
NEAR EAST UNIVERSITY

COMPUTER ENGINEERING
DEPARTMENT

l\tir. Mehrdad Khaledi Meltem İzgi
91397

_a;U.TRlX ALGEBRA AND ITS APPLICATION IN T\VO-DIMENSIONAL
TRA.N"SFORl\1IATIONS.•..........................•..•... 1

Transformations Commands...•..........•..................•...............11
Raster l\ıJ:ethod for transformations 13

MATRIX REPRESE.NTATION AND THREE-DIMENSIONAL GRAPHICS 14

Representing Graphic Object in Three Dimensienal., 15
MatrL"ı Representation of Translation and Scaling 25
Rfflim' of ,, ector Operations 28

ROTATIONS "' 31

Refleeılen and Sheares..•..........................36
Transformation of Coordinate System 37

:MATRIX ALGEBRA AND IT'S APPLICATION IN TWO
DI1VIENSIONAL TRAı'iSFORı"\IATION

The transfonnatioııs of two-dimensional objects were iııtroduced in section 3.5 "Wlıen an
object is described iıı terms of coordinates relative to lıotspot,rotations about that hotspot are
actually rotations about the origin.It is more difficult to compute the coordinates of a point
rotated about an arbitrary point.nus sectlens explaiııs how complex transfonnatiom can be
decompased in to a product of matrices, each representing a simpler traıısfonnatioıı.
Wblle matrices provide a way to iıı•festogate traıısfoımatioııs,prograıns written to describe these
transformatioııs usually condense tlıe result In code similar to tlıat given iıı the last section.You
will briefly rtl>iewmatrb: multiplicatioıı before applying it.

The size of a matrix ,wth m rows aııd ncolımııı is given as m*n.Tiıe matrix A,gi.venby

fi zil
A= ~S~

has 2 rows and 3 column and is therefore a z,ıı,3 matrix;whlle tlıe matrix B, givt.ıı by

B- G!J
is a 3*2 matrb:.A point l'\Iİ.tlı coordinates (x,y) may be represented as tlıe ı•z matri.1: [x,y].Two
matrices are equal if aııd only if they are the same size and all the correspondiııg entires are
equal.

The matrix C,ginıı by

is obtaiııed from the matrix.A deııcribed above by converting tlıe i th row of A iıı to i tlı column
~f C.The matrix C is called the transpose of A,writteıı A'.

The product XY of two matrices X and Y can only be computed if the number of columns of
the fırst matıix.X,is the same as the number of rows of the second matrix,Y.The resulting matrix
XY bas tııe same munber of rows as X and tlıe same ıuunber of cobunıı as Y.Tiıe product of the
two matrices of given abo,.,e,AB,is a Z * 2 matri.1:,whllethe product BA of the same matrices is a
3 "'3 matrix.Clearly AB=BA in this case.EveıNf the product XY of two matrices is deflned.the
product YX need ııot be defıııed because tlıe ıuunber of columns of the first matrıx must equal
the number of rows of the second matrts,

To calculate the entry hı the İtlı row and jdı cobunn of the product matrix,multioly
corresponding entires iıı the itlı row of the fırst matri.1: and the jtlı column of the second ma.trix
and add the preducts.The product AB of mtrices A=[aij] aııd B=[bij] can be described fonnally a_s
AB = [cij] wlıere

il
C = ~ (ai,k bk,j)

fİGURE 3.6.1
Computing the entry hı the :O.rst row.seeend eolumn oftlıe product oft:wo ıııatrlees

Coltunııs Columns Columns

1 2 3 1 2 1 2
Rows Rows Rows ıG 1 :])C ı~ :]

- ırn1 4 5 l 3 - l ?
3 5

The entry in the fırst row and second column of the product,AB,given in fıg.3.6.1, is

(1•1)+(1*4)+(3*6) =l + 8 + 18 = 18

Tiıe entry in the second row and second column of the product BA computed by multiplying
cerresponding members of the highlighted row from B and the highlighted column from A
(figure3.6.l).The value of the entry

(3*2) + (4*5) =26

One of the s,mplest applications of matrix multiplications is scaling a graph object.Figure 3.6.3
shews a rectangle "ıjth one of its comers at the origin.Comer has its coordinates changed to
x'=xSx and y'=ySy, where Sx and Sy are the scaling factors.This set of equations can be given
as the singlematrix equation.

EİGJIBE 3 6 ı
Compute the entry in the second row .seeond columnofa matrix,

Columns Columns Columns

1 2
Rows

1 lıı 2 ~

! LIRlJ
1 l 3 1 2 3

Rows

1~? ? "]2 ?? C;J .,1
3 • • •

ırrrrı 31
2 ~ l.:J 6-!

FİGURE 3.6.3
Rectımglevı,itli one comer at origin

(O,y Sy) (xSx,ySy)

.. ,y) Scaled rectangle r- OJ[x' r] - [xy] LO Sy

(x,O) (xSx,O)

Similar matrix equations can be used to represent reflections; for example, the reflection
through the origin, x' = -x and y' = -y (figure 3.6.4), and the origin x' =-x and y' =-y
fıgure(3.6.4) and the reflection through the line y =e.x' =y and y' =x,

2

Recalllıat if a point (x,y) is rotated through an angle O about tlıe ori,gin rectangle (figure
3.6.5), then tile coordinates of its new position, (x',y'), caıı be calculated by tile followJııg
eqnuatlons;

x' = x cos - y sin 6
y' = y COS + X sin 6

Application of matrix multiplication shows tlıat tlıis traıısfornıatioıı can also be repsented by
the following .matrix equation:

[x'y'] = [xy) fc:>s a sin a1
l:,sin a cos aJ

Here the matrices [x'y'] and [xy] represent the pohıts (x\y') and (ı:,y) respectively, and the
matrix

rcos etm6 sin OJ
cos6

is the representation of tile rotation.

FIGURE 3.6.4
Reflection through a line and reflection through a pohıt

y=x

•(-xıı,-yo)

Reflection across the line y=x

FİGURE 3.6.6
The tmnılntion ofthe point (r,y) to the po·int(x+Tr,y+Ty)

Another basic trıınsformation is translation (figure 3.6.6). The equation this transformation
are

x' = x+ Tx
y' = y+ Ty

3

These equations cannot be converted to a useful matrix representation l\lİ.thin usual
coordhıate system.To facilitate the mıifonn representation of transfonnations as matrix
equations,tlıe standard coordinate system Is extended system known as homegeneus coordinates.
Apohıt witlı coordhıates has homogeııeous coordhıates [x"y"] where

xlı -xw , yh = yw

All of your appllcatioııs iıı two-dimensions will use w-Lse the point has homogeneous
coordhıates [x y 1] .As long as w is not zero,tlıe point coerdlntes [x y w] can be ııonnalized to [x/w
yı'w 1]. Translation can now represented with homegeneeus ceerdinates as

~
1 O OJ[x'y'l] = [x y 1] O 1 O

TxTyl

The result of this multiplication is the point ,ritlı homegeneeus coordinates

[x+Txy+Ty I]

No point mtıı fınite coordhıates can have lıomoıeneous coordhıates [x y 1].
because if any traııslation is applied to such a poiııt,it will remain flxed.Pohıt wilı coordinates [x y
O) are said to be points at iııfiıdty.The term poiııt iıüııdty comes from projective geometry ,where
all liııes must intersect. Now Euclidean geometry is eınbeded iııto a projective plane by addin,:
a poiııt iııfiııity for each set of parallel Ilnes. This poiııt is where the set of parallel meet.

It appears tlıat one coordhıate system is necessary to do most traıısfonnatioııs
""ıfıile another is needed to do translations, But if tins were iııdeed the matrıx notation would J>e
more of a detriment than an aid.Fortmıate-Jy transfonnatioıı embedded into the transfonnations
have representations in the bomogeneous coordinate system.nu.~ hemegen can be derived from
matri.1: representations standard coordinates l>y eınbeddiıı: these matrices iıı the upper-left corner
3x 3 .matrix :Iveıı hı figure 3.6.7.

The representation of the Rotation matri.~ in homogeneous coordhıates

[

cos O
-sin 6
o

sin e o]
cos 6 O
O 1

It is easy to verity tlıat the followiııg matrix equation giveıı the equation
rotation about the origin.

4

[

cos a sin a
[x'y' I] == [x y 1] sin O cos O

o o

FIGURE 3 6 7
The matrix representation ora traıısfonnatlon
embeded In to the matrix representing the
tnınsfonnatlon Inhomogeneous coordinates

Represents.ti oh O
in standard
coordinates I O

o o 1

Matrices provide more than just a notational devicefor sets of equations: the Rotation of
an object around a hotspot also give a simple way to compute the effect of a sequence of
operations. If, for example, you want to rotate a triangle around a hotspot different from the
origin, you cm translate the hotspot to the origin, rotate, and then translate the hotspot back to
its original location (figure3.6.8). If the hotspot is located at the point (5,7), then the translation
to the origin is represented by

FIGURE 3,6,8
Rotation ofan object orounda hotspot renllzed ııs n compositionoftranııformatlonıı

[
ı o o JO 1 O
-5 -7 1

Tiie matrix representing the translation back to the hotspot is the matrix.

ı
Traııslate to origin

If these traıısfonnatiomı are applied consecutively on a point,the resultiııc point will be at
the same Iecatlen.These traıısfonnatioııs are fnverses of each otlıer.Notlce tlıat the producotlıer.
Notice tlıat tne product of the matrices representiııe the two traıısfonnations is the multiplicative
identity matıi.,:

Rotate about origin [
1 O OJO 1 O
O O 1

nu.ıs, the matrix representattens of these Inverse tramformations are mtdtipli
cativefnverses of each other,

Calculating the mtdtiplicative inverse of a matrix wlıeıı it exists is,hı geııeral, a leııgtlıy
procedure.For the transformations used in computer graplıics,lıowever,the geometric
iııterpretations provide shortcuts for calculathıg these inverses. A rotation about tlıe origin
through an angle has the inverse transformation of a rotation through an angle of - t .The
equatioııs

cos (t) = cos •
sin (t)= -sin t

Translate back to oıigiıutl hotspot

can be substituted into the matrix representatlon of the rotation tlırouglı -+ to ıet the matrix
representing that transformation:

[

cos+ -sın t
sin t cos+
o o

Notice that the rows of the matrix representing a rotation are equal to the corresponding
C()lumnsof the matrix representing the inverse of the rotation.Hotspot the multiplicative mverse
of a rotation representation is its transpose. Computation of other inverse matrices is left for the
reader.

In light of this discussion, the problem of rotating a graphic object a.round a hotspot other
hotspot other than the origin can be reduced to multiplication by a matrixıT, to translate to the
origin the ori in. The resulün ohıt is multı lied l>y a matrlr, R, to rotate tlırouglı angle +
Finally, this result is multiplied byT1• The entry ansformation for a point p to point p is
givenby

p'=p'IRTı

Matrix multiplication is associative;thus,the product matrix 1RT represents the tran
sformation,and the product needs to be calculated only one before the transformation is applied
to the points of a graphic object. The product 1RT ·1 follows.

6

[1 O n b"'. ,int n ~ o :] O 1 ! in. cos. o ı
-r, -r, o o Tx Ty

[-
cos a sin a o

-sin a cos a o
(1- cos t)Tx + Tysin t (1- cos t)Ty + TxSin t 1

Iıı geııt.ral,ifa traıısfonnatioıı can be decomposedbıto a seqtıeııce,traıısfonnatioıı,tlıeııthe
orli.iııal traıısfonnatioıı is represented by tlıe produced of tlıe matrices represeııtiııg tlıe
traıısfonnations in the sequence.Anethher application of tlıis tedınlque is the scaliııg of a
geometric ficıırewiıitlımabıtaining one of its cornershı a fıxedposition.

If the square with opposite corners (1,1) and (2,2) is to be scaled so tııat its horizoııtal
side ls tripled a'lıile its vertical side ls doubled, simple scalhıg create a new rectaııgle with
opposite corners (3,2) and (6,4) (figure3.6.9). Suppose the lower-leftcorner (I.I) of tlıe original
rectangle is to remaın fixed under the scaling (figure 3.6.10).A simpleway to achieve tlıis is to
translate the lower-leftcorner of the rectangleto the originwith the matrix.

FİGURE 3.6.9
A rectangle scaled w1tlıouttbing one ofits comers

FIGURE 3.6.10
Scaling the rectangle (1,1) (l,l) by4 hı the
x-dlreetlon and 3 In they y- direction; (1,1)
is a Bxed pohıt.

S,4)

le

(3,
(2,2)

n-- Rectanglecır

(4,3)

fl,2)

(1,1~ I I

Next,applythe scaliııgmatrix

Finally,multiplythat result by the inverseof the oıipııal traııdatioıı matrix

7

nus sequence of transformations is illustrated in figure 3.6.11.Tiıe scaling depicted iıı the last
example can be generalized to scaling relative to an arbitrary fıxed point (xo,yo). nus general
traıısfonnatioıı is dıaracterized by the matrix product

[t o ~]
~

o :]
~

o :]1 Sy 1
-Yo o Ye

which equals

[s, o o JO Sy O
(1-Sx)Xo (1-Sy)Yo 1

FIGURE 3.6.11
The sequence oftraıısfonnations needed to scale a rectangle and keep the point (1, I) fixed

.._ (3,2) {& ~

(1,1)

/

(2,2)

Translate (1,1) to (0,0) Scale by a t!ıctor of
3 ın the x-dfrectionand 2
hı the y-dlreetlon

Tmnslate (010) back to (1,1)

Another traıısformation, slıearing, alters tlıe shape of an object by adding Slıearing-a
rectangle in the x-directioıı multiple of one coordhıate to the otlıer coordhıate of a point. 'Ihe
matlı representation for a shearwitlı shear factor SHXin the x-directioııis

8

FIGURE 3.6.12.
Sluırlng a reetangular hl tlıe x- dJrectlon by a fb.ctorof3

(3,1) (4,1)
(1,1)

Figure 3.6.12 shows an x-direction shear with shear factor 3.Shear in the y-direction
has the matrix representation

Once a transformation is expressed as a matrix equation of the form P' PM, it is possible
to implement this transformation directly with the procedure in listed in figure 3.6.13.In this
iransformation the coordinates of a point P a stored in a matrix[P[1],P[1],P[3]],and the
coordinates of the transformed point.

If one were to apply this fımction with the matrix representing the shear in tlıe y
direction y-direction, five of the multiplications in the loop are by O and three are by needed.
Even when simple translation is performed, homogeneous coordinates are l\'Iatrix representations
allowthe programmer to discover transformation equations. he equations. The programmer then
transfers these equations to efficient procedures•• Figure 3.6.14 gives a procedure for they-shear
in which the using defınition of a point is used and no mairix references are needed.

Scaling and rotation about an arbiirary point can also be implemented without, mairix
multiplication or homogeneous coordinates.A scaling,procedure is ginn in figure 3:6.15. The
rotation procedure is left as an exercise (3.6.9).

Genera/ Transformation Equasions

Any gene-..ral transfonnation, representhıg a combination of translations
ings, and rotations, can be expressedas

~

d J[x' y' 1] = [z y 1] e O
f 1

Explicitequationsfor calculatingthe transformed coordhıates are tlıen

x' = ax+ by+ c y' = dı.: + ey+ f

9

These calculations involve four multiplicatioııs and four additions for each ordhıate point in
aıı object. Tiıis is the mu:iınuın ımınber of computations request for the for the deterınhıatioıı of
a coordinate pair for aııy transfonnation sequence.the hıdfl.idual matrices have been
concatenated. l\1thout coııcateııatioıı, the vidual traıısfonnatioru would be applied one at a time
aııd the number of caltions could be significaııtly Increased, An efficient fmplementatlon for the
transatien operations, therefore, is to fonn1date transfonnation matrices, coııcateııtion aııy
transfomıatioıı sequence, and calculate traıısfomıed ceerdınates by Eqı. 5

The followiııg procedure implements composite transformations.A traıısfonnatioıı
matrix T is hıitialized to the identity matrix. As each individual traıısfonnatiou ls spedtled, it is
concatenated with the total traıısformation matrlx T. Wlıen all traıısformatioııs have been
spechled, tlıis composite transfermatlon ls applied to a given object, For tlıiı eYample, a polygon
is scaled, rotated, and translated. Figure 5-13 shows the original and flııal pesltlens of a polygon
traıısfomıed by tlıis sequence.

procedure transform _obj.ect;
zype
matrix - array [1.•3,1..3] of real;
pohıts = array [1..10) of real;

var
t : ınatri.-,;;
x, y : points;
xc, ye : Integer;

200

100

o 10 200
(a)

procedure traıısfomı-poiııtıı (11: J,ıteger: 'Var x, y: pohıu);
var k : integer; tempx : real;
begin
for k : 1 to ndo begin

tempx := x[k) • t[l,1] + y('k] "' t[2,1) + t[J,1);
y[k] :=x[k) • t[l,2] + y(k) • t[2,2] + t,[J,2);
x{k] : teınpx
end

end; {traıısfonn-points}

procedure illl_area (n: i1ıte.ger; x, y: points);
begin

{remainder of illl_area steps}
end; {flll_area}

procedure get _vertices _and_center (n : tmeger; var x, y: poiııts;
var xc, ye : J,ıteger);.

Begl11
{get vertices and center pohıt}

end;

procedure make identity (var m : matrix);
var r, c : ınteger;
begJ,ı
for r : 1 to 3 do

10

procedure combine_transformations (var t: matrix; m: matrix);
var r, c : Integer; temp : matrix;
begin
for r : - 1 to 3 do
for c: - 1 to 3 do

temp[r,c] :- t(r,l)*m(l,c] + t[r,2]*m[2,c] + t[r,3]*m[3,c];
for r : 1 to 3 do y
for c : 1 to 3 do

t[r,c] : temp] r,c) 200
end; {combine_transformations}

procedure scale (sx, sy: real; xf, yf: Integer); 100
var m : matrb:;

100 200
(b)

Figure 5-13 A polygon (a) transformed into (b) by the composite operations in procedure
. traıısform_object

begin;
make identity (m);
m[1,1] :- sx; m[2,2] : sy;
m[3,1] :-(1 - sx) • xf;
m[3,2] :-(1 - sy)*yf;
conıblnetransformations (t, m) {multiplym iııto t}

end; {scale}

procedure rotate (a: real; xr, yr: Integer);

var ca, sa : real; m : matrix;
Janet/on radiaıı_equivalent(a: real) : real;

begin
radiaıı_equivaleııt: a • 3.14159/ 180

end; {radian_equivaltııt}
begin {rotate}
make_identity(m);
a: radiaıı_t.quivaleııt (a);

ca: cos(a); sa: sin(a);
m[l,l] : ca; m(l,2) : sa;
m[2,1] : -sa; m[2,2] : ca;
m[3,1] : xr • (1 - ca) + yr • sa;
m[3,2]:- yr • (1 - ca) - xr • sa;
combhıe_traıısformations (t, m) {mıdtiplym hıto t}

end; {translate}
begin,: { tFa.11,.y'orm_object J

ı:etverticesaııd_center(3, x, y, xc, ye);
make _ideııtity(t);
set_fill area interior_ style (hollow);
set_fill_area_color_hıdex (1);
ruı_area(3, x, y);

11

make _ideııtity (t);
set_ fıll area ınterior_ style (lıollow);
set_ fıll_area_ color_ iııdex (1);
fıll_area (3, x, y);
scale (0.5,0.5, xc, ye);
rotate (90,xe, ye);
traııslate(-60,20);
fıll_area(3, x, y)

end; {transform_object}

5-5 Transformation Commands

Graphicspackages can be snuetnred so tlıat separate coıumaııds are provided to a user for
each of the traıuıförmation operattoııs, as hı procedure transform_object..A combhıation of
traıısformations is then peıformed by referendng each individual fıuıction. An alternate
forınulatıen is to use one transformations or a singleoperation.Shımıations are often peıformed
in combhıation,a compositetraıu:formationcan provide a more convenientmetlıod for applying
transformations.

We ıntroduce tlıe followinı command to peıform composite traııformation iııvolviııe
traııslatioıı,scaliııg,nd rotation.

Create, transformatioıı_matrlx(xf,yf,sx,sy,xr,yr,a,tx,ty,matrix)

Paraınaters ın tlıis command are the scalhıgfıxed point (xf,yf),scalingsx and sy,rotatioıı
pivot point (xr,yr),rotation anıie a,traııslatioııvector and the output matrix.Weassume that this
command evaluates the traıısformatiom sequence İll the fl.'\'.ed order;flrst scale,tlıan rotate,tlıen
translate.The composite traıısformatioııs for this sequence is than stored in the paraınater.A
produce for implementing tlıis command peıform a concatanation matrices,udıı,: the valııes
spedtled for the input paraınaters.

A single transformation or a sequenceof two or three trnasformations can be carried out
wıtlt this traıısformations commaııd.Totraııformatioıı object,a user sets sr-sy=l, a=O,aııdassigııs
translation values.The fixed-pohıt and pivot pohıt coordhıates could be set to aııy value,dont
effecttlıe tnıasformatioıı calculationswlıeııno scalhıgor rotation place. Similarly,
,rotations are specifiedby setting sx=sy==l,aııdgiviııgappropriate rotation angle aııd pivot-point
values to paraınater aııd yr.

Since the transformation command can carry out only one fixed ttansformatiom we can
provlde for alternative sequencesby definiııgaıı a command :

accumıılate-traıısformtion_matrix(matrix_iıı,xf,yf,sx,sy,xr,yr,a,tx,ty, matrix_out)

Paraınaters xf,yf,sx,sy,xr,)T,a,tx,and ty are the same as hı the create_traıısformatioıı_
matrix commaııd.Tiıb accumulateoperation will take aııy previouslytraıısformatioıı matrix and
concanate it witlı the transformation defined by fhe paramater list ,hı tlıe order
matrix_iıı,scale,rotatethe rendtiııg transformation matrix is stored hı matrix_out.

Usingthe aceumulate_transformation_matrix command in conjımctioııcreate_transfer-

12

mation_matrlx allows a user to perform tl'ansformations in any for iııstance,a translarion
follawed by a rotation canot be canied out create command alone.But tlds tl'ansformation
sequence could be accomwıicate wıth the following program statameııt:

create tl'aıısformatioıı matri.'{ (O, O, 1, 1, O, O, O, tx, ty, ml);
acoımınlate-tl'aıısformatioıı matrix (ml, O, O, 1, 1, xr, yr,a,O,O,m2)

The composite matrix m2 is then applied to the poilııts defıning tlıe object translated and
rotated.

Several tl'ansformatioıı mlatrlces could be comstnıcted inan application gram.Tiıe
particular matri.'{ is to be applied to subsequent output could be selected wftlı a fıuıction such
as

set tl'ansformation (matrix)

Parameter mcltri."t stores the matrix elements tlıat are to be applie.d. to all queııt output
primitive commands until tlte transformation is reset.A method for turnhıg of the transformation
operations is to set matrb: to the identity matrix.

Another ilııplemeııtation rnetlıod for applyiııg a particular matrix to a detbıed object is to
group and label related output piriınitives (picture cemponents), A traıısformation colmmaııd
could then be structured so that it is applied to a selected object by referenciııg the label assigned
to tlıe grorlp of primitives deılniıı,: the object. We return to this topic hı Chapter- 7.

5-6 Raster Methods for Transformations

The particular capabllities of raster systems muest an alternate way to approach some
transformations. Raster systems store picture information by settiıı,: bits hı the frame
buffer.Some simple traıısformations can be carried out by maıdp1datiı11 the frame buffer
contents directly.Few aıithmatlc operatioııs are needed, so the transformations are particularly
efficient.

,. - - - ---- --

1 eı
',_. --- ..--- . --

r- --- - - --- - ---;
: :. .
: l,
' .' '' 'ı_ •••••••••••.•.•••••••.•

(a) (b)

FIGURE 5-22
Bloctransfer ofa raster area canbe used to translate an object&omone seareen position to another

Figure 5-U illustrates a translation performed as a block transfer of a raster area.All bit
settings in the reetangulal- area shm,'11 are copied as a block into another of the raster.Tiıis
translation is accomplishedby reading pixel intensities from a specifiedrectangular area of the r-

13

astel- into an array, then copying the array back into the raster at the new locatior.The original
object could be elased by filling its rectangular area with the background intensity.

Two ftmctiom can be pro\<ided to a user for carrying out these translation operatioııs.
One ftmction is used for reading a rectangıdar area of the raster into a specified array, and the
other is used to copy the pfxel values hı the array back iııto the frame buffer. Parameters for a
read ftmction are the name of the array and the size and location of the rastel- area. Parameters
for a copy function are tile name of the array and the copy position within the raster.

Some implementations provide options for the copy funetlon so that bit values hı the array
can be combhıed ,with the raster values hı various ways. Depending on to another tlıe mode
selected, the copy flnıctioıı could simply replace bit settiııgs in the frame buff er wltlh those hı the
array, or a Boolean or bhıary arithmetic operation could be applied.For- example, bit settings to
be- introduced into some area of the frame buff er might be combined vitllı existhıg contents of
the buffer using an and or an or operatioıı.The Boolean exclusive or can be partidlularly
useful.Witlı the exclusive or mode, two succeslve copies of a block to the same raster area
restores the values that were oridnally present in that area.This technıque can be used to move
an object across a scenee without destroying the bacground ..

In addition to translatlen rotations hı 90 degree Increments could be done ushıg block
transfer.a 90 degree rotation is accomplished by copying each row of the block iıı to a column in
the ııe.ıw frame buffer location.Reversingthe order of bits '"'itlılıı eadı row rotates the block 180
degree.

Bloc transfer of raster areas,sametiınes reffered to as bit bloc transfers or bit-bit,are
quick.Thesetechnlquesform the basis for many aııiınationimplementatiom.Oııceaıı array of
bit settingsbas been savedfor an object,it can be repeatedlyplaced at different positions iıı the
raster to slmulatemotion.

MATRIX REPRESENTATIONS AND THREE-DIMENSIONAL
GRAPIDCS

This introduction be&ins enry episode of Star Trek as the starship enterpbe ambarlu on
aııotııer mission.Wlıentlıe telnidoıı serieswas induced hı the mid 1960 s,satelite plıotograplıy
and computer graplıicswere in tııeir iııfancy.To create the opeııing sequence tlıe silip, a large
modelwas pulledby cablespast the camera.

Star Trek and moviessuch as Star Wars and 2010appeal to imaginations of vieweswlıo have
growıı up '"'itil moon adiııgs aııd televisioıı images of places where ııo man has before.These
moviesmust maintain credibilitywith audiance aııd so tltey must pro\<ideimages of at least the
quality as the actual ones.

Typicalfly-bysequenceshewsa spaceslıiptraversing a planets suıface.Iııthe fihniııg of suclı
sequencesslıips are still commonlysuperimposedon images of planets produced by computers.
There are many different types of planetry surfaces.Sameplanets have cratered surface like that
of the mooıı.Some have a mixture of cratered aııd desrt-eanyon surfaces shnilar to that of
Mars.The outer,gas-pant planets of tlıe solar system are surrounded by bands of turbulent
clouds,whllesome of their moons are coveredby an almost mirorlike Ice.Theteduılques used to
create these surface textures are presented.

14

Computer graphics has progressed to the point where a fly-by sequence can now be generated
mtirely by computer.Newtonian plıyııics dictates the motions of two or more bodies relative to
eadı other and is tne starting pohıt for creating a realistic scenee.Once an orbital systeın has been
modeled,it must be rotated and translated to appear in aııad,·antageom position on the screen.In
addition,physical models are traditionaly created iıı a riglıthand coordinate system,wlıile graphics
systems have a left-lıaııd o.rimtation.Tiıerefore ,all points computed from physical models must
be ttansformed into left-hand orieııtation,the rotated and translated to be appropriately aligned
with the camera.Finally,the image must be projected in to screen coordhıates.

8.1 Three-Dimensional Graphics

The move from two-dimensional to tlıree-dimeıısional graplıics creates two categories of
problems. The first concerns the extension of tile two-dimeıudon tools you have developed to
tlıree-dimensional teols.The second class problems deals witlı fhe represnta-
tion of tlıree-dimensional objects hı two dimeıısions.

Iıı this chapter you will work only witlı the extension to three dimensions Wlıile coordinate
systems may be extended by adding one coordhıate,the orieııtation of positive
axes is more complicated in three dimeıuions. H you assume tlıe xy-plane b the graphics screen,

you must decide whether the positive z-axis will point out of or hıto the sereen,

Polygoııs hı two dimensiomı consist of vertices aııd edges.When you move to three
dimeıısiomı,polygons also lıave faces.The representations of polygon surfaces and curved suıfaees
are presented in section 8.2.

Tiıree-dimmsional traıısfonnations are also more complicated tlıaıı transformations
mations hı two dimensiom.Iıı addition to rotations about a point,you must no consider rotations
consider rotatioııs about a line.It is ofteıı necessary to describe a transformations as a
sequenceef simpler traıısfonnations.Matrix algebra becomes indispeıuable tool for creating
these composite traıısformations.Tiıe matrixf orms of tlıree dimensional traıısformatioııs such as
translation and rotation are given hı this dtapter.Tiıese solutions are applied to the problem of
establislıhıg the viewer's position in a graplıics system.

The remahıing chapters address the projection of t lıree-dimensional images on a two
dimensional surface, the lıiding of stırfaces aııd lines that are not ,isible from tne ,iewer's
position, aııd the creation of realistic images. The solutions to these problems rely heavily on
vector operattens.The vector products also provide an altenıatlve approach to flııdhıg the matrix
representation of some commoııly used three-dimensional traıısformations. An example of tlıis
approach is given in seetlen 8.7.

8.2 Representing Graphic Objects in
Three-Dimensions

Representing tlıree-dimensioııal objects is considerably more difflaılt than adding an
extrac oordinate to the Cartesian system used in two-dimmsional systems.Even if you
systems.Even if you elect to retain the ııonnal screen position of the x- and y-axes, the positive
part of the z-axis can pohıt either hıto or out of the screen, It b also possible to lıave the z-axis hı
the plane of the screen aııd one of the tlıer axes perpeııdicular to the screen. It is equally possible
to have none of the axes iıı the plane of the screen. Iıı this section you detenniııe the orientation
of the z-axis relative to tlıe x- and y-axes, You also look at various metlıods used to represent
objects in such a system. The more difficult problem of positioning the axes relative to the screen
and ,rieııver is covered later in the chapter.

15

The position of the positive z-axis points relative to the x-line determines whether the
coordinates of a specific point will be (x,y,z) or op(x,y,-z). If the z-axis points out of the screen
when the x- and y-axes are in their normal positions on the screen, tlıe coordinate system is
called a rlglıt-hand system. If you align your .right hand so that your thıgers curve from the x
axis to the y-axis, then your tluunb points along the positive z-axis (figure 8.2.1). If however,
your tluunb points along the negative z-ads, then tlıe system is a The rl,:lıt-lıaııd referenee system
left-lıaııd system. Iıı tlıis system, if the iıııeers of your left hand are positioned so that tlıey curl
from the x-axis to the y-a.'ds, then your left tluunb pohıts hı the positive .z-directioıı (figure 8.2.2).

'\\>1ıetlıer to use the rlglıt- or left-band system often depends on the positioııs of tlıe impor
tant objects in the application you are workiııg wittr.F or some applications, the solution is easi
er to derive m.th one erientatien than ,vi.tıı the other, In such cases, rie}ıt- and lefUıaııded
systems may be med hı the same problem (Bihm 1988).

Many problems are easier to solve witlüıı a coordinate system other than the Cartesian
system.Botlı the cylhıdrical and spherical coordinate systems can provide simple descriptions of
object.s that would be difficult to derive hı the z-axis Cartesian system.Nevertheless most graphics
packages use the Cartesian system, whiclı, as a result system, l\<iılch, a, a result, Il'ınfü the
usetulness of non-Cartesian systems fn computer graplıics because objects represented hı these
systems must be converted to the Cartesian
system before they can be displayed.

FIGURE 8.2.1
The right -hand refemee system

FIGURE 8.2.1
The left hand reference system

z-axıs

Y·

Once objects are represented in world coordinates, they must be converted The left-hand
reference system into screen coordinates. Methods used to convert werld coordinates to
normalized screen coordinates in two-dimensional systems are also used in three-dimensional
systems.Homogeneous coordinates are often used in three axi11 dimensions as they were in
two dimensions to simplify certain matrix representations • The homogeneous coordinates of a
point (x,y,i) are usually g;inn as (x,y,z,l).

Images of solid objects can be created in many ways, with varying levels of complexity,
depending on the type of information required by an application.\Vhen the surface appearance of
an object is the only requirement, geometric or x-axis shape modeling is used to create the
descriptions of the solid objects used in creating their inıages.'Ilıis section presents two commonly
used methods for perf ormiııg geometric modeling of three-dimensional surfaces; polygonal
meshes and spline surfaces.Objects with regular geometric surfaces, such as buildings and
furniture, can be decomposed into a set of polygonal surfaces.Tiıiı representation is called a
polygon mesh.

A polygon mesh can also approximate carved surfaces (figure 8.2.3). \\!hen this teclınique is
applied,picture quality can be improved by using a fıner mesh in the curved areas , but the result

16

will not be realistic. To achieve realistic curved surfaces, tlıe spline tedıniques discussed in
chapter 7 can be extended to three dimensions.The parametric equations utilized in this exteıısioıı
have two parameters rather than one and are nonnally cubic polynomials. Because of these
characteristics, they are ofteıı called l)icubic patches.

Eııgineers construct mechanical devices by combining pieces such as blocks, pyramids, and
cylinders well as spliııe snrfaces.Thls type of constnıctive representation is called solid modeliııg
.It is more complicated titan geometric modeling and will be cevered.Yon have displayed
polygons hı two dimensions by coımectiııg successive vertices '\\oitlı line segmeııts.If you attempt
fhe same type of coııstnıction witlı three-dlmenstcnal objects, one set of liııes may represent
maııy different polygonal surfaces, In figure 8.2.4 (left), tlıe polygon mesh and vertices A, B,C,
and D, can be Interpreted in different ways.One iııterpretation (figure 8.2.4 [ceııter]) is the solid
with four triangular surfaces, wlıile another (figure 8.2.4)

FIGURE 8.2.4
The polygon mesh with vertices A, B, C and D (left) can be interpreted in dUfereııt ways. One way ts as a solid ,Y.lfü
four trlangmar sides (eenter); mıother (right) is aı the same solid withthe side ACD mining,

A A A

B DB

C C C

[right]) is the same solid "ıithout the side ACD. To avoid this ambiguity, any representation of
snclı a solid must include a way to determine its polygonal surfaces.

A polygon mesh consists of vertices, edges, and polygons. Figure 8.2.5 is an example of a
polygon mesh 'With vetrtices {Vı , V2 V 3 V 4 V s,V,,V1}edges,{Eı,E3, E4, Es,Eıı E1, Ee,Eıı } and
polygons { P1,P2,P3 } The vertices are defined by their coordinates. The polygons can be defined
by listing their vertices in clockwise or counterclockı,ıise order. All polygons should han their

FIGURE 8.2.5
A cube withvertices, edges, and polygons labeled

Eı
4
Pı

Pı rs

V.

i7

vertices listed in the same order. 'Ihe polygon P, in figure 8.2.5 could be described by ((xl, yl, zl),
(x2, yZ, z2), (x7, sı. zl), (x6, y6, z6)), where the vert V; is assumed to ilave coordiııates (xi, yj,
zi).

For a single poly,:oıı,tııis type of representation is relatively efficient. Yet even in tlıe
comparative small polygon mesh gt,·en hı figure 8.2.5, the vertex V1 has its coordinates listed for
each polygon. Other vertices, such as V.z, also appear iıı more than one vt.ıux list. To save room,
a vertex table listhıg the coordinates of a vertex is created, and re-.ferences to a giVtJt vertex are
made tlırouglı its subscript in the table (figure 8.2.6). Representing polygons as tlıe list of vertex
subscripts improves storage efficiency but does not provide explicit metlıods for determiııiııg
shared edges and vertlees.

To expedite the retrieval of relationslıips between parts of the polygon mesh, a list of edges
and tlıeir end end points is kept fn an edge table, aııd the polygons are described in tenns of are
described in terms of the subscripts of the edges iıı the table. The edge table for figure 8.2.5 is
given in figure 8.2.7, and the poly,:on table is ginıı iıı figure 8.2.8.

FIGURE 8.26
Tilevertex table for figure 8.2.5

FIGURE 8.2.7
The edge table for flgure 8.2.5

FIGURE 8.2.8
The polygon table for figure 8.2.5

Vertex Table Edge Table Polygon Table

Vl: xl, yl, z1
vı: x1, y:ı, zı
V3: :ı:3, y3, z3
V4: :ı:4, y4, z4
VS: ::c, y5, .z5
V6: x6, y6, z6
V7: :ı:7, y7, z!

El: vı Vl
El:Vl V3
E3: V3 V4
E4: V4 V5
ES: VS V6
E6: V6 Vl
E7: V7 V1
ES: V6 V7
E9: V7 V4

Pl: El, E6 ,ES,E7
Pl:E2,E7,E9,E3
P3:E4,E9,E8,E5

Not all lists of vertices, edges, and surfaces describe real objects. Tables the describe real objects
called consistent. Figure 8.1.9 is an example of vertex not on any edge. H an edge is drfffl>n from
D to A (figure 8.l.10), the resulting image is still not a polygon mesh. Isolated points such as A in
figure 8.2.9 can be avoided by requiring all points to be on at least two edges. Ymally even if
each polygon is properly formed, all polygons must share at Ieast on edge \\ıİth another polygoıı

· or the surface is not connected (figure 8.2.11) takes less tiıne to check tables for consistency if the
edge table is extended to include the surfaces abutting each edge. Figure 8.2.11 gives the extended
edge table for figure 8.2.5.

Some implemeııtations of the polygon mesh require that each polygon lie one plane. Recall
that Recall that three non-collinear points determine a plane, H the polygon has more three
vertices, you must check that all vertices are in the same plane. The equation of
a plane has the form

Ax+By+Cz+D=O

18

FIGURE 8.2.9
The vertex A is not on aııy edge;
therefore,A cannotbe listed as part
oftlıis polygon.

FIGURE 8.2.10
This is not a polygon mesh
because A is an isolated point,

B

C

B
C

The coordinates (x,y,z) of any point in a plane will satisfy the e uation of the plane.

Tiüs is not a polygon mesh bee-ause A is Any three non-collinear points determine a
plane.By choosing any three an isolated point. non-collinear vertices of a polygon (xhyı,zı,),
(x2,y2,z2), and (x3,y3,7ıJ), you can substitute each into the equation of the plane and normalize to
get the three equations

(AID) xı + (B/D)Yt + {C/D)74= - 1
i = 1,2,3

in the three unknowas A' = AID,B' = BlD, and C' = C/D; or

A' Xı + B' yı + C' zı = - 1
A' X2 + B' Y2 + C' Z2 = - 1
A' X3 + B' YJ + C' z, = - 1

These equations can be solved using Cramer's rule, provided the determinant of
the coefficients

FIGURE 8.2.11
This figure does not represent a polygonmesh because the twopolygons do not share a commonedge.

B

D

C

19

FIGURE 8.2.12
The e:xt,mdM edge table for the polygoıı mesh In flgu.re 8.2.5

Ed:eTable

Eı: v, v, Pı
fü: V2 V:1 P2
E:3: V1 V4 P2
E4: V4 Vs P1
fü: Vs Vıı P:1
fü:Vıı v, Pı
E1: v, V2 Pı Pz
Ea: v, V1 Pı P1
E,: V4 V1 P2 P:1

Xı Yı Zı
Xz Yz Zı
X1 Y1 Z:3

is not zero. Ilıis will always be true if the vertices are chosen so that they are not collhıear, and
every non-degenerate polygon has at lead three ııon-colliııear vertices. (Why?)

If the detenniııaııt of the coeffideııts is d, then the solutions are given as

-1 Yı •ı r I Xı -1 ~ I r Yı -1
A'= I -1 Y2 Zı B'- X2 -1 Zı ID C'- X2 Y2 -1 I ID

-1 Y:1 Z:3 X:1 -1 Z:1 x., Y:1 -1

FIGURE 8.2.13
The vector (A,B,CJ normal to a plane can
be computed ft.om the equations of the plane.

FIGURE 8.Z.14
The bowıdary values for the paramaters
İn the pnıumetrlc representntion ofa polygon

X

POO
v=1

p11v- (A,B,CJ

y

To avoid repeated division by d, apply simple al,:ebra to ,:et an altenıative set of solutions: A =

A'*d, B = B'*d, C = C'*d, aııd D = d. These reduce to

A - Yı(Z2 - Z1) + Y2(Z:3 - Zı) + Y1(Zı - Zı)
B = Z1(x2 - X:1) +z2{X:3- xı) + Z:J(Xı - X2)
C = Xı{y2 - Y:1) + x2fy1 - Yı) + X:1(Yı - Y2)
D = -x:ı{yıZ:J - Y:1Zz) - X2(Y1Zı - Yıl.1) - X1(Y1Z2 - Y2Zı)

20

The vector (A, B, C) is normal to tlıe plane (figure 8.2.13). Hence, for fixed A , B, and C,
different D values give planes tlıat are parallel.

Wlıeıı a polygon mesh does not produce a smootlı enough represeııtatioıı of an object, it is
replaced by one of tlıe bicubic models. These models are tne tlıre~dinıeıısional coıuıterparts of
the spline curves Intreduced iıı chapter 7. A major diJTereııcebetween splliıe carves and spJhıe
surfaces is tlıat parametric equattens of a surface have two variables. Lhıear iııterpolation is a
simple example of a parametric representation of a surface.ff. for example, you want to develop
Jhıear interpolation of the surface bounded by the four points Po,Plo,Pol,Pll, (figure 8.2.14),
then the parametric equation for tlıis surtace is

P(u,v) - Pooil'lI - u)*(l - v) + P1ıı •u•(t - \7) + Po,*v*(l - u) + Pııu*v

where uand v raıııe from O to I.

The region bounded by the four points is called a patch.

A smoether, more adjustable surface can be adıieved by extending tlıe Bezi.er curves to
three diıneıısioııs. Recall tlıat two-diıneıısional Beder curves are defuıed by

n
P(t)= ~!ıı(t)Pk

,,ıh.erethe blending f ımctions Bk,n are given as

i nik n-k
Bk,n(t) = k (1 - t)

The parametric form of Bezier surfaces is given by

m n
P(ıı,v) = ~ ~ Bj,m(u)Bk,n(V)pj,k

where the (m + l)-by-(n + l)control points pj,k are distributed over the patch, It is possible to
construct Bezier surfaces for arbitrarily large m aııd n. Normally m and n are resfricted to 3 so
the blending functions ,rill be cubic polynomials.Figure 8.2.15 shows a patch with a polygon
mesh formed by the control points.while figure 8.2.16 illustrates the Bezier surface for this set of
control points.

If greater numbers of control points are needed for a desired e.ffeet, the surface can be
divided surface can be divided into more than one patclı.To maintain continuity along the
common successive patches, certain properties must be maintained.In figure 8.%.17, the triples
of control points (Pl,Ql,Rl), (P2,Q%,R1), (P3,Q3,R3), and (P4,Q4,R4) must be collinear. In
addition, the ratios

lenınh (P:Q;)
length (Q;R;)

21

must be the same constant for i = 1, 2, 3, 4.

FIGURE 8.2.15
A patch with the polygon mesh fonned
by the eentrol points,

POO

FIGURE 8.2.16
The bezier 5111'.ftı.ce eenstrueted from e
Set of eontrol points bı fl&11,re 8.2.15

B-splines can be generalized to three dimensions in much the same D-a:y that Beiı:er curves are
generalized.The parametric equation for B-spline surfaces is

m n
P(u,,,) = ~ ~j,k.Nj,s(u)Nk,t(v)

where the blendbıg fmıctioıu N1,s and Nıı,ı are of degrees - 1 and t - 1 reıpectively. The control
points PJ.k define the patclı, but are generally not on the patch.

For any type of spline constnıction, the set of patches depends lıeavily on the shape of the
object bt.iııg modeled.The deıısity of control pohıts in an area ls proportional to the curvature of
the object. Planar areas can be treated l\oitlı 1 patch and 16 control points; areas of biglı
curvature require more control poiııts and, hence, a large number of patches (figure 8.2.18). Most
systems aüow the user to specify the smootlmess of tile suıface lmt reserve the actual subdbision
into patches for the program. Subdil'ision is usually done recursively.

Computhıe the values for a parametric bicubic surrace requires nunıereus multtplicatious.
The number of multiplications can 'be reduced by applying Homer's rule for factoriııg:

f(u)=au3+bu2+cu+d= [(au+b)u+c]u+d

But all the mulfiplications are real multiplications.Ille values can be computed more efficiently
by miııg differences hı tunctton values between censecutıve pcints.

22

FIGURE 8.2.17
Two successive patches with eommon edge
QI,Q2,Q3,Q4

FIGURE 8.2.18
Areas with lıigh curvature, sueh as the bottom
section ofthis surfhce, require more patches
for a realistic rendertn R.

i l
•

I I
I I I I II I I I •• • • •• • • J , .• I

/,JJJJJJJV

'\'\·1ıeıı the value of the parameter u is Increased by a small amount, a > O , the amoımt of
clıange iıı the fmıctioıı value Of Is computed JJy

Of(u) = f(u + a) - f(u)

Thls difl'ereııce iıı called tile fo.ıward difference. The value of f(u + a) can be computed directly
from f(u):A

f(u +a)= f(u) + Of(u)

If the values off are computed iteratively, then f; is associated witlı f(u), and fl+, with f(u+ O).
With these substitutions the equation becomes

fl+ 1 = fi +.6. fi

The fonvard difference for tlıe cubic polynomlal can be computed directly as follows:

2 2 2 2
L~::tl(u) = f(u +a) - f(u) = 3aua + u(3aa + 2ba) + aa + ba- +s

Uıtfortıuıately, this formula is still quadratic. To reduce the degree of Of, you fmd its
2

foıward difference, Ar:

2
Af(u) -Af(u + a) - Af(u)

In an iterated process:

2
.Ô.fi = .6fi+i- ..6Jl

2
Evaluating .O.f(u), you get

23

2 2 2 2
A f(u) = 6aau + 6aa + 2ba

You now have reduced tne problem to a Imear equation, but if you find the foıward
difference for Ozf you get the constant equation

3 3
Af=6aa

The iterative evaluation of the parametric equation be:iJıs witıı 11 - O, so tile
2

initial values for fo,A to, .Aro are

ID =f(O) =d
3 2

A fo = A f(O) = aa + ba + ca
2 3 2

A fo =A f(O)=6aa+2ba

At tlıe ith iteration, fi, f~d fi aııtknown. Their (i + l)ıll counterparts are computed
witb the follol'llingsequence of equations:

fi+1 =fi+Afi
2

A fi+i =.6.fi+A fi
2 2 3

Afi+l- .öfi+Afo

Figure 8.2.19 is an example of foıward differences applied to the parametric function f(u) =

2u3+ uı - 2u + 1 for u ın [0,1 .J aııd S = 0.1.

For spline surfaces, there are separate parametric equations for each of tlıe coordhıate
directionsthat is, x(u),y(u). and z(u).

FIGURE 8.2.19
FonYIU'd dUfilreııees applied to the function f(u)= :1u3 + ul - lu + I.

2 3

i u f(u) Afi A 2fi A 3fi

00.00 1.0000J -0.1880 ~ 0.0320 ~ 0.0120

10.10 0.8120 + -0.1560 + 0.0440 + 0.0120

2 0.20 0.6560 ~ -0.1120 '! 0.0560 f 0.0120

3 0.30 0.!1440 ~ -0.0560 ~ o. 0680 ~ o. 0120

4 0.40 o.4880ı o.oııo ~ 0.0800 -:;o. 0120

5 0.50 0.5000 + 0.0920 + o.o9ıo + 0.0120

" ,J "24

60.60 0.5920J 0.1840 ~ 0.1040 ~ 0.0120

0.7760 + 0.2880 + 0.1160 + 0.0120
,J ,J ,J

1.0640I 0.4040 ., e.ızse ~o.oııo
1.4680,/ 0.5320 ~ Ô.1400 ~0.0120

2.00Ô + 0.6720 + 0.1520 + 0.0120

70.70

8 0.80

9 0.90

O 1.00

8.31\1atrb: Representation of Translation and Scaling

Eaclı two diınemional matrix representanon hıtredneed hı section 3.6 bas its hree
dinıeıısioııal counterpart, Traııslatioıı and scalhıg are realized hı three dimıeıısioııs by simply
adding one row and column to their matrix representatıens to account for the traıısfonnation of
the tlıird coordinate.Homogeneous coordinates must again be used to represent poiııts for
traııslatiom, and as hı two diıneıısiom, the amount of traııslation hı each direction is entered iıı
tlıe last row of the matrix. H the amounts of translation in each directioııare givenas Tx, Ty, and
Tz then the represeııtationmatrix is

1 O O O
O 1 O O
O O 1 O
r, Ty r, 1

It is often necessary to translate a pohıt to the origin (fie-ııre 8.3.1). H tlıe hemogeneeus
coordhıatesof the point are (a.b.e, 1), then the translation matrix is giveııby

[
1 O O OJO 1 O O
O O 1 O
-a -b -c 1

To invert a translation, pohıts must be moved an equal distaııcein the opposite directioıı."'1ıat
is tlıe matrix representation of tins traııslatioıı?

Scaliııgis done by multiplyingthe lıoınogeneouscoordiııates of a point by a matıLl: ·with the
scallııgfactors on the mam diagonal. 'Ihe followhtgis an exampleof such multiplication:

[x'y'z'l]-[xyzl]
s, O
O Sy
o o
o o

o o
o o
Sı O
O 1

Z5

I
Here SX, Sy, Sz are tne scaling factors. Recall tlıat all vertices have tlıeir coordinates multiplied
by scaling factors, so all vertices of the scaled object are moved unless one of tlıe vertices is the
origin (fıgıue 8.3.2).

To scale a polygonal object and fi.~ one of its vertices, say (xo,yo,zo, I) (fıeıne 8.3.3), yon first
translate the object so that the vertex (xo,yo,zo,l) moves to the orl~ı (flgıue 8.3.4). Thescallng
takes place (figııre 8.3.S) and b followed by tlıe Inverse of tlıe orlglı:ıaltraııslatioıı
inverse of the origi.ııaltranslauon (figııre 8.3.6).

FIGURE 8.3.1
Translation oftlıe point (a,b,e,I) to the origin

FIGURE 8.3.2
All vertices of a polygoıı are moved by sealing unless one of
the vertices ls the origin.

z

(0,0,0,1)

FIGURE 8.3.3
It ls possible to scale a polygou and fix a vertex, but it must be
Done through a sequence oftnınsfonnntlons.

FIGURE 8.3.4
The flrst transfonnatlon hı seallng with a
fixed pohıt is the trnnslatlon ofthe fixed
point to the origin.

i ,
1~-

\., (xO,yO,ı0,1)

26

FIGURE 8.3.5 FIGURE 8.3.6
Next, the polygoıı ls scaled by tile desired factors. Finally, the polygon is translated so tlıat tile origin is baekto

the fixed point

/

(xO,yO,z0,1)• y
/~

/
You may recall that this sequenceof operations can be realizedby consecutivemultipli
cationsmatrices representing each operation. Associaivityof matrix multiplication allows you to
compute tlıe product of matrices before performing the transformatioıı.Ilms,tlıe matrix
representhıı the mıole process can be computed as

I O O O
O 1 O O
O O 1 O

Xo -Yo -r.o 1

s. O O O
O Sy O O
o o ~ o
O O O 1

1 O O O
O 1 O O
O O 1 O
Xo Yo r.o 1

s, O O O
O S1 O O
O O S2 O

1-Sx)Xo (1-Sy)yo (l-Sz)7.o 1

Both PIDGS and GKS-3D have functtens for creating matrices representing
traııslatious and scaling(fiı,ıre 8.3.7).

FIGURE8.3.7
Funetlons used to create t:raııslatioıı and scaling nıatrlces tn PHI GS and GKS-3D.

ıvı.am.x Created PHJ.l:i-:S l:i-K:S-3ll

translatton translate (DelateX,DelatY,DeltaZ: Create _Translatioıı_3(])eltaX,De lataY,
real) DeltaZ : real; M: matrix:); Accumulate_

Translatton _3(DeltaX,DeltaY,DeltaZ:
real; M: matrix:);

scaling scale (ScaleX,ScaleY,ScaleZ:Real) Create ; _Scale_3(ScaleX,Scale Y,ScaleZ
real; M: matrix); e_Scale _3(ScaleX,Scale Y,
ScaleZ: real;M:matrix

27

8.4 Review of Vector Operations

.Just as a plane is best described by the equation given in section 8.2,liııes iıı
three dimensiom are most efficiently described by vectors. A vector can be P2 (Head defıııed as
the directed line segment joining two poiııts (figure 8.4.1).Tiıe point toward wlıich tile segment is
directed is called the head, whlle the other end point is called the tall.

Tiıis definition can be somewhat misleading because the directed lhıe segment (Tail) is
actually a epresentattve of a vector. AII llııe segments of equal Ieıı:fb directed in the same way ,
relatlve to a given coordiııate system, areconsidered representatives of the same vector. A vector
can be described ııumerically as the coordhıates of the head of its representative tlıat has its tail
at the origin.A vector joiııhıt: two arbitrary points, Pl and P2 (fl~ıre 8.4.2),is deı,;crlbed
numerically by the coordinates (x,y,z),wlıere the llııe johüııg,tlıe origin to (x,y,ı:) is a
representative of the vector joiııhıg Pl and P .

Addition of two vectors can be defined in much the same way as addition of two matrices is
defined • ff Vl = (xl,yl~l) and V2 = (xl,y2,z2) are vectors, then the sum is

nae sum bas a geome.:tric iııterpretation.Tiıe head of the representative of Vl with tail at the
head V, is the head of tlıe stun vector (figure 8.4.3).

Wlıile vector addition is inıportaııt iıı maııy applications, you -,..nil flııd vector subtraction
even more meftd. Vector subtraction is defined by

FIGURE 8.4.1
The vector johıhıg the point P1 to the point PZ

Vı - V2 ~ (Xı - Xz, Yı - Y2, Zı - 'Lı)

• P2 (Head)
.,./~~

,/

./
Pl (fail)

FIGURE 8.4.1
The vector joiııinı;P, and PZ can be written as the triple (:ıc,y,z)

FIGURE 8.4.3
The sum ofvectors 6 + e can be constructed by
connecting the tall ofb wltlı the bead ofthe
repreıentntive of e with the tail at the head of b

b+c

28

FIGURE 8.4.5
The difference c - b can be seen as the stun e + -b.

FIGURE 8.4.4
To ı;onqıu~ thıı n:u:ınııricalrııpnsl'n1ıı.rio:ııof
the we till' joiıı.i.ııı tluı point with coonliııatııs
(x2,y2,ı:2) ıwd (xi .yl ,ıl) 30u ıuuıd ıınly sıılıtı'ti'!t
tluı vectıı1' (..-.d.y.2,ı2)fnnıı tluı vector (xi ,yl ,ıl)
to geı (xl·x2,Yl-,ı2,ı;l-s2),

(Y.2,y2,z2)

~ (xt,yl,d)
e-b

H -V = (-x,-y,-z) when V = (x,y,z), then Vı - V2 = Vı + (-V2) and~ geometric interpretation
of a vector computed by subtraction is just the vector joining the head of V2 to the head of VI
(.figure 8.4.4). Thus, the vector representing the line joining two points (xı,yı,zı) and <.x2,Y2,z2
)(figure 8.4.5) is computed by

(xı - x2, Yı - Y2, zı - z2)

There are three different types of multiplication associated with vectors: need only
multiplication by a real number, the scalar or dot product, and the cross or vector (x2,y1,z1)
vector product. A vector V = (x,y,z) is multiplied by a real number r when all its coordinates are
multiplied by r:

rV = (rx,ry,rz)

The length of a vector, V = (x,y,z), is computed by

When the direction of a vector is more important than its length, it is convenient to use the
wıit vector in that direction. The wıit vector u in the direction of veetor V is computed from V by
multiplying by real number 1/ V that is,

u= (1/jV pv
The scalar or dot product of two vectors,Vı=(xı,yhzı) and V2=(x2,Y2,z2) is the real number

The length of a vector, V, can also be computed by using the scalar product

lvl=-vv=v-
The scalar product can also be defmed in terms of the angle 8 between vectors Vl and Vl;

v, • V2 = lvı I V:ı ~ose

Iıı this form, the dot product is the product of the length of one of the vector say Vz, and
the length of the projection of the other vector, Vl, onto it (fig, 8.4.6). H the angle between the

29

I
two vectors is 90°, tlıe vectors are said to orthogonal, or perpeııdicular, to each otlıer.Siıı(! co
= O, the scaler product of two orthogonal vectors is O. 'Ihls formula also caıı be used cf,ınputt
the angle between two vectors because

cos 0=

\Vlıile the scalar product can be used to tell if two vectors are perpendlcnl to each emer
the vector product or cross product, of two vectors,Vı and V2, produces a tlıird vector, Vı • V1,

wbiclı is perpendicular to each of the vectors (fi=ıll'e8.4.7).

To determine tlıe direction of the perpendicular vector, apply the rlght-lıaııd rule-that L~
position the fingers of your rule-that is, position tlıe flııgers of your rieht hand so they point
vecctor iııthe product toward the second vector.The direction our tııuınb point Is the dittctio
of the vector product.To compute the vector product of vector Vı"" (xı,yı,zı) aııd Vı = (Xı,Y1.Z1)
use the following formula:

Vı * V2 = Q'1Z2 - ZıYı, Z1X2 - X1Z2, X1Y2 - Y1X2)

This form of the vector product is difficult to remember, so the following determinant
form sed as a memory aid:

1 O O
Xı Yı Zı
X 2 Y2 ,Z7

O 1 O
Xı Yı Zı
X2 Y2 Z2

O O 1
Xı Yı Zı
X2 Y2 Zı

FIGURE8.4.6 FIGURE8.4.7
The projection ofV, onto V2 has length O V, O cos8. The vector product oftwo vectors v x u is a veetor

v"' u ls a vector perpendicular to the plane ofv and .v
u and v x u funning a rlght-hand system.

~

If vectors V1 and V2 have the angle e from Vı to V2 then tlıe vector product can be computed
with

Where U is the unit vector perpendicular to the plane containing Vl and Vl and
for whieh VI, V1, and U, in that order, form a right-handed system.

30

8.5 ROTATIONS

In three-dimenslenal spaces, objects may be rotated about a line called an axis
Rotatioııs about the x-, y-,U z-axes are relatively simple, correspoııdiııı closed to a rotatioıı
about tile tn iıı a plane. Rotations about an arbttrar axis an iınplemeııted as a sequence of
simplertransforınatioııs.

'Wlıeıı an object is rotated about the z-a.us, the z-coordiııate of et,·ery point ls mahıtahıed
wlıilethe x- aııd y coordiııatesare dıanıed (figure8.5.1).The ııewcoordhıates are computed as
tlıeywere for rotations about tile orl:iıı in two diıneıısions.

X ' = X COS 0 • y sin 0
s' = X sin 6 + y COS 6
z' = z

where 6 is the angle of rotation. This set of equations can be re resented by the matrix
equation in hemogeneens coordinates

[x'y'z'l] == [x y z 1)

cos a
-sine

o
o

o
o

o
1

sine
cos e

o
o

o
o

1
o

A rotatioıı about tlıe x-a.uswill fb: all x-coordhıatesy and z are recalculated (fiı,ıre 8.5.2)
.To mahıtaiıı the proper relotioııship between the three a.us,the three ceerdtnates are
transformed by the cyclic perınutation;x replaces z,y replaces x, aııd z replaces y.Tiıis
pe-nnutatioıırestdts iıı the followingrotation equations:

X' = X

t' = y cos a - z sin a
z' = y sin a + z cos e

FIGURE 8.5.1 FIGURE 8.5.2
A. point rotated about the z-axishas its z.coordhıate flxed. A pobtt rotated about the x- axis lıas its x-coordhuıted

y y

X

The matrix equation that represents this set of equations is

31

[x' s' z' 1] =(xy z 1]
1
o
o
o

o o
cos a sin a
-sin a cos a

o o

o
o
o
1

The equations for a rotation about the y-axis (ffg11re 8.5.3) are obtalned by appl)int: the
permutation ı: replaces x, x replaces y, and y replaces .z to the equations for a rotation about the
z-axis:

x' = Z sin 6 + X COS 0
y'=y
Z1 = .Z COS 6 - X sin 0

The matrix equation for the rotation about the y-axis is

[x' y' z' 1] = [x y z 1]
cos a

o
sin6

o

O -sin 8
1 O
O cos 6
o o

o
o
o
1

Eaclı of the rotations about one of the coordinate axes bas the property that its inverse
fıuıction is represented by the transpose of the matıfx representing it.

Rotation about an arbitrary a.us would be difficult if it were not broken down into a series
of traıısfonnatioııs.First, the axis of rotation is transformed to the z-axb.Next, the rotation is
peıfonned as a rotation about the z-axis. Last, the inverse of the transformation on the axis of
rotation restores objects to their fiııal rotated positions. To summarize, tlıe transformation of the
axis of rotation iııvol"·es three steps:

FIGURE 8.5.3
A pohıt rotated about the y-axis lıas its y-coordhıate ft-xed.

y -:
(x' ,y,z' ,1)

z

l. Translation of the axis of rotation so that it passes through the origin.
1. Rotation about the x-axis so that the axis of rotation is in the xs-plane,
3. Rotation about the y-axis so that the axis of rotation coincides ,rith the .z-axis

32

/
The a.us of rotatioıı may be specified as the lme passhıg tlırouglı two pofnts,

say (xl, yl, zl) and (x2,y2,z2) (figure 5.4). The transformation represented by the matrix

1 O
O 1

T- I o o
-Xı -Yı

o o
o o
1 O

-Zı 1

translate tlıe axis so that tlıe point (x, , y, , z,) is transformed to the ori,:in(fıgure 8.5.4)

The original points also defme the vector along tile axis of rotation

V = (x2 , Xı , Yı - Yı , Zı - Zı) = (x ,Y, z)

Following the translation, the axis of rotation passes through the oriefıı and tile point
(x,y,.i).Here you use the scalar and vector products to compute tlıe sines and cosines iıı the
rotation matrices, so it is useful to replace V with its uııit vector u hı the same direction.

V

u= IV I =(a,b,c)

FIGURE 8.5.4
The a.xis of rotation ınay be specilled as the line
pnııhıg through two pohıts •

FIGURE 8.5.5
The first step tn a rotation about an arbitrary
o.xisis to tmnslate the o.xis of rotation so it passes
tlırouglt the origin.

z

y I
(x1,yl,zl

You want to rotate the vector u around the x-axis into the xz-plane (figure
8.5.6). To create this rotation matrix, you could compute the angle of rotation and then compute
the appropriate sines and cosines.But you can use vector operations to compute the sine and
cosine vahıes directly. Fırst, consider u' = (O,b,c), the projection of u into the yı:-plane (figure
8.5.7). The rotation that takes u into the xz-plane also takes u' to the z-axis. Hence, if you could
calculate the sine and cosine of the angles between u' and the z-axis, you could easily create the
desired rotation matrix.

33

I
Let u..X- (1,0,0), uy - (0,1,0), and u L - (0,0,1) be the ıudt vectors aloııg tlıe coordinate

axes. Then the formula for the scalar product gives you the following fonnula for tlıe cosine of
the angle, e , between u' and uz:

u'·uz c
cos e= ln'I Ju: I =er

wlıere d = b2 + cı is the leııgtlı ofu' •

The vector product gives you a formula for sin 6. The vector product ofu' and u% is

U' 1t u, = Ux u' U:ı; sin 6
=nxdsine

The vector uz is a mıit vector, so fü lenı(:Jı is 1. The vector u' has leııgth d; tlnıs,usiııg the
determınate fonn of the vector product, you get

u' * Uz = (b,0,0) = b u,

FIGURE8.5.6 FIGURE8.5.7
The second step hı the general rotation ls to rotate the a.üs of The entries hı the rotation matrixmaylıe
rotntion about the x-axis until it iı in the :ıcz-plmıe. Jrom the eoordlnntes' unlt vectors.

y

u'=(O,b,c) u=(a,b,c)
X

X

z

The vector d sin 6 ux equals the vector b ux, so

sin 8= b/d

You can substitute these values for sine aııd cosine directly iııto the matrix fonnulatioıı for a
rotation about the x-a:ds to get

o
c/d

- b/d
o

o
b/d
c/d

o ~]
34

Let u" be the rotation ofu onto the xz-plane (figure 8.5.8). The projection ofu" onto the z-axis
is also the rotation of u' onto the z-axis. Because rotation does not change the length of a
vector, the rotated form ofu' is (0,0,d). The x-component ofu is not altered by the rotation, so
u" = (a,O,d).

To rotate u around the y-axis until it coincides witlı the z-axis (figure 8.5.9), you repeat the
operations used earlier to find the sine and cosine of the angle t between u" and the z
axls.Because the vector u" is already in the xz-plaııe, it is unnecessary to use a projection of it iıı
the computations.

First, use the scalarproduct to computecos t:

u" · uz
cos.= =d

I u '11 uzl

where tlıe value d is computed directly because both u" and uz are tuıit vectors.

The sine is computed by combiııing the two formulas for the vector product

u"*u2 = uyju I lu:ıl sin t

FIGURE 8.5.8 FIGURE 8.5.9
tlıe vector u" is the rotation ofvector u Into the xs-plane, The vector 1111 is rotated about the y-axisunit it

eolneides
y y

u=(ıı,b,c)

u"-(a,b,c)

aııd
u" "" tız = (-a) uy

As both u" and uz have leıı£(:lı 1,

sin (I)= -a

These values for the sıne and cosme are substituted into the general matrix representation
for a rotation about the y-axis to get

Ry""

35

I
Finally, if the angle of the original rotation is t, you rotate through this angle about the z-a:ıi.ı.
Thts traıısfonnation is represented by

[

ost
sint

Rt= O
o

sint
cos+

o
o

o
o
1
o

To get the matrix representation of rotation R(t) about the arbitrary axis,you compute the
matrix product

PffiGS and GKS-3D provide funetlens for creating matrices to represent rotations abo
coordinate ans aııd the matrix products med to represent general rotatloıu (figure 8.5.10).

FIGURE 8.5.10
PHIGS and GKS-3Dprovide a means to create matrices representing rotations about the coordinate axes, and a
methot for composing these mntriees with other transformation matrleeı; to create the matrices repreııeııım..
general rotations.

Matrix Created PIDGS GKS-3D

rotations Rotate..:"X(Angle : real); Create_Rotation _3X(thea.ta,phi:real;
about a RotateY(Angle : real); m: matrix);
coordinate RotateZ(Angle : real); Create Rotation_ 3Y(theata,phi : real;
axis m: matrix);

Create_Rotation 3Y(theata,phi ıreal;
m: matrix);

compostion SetLocaifransformation Accumulate_ Rotation 3X(theafa,phi :
(Mn1rix : matrix 4by4; real; m : matrix);
mode : (Replace, Accumulate_ Rotation_ 3Y(theata,phi :
PreC onca.tena.te real; m : matrix);
PostConatemıte)) Accumulate_ Rotation 3Z(theata.,phi :

real;m : matrix);

8.6 Reflections and Shears

Two simple transformations that have maııyapplications are reflections and sheares.Conversio
from a ri=1ıt-lıaııd coordinate system toa lett-hand coerdmate system ls a reflection throndı
the xy-plaııe.A pobıt wltlı coordiııates (x,y,z,1) in a ri:Iıt-Jıaııd system has ceordmates (x,y,-z.I)
iıı the correııpoudiıı: left-haııd system. To convert from the rie}ıt-ııaııd system to the ltft-hand
system, ene need oııly apply the reflection represented. by

o
1
o
o

o
o
-1
o

36

/
Similar matrices represent reflections through the otlıer coordinate planes Reflections through

an arbitrary plane are realized by applying a sequence of rotations and reflections Shears hı
three dimeıısioııs are similar to those iıı two dimeıısioıu because one of the coordinates rıxed
while the other ceerdtnates have multiples of the fixed coordhıate added to them, The followfııg
matrll: represents a y-axis shear,

o o
1 b
O 1
o o

In this traıısforınation, the y-coerdınate of a pohıt is lıeld censtant wlılle constaııts are added
censtants are added to the x- and z-eoerdlnates.

8.7 Transformation of Coordinate Systems

Recall that for rielıt-lıand coordinate systems, one standard orientation uses tlıe graplıics
screen as the xy-plaııe.Tiıis orientation results hı tlıe positive z-axb pohıtiııg out of the screen
(figure8.7.I).H tlıe lett-hand system has tne xy-plaııe coiııcidhıg 1ritlı the screen then the
positive .z-axis points hıto tlıe screen (li:ııre 8.7.2). In either of these orieııtatioııs, tlıe viewer ls
looking directly down tlıe z-axis.

Wlıile tlıb o.rieııtatioıı simplifies the display of an object, it does not always present the
desired view.Tiıb can be a particularly vexing problem l\itlı animation. Aıı example of ttıis type
of situation is camera (viewer) placement in space movies (Bihm 1988).A typical sequence in
sudı movies shows a spaceslıip at point f orbitiııg planet at pobıt a.Botlı the planet aııd slıJp are
mo,iııg along different curve patlıs at different rates of speed. To create

FIGURE 8.7.1 FIGURE 8.7.2
The rlght-lıaııderienıaden ofa eoordinate system results ht the The lefl-lıaııdorientation ofa eoordhıate
positive z..nxi.spointing out of the screen, positive z-nxispointing into the screen.

X X

realistic motion, the paths of both ship and planet are computed in world coordinates by means
of Kepler's methods for computing orbital motion (figure 8.7.3). The camera is normally placed
at point e, so both the object being tracked by the camera and the camera are on the z-ms. To
facilitate such camera placement, all positions are converted to a new coordinate system called
viel'V coordinates.

37

I

Other considerations iıı this problem Include the separation of the sldp and planet on tne
screen, tile distance from tile camera to the object beiııg tracked, and tlıe need to track one or
the other oJ)ject.Tiıis brief discussion considers only the dıaıı:e of ceerdlnates,

Suppose the camera is to track the planet. You then need to create a new coordinate syntm
'"'itlı the camera aııd tlıe planet on the z-axis. In addition, you waııt to choose the coordinate
system so that the slıip will appear right side up.The up direction is defined by the vector U. To
maiııtaiıı these conditions as well as position the camera aııd image plane hı the desired place,
you translate the coordinate system so that a is at the ori=1Jı. Then the vector T = (a - e), '
rotated to lie along the z-axis (figures 8.7.4 and 8.7.5).

U1ıen tlds traıısformation Is applied to U, tlıe reımltiııg vector should also pohıt as dose to
up as possible;tlıat is, tlıe image of U should have x-compenent O (ffı,ıre 8.7.6). If you

assume initially that botlı T aııd U are unlt vectors and that M is tlıe matrix representlııg me
rotation, you have the followiıı&matrix equations:

1M = (0,0,1)

FIGURE 8.7.3
In order to create an Image &om a desired Yiewpohıt, you must convert pohıts given hı tlıe world ecordlnare system
that nre used to compute the motion of the spaceship and planets to coordlııates detemdned by the new ~ and
the up vector u,

New,o-.P 1

FIGURE 8.7.4
Fi;ure 8.7.3 with the spaceship and planet removed

z a

y
u

X

~
Newz-axis

38

/
FIGURE 8.7.5 FIGURE 8.7.6
The first step In the transfonnatioıı is to translate the poiııt a to The vector T ls rotated by a transfonnatio
the origin it eeineldes withthe z-axis,

y y

X

and

The matrix M may be calculated by breaking the rotation process into a series of rotations aho
the x- and y-axes. Bliıuı (1988) applies the following vector and matrix arithmetic to compute ~
directly. Note that if unit vectors are rotated the resulting vectors are also unit vectors and both
Tl\ıI and Ul\ıI have length I.It follows that V z = 1 - Viz, and because the vector U points in the
positive

y-direction Vy=~

Recall that the scalar product of vectors v and w is the product of the length of v and the
length of the length of the projection won v, H both vectors are rotated equally about the Orİ!İn
the lengths of the vectors and their projections ,ml be preserved. Thus,

(0,0,1) · (O, Vy, Vz) = T • U

Section 8.5 observed that the Inverse of a matıi"t:representing a rotation about any of the
coordinate axeswas, in fact, the transpose of that matrix. It is easy to demonstrate this principle
because a matrix is the product of three rotations about axes. The inverse of such a product iı
the product of the inverses in reverse order ((ABcr1 = C-1B"1A"1)).The transpose of a product of
matrices is the product of the transposes iıı reverse order (CtBtAt= (ABC)1").

Solvingthe original transformation equations using 1\'f 1 = Mt you get

T = (0,0, I)Mt= M3

U = (O, Vy,Vz)Mt= Vyl\ıl2 + VzM3

where Mı is the itıı. row of Mt and therefore also the itıı. column of M. The fırst equation sh
that the third row of Mt is equation shows that the third row of Mt is simply T.

The equation M~I = ith, the identity matrix, showı that the scalar product of the second row
of Mt(second column of M) and the f'ırst column of Mis zero. Thus, the fırst and second colnmru
of Mare perpendicular. In fact, each column of Mis perpendicular to the other columns of M.
This, along ,ırith the fact that you want a right-handed system, is sufficient to show that the first

39

/
This, along with the fact that you want a right-handed system, ls suffldeııt to slıow tlıat the tlrst
column of M, Ml is the cross-product of the second (M2) and third l°M3) columns of M.that is, Mı
=M2*~.

These equations can be solved for the celumns of M to =1ve

M.1=T
Mı = (lNy) U - (Vz/Vy) T = [U - (U· T)T]/Vy
Mı = M2 *MJ = [U * T]N y

'Ihe equations for M2 and Mı cannot be used if Vy ls either Imaginary or zero. Nt>.itht.r of
these cases accurs in tlüs probleın.Botlı T and U are mut vectors so that TU bence vectors
that TU bence, Vı:-T·U must have length less than or ual to 1. Thus, the value of Vy=- Vr
is not ~ary. If V - O, then T=U .Jıı most real problems,U canbe adjusted so that it is not
T.You can accomplish the conversion from right to left handed coordhıates by multiplying the z
coordlııate of each vector by-1 before traıısfomıing it hı to view coordlııates.

Wlıile placement of a movie camera may not be a common application of transformations
solution to this problem is the first step in creating realistic.

40

/

REFERENCE

Intesrated Computer Gnpnıc:s•.•.•.........•.........
Computer Graphics••.....•... M.Pouline Baker

	Page 1
	Titles
	NEAR EAST UNIVERSITY

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	:MATRIX ALGEBRA AND IT'S APPLICATION IN TWO
	B- G!J

	Images
	Image 1

	Page 4
	Titles
	fİGURE 3.6.1
	EİGJIBE 3 6 ı
	1 2
	1 lıı 2 ~
	! LIRlJ
	1 l 3
	ı rrrrı 31
	1 2 3
	1~? ? "]
	2 ?? C;J .,1
	3 • • •
	FİGURE 3.6.3
	.. ,y)
	Scaled rectangle
	r- OJ
	[x' r] - [xy] LO Sy
	2

	Images
	Image 1

	Tables
	Table 1

	Page 5
	Titles
	tm6

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	~1 O OJ

	Page 7
	Titles
	o o
	o
	o
	1
	FIGURE 3,6,8
	[ı o o J
	ı

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 8
	Titles
	[1 O OJ
	o o

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 11
	Titles
	Gen era/ Transformation Equasions
	f 1

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	begin
	for k : 1 to n do begin
	o
	begJ,ı
	for r : 1 to 3 do

	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Titles
	5-5 Transformation Commands

	Images
	Image 1

	Page 15
	Titles
	5-6 Raster Methods for Transformations
	1 eı
	. .

	Images
	Image 1
	Image 2

	Page 16
	Titles
	MATRIX REPRESENTATIONS AND THREE-DIMENSIONAL

	Images
	Image 1

	Page 17
	Titles
	8.1 Three-Dimensional Graphics
	8.2 Representing Graphic Objects in

	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	A
	B

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 3
	Images
	Image 1

	Page 4
	Titles
	B
	B

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Titles
	To avoid repeated division by d, apply simple al,:ebra to ,:et an altenıative set of solutions: A =
	v=1
	FIGURE 8.Z.14
	v- (A,B,CJ
	Ed:eTable
	20
	If the detenniııaııt of the coeffideııts is d, then the solutions are given as
	X
	FIGURE 8.2.13
	is not zero. Ilıis will always be true if the vertices are chosen so that they are not collhıear, and
	The e:xt,mdM edge table for the polygoıı mesh In flgu.re 8.2.5
	FIGURE 8.2.12

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 6
	Titles
	P(t) = ~!ıı(t)Pk
	inik n-k

	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	fl+ 1 = fi +.6. fi
	FIGURE 8.2.18
	FIGURE 8.2.17
	Af(u) -Af(u + a) - Af(u)
	L~::tl(u) = f(u +a) - f(u) = 3aua + u(3aa + 2ba) + aa + ba- +s
	Of(u) = f(u + a) - f(u)
	f(u +a)= f(u) + Of(u)
	.Ô.fi = .6fi+i- ..6Jl
	'\'\·1ıeıı the value of the parameter u is Increased by a small amount, a > O , the amoımt of
	The fonvard difference for tlıe cubic polynomlal can be computed directly as follows:
	Thls difl'ereııce iıı called tile fo.ıward difference. The value of f(u a) can be computed directly
	from f(u):A
	If the values off are computed iteratively, then f; is associated witlı f(u), and fl, with f(u O).
	Evaluating .O.f(u), you get
	Uıtfortıuıately, this formula is still quadratic. To reduce the degree of Of, you fmd its
	foıward difference, Ar:
	In an iterated process:

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 9
	Titles
	A fi+i =.6.fi+ A fi

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Titles
	8.31\1atrb: Representation of Translation and Scaling
	r, Ty r, 1
	,J ,J ,J
	[1 O O OJ
	s, O

	Images
	Image 1

	Page 11
	Titles
	I
	i ,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	/
	/~
	/
	•

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 13
	Titles
	8.4 Review of Vector Operations

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Titles
	u= (1/jV pv
	lvl=-vv=v-
	v, • V2 = lvı I V:ı ~ose

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Titles
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Titles
	8.5 ROTATIONS

	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Titles
	[x' y' z' 1] = [x y z 1]
	-:

	Images
	Image 1

	Tables
	Table 1

	Page 18
	Titles
	/
	I

	Images
	Image 1
	Image 2

	Page 19
	Titles
	I
	cos e= ln'I Ju: I = er
	~]

	Images
	Image 1
	Image 2
	Image 3

	Page 20
	Titles
	u" · uz
	I u '11 uzl
	u"*u2 = uyju I lu:ıl sin t

	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	I
	o
	8.6 Reflections and Shears

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 2
	Titles
	/
	8. 7 Transformation of Coordinate Systems

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Titles
	I
	New,o-.P 1
	z
	u

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 4
	Titles
	/
	y

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Titles
	/

	Page 6
	Titles
	/
	REFERENCE

	Images
	Image 1
	Image 2
	Image 3

