
COMPUTER ENGINEERING
DEPARTMENT

GRODUATION PROJECT
COM4-00

ENTROPY CODING

SUPERVISOR :
FAHRETTIN M. SADIGOGLU

MUSTAFA DINC MUTLU SAYAR
92304 93078

JUNE 1997

TABLE OF CONTENTS

Introduction I

Chapter -1-
Entropy Coding 4

Chapter -2-
Variable-length Scalar Noiseless Coding 6

Chapter -3-
The Kraft Inequality 9

Chapter -4-
Entropy 12

Chapter -5-
Prefix Codes 14

Chapter -6-
Huffiııan Coding I 6

6.1 The Sibling Property 20

Chapter -7-
Vector Entropy Coding 23

Chapter -8-
Arithmetic Coding .24

Chapter -9-
Universal and Adaptive Entropy Coding 32

9.1 Lynch-Division and Enumerative Coding 33

9 .2 Adaptive Huffman Coding .34

Chapter -10-
Ziv-Lempel Coding 38

Conclusion 46

References

INTRODUCTION

1

make it possible for the error-correction unit to detect and even correct
errors introduced by

1the channel.
The third channel property is that there is an upper bound to the

number of bits per second that can be correctly transmitted. This bound
is called the channel capacity. The source-encoding block reduces the
number of bits per second with which the input signal is represented, to
a number that is low enough for transmission. The signal with the
reduced bit rate is the source-encoding signal. The source decoder
converts this to a reconstruction of the input signal. Unfortunately,
source encoding and decoding may change the signal. This results in
the reception of a distorted signal. In a good
source-coding system the distortion is kept below a certain level.

It is mainly source coding for speech, music and pictures that is
considered here. This implies that one finds a human observer at the
destination. This has its impact on the notion of distortion and on the
design of source-coding systems. Agood source-coding system keeps
distortion below a certain level. If signals such as speech, music and
pictures are received by a human observer, it means that after reception
these signals must have a desired subjective quality rather than a
desired objective quality.

In most of what follows it is assumed that the concentrantion of
the error-protection block, the modulator, the channel, the demodulator
and the error-correction block behaves as a digital, error-free channel,
which imlies that the source decoder receives the undestorted output oh
the source encoder.

Source coding is not only the name for the discipline involved
with the design of source-coding algorithms and systems but also for
the action of the source encoder and decoder. Other names that are
sometimes used for the source coding are bit-rate reduction, data
reduction and data compression. The combination of a source encoder
and decoder is often called codec.

2

Examles of source coding applied in transmission and storage
systems are: source oodig of speech signals in mobile
automatictelephony, source coding of x-ray and nuclear magnetic
resonance images for storage in medical databases, source coding of
sound signals for storage on compact disc interactive (CD-I) disks and
on digital compact cassette (DCC) tapes and for digital audio
broadcasting, source coding of images of documents for storage in the
Megadoc system, and source coding of digital TV pictures for storage
on a digital video tape.

source
destination

source encoder source encoder

r----·r-------------------t-------,I error-free channel
I error protection I I error correction

modulator demodulator

channel
I

I Iı . J

Figure]

3

ENTROPY CODING
I

Most of the coding systems are fixed rate codes in the sense that
a fixed number of channel bits per time unit is produced by the encoder
and processed by decoder. Examples of these type of codes are
quantization, bit allocation and transform coding. In some
communication and storage systems, fixed rate operation is not
desirable because the data source may display wide variations of
activity. For example, samled speech may change very little during long
periods of silence and then exhibit very complex behavior during
plosives. Ideally, one would like to waste few bits coding the silence
and preserve them for coding the highly informative transitients. Such a
strategy requires a variable rate code, a code which can adjust its own
bit rate to better match local behavior. In order to use fixed rate
communication and storage links, however, the long term average bit
rate must be constant. Thus buffers are usually required as an interface
when variable rate codes are used on fixed rate communication or
storage media. The buffers will hold bits arriving at a variable rate from
the encoder until they are accepted by the fixed rate channel for
transmission. Such buffers add complexity to a system and can also add
errors when they overflow, which occurs when the data source
produces bits faster than the buffer can accept them. Similarly, errors
can be introduced when the buffers underflow, which occurs when the
data source produces bits slower than the rate at which the buffer is
releasing bits. To combat this problem, a technique known as buffer
feedback is commonly used, where the occupancy level of the buffer is
fed back to the source encoder to suitably adjust the quantizer data
rate. This added complexity is often justified, however, by the
potentially significant performance gains possible with the variable rate
strategies. Entropy codes are often used in conjunction with scalar
quantizers (to conserve the average bit rate) and are often fairly
simple to implement when the input alphabets are of reasonable size.

4

The overall variable rate code is then a simple cascade of a scalar
quantizer, which performs the analog-to-digital conversion in a fixed
rate manner, and a variable length noiseless code, which maps the
quantizer output into a variable length binary index in a way that can be
perfectly decoded by the receiver.

Communication and storage systems that are inherently variable
rate are increasing in importance and variable length codes can be well
matched to such systems. For example, variable rate codes cause no
problems in offline starage (the bits are accepted as they come until
the file is complete) and variable rate codes are no more complicated
than fixed rate codes for use in packet communication environments.

Entropy coding is also often referred to as noiseless coding,
lossless coding, and data compaction coding. It is also referred to
simply as data compression in the computer science literature, but it is
avoided that this nomenclature as entropy coding is a very special case
of data compression. The narrow use of the term by computer scientists
is perhaps understandable because of the disastrous consequences that
can result from even rare bit errors if the compressed file is a binary
executable file. When bit errors cause catastrophe, lossy codes are not
useful for compression (except possibly as a component of an overall
lossless code) .

The goal of noiseless coding is to reduce the average number of
symbols sent while .suffering no loss of fidelity. A classical example is
the Morse code where short binary codewords are used for more
probable letters and long codewords used for less probable letters. The
Morse code in fact is a very good code for its age and, when applied to
English text, results in many fewer bits on the average than would the
use of one byte ASCII codes for each letter. A more recent but still
venerable example is the run-length code used to code sources which
tend to repeat symbols for long periods of time. For example, a binary
source such as facsimile may produce long runs of zeros and
occasionally, ones. Hence one means of compression is to sequentially

5

send a symbol followed by the number of its repetitions, the run lenth.
This will result in compression on the average if the source tends to
produce such runs. It will not compress a memoryless source.

Variable-Length Scalar Noiseless Coding

note: In my report I tried to avoid using mathematical expressions but I
used the ones that are unavoidable for explaining the event.

Suppose that { X, } is a stationary sequence of random variables
with a finite alphabet A= { a0, , aM.ı } with a marginal probability
mass function p(a)= Px (a)= Pr (Xn =a). The case of of primary
interest for the present purposes is that where the X, are quantized
versions of continuous alphabet sequence Wn , that is, X, = Q (Wn) ,
with q an ordinary scalar quantizer.

A variable length scalar noiseless code consists of an encoder a
, which maps a single input symbol x in A into a binary vector a (x) of
dimension or length l(x) , and a decoder p , which maps binary
vectors u of differing length into an output f3 (u) so that f3 (a (X)) =
x ; that is, the encoding I decoding operation is lossless or noiseless or
transparent. The goal of the code is to keep the average number of bits
transmitted for each source symbol as small as possible, that is, to
minimize the average length

l (a) = E l (Xn) = r p (a) l (a).
As A

formula 1.

Ifformula 1 is accepted as a definition of quality of noiseless
source code, then it is of interest to quantify how small l (a) can be
made and hence what the optimal achievable performance is. It is also

6

of interest to construct actual codes that perform very near to the
optimal quantity. ı

Unfortunately, the given definition of a code is not enough to
ensure that it is useful. Suppose, for example, that the input alphabet
has 4 letters,
A= { a0, aı, a2, a, }, possibly the output of a 2 bit per sample quantizer.

Input letter I Codeword
o
10
101
0101

table 1.

Although this is a noiseless code by the above definition, it cannot
always be decoded in a noiseless fashion when the code is applied to a
sequence of inputs. For example, if the receiver gets the sequence
O 1 O 11 O 1 , it could have been produced by the input sequence
aoa2a2aoaı.. .. or by a3a2aoa1 To make matters worse, the ambiguity
can never be resolved regardless of future received bits. Hence for a
code to be useful, it must be uniquely decodable in the sence that if the
decoder receives a valid encoded sequence of finite length, there is
only one possible input sequence that could have produce the encoded
sequence. The effectively extends the idea of a noiseless or
transparents code from a single letter to a sequence. Note that we could
accomlish this by inserting punctuation in the binary sequence between
codewords, e.g., add a third letter "," and send the sequence O, 1 O 1,
1 O 1, O, 1 O, ... While this disambiguates the sequence, it also increqses
the average length of the encoding as well as the required channel
alphabet. This may be a simple fix, but it is not an efficient use of
symbols. An alternative and less restrictive approach is to require that
the code satisfy a prefix condition in the sense that no codeword be a
prefix of any other codeword. In the previous example, ao is a prefix of

7

a, and a, a prefix of a2. An example of a code satisfying the prefix
condition is given below.

Input letter I Codeword
ao o
aı 10
a2 110
a3 111

table 2.

Binary prefix codes can be depicted as a binary tree as below.

1111

1110

label----, ~ terminal node

11 O codeword

I
root node O

0101

0100

o 0011

0010

I o ~--
parent -----

child

0001

0000

figure 2.

The binary tree starts with a root or root node which has branches
extending from it. Each such branch ends in a node, which can be
thought of as first level nodes or depth one nodes. The branches are
labeled by a -1- or -0- (for a binary tree). By convention, we often put
the label -1- on the upper branch in a horizontally drawn tree and a -0-

8

on the lower branch. Nodes either have further branches leading to
more nodes, or they are terminal nodes or leaves with no extending
branches. This tree is depicted as growing from left to right, but they
are often drawn in vertical fashion with the root on the bottom (like
most biological trees) or with the root on top and the branches
extending downward. A level n + 1 node connected by a branch from a
level n node is said to be a child of the latter node, which is called the
parent of the level n+ 1 node. Children of a common parent are called
siblings. There is a one-to-one correspondance between paths from the
root node to the leaves and the codewords. The codewords are for this
reason sometimes called "path maps". Reading the branch labels from
the root on the left to the leaf on the right yields a binary codeword. By
construction of the tree, no codeword can be a prefix of another
codeword since codewords terminate in leaves, i.e., no other
codewords begin with the same binary sequence. Conversely, given any
prefix code we can represent as a tree. An encoder is a means of
assigning one of the codewords to a source symbol. It might (or might
not) take adventage of the tree structure.

The Kraft Inequality

A necessary conditio for unique decodability of a noiseless
source code with input alphabet A = { a0, , aM-ı } , encoder a, and
codeword lengths lk = l (ak), k = 0,1, , M-1, is

M-1

L 2 -1 k ~ 1.
k =O

Binary codewords of length lıs.: and shorter can be considered as paths
through the tree or, equivalently, as the terminal nodes of such a path.
In the figure 3 a complete tree is depicted with each branch being
labeled by a O or 1. The code is represented by the subtree consisting

9

of the branches from the root of the tree to the terminal nodes (leaves)
of the subtree denoted by the circles. The codewords correspond to the
sequences of the branch labels from the root of the tree to the leaf. The
lengths of the codewords in the figure are
{ 1,2,3,4,4 }. The codewords corresponding to the leaves of the subtree
are given in the boxes near the leaves.

In a general binary tree of arbitrary depth, a codeword of length l
correspods to a path of l branches in the tree beginning at the root node
(depth O) and finishing at a terminal node of depth l in the tree. The
codeword is the sequence of binary labels of the branches read from the
first branch to the branch at depth l. Given a collection of lengths
satisfy the Kraft inequality, pick an arbitrary node of depth lo and hence
an arbitrary length /0 binary sequence as the first codeword. Infigure 3
this first choice is the single symbol sequence O corresponding to the
downward branch emanating from the root node. Since no other
codeword can have this first codeword as prefix, we prune the tree at
the terminal node of this first codeword at depth lo in the tree. This
removes all of the deeper nodes emanating from the terminal node of
the first codeword from consideration as terminal nodes for the other

codewords.

10

1111

111 O

figure 3

Next pick one of the remaining available depth /1 nodes and
hence the corresponding binary /1 -tuple as the second codeword. In
figure 3 this is the length 2 sequence 1 O. Observe that there are 211 - 211

· 1° available nodes at this depth.
The Kraft inequality proides the basis for simple lower and upper

bounds to the average length of inequaly decorable variable length
noiseless codes. The remainder of this section is devoted to the
development of the bound and some of its properties.

11

12

Entropy

We have from the Kraft inequality that

l(a)=Lıp(a)l(a)
a e A

= - Lı p (a) log 2 - 1 < a)

a s A

~ - Lı p (a) log (2- 1 < a) I Lı b s A 2 - 1 < b)) ,

formula 3

where the logarithm is base 2. The bound on the right-hand side has the
form

Lı p (a) log (1 I q (a))

for two pmf' s p and q. the following lemma provides a basic lower
bound for such sums that depends only on p.

Let us now consider the divergence inequality:

Given any two pmf's p and q with a common alphabet A, then

D(p 11 q) = Lı p (a) log (1 I q (a)) ~ H (p) = Lı p (a) log (1 Ip (a))

formula 4

D(p 11 q) is called the divergence inequality or relative entropy or
cross entropy of the pmf' s p and q. H (p) is called the entropy of the
pmf p or, equivalently, the entropy of the random variable X described

COMPUTER ENGINEERING
DEPARTMENT

GRODUATION PROJECT
COM4-00

ENTROPY CODING

SUPERVISOR :
FAHRETTIN M. SADIGOGLU

MUSTAFA DINC MUTLU SAYAR
92304 93078

JUNE 1997

TABLE OF CONTENTS

Introduction I

Chapter -1-
Entropy Coding 4

Chapter -2-
Variable-length Scalar Noiseless Coding 6

Chapter -3-
The Kraft Inequality 9

Chapter -4-
Entropy 12

Chapter -5-
Prefix Codes 14

Chapter -6-
Huffiııan Coding I 6

6.1 The Sibling Property 20

Chapter -7-
Vector Entropy Coding 23

