures, arches, moldings, etc.) can,

for example, be modeled by applying translational and rotational sweep operations to

profiles constructed from straight lines and arcs: this is closely analogous to the

stonemason's technique of using a template to mark a profile on a block of stone, then

cutting this shape through the mass. But some more general sweep operations are needed

to construct certain types of surfaces and are thus provided by advanced surface-modeling

software. One generalization is to allow sweeping of arbitrary curves along arbitrary

curves--an ellipse along a spline. Some systems allow the two ends of a line to be swept

along different curves. In particular, ruled surfaces may be specified by sweeping straight

lines in this way. Two particular types of ruled surfaces are fairly common in architecture:

the hyperboloid of revolution and the hyperbolic paraboloid. A cone may be constructed

not only by rotationally sweeping a straight line, but also by sweeping a diminishing

circle along a straight line. By analogy, some advanced surface-modeling systems provide
- 19-

l l .. -- __:ı .l f .~ r.-· ,~-,. r ı-~,...--....-;rr-t A'\..-'

generalized cone operations that define complex surface shapes by sweepıng

arbitrarily changing curves along arbitrary curves. This operation, for example, is useful

for modeling human limbs.

Faceted Approximations of Curved Surfaces

Some surface-modeling systems represent curved surfaces internally by storing

parameter values. A sphere can be represented by its center coordinates and radius, for

example, and a cylinder can be represented by the end-point coordinates of its axis

together with a radius. These parameters can be used, in conjunction with appropriate

mathematical formulae, to generate accurate images of surfaces as required. An

alternative approach is to approximate curved surfaces by small planar facets just as a

curved line may be approximated by small, straight segments. Often these facets are

triangular, since triangles are always planar, but facets of other shapes may be used as

well. This technique proves to be adequate for many practical purposes, and it simplifies

many of the computational tasks that a surface-modeling system must perform, so it is

widely used in contexts where precise representation of surfaces is not critical and where

computational resources are limited.

Surface Patches

Where a surface is approximated by a mesh of triangles, linear interpolation

between the vertices of any triangle produces points within that triangle. If a surface is

approximated by a mesh of quadrilaterals, however, the vertices of a given quadrilateral

do not necessarily lie in the same plane, and if they do not, linear interpolation between

them will produce a bilinear curved surface. Thus quadrilateral bilinear patches provide

an alternative to triangular plane facets for representation of curved surfaces. The idea of

curved surface patches may be extended in various ways to provide curved surface

representations that are appropriate for different practical purposes. An obvious

generalization of the bilinear patch, for example, is a patch bounded by four arbitrary

curves. This type of patch, which provides more precise control of slopes, is known as a

Coons patch. These patches are commonly used by boat and aircraft (and occasionally

architectural) designers for skinning shapes that have been specified as sequences of

profiles or ribs. Variants on these shapes can readily be produced by

manipulating the parameters that control profile curvature and spacing. A specialization

of the Coons patch, which has some attractive mathematical properties, is the bicubic

patch: this has parametric cubic polynomials as the four boundary curves. Just as a

smoothly curved line may be produced by bending a thin, elastic strip of wood or metal,

so a smoothly curved surface may be produced by bending a thin, elastic sheet of

material. And just as a drafting system's analogy to a physical spline is a mathematical

spline curve manipulated by deploying control points on the drafting plane, so the

surface-modeling system's analogy to a twisted elastic sheet is a mathematical spline

surface manipulated by deploying control points in space. B-spline surfaces, which extend

the idea of a B-spline curve, are especially widely used. A particular type of B-spline

surface, known as a NURBS (non-uniform rational B-spline) has formal properties that

make it attractive in many practical modeling applications. A typical NURBS curved

surface modeler provides a vocabulary of basic shapes modeled as NURBS surfaces with

meshes of control points. These control points may be pulled and twisted (usually in real

time) to sculpt the shape as required. A particular concern in using bicubic, B-spline, and

NURBS modelers to design curved objects is maintaining smooth curvature--not only of

the surface itself but also, sometimes, of its first and second derivatives. Discontinuities in

smoothness show up as unattractive bulges, wrinkles, kinks, and dimples. Sometimes they

can also cause engineering problems. Appropriate curved-surface vocabularies and

modeling strategies are sometimes determined by the materials and fabrication processes

that are to be used to produce the surfaces. Stiff sheet materials that are to be fabricated

by cutting out facets suggest use of a faceted modeler. Flexible sheet materials such as

plywood and sheet metal can be bent into cylindrical and similar singly curved

(translationally swept) surfaces or twisted into ruled surfaces such as hyperbolic

paraboloids. Flexible boards can be used to form lofted surfaces such as those of boat

hulls. Pressed metal and injection-molded plastic can be formed into many doubly curved

B-splined shapes, but this is usually an expensive industrial process.

Fractal Surfaces

DJSPLAY OF TlinFF Dll\.IFSS10'\AL CITR'\,T.D l T,T.S .0\SD SıTR.F \CFS ıs co,./f'l'TFR (;R.APHlCS

Fractal surfaces are the opposite of smooth surfaces. They commonly result in

nature from growth and erosion processes, and they are produced computationally by

recursive subdivision of surface patches, as illustrated. A surface is first approximated by

a mesh of triangles. Then, using a random-number generator, each triangle is subdivided

into four smaller triangles. This process is carried out recursively until a microstructure of

tiny irregular facets is produced. By controlling the parameters of this process it is

possible to construct fractal surfaces that depict various types of terrain and different sorts

of textured materials with varying types and levels of roughness.

Topographic Surfaces

Topography varies arbitrarily, so representation of topographic surfaces is a

matter of sampling and interpolation. Frequently, for example, elevations are recorded at

points on a square plan grid. The surface can then be modeled by bilinear or bicubic

patches. Increasingly accurate representations can be produced by sampling elevations at

finer resolutions. Relatively coarse sampling and curve interpolation produces very

smooth surfaces, finer sampling allows small bumps and depressions to show up, and

very fine sampling reveals that natural topographic surfaces are actually fractals. (Notice

the close analogy with scanning a visual field to produce a square grid of intensity levels.)

Another common technique is to record elevations of arbitrary points (spot levels) on a

surface, then to employ a triangulation procedure to construct a mesh of planar facets

known as a TIN (triangulated irregular network) model. This is efficient, since data points

can be concentrated where necessary to record abrupt changes and fine detail, but can be

sparser elsewhere. Topographic surface-modeling software usually provides for use of a

variety of interpolation strategies and production of several different types of surface

representations. Thus a set of spot levels supplied by a surveyor might be translated into a

contour map, a drainage direction map, a grid of bilinear patches, a set of parallel section

curves, and a TIN model.

Surface Intersecting and Cutting

In two-dimensional drafting it is often necessary to find line intersections and to

divide or trim lines at intersection points. Earlier we saw how two-dimensional drafting

software provides operations for accomplishing this. Similarly, in surface modeling it is

DhPLAY or ~ırnFF Dl:\.ffSSlCf'(Al.CITR\T.Du,;r.s .y,;r, SUR.FACFS l'\ CO\'.f'l.TTER (;b\l'HlCS

frequently necessary to find surface intersections and to divide or trim surfaces at

intersection lines. The simplest case is intersection of a plane surface by a plane surface-

which always results in a straight line. Efficient procedures to find such intersection lines

are not difficult to implement, so surface-modeling systems often provide plane-cutting

operations. In software that relies on faceted approximations to curved surfaces, it is easy

to go a step further and provide a generalized surface-cutting operation. But where curved

lines and surfaces are represented accurately, by equations and coefficient values, it is

necessary to compute the equations describing intersection lines. This can be a very

complex mathematical task, so software for true curved-surface manipulation is much

more elaborate (and usually more expensive and demanding of computational resources)

than software based on the idea of faceted approximation. Systems that represent all kinds

of surfaces by means of NURBS patches can provide general surface-cutting and

intersecting tools. This means that designers can use complex curved surfaces as cutting

tools to sculpt other curved surfaces. Furthermore, complex surface-intersection problems

(as when complex profiles meet at awkward angles) can be resolved with ease. Section

drawings can be produced from surface models by cutting to a plane (or sometimes a

more complex surface) to produce a collection of lines--in effect a wireframe model,

which may be stored on a separate layer. Where closed facets of such wireframes indicate

the interiors of solids, these facets can be fitted with surfaces to indicate poch.

Rendering

When a building or other artifact has been modeled as a collection of plane or

curved surfaces in space, it can be rendered realistically in line, tone, or color. This is a

three-step process. Rendering software must first generate a perspective or · other

projection: as in production of a wireframe view, each element in the geometric model is

projected onto the viewplane and clipping is performed. Next, the visible surfaces must be

determined: only those closest to the viewer will be displayed. Finally, some surface

rendering computation must be executed to determine how the visible surfaces will look.

Thus the rendering pipeline, which provides the way to go from a surface model to a

rendered image

Visible-surface Determination

The problem of visible-surface determination is simply stated: given an object

modeled as a collection of opaque surfaces, determine which edges and surfaces are

visible to an observer at a specified location or viewing from a specified direction. The

solution principle is also simple: edges and surfaces in back will be obscured by opaque

surfaces in front. Thus the problem is, in essence, one of sorting surfaces in depth. The

practical difficulty is one of computational complexity: as the number of surfaces in a

model grows, the computer time required to determine the visible surfaces also grows

(perhaps exponentially), and at some point the computation becomes impractical. For

several decades'. then, a great deal of research effort has been devoted to development of

efficient visible-edge- and surface-determination procedures, and various clever

approaches have emerged. But the details of these are now mostly of little concern to

designers: with increasing availability of very fast processors, increasing sophistication of

visible-edge- and surface-determination algorithms, and a growing tendency to

incorporate standard algorithms in hardware, quick and reliable visible- surface

determination for large geometric models has become commonplace. One detail that is of

practical concern is the distinction between hidden-line and hidden-surface procedures.

Hidden-line procedures perform accurate floating-point arithmetic to determine where

lines are cut by edges of opaque polygons. This is a relatively slow and expensive

process, but it yields coordinate data that can be used to produce large, accurate, pen

plotted or laser-printed line drawings. Hidden-surface procedures are used to produce

bitmapped images. One common, simple procedure of this type is known (with little

respect for the intelligence of painters) as the painter's algorithm. This is just the

procedure of sorting polygons by depth back from the picture plane, then drawing from

the back forward so that later polygons overwrite earlier ones. Since it does not require

explicit determination of intersection coordinates, it is extremely efficient. Simple depth

sorting, hidden-surface procedures are defeated by conditions such as cyclical overlap of

surfaces and will produce inaccurate results when these conditions are encountered. The

procedures can be elaborated to deal appropriately with these conditions, but the amount

of computational work that they must do goes up accordingly, and it takes longer for them

to produce results. Some rendering software allows the user to make the trade-off--to

choose a quick sorting procedure that may produce flawed results due to sorting errors, or

to choose a foolproof sorting procedure that takes longer. Quick sorts often suffice for a

designer's own working purposes, since minor sorting errors are unlikely to cause

confusion in this context. But they should never be used for presentations, since spatial

ambiguities due to sorting errors can easily make a view incomprehensible to somebody

who is not already familiar with the scheme. A rendering process can be terminated

following hidden-surface determination to produce an unshaded view. This highly

economical sort of view represents in a way that is fundamentally different from shaded

views. As Heinrich Welfflin remarked, in a famous passage in Principles of Art History,

"If we wish to reduce the difference between the art of the art of Rembrandt to its most

general formulation, we say that a draughtsman and Rembrandt a painter." He took these

artists as representative of two "radically different modes of vision"--the linear and the

painterly--and suggested that these were "two conceptions of the world, differently

oriented in their taste and in their interest in the world, and yet each capable of giving a

perfect picture of visible things." In summary: "linear style sees in lines, painterly in

masses." In a drawing composed of edge lines, as Welfflin further commented, "the eye is

led along the boundaries and induced to feel along the edges." This is a form of

representation useful to a designer when "the sense and beauty of things is first sought in

the outline."

Basic Shading

To produce more painterly images, light intensities at points on visible surfaces

must be computed and rendered. To produce a monochrome shaded image, a single

intensity is computed for each point; and to produce a colored, shaded image, intensities

of red, green, and blue components are computed. In general, intensity at a point is a

function of many parameters: the spatial and spectral reflectivity properties of the surface

at that point, the spatial and spectral emission properties of the light sources that are to be

taken into account, the location of the viewer, and the relation of the surface to other

surfaces in the scene. Simple, quick intensity-determination procedures take only some of

these factors into account, and so produce only approximate results. More complex and

-, , -~ r r~..,--.,,·;r ~---, iı 'I. i

DhPL\Y Of Tlinff Dl1vffSSlO:(Al. CITR',T.D ı,r-;r.s A'\D SCRFACFS p; CO\'.ViTTER (iR.\PHlCS

costly procedures consider more of them to render wider ranges of optical effects and

subtler nuances. The most sophisticated surface-rendering algorithm is not necessarily

best for a designer's purposes. It is important to understand the basic properties of the

various available algorithms, the kinds of results that they produce, and their demands on

computer resources. The most important effect of surface shading is to create pictorial

space. Leonardo da Vinci put the matter thus: The first business of the painter is to make

a plane surface appear to be a body raised and standing out from this surface, and

whoever excels the others in this matter deserves the highest praise. And this study, or

rather this summit of our learning, depends on lights and shades. Leonardo made endless

careful studies of the reception of different kinds of light by different kinds of surfaces.

Later scientists were to produce quantitative laws describing the distribution of light

reflected from surfaces, and these eventually provided the basis for surface-shading

algorithms used in computer graphics. The most elementary of these laws is Lambert's

cosine law, discovered by the sixteenth-century physicist and astronomer Johann

Lambert. It reduces to a precise formula the fact long known to painters, and explicitly

noted by Leonardo, that the intensity of reflected light from a plane surface is related to

the angle at which the light is incident. If we simplify the situation by assuming a dull,

matte surface (so that there are no highlights) and directional diffuse light (so that no

shadows are cast), diffuse reflection will result--energy arriving from the light source will

be scattered uniformly in all directions. Lambert's law states that the intensity of light

reflected in this way is proportional to the cosine of the angle of incidence. Thus intensity

diminishes as the surface is tipped obliquely to the light source. Light incident

perpendicular to a surface is reflected with maximum intensity, while light parallel to a

surface will leave the surface in darkness. The s-shape of the cosine function assures that

the drop-off in intensity is rapid in the middle ranges, but it flattens out at both extremes.

The amount of light reaching a viewer is independent of that viewer's position: apparent

intensities of surfaces will not change as the viewpoint changes. A simple and remarkably

effective way to shade plane surfaces, then, is to specify lighting direction, calculate

surface normals, then use a cosine function to calculate surface intensities. Old-fashioned

drawing books demonstrate how to do it by hand with tonal media like charcoal and

watercolor wash; simple software can perform it efficiently to produce bitmapped images

from surface models; and special-purpose graphics hardware can now accomplish it at

very high speed. The effect is very much like that achieved by painters of illusionistic

architectural decoration and backgrounds at Pompeii or by a photographer who places a

matte gray architectural model in diffuse light. The simplest way to perform Lambert

shading is to adopt a standard convention for the direction of light and to let surface

intensities vary over the full range from white to black. A common architectural

convention, for example, is to let light arrive from over the viewer's shoulder, at angles of

45 degrees horizontally and vertically from the line of sight. If the shaded object is then

placed on a black ground, the light faces and their profiles will be emphasized; if it is

placed on a white ground, the dark faces will be emphasized; and if it is placed on a mid

gray ground, the emphasis will be evenly distributed. More control over visual effects can

be gained by introducing additional parameters into the basic shading equation. Most

obviously, it is useful to be able to vary the direction of the incident light to change the

distribution of darks and lights on the object. Control of lighting can be elaborated by

providing for multiple light sources with different directions and intensities and by

allowing specification of not only light source direction, but also actual position. Where

position can be controlled it becomes possible to locate sources within buildings for night

views and to simulate effects of artificial light (rather than sunlight) by diminishing

intensity of illumination with distance according to the inverse square law. Surfaces can

be differentiated by associating a surface reflection coefficient k with each one. This

coefficient varies between O (black) and 1 (white). Thus the basic Lambert-shading

equation is written Id = Ip K cos(Theta) where Id is the intensity of the reflected light, Ip

is the intensity of the incident light, K is the surface-reflection coefficient, and Theta is

the angle of incidence. By varying surface-reflection coefficients the effect of a black

and-white photograph can be produced. Objects rendered by this equation seem to exist in

cold and harsh light like that of a flash photograph taken outdoors at night. This is

because no account is taken of effects of nondirectional ambient light, which in the real

world usually softens shadows and reduces contrasts (particularly in interior spaces,

where there is much interreflection of light between surfaces). It is easy, however, to

elaborate the basic Lambert-shading equation as follows I = Ia Ka + Id where I

represents the surface intensity resulting from both ambient light and directional light Id.

. ~ • -~ • ;, -,., ; r~.--...,,-;ı-· ,---, .r, .., J

The ambient contribution is simply the product of ambient intensity Ia and the ambient

reflection coefficient Ka. If the ratio of ambient to directional components Ia/Id is high,

then contrasts between differently oriented surfaces will be reduced and the model

flattened, but if it is low then contrast will be high and modeling will be accentuated.

Where color displays are available the idea of Lambert shading can be extended, in a very

straightforward way, to provide a technique for producing colored, shaded images from

surface models. Surface-reflection coefficients and source intensities are specified for red,

green, and blue components, then used to compute reflected intensities for these

components. The result is a color, specified in the RGB system, for each surface.

Relationships of lighting and surface color can be adjusted to produce different types of

images. If there is relatively little variation is surface color but dramatic, directional

lighting, then images that emphasize modeling and chiaroscuro (like the paintings of

Rembrandt) will result. But iflocal color is dramatically varied while lighting is kept flat,

then images that cling closer to the picture plane (like Japanese prints or the paintings of

Manet) can be generated. The essential result of Lambert shading is to add to an image

information about the orientations of surfaces. This clarifies angular relationships

between surfaces and enhances the illusion of pictorial depth by reinforcing the depth

cues provided by foreshortening. Lambert-shaded images, then, are often particularly

useful for studying issues of massing: they clearly present just the information that is of

interest, but they suppress irrelevant and distracting effects. A characteristic disadvantage

of Lambert shading is that parallel surfaces with the same reflection coefficients will have

the same intensity. Thus the shading does not, in this case, convey depth information, and

if the surfaces overlap in the image their outlines will be confused. Similarly, if the

incident light bisects the angle between two faces, definition of the separating edge will

be lost. Even worse, if the incident light equally divides the solid angle at a vertex,

definition of that vertex will be lost. These effects are particularly troublesome in one

point perspectives of buildings with parallel elevation planes and in plan and elevation

projections. Often they can be avoided or minimized by careful adjustment of viewpoint

or view direction or by movement of the light source. But in many cases introduction of

additional graphic information is needed to disambiguate the image. An obvious

expedient is to combine Lambert shading with edge outlines. This produces a particularly

crisp, clear image since it defines with precision both shapes and orientations of surfaces.

However, such images direct the viewer's attention less precisely to profile and contour

than do pure line images, and less precisely to tone and mass than do pure shaded images.

Smooth Shading of Curved Surfaces

When Lambert shading is applied to a faceted approximation of a curved surface,

the results are reasonably satisfactory when the facets are small enough. But the results

may not be acceptable to a designer who wants to study fine nuances of curvature and the

resulting modulation of light. Furthermore, distracting Mach bands--perceived

exaggerations of intensity changes at edges of facets--are likely to appear. (That the dark

side of an edge will often appear darker, and the light side lighter, was known to painters

such as Leonardo and Mantegna, but the illusion is named after the physicist Ernst Mach,

who studied it in the nineteenth century.) A better approach to curved-surface shading is

to distribute intensities smoothly, rather than to change them abruptly at edges of facets.

In his treatise on painting Alberti formulated this task and suggested a way to proceed:

Remember that on a flat plane the color remains uniform in every place; in the concave

and spherical planes the color takes variations; because what is here light is there dark, in

other places a median color. This alteration of colors deceives the stupid painters, who, as

we have said, think the placing of the lights to be easy when they have well designed the

outlines of the planes. They should work in this way. First, they should cover the plane

out to the outlines as if with the lightest dew with whatever white or black they need.

Then above this another and thus little by little they should proceed. Where there is more

light they should use more white. The computational equivalent of this little-by-little

procedure for smooth tonal distribution was first developed at the University of Utah by

Henri Gouraud. His essential idea was to calculate surface normals at facet vertices, then

calculate intensities at these points, and finally, linearly interpolate intensities between

these points to render a smoothly shaded surface. Linear interpolation is the numerical

version of grading a wash or smearing charcoal with your finger. The calculations are

simple (and Gouraud shading is often now implemented in special-purpose hardware for

even higher speed), but the results can be very convincing. However, Gouraud-shaded

DJSPJ .AY OF THREE Dll\,IFSSIC)SAl. CI.TR\TD I .!:'·T-S A:,;T) sı 'R.F.\CES ıx COMPl 'TER GRAPHICS

objects never sparkle. They always look as if they are made of some dull, matte material.

This follows from the fundamental assumption, made in both cosine and Gouraud

shading, that light is reflected equally in all directions. But most real surfaces reflect light

somewhat unequally in different directions, with the result that specular highlights--more

or less definite reflections of the light source--appear. These highlights move and change

as the viewpoint alters. This effect has long been known and exploited by painters: E. H

Gombrich has suggested that its use might go back to the great Greek Apelles; there

certainly was extensive use by Roman and Byzantine painters; and Jan Van Eyck and the

Flemish illusionists deployed it with exquisite mastery. The scientific basis for calculation

of specular highlights is provided by the law of the perfect mirror: the angle of reflection

is equal to the angle of incidence. Thus the viewer can see specularly reflected light from

a perfect mirror only when the angle alpha zero. For imperfect reflectors the intensity of

specularly reflected light gradually diminishes as alpha increases, so that the viewer sees

a fuzzy highlight rather than a perfect reflection of the light source. Thus the principle of

cosine and Gouraud shading can be modified to take account of specular reflection by

making intensity a function not only of the angle of incidence, but also of the angle alpha

between the angle of reflection and the angle of view. A popular method for shading

shiny curved objects in this way, to render specular highlights, was first developed by

Bui-Tuong Phong. Phong shading not only deals with specular highlights, but also uses a

more accurate interpolation technique than Gouraud shading. Consequently it is a more

complex and expensive process than Gouraud shading, and it is difficult to compile into

silicon. More recent research has focused on the accuracy and the speed of this type of

rendering. Blinn shading procedures, and other more recent refinements of the idea,

provide better results in some contexts. Compares _Gouraud, Phong, and Blinn shading.

For Phong shading the angle alpha is calculated from the position or direction of light and

the position or direction of view. The value of a specularity coefficient must be specified

for each surface in the model. High specularity values yield the effect of very shiny

surfaces with intense, concentrated highlights; lower values yield more diffuse highlights;

and very low values yield the effect of a matte surface with almost imperceptible

highlights. The center of a highlight will appear at the point where the angle of incidence

equals the angle of reflection. The color of the highlight will be that of the light source,

- 30-

not that of the surface. Multiple light sources will produce multiple reflections. The

overall effect is very much like that of a careful airbrush rendering with highlights. An

array of Phong-shaded spheres: diffuse reflectivity varies along the vertical axis, while

specularity varies along the horizontal axis. With a surface modeler and a Phong-shading

system an architect can conduct parametric studies of potential building appearance by

systematically varying diffuse and specular reflectivities (to approximate effects of

different materials and finishes) and lighting parameters. This sort of investigation would

be impossibly laborious using conventional rendering techniques, but it is quick and

inexpensive with computer-aided design.

Cast Shadows, Transparency, and Reflections

The advanced chapters of traditional treatises and textbooks on perspective

usually consider the topics of cast shadows, transparency, and mirror reflections. These

effects can all be investigated and rendered by extending the basic idea of tracing the

paths of rays to determine foreshortening and occlusion. A cast shadow, for example, can

be treated as the darkness thrown on a surface by an object that intercepts light. It falls on

the side opposite to the light source and can only become visible when the light direction

differs from the view direction. In the simplest case there is a single, infinitely distant

point light source--approximately the case of the sun shining out of a cloudless sky. This

idealized situation was extensively treated in Gaspard Mange's Geometrie descriptive

(1799), and Mange's projective methods developed into the traditional architectural

subject of sciagraphy. From a more modern computational viewpoint, the task of

determining the shapes and locations of cast shadows turns out to be very closely related

to the task of producing a hidden-surface perspective, and many of the same procedures

can be employed. Surfaces produce shadow volumes from a point light source in just the

same way that they produce occlusion volumes from eye points. A cast shadow, then, is

the intersection of a surface with a shadow volume. To put this another way, every

surface that the light source "sees" is in light, while every surface occluded from the light

source is in shadow. So addition of shadows to a hidden-surface scene can be

accomplished by specifying a point light source and performing some extra surface-

DlSPl .AY OF THREE f)!l,IF.'-:STOS,\l. ClJRYED l J"\"ES ASD Sl.TRFACES 1"\" ccvnrrr.n OR/ıPHlCS

projection and depth-sorting operations. Shadow-casting procedures based on this

principle can be used to add shadows to hidden-line, cosine-shaded, Gouraud-shaded,

Phong-shaded, and Blinn-shaded scenes. Transparency effects are the inverse of cast

shadow effects. Where an opaque surface casts a patch of darkness, a transparent opening

like a window casts a patch of light. And where an opaque surface occludes part of a

scene, a transparent surface reveals part of a scene: it creates a view volume rather than an

occlusion or shadow volume. Thus surface descriptions can be extended by specifying

opacity coefficients, and effects of surface transparency can be rendered through further

generalization of surface-projection and depth-sorting procedures. Computations of

mirror-reflection effects are based on the mirror law--that the angle of incidence equals

the angle of reflection. In the simple case of a plane mirror, then, the effect is to "double"

the geometric model about the mirror plane. This double can then be projected in

perspective in exactly the same way as the original, unreflected part of the model. These

principles of geometric optics are elegantly combined with the principles of shading that

we considered earlier in a computationally intensive but increasingly popular technique

known as raytracing. Raytracing procedures consider the picture plane as a fine grid of

pixels placed between the viewer's eye and the scene, and they send a ray from the eye

through each pixel to the scene. By computing the red, green, and blue intensities

reaching the eye along each ray, the color of each pixel can be established. Clearly this

can become a very large task. If the grid has a resolution of one thousand by one thousand

pixels, for example, it will be necessary to trace one million rays. The color of each pixel

is calculated as follows. The ray through the current pixel is traced to its first intersection

with a surface in the scene. The color of the light coming from the surface at this point

will be the color of the pixel. This color is due to the combined effect of three things:

shading resulting from light directly incident on that point from light sources in the scene

(calculated by one of the shading procedures that we have considered), reflections of

other objects in the scene, and the color of any object seen through the surface at that

point. To account for cast shadows, a shadow ray is fired from the point to each of the

light sources in the scene (so the amount of computation goes up rapidly when multiple

shadowing light sources are introduced into complex scenes). And to account for the

reflection and transparency effects, the ray is split into a reflected ray and a transmitted

- 32-

1 1 i . .·ı t :, r.· _.·, -,. r r;.ı.---....~~-r"'A ,.)

ray, and these two spawned rays are continued until they, in turn, intersect surfaces. The

color coming from these surfaces is then calculated in the same way. Of course the

process need not stop here. The two spawned rays may themselves be split in two, and so

on recursively to construct an intersection tree of reflected and transmitted rays for each

pixel. The intersection trees are developed to whatever depth is judged necessary to

account adequately for cast shadow, transparency, and reflection effects. The computation

required to render a scene grows exponentially with the depth to which spawned rays are

traced. Raytracing amounts to a strategy for discretizing and point-sampling the scene.

Discretizing is accomplished by dividing the picture plane into pixels, and sampling is

accomplished by constructing the intersection trees. Like any such strategy raytracing has

characteristics that make it effective in some contexts but not in others. It works very well

for highly specular scenes with point light sources, where it renders mirror reflections,

highlights, sharp cast shadows, and refraction by transparent solids with breathtaking

fidelity (see color plate 8). It is least effective for rendering scenes that consist mostly of

matte surfaces with spot, line, and area light sources, since evaluation of integrals rather

than point sampling is needed for accurate rendition of diffuse shading and interreflection

effects. Effects such as soft penumbrae and "bleeding" of colors due to diffuse

interreflection between surfaces are not present in raytraced images. These limitations can

be overcome, to some extent, by elaborating the basic raytracing procedure, but this tends

to make the computations even more complex and expensive. Raytracing was first applied

to perspective rendering of architectural scenes by Arthur Appel in the late 1960s. During

the 1970s and 1980s the technique was much elaborated, but production of raytraced

images was regarded as a supercomputer application, and there was little practical

application in design. By the beginning of the 1990s, though, it was becoming

increasingly feasible on inexpensive personal computers. It will have a growing role to

play in design contexts where effects of cast shadow, transparency, or mirror reflection

are important and require close investigation.

Diffuse Global Illumination Effects

The qualities of many architectural interiors depend more on diffuse

interreflections and soft shadows than they do on the specular reflections and point-source

cast shadows that are rendered so effectively by raytracing. (Raytracers usually

account for diffuse interreflection, in very approximate fashion, by introducing an

ambient light term into shading equations.) To study such diffuse effects, radiosity

rendering procedures (which derive from thermal engineering techniques for studying

radiant energy) are more effective. Radiosity procedures begin by dividing the surfaces in

the scene, rather than the picture plane, into small discrete elements. Thus they are based

on a different discretization strategy from that of raytracing--one that is independent of

observer position. They do not distinguish between light sources and reflecting surfaces:

any element of a scene may act as an emitter of light energy. This makes them very

suitable for rendering scenes with area sources of light (such as the panes of a window)

and scenes in which large, brightly lit surfaces contribute substantially to interreflection

effects. The sampling strategy is also different from that of raytracing. The basic

assumption is that light reaches a given surface patch in two ways: directly from the light

sources in the scene and indirectly by reflection from other surface patches. It is assumed

at the outset that all surface patches have zero intensity. A first iteration of the shading

calculation establishes the amount of light reaching each patch directly from the light

sources. Some of this will be absorbed, some of it will be transmitted, and some of it will

be reflected. A second iteration calculates the amount of light reaching each patch on the

first bounce from other patches. Again, some of this will be absorbed, some of it will be

transmitted, and some will be reflected back into the environment. A third iteration

calculates the effects of this second bounce, and so on. Since the light energy leaving a

patch is always less than the light energy incident on a patch (unless the patch is a light

emitter), the effects of additional bounces eventually become negligible. Thus

successively more accurate approximations are constructed. The geometric relation

between a pair of patches determines the fraction of the light leaving one that reaches the

other. This fraction is dependent on the shapes and areas of the two patches, their

orientations, their distance apart, and any occlusion by intervening surfaces. The fraction

for a given pair of patches is known as that pair's form-factor. The form-factors for a

scene can be computed independently of viewer and light-source positions. Basically,

computation of form-factors establishes a network of energy transfer paths between

patches to be used in the iterative calculation of their intensities. For complex scenes

·ı ı -~ r .-, -,,, , r~.,~.. --:ı- ,·-. i. ·t,,ı

computation of the form-factors is a massive task. However, this need not be

repeated when viewing parameters are changed. Thus the radiosity method is expensive

for producing a single view, but very efficient for producing large numbers of views. In

nondiffuse environments radiosity calculations become much more complex and time

consuming to carry out, partly because the intensity equations become more complicated

when directional reflection must be considered and partly because smaller surface patches

must be used to achieve satisfactory results. For scenes where both diffuse and specular

effects are of interest, radiosity can be used to compute diffuse effects, raytracing can be

used to compute specular effects, and the results can be summed to produce the final

ımage.

Although the principles of radiosity have been exploited in various contexts

since the 1960s (in the GLIM lighting analysis program, for example), radiosity rendering

has been slower than raytracing to find practical application in design--mainly because it

is even more demanding of computational resources. For a designer interested in close

study of effects of light and surface, however, a radiosity renderer (particularly when

calibrated carefully to produce accurate results) is an exceptionally powerful simulation

tool and a necessary complement to a raytracer. In many contexts, for example, a

raytracer can appropriately be used to produce studies of a building's exterior in crisp

sunlight, while a radiosity renderer is used to study interior spaces with diffuse artificial

light, window areas that function as light sources, and light-colored walls and ceilings that

produce extensive diffuse interreflection.

Surface Details and Textures

All the rendering procedures that we have considered so far make the assumption

that surfaces (whether planar or curved) are uniform within their boundaries. In other

words, reflectivity, specularity, and transparency values describe whole surface facets.

This assumption greatly simplifies modeling and rendering, and is entirely appropriate

when a designer is interested in studying basic interrelationships of surface geometry and

lighting in a scheme. At another level of consideration, though, microstructural variation

within surfaces becomes important. Consider, for example, a brick wall. As a first

.. 35-

.... :ı ·-; ı ;,, r ;, -.,; -~--~..--..,·r,·s;-;, 1,1

nısr-ı AY OF THTIFF f)llı,ff."\"SIO"'-:/d. cıırnT.D Ll";FS <·,D StTRFACFS r: CO\'.PtTTFR CiRAf'HlCS

approximation, we might model and render it as a uniformly colored rectangle. For more

accurate rendering to support closer consideration of design issues like the effects of

different bonding patterns, we might next model it as a collection of smaller rectangles-

the bricks themselves. Next, we might want to study the subtle but important effects of

different ways of raking the mortar joints: this requires a three-dimensional model of

surface relief and a rendering procedure that shows the shadow lines under individual

bricks. Finally, we might recognize that individual bricks are not in fact uniform, but

display variations of color and shininess across their surfaces. The appropriate level of

consideration, modeling, and rendering depends on the design issue that is of current

interest. Finer and finer details of a design can always, in principle, be studied by building

more and more intricate surface models--but this approach requires enormous modeling

effort, consumes excessive amounts of memory for model storage, and makes huge

demands on rendering systems. Fortunately, it is not always necessary. Approximate

techniques for specifying and rendering surface detail will often suffice, and these are

frequently provided by advanced rendering software. The simplest approach is to provide

for surface-detail polygons that are coplanar with base polygons in the surface model.

These suffice for painted signs and decoration, and often for shallow-relief detail like

brick and tile patterns or curtain wall fenestration. This is economical, since the base

polygons rather than the surface-detail polygons are depth sorted in hidden-surface and

shadow-casting calculations. Finer surface detail can be approximated by scanning an

appropriate pattern or texture and mapping it onto a plane or curved surface. Many

raytracers and radiosity renderers can produce texture-mapped renderings in this way.

The process is one of selecting an image to be mapped and specifying how the four

corners of the image are to be placed on the surface. This can produce very effective

results, but developing libraries of scanned textures, selecting textures to apply to

surfaces, and specifying mappings are all very time-consuming processes. Furthermore,

great care must be taken to avoid unconvincing distortion of textures when they are

mapped onto nonrectangular and curved surfaces, to keep textures in correct scale and

orientation, and to avoid perceptible repetition when small texture samples are tiled over

large surfaces. A far more practical approach, for many classes of textures, is to generate

the required surface variation by application of procedures that are controlled by just a

DlSPl .AY OF THTIFF Dllvff.YSK,"Al. cı ırc,T.D ı J:\"FS ;\:\"D SURFACES r--; CO\'.PCTER Cib\PHlCS

few parameters. One obvious parameterization approach is to adapt from two-dimensional

paint systems the idea of a gradient fill operation. Another possibility is to apply a

random speckling procedure. Sine functions can be used to generate ripple effects of

various kinds. Recursive fractalization procedures can generate very realistic wood-grain,

marbling, clouds, and other natural patterns. Regular tessellations and other repeating

patterns can be produced by procedures that instantiate and transform standard motifs.

Wood-grain and many other surface textures vary characteristically from surface to

surface of an object (the end grain looks different from the side grain, and so on) because

they result from cutting oriented three-dimensional patterns (see color plate 10). These

textures are often most effectively generated by using procedures that produce three

dimensional "solid" textures and intersect them with object surfaces to produce variant

surface qualities. Such procedures can also be used by designers to study (without

expensive experimentation on actual materials) effects of cutting wood, stone, and other

materials in different ways. Texture maps (either captured or procedurally generated) can

be used to control not only variation in local surface color, but also variation in specular

reflectivity, transparency, and relief Effects of relief, such as those of orange skin or

incised patterns, are produced by perturbing surface normals to approximate the shading

of microfacets . This strategy has some limitations (particularly in rendition of edges), but

it can often produce very effective results. It is particularly useful for studying

architectural compositions, such as those of H. H. Richardson, in which relationships of

surface relief and roughness play an important role. In summary, textures are functions of

spatial coordinates: a two-dimensional texture is a function of X and Y in a surface

coordinate system, and a three-dimensional texture is a function of X, Y, and Z in a three

dimensional coordinate system. Such a function may have a single number as its value at

specified coordinates, or it may have a vector of numerical values. Its values may be

interpreted by a shading procedure as diffuse reflectivities, specular reflectivities,

transparencies, surface normal perturbations, or anything else that the procedure takes

into account in computing intensities. Depending on the character of the function, it may

be represented as a stored array of values (sampled texture) or as a procedure that takes

coordinate values as input (procedural texture): this is basically a store-versus-compute

.. 37-

trade-off Sophisticated rendering systems provide extensive libraries of textures, together

with facilities for assigning textures to surfaces or solids in geometric models.

Natural Phenomena and Landscape Composition

The techniques that we have considered so far yield a powerful tool kit for

modeling, rendering, and studying landforms, architectural proposals, and urban design

proposals. But landscape designers (and architects who want to study buildings in natural

settings) need to extend this repertoire still further with tools for modeling and rendering

vegetation, water, and atmospheric effects. A simple but frequently very effective way to

handle trees (particularly distant ones) is to texture map scanned photographs of trees

onto transparent rectangles arranged parallel to the picture plane. For greater realism, and

to provide greater flexibility in choice of viewpoint, such planes can be crossed. An

alternative approach is to employ growth-simulation procedures for construction of

vegetation forms. These can be designed either to produce two-dimensional images for

texture mapping onto transparent planes or to produce full three-dimensional surface

models that are then inserted into a scene and rendered in the usual way. (Three

dimensional vegetation models can become extremely complex, however, so rendering

times can easily become excessive.) Very simple recursive procedures often suffice to

produce convincing results, and adjustment of a few parameters of these procedures can

yield wide ranges of variants. More sophisticated procedures can be based on the concept

of a Lindenmayer system (a special type of grammar for describing growth and

differentiation processes) to produce detailed, accurate models of particular plant species.

Still, horizontal water surfaces can be approximated in raytraced renderings by reflective

planes, and ripple effects can be added with a sinosoidal texture-generation procedure and

bump mapping to perturb surface normals. Moving streams, waterfalls, and fountains are

more difficult: the usual approach is to model them not as surfaces, but as procedurally

generated configurations of discrete particles. The generative procedures incorporate laws

of particle propagation and motion. This approach can be extended to modeling many

other natural phenomena, such as swirling fog and smoke, clouds, flames and fireworks,

and masses of foliage. Effects of aerial perspective, haze, and mist can be approximated

in landscape scenes by attenuating surface colors according to some exponent of the

distance back from the picture plane. A high exponent produces rapid attenuation, as in

dense fog, while a lower exponent yields more gradual attenuation. A shift toward white
.. 38-

........ :ı ~ ı -~ r . -, -., ; ...-~.--,,,,,-;r r··-, i. -•• ,ı

DISPLAY OF TETiFF f)l:ı,ff'-;SlO"Al. Cl lR"',TJ) TT,T.S .,:-;o sımr \CFS ı:-.; CO\ff'UTER ORAPTHCS

produces a fog effect, a shift toward blue produces aerial perspective, a shift

toward brown produces Los Angeles smog, and a shift toward black generates gathering

gloom.

Retouching and Painting Shaded Images

Images rendered from surface models are not always perfect. Sometimes there

are small modeling errors, such as omission of a surface, which yield blemishes.

Sometimes there are polygon sorting errors or other undesirable artifacts resulting from

the limitations of or bugs in rendering procedures. Or there may be problems of contrast

and color balance. Usually these sorts of problems can be fixed by correcting the model

or regenerating the rendering with slightly different viewing or lighting parameters. But if

the problems are minor, it is often quicker and easier to move the bitmap to a paint and

retouching program for correction=exactly as a scanned photograph might be retouched.

More interestingly, a synthesized image can be used as the base for hand sketching and

rapid exploratory development of a design idea. One approach is to make a plot of a

hidden-line view as a base for further development with colored pencil or watercolor.

Another approach is to move a simple shaded image to a paint system, then to sketch over

the top of it with paint tools.

Combining Synthesized and Captured Images

When two perspectives are overlaid, objects are brought together into definite

relationship within the same frame of reference. This technique is sometimes used for

piecewise synthesis of very large and complex perspectives. It can also be used for

combining synthesized shaded images with scanned photographs. To show a building in

site context, for example, a perspective is synthesized with viewing parameters that match

the camera position and settings for a site photograph. Then the synthesized image is

carefully positioned relative to the photograph and electronically matted. Various

subtleties need attention if a convincing result is to be achieved. First, the lighting of the

synthesized image must be matched as closely as possible to the lighting of the

photograph. Foreground elements such as foliage must be replaced. Shadows and

reflections may need to be adjusted by careful painting. And edges may need to be

blended through use of a smoothing brush. Variations on existing buildings and

urban settings can also be depicted effectively in this way.

Output and Presentation Technology

For individual working purposes and small conferences, the bitmapped images

produced by shading a surface model can be displayed directly on a color monitor. For

presentation to larger groups, a video projector can be connected to the monitor.

Alternatively, slide or print output can be generated. High-quality results can be obtained

by making high-resolution 35 mm slides on a digital film recorder. If these are projected

at a large enough size to extend to the edges of the viewer's visual field, and if the viewer

is located at a position corresponding to the station point from which the perspective was

generated, a startling effect of three-dimensional realism is produced. Adequate working

prints can be generated from monochrome shaded images by halftoning and laser

printing, and publication-quality halftones can be produced with a laser image setter.

Inexpensive inkjet and thermal wax-transfer color printers usually produce disappointing

results, since they lack the color and spatial resolution needed for accurate reproduction

of the subtleties and complexities of sophisticated shaded images. Much better prints can

be obtained (usually at correspondingly higher cost) with dye-sublimation printers, by

making photographic negatives on a film recorder, or by making digital color separations

on an image setter.

Uses and Limitations of Surface Modeling and Rendering

Surface models obviously contain substantially more information than

corresponding wireframe models. The complexity of the data structure increases too,

since associations must be maintained not only between vertices and edges, but also

between edges and surface facets. Thus storage and manipulation of data structures for

surface models makes heavier demands on computational resources. There are more

commands for a user to learn, and there is usually more work to do in constructing and

editing a surface model, since surface shapes and properties must be specified. Generation

of images can become significantly more time-consuming and expensive=particularly if

detailed surface descriptions, sophisticated lighting models, and advanced rendering

DJSPl J,Y or TlTRFF Dll\!F.SSlO~Al. CJ TK',T.Dl .l',FS .·\'-T) SlTffACFS]'; CO\TT'1.TTE1l. CiF.\PHlCS

techniques are used. The advantages of surface modeling over wireframe

modeling for many purposes are also considerable, however, and these frequently justify

the additional effort and cost (Furthermore, the cost difference is of decreasing

significance as basic computational costs continue to drop and as hidden-surface and

shading algorithms are increasingly embodied in silicon.) Much more realistic images

than a wireframe view can be produced from a surface model, and subtle effects of light

and shade, color, texture, transparency, and reflection can be explored. Furthermore, you

can get just the level of realism that you need by applying different types of rendering

procedures to a model. Shaded images generated from surface models usually play a

complementary role to plans, sections, and wireframes in design investigation. A plan or

section provides a highly abstracted summary of a project's essential organization, a

wireframe image gives an overview of its three-dimensional geometry, but a shaded or

hidden-surface view is, by contrast, partial and fragmentary: it depicts only one of a

project's indefinitely many aspects. A surface-modeling system can, however,

inexpensively produce many such views--so that a project can be studied as a composition

of revelations and concealments unfolding as an inhabitant moves through it

Architects of the past often looked with a painter's eye: many of the greatest

Renaissance architects were also painters, and Beaux-Arts architects were adept at the use

of graded watercolor wash to study qualities of shade and shadow. But architects of the

twentieth century have, for both ideological and pragmatic reasons, tended to rely on line

drawings that abstract away from color, texture, and shading to emphasize pure geometry.

Surface modelers and renderers create the possibility of recapturing the subtle

understanding of surface and light that has, as a result, been lost

Surface modelers are often marketed to designers merely as presentation tools.

But that misses the most important point about them. When they are quick and cheap

enough for everyday use they support graphic problem-solving by constructing, tweaking,

and intersecting surfaces and by encouraging trial-and-error exploration of potential

visual qualities in a cycle of modeling, rendering, modifying the model again, and so on

until the desired effect is achieved.

.. 41·

DhPl IY or ,ırnFF Dll\,!FSSKf,,;t.ı. CI lf(\,T.D l JSF5 ,\SD S1 T.fACF ,, ıs COVT'PTF.R (;R.AT'HlCS

Drafted Lines

It may be that the most rigorous exponents of Impressionism conceived of pictures

as collections of colored points corresponding to light intensities reaching the painter's

eye, but this was exceptional. Painters, drafters, and designers usually conceive of

pictures in a much more highly structured way--as collections of geometric entities, such

as straight lines, arcs of circles, and closed polygons. The artist composes by inserting

these sorts of entities into a picture and relating them to each other in appropriate ways. In

the creation of representational pictures the artist deploys these two-dimensional

geometric entities on the picture plane to depict physical objects in three-dimensional

space.

When an artist makes a freehand sketch, the intended entities and relationships

are rendered only approximately by marks on paper. In technical drafting, though,

geometric entities are rendered precisely through use of instruments such as straightedges

and compasses, and relationships are formed accurately through execution of geometric

constructions. Similarly, computer graphics software that is designed for use in technical

drafting provides tools for precise manipulation and accurate presentation of geometric

entities. The databases processed by this software contain digital representations of

geometric elements and their relationships. There is a point table and a line table. The

entries in the point table record x and y coordinates of points, and the entries in the line

table specify which pairs of points are associated to define lines. Associated procedures

translate the values in this table into lines on a display screen. Raster graphic displays

produced from such databases may look much like displays produced from bitmaps, but

they behave very differently since operations are defined on the lines themselves rather

than on the pixels that make up the display oflines.

Coordinate Systems

The idea of a rectangular, two-dimensional Cartesian coordinate system provides

the foundation for all drafting software. Within such a system, points are specified by

their coordinates--that is, pairs of numbers. These numbers are stored in binary format in

computer memory. Let us assume that one bit is used to specify each coordinate.

This yields a 2 x 2 grid of specifiable locations, as illustrated . Within this grid, then, six

different straight lines may be specified by their end points. If we take a design to be a set

of lines, this elementary coordinate system allows us to construct just 26 = 64 different

designs. However, this number increases very dramatically as we increase the number of

bits used to encode each coordinate. With two bits per coordinate we have a 4 x 4 grid of

sixteen distinct points, which provides a thousandfold increase in the number of different

designs. Practical drafting systems employ eight-bit, sixteen-bit, or thirty-two-bit binary

numbers to represent coordinates. Usually, however, designers do not want to think in

terms of integer coordinates. They want to use, instead, normal units such as feet and

inches, meters, and so on. Hence a drafting system normally provides a menu of units

from which the user can select and internally converts coordinates expressed in these

user-selected units into binary integer form. It is straightforward to extend this idea to

provide a unit-conversion capability so that, for instance, coordinates expressed in feet

and inches can be reexpressed in meters and centimeters. In some design contexts it is

convenient to work in polar coordinates rather than rectangular coordinates. Many

drafting systems provide this option. The translation between polar and rectangular

coordinates is just a matter of some simple trigonometry and can be performed

automatically. The usual way to translate from user coordinates to the internal binary

representation is automatically to set the maximum extent of the equal to the full extent of

the coordinate system (as determined by the number of bits used for each coordinate).

This means that small objects can be represented with high precision or very large objects

can be represented with lower precision. However, if very large objects (complete city

plans, say) and very small objects (such as window details) are shown in the same

drawing, the small objects may be represented with inadequate precision. Hence the user

of a drafting system must keep in mind that coordinates are represented to finite precision

and organize drawings so that precision problems do not develop. Some systems simplify

the issue of extent and precision by representing coordinates internally as floating-point

rather than integer numbers. This yields a coordinate system of large and indefinite

extent, in which small coordinate values have many significant decimal places and large

coordinate values have few. In effect, small objects located near the origin of the

coordinate system are represented with high precision, while small objects located far

from the orıgın are represented more approximately. By contrast, an integer

coordinate system provides a uniform density of spatial indexing throughout its extent.

Point Specification

The most fundamental operation that a drafting system provides is specification

of a point within the coordinate system. The most precise but most cumbersome way to

accomplish this is to type in numerical values. It is quicker and more convenient to place

the cursor and click with a mouse, but this is much less precise. Where coordinates are to

be digitized from an existing drawing, use of a digitizing tablet with a stylus or digitizing

puck is the most suitable technique. Since pointing and digitizing devices are inherently

imprecise, geometric guides are frequently used to constrain their input . These various

numerical and graphical techniques have their strengths and weaknesses, which make

them suitable for different applications, so many systems provide the means to use all of

them quickly and interchangeably. The capacity to specify any point in the coordinate

system is clearly essential, but it does not, in itself, provide a sufficient basis for efficient

construction of drawings. In most practical contexts a designer needs to select from

among a very much smaller subset of points. A drafting system should, then, provide

tools for specifying such subsets, constraining choice to them, and efficiently selecting

from among their members. Many drawings, for example, are constructed under the

discipline of some modular grid. The grid amounts to a specified subset of the points in

the coordinate system, and the end points of lines are constrained to be in this subset. In

response to this, drafting systems normally allow users to define grids with grid points at

specified intervals and provide for efficient selection of grid points by automatically

"snapping" an indicated point to the nearest grid point . This is particularly useful with

mouse or stylus input, since it allows the user to indicate points quickly and

approximately without paying the penalty of lost precision. The minimal requirement is

for a drafting system to provide square grids parallel to the coordinate axes. More

sophisticated systems may go beyond this to provide the other regular plane systems of

points. They may also allow grids to be rotated and superimposed. Polar grids are

appropriate where polar rather than rectangular coordinates are used. As a drawing

develops, a designer mostly needs to select significant points in the existing skeleton of

DJSPLAY OF TlffiFF Dll\ff-··;sıO"\"AL CITR\T.D Ll'\TS A:\"D SFJ-?.f/.CF', ıx CO\'.ViTF.R CiRAf'HlCS

lines=end points of existing lines, center points and tangent points of arcs, line

intersection points. Some of these points are represented explicitly in the data structure,

and the rest are implicit but can be computed as required. Sophisticated drafting systems,

then, provide for snapping to both explicit and implicit significant points. Different sorts

of points may, of course, seem significant in different design contexts at different

moments. A drafting system can respond to this variability by allowing the user to specify

the types of points that are to be considered and a diameter of attention. Then, as the

cursor moves across the drawing, points of the specified types within the specified radius

of attention can be highlighted. Experienced users of drafting systems usually take

extensive advantage of constraint and snapping capabilities. They begin by building up

skeletons of construction lines, then use these structures to snap further lines quickly into

place, then use these lines to locate still finer details, and so on until the entire drawing is

complete. By following this strategy they can almost entirely eliminate the need for

painstaking location of points by calculating and typing coordinates or by precise stylus

work.

Repertoires of Line Types

The capacity to specify lines is built from the capacity to specify points. Any two

points define a straight line, for example, so all drafting systems allow a user to specify

straight line segments by indicating their end points. When a mouse or stylus is used for

this purpose, indication of the first end point fixes one end of the line and a "rubber-band"

line then stretches from that location to the current location of the cursor and follows the

cursor until the second end point is selected. This graphically demonstrates the

mathematical equivalence of a second basic way to describe a straight line numerically-

by its origin, direction, and length. An indefinitely long straight can be specified by slope

and intercept. Curved lines of various types can be specified by giving their end points

plus sufficiently many additional points or parameter values to define the shape between

the two ends. Any three points lie on a circular arc, for example. Mathematical

equivalences multiply in this case: drafting systems normally provide for specification of

arcs by end points and a center point, by end points and a point on the circumference, by

end points and an included angle, by an end point, center point, and swept angle. Any of

DhPT .AY or TlrnFF Dllv!FSSlO":Aı. Cl TR\TD l J:\"FS A,T>Sl.T.f.,\CFS ı,- COTVPUTER(;RAPHlCS

these ways may be needed, depending upon the context into which the arc is to

be snapped. Notice, incidentally, that a computer drafting system has no difficulty with

handling arcs of large radius--a type of graphic element that causes problems in

traditional drafting, where compasses are of physically limited radius and the drawing

surface for location of center points is of limited extent. Any straight line is the radius of a

circle, so complete circles are usually input by means of a variant of the rubber-band line.

Furthermore, any arc specifies a complete circle, so any of the methods used for inserting

arcs may be modified slightly to serve for inserting circles. Any straight line may also be

interpreted in yet another way, as the defining diagonal of a rectangle that bounds an

ellipse. So the rubber-band line technique can also be adapted to serve for convenient

specification of ellipses. Whereas ellipses are difficult to handle with traditional manual

drafting instruments, and so have often been approximated by ovals (constructions of

tangentially connected circular arcs), they present no problems when even a very simple

computer drafting system is used. Straight lines, circular arcs, and elliptical arcs are all

subclasses of conic section curves. The repertoire of a drafting system can be expanded to

the conic sections in general by providing for hyperbolic and parabolic arcs as well. Since

any curve can be represented by a sufficiently complicated polynomial expression, and

other instances of the same type can be specified by varying the coefficients of that

polynomial, the repertoire of different types of curved lines provided by a drafting system

can be extended almost indefinitely. There is little practical need for this, however.

Addition of a few basic types of spline curves to the conics suffices for most design

purposes. A spline curve, much like the pinned wooden splines used in manual drafting, is

specified by an arbitrary number of control points, which (depending on the particular

type of spline) may or may not lie on the curve. A drawing from a drafting system, then,

is essentially a two-dimensional arrangement of instances of the line types that the system

provides (as a text is a one-dimensional arrangement of instances of characters from a

character set, and a melody is a one-dimensional arrangement of sounds). The wider a

system's repertoire of line types, the more versatile it will be in its representational

capabilities. Notice that, under this representational scheme, some lines in a drawing are

explicitly represented in the underlying data structure but others are only implicit.This

means that the three sides of the triangle are only implicitly represented. Alternatively, the

figure might be input and stored as six shorter lines. Thus the three sides of the

triangle are represented explicitly, but now the longer lines are only implicit. (There are

many other possibilities as well.) This has important practical consequences, since most

drafting systems (at least among those commercially available at the time of writing)

allow you to select and operate only on lines that are explicitly represented in the data

structure. However, this is not a necessary restriction: it is feasible (although

computationally more expensive) to extend the principle of constraint-based editing and

allow a user to specify not only the types of points that are to be selectable, but also the

types of lines--independently of whether they happen to be represented explicitly in the

data structure.

Chains of Lines

Most drafting systems provide for representation of irregular lines, in piecewise

fashion, as connected sequences of short line segments. In the simplest case, points on an

arbitrary curve are connected by straight lines to produce a faceted approximation the

corresponding input technique is to specify these points in sequence. In general, the

segments might be of any line type provided by the system. Such a chain, often called a

polyline, is useful for describing a complex object or path, such as a boundary or contour

line in a site plan, that is to be understood as a single entity. If a chain's last point is

connected back to its first point, it forms a closed circuit--a structure of particular interest

that will be discussed in detail in the following chapter. Another kind of chain operation

constructs irregular lines from straight lines by executing procedures to fractalize them.

The degree of irregularity that results can be controlled by a parameter. Some drafting

systems include this type of line in their repertoires.

Basic Operations on Lines

Just as a text-processing system provides basic tools for inserting, selecting, and

deleting characters, a drafting system always provides basic tools for inserting, selecting,

and deleting lines--the visible elements of a drawing. These suffice for constructing and

editing drawings, but it is convenient to have a wider range of manipulative capabilities at

one's disposal. Sophisticated drafting systems are distinguished from simpler ones by the
.. 47.

wider ranges of specialized tools they provide. Among the most commonly

provided additional tools are break, extend, and trim operations. A break operation

separates a specified line into two lines at a specified point . (Notice that this does not

change the appearance of the drawing, but it does change the underlying digital

representation, and this can later cause the drawing to behave differently when you

perform other operations.) An extend operation lengthens a selected line by a specified

amount or to meet some specified line .Conversely, a trim operation shortens a selected

line by a specified amount or cuts it back to some specified line.

Geometric Constructions

Traditionally, facility in technical drafting has depended upon knowledge of

constructive procedures executed with traditional drawing instruments--procedures for

constructing parallels and perpendicular bisectors to lines, tangents to circles, and so on.

(The famous secrets of the medieval masons mostly consisted, in fact, of step-by-step

descriptions of these procedures.) They can be replicated with the basic drafting system

functions of snapping (equivalent, for example, to placing the point of compasses at the

intersection of two lines) and insertion, deletion, division, extension, and trimming of

primitives. There is no need, however, to burden the user of a drafting system with

remembering all the steps of all these procedures. It is better to provide for automatic

execution of commonly used constructive procedures, thus extending the tool kit with

some higher-level operations. The computer versions of these procedures depend not on

finding points by intersecting lines or arcs (as in Euclid) but on evaluating formulae.

Consider, for example, the problem of finding the midpoint of a straight line. The

beautiful construction given by Euclid involves striking two arcs to locate a pair of points,

then constructing a line through those points to locate the required midpoint. In the

computer version, the X-coordinate of the midpoint is calculated by taking the average of

the X-coordinates of the ends, and the Y-coordinate of the midpoint is calculated by

taking the average of the Y-coordinates of the ends. The generalization to division into

any specified number of equal parts is obvious. Although the arithmetic becomes more

complicated, further generalization to subdivision of arcs and splines is also

straightforward. In addition to procedures for subdividing existing lines, a draftsperson

.. 48··

DJ:'iPl «v or THTffF Dl\fFs;sıcı-,:Aı. er TR',T.D J J'\TS ;\:\'D SURFACFS rx COMViTTF.R (;R.\PHlCS

needs to know procedures for inserting new lines in specified orientations to

existing lines. To show wall thicknesses on a plan, for example, an architect often needs

to insert parallels to existing straight lines, arcs concentric with existing arcs, and even

splines appropriately offset from existing splines. Other artifact geometries may be

defined in terms of perpendiculars to straight lines, and normals and tangents to curves.

Sophisticated drafting systems provide convenient tools for locating crucial construction

points or for inserting lines directly in these relationships. These may be used for graphic

problem-solving, in the same way that the mathematical functions provided by electronic

calculators, spreadsheets, and symbolic mathematics systems may be used for numerical

problem-solving. The larger its repertoire of useful geometric construction tools, the more

effectively a drafting system can be used as a problem-solving rather than mere decision

recording medium. Designers often want to avoid discontinuities in curved profiles, for

example, and this necessitates locating curves in tangential relationships: a straight line

may be tangent to a circular arc, an arc may be tangent to another arc, an arc may form a

fillet between two straight lines, and so on. Unless your geometric knowledge is

extensive, construction of these figures can present considerable difficulty. Thus many

drafting systems emphasize tools for continuous connection of straight lines and curves.

This game can be elaborated endlessly, since entire construction procedures can always

be used as steps in still more elaborate construction procedures--just as very complex

mathematical functions can be built up from simple ones. In this way a whole hierarchy

of drawing construction tools can be implemented. At the bottom of the hierarchy are a

very few simple, basic operations and at the top there are potentially many powerful,

specialized procedures. Skilled users of drafting systems achieve maximum efficiency by

avoiding low-level operations wherever possible and exploiting the power of whatever

high-level operations are available. It is worth noting, parenthetically, that traditional

drafting (and hence design) practice is based almost entirely on the relatively simple

constructions of lines and arcs that can be executed efficiently with straightedges and

compasses and a basic knowledge of Euclid's Elements. But a computer can rapidly

execute very complex constructions, so designers' geometric explorations no longer need

be constrained by these ancient limitations. Some architects have begun to exploit this

freedom.

;:, ">.; r:,.,~,..-1,··,,'< 'l..ı

Selecting, Transforming, and Duplicating Subshapes

Lines are put together (whether by hand or by using a computer drafting system)

to construct more complex shapes such as rectangles, triangles, or complete building

elevations. Any part of such a shape that can be traced is a subshape. Computer drafting

systems provide not only for selecting and operating on points and lines, but also for

selecting and operating on arbitrary subshapes. This greatly enhances their power. Most

computer drafting systems formalize the concept of subshape by treating the complete

drawing as a set of instances of line types, and subshapes therefore as subsets. These

subsets form a Boolean lattice under the relation of shape inclusion, and the nodes in that

lattice define all the possible subshapes. It follows that subshapes can be selected either

by selecting constituent lines one by one or by specifying an area of drawing surface and

counting all lines falling within that area as members of the subshape (or selection set, as

it is often called). More complex subshapes may be selected by adding lines to a selection

set or deleting lines from it. This approach is not entirely satisfactory, however, since

many of the subshapes that may be of interest to a designer are not subsets of line

primitive and cannot directly be selected in these ways. The alternative is to extend the

idea of constraint-based editing one step further and provide a facility for specifying the

subshape types that are currently of interest and for automatically recognizing emergent

instances of them. Designers most frequently pick out subshapes because they want to

transform them in some way . Drafting systems provide tools for translating, rotating,

reflecting, scaling, and distorting specified subshapes, and use of these tools to

manipulate entire subshapes usually proves to be a much more efficient way of modifying

a drawing than modifying lines one by one. Since values for transformation parameters

are frequently defined by existing geometry, it is often very efficient to specify

transformations by snapping or by pointing to existing geometric entities to describe

distances and angles. Simple systems allow translation, rotation, reflection, and scaling

operations to be performed individually. More sophisticated systems allow arbitrary

sequences of these transformations (concatenated linear transformations) to be specified,

named, and recalled and applied. Internally, the task of performing geometric

transformations is essentially one of multiplying the coordinate pairs that define the

original shapes by transformation matrices to produce transformed coordinate pairs that
.. 50-

define the transformed shapes. This highly standardized and repetitive task can

be performed by software or, for greater speed, by specialized graphics hardware.

Drafting systems also provide tools for replicating (and deleting) complete shapes. It is

not very useful to replicate a shape directly on top of itself, so replication is usually

combined with some transformation. Combination of replication with translation provides

an extremely efficient way to generate rows and grids of shapes. Similarly, combination

of replication with rotation and reflection is an effective way to generate figures with

symmetry about points and axes .

Repeatable Standard Shapes

Some types of subshapes are used very frequently in drawings, so drafting

systems are often elaborated to provide for instantiation of complete subshapes selected

from a standard menu--much as a drafter working by hand might trace stencils or cut and

paste photocopies to produce instances of common shapes. Some simple shapes, such as

rectangles, are used in many different contexts. But others are more specialized:

doorswing symbols are commonly used in architectural plans, resistor symbols are

commonly used in electrical diagrams, boxes and arrows are commonly used in

flowcharts, and so on. So drafting systems usually provide small menus of repeatable

standard shapes for general use, plus much more extensive custom menus for particular

applications. In the more sophisticated systems, users can extend and customize these

menus themselves. Documentation for different drafting systems refers to these standard

shapes variously as cells, components, instances, and groups. However the IGES

(International Graphic Exchange Standard) standard for graphic data transfer calls them

segments, and this terminology is now widely used. Segments are defined in their own

local coordinate systems and are instantiated in drawings by specifying values for

location parameters: X-coordinate, Y-coordinate, orientation, and handedness. The

handedness parameter allows an element such as a doorswing to be instantiated in both

right-handed and left-handed versions. Where a design is built up from repeating

elements, use of segments provides a very efficient drawing construction method-

particularly when it is combined with some of the other techniques that we have

considered. Segments can be snapped into place on grids and skeletons of construction

.. 51·

":i i .-'• ~- ;, ·:., ı ·;·-~ç--.,,, r;r· {"'j: iı ·-ı.)

DJSPLAY or TJIRFF DH.;[f_,:sıo,J,l. cıırnTD JT·iFS ,\SD StTffACFS r-; COVViffFR (;RAPHlCS

lines, and arrangements of segments can be replicated and transformed as higher

level subsystems. As J-N-L Durand demonstrated in his Precis and other texts, complex

designs can often be parsed into hierarchies of repeating subsystems. Skeletons of

construction lines define the geometric relationships between subsystems. At the lowest

level of the hierarchy there are very basic standard elements. A computer drafting strategy

based on use of segments, snapping to constructed points and lines, and replication and

transformation of increasingly complex subsystems is directly in the tradition of Durand.

Parametric Variation

The usefulness of a standard shape to a designer is much enhanced if instances of

that shape can be varied appropriately to fit many different contexts: a doorswing that can

fit to an opening of any width is more useful than one of fixed width. So standard shapes

are usually parameterized for adaptability. Consider, for example, a semicircular arch.

Obvious parameters are span, thickness, and number of voussoirs. By varying these

parameters, while preserving the essential form of the arch, we can produce a wide range

of instances. Drafting systems that provide vocabularies of parameterized shapes allow

the user to specify parameter values and have the capacity to produce the corresponding

instance automatically--a process known as parametric variation. This is accomplished by

treating some of the entries in the data structure as variables rather than constants and by

specifying that the values of some variables are dependent on the values of others. The

form of the dependency is described by a numerical function. To instantiate or modify a

parameterized shape, the designer simply specifies values for the parameters by typing

them in, by moving a slider, or by selecting and moving a point on the shape itself

Values of dependent variables are then calculated, and the corresponding instance is

displayed. Drafting systems with simple data structures typically use parametric shape

procedures merely as data-input tools--"adjustable stencils"--that create sets of lines and

add them to the data structure. Under this arrangement, relationships between shape

variables are not recorded as part of the design, and shapes cannot be varied

parametrically after they are inserted. Systems with more sophisticated data structures

store parameter values in the data structure and execute parametric procedures whenever

instances of parametric shapes need to be displayed. Thus relationships between shape

•.. ~··· ~ _.:-:::·::::::.. ~2- ~

/\''·'I"''·· - , ,.,•' 4. ., ',ı li ı'·ı·· '•:',.'
/~' ~. V .. ·.,_\\~~~,

·ı ~.•..'"' ~ .._/':\ \
DJSPl.AYOF,lIRFF D!MFSSlO~'.\l. C.llfC,TJ) U:\'FS ·\',D sı T.FACFS Pi CO\Tl'\.'TER CiRAf'Hlf/ii.ıJ ··~.:

I 1%: ··(
'·ft .,· •. ''

, ,\ uı \.-\\·· · x(4 /'!f,

variables are permanently recorded, and shapes can be varied paramet~i;ally at ,,,.ı.ö:ı
~- '.')·, '\;,'<'.{'. Th h . d . h . 1 ~:-. ,:ıJFJ - _ _..,;,any tıme. e most compre ensıve an rıgorous approac to ımp ementatıon·<Elk=;.;;;;:::--·

parametric variation capability provides for storage of relationships both within and

between parametric shapes. In other words, the user can specify functions that make the

parameters of one shape dependent on the parameters of another shape and can vary the

parameters of this function to create different instances of the relationship. For example, a

parameterized rectangle and a parameterized ellipse might be put into a coaxial

relationship. Thus the coordinates and orientation of the ellipse are made dependent on

the coordinates and orientation of the rectangle, and the parameter of the relationship is

the center-to-center distance along the common axis. The relationship can be depicted by

drawing the axis and showing a dimension arrow. An interface might allow for selecting

and dragging the tips of the dimension arrow to vary the relationship. Many of the shape

to-shape relationships that designers need to define are quite simple and can easily be

shown graphically by analogy with common mechanisms. If a point on one shape is

"pinned" to a point on the other, then the shapes can rotate in relation to each other. If a

straight line on one shape is "hinged" with a straight line on the other, then the two shapes

can reflect in relation to each other. If a straight line on one shape can "slide" along a

straight line on the other, then the two shapes can translate in relation to each other. And

an adjustable pair of lines diverging from a center of scaling can be used to vary a

proportion relationship. Tick marks can be placed on these regulating lines to show the

limits of variation. The idea can be extended indefinitely by allowing locations and

orientations of some regulating lines to control locations and orientations of other

regulating lines. (The idea of regulating lines is, of course, an old one: both Durand and

Le Corbusier relied heavily on it. But it becomes much more useful and interesting when

lines are used not just as a rigid construction skeleton, but to regulate the behavior of a

drawing and maintain its essential structure as parts are manipulated.) Some drafting

systems provide fixed vocabularies of parameterized standard shapes and regulating lines

which you can "click together." Others allow you to extend the vocabulary as required by

programming your own through spreadsheet interfaces or by providing a general-purpose

programming language (such as Pascal or Lisp) that can access the data structure.

Constraint Solving

Now consider a relation of the form a + b = c between three shape parameters.

Such relations are called constraints, since assignment of a value to any variable restricts

or determines the values that can consistently be taken by the others. In this particular

case, assignment of values to any two ofthe variables determines the value of the third, as

we can see by transposing the expression to read a - c = b or b - c = a. In general, any kind

of arithmetic expression can appear in a constraint, and the relational operator linking the

two sides may specify equality, that one side is less than the other, or that one side is

greater than the other. The most general and flexible way to provide for parametric shape

variation in a drafting system is to allow the user to specify arbitrary constraints on the

locations of line end points (and additional defining points in the case of curves) and

automatically to adjust end-point locations as necessary to maintain consistency whenever

the user selects and moves any one of the constrained points. Software systems that

perform the necessary calculations are known as constraint solvers, and these are an

increasingly standard feature of advanced drafting systems. Depending on the nature of

the specified constraints, a shape may be underconstrained so that there are many ways to

adjust it to maintain consistency, it may be uniquely constrained so that there is just one

way to adjust it, or it may be overconstrained so that there is no way to adjust it. You can

discover how much freedom there is in the shape by experimentally attempting to move

points and letting the constraint solver adjust it in response. General, efficient constraint

solvers capable of handling realistic design problems are exceptionally difficult to

implement: they can become formidably complex, and the computations required to find

solutions to constraint problems can be extensive. So, although integration of constraint

solvers into drafting systems was first proposed in the early 1960s, it was not until the late

1980s that robust, practical constraint solvers for drafting systems became commercially

available.

Syntax-directed Editing

Just as the idea of constraint-based point selection and constraint-based line

selection can be extended to constraint-based subshape selection, so the idea of geometric

.. 54-

construction (putting lines in specified types of relationships with other lines)

can be generalized to putting subshapes into specified types of relationships with other

subshapes. Consider the possible relationships of a square to another square, for example.

These include face adjacency, vertex adjacency, parallel-sided and concentric, rotated and

concentric, and face to diagonal. A simple syntax-directed drafting system that provided a

square as the vocabulary element and tools for inserting squares in these relationships

would support very efficient construction of the types of compositions. (The term "syntax

directed" is used because such relationships define the syntax of compositions made from

vocabulary elements.) Deletion of subshapes may also be syntax directed. In other words,

the system may provide operations for deleting specified parts of certain types of

subshapes. In general, a syntax-directed editing operation may be described as a rule for

replacing one type of sub shape with another. The rule can be applied to any subshape that

matches the left-hand side. The result of application may be insertion of a new subshape,

deletion of part or all of the existing subshape, or some combination of insertion and

deletion. Syntax-directed editing rules customize a drafting system for very efficient

construction of designs of a certain type. (They amount to shape grammars that specify

languages of line compositions.) There may be rules for laying out floor plans, developing

window details, and so on.

Interface Dynamics

Traditional drawings are static: lines remain fixed in place on the paper and can

be altered only by laboriously erasing and redrawing. But the line structures maintained

and displayed by a drafting system are dynamic: they can be varied rapidly and

continuously. Increasingly, as computers have become faster and display technology has

become more sophisticated, drafting system software has reduced its reliance on

metaphors carried over from traditional drafting and has exploited the potentials of

dynamic interaction. Use of a highly dynamic drafting system not only is quicker than

traditional drafting (or use of the older style of computer drafting system), but also

provides a qualitatively different way to explore shape, dimension, and geometric

organization. The most elementary use of dynamic interaction is in line-insertion

operations. Most systems provide rubber-band straight lines and variants of the same

DhPL\Y OF THfffF Dl?\.ff's-SfOSAJ. Cllf(\,T.l) Ll:\T.S ·\ :\,) sımr \CFS l"\" COMf'tTTER GRAPH!CS

technique for inserting circular arcs, elliptical arcs, and rectangular boxes. More

sophisticated systems also provide for real-time manipulation of spline curves by

selecting and tweaking control points. The most sophisticated systems evaluate dependent

variables or even solve constraint systems with sufficient speed to support real-time

parametric variation of complex shapes. In older systems geometric transformations of

shapes were first specified by a typed command and then executed--often with significant

delay. But in newer systems translations, rotations, and resizings of complex shapes are

accomplished in real time by selecting the shape with a mouse or stylus then continuously

dragging into position. Even reflection operations can be performed continuously

(although they actually amount to rotating a shape out of the plane) by dragging the

corner of a selection rectangle back across one of that rectangle's edges. This lets a

designer observe a continuum of possibilities. But the real potential of dynamic

interaction emerges when it is combined with snapping, geometric construction, and

syntax-directed editing. In the simplest case, a rubber-band line or dragged shape snaps

from grid location to grid location instead of varying continuously. In a more

sophisticated syntax-directed system, the user specifies the spatial relationships that are of

interest, and a line or shape snaps to the nearest one as the cursor moves around. As a

rubber-band line moves across a complex drawing, for example, it might snap to the end

points of existing lines, to the center and tangent points of existing arcs, and into parallel

and perpendicular relationships with existing lines. In traditional drafting, lines are fitted

into place one by one--like the stones of a pyramid. But in dynamic drafting, a designer

specifies the elements and constraints of mechanisms, then explores adjustments of those

mechanisms to join them together and appropriately embed them in particular contexts. A

drawing is not a fixed structure of lines, but the current state of a line mechanism that has

been organized to behave in a particular way.

Structuring Drawings

Lengthy texts are usually subdivided into named parts, such as chapters, then

these parts may be further subdivided into subsections, and so on. (This book, for

example, has a two-level hierarchy described by a table of contents.) Similarly, it is

convenient to subdivide a large and complex drawing into named parts that have related

content. Each of these parts is a subset of the set of points and lines constituting

the complete drawing. One way to represent the assignment of entities to subsets is to

store each subset of graphic entities in a separate, appropriately named file. Another

possibility is to store all the entities in a single file, but to add a field for a subset name to

each entity record. In either case, the effect is to assign each entity to one and only one

subset. By analogy (though an imperfect one) with the traditional use in technical drafting

of overlaid sheets of transparent paper, subsets of graphic entities are usually referred to

as drawing "layers". Assigning an entity to a layer, then, is like drawing it on a particular

sheet. Drafting systems provide mechanisms (which range from elementary to very

elaborate and sophisticated) for organizing drawings in this way. At a minimum, they

provide for creating and naming layers, working in specified layers or combinations of

layers, shifting elements and shapes from layer to layer, and selecting layers or

combinations of layers for display, editing, or printing. Flexible layer-selection

capabilities become particularly important when large, complex drawings must be

displayed and edited on small computer screens. More sophisticated systems provide for

partitioning of layers into sublayers, then further partitioning of sublayers, and so on to

produce a hierarchy of graphic parts. This provides the user with an efficient way to

retrieve parts of a large drawing, in the same way that the hierarchical organization of a

large library according to the Dewey Decimal System provides an efficient way to

retrieve books. However, the simple "transparent paper" metaphor begins to break down

when layers are organized in this fashion. In general, a drafting system's drawing

organization capabilities need not be constrained by the old-fashioned and inadequate

"transparent paper layer" metaphor. A more flexible strategy is to allow association of

multiple nongeometric attribute fields with each graphic entity. Some of these fields may

contain values needed to control graphic display and access. Others may be defined by the

user for the purpose of associating identifiers=floor number, room number, subsystem,

supplier, and so on=with each entity record. Entities may then be selected, sorted, and

displayed by any specified combination of these identifiers. In other words, the drawing is

treated as a graphic database from which different types of reports are generated for

different purposes. Drawings organized in this way are content addressable rather than

location addressable: you retrieve and display drawing elements according to what they

- 57-

are, rather than according to where you put them. The idea of a drawing as

graphic database can be taken one useful step further by allowing association with graphic

entities of data fields for costs, specification clauses, text notes, and the like. This

facilitates coordination of drawings, specifications, and other documents, and (with

appropriate data-extraction software) allows the graphic database to serve as a source of

input for costing, schedule production, and other programs. The approach is of limited

utility, however, since drafted drawings typically do not provide a sufficiently complete,

nonredundant, consistent description of a project. (Later we shall see that appropriately

structured three-dimensional geometric models can do so.) Different design tasks demand

different organizations of a drawing. A simple diagram might be drafted on a single layer.

An elementary organization into a small number of layers usually suffices for

development of architectural plans and elevations. But very large, complex, technical

drawings usually benefit from careful organization into sophisticated graphic databases.

The drawing-organizational tools provided by drafting software are correspondingly

varied. Inexpensive systems, designed for performing simple tasks on personal

computers, usually provide only basic layering schemes. But systems designed for

handling large and complex projects need to provide general, flexible database

management tools equal to such tasks.

Formatting Drawings

Recall the way that, in text processing, the stored text may be given particular

typographic form and layout for display and printing. Similarly, with drafting systems, a

file of abstract geometric information may be given specific graphic form. Shapes may be

laid out at particular scales on surfaces of specified dimensions, lines may be given

particular weights and styles, and details such as title blocks may be added. In traditional

drafting a sheet size and scale must be selected before you begin drawing, and you cannot

change the weight or style of a line once it has been drawn (except by laborious erasing

and redrawing); but a computer drafting system allows you to make or change formatting

decisions at any time and to generate displays and drawings at different scales and in

different formats from the same file. This yields large efficiencies. It also facilitates

making graphic design decisions, since you can easily try out different line weights and so

on, and judge their effect on the appearance of the complete drawing. One

important consequence of this separation between specification of geometric information

- and formatting of drawings is that you do not work (as you must, in traditional drafting) at

a specific, fixed scale. Instead, you specify actual (full-scale) dimensions and coordinates,

and map this information at any appropriate scale whenever you need to produce a

display or plotted drawing. Display software treats the window in which the drawing is

displayed as the viewfinder of a camera with which you can track and zoom freely across

the surface of the drawing. You can zoom in to work on a detail, or you can zoom out to

see the whole drawing. You may want to have several windows open at once--one

providing an overview of the entire drawing, and the others zoomed in to various details.

This separation of dimensional definition from scaling for display allows some useful

freedoms in the handling of dimensional information. You can, for example, work in a

dimensionless conceptual unit such as a module or bay and only later give a design

definite dimensions by assigning a value to this unit. Or you can design a building in feet

and inches but produce the drawings at a metric scale. Another difference from traditional

drafting is that you can precisely control the kind and amount of graphic information

displayed at a particular moment or shown on a print that is made for a particular purpose.

Where a layering scheme is used you accomplish this simply by switching layers on and

off to yield different combinations: if your drawing is subdivided into n layers you will be

able to display or print 2n different combinations of layers. Where more sophisticated

database-management techniques are used, you specify exactly what kinds of things you

want to see and the software responds by searching the database to produce an

appropriate graphic report. Selective display is not just a convenience, it can also be an

important design-analysis tool. If you want to study the relationship between, say, the

circulation system and the structure of a building, you can generate a display or print

showing just the circulation and structural elements.

Printing and Plotting

Printers and plotters are, like traditional devices such as ruling, Graphos, and

Rapidograph pens, devices for precisely placing ink on paper. The difference is that they

are controlled by streams of commands sent from a computer rather than by a human

hand and eye. They vary widely in cost, speed, reliability, sheet size, line quality,

and the precision of control that they offer. Electromechanical pen plotters, which

emerged in the earliest days of computer graphics, provided for many years the standard

way to produce output from drafting systems, and they still have their uses. They literally

embody the idea that a line is the visible trajectory of a moving point, since they all work

by moving a pen or marker across a drawing surface, though there is considerable

variation in the specific arrangements of gantries, drums, and so on used to achieve this.

The pen is moved in a raised position to locate it at the start of a line, then moved in a

lowered position to draw the line. Different line weights and colors are produced through

some arrangement for selecting different pens. Pen plotters can produce large, precisely

drafted ink drawings on standard drafting film, so they fit very easily into design offices

that still make extensive use of traditional drafting and reprographic techniques. The

plotted drawings can be stored and printed in the usual ways and can be finished or

corrected by hand if this is desired. Since pen plotters have many mechanical

components, however, they cannot be produced very inexpensively, and they are

intrinsically limited in both speed and reliability. This means that they are increasingly

being displaced as more fully electronic raster printing devices develop in capacity and

sophistication and drop in cost. Some people find the precise, mechanical quality of pen

plotters unattractive and prefer the slightly wobbly line work and imprecise endings of

hand-drawn lines. Pen-plotted drawings can be "humanized," in a disconcertingly

convincing way, by mounting a pen loosely so that it shakes a little as it moves. Raster

printers and plotters work by depositing tiny dots of ink to build up lines, characters, and

halftone screens. Many different transfer mechanisms are used: impact, thermal,

electrostatic, inkjet, and laser. Resolution varies (depending on the technology) from less

than one hundred dots per inch to several thousand dots per inch, and paper formats range

from letter size up to the sizes handled by the largest pen plotters. In the past the use of

raster printers and plotters was limited by the need to execute a slow and expensive

process of rasterizing line data (converting it to patterns of dots) before printing. Large,

high-resolution drawings presented a particular problem, since they translated into huge

quantities of raster data. As processor and memory costs have dropped, however,

rasterization processes have become quicker and cheaper--making raster printing and

plotting increasingly attractive. Raster printers and plotters are much more

versatile than pen plotters, since lines, characters, and halftone screens can all be built up

from dots. There is no need to use crosshatching to produce toned areas on drawings, and

the characters used in annotation text can be in standard fonts (not constructed from small

numbers of pen strokes). So many of the old conventions of technical drafting, which

derive from the physical limitations of technical pens and the need to minimize

penstrokes, can be abandoned when raster printers and plotters are used for drawing

production.

Automated Measurement and Analysis

Designers do not just construct and produce drawings, they also measure and

analyze them. (Indeed, one of the fundamental purposes of precise construction is to

allow accurate measurement.) They measure lengths, angles, and areas, and they count

instances of things. Traditionally, the have used tools such as graduated scale rules,

protractors, and planimeters to accomplish these tasks, together with slide rules or

electronic calculators to derive additional quantities from these basic measurements.

Drafting systems provide measurement capabilities through application of

arithmetic procedures to values stored in the data structure. The most elementary

capability is that of reporting the numerical coordinates of a selected point. The capability

of a scale rule can be provided by a simple procedure that calculates and reports the

distance between two selected points and that of a protractor by a procedure that

calculates and reports the angle between two straight lines. More complex procedures can

be implemented to calculate distances along the various types of curved lines provided by

a system. In systems that provide parametric shapes, parameter values can be processed

not only to produce shape instances, but also to yield properties of those instances. If you

know the length and width of a rectangle, for example, you can calculate its area,

perimeter, proportion, area/perimeter ratio, and so on. The data structure can also be

scanned to produce counts of the instances of specified types of subshapes. Note,

however, that counting procedures that recognize emergent instances will, in general,

produce different results from procedures that only take account of instances that are

explicitly represented in the data structure. The simplest measurement facilities merely
-61·

report measured values on the screen. More ambitious systems provide interfaces

to spreadsheets or programming languages so that further analyses can be developed from

the extracted values. A spreadsheet might be used, for example, to apply cost coefficients

to measured plan areas and report rough cost estimates.

Uses and Limitations of Two-dimensional Drawings

All models are abstractions from the full complexity of reality: they specify

some properties and relationships of real objects completely and accurately, but distort

others or leave them out entirely. An appropriate model for some particular purpose

conveniently represents just those properties and relationships that are relevant to that

purpose, but at the same time achieves clarity and economy by leaving out everything that

is not. A model that consists of a set of two-dimensional line drawings of a building or

other design is a particularly highly abstracted representation, and this is the source of

both its major strengths and its most obvious weaknesses. When it explicitly presents and

appropriately structures precisely the information that matters to an architect or engineer

at a particular stage in the building design process, it is particularly convenient and

economical. But because it deals with only a few aspects of a very complex reality, there

are many important design activities that it cannot support. Since the data structure of a

two-dimensional drafting system represents surfaces and solids only by their edge lines,

and most edge lines only by their end points, and since it represents three-dimensional

objects only in two-dimensional projection, it has the virtues of parsimony. It is relatively

quick and easy to construct (by comparison with the more complete three-dimensional

representations that we will consider later), economical in use of memory, and rapidly

manipulable. Since coordinates are stored with high precision it allows sizes, shapes, and

locations of elements in plan, section, and elevation to be specified with great accuracy.

(This is not possible in a paint system, where precision is severely restricted by the

limited size of the raster grid.) The main disadvantage of such an abstract and economical

representation is that the viewer must "fill in" a great deal of information to interpret two

dimensional shapes as projections of three-dimensional objects and lines as boundaries of

surfaces and solids. Misinterpretation is possible (especially if the delineator and viewer

do not share a common understanding of architectural forms and construction processes),

and there is considerable danger that ambiguities and inconsistencies will escape

notice until it is ·too late to avoid damaging consequences. Furthermore, where a complete

and consistent geometric description of a design is needed as input to a procedure that

performs some design analysis or synthesis task, a drafting system model usually cannot

provide it. The value of models that have greater geometric completeness should not be

overstated, however. Plan, section, and elevation drawn precisely in line are not just

deficient representations of three-dimensional form (as proponents of more elaborate

three-dimensional modeling systems sometimes like to suggest): they are, when properly

constructed and used, powerful abstractions that allow the designer to focus on issues of

central importance. As Le Corbusier remarked, in Vers une architecture: To make a plan

is to determine and fix ideas. It is to have had ideas. . . . A plan is to some extent a

summary like an analytical contents table. In a form so condensed that it seems as clear as

crystal and like a geometric figure, it contains an enormous quantity of ideas and the

impulse of an intention. But, as he also emphasized, exploration of architectural ideas

does not stop at this level of abstraction: The plan is the generator, "the plan is the

determination of everything; it is an austere abstraction, and cold of aspect." It is a plan of

battle. The battle follows and that is the great moment. The battle is composed of the

impact of masses in space. Thus a two-dimensional drafting system is most appropriately

used in design at a relatively early stage when, after some initial unstructured exploration

(perhaps by freehand sketching on paper or with a paint system), it is time to "determine

and fix ideas" with some precision. Then, to engage the "battle" that follows, it becomes

more useful to employ less abstract models--models that represent lines, surfaces, and

volumes in three-dimensional space and that show the effects of surfaces in light. Later,

when a design has been completed, the precise, parsimonious character of drafted plans,

sections, and elevations again becomes appropriate for expression of definitive

construction information.

It would be a serious mistake to think that use of a computer for drafting such

two-dimensional line representations merely results in quicker production of finished

drawings. Indeed, efficiency in drawing production is no more than a useful byproduct.

The real significance of computer use for drafting is that static, location-addressable,

fixed-format, non-machine-analyzable design representations give way to dynamic,

content-addressable, variable-format, machine-analyzable representations. This

provides more effective support of design exploration, graphic problem-solving, and

analysis.

Geometry of Curved Space

The large scale geometry of the universe is governed by Einstein's General Theory

of Relativity. Einstein showed that gravity curves three-dimensional space, and that space

in turn moves matter. For the universe as a whole, the shape of the curvature depends on

the average density of the matter.

If the average density of matter in the universe is greater than the critical density,

the force of gravity will eventually rein in expansion and cause the universe to collapse

upon itself In this case, the universe is said to be positively curved, and Omega, the ratio

of the average density to the critical density, is greater than 1.

Conversely, if the average density of matter in the universe is less than the critical

density, gravity will lose its grip on matter and the universe will expand forever. This

negatively curved universe is defined by an Omega less than one.

If Omega is exactly one--that is, if the average density of the universe is equal to

the critical density--then the universe will expand to a maximum density and remain there

for eternity. This universe is flat; it has zero curvature.

Cosmos Curvatures

Now three dimensional curved space is difficult to visualize, but we can illustrate

the curvature in two dimensions. A positively curved universe is like the surface of a

sphere; a negatively curved universe, like a saddle. A universe with zero curvature is, not

surprisingly, like a plane. If you could draw a triangle by reaching far enough into space to

draw lines connecting three far-flung galaxies, you could determine the curvature of the

universe. The angles of a triangle in a negatively curved universe would add to greater than

180 degrees; those of a triangle in a positively curved universe, to less than 180 degrees. In

... -~·-· oı~r~-

a flat universe, familiar Euclidean geometry applies, and the angles of the triangle

add up to exactly 180 degrees.

Can We Measure the Curvature?

In principle, cosmologists can determine the curvature of three dimensional space

by similar means using volumes rather than areas. Unfortunately, geometric methods have

proven impractical because they rely on a uniform distribution of galaxies throughout the

universe which does not evolve with time--assumptions which are false since observations

indicate that the galaxies have a finite age and have changed over the eons.

Lines (and planes)

So far, we have discussed the advantage of using lines in our object

manipulations; namely, that one only needs to move (or project) the endpoints and the line

will shift as well. This has an advantage over manipulations of curves, in which every

point on the curve needs to be manipulated. Lines are relatively simple objects, but they

still possess an amount of complexity. It is no small task, for example, to code a program

that will plot a line segment on a computer screen. However, I have the advantage of using

a programming language that has a built-in function for plotting lines. There are two ways

of expressing the formula for a line. The first is easier to use, but the second will help us to

better understand higher dimensions. In two dimensions, the formula for a line is often

expressed in the explicit form y=mx+b. No explicit equation can define all three variables

of a line in three dimensions. Instead, we use implicit equations which describe the line in

terms of each variable, x, y, and z, in relation to a particular value, t, that defines the

position along the line. (The line represents a one-dimensional array and t expresses the

position in that dimension.) The orientation of the line (or one-dimensional array) is

expressed in three dimensions as a vector with A, B, and C values which correspond to the

x, y, and z axes, in relation to a given point on the line (x O, yO, z O) .

A three dimensional line is represented by the following parametric equations:

x=xO+At

y=yO+Bt

z=zO+Ct

To more fully understand the equations of a line and a plane, we will consider two

forms of the explicit function for a line in two dimensions. A line can be represented by a

vector which is a scalar of the line (in other words, points in exactly the same direction/is

parallel). Any point on the line (xl, yl) can be expressed in relation to another given

point (xO, yO) on the line and to the vector AI+BJ=K. The equation would be y=B/A

x+b. Variable b, they-intercept, is found b=yO-B/A xO.

A line represented by a point on the line and a vector scalar to the line. The

formula can be written y= mx+b or y= B/A x+yO-B/A xO. Parametric form is

x=xO+At, y=yO+Bt.

Another way of specifying the equation in two dimensions would be to use the

normal vector, or a vector which is perpendicular to the line. Again, a starting point on the

line (x O, yO) is used as a reference. This time, the formula comes out :

y=-A/B X +yo+ A/B xO.

By introducing the quantity C=-AxO-ByO, and substituting into the above

equation, you get y=-A/Bx-C/B. Multiplying the equation by B (mult. property of

equalities), and placing all variables on one side of the equation results in the formula

Ax+By+C=O. This is very similar to the formula for a plane in three dimensions, often

written in the form Ax+By+Cz+D=O. It is easy to see from the above demonstration that

the above plane has a normal vector AI+BJ+CK=L. In the equation, D=-AxO-ByO

C z O . From this it is easy to see that the equation for a hyperplane in four dimensions is

derived from a normal vector AI +BJ+CK+ DL=M and a starting point (xO, yo, zO, wO).

Naming E=-Ax0-By0-Cz0-Dw0, the equation for the hyperplane would be

Ax+By+Cz+Dw+E=O. Extrapolating further dimensions is a snap.

Intersection of a line and a (hyper)plane

The equations for lines and planes have one important application in this project,

as I will shortly demonstrate. We have already arrived at a way to project images from

another dimension, the first principal way of rendering higher-dimensional forms. We can

make four-dimensional models visible on a two-dimensional computer screen by first

projecting them into three dimensions, and then projecting three dimensions into two. This

loses some of the effect we would have if we could somehow display the model in three

dimensions. However, the ability to rotate the model and view it from different angles

mostly makes up for this.

As I mentioned at the outset, I also intended to show the representation of a four

dimensional model by slicing the portion that appears in one hyperplane, or three-space.

This slice is then displayed using projection, as a two-dimensional rendering. Again, this

rendering can be rotated from any angle, giving the illusion of viewing a three-dimensional

object.

Calculations for the intersection of a line and a plane (or hyperplane) in 3 and 4

dimensions are crucial to the logic of the above process. This is because the slice, or

intersection, is found by detecting the point(s) of intersection between each polygon and a

given plane. In order to do this, we must analyze each line of each polygon, and record the

point(s) where it intersects the plane.

After we have found the intersection points of a polygon with the plane, we can

plot a line or lines between them, demonstrating the line(s) of intersection. When each

polygon is thus processed, all of the lines of intersection of the object with the plane will

be displayed, often creating a new polygon or polygons. If we use the plane z=O for

clipping, with normal vector O I+ OJ+ 1 K, with (O , O , O) as the reference point, we can

simplify the above equation to t=-zl/ (z2-zl). A value of O<t<l means that the

intersection occurs between the two endpoints of the line segment. This is very useful for

our polygon-clipping routine, because we are not interested in any intersections that take

place outside the polygon.

To find the actual intersection points, we substitute the above-simplified t value

back into our original equation for line :

x=xl+ (x2-xl) t, y=yl+ (y2-yl) t, and z=zl+ (z2-zl) t.

This method has been used in the accompanying computer program, and the

results are, in my humble opinion, rather spectacular.

Visualisation data and its Representation

Graphics and visualisation is about transformation and mapping - normally

mapping information into some graphics primitives. It is from one data representation into

another. What are the common forms of data one encounters in visualisation?

Characterising data

The representation schemes require the design of efficient data structures with

efficient access methods. By understanding the character of the data we need to visualise,

we (hopefully) avoid designing inflexible and limited visualisation systems.

Visualisation data is discrete:A consequence of digital computing. This means

our data must be sampled information, and at a finite number of points. So invariably

continuous data (in the real world) is represented by discrete sampling. We can then join

the sampled data values with straight lines, or curved segments to obtain the more

appealing However we have made strong presumptions about the relationship between

between neighbouring data points, to apply the interpolation scheme we have.

Under discrete sampling we have measured no data in the regions between the

data points. However a primary purpose of visualisation is to "see" or "measure" data

values at arbitrary positions. Obviously the solution is to interpolate - but we need to have

a good understanding of the general behaviour of the underlying function our data

represents, eg. is it monotonically increasing (decreasing), is it approximately linear over

sufficiently small intervals.

The data is either regular or irregular.

Synonymous terms are structured and unstructured. Regular data has an inherent

relationship between the data points. In the previous example the function was sampled
· 68·

over equally spaced intervals. It does not need to be equally spaced to be regular,

there just needs to be a known relationship between the data points. For instance,

sequentially sampling at an interval twice as wide as the previous, will be regular.

The advantage of regular data is that one does not need to store all the point

coordinates. The initial coordinate, the interval (or relationship if it is not equally spaced)

and the number of points is sufficient. We can store regular data more compactly, and

many visualisation algorithms work more efficiently with regular data.

For irregular data there is no simple, known relationship between the data points.

The advantage of this type of data is that one can represent information more densely

where it is more rapidly varying (improving the interpolation quality) and less dense

where the change is not as large.

The above are the most common cell types used to represent the geometry to the

graphics subsystem. The first three categories form the basis of hardware acceleration, that

is they are drawn without having to worry about the details of setting pixel colors. General

polygon hardware acceleration can be found in higher end graphics systems.

Triangle strips (adjacent triangles share an edge) are a very efficient

representation, requiring n + 2 points to represent n triangles. They can also represent non

planar surfaces (OpenGL also supports a triangle-fan cell, where adjacent triangles share

an edge and all triangles share a common vertex).

Other cell types to consider :

• Quadrilateral

• Pixel

• Tetrahedron

• Hexahedron

• Voxel

DhPl AY OF -:-HRFF DlI\.IF.SSlO'\"A L CllR'..T.D ı.rxns ·\·s"T) St"RF \CFS p.; CO\'.Vi"TF.R CiRAf'HlCS

Such topology types are generally not hardware accelerated, but they may be a

better description of the data you have. Support for them would be in software.

Attribute types

Attribute data is usually associated with the data set points or cells, but can be

assigned to the cell components, such as the edges or the faces.

Examples of attribute types are, the temperature or velocity at a point, mass of a

cell or the heat flux across the face of a cell. The categories of attribute types are,

Lines in Space

Renaissance texts on perspective frequently depicted buildings as "wireframes"

collections of lines in three-dimensional space that had been projected in perspective onto

a two-dimensional picture plane. Similarly, in computer-aided design, the idea of a two

dimensional drafting system can readily be generalized to that of a three-dimensional

wireframe-modeling system. This is accomplished by representing lines within a three

dimensional rather than a two-dimensional Cartesian coordinate system, providing

corresponding editing operations, and providing software for producing perspective and

other projections on the display screen from geometric information stored in the three

dimensional database.

Construction Planes

Techniques for specification of points and lines in a three-dimensional Cartesian

coordinate system are straightforward extensions of those used in two-dimensional

drafting. Points can be specified by entering numerical X, Y, and Z values from a keyboard

or by snapping to previously established points. A special three-dimensional digitizing

device can be used in place of a two-dimensional digitizing tablet, or (more commonly)

some scheme can be used to adapt a standard mouse or digitizing tablet for specification of

points in three-dimensional space. The usual way to adapt a mouse or tablet for this

purpose is to introduce the idea of construction planes. Imagine a large sheet of glass

located arbitrarily in space. You could locate points and lines in space by two-dimensional
.. 70•

DhPJJ._Y OF THlffF DH,,ff.SSlO"":Aı. cıırc,T.D lJ~F.S _,,"\T) Si.TR FA CFS ı~ C:OVf't'TFR (ifL\f'HlCS

drafting on the surface of that sheet Then, by inserting additional sheets at

different locations, you could locate points and lines in other planes. Through use of

enough of these construction planes you could build up a three-dimensional arrangement of

lines specifying the geometry of a building. Three-dimensional geometric-modeling

systems usually provide a set of commands for specifying a construction plane--by giving

the coordinates of three points on it or by tilting up from another plane, for example. Using

these commands, you can make a construction plane coincide with any desired surface in a

design's geometry . Once a plane has been defined, you can name it and save it for future

recall. By defining several construction planes, and moving back and forth among them,

you can manipulate a three-dimensional model with ease. Technically, a construction plane

is simply a local two-dimensional coordinate system. Two-dimensional coordinates from a

mouse or tablet are interpreted by the software as points in the current construction plane

and are automatically converted into three-dimensional global coordinates. In other words,

coordinates are transformed as follows:

[X_local, Y_local] --> [X_global, Y_global, Z_global]

It is usually most convenient to organize the graphic interface so that the currently

active construction plane coincides with the plane of the display screen.

Glass-sheet Models

Dimensions and construction lines can be carried over from one construction

plane to another. Consider, for example, a horizontal plan-construction plane intersected by

a vertical section-construction plane as illustrated. When the section-construction plane is

being used, new lines can be snapped to the intersections of existing plan lines with the

section plane. Similarly, when the plan-construction plane is being used, new lines can be

snapped to the intersections of existing section lines with the plan plane. This makes it very

easy to work back and forth between plan, section, and elevation to produce a "glass-sheet"

model in which a building's essential geometric organization is defined by shaping and

positioning profiles and contours in intersecting horizontal and vertical planes.

Three-dimensional Geometric Transformations

.. 71,

Just as a drafting system provides operations for copying, translating, rotating,

reflecting, and scaling two-dimensional shapes in the plane, so a three-dimensional

wireframe-modeling system provides these operations for constructing and arranging

three-dimensional line shapes in three-dimensional space. They can be used to move

shapes out of their original construction planes--to develop a glass-sheet model into a

complete wireframe. In particular, a plan arrangement is often developed in the third

dimension by translating shapes various distances in a direction normal to a horizontal

plan-construction plane. Similarly, elevations and sections may be developed by translating

shapes in directions normal to vertical construction planes. In these cases the

transformations that are applied record the designer's decisions about height, depth, and

breadth. Another common move is to rotate elements about axes in their construction

planes. By setting up appropriate construction planes, by constructing plan, section, and

elevation profiles and contours, by copying and transforming, and by inserting lines

between established points, you can quickly delineate the boundaries of three-dimensional

forms. For example, a vertical prism might be constructed by first setting out a polygon in

a horizontal construction plane to define the base, then copying and translating to define

the top, and finally inserting connecting lines to define the vertical faces. Variants such as

pyramidal forms, wedge-shaped forms, twisted forms, and antiprisms can be produced by

simple variations of the transformation and connecting operations. Reflection operations in

three dimensions take place across specified planes, rather than across lines as in two

dimensions. Scale, stretch, shear, and perspective-distortion operations can also be applied

to wireframe shapes to complete the repertoire of linear transformations

Sweeping Points

When a straight line is translated out of a construction plane, its end points sweep

out two new straight lines . Thus the original line, the translated line, and these two new

lines together describe the edges of a rectangle. This idea can be generalized: a translated

polyline sweeps out the edges of a fence-shaped object, and a translated polygon sweeps

out the edges of a prism. Many wireframe-modeling systems, then, provide the

translational sweep operation for quick construction of "fences" and the edges of prismatic

objects. (This operation eliminates the task of explicitly inserting connecting lines between

the original and translated shapes.) Similarly, when a straight line is rotated out of

a construction plane, its end points sweep out two arcs . The original line, the translated

line, and the two arcs together describe the edges of a cylindrical surface. This rotational

sweep operation is also commonly provided by wireframe modelers. If a profile consisting

of connected lines and arcs is rotationally swept in increments, a surface mesh consisting

of patches bounded by arcs and straight lines is the result. A patch may bound a surface

fragment of a cylinder, a sphere, a torus, or a cone. When a three-dimensional object is

scaled, it is sometimes useful to connect automatically the end points of the original and

the resized lines. Thus, for example, the stones of a hemispherical dome can be constructed

by first rotationally sweeping an arc to construct a mesh describing the inner surface, then

scaling and connecting to construct the outer surface and the radial edges of the stones

Space Curves

Most wireframe modelers provide only translational and rotational sweeps, but the

idea can, in fact, be generalized endlessly. If a straight line is simultaneously translated and

rotated, for example, each of its end points sweeps out a helix. Whereas straight lines and

arcs are plane curves (you can always fit construction planes through them), a helix is a

space curve--one that exists only in three-dimensional space. A limitless variety of space

curves can be generated by procedures that calculate the coordinates of a point as some

function of a parameter T. By incrementing the value of T through some range, a sequence

of points on the curve is produced. Thus a procedure of this type is a tool for producing a

space curve, in the same way that a straightedge is a tool for producing a straight line or a

pair of compasses is a tool for producing an arc. If a wireframe-modeling system has an

interface to a programming language, you can build your own tool kit of these procedures.

In the past it has been extremely difficult for architects to compose with space curves,

since traditional drawing instruments work on planar surfaces to produce plane curves.

Wireframe modeling removes this limitation.

Structuring Wireframe Models

The ideas of grouping and layering generalize in a straightforward way from two

dimensional drafting to three-dimensional wireframe modeling. The metaphor of a "layer"

is less clear, however, since wireframes on different layers may intertwine in

three-dimensional space. The idea of treating collections of lines as reusable vocabulary

elements also generalizes. Lines may be grouped and copied, just as in two-dimensional

drafting. And many wireframe modelers provide built-in vocabularies of basic shapes such

as boxes, regular prisms, pyramids, wedges, spheres, cylinders, and cones.

Viewing

A wireframe model might be realized in three-dimensional form--literally as a set

of wires in space, for example--but it is usually more convenient to work with two

dimensional projections in which lines of the model are projected onto a flat surface for

display. Geometric-modeling systems provide software for displaying and plotting

specified projections. Whereas a wireframe model is essentially a set of lines in three

dimensional Cartesian coordinate space, a drawing projected from that model is a

corresponding set of lines in a two-dimensional Cartesian picture plane. Thus a projection

method (such as orthographic, axonometric, or perspective) is simply a consistent rule for

converting coordinate triples

[x
..!,, ,.!,. .,!,o ..t, ..!,, ,.!,. ..!,, ..!,, •'• ,.!,. ..!,, ..!,, I ..!,, I I ..!,, I ..!,, * I •'• ._!., l ..!,, I l ..!,, l ..!,, I I ..!,, ,.!., I .!. I ••• * > ..!, ..ı.. l * ~ I ..!, * * * * * C, * .J,. .!. I ***.I. I ..!., I I .t. I ••• l I ..!.o"'i""'i" •.r- •.•••.•••.••..•••.•• "İ' ..•.•.•...•. ¥ -r- ¥¥ ..•. ¥ -r- * ¥ -ı- ¥¥,,..),<r,-.>:ı:¥ -r- ,,..*,j<,,*.>j'> *"' * ..,~¥.... ..•. ..-"f-¥ ;>;<,,¥ •.•• ¥¥-'i'-¥.>f-¥¥ •••

*** accepted as standard conventions. All the common projection methods produce linear

transformations of the wireframe model: that is, they convert straight lines into straight

lines--never into curves of some other kind. These projections can be visualized by

imagining a picture plane located somewhere in the three-dimensional coordinate system

and straight projection rays passing through the picture plane to connect end points in the

three-dimensional model to end points of lines on the picture plane . To produce a display

on the computer screen, this picture plane is brought into coincidence with the plane of the

screen to produce the effect of looking through a "window" into a three-dimensional world .

.. 74.

To specify the location of the picture plane in the three-dimensional coordinate

system, it is often convenient to take a specified point as the origin of an auxiliary polar

coordinate system. The location of the picture plane can then be described in terms of

azimuth, altitude, and distance. This is like moving a camera around a fixed object to

produce views from different sides. Alternatively, the center of the picture plane can be

taken as the fixed origin of a polar coordinate system, and translations and rotations of the

three-dimensional model can be specified in this system to create the required relationship

of plane and model. This is like holding the model in your hand and turning it around to

look at it from different sides. The two ways of specifying the relationship between model

and picture plane are obviously mathematically equivalent. Some wireframe modelers

provide one, some provide the other, and some provide both. Viewer-centered viewing is

natural when you want to think of a design as an object, as is often the case in mechanical

part or product design. But object-centered viewing is natural when you want to think of a

design as an environment through which you move, as is usually the case in architectural,

landscape, and urban design. In either case the internal operation is always one of moving

the picture plane rather than performing a three-dimensional transformation of the model

itself

Orthographic Projections

The simplest possible rule for converting three-dimensional coordinates into two

dimensional coordinates is to throw away the Z values in the [X,Y,Z] coordinate triples

while leaving the x and y values unchanged. This rule may be expressed: [X,Y,Z] -->

[X,Y] This produces an orthographic projection onto an xy viewplane .Similar rules can be

used to project onto XZ and YZ viewplanes. The most salient property of such an

orthographic projection is that the image of a projected straight line will be the same length

as that of the original line when the original is parallel to the viewplane. This means that

contours, profiles, and faces parallel to the viewplane will be undistorted--the same sizes

and shapes as the originals. But lines not parallel to the viewplane will be shortened when

projected. The ratio of the projected length to the actual length is called the foreshortening

ratio. By changing view direction you can make different planes of a modeled building

parallel to the viewplane--and thus present them in undistorted fashion. Furthermore,

... 75-

through multiplication by appropriate scale factors, you can produce views to any

desired scale. In particular, by taking a top view with the viewplane parallel to a building's

floor planes and applying an appropriate scale factor, you can produce a scaled plan

projection. (Use of this convention in computer-aided design continues a tradition that goes

back at least to 2150 be and the reign of King Gudea of Lagash. Most buildings also have

many vertical wall planes, so it is also useful to produce elevations by setting the

viewplane parallel to various important wall planes. (But this is not always the case:

consider I. M. Pei's glass pyramid in the courtyard of the Louvre.)

Axonometric Projections

Often a designer needs to see the relationships between plans and elevations. The

most obvious way to show these is to make an orthographic projection from an oblique

view direction=such that horizontal and vertical faces are seen at once. This yields an

axonometric orthographic projection. Such projections can be subclassifıed according to

the foreshortening ratios of the faces in the three principal directions: the projection is

isometric if the three ratios are equal, dimetric if two of the three are equal, and trimetric if

they are all different. When a cube is drawn in isometric, the vertex angles in the drawing

become 60 degrees and 120 degrees: this is the most common architectural convention.

The choice among viewing directions for axonometrics depends upon what is to be shown

and emphasized. A worm's-eye axonometric shows how a plan organization develops into

three-dimensional interior space, and a bird's-eye illustrates the relationships between

elevations and roof forms. Dimetrics are often appropriate for showing corner details.

Trimetrics place the emphasis on just one of the faces. Clearly the strengths and

weaknesses of plans, elevations, and different kinds of axonometrics are complementary,

so it is useful to have simultaneous orthographic views. Whenever one view is altered in

the course of a design process, then, the rest must correspondingly be updated. In manual

drawing practice this process is laborious and a source of errors and inconsistencies. But a

computer-aided design system can simultaneously update all the views whenever a change

is made. Orthographic-projection software is normally controlled by two viewing

parameters. A direction-of-view parameter controls the distribution of foreshortening=that

.. 7(:,.

is, whether a plan, elevation, isometric, dimetric, or trimetric will result. And a

scale (or zoom) factor determines the size of the projected image on the screen.

Oblique Projections

Sometimes an architect needs to keep one elevation of a building parallel to the

viewplane (and thus undistorted) while showing something of the plan and faces of other

elevations. This is impossible in orthographic projection, but it can be accomplished.

The rule here is:

[X,Y,Z] --> [(X + ZIA), (Y + Z/B)]

The constants A and B control the foreshortening of the receding faces. In effect,

depth information is encoded in the image by shifting points diagonally according to their

depth back into the scene. Whereas the orthographic projections discussed earlier result

from taking parallel projectors perpendicularly through the viewplane, this new type of

projection results from using oblique parallel projectors. Chinese and Japanese painters

have traditionally employed oblique parallel projection in architectural scenes, but it has

been less popular in the West. A variant of the same idea, which allows the plan of a

building to remain undistorted, is sometimes preferred to the worm's-eye axonometric for

showing how a plan develops into a three-dimensional interior space. It was popularized by

Auguste Choisy in the nineteenth century, then widely used by twentieth-century

modernists. It also enables a roof plan to be developed downward. Software to produce

oblique parallel projections requires specification of one more parameter than for standard

parallel projections: the angle at which receding faces are to be taken back. This controls

the foreshortening of the receding faces.

Perspective Projections

If X and Ycoordinates are divided by an amount dependent on depth (rather than

added to an amount dependent on depth as in oblique projections), then perspective

projections are produced. The rule here is:

[X,Y,Z] --> [XI (C*Z), Y/ (C*Z)]

\

DhPL\Y or TlrnFr Dllı,ffSSlO"\"AL CITR\TJ) Ll"\"FS <·;D St'Rft,CFS r-; COMVi:TERCiRAPHJCS

The constant C controls rate of diminishment with depth back into the scene. This

is simply another convention for encoding depth information in an image by distorting

coordinates with depth. It is, however, related particularly closely to our optical

experience, since the visual angle subtended at the eye (or a camera) by an object decreases

with distance. As a famous illustration long-ago showed, perspective projection can be

understood as the result of taking projectors, diverging from the viewer's eye, through the

picture plane. The associated viewing parameters can readily be understood in these terms.

First, the viewer's station point and direction of view establish the principal line of

sight through the picture plane to the object. By varying these parameters we can change

the number and positions of vanishing points in an image and give emphasis to different

faces of an object. A cube, for example, can be shown in one-point, two-point, or three

point perspective. The horizontal and vertical angles subtended at the apex of the viewing

pyramid can also be varied. The effect is like that of manipulating a zoom lens. A narrow

viewing angle produces an effect like that of a telephoto lens, and a wide viewing angle

produces an effect like that of a wide-angle lens.

Clipping and Sectioning

When a parallel projection is displayed, lines must be clipped to the edges of the

viewing box; in the case of a perspective projection they must be clipped to the edges of

the viewing pyramid. The effect is to terminate lines where they intersect the rectangular

boundaries of the viewing window. This is called lateral clipping. Sometimes, as well, it is

useful to clip lines to specified front (or hither) and back (or yon) planes. This is called

depth clipping or z-clipping. It is analogous to the standard architectural technique of

taking a plan or section slice through a building. Efficient procedures for clipping lines are

well known and are standardly incorporated in wireframe-modeling systems. It is a

straightforward extension of z-clipping (though commercial wireframe-modeling systems

rarely provide it) to clip lines to an arbitrary plane as a starting point for construction of a

plan or section. Lines need to be broken at the section plane, and the break points

highlighted. These can then quickly be connected to produce the required plan or section

drawing. Usually it is best to assign the plan or section to its own layer, so that it can be

shown in a different color, shown by itself, or switched off entirely.

DISPLAY OF TlinFF Dllı,ff-·.;sın',AL Cilf(\,TJ) Ll'iFS ..•\SD SUR.F'.\CFS J'; COMf'lTTFR CiP.APHlCS

Spatial Ambiguity and Depth Cues

A common problem with wireframe images is the existence of spatial ambiguities.

A cube in axonometric, for example, has two consistent spatial readings. Selection of

points and lines in projected wireframe views is inherently fraught with ambiguity, since a

selected point on the picture plane actually specifies an infinite ray passing through the

three-dimensional model .These selection rays are parallel in orthographic projections but

diverge in perspective projections--making accurate selection in perspective an

exceptionally difficult task. Any ray may pass through multiple selectable entities. Good

snapping capability, to compensate for selection inaccuracy, is thus essential in wireframe

modeling. Problems such as these can be mitigated or eliminated, however, through use of

display techniques that provide additional depth cues to disambiguate an image. In hand

drawing depth cues are often provided by breaking back lines. This is not very practical in

computer graphics (since it requires time-consuming calculation of intersection points), so

alternative conventions are usually employed. Depending on the capabilities of the

available display technology, line weight, intensity, or color may be varied to indicate

depth. The most common approach to removing spatial ambiguity, however, is to provide

multiple, simultaneous projections. This is a straightforward computational task: the screen

is subdivided into viewing windows, projections are performed, and projected views are

mapped to windows. Typically, one of these windows will provide a picture plane that is

coincident with the current construction plane, and there will be at least one other

projection to relieve ambiguity. Operations, such as drawing a line, may be begun in one

view and ended in another. Multiple views also provide a designer with a way to keep

multiple design issues in mind as a model is constructed and edited. One common

technique is to set up several perspective views from crucial points in the approaches to a

building from different directions. Then, whenever a design operation is performed in one

view, the implications for other views can immediately be seen. This provides a way to

escape from the myopic vision of a project that commonly results from working

exclusively in plan or in section or in perspective from a particular viewpoint. And it

completely eliminates the tedious task of constructing new views to see what a change

made in plan or section means in perspective. Fast computers allow real-time variation of

viewing parameters to resolve spatial ambiguities, to reveal different aspects of an object's

geometry, and to select telling viewpoints. This was rare in the past, but as

sufficiently powerful computers have become increasingly available, it has come to be

regarded as an essential feature of a good wireframe modeler. Illustrates how azimuth and

altitude of the picture plane may be varied continuously. Where available computer power

is insufficient to handle a complete wireframe model in this way, a simplified version

containing just enough information for orientation may be used for real-time viewing

operations. Yet another disambiguation technique (sometimes combined with real-time

variation of viewing parameters in advanced systems) is to provide stereoscopic wireframe

views. This requires computation of perspectives from slightly differing station points,

together with use of a viewing system that recombines these views in some way. An

ordinary color display can be used to display superimposed complementary-colored images

which are viewed through complementary-colored pairs of filters. More advanced systems

use cross-polarization, alternating views, synchronized shuttered goggles, and so on. With

a stereo display, the cursor can be freed from the picture plane and can move in three

dimensional space to select points and lines directly. Stereo displays and three-dimensional

cursors can also be used to construct wireframe models by digitizing from photographs.

The starting point is a stereo pair of photographs. These are scanned and displayed on a

stereo display screen. The three-dimensional cursor is then used to digitize points, just as a

two-dimensional cursor can be used to digitize points from a two-dimensional bitmapped

underlay. A variant on this idea, which does not require use of a stereo display system, is to

use two photographs, to digitize each point in each view, then to use a special

reconstruction transformation of the form:

[[Xl,Yl], [X2,Y2]] --> [X,Y,Z]

Producing Drawings from Wireframe Models

It might be thought (and it was once commonly suggested) that a plan could

automatically be generated from a wireframe model by projecting it onto the ground plane

and that a section could be produced by projecting onto an appropriate vertical plane. But a

plan or section is a more subtle notation of design intention than a mere projection of lines

from three-dimensional space. First, not all of the lines in a three-dimensional model are

relevant in a plan drawing made for a particular purpose: some will have to be culled out
- t;O-

'

by careful depth-clipping or sectioning operations or by explicit line-deletion

operations. (This is particularly troublesome when distinct lines in space become

coincident in plan projection.) Second, some lines in the plan will need to be given

emphasis (by assignment of heavier line weight, or dashing, for example), and it is difficult

to specify foolproof procedures for accomplishing this automatically. Finally, many plan

notations are not, in fact, projections of three-dimensional shapes but conventional

symbols: these must be inserted in place of the corresponding projected shapes. The

projection of a carefully layered and sectioned wireframe model is, however, useful as a

starting point for construction of plans, sections, or elevations. It is best used as a reference

layer that defines the "raw" geometry of a design and that serves as an underlay over which

the two-dimensional expression is developed. One way to approach the task of further

graphic development is to use drafting-system operations to edit the projected wireframe,

define appropriate line weights, and lay out sheets.

Anot***

*****of the design and in fabrication and construction. A carefully constructed wireframe

can provide a three-dimensional skeleton of construction lines that establishes key

dimensions and defines key locations as constructed end points and intersection points.

This skeleton can be used as a basis for extraction of definitive coordinate and dimension

values and as a framework for snapping design elements quickly and accurately into place.

This generalizes the old idea (as developed, for example, in J- N-L Durand's famous series

of architectural textbooks) of controlling development of a design by means of a two

dimensional skeleton of axes, arcs, and grids. To snap a rigid wireframe element into

position in space, three fixed points must be specified. (If one point on the element is

snapped to a point on the existing wireframe, then the element can rotate in three axes

about the connection point. If two points are snapped, then the element can rotate about the

axıs passıng through them. But if three points are snapped, no rotation ıs

possible.) A system that supports point-to-point, point-to-line, and line-to-line snapping,

together with real-time translation and rotation of elements (so that the remaining degrees

of freedom for an element are always evident from its motion) makes accurate snapping

together of wireframe elements particularly quick and easy. Syntax-directed editing

capabilities are also very useful. Rules for snapping three-dimensional wireframe elements

together in commonly used spatial relationships can eliminate explicit performance of a lot

of tedious and error-prone selection, translation, and rotation operations.

Uses and Limitations of Wireframe Models and Views

A wireframe model takes its place in the image-production pipeline of a computer

graphics system. Two-dimensional points are converted (through use of construction

planes and so on) into a permanent three-dimensional geometric model consisting of points

and lines. Projected views of that model become temporary display files that are used to

drive display devices. And, when a raster display is used, the two-dimensional line data in

the display files must be converted into bitmapped images.

A wireframe model provides a more complete representation of building geometry

than a collection of two-dimensional drafted views--which are much like display files

without a well-defined common reference. It is less of an abstraction away from three

dimensional physical reality. Both its advantages and disadvantages follow from this shift

in emphasis.

Data structures used to store wireframes tend to require more memory than those

used to store two-dimensional drawings, since there will usually be more lines in the model

(compare a wireframe of a cube with its plan or elevation) and since each coordinate is

expressed by three numbers instead of two. More computational work must be done in

manipulating these larger data structures, and considerable additional computation is

required to produce perspective and parallel projections for viewing. There is more

geometric information for the user to input, and many input and editing operations become

more complex--both computationally and for the user. In general, construction of a

wireframe model takes longer, and costs more, than construction of corresponding two-

dimensional line models. The additional trouble and expense can be justified

when there is a genuine need for a higher level of geometric completeness and more

systematic coordination of views--when the three-dimensional form is not readily evident

from plans and elevations, for instance, or when views from many different directions are

needed, or where animated movement through and around the building is required.

Development of plans, elevations, and sections into a complete wireframe model can also

provide the occasion for further resolution of a building's geometry and the basis for

further elaboration into a surface or solid model--as discussed in the next two chapters.

Most importantly, a wireframe model can support forms of design exploration, geometric

problem-solving, and measurement and analysis that are very difficult or impossible with

two-dimensional representations. A designer can, for example, execute geometric

constructions in planes that are not horizontal or vertical, perform constructions with space

curves, and accurately measure shapes that would be foreshortened in plan or section.

Assemblies of Solids

Sometimes designers want to conceıve of three-dimensional compositions not

abstractly in terms of lines in space, nor more visually as collections of surfaces in light,

but spatially, as arrangements of volumes--both solids and enclosed voids. Indeed, as Le

Corbusier pointed out in Vers une architecture, this characterizes some architectural styles.

"Egyptian, Greek or Roman architecture," he wrote, "is an architecture of prisms, cubes

and cylinders, pyramids or spheres: the Pyramids, the Temple of Luxor, the Parthenon, the

Coliseum, Hadrian's Villa." By shaping and arranging blocks of wood or polystyrene an

architect can compose directly in volumes, but this is slow and cumbersome. An

increasingly attractive alternative is to employ solid-modeling software that provides

prisms, cubes, cylinders, spheres, and so on as geometric primitives, together with tools for

inserting, deleting, transforming, and combining these. The displays produced by solid

modeling systems look much like the displays produced by wireframe- or surface

modeling systems (depending upon the way that solids are rendered), but the underlying

geometric databases are very different. As a result, there are powerful geometry-editing

operations not available in wireframe or surface systems, there are additional data

extraction and analysis possibilities, and the process of design exploration with a

solid modeler tends to evolve in different ways.

Voxel Representation

Just as sounds can be represented by one-dimensional arrays of data points and

images can be represented as two-dimensional arrays of data points, so compositions of

solids can be represented as three-dimensional arrays of data points. For this purpose we

employ a cuboid subdivided into cubic voxels (volumetric elements) rather than a rectangle

subdivided into square pixels . We can then represent the forms of solid objects, using one

bit of information per voxel, by coding a voxel outside the solid as zero and a voxel inside

the solid as one. As with sampling sounds and sampling images, we need a sufficiently

high density of samples to avoid unacceptable aliasing effects. But high sample densities

are particularly hard to achieve in this case: whereas halving the interval between sound

samples doubles the total number of data points and halving the distance between image

samples quadruples the number of data points, halving the distance between solid samples

produces an eightfold increase in the number of data points. However, voxel

representations can usually be compressed effectively through use of a technique known as

octree encoding . This is a three-dimensional version of the quadtree technique for

compressing bitmapped images, which was discussed . An octree is constructed by first

subdividing the voxel array into octants, then further subdividing any nonuniform octants,

and so on until there is no need for further subdivision or the level of individual voxels is

reached. Each terminal node of the octree can then be labeled with the value of the

corresponding volume. We can generate output from voxel representations in several ways.

Horizontal or vertical slices through the voxel array are one-bit bitmaps that can be

displayed as sections. We can also produce hidden-line and shaded images by interpreting

the faces of voxels as opaque square surfaces. Raytracing techniques can be adapted to

render solids as transparent volumes--a particularly popular technique in medical-imaging

applications. And we can employ special devices to produce actual three-dimensional

solids. A stereolithography device, for example, operates on a tank of liquid to produce

laser-induced solidification at locations corresponding to occupied voxels. Use of one bit

per voxel suffices to distinguish between solid and void (which is enough for many design

purposes), but we can introduce more distinctions if we wish. Use of two bits per

voxel, for instance, provides for distinction between four different occupancy conditions-

different materials, say, or different densities of material. This is useful when we need to

represent the internal structures of solids, as geologists do when they represent geological

structures, as oceanographers and atmospheric scientists do in their domains, and as

medical imagers do when they investigate the internal structure of the human body. As

sensing and sampling techniques develop, and as the growing availability of inexpensive

memory and processing power increases the feasibility of handling large, high-resolution

voxel representations, processing of voxel data for scientific visualization purposes is

. becoming an increasingly important field.

Boundary Representation

For designers' purposes, however, voxel representations suffer from the same sorts

of limitations as the bitmapped images that we considered they are low-level,

unstructured, imprecise, and inefficient in use of available computational resources. We

saw that, for greater precision and economy and to provide for higher-level design

operations, we could use sparser and more structured representations in terms of lines--the

boundaries of things. An analogous approach can be taken to solid modeling. The basic

idea here is to generalize and extend the techniques of surface representation that we

considered . Connected pairs of zero-dimensional points (vertices) define finite one

dimensional lines, connected sequences of three or more one-dimensional lines can be used

to define two-dimensional closed polygons, and connected assemblies of four or more

closed polygons can be used to define closed polyhedral solids. Thus data structures for

boundary representation of polyhedral solids can be structured as illustrated . These can be

generalized, if desired, to provide for curved as well as planar faces. These sorts of data

structures consume more memory and are more cumbersome to manipulate than data

structures for wireframe or even surface models of the same forms. This is partly because

they must maintain a richer network of associations between geometric elements and partly

because the associated operations for transforming and combining solids (which are, of

course, implemented as operations on values in the data structure) must be prevented from

·· S5-

-, , .. ', r • ., , .--~..---,.,,7 r·-~ .•• 1., ı

producing invalid solids--self-intersecting ones, ones with "missing" faces, and

the like . The data structures and associated repertoires of operations of solid modelers are

usually organized to maintain the topological properties of closed polyhedral solids as

specified by Euler's theorem.

Vocabularies of Solid Building Blocks

Drafting systems and wireframe-modeling systems provide operations for

inserting various types of lines; surface-modeling systems provide operations for inserting

various types of surfaces; and, as we might expect, solid-modeling systems provide

operations for inserting various types of closed solids. A very simple system might, for

example, provide operations for inserting, selecting, and deleting rectangular boxes, of

specified dimensions at specified locations and oriented parallel to the axes of the

coordinate system. This structures a useful but very restricted domain of formal

possibilities. An obvious and simply implemented generalization is to allow placement of

boxes in any orientation. Vocabularies of polyhedra can be extended indefinitely--just as

the Froebel blocks that Frank Lloyd Wright played with as a child came in sets of

increasing variety, opening up increasingly extensive compositional possibilities. It is

common, for example, to provide simple "pitched roof' forms such as appropriately

parameterized triangular wedges, gables, hips, and pyramids. And, just as drafting systems

customarily provide circles and circular arcs as primitives, so solid-modeling systems

frequently provide the basic solid derivatives of circles: cylinders, spheres, cones, and

doughnuts. Solid-modeling systems that rely entirely on creating and locating instances of

vocabulary elements are known as primitive instancing systems. They are very effective in

contexts where the kit of parts that a designer deploys is, in fact, strictly limited (as is

sometimes the case in the manufacturing industry). In most design contexts, though, it is

necessary to extend the repertoire of possibilities by providing operations for constructing

solids from points, edges, and surfaces, and for combining simple solids to make more

complex solids.

Sweep Operations

\

DlSPLAY or rnnrr. Dll\ffSSlO\:Al. Cl1R',T.D JT',TS ;\'',;T:, SlTR.fACFS r-, CO\Tf'tTTER (ifL\f'HTCS

Sweep operations are very commonly employed in solid-modeling systems to

create new solids. When a closed polygon is translated along an axis, its zero-dimensional

vertices sweep out one-dimensional edge lines, its one-dimensional edges sweep out two

dimensional facets, and its two-dimensional surface sweeps out a three-dimensional

volume . Solids can also be constructed by means of hierarchical sweep operations: a point

might be swept to generate a straight line, that line might be swept to generate a square,

and that square might be swept to generate a cube. The usual approach to sweep operations

is to provide for drafting profiles in a construction plane, then translational sweeping of

closed shapes to produce prismatic forms, and rotational sweeping of open profiles to

produce solids of revolution. More sophisticated systems provide for sweeping closed

shapes along arbitrary curves. These operations have their counterparts in fabrication

operations, so they often serve well for modeling physical construction components:

extruded, planed, and rolled elements such as steel sections and wooden moldings can be

modeled by translational sweeping; lathed elements and turned pottery can be modeled by

rotational sweeping; and bent elements can be modeled by sweeping along curves. Sweep

operations can also be used to model the envelopes swept out by moving cutting tools, and

hence the volumes of material that they will remove.

Skinning and Tweaking Operations

Closed solids can also be constructed in surface-by-surface fashion, as illustrated.

This operation is known as skinning. The user must select the surfaces that are to be

assembled into a solid. The software then checks that the specified surfaces do indeed

enclose a volume (that they are "watertight"), and if so the surfaces are appropriately

associated in the data structure. This method of solid definition is well suited to describing

cast construction elements: indeed, the operation of constructing and positioning surfaces,

checking for watertightness, and converting the hollow shell into a solid is very closely

analogous to building and positioning form work and filling it with concrete. It is also good

for describing the exterior volumes of buildings (since these are bounded by waterproof

assemblies of surfaces) and the interior volumes of rooms (since these are often bounded

by surfaces closed to keep in the warmth). A closely related operation is known as

tweaking=selecting and moving a vertex, control point, edge, or face to adjust the shape of

a solid . This operation must be controlled very carefully (either by the user or by the

software), since it can produce inadvertent conversion of planar faces into

nonplanar ones and conversion of closed solids into self-intersecting objects. Tweaking

vertices and control points is particularly effective for describing shapes such as those of

tents, which are controlled at various points by poles and ropes. Objects that are formed by

bending, twisting, and other such distortion operations can sometimes be modeled by
taking a simple shape and tweaking it.

Features and Geometric Constructions

You can instantiate solids and locate them in space by specifying parameter and

coordinate values, much as you can insert lines by specifying their end-point coordinates.

But, just as drafting is more efficient when we take advantage of capabilities to snap to

existing points and perform geometric constructions, so assembly of solids is more

effectively performed by snapping new solids into specified relationships with existing

one**

****le, end points and midpoints of edges, center points of arcs, and centers of symmetry.

Potentially significant lines include edges of faces, axes of symmetry, and surface normals.

Potentially significant surfaces include not only faces, but also tangent planes to curves

such as cylinders and spheres, and planes of reflective symmetry. Points may be snapped

together; lines may be snapped into collinear, parallel, or perpendicular relationships; the

bottom surface of one solid may be snapped into a coplanar relationship with the top

surface of another one; and so on. It is, in fact, a nontrivial exercise to enumerate all the

definite spatial relationships of design interest that can be formed between one type of

solid and another. The realities of construction assembly often determine the potential

spatial relationships of solid elements. If they are to be glued together, for example, they

need face-to-face connection of sufficient area. If they are to be welded, they need edge-to-

\

edge or edge-to-face connection of sufficient length. If a column is to support a

beam without use of some sort of shear connection, then the column must go underne.ath

the bottom face of the beam, and there must be sufficient bearing area. If you want to make

a recessed joint (such as those common in timber construction), you must cut out a housing

so that you can intersect one element with the other. Similar practical constraints apply to

the spatial relationships of closed volumetric elements such as rooms. If doors are needed

between them, they usually need face-to-face connection of sufficient area. Alternatively

(and less commonly), one might fit inside the other to form an aedicule. In classical

composition, rooms were related concentrically, with coaxial axes of symmetry, or with

coplanar planes of symmetry. But Frank Lloyd Wright overlapped interior volumes in

ways that carefully avoided these classical relationships. And many of Frank Gehry's

compositions juxtapose volumes in ways that conspicuously avoid concentric, coaxial,

coplanar, parallel, and perpendicular relationships while still achieving the basic functional

connections that are needed. The simplest solid modelers avoid the issue of geometric

construction altogether and merely provide for direct location of solids in the coordinate

system. Some more ambitiously provide snapping and geometric constructions in

construction planes, but not in three-dimensional space. Only the most sophisticated so far

provide generalized capabilities for selecting features of solids and executing constructions

in terms of these features. However, feature-based editing capabilities allow a designer to

specify not only a vocabulary within which to work, but also a rudimentary syntax. As

solid modelers are used more extensively in design exploration, this capability will be

regarded as increasingly essential.

The Spatial Set Operations

Since lines, surfaces, and solids can be regarded as sets of points, we can define

the set operations of union, intersection, and subtraction (relative complement) on them

their effects when applied to pairs of elements of increasing dimensionality. They can be

implemented in line-, surface-, and solid-modeling systems, but they are of greatest utility

in solid modeling because they provide a very elegant, powerful way to construct complex

volumes from simple ones. They provide the necessary path from the simplicity of a

vocabulary of elementary closed solids to the complexity of many real three-dimensional

I
f
I

\

solid objects. Some interesting design strategies follow directly from combining

these operations with specific geometric constructions. Perhaps the most obvious is to

locate solids so that their faces are coplanar, then to perform union operations to build

complex solids from simple ones. This is closely analogous to gluing wooden blocks

together or assembling pieces of cut stone. But these logical solids, unlike actual pieces of

wood, can overlap in space. Unioning overlapping solids can produce surprising. If a third

cube is unioned in the same relation to the second as the second is to the first, and so on

recursively, a complex symmetrical polyhedron soon emerges. When the subtraction

operation is used, one shape becomes a "cutting tool" on the other=much as a drill bit is a

tool for subtracting a cylindrical solid from a piece of material. In general, subtraction can

be used effectively to model construction components that are produced by material

removal operations such as drilling, sawing, carving, planing, and milling. At a larger

scale, architectural elements that are conceptually subtracted (even though they may

actually be formed in some other way) can appropriately be modeled by means of

subtraction operations. Consider, for example, a rectangular solid representing a wall. By

locating translationally swept solids so that their sweep axes are perpendicular to the

vertical faces, then subtracting, you can quickly cut out the usual sorts of simple door and

window openings. The principle can be generalized, to produce a much richer variety of

openings, by locating the subtracted solids in nonperpendicular positions, by subtracting

nonprismatic solids such as cones and spheres, and by subtracting from more complex wall

solids. Thus the famous window openings at Ronchamp, for example, can quickly be

produced by subtracting angled pyramids from a wedge-shaped wall. Subtraction can also

be used to hollow out interiors. For example, locate a rectangular box in plan, locate a

smaller box inside it, and subtract to produce an interior room. What remains of the

original box becomes the wall poche. Or subtract a smaller hemisphere from a concentric

larger one to generate a hollow dome. If you take a strict modernist attitude you will

probably want the subtracted interior form to be similar to the exterior form, so that the

exterior reveals the interior. But if you think more like a baroque architect you will

probably want to subtract a dissimilar interior form--leaving a complex poche to mediate

the differences between interior and exterior. Sir Christopher Wren's dome for Saint Paul's

Cathedral in London, for example, has one shape on the exterior, a very different shape on

the interior, and a vast poche volume taking up the difference . Wren, the great

mathematician, would certainly have enjoyed the possibility of exploring geometric

possibilities with a solid modeler. Now imagine cutting a prismatic shape from the center

of a rectangular block of polystyrene with a hot wire, cutting another prismatic shape from

another direction, and removing the resulting core from the interior of the block. This core

is formed by the intersection of the two prismatic shapes. The stonemason's strategy of

projecting prisms from profiles drawn on the surfaces of a block, then removing everything

except the intersection, illustrates the same idea. Strategies for volumetric design by

intersection generalize this idea. You can construct the basic form of Helmut Jahn's State

of Illinois Center in Chicago, for example, by fitting a cone (resulting from setback

requirements) into the corner of a rectangular box (defined by the Chicago street grid) and

then intersecting. Similarly, you can construct the form of pendentives making the

transition between a square plan and a hemispherical dome by fitting a rectangular box into

the equator circle of a sphere and then intersecting. This construction can be generalized

for production of column capitals and many other kinds of transitional solids: the plan

shape can be not just a square but any polygon, and the intersected solid can be almost

anything that is nonprismatic--an elliptical spheroid, a cone, a pyramid, or whatever.

Regularizing the Spatial Set Operations

A difficulty with the spatial set operations on solids is that they are not closed-

they do not necessarily yield solids. In general, the intersection of two solids may yield a

solid, a face, an edge, a vertex, or the empty set. Some solid-modeling systems leave it to

the user to make sure that operations are specified so as to produce nondegenerate solids,

but a better approach is to eliminate the problem by regularizing the spatial set operations.

The basic idea is to partition a solid (considered as a point set) into interior points and

boundary points. Boundary points are defined as those whose distance from the solid and

the solid's complement are zero. In general, boundaries may include dangling and floating

edges and the like--the undesirable sorts of things that can result from ill-specified spatial

set operations. These blemishes can be removed by the operation of regularization, which

amounts to removal of every boundary point that is not adjacent to at least one interior

.. '}j.

DhPJAY or TITlffF DfaffSSlO"\"Al. cıTR',T.D ı .l'\FS ..,,;f) sı "R.FACFS rx COl'cff'l'TER (iR.APHlC"

point The regularized union, intersection, and subtraction operations can then be

defined so that they apply to regularized solids, and are closed in the regularized solids. A

related problem results from the round-off errors inherent in floating-point arithmeti__

Faces that appear to be coplanar may overlap to produce intersection slivers and the like.

Careful dimensional control, by snapping to grids and so on, is the best way to eliminate

this possibility.

Constructive Solid-geometry Representations

Spatial set operations can be applied to the results of spatial set operations tc

produce trees of derived shapes. These are known as constructive solid-geometry (CSG

trees. At the terminal nodes of a CSG tree are instances of solids in the basic vocabulary ol

the solid-modeling system. Each higher node is a union, intersection, or difference of twc

lower nodes. At the root node is the complete three-dimensional composition. Solid

modeling software evaluates specified CSG trees by converting them into boundarv oı

voxel representations that can be used to generate displays and for other computationa

purposes. There are two basic ways to handle this, and in choosing between them thı

software designer must evaluate a trade-off between making demands on memory anc

making demands on processor capacity. The first approach is to evaluate each union

intersection, or subtraction as soon as it is specified and then store the resulting boundan

representation. This is profligate in use of memory, but has the advantage that the tree i:

always fully evaluated: it is not necessary to reevaluate in order to display a node o

perform some other computation that requires explicit boundary information. The convers

approach is to store only the parameters of the lowest-level solids and the sequence o

combination operations, and to reevaluate the tree to a specified node whenever

boundary information is needed. This is extremely economical in use of memory. bu

makes much greater processing demands and can result in very slow generation o

displays. The first approach is usually appropriate when processor speed constrain

performance more than memory limitations, and the second tends to be appropriate wheı

the converse is true. From a designer's viewpoint, however, the evaluate-as-neede

approach has an additional advantage. It permits fluid variation of a design b

manipulating the parameters of the lowest-level solids, by substituting different types o

solids at the lowest level, and by pruning off whole branches of the tree and replacing then

with new branches. These capabilities turn a solid-modeling system into a

particularly powerful tool for design exploration.

Power Sets of Solids

How many different solids can you produce by locating some elementary solids in

space and performing union, intersection, and difference operations? The answer follows

from the observation that overlapping closed solids always divide space into distinct closed

regions. Each of these regions may, as a result of spatial set operations, become either solid

or void. The set of all subsets of the set of regions (its power set), then, is the set of all

possible solids. The power set forms a lattice under the relation of inclusion, as illustrated.

The spatial set operations provide a convenient way to explore this lattice.

Volumetric and Engineering Analysis

Just as polygon-modeling systems are particularly useful for urban design, space

planning, and other work that requires careful analysis of areas, solid models are

correspondingly useful for design work that requires careful analysis of three-dimensional

forms. In particular, closed solids have definite volumes, surface areas, centers of gravity,

and moments of inertia. These properties are tedious to calculate by hand for any but the

simplest cases, but solid-modeling systems can be equipped with efficient, general

algorithms for deriving them from voxel or boundary representations. Thus you can use a

solid-modeling system to measure the amount of material to be cast in a form, to measure

the volume of an auditorium for heating and cooling or acoustic analysis, or to measure the

volume of a building for urban design analysis. Volumetric analysis can be combined with

spatial set operations to provide some very powerful problem-solving capabilities.

Imagine, for example, that you need to design a room with a specified volume. Instead of

choosing some simple shape (such as a rectangular box) to make the volume calculatio

easy, you might write a procedure to push two complex solids together along an axi

generate their intersection at each step, and calculate the volume at each step. If you did

not like the shapes of appropriate volumes that resulted from this, you could try pushing

them together along another axis. Furthermore, the data structures of solid-modeling

systems can be extended to provide for association of material properties such as density
.. 93-

\

msr-ı.xv OF TlTRFF rnıv!F.YSlCf~Al. CllR\T.D ı.ıxrs ;\'\D S1.TT\CFS r-; COVPCTF.R (;R..\PlHCS

with solids. Associated algorithms can then derive additional properties. From

volume and density, for example, the mass of a solid can be calculated. And if you know

the location of the center of gravity, you know where this mass acts. For detailed analysis

of engineering properties, solids may be broken up into small pieces, known as finite

elements, as illustrated. Advanced solid-modeling systems provide algorithms for

automatically constructing finite-element meshes from boundary models. Once this has

been accomplished, finite-element analysis procedures can be used to produce detailed and

accurate analyses of structural properties, thermal properties, and so on.

Assemblies

In the same way that a three-dimensional physical model can be assembled from

wooden or plastic components, a digital model of a building can be assembled from

discrete solids. Such a model is the three-dimensional equivalent of the polygon maps that

we considered : it exhaustively and unambiguously describes the occupancy of space by

subdividing space into bounded pieces. Before constructing a solid model of a building you

must decide how to use solids to represent architectural elements. If you are making an

exterior massing model, for example, the solids in the model will stand for major

volumetric elements--much as blocks of wood or polystyrene stand for these elements in

physical massing models. You may want to use such models not only to generate images,

but also to analyze basic geometric properties of massing alternatives: you can compute

volumes and surface areas, cut horizontal slices to reveal floor shapes, and section

vertically to study profiles. For urban design purposes you can assemble simple exterior

massing models of buildings into three-dimensional models of urban fabric. You can

include in the model not only actual building volumes, but also notional volumes such as

allowable building envelopes, air-rights volumes, and view pyramids. These models are

quicker to build, easier to modify and update, and much more compactly stored than the

physical models that have traditionally been used for this purpose. With appropriate

associated software you can use them to generate aerial, skyline, and street-level views, to

analyze sightlines, and to study the shadowing effects of buildings. You can use spatial set

operations to combine height, setback, and other constraints into allowable building

envelopes for sites, and you can check for spatial clashes between proposed building forms

and these envelopes. And by associating space use and ownership information

with volumes, you can develop three-dimensional versions of the polygon-based

geographic information systems that we discussed . At the individual building scale you

can use solids

to***

* * *lding as a collection of solid construction elements. Such models are particularly useful

for exploring not only ways to combine physical elements in space, but also ways to

sequence their assembly in time on the construction site. By taking account of mass

properties, tectonic models can be used to calculate dead loads for input to structural

analysis programs. One of the hazards in design of a tectonic assembly is that you may

inadvertently position solid elements such that they intersect. A duct may pass through

space already occupied by a beam, for example. Fortunately, however, the procedures used

to perform spatial set operations can be adapted to provide an efficient way of

automatically checking for such spatial clashes. Essentially, a spatial clash checker looks

for pairs of solids that have nonempty intersections. The task of modifying an assembly of

solids to reflect design changes can become laborious and frustrating, since changes in the

position or dimensions of one solid element may propagate long chains of necessary

adjustments to other elements. If columns are moved further apart, then you need to

lengthen the beam that they support, then the slab supported by the beam must be

correspondingly lengthened, and so on. This process of adjustment can be automated if

component solids are defined as parametric objects and their relationships are described by

formulae that relate parameters so that, in effect, the whole assembly is programmed to

behave appropriately in response to changes in dimensions or locations of parts. Some

advanced modelers provide for this. Specifying an appropriate structure of relationships for

a complex three-dimensional assembly may, however, prove to be a very difficult problem.

Nonmanifold Assemblies

For some purposes, solid-assembly models may be too realistic. A designer might,

for example, want to include freestanding wireframes and floating surfaces (as well as

closed solids) in an assembly model to serve as a construction skeleton. Furthermore, it

may be useful to have operations that combine elements of different types--slicing solids

with surfaces, extracting medial axes from solids, and so on. The data structure of a typical

solid-assembly modeler is, unfortunately, not designed to allow this. More technically,

solid modelers are usually based on the assumption that solids have enclosing shells of

surfaces and that these enclosing surfaces are two-manifolds.

Such shells always obey Euler's polyhedron law, which may be stated:

V - E + F - R = 2 (S - H)

where V, E, and F are, respectively, the numbers of vertices, edges, and faces, H

is the number of holes, and R is the number of rings. This means, it turns out, that each

edge must be incident at exactly two vertices, and each face must be incident at exactly

two edges. The data structures of solid modelers are designed to accommodate objects that

obey this law, and operators that manipulate those data structures are designed to preserve

consistency with it. This excludes stand-alone and dangling faces and edges (the explicit

intention of the regularized spatial set operators)--an appropriate exclusion if the intention

is to model a world of solid objects, but not if the intention is to model a designer's

nonmanifold world in which such abstractions play an important role. Nonmanifold

geometric modelers, then, are systems that provide for assemblies of vertices, edges, faces,

and solids into configurations that do not satisfy Euler's law. They include in their

repertoires not only the usual operators for transforming and combining elements in each

of these classes, but also operators that are not closed in one or another of the classes.

These include operators that assemble edges to produce faces, that assemble faces to

produce solids (the skinning operation discussed earlier), and that reduce solids to more

abstract representations (which do not obey Euler's law) by pulling off faces, performing

medial axis transforms, and so on. Thus they provide environments for incremental

transformation of an abstract three-dimensional parti--a skeleton of lines and freestanding

faces--into a complete, consistent solid-assembly model. A full-featured, design

oriented geometric modeler might support four submodels: a point model, a wireframe

model, a surface model, and a solid model. In the data structure, entities of lower-level

models are associated to define entities of higher-level models: points bound lines, line

bound surfaces, and surfaces bound solids. Models at each level are regularized: the

wireframe has no isolated points, the surface model has no isolated or dangling lines, the

solid model has no isolated or dangling faces, and regularized union, intersection, an

subtraction operators are used at each level. However, there may be points in the point

model that do not bound lines in the wireframe, lines in the wireframe that do not bound

surfaces in the surface model, and surfaces in the surface model that do not bound solids in

the solid model. Association operations are used to create higher-level entities: points are

connected to make lines, lines are connected to make surface facets, and solids are skinned

by surfaces. Conversely, cutting operations are used to create lower-level entities: solid

are cut by surfaces to make surfaces or by lines to make lines, surfaces are cut by surface

to make lines or by lines to make points, and lines are cut by lines to make points.

Producing Graphic Output

Solid-assembly models implicitly embody surface and wireframe models, so all o

the types of renderings that can be produced from these less spatially complete models can

be produced from solid-assembly models as well. Some additional types of graphic output

are also made possible by the additional spatial information that a solid-assembly model

contains. First, you can cut arbitrary sections--at any location and angle and to complex

section surfaces as well as to planes. Sectioning to a vertical plane to produce a traditional

architectural section, to a horizontal plane to produce a plan, or to an inclined plane, i

accomplished by subtracting a half space or a very large box. A thin slice can be cut out by

intersecting the model with a slab-shaped object. Sometimes it is useful to intersect wi

more complex shapes to produce cylindrical cores, and so on. Sectioning by intersection

with a plane, rather than by subtraction or by intersection with a thin solid, is a goo

example of the use of a non-manifold modeler. The result of sectioning a solid-assembly

model by intersection with a plane is a set of two-dimensional poche polygons. These

might be kept on a separate layer, since they are not really part of the basic geometric

.. ')7.

model, or they might be transferred to a two-dimensional drafting system for use

in production of a section drawing. Sectioned three-dimensional models may be shown in

perspective or axonometric projection, or they may be projected orthographically omo

planes parallel to the section planes to produce more traditional plan and section drawings.

Section-cutting software can be extended to keep track of the new faces generated by the

cut so that these faces can be shaded or outlined to show the poche. Many different

rendering techniques may be used, depending on what you want to emphasize: among the

options are wireframe with poche, hidden line with poche, hidden line with cast shado

shaded, and shaded with cast shadows.

Automated Production of Physical Models

The CAD/CAM techniques that have been developed for use in the manufacturing

industry can sometimes be adapted effectively for production of physical topographic and

architectural models from numerical data describing solids. If a model is broken down into

planar surface facets, for example, then a computer-controlled laser cutter can be used to

cut the facets from thin sheet material: finely detailed wooden models of buildings and

contoured topographic surfaces can be produced in this way. Alternatively, the computer

controlled milling machines that now find wide application in the manufacturing industry

can be employed to produce complex solid parts in metal or high-density foam.

Stereolithography is perhaps the most versatile technique, and despite its technical

complexity and high cost it has rapidly found a niche in medical imaging and mechanical

parts design. A stereolithography system passes computer-controlled lasers through a tank

of polymer solution so that laser-induced polymerization occurs at specified locations. All

of these techniques make use of complex, expensive machinery that most designers are

unlikely to have in-house. They will increasingly be made available by model-making and

prototyping service bureaus, however. There are also some inexpensive alternatives. One

effective way to streamline model production is to print facet shapes with a laser printer,

mount them on cardboard, and cut them out with a matte knife.

\

rxsr-ı AY Cif THlffF DlT\.ffSSlO:'-;,\j. Cl ırc,T.D ı ,r..;r.s ,.\'\T) SURfACF!> r·,: CO\/f'UTFR (ifL\f'HlCS

Uses and Limitations of Solid Models

Solid models of parts and solid-assembly models have a higher level of geometric

completeness than corresponding bitmapped images, drafted drawings, wireframe models,

and surface models. This is the source of both their advantages and disadvantages. In

contexts where completeness and consistency of geometric representation are crucial,

where it is necessary to integrate a wide range of applications around a geometric model,

or where designers want to work in a directly sculptural way (rather than rely on

abstractions like plans and sections), solid and solid-assembly models are particularly

appropriate. But, since they must store more coordinate information and keep track of

more topological relationships, solid models of artifacts tend to be much larger and more

complex than less complete types of representations. This means that they make heavier

demands on memory, computational capacity, and software engineering technique. A

designer must consider whether the advantages of greater completeness justify the higher

associated costs.

There is also a more subtle issue of representational economy. At an early stage in

a design process a designer is usually interested in rapid, unencumbered exploration of

ideas. Ambiguities do not cause major problems and may even become sources of creative

ideas. Many inconsistencies can safely be ignored on the assumption that they will be dealt

with later if the idea turns out to be a good one, but they are not worth attention if the idea

is to be abandoned anyway. In this context sparse, economical representations that are easy

to manipulate and do not mire the designer in demands for detail usually work better than

representations that emphasize completeness and consistency. Later, when the focus shifts

to resolving problems, working out details, analyzing cost and performance precisely, and

producing complete documentation, abstract representations become less appropriate and

techniques like solid modeling become more attractive. The practical usefulness of solid

modeling technology has grown with the availability of computing power and the

sophistication of available software engineering techniques, and this trend will continue.

Prototype solid modelers emerged in the 1970s, but the commercially available systems

that followed in the 1970s and 1980s were limited, slow, expensive, and often unreliable.

By the end of the 1980s, however, robust and effective solid modelers were available on

./

DhPLAY or THlffF DH,.ff.'·.:sıo>:ALCl ırnT.D ı.ıxss ·<'\D SCRF \CFS r-: COVPCTER (;f{_-\f'HiCS

inexpensive personal computers and workstations, and they were becoming

increasingly popular. As solid-modeling software exploits the capacities of increasingly

powerful computers, it will be bound by fewer limitations on the topologies and geometries

that it can process, it will be capable of handling larger and more complex projects, and it

will increasingly emphasize real-time geometric transformation and spatial set operations,

stereo and virtual reality interfaces, and other features that support swift, fluid

manipulation of designs.

Motion Models

Consider a generalization of the idea of spatial and temporal sampling that was

introduced in the discussion of digital sound, then developed further in our explorations of

bitmapped images and solid models. You will recall that, in a digital sound recording, each

data point has one time coordinate. In a bitmapped image each data point (pixel) has two

space coordinates, and in a voxel representation of a solid each data point has three space

coordinates. In an analogous digital model of a three-dimensional solid in motion over

some time interval, then, each data point (hypervoxel) will have three space coordinates

and one time coordinate .

Assume, now, that we use one bit per hypervoxel to specify whether points in

space are occupied at moments in time. The result is a description of a four-dimensional

hypersolid. Such four-dimensional objects are very difficult to visualize directly, but, just

as we can collapse a spatial dimension to produce a two-dimensional image of a three

dimensional scene, so we can collapse a hypersolid to a three-dimensional voxel model.

One way to do this is to collapse the time dimension, so that versions of the solid overlap

in the three-dimensional spatial coordinate system: the effect is much like that of the

famous multiple-exposure photographs made by Harold Edgerton to study motion. A

second approach is to select a plane, then collapse the three-dimensional scene onto that

plane at successive moments: this produces a sequence of two-dimensional bitmapped

images--frames of a digital movie. If we display these frames side by side, we can obtain a

sequence like the well-known photographic ones made by Eadweard Muybridge, And if

we show them one after the other in rapid succession, we will see, from a particular

.. ·ı . . ~ < --~ r: -~ -,. ; r~~~•. ---;r r·sı: i, ,. ,

viewpoint, the solid in motion. Both of these visualization techniques have their

uses. A mechanical engineer might be interested in the three-dimensional volume swept

out by a moving part, since this volume must be kept free of obstructions. But if we want

to see a pattern of motion unfolding over time (at the expense of some spatial information),

we will prefer the sequence of frames. As you might expect, adequate sampling rate is as

important in digital representation of motion as it is in digital sound recordings, bitmapped

images, or voxel models of solids. If the spatial sample rate is inadequate, then the familiar

effects of spatial aliasing will show up in digital movies in particularly objectionable form.

Sawtooth patterns will appear to crawl along profiles, for example. If the temporal sample

rate is inadequate, then temporal aliasing effects--visual equivalents of frequency aliasing

in sound recording--will also appear. Motion will appear jerky, spoked wheels may seem

to revolve at spurious rates (or even to revolve backward), fine details of gesture may be

lost, and so on.

Keyframes

Just as we can generalize the idea of pixel and voxel representation to hypervoxel

representation of solids in motion, so we can also generalize the idea of boundary

representation to four dimensions. Recall that, in a simple boundary model of a solid, zero

dimensional points with specified coordinates are associated to define one-dimensional

lines, one-dimensional lines at specified positions are associated to define two-dimensional

polygonal faces, and two-dimensional polygonal faces at specified positions are associated

to define three-dimensional solids. Three-dimensional solids at specified time coordinates,

then, form the boundaries of four-dimensional hypersolids (which may be depicted in two

or three dimensions in the ways that we have considered). In practice, software for

modeling solids in motion typically provides the operation of keyframing for specifying

such hypersolids. A pair of keyframes shows a three-dimensional solid at two moments in

time--its states at the beginning and end of a motion sequence. Just as the translational

sweep operation moves a two-dimensional shape through the third dimension to define a

solid, the keyframe operation moves a three-dimensional solid through the fourth (time)

dimension to sweep out a hypersolid. To visualize how this works for a simple case,

consider a rectangular box at a specified position in space and time T = O: this is the first

.. 101-

keyframe. Now imagine the box translated and rotated to a different position at

time T = 1: this is the second keyframe. When two keyframes have been specified, and we

assume motion over the time interval T = O to T = 1, then it is straightforward to calculate

a frame for any intermediate value of T. By incrementing values of T in discrete steps

through the range O to 1, we can interpolate as many intermediate frames as we may wish

to see. When the box is moved in this way, each vertex sweeps out a line in four

dimensional space/time, each edge sweeps out a surface, and each surface sweeps out a

solid. Thus we obtain a complete hierarchy of bounding elements defining a hypersolid. (If

a wireframe or surface box instead of a solid box is keyframed, we obtain a

correspondingly less complete space/time model.) Any property of a three-dimensional

solid may vary between keyframes. If only position varies, then pure translational motion

results. If only orientation varies, then the solid rotates in place. When position and

orientation both vary, the solid tumbles along a path like a baseball. Scale may also vary,

so that the transformation from one keyframe to the next is a general similarity

transformation--describable by a 4 x 4 transformation matrix. Finally, there may be

parametric variation of shape and variation in surface properties such as color, specularity,
transparency, and roughness.

Translational Motion Paths

The simplest translational motion path between two keyframes is a straight line in

the three-dimensional spatial coordinate system. This can be interpreted as the locus of the

origin of a local coordinate system (sometimes called a pivot point) in which the shape of

the moving solid and its rotational motions are described. More complex translational

motion paths can be described by specifying not just pairs but sequences of keyframes, just

as polylines can be specified by sequences of points. Then intermediate frames may be

interpolated linearly (to produce jerky, segmented motion) or along arcs or splines to

produce smooth motion . Many motion-choreography and computer-animation systems

rely heavily on the idea of splined interpolation of translational motion paths between
keyframes.

· 102-

,f'HlCS

Rates of Change

If positions along a translational motion path are interpolated by dividing the path

into equal intervals, then translation at a uniform rate results. But, if the path is divided into

unequal intervals, then an object will speed up and slow down (like a roller-coaster car) as

it moves along the path. Another way to show this variation is to plot displacement along

the path against time. The first derivative of this curve shows the variation of velocity with

time; the second derivative shows acceleration. Rates of change in size, color,

transparency, and other keyframed variables can be plotted in exactly the same way. The

interfaces of motion-modeling and computer-animation systems typically display all of

these curves and allow for graphic editing by selecting and moving control points. When

any curve (for example, an acceleration curve) for a variable is changed, all of the other

curves for that variable are automatically adjusted. Linear interpolation (sometimes called

lerping) can be used to show movement of an automobile at constant speed, uniform

rotation of a wheel, or light fading at a uniform rate. To achieve smooth initiation and

termination of changes, s-shaped (slow-in I slow-out) curves are often used: these have

zero derivatives at their end points and constant derivatives in the middle. Other types of

curves describe constantly accelerating motion (a rocket taking oft), constantly

decelerating motion (a rolling ball coming to rest), and sharp discontinuities (a ball struck

by a baseball bat).

Motion Vocabularies and Compositions

These techniques extend the fundamental idea, which has evolved throughout this

book, of a designer's vocabulary. A writer's vocabulary is a set of words, a musician's

vocabulary is a set of sound types, a draftsperson's vocabulary is a set of line types, a

sculptor's or architect's vocabulary is a set of surface types or a set of solid types, and a

choreographer's or robot programmer's vocabulary consists of forms in motion. Each

element of such a vocabulary combines a three-dimensional solid object with a

translational motion path and rate curves for rotations, size changes, color changes, and so

on. The element can be instantiated by locating its defining keyframes in a four

dimensional coordinate system and by specifying values for other parameters. Motion

· 103-

.... :ı , ii,, r ,, -ı.., r:.,-·-..·-:.r~·._,. ;. -'I.)

/

I
I

compositions can be produced by instantiating elements within the same four

dimensional coordinate system. Variations on motion themes can be produced by giving

the same motions to different forms: thus a uniformly moving sphere might be substituted

for a uniformly moving cube in a composition. Alternatively, the same form might be

moved along different paths,or along the same path at different rates. Most importantly, the

synchronization of individual motions may be varied so that different three-dimensional

figures develop at different moments .

Hierarchies of Motions

In an assembly of solids, some or all of the solids may move at once. The solar

system, for example, is an assembly of spheres that spin on their own axes and also revolve

around each other. We could specify these motions, in a model of the solar system, by

constructing a sequence of keyframes for the entire system, but this would be very

cumbersome. It is both clearer and more concise to specify movements of some objects

relative to others. The obvious place to begin is with the sun, which we can locate at the

origin of the global coordinate system. Then we can specify the orbit of each planet in the

sun's coordinate system. Next, we can take the center of each planet as a local coordinate

system in which the orbits of moons are specified. Finally, if we want to specify orbits of

satellites around each moon, we can center lower-level local coordinate systems on the

moons. Thus we obtain a hierarchy of nested coordinate systems, together with motions

described in terms of paths and rates in each one. You can construct such hierarchies and

motion descriptions in different ways, but (as Copernicus noticed) some ways are better

than others. You might, for example, center the global coordinate system on the earth

instead of the sun--a natural enough choice, since the earth provides the usual frame of

reference for describing small-scale motions. Then, however, you would have to specify in

this system the orbit of the sun around the earth and the epicycles of the planets. Very

complex motions can be choreographed by concatenating simple motions in nested

coordinate systems. Consider, for example, a horse on a carousel. Relative to the carousel,

the horse translates up and down along a straight path . Relative to the ground, the carousel

rotates about a single axis. Concatenating these two simple motions yields the more

complex path of the horse relative to the ground. To support this sort of motion

.. 104·

....... :ı . ~ , ,~ r r:.,~,.,-;ı,·,--, ;, ·1.,

nısr-ı J,Y OF TlITIFF Dll\.ffSSlO~Al. CI TfC.T.D JT\1'.S ,\'··T,l SIT.FACE<; p; CO\'.Pl "TER CiR/.f'HlC',

choreography, many motion-choreography and computer-animation systems

organize three-dimensional elements and subsystems in hierarchies instead of layers. Each

subsystem in the hierarchy is selectable and has its own local coordinate system. Motions

of lower-level subsystems can be specified and synchronized at any level, within any of the

local coordinate systems.

Articulated Motion of the Human Body

As dancers, choreographers, and robot designers know, the movements of the

human body are organized in a hierarchy similar to that of the solar system. These

movements may be described schematically as follows. We center the origin of a body

coordinate system on the lower torso. The upper torso moves relative to the lower torso.

Legs move relative to the lower torso, and arms and head move relative to the upper torso.

The movements of each arm are organized in a hierarchy from the shoulder to the elbow to

the wrist and so on down to the tips of the fingers. Similarly, the movements of the legs are

organized in a hierarchy from the hip joint down to the tips of the toes. Relative to the

head, there is rolling of the eyes, wagging of the tongue, and wiggling of the ears.

Although the motion of each body segment is relatively simple, the path of a point relative

to the stage can become extraordinarily complex: consider, for example, the path of a

Balinese dancer's fingertip. An obvious difference between the human body and the solar

system, however, is that the parts of the body are connected by joints. These joints, by their

particular physical natures, constrain the motions of the parts that they attach to other parts.

The middle joints of fingers, for example, are essentially hinges allowing rotation in one

axis through a limited angular interval. But the shoulder is a ball joint allowing rotation in

three axes. The notation systems that choreographers have developed for specifying the

articulated motion of limbs connected by joints can be adapted for use in programming

computer models of the human body. One of the best known of these is the Labanotation

system. This employs simple two-dimensional shapes to specify horizontal movement

directions, combined with shading to specify vertical movement. Some simple dance

motions are shown, in this notation

Mechanical Joints and Kinematic Chains

Motions of solids connected by joints that constrain (but do not, in general,

prohibit) those motions are the particular concern of designers of mechanisms. As Franz

1f euleaux systematically showed in his famous nineteenth-century textbook on kinematics.

echanical joints can be classified into types according to the ways in which they

constrain motion. Each type of joint can be described more precisely as a transformation

(usually in 4 x 4 matrix form) specifying the constraints on relative motion of the parts that

it connects. The joint matrix has variables, so particular possible spatial relationships of the

parts can be specified by assigning values to these variables, and values can be

incremented with time to simulate possible motions . Complete mechanisms can thus be

described schematically as kinematic chains--stick-figure diagrams in which nodes stand

for solid parts and connecting lines stand for joints. (For theoretical reasons related to

techniques of motion analysis, mechanical engineers draw a basic distinction between

open-loop mechanisms, in which the chain has no closed cycles, and closed-loop

mechanisms, in which closed cycles do occur.) The motion choreography of a complete

mechanism can, then, be explored by defining the geometry of each part in the kinematic

chain and the transformation matrix for each joint, by choosing some of the variables as

independent variables and incrementing their values with time, and by computing the

values of dependent ".ariables. Results can be shown either as sequences of animation

frames or as diagrams of motion envelopes. Advanced computer-aided mechanical design

systems extend the idea of solid-assembly modeling by providing not only for modeling

part geometry, but also for specifying joint types and parameter values. Motion of the

mechanism can then be simulated by incrementing the joint variables at specified rates

through specified ranges. Spatial clash checking can be generalized to collision checking

for moving parts. The joints and mechanisms found in the built environment are generall

fairly simple and can readily be described and simulated in this way. Doors and windows

pivot on hinges or slide on tracks. Elevators and escalators also slide on tracks.

Drawbridges and seesaws pivot vertically, swing bridges pivot horizontally, and lift

bridges slide vertically. Cranes combine pivoting and sliding motions in various ways.

Stadium and auditorium roofs sometimes have sections that slide or pivot to open and

close. Folding awning frames, roof structures, bleachers, and chairs may be simple
- l 06-

/

multibar linkages. The kinetic sculptures of Alexander Calder are articulated and

jointed to produce hierarchies of pivoting motions.

Simulation of Physical Behavior

The idea of detailed physical modeling of assemblies by describing solids and the

interfaces between them can be developed still further by introducing laws of dynamics

into motion simulation. In this sort of simulation, solids have mass and elastic properties·

/ initial conditions of position, velocity, and acceleration are specified; and the laws of

dynamics are used to work out physically possible sequences of events. In 1986 Pixar

Corporation demonstrated this possibility with an animated film (called Luxo Jr.) in which

an articulated drafting lamp jumps from one position to another. Joint descriptions of the

same kind as those used in dynamic simulations of mechanisms provide the basis for static

and dynamic structural analysis of assemblies that are not mechanisms--those that are of

particular interest to architects and civil engineers. The possibilities of joint constraint in a

composition of solids actually define a continuum of mechanism and structure types. At

one extreme, all the solids in a composition can be isolated free bodies--each with three

degrees of translational freedom and three degrees of rotational freedom. Next, the solids

can be connected together in a minimal way (by a few wires, for example, as in a Calder

mobile) to produce a mechanism with many degrees of freedom. Joint constraints can be

added to produce a much more constrained mechanism in which movements are strictly

limited. When exactly the right amount of constraint is added to the system, a staticall

determinate rigid structure results. If yet more constraint is added, the structure becomes

statically redundant. Finally, the components may be completely fused together to produce

a monolithic structure.

Uses and Limitations of Motion Models

Motion models of three-dimensional assemblies are relatively costly to build,

modify, and maintain, so designers must consider whether the time and cost expended on

them will be justified by the value of the visualization and analysis results obtained from

them. Certainly they are not always necessary: adequate structural and kinematic analyse

/

can often be produced from much more abstract network representations. for

example. They are most likely to be justified at a late stage in a design process (when

details of geometry, materials, and connections have largely been resolved) rather than a"

an early one, when the organization and behaviors of an assembly are particularly diffıcul

to understand (as in a complex piece of machinery) and when the penalties for design

inadequacies are particularly severe (as in nuclear power plants). The costs of building and

maintaining motion models are likely to drop as the technology advances, however. And ar

the same time, demands for more thorough evaluation of designs are likely to grow. So we

will probably see much more widespread use of such models by designers in the future.

Increasingly, they will take the place of physical prototypes.

INSERTION OF SURFACE FACETS

A TYPICAL DATABASE FORMAT

z~

X

/

ROTATIONAL SWEEP OPERATIONS

SEQUENCES OF PROFILES OR RIBS

I

Paı.mııotrio 'lat'iQbm:ıs , ı i l I 111111111 ıı "ı 11111111111 ı .
mowİI:¥ ri!n in plcııı cınd
-,tiaı

dl 1111111111111 ııııııııııııııı,

"11 ı 11111 I I I I ı 1
ııııııllllfl 1111

ıllilllllliill11 ,ıııııııııııııı,

MESHES OF CONTROL POINTS

•

PULLED AND TWISTED

/

SURFACES AS CUTTING TOOLS

VISIBLE SURFACE DETERMINATION
-:

RAY

',.,~1-:-

nı., fim ~eııümı:
cf- cı ?'q)'" with cı .şmf-

_,...- ... ---- :----•.
---- ~ ·-----~---. _

---- -------

- - -- - -- - -- - -
- .-.

---------.!._
-~

.: --...•... _ - .•.

----•.. _ - . :.:::-:..._

DIFFUSE GLOBAL ILLUMINATION EFFECTS

~ ,fr.:::;,.,.,..,.,...
~"\--.·------·f .

EDGES OF EQUAL QND ARBITRARY SECOND ORDER
CURVERS VERTICES REGULAR AND ARBITRARY

SOURCES

1 - Foley,james D.

Andries Van Dam

Steven K.Feiner And John F.Hughes

" SOLID MODELLING IN COMPUTER GRAPHICS "

2 - Steven Harrington

" COMPUTER GRAPHICS A PROGRAMMING APPROACH"

I
3!- Ray A.Plastack

Gordon Kalley

~ORY AND PROBLEMS OF COMPUTER GRAPHICS"

	Page 1
	Titles
	NEAR
	EAST
	UNIVERSITY

	Images
	Image 1
	Image 2

	Page 2
	Titles
	CONTENTS
	- I -

	Images
	Image 1

	Page 3
	Titles
	COI\JTEI\JTS
	- II -
	1-f AKAN BOZBAY

	Page 4
	Titles
	CONTENTS
	- III -

	Page 5
	Titles
	CONTENTS
	- IV -

	Page 6
	Titles
	CONTENTS
	- V -

	Page 7
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 8
	Titles
	P(u) = U * Mspline2 * Mgeom2
	U * MSpline2 * Mgeom2 = U * Msplinel * Mgeoml
	Mgeom2 = M-1 Sline2 * Msplinel * Mgeoml
	=Msj , s2 * Mgeoml

	Images
	Image 1
	Image 2

	Page 9
	Titles
	Msl,s2= Mspline2 * Msplinel

	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Titles
	Sphere

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	Parametric Continuity Conditions

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	Geometric Continuity Conditions

	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Titles
	Bezier Curves
	Design Techniques Using Bezier Curves

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Titles
	Pn-2 + 4(pn - Pn-1)

	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	Cubic, Periodic B-Splines

	Images
	Image 1
	Image 2

	Page 22
	Titles
	SURFACES AND RENDERINGS
	The· Reception of Light

	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	Insertion of Surface Facets

	Page 25
	Titles
	Sweep Operations

	Page 1
	Titles
	Faceted Approximations of Curved Surfaces
	Surface Patches

	Images
	Image 1
	Image 2

	Page 2
	Titles
	Fractal Surfaces

	Images
	Image 1
	Image 2

	Page 3
	Titles
	Topographic Surfaces
	Surface Intersecting and Cutting

	Images
	Image 1
	Image 2

	Page 4
	Titles
	Rendering

	Images
	Image 1
	Image 2

	Page 5
	Titles
	Visible-surface Determination

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	Basic Shading

	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	Smooth Shading of Curved Surfaces

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Titles
	Cast Shadows, Transparency, and Reflections

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1

	Page 14
	Titles
	Diffuse Global Illumination Effects

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Titles
	Surface Details and Textures

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Titles
	Natural Phenomena and Landscape Composition

	Images
	Image 1
	Image 2

	Page 20
	Titles
	Retouching and Painting Shaded Images
	Combining Synthesized and Captured Images

	Images
	Image 1
	Image 2

	Page 21
	Titles
	Output and Presentation Technology
	Uses and Limitations of Surface Modeling and Rendering

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Titles
	Drafted Lines
	Coordinate Systems

	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	Point Specification

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Titles
	Repertoires of Line Types

	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Titles
	Chains of Lines
	Basic Operations on Lines

	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Titles
	Geometric Constructions

	Images
	Image 1
	Image 2
	Image 3

	Page 30
	Images
	Image 1

	Page 1
	Titles
	Selecting, Transforming, and Duplicating Subshapes

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	Repeatable Standard Shapes

	Images
	Image 1
	Image 2

	Page 3
	Titles
	Parametric Variation

	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Titles
	Constraint Solving
	Syntax-directed Editing

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	Interface Dynamics

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	Structuring Drawings

	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	Formatting Drawings

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	Printing and Plotting

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	Automated Measurement and Analysis

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	Uses and Limitations of Two-dimensional Drawings

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	Geometry of Curved Space
	Cosmos Curvatures

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	Can We Measure the Curvature?
	Lines (and planes)

	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Titles
	Intersection of a line and a (hyper)plane

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Titles
	Visualisation data and its Representation
	Characterising data

	Images
	Image 1
	Image 2
	Image 3

	Page 20
	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	Attribute types
	Lines in Space
	Construction Planes

	Images
	Image 1
	Image 2

	Page 22
	Titles
	Glass-sheet Models
	Three-dimensional Geometric Transformations

	Images
	Image 1
	Image 2

	Page 23
	Titles
	Sweeping Points

	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	Space Curves
	Structuring Wireframe Models

	Images
	Image 1
	Image 2
	Image 3

	Page 25
	Titles
	Viewing

	Images
	Image 1
	Image 2

	Page 26
	Titles
	Orthographic Projections

	Images
	Image 1
	Image 2
	Image 3

	Page 27
	Titles
	Axonometric Projections

	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	Perspective Projections
	\
	Oblique Projections

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	Clipping and Sectioning

	Images
	Image 1
	Image 2

	Page 3
	Titles
	Spatial Ambiguity and Depth Cues

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	Producing Drawings from Wireframe Models

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	Uses and Limitations of Wireframe Models and Views

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	Assemblies of Solids

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	Voxel Representation

	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	Boundary Representation

	Images
	Image 1
	Image 2

	Page 10
	Titles
	Vocabularies of Solid Building Blocks
	Sweep Operations

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	\
	Skinning and Tweaking Operations

	Images
	Image 1
	Image 2

	Page 12
	Titles
	Features and Geometric Constructions

	Images
	Image 1
	Image 2

	Page 13
	Titles
	\
	The Spatial Set Operations

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Titles
	I
	\

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	Regularizing the Spatial Set Operations

	Images
	Image 1
	Image 2

	Page 16
	Titles
	Constructive Solid-geometry Representations

	Images
	Image 1
	Image 2

	Page 17
	Titles
	Power Sets of Solids
	Volumetric and Engineering Analysis

	Images
	Image 1
	Image 2

	Page 18
	Titles
	\
	Assemblies

	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	Nonmanifold Assemblies

	Images
	Image 1
	Image 2

	Page 21
	Titles
	Producing Graphic Output

	Images
	Image 1
	Image 2

	Page 22
	Titles
	\
	Automated Production of Physical Models

	Images
	Image 1
	Image 2

	Page 23
	Titles
	Uses and Limitations of Solid Models

	Images
	Image 1

	Page 24
	Titles
	Motion Models

	Images
	Image 1

	Page 25
	Titles
	Keyframes

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Titles
	Translational Motion Paths

	Images
	Image 1
	Image 2

	Page 1
	Titles
	Rates of Change
	Motion Vocabularies and Compositions

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	/
	I
	Hierarchies of Motions

	Images
	Image 1
	Image 2

	Page 3
	Titles
	Articulated Motion of the Human Body

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Titles
	Mechanical Joints and Kinematic Chains

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 5
	Titles
	/
	Simulation of Physical Behavior
	Uses and Limitations of Motion Models

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	/

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 8
	Titles
	/

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 9
	Titles
	•

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 10
	Titles
	/

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 11
	Titles
	.
	~ ,fr.:::;,.,.,..,.,...
	·------·f .

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 13
	Titles
	SOURCES
	I

