
COMPUTER ENGINEERING
DEPARTMENT

GRODUATION PROJECT
COM4-00

ENTROPY CODING

SUPERVISOR :
FAHRETTIN M. SADIGOGLU

MUSTAFA DINC MUTLU SAYAR
92304 93078

JUNE 1997

TABLE OF CONTENTS

Introduction I

Chapter -1-
Entropy Coding 4

Chapter -2-
Variable-length Scalar Noiseless Coding 6

Chapter -3-
The Kraft Inequality 9

Chapter -4-
Entropy 12

Chapter -5-
Prefix Codes 14

Chapter -6-
Huffiııan Coding I 6

6.1 The Sibling Property 20

Chapter -7-
Vector Entropy Coding 23

Chapter -8-
Arithmetic Coding .24

Chapter -9-
Universal and Adaptive Entropy Coding 32

9.1 Lynch-Division and Enumerative Coding 33

9 .2 Adaptive Huffman Coding .34

Chapter -10-
Ziv-Lempel Coding 38

Conclusion 46

References

INTRODUCTION

1

make it possible for the error-correction unit to detect and even correct
errors introduced by

1the channel.
The third channel property is that there is an upper bound to the

number of bits per second that can be correctly transmitted. This bound
is called the channel capacity. The source-encoding block reduces the
number of bits per second with which the input signal is represented, to
a number that is low enough for transmission. The signal with the
reduced bit rate is the source-encoding signal. The source decoder
converts this to a reconstruction of the input signal. Unfortunately,
source encoding and decoding may change the signal. This results in
the reception of a distorted signal. In a good
source-coding system the distortion is kept below a certain level.

It is mainly source coding for speech, music and pictures that is
considered here. This implies that one finds a human observer at the
destination. This has its impact on the notion of distortion and on the
design of source-coding systems. Agood source-coding system keeps
distortion below a certain level. If signals such as speech, music and
pictures are received by a human observer, it means that after reception
these signals must have a desired subjective quality rather than a
desired objective quality.

In most of what follows it is assumed that the concentrantion of
the error-protection block, the modulator, the channel, the demodulator
and the error-correction block behaves as a digital, error-free channel,
which imlies that the source decoder receives the undestorted output oh
the source encoder.

Source coding is not only the name for the discipline involved
with the design of source-coding algorithms and systems but also for
the action of the source encoder and decoder. Other names that are
sometimes used for the source coding are bit-rate reduction, data
reduction and data compression. The combination of a source encoder
and decoder is often called codec.

2

Examles of source coding applied in transmission and storage
systems are: source oodig of speech signals in mobile
automatictelephony, source coding of x-ray and nuclear magnetic
resonance images for storage in medical databases, source coding of
sound signals for storage on compact disc interactive (CD-I) disks and
on digital compact cassette (DCC) tapes and for digital audio
broadcasting, source coding of images of documents for storage in the
Megadoc system, and source coding of digital TV pictures for storage
on a digital video tape.

source
destination

source encoder source encoder

r----·r-------------------t-------,I error-free channel
I error protection I I error correction

modulator demodulator

channel
I

I Iı . J

Figure]

3

ENTROPY CODING
I

Most of the coding systems are fixed rate codes in the sense that
a fixed number of channel bits per time unit is produced by the encoder
and processed by decoder. Examples of these type of codes are
quantization, bit allocation and transform coding. In some
communication and storage systems, fixed rate operation is not
desirable because the data source may display wide variations of
activity. For example, samled speech may change very little during long
periods of silence and then exhibit very complex behavior during
plosives. Ideally, one would like to waste few bits coding the silence
and preserve them for coding the highly informative transitients. Such a
strategy requires a variable rate code, a code which can adjust its own
bit rate to better match local behavior. In order to use fixed rate
communication and storage links, however, the long term average bit
rate must be constant. Thus buffers are usually required as an interface
when variable rate codes are used on fixed rate communication or
storage media. The buffers will hold bits arriving at a variable rate from
the encoder until they are accepted by the fixed rate channel for
transmission. Such buffers add complexity to a system and can also add
errors when they overflow, which occurs when the data source
produces bits faster than the buffer can accept them. Similarly, errors
can be introduced when the buffers underflow, which occurs when the
data source produces bits slower than the rate at which the buffer is
releasing bits. To combat this problem, a technique known as buffer
feedback is commonly used, where the occupancy level of the buffer is
fed back to the source encoder to suitably adjust the quantizer data
rate. This added complexity is often justified, however, by the
potentially significant performance gains possible with the variable rate
strategies. Entropy codes are often used in conjunction with scalar
quantizers (to conserve the average bit rate) and are often fairly
simple to implement when the input alphabets are of reasonable size.

4

The overall variable rate code is then a simple cascade of a scalar
quantizer, which performs the analog-to-digital conversion in a fixed
rate manner, and a variable length noiseless code, which maps the
quantizer output into a variable length binary index in a way that can be
perfectly decoded by the receiver.

Communication and storage systems that are inherently variable
rate are increasing in importance and variable length codes can be well
matched to such systems. For example, variable rate codes cause no
problems in offline starage (the bits are accepted as they come until
the file is complete) and variable rate codes are no more complicated
than fixed rate codes for use in packet communication environments.

Entropy coding is also often referred to as noiseless coding,
lossless coding, and data compaction coding. It is also referred to
simply as data compression in the computer science literature, but it is
avoided that this nomenclature as entropy coding is a very special case
of data compression. The narrow use of the term by computer scientists
is perhaps understandable because of the disastrous consequences that
can result from even rare bit errors if the compressed file is a binary
executable file. When bit errors cause catastrophe, lossy codes are not
useful for compression (except possibly as a component of an overall
lossless code) .

The goal of noiseless coding is to reduce the average number of
symbols sent while .suffering no loss of fidelity. A classical example is
the Morse code where short binary codewords are used for more
probable letters and long codewords used for less probable letters. The
Morse code in fact is a very good code for its age and, when applied to
English text, results in many fewer bits on the average than would the
use of one byte ASCII codes for each letter. A more recent but still
venerable example is the run-length code used to code sources which
tend to repeat symbols for long periods of time. For example, a binary
source such as facsimile may produce long runs of zeros and
occasionally, ones. Hence one means of compression is to sequentially

5

send a symbol followed by the number of its repetitions, the run lenth.
This will result in compression on the average if the source tends to
produce such runs. It will not compress a memoryless source.

Variable-Length Scalar Noiseless Coding

note: In my report I tried to avoid using mathematical expressions but I
used the ones that are unavoidable for explaining the event.

Suppose that { X, } is a stationary sequence of random variables
with a finite alphabet A= { a0, , aM.ı } with a marginal probability
mass function p(a)= Px (a)= Pr (Xn =a). The case of of primary
interest for the present purposes is that where the X, are quantized
versions of continuous alphabet sequence Wn , that is, X, = Q (Wn) ,
with q an ordinary scalar quantizer.

A variable length scalar noiseless code consists of an encoder a
, which maps a single input symbol x in A into a binary vector a (x) of
dimension or length l(x) , and a decoder p , which maps binary
vectors u of differing length into an output f3 (u) so that f3 (a (X)) =
x ; that is, the encoding I decoding operation is lossless or noiseless or
transparent. The goal of the code is to keep the average number of bits
transmitted for each source symbol as small as possible, that is, to
minimize the average length

l (a) = E l (Xn) = r p (a) l (a).
As A

formula 1.

Ifformula 1 is accepted as a definition of quality of noiseless
source code, then it is of interest to quantify how small l (a) can be
made and hence what the optimal achievable performance is. It is also

6

of interest to construct actual codes that perform very near to the
optimal quantity. ı

Unfortunately, the given definition of a code is not enough to
ensure that it is useful. Suppose, for example, that the input alphabet
has 4 letters,
A= { a0, aı, a2, a, }, possibly the output of a 2 bit per sample quantizer.

Input letter I Codeword
o
10
101
0101

table 1.

Although this is a noiseless code by the above definition, it cannot
always be decoded in a noiseless fashion when the code is applied to a
sequence of inputs. For example, if the receiver gets the sequence
O 1 O 11 O 1 , it could have been produced by the input sequence
aoa2a2aoaı.. .. or by a3a2aoa1 To make matters worse, the ambiguity
can never be resolved regardless of future received bits. Hence for a
code to be useful, it must be uniquely decodable in the sence that if the
decoder receives a valid encoded sequence of finite length, there is
only one possible input sequence that could have produce the encoded
sequence. The effectively extends the idea of a noiseless or
transparents code from a single letter to a sequence. Note that we could
accomlish this by inserting punctuation in the binary sequence between
codewords, e.g., add a third letter "," and send the sequence O, 1 O 1,
1 O 1, O, 1 O, ... While this disambiguates the sequence, it also increqses
the average length of the encoding as well as the required channel
alphabet. This may be a simple fix, but it is not an efficient use of
symbols. An alternative and less restrictive approach is to require that
the code satisfy a prefix condition in the sense that no codeword be a
prefix of any other codeword. In the previous example, ao is a prefix of

7

a, and a, a prefix of a2. An example of a code satisfying the prefix
condition is given below.

Input letter I Codeword
ao o
aı 10
a2 110
a3 111

table 2.

Binary prefix codes can be depicted as a binary tree as below.

1111

1110

label----, ~ terminal node

11 O codeword

I
root node O

0101

0100

o 0011

0010

I o ~--
parent -----

child

0001

0000

figure 2.

The binary tree starts with a root or root node which has branches
extending from it. Each such branch ends in a node, which can be
thought of as first level nodes or depth one nodes. The branches are
labeled by a -1- or -0- (for a binary tree). By convention, we often put
the label -1- on the upper branch in a horizontally drawn tree and a -0-

8

on the lower branch. Nodes either have further branches leading to
more nodes, or they are terminal nodes or leaves with no extending
branches. This tree is depicted as growing from left to right, but they
are often drawn in vertical fashion with the root on the bottom (like
most biological trees) or with the root on top and the branches
extending downward. A level n + 1 node connected by a branch from a
level n node is said to be a child of the latter node, which is called the
parent of the level n+ 1 node. Children of a common parent are called
siblings. There is a one-to-one correspondance between paths from the
root node to the leaves and the codewords. The codewords are for this
reason sometimes called "path maps". Reading the branch labels from
the root on the left to the leaf on the right yields a binary codeword. By
construction of the tree, no codeword can be a prefix of another
codeword since codewords terminate in leaves, i.e., no other
codewords begin with the same binary sequence. Conversely, given any
prefix code we can represent as a tree. An encoder is a means of
assigning one of the codewords to a source symbol. It might (or might
not) take adventage of the tree structure.

The Kraft Inequality

A necessary conditio for unique decodability of a noiseless
source code with input alphabet A = { a0, , aM-ı } , encoder a, and
codeword lengths lk = l (ak), k = 0,1, , M-1, is

M-1

L 2 -1 k ~ 1.
k =O

Binary codewords of length lıs.: and shorter can be considered as paths
through the tree or, equivalently, as the terminal nodes of such a path.
In the figure 3 a complete tree is depicted with each branch being
labeled by a O or 1. The code is represented by the subtree consisting

9

of the branches from the root of the tree to the terminal nodes (leaves)
of the subtree denoted by the circles. The codewords correspond to the
sequences of the branch labels from the root of the tree to the leaf. The
lengths of the codewords in the figure are
{ 1,2,3,4,4 }. The codewords corresponding to the leaves of the subtree
are given in the boxes near the leaves.

In a general binary tree of arbitrary depth, a codeword of length l
correspods to a path of l branches in the tree beginning at the root node
(depth O) and finishing at a terminal node of depth l in the tree. The
codeword is the sequence of binary labels of the branches read from the
first branch to the branch at depth l. Given a collection of lengths
satisfy the Kraft inequality, pick an arbitrary node of depth lo and hence
an arbitrary length /0 binary sequence as the first codeword. Infigure 3
this first choice is the single symbol sequence O corresponding to the
downward branch emanating from the root node. Since no other
codeword can have this first codeword as prefix, we prune the tree at
the terminal node of this first codeword at depth lo in the tree. This
removes all of the deeper nodes emanating from the terminal node of
the first codeword from consideration as terminal nodes for the other

codewords.

10

1111

111 O

figure 3

Next pick one of the remaining available depth /1 nodes and
hence the corresponding binary /1 -tuple as the second codeword. In
figure 3 this is the length 2 sequence 1 O. Observe that there are 211 - 211

· 1° available nodes at this depth.
The Kraft inequality proides the basis for simple lower and upper

bounds to the average length of inequaly decorable variable length
noiseless codes. The remainder of this section is devoted to the
development of the bound and some of its properties.

11

12

Entropy

We have from the Kraft inequality that

l(a)=Lıp(a)l(a)
a e A

= - Lı p (a) log 2 - 1 < a)

a s A

~ - Lı p (a) log (2- 1 < a) I Lı b s A 2 - 1 < b)) ,

formula 3

where the logarithm is base 2. The bound on the right-hand side has the
form

Lı p (a) log (1 I q (a))

for two pmf' s p and q. the following lemma provides a basic lower
bound for such sums that depends only on p.

Let us now consider the divergence inequality:

Given any two pmf's p and q with a common alphabet A, then

D(p 11 q) = Lı p (a) log (1 I q (a)) ~ H (p) = Lı p (a) log (1 Ip (a))

formula 4

D(p 11 q) is called the divergence inequality or relative entropy or
cross entropy of the pmf' s p and q. H (p) is called the entropy of the
pmf p or, equivalently, the entropy of the random variable X described

COMPUTER ENGINEERING
DEPARTMENT

GRODUATION PROJECT
COM4-00

ENTROPY CODING

SUPERVISOR :
FAHRETTIN M. SADIGOGLU

MUSTAFA DINC MUTLU SAYAR
92304 93078

JUNE 1997

TABLE OF CONTENTS

Introduction I

Chapter -1-
Entropy Coding 4

Chapter -2-
Variable-length Scalar Noiseless Coding 6

Chapter -3-
The Kraft Inequality 9

Chapter -4-
Entropy 12

Chapter -5-
Prefix Codes 14

Chapter -6-
Huffiııan Coding I 6

6.1 The Sibling Property 20

Chapter -7-
Vector Entropy Coding 23

Chapter -8-
Arithmetic Coding .24

Chapter -9-
Universal and Adaptive Entropy Coding 32

9.1 Lynch-Division and Enumerative Coding 33

9 .2 Adaptive Huffman Coding .34

Chapter -10-
Ziv-Lempel Coding 38

Conclusion 46

References

INTRODUCTION

1

make it possible for the error-correction unit to detect and even correct
errors introduced by

1the channel.
The third channel property is that there is an upper bound to the

number of bits per second that can be correctly transmitted. This bound
is called the channel capacity. The source-encoding block reduces the
number of bits per second with which the input signal is represented, to
a number that is low enough for transmission. The signal with the
reduced bit rate is the source-encoding signal. The source decoder
converts this to a reconstruction of the input signal. Unfortunately,
source encoding and decoding may change the signal. This results in
the reception of a distorted signal. In a good
source-coding system the distortion is kept below a certain level.

It is mainly source coding for speech, music and pictures that is
considered here. This implies that one finds a human observer at the
destination. This has its impact on the notion of distortion and on the
design of source-coding systems. Agood source-coding system keeps
distortion below a certain level. If signals such as speech, music and
pictures are received by a human observer, it means that after reception
these signals must have a desired subjective quality rather than a
desired objective quality.

In most of what follows it is assumed that the concentrantion of
the error-protection block, the modulator, the channel, the demodulator
and the error-correction block behaves as a digital, error-free channel,
which imlies that the source decoder receives the undestorted output oh
the source encoder.

Source coding is not only the name for the discipline involved
with the design of source-coding algorithms and systems but also for
the action of the source encoder and decoder. Other names that are
sometimes used for the source coding are bit-rate reduction, data
reduction and data compression. The combination of a source encoder
and decoder is often called codec.

2

Examles of source coding applied in transmission and storage
systems are: source oodig of speech signals in mobile
automatictelephony, source coding of x-ray and nuclear magnetic
resonance images for storage in medical databases, source coding of
sound signals for storage on compact disc interactive (CD-I) disks and
on digital compact cassette (DCC) tapes and for digital audio
broadcasting, source coding of images of documents for storage in the
Megadoc system, and source coding of digital TV pictures for storage
on a digital video tape.

source
destination

source encoder source encoder

r----·r-------------------t-------,I error-free channel
I error protection I I error correction

modulator demodulator

channel
I

I Iı . J

Figure]

3

ENTROPY CODING
I

Most of the coding systems are fixed rate codes in the sense that
a fixed number of channel bits per time unit is produced by the encoder
and processed by decoder. Examples of these type of codes are
quantization, bit allocation and transform coding. In some
communication and storage systems, fixed rate operation is not
desirable because the data source may display wide variations of
activity. For example, samled speech may change very little during long
periods of silence and then exhibit very complex behavior during
plosives. Ideally, one would like to waste few bits coding the silence
and preserve them for coding the highly informative transitients. Such a
strategy requires a variable rate code, a code which can adjust its own
bit rate to better match local behavior. In order to use fixed rate
communication and storage links, however, the long term average bit
rate must be constant. Thus buffers are usually required as an interface
when variable rate codes are used on fixed rate communication or
storage media. The buffers will hold bits arriving at a variable rate from
the encoder until they are accepted by the fixed rate channel for
transmission. Such buffers add complexity to a system and can also add
errors when they overflow, which occurs when the data source
produces bits faster than the buffer can accept them. Similarly, errors
can be introduced when the buffers underflow, which occurs when the
data source produces bits slower than the rate at which the buffer is
releasing bits. To combat this problem, a technique known as buffer
feedback is commonly used, where the occupancy level of the buffer is
fed back to the source encoder to suitably adjust the quantizer data
rate. This added complexity is often justified, however, by the
potentially significant performance gains possible with the variable rate
strategies. Entropy codes are often used in conjunction with scalar
quantizers (to conserve the average bit rate) and are often fairly
simple to implement when the input alphabets are of reasonable size.

4

The overall variable rate code is then a simple cascade of a scalar
quantizer, which performs the analog-to-digital conversion in a fixed
rate manner, and a variable length noiseless code, which maps the
quantizer output into a variable length binary index in a way that can be
perfectly decoded by the receiver.

Communication and storage systems that are inherently variable
rate are increasing in importance and variable length codes can be well
matched to such systems. For example, variable rate codes cause no
problems in offline starage (the bits are accepted as they come until
the file is complete) and variable rate codes are no more complicated
than fixed rate codes for use in packet communication environments.

Entropy coding is also often referred to as noiseless coding,
lossless coding, and data compaction coding. It is also referred to
simply as data compression in the computer science literature, but it is
avoided that this nomenclature as entropy coding is a very special case
of data compression. The narrow use of the term by computer scientists
is perhaps understandable because of the disastrous consequences that
can result from even rare bit errors if the compressed file is a binary
executable file. When bit errors cause catastrophe, lossy codes are not
useful for compression (except possibly as a component of an overall
lossless code) .

The goal of noiseless coding is to reduce the average number of
symbols sent while .suffering no loss of fidelity. A classical example is
the Morse code where short binary codewords are used for more
probable letters and long codewords used for less probable letters. The
Morse code in fact is a very good code for its age and, when applied to
English text, results in many fewer bits on the average than would the
use of one byte ASCII codes for each letter. A more recent but still
venerable example is the run-length code used to code sources which
tend to repeat symbols for long periods of time. For example, a binary
source such as facsimile may produce long runs of zeros and
occasionally, ones. Hence one means of compression is to sequentially

5

send a symbol followed by the number of its repetitions, the run lenth.
This will result in compression on the average if the source tends to
produce such runs. It will not compress a memoryless source.

Variable-Length Scalar Noiseless Coding

note: In my report I tried to avoid using mathematical expressions but I
used the ones that are unavoidable for explaining the event.

Suppose that { X, } is a stationary sequence of random variables
with a finite alphabet A= { a0, , aM.ı } with a marginal probability
mass function p(a)= Px (a)= Pr (Xn =a). The case of of primary
interest for the present purposes is that where the X, are quantized
versions of continuous alphabet sequence Wn , that is, X, = Q (Wn) ,
with q an ordinary scalar quantizer.

A variable length scalar noiseless code consists of an encoder a
, which maps a single input symbol x in A into a binary vector a (x) of
dimension or length l(x) , and a decoder p , which maps binary
vectors u of differing length into an output f3 (u) so that f3 (a (X)) =
x ; that is, the encoding I decoding operation is lossless or noiseless or
transparent. The goal of the code is to keep the average number of bits
transmitted for each source symbol as small as possible, that is, to
minimize the average length

l (a) = E l (Xn) = r p (a) l (a).
As A

formula 1.

Ifformula 1 is accepted as a definition of quality of noiseless
source code, then it is of interest to quantify how small l (a) can be
made and hence what the optimal achievable performance is. It is also

6

of interest to construct actual codes that perform very near to the
optimal quantity. ı

Unfortunately, the given definition of a code is not enough to
ensure that it is useful. Suppose, for example, that the input alphabet
has 4 letters,
A= { a0, aı, a2, a, }, possibly the output of a 2 bit per sample quantizer.

Input letter I Codeword
o
10
101
0101

table 1.

Although this is a noiseless code by the above definition, it cannot
always be decoded in a noiseless fashion when the code is applied to a
sequence of inputs. For example, if the receiver gets the sequence
O 1 O 11 O 1 , it could have been produced by the input sequence
aoa2a2aoaı.. .. or by a3a2aoa1 To make matters worse, the ambiguity
can never be resolved regardless of future received bits. Hence for a
code to be useful, it must be uniquely decodable in the sence that if the
decoder receives a valid encoded sequence of finite length, there is
only one possible input sequence that could have produce the encoded
sequence. The effectively extends the idea of a noiseless or
transparents code from a single letter to a sequence. Note that we could
accomlish this by inserting punctuation in the binary sequence between
codewords, e.g., add a third letter "," and send the sequence O, 1 O 1,
1 O 1, O, 1 O, ... While this disambiguates the sequence, it also increqses
the average length of the encoding as well as the required channel
alphabet. This may be a simple fix, but it is not an efficient use of
symbols. An alternative and less restrictive approach is to require that
the code satisfy a prefix condition in the sense that no codeword be a
prefix of any other codeword. In the previous example, ao is a prefix of

7

a, and a, a prefix of a2. An example of a code satisfying the prefix
condition is given below.

Input letter I Codeword
ao o
aı 10
a2 110
a3 111

table 2.

Binary prefix codes can be depicted as a binary tree as below.

1111

1110

label----, ~ terminal node

11 O codeword

I
root node O

0101

0100

o 0011

0010

I o ~--
parent -----

child

0001

0000

figure 2.

The binary tree starts with a root or root node which has branches
extending from it. Each such branch ends in a node, which can be
thought of as first level nodes or depth one nodes. The branches are
labeled by a -1- or -0- (for a binary tree). By convention, we often put
the label -1- on the upper branch in a horizontally drawn tree and a -0-

8

on the lower branch. Nodes either have further branches leading to
more nodes, or they are terminal nodes or leaves with no extending
branches. This tree is depicted as growing from left to right, but they
are often drawn in vertical fashion with the root on the bottom (like
most biological trees) or with the root on top and the branches
extending downward. A level n + 1 node connected by a branch from a
level n node is said to be a child of the latter node, which is called the
parent of the level n+ 1 node. Children of a common parent are called
siblings. There is a one-to-one correspondance between paths from the
root node to the leaves and the codewords. The codewords are for this
reason sometimes called "path maps". Reading the branch labels from
the root on the left to the leaf on the right yields a binary codeword. By
construction of the tree, no codeword can be a prefix of another
codeword since codewords terminate in leaves, i.e., no other
codewords begin with the same binary sequence. Conversely, given any
prefix code we can represent as a tree. An encoder is a means of
assigning one of the codewords to a source symbol. It might (or might
not) take adventage of the tree structure.

The Kraft Inequality

A necessary conditio for unique decodability of a noiseless
source code with input alphabet A = { a0, , aM-ı } , encoder a, and
codeword lengths lk = l (ak), k = 0,1, , M-1, is

M-1

L 2 -1 k ~ 1.
k =O

Binary codewords of length lıs.: and shorter can be considered as paths
through the tree or, equivalently, as the terminal nodes of such a path.
In the figure 3 a complete tree is depicted with each branch being
labeled by a O or 1. The code is represented by the subtree consisting

9

of the branches from the root of the tree to the terminal nodes (leaves)
of the subtree denoted by the circles. The codewords correspond to the
sequences of the branch labels from the root of the tree to the leaf. The
lengths of the codewords in the figure are
{ 1,2,3,4,4 }. The codewords corresponding to the leaves of the subtree
are given in the boxes near the leaves.

In a general binary tree of arbitrary depth, a codeword of length l
correspods to a path of l branches in the tree beginning at the root node
(depth O) and finishing at a terminal node of depth l in the tree. The
codeword is the sequence of binary labels of the branches read from the
first branch to the branch at depth l. Given a collection of lengths
satisfy the Kraft inequality, pick an arbitrary node of depth lo and hence
an arbitrary length /0 binary sequence as the first codeword. Infigure 3
this first choice is the single symbol sequence O corresponding to the
downward branch emanating from the root node. Since no other
codeword can have this first codeword as prefix, we prune the tree at
the terminal node of this first codeword at depth lo in the tree. This
removes all of the deeper nodes emanating from the terminal node of
the first codeword from consideration as terminal nodes for the other

codewords.

10

1111

111 O

figure 3

Next pick one of the remaining available depth /1 nodes and
hence the corresponding binary /1 -tuple as the second codeword. In
figure 3 this is the length 2 sequence 1 O. Observe that there are 211 - 211

· 1° available nodes at this depth.
The Kraft inequality proides the basis for simple lower and upper

bounds to the average length of inequaly decorable variable length
noiseless codes. The remainder of this section is devoted to the
development of the bound and some of its properties.

11

12

Entropy

We have from the Kraft inequality that

l(a)=Lıp(a)l(a)
a e A

= - Lı p (a) log 2 - 1 < a)

a s A

~ - Lı p (a) log (2- 1 < a) I Lı b s A 2 - 1 < b)) ,

formula 3

where the logarithm is base 2. The bound on the right-hand side has the
form

Lı p (a) log (1 I q (a))

for two pmf' s p and q. the following lemma provides a basic lower
bound for such sums that depends only on p.

Let us now consider the divergence inequality:

Given any two pmf's p and q with a common alphabet A, then

D(p 11 q) = Lı p (a) log (1 I q (a)) ~ H (p) = Lı p (a) log (1 Ip (a))

formula 4

D(p 11 q) is called the divergence inequality or relative entropy or
cross entropy of the pmf' s p and q. H (p) is called the entropy of the
pmf p or, equivalently, the entropy of the random variable X described

_ the pmf p. Both notations H (p) and H(X) are common, depending on
rhether the emphasis, is on the distribution or on the random variable.

Divergence inequality immediately yields the following lower
und:

Given a uniquely decodable scalar noiseless variable length
ode with encoder a operating on a source Xn with marginal pmf p,
en the resulting average codeword length satisfies

l(a)?:.H(p)~

formula 5

that is, the average length of the code can be no smaller than the
entropy of the marginal pmf The inequality is an equality if and only

if

p(a)=2-l(a) for all ae A.

formula 6

Note that the equality informula 6 follows when bothformula 3
and formula 4 hold with equality. The latter equality implies that
q (b) = 2 - /(b J .

Because the entropy provides a lower bound to the average length
of noiseless codes and because, as we shall see, good codes can
perform near this bound, uniquely decodable variable length noiseless
codes are often called entropy codes. To achieve the lower bound, we
need to have formula 6 satisfied. Obviously, however, this can only
hold in the special case that the input symbols all have probabilities
that are powers of 1/2 . In general p (a) will not have this form and
hence the bound will not be exactly achievable. The practical design
goal in this case is to come as close as possible.

13

Prefix Codes

I
Prefix codes were introduced under title -variable length scalar

iseless coding- as a special case of uniquely decodable codes
herein no codeword is a prefix of any other code word. Assuming a
own staring point, decoding a prefix code simply involves scanning

symbols until one sees a valid codeword. Since the codeword cannot be
a prefix for another codeword, it can be immediately decoded. Thus
each codeword can be decoded as soon as it is complete, without
avirıg to wait for further codewords to resolve ambiguitites. Because

of this property, prefix codes are also referred to as instantaneous
odes.

Although prefix codes appear to be a very special case, the
following theorem demonstrates that prefix codes can perform just as
well as the best uniquely decodable code and hence no optimality is
lost by assuming the prefix code must satisfy the Kraft inequality and
hence there must exist a prefix code with these lengths.

Suppose that (a, f3) is a uniquely decodable variable length
noiseless source code and that { lm; m = 0,1, , M-l } = { l (a); a

EA } is the the collection of codeword lengths. Then there is a preifx
code with the same lengths and the same average length.

The theorem implies that the optimal prefix code, wher here
optimal means providing the minimum average length, is as good as the
optimal uniquely decodable code. Thus we lose no generality by
focusing henceforth on the properties of optimal prefix codes. The
following theorem collects the two most important properties of optimal
prefix codes.

An optimum binary prefix code has the following properties:

• if the codeword for input symbol a has length l(a), then
p(a) > p(b); that is, more probable input symbols have shorter (at
least, not longer) codewords.

14

• the two least probable input symbols have codewords which
are equal in length and differ only in the final symbol.

Let us prove these properties:
If p(a)> p(b) and l(a)> l(b), then exchanging codewords

cause a strict decrease in the average length. Hence the original
e could not have been optimum.

Suppose that the two codewords have different lengths. Since a
efix of the longer codeword cannot itself be a codeword, we can

elete the final symbol of the longer codeword without truncated word
ing confused for any other codeword. This strictly decreases the

verage length of the code and hence the original code could not have
en optimum. Thus the two least probable codewords must have equal

ength. Suppose that these two codewords differ in some position other
than the final one. If this were true, we could remove the final binary
.ymbol and shorten the code without confusion. This is true since we
ould still distinguish the shorter codewords and since the prefix
ondition precludes the possibility of confusion with another codeword.

This, however, would yield a strict decrease in aveage length and hence
the original code could not have been optimum.

The theorem provides an iterative design technique for optimal
codes, as will be in the next section.

15

Huffman Coding

In 1952 D.A. huffman developed a scheme which yields
orınance quite close to the lower bound of suuficiency theorem. In
, if the input probabilities are powers of 1/2, the bound is achieved.

e design is based on the ideas of the second theorem of prefix codes.
pose that we order the input symbols in terms probability, that is, p(

) ~p(a1) ~ ~ p(aM-I). Depict the symbols and probabilities as
list 3 as in table 3.

Svmbol robaility
ao
aı

p (ao)
p (aı)

table 3: list 3

The input alphabet symbols can be considered to correspond to
the terminal nodes of a code tree which we are to design. We design
this tree from the leaves back to the root stages. Once completed, the
odewords can be read off from the tree by reading the sequence of

branch labels encountered passing from the root to the leaf
orresponding to the input symbol.

The theorem implies that the two least probable symbols have
odewords of the same length which differ only in the final binary
ymbol. thus we begin a code tree with two terminal nodes with
ranches extending back to a common node. Label one branch O and

the other 1. We now consider these two input symbols to be tied
ogether and form a single new symbol in a reduced alphabet A' with

16

We next try to find an optimal code for the reduced alphabet A' (
modified list 3) with probabilities p(am); m = O, 1, , M-3 and

_.f-l) + p (aM-ı). A prefix code for A by adjoining the final branch
ls already selected. Furthermore, if the prefix code for A' is

timal, then so is the induced code for A. to prove this, observe that
e lengths of the codewords for am; m = O, 1, ,M-3 in the two
debooks are the same. The codebook for A' has a single word of
ngth lu.ı for the combined symbol

_.1-2, au.ı) while the codebook for A has two words of length lu.ı + 1
r the two input symbols aM-ı and aM-l · This means that the average
ngth of the codebook for A is that for the codebook for A' plus p(au.
. a term which does not depend on either codebook. Thus minimizing
e average length of the code for A' also minimizes the average length

f the induced code for A.

- , symbols in it. Alternatively, we can consider the two symbols aM-2
_.1-1 to be merged into a new symbol

__ , aM-l) having as probability the sum of the probabilities of the
.•••ginal nodes. We remove these two symbols from the list 3 and add

new merged symbol to the list. This yields the modified list of table

symbol robability
ao
a1

p (Go)
p («ı)

pl aM-ı)+p(aM-2

table 4: list 3 after one Huffman step

We continue in this fashion. The probability of each node is
ound by adding up the probabilities. of all input symbols connected to

17

de. At each step the two least probable nodes in the tree are
ımıı<ı. Equivalently, the two least probable symbols in the ordered list

I
found. These nodes are tied together and a new node is added

branches to each of the two low probability nodes and with one
ftr2nrh labeled O and the other 1. The procedure is continued until only

gle node remains (the list contains a single entry). The algorithm
be summerized in a concise form due to Gallager as in table 5.

Huffman Code Design

1. Let 3 be a list of the probabilities of the source
letters which are considered to be associated with
the leaves of a binary tree.

2. Take the two smallest probabilities in 3 and
make the corresponding nodes siblings. Generate an
intermediate node as their parent and label the
branch from parent to the other child O.

3. Replace the two probabilities and associated
nodes in the list by the single new intermediate
node with the some of the two probabilities. If the
list now contains only one element, quit. Otherwise
go to step 2.

Table 5

An example of the construction is depicted in figure 4.
Observe that a prefix code tree combined with a probability

assignment to each leaf implies a probability assignment for every node
ın the tree. The probabilities of two children sum to form the
probability of their parent. The probability of root node is 1.

We have demonstrated that the above technique of constructing a
binary variable length prefix noiseless code is optimal in the sense that

18

A o 6

· ary variable length uniquely decodable scalar code can give a
y smaller ave~age length. Smaller average length could, however,
hieved by relaxing these conditions. First, one could use
inary alphabets for the codebooks, e.g., ternary or quaternary.

~ar constructions exist in this case. Second, one could remove the
ar constraint and code successive pairs or larger blocks or vectors

· put symbols, that is, consider the input alphabet to eb vectors of
ut symbols instead of only single symbols.

o1 P(7) = .25
11 P(6) = .2
1 O P(5) = .2
001 P(4)=.18
0001 P(3) = .09
00001 P(2) = .05
000001 P(1) = .02
000000 P(O) = .01

Q.
QJ .35

.17

figure 4: a Huffman code

19

The Sibling Property

this section we describe a structural property of Huffman
ue to Gallager. This provides an alternative characterization of

llı;ffıııan codes and is useful in developing the adaptive Huffman code
een later.
A binary code tree is said to have the sibling property if
1. every node in the tree (except for the root node) has a

sibling .
•.. the nodes can be listed in order of decreasing propability with

each proabilitites.
The list need to be unique since distinct iıodes may posses equal

abilities.
The code tree of figure 4 is easily seen to have the sibling

ııronerty. Every node except the root has a sibling and if we list the
es in order of decreasing probability we have table 6. Each
essive pair in the ordered stack of table 6 is a sibling pair.

.6

.4
.35
.25
.2
.2
.18
.17
.09
.08
.05
.03
.02
.Ol

table 6

20

A binary prefix code is a Huffman code if and only if it has the

First, assume that we have a binary prefix code design algorithm
llows:

1. Let 3 be a list of the probabilities of the source letters which
are considered to be associated with the leaves of a binary
tree. Let oı be be a list of nodes of the code tree; initially oı is

empty.
2. Take two of the smallest properties in 3 and make the

corresponding nodes siblings. Generate an intermediate node
as their parent and label the branch from parent to one of the
child nodes 1 and label the branch from the parent to the other

child O.
3. Replace thw two probabilities and associated nodes in the list

3 by the new intermediate node with the sum of the two
probabilities. Add the two sibling nodes to the top of the list

ro, with the higher probability node on top. If the list 3 now
contains only one element, wuit. Otherwise goto step 2.

The list to is constructed by adding siblings together, hence

iblings in the final list are always adjacent. The new additions tom are
hosen from the old 3 of step 2 by choosing the smallest probability

nodes. Thus the two new additions have smaller probabilities (at least
no greater) than all the remaining nodes in the old 3. This in turn
imlies that these new additions have smaller probabilities than all of the
nodes in the new 3 formed by merging these two nodes in the old 3.

Thus in the next iteration the next siblings to be added to the list ro
must have probability no smaller than the current two siblings since the

next ones will be choosen from the new 3. Thus ro has adjacent
siblings listed in the order of descending probability and therefore the
code has the sibling property.

21

suppose that a code tree has the sibling property and that co
esponding list of nodes. The bootm (smallest probability)

this list are therefore siblings. Suppose that one of these nodes
ermediate node. It must have at least one child which in turn
'e a sibling from the sibling property. As the probabilities of

sıblıngs must sum to that of the parent, this means that the children
.e smaller probability than the parent, which contradicts the

--ıııı>tion that the parent was one of the lowest probability nodes. (
ntradiction assumes that all the nodes have nonzero probability,
re assume without any genuine loss of generality) . Thus these
om nodes must in fact be leaves of the code tree and they

caıcsoond to the lowest probability source letters. Thus the Huffman
~·Ullll in this first pass will in step 2 assign siblings in the original

ee to these two lowest probability symbols and it can label the
J bogs in the same waythat the siblings are labeled in the original tree.

emove these two siblings from the code tree and remove the
onding bottom two elements in the ordered list. The reduced
ee still has the sibling property and corresponds to the reduced
ee 3 after a complete pass through the Huffman algorithm. This

-~uu.ıent can be applied again to the reduced lists: At each pass the
a.aMLLLUan algorithm chooses as siblings from the original prefix code

and labels the corresponding branches exactly as the original
-,u..ugs were labeled in the original tree. Continuing in this manner
mıırNı's that the Huffman algorithm "guided" by the original tree will
ııedııce the same tree.

22

Vector Entropy Coding

}

All of the entropy coding results developed thus far apply
-ııeediately to the "extended source" consisting of successive
--,n.·erlapping N-tuples of the original source . in this case the entropy
tıı::wwwer bound becomes the enropy of the input vectors instead of the
-•·nal entropy. For example, if pxN is the pmf for a source vector x!1

r: , •••••• , XN-ı), then a uniquely decodable noiseless source code for
cessive source blocks of length N has an average codeword length

ler than

_. th order entropy of the input. This is often written in terms of the
age codeword length per input symbol and entropy per unit symbol:

formula 7

- s bound is true for all N.

For any integer Na prefix code has averasge length satisfying
lower bound offormula 7. Furthermore, there exist a prefix code

hich

I < (1 I N) H(XN) + 1 I N.

formula 8

an be shown that if the input process is stationary, then one can take
minimum over N on the right hand side to achieve lower bound for

23

- and that this minimum is HA, the entropy rate of the source
-.med by

H/\ = lim (H(XN) I N) .

The construction of Huffman codes extends in principle to such
inputs, but obviously the technique becomes far more

plicated as the number of input symbols grows. Furthermore, if we
going to code groups of input symbols into groups of code symbols,
the previous approach of coding fixed length input blocks into

iable length output blocks is not the only possible code structure.
fhile a Huffman code may be optimal for this structure, other code

ctures may provide superior performance, that is, smaller average
gth with comparable or less complexity. One can consider codes that

ap variable length blocks into fixed length blocks and codes that map
rariable length blocks into variable length blocks. We next turn the
ternative noiseless coding techniques.

Atithmetic Coding

Arithmetic coding is a direct descendentof an unpublished coding
echnique of P. Elias that was developed by Pasco and Rissanen and
ubsequently improved by Rissanen and Langdon, jones and others. A
ood tutorial overview and reference list may be found in the paper
itten et al.

We demonstrate the basic idea by focusing on an example of the
Elias code itself. Arithmetic codes can be viewed as Elias codes with
finite precision arithmetic, that is, codes which do not assume arbitrary
arithmetic precision. To simplify the description we also restrict
interest to a memoryless binary source. Extensions involve similar ideas
with added complexity. Since we wish to compress a source with only
two symbols, clearly we will have to code groups of input symbols.

24

OC)

e vector entropy coders, however, now the number of input
; J,ols grouped together will vary.

Once again the code will be described by a tree, a binary tree for
of designing a code for a binary source. A good way to think

cture of the tree is as a classification tree for points in the units

_ The tree will have as an input a real number r e [O, I) and each
rill make a binary decision based on r. based on this decision the

-~ışdier will either output a I and advance along the (say) right
., ch emenating from the node or output a O and advance along the

The tree will not much resemble its eventual application of
.._4-eless code while we construct it, instead it will look like a means of

gning a binary sequence to a real number, reminiscent of the
-~ary binary expansion of numbers in the unit interval:

r = ~ u, 2 -i,
i=l

formula 9

ere u, are O or 1. This expansion will play a key role in using the tree
a code, but the tree itself will not try to produce a binary sequence {
} for a real number r for whichformula 9 is true, instead it will try to
ce a path through the tree for a given "input" r with the following
operty: If r is selected at random according to a uniform distribution,
en the probability of having the classifier produce a given binary k­
ple after k decisions is the same as the probability of the original
mary source producing that binary
-tuple. The tree can be thought of as a model for the source, a means
or producing binary sequences having the same probabilities as the
original source by making a sequence of deterministic decisions on a

25

andom variable. Stated in another way, there is a one-to-one
•ıııcsıısı:K>ndence between source binary k-tuples and tree path maps

root to depth k. We show how such a classifier I madel can be
•••• mıcted and then demonstrate how the resulting tree can be used to

~ dessly encode the original source.
uppose that the input is a memoryless binary source with

izi abet { 0,1} andpmfp(O) = q,p(l) = 1-q and entropy

H(p) = - q log q - (1-q) log (1-q).

cmısider the unit interval [O, 1) to consist of two subintervals with
lmgth proportional to the two input letter probabilities: [O,q) and

). We can then subdivide each of these intervals into sub intervals
length proportional to the two letter probabilities. Now the four

ıııb.intervals have lengths corresponding to the probabilities of all 2
eıııensional source blocks:

q2 ' q(1-q) ' (1-q)q ' (1-q)2.

the modeling standpoint, a uniform input to this two-level tree
produce four binary pairs with the same probaility as will the

ginal source. There is a one-to-one correspondence between pairs
inary two-tuples) from the source and these four subintervals having
gth equal to the probabilities of all possible binary two-tuples.
ce we could "code" the input pairs into subintervals in an invertible

-.uuer; that is, we could assign a subinterval to each binary pair and
er without error the original pair from the subinterval.

We continue this idea recursively subdivide the unit interval into
aller subintervals so that after the nth subdivision there would be ın

.bintervals with lengths equal to the probabilities of all possible 2n
ary

tuples.

26

with pairs, in principal we could assign to each input k-tuple
fo the possible 2k intervals having as length the probability of

as ıle. This coding is invertible, but it is not yet a practical noiseless
• ı f eg scheme because the end points of the intervals are in general

umbers; it is not clear how to convert these :codewords" into
J codewords for communication purposes.
A this point recall the binary expansion off ormula9 for
, 1] . The endpoints of any of the intervals can be expressed in

a fashion. This clearly assigns at least an infinite binary sequence
h interval, but in fact we can find a finite binary sequence which

tell us if we are in a particular interval or not. This finite binary
ence will serve as the codeword that specifies the interval and
efore the original source binary sequence. The idea is equivalent to
ring the source sequence as a specification of the random number r
increasing resolution as successive source symbols arrive. For a

ren number of source digits the encoder generates a codeword that
resents the convetional binary expansion of that number r to the best
cision possible from the available number of source digits.

Suppose we wish to encode a binary sequence xo, xı, , first
ık at x0 and the corresponding interval I O in [O, 1) . If the both ends
Io have the same first term in the binary expansion (which means the
erval is entirely in [O, 1h) or [1/2, 1), then the encoder will release
t common bit. This becomes the first bit of the output codeword. If
first two binary symbols of the binary expansion of the endpoints of

e interval corresponding to x0 agree, then the encoder will check the
xt binary symbol. as many such symbols that agree are released to
e channel. When no more binary symbols match, the encoder
oceeds to the next input symbol x ı and inspects its corresponding
terval. If the decoder gets a bit at time O, it eill know which of the
tervals was seen and hence what x0 was.

ı »

27

on the other hand, the interval endpoints of the first interval do
a common first binary symbol, the encoder sends nothing and

ııııııaaııdd immediately inspects the second input symbol xi. The observed
xı now corresponds to a specific subinterval of

· th length equal to the probability of x0, x 1. The encoder again
I • s the endpoints of this interval to see if the first binary term

which, as berfore, would specify that subinterval lat either
Ç dy on the left or entirely on the right of Yı). If the first binary

; bol agrees, the encoder can release that binary symbol to the
I oder.On seeing that symboln the decoder will be able to determine

ove. The encoder can then check the second binary symbol in
ansion for the endpoints of the second level subinterval. If they

¥«~ the common symbol is released. If not, a new symbol is checked.
If even the first binary symbols of the endpoints do not agree,

the encoder must look at more input symbols before releasing any
••• mNnıı Symbols.

The encoder continues in this way: at each time it views a new
symbol and then looks at the endpoints of the corresponding

D interval. The subintervals are shrinking with each new input symbol.
e are any new binary symbols in accord (symbols not already
then they are released to the decoder. As the decoder receives

~ binary symbols, it can determine with any increasing accuracy a
ııılııinterval (having length a power of '/2) which contains the "code"
9111ımterval and hence can reconstruct the input sequence.

Consider only the effects of coding the first three source symbols,
xı, x2. Table 7 shows the source symbols, the resulting binary words

•• educed by the Elias code after the three source symbols have been
CIICO<led, the resulting length of the codeword, and the probability of
- •••g that source sequence and hence having that length.

f"'

28

xı. Xı Uo, UJ, U2, U3, U4, U5 l xO,xl, x2

1 J 1 1 27/64

o o 9/64

01 01 2 9/94

00 0100 4 3/64

11 00 2 9/64

010 0001 4 3/64

001 0000 4 3/64

000 OOQOOO 6 1/64

table 7

erage channel codeword length considering only the encoder up

aree symbols is

l = (27+18+12+18+12+12+6 I 64) = (105 I 64) ~ 1.83,

5z)ıt1y better then 3 :2 compression. In fact an arithmetic code would
lied to a very long input sequence and theabove analysis is

_.ııcable to only a single application of the code and not to a
ıı f ence of applications as considered with the Huffan code. In
-uuıar, the above code is not uniquely decodable and it does not meet

efix condition. The code would be improved slightly by realizing
fior a single use, we could shorten several of the words and still be
to successfully decode, e.g., 0100 could be replaced by 010. The

cnrnple is intended simply to show how an arithmetic code achieves
ceıpression, not to provide a practical code.

To achieve compression, one codes long strings of input symbols.
however, places possible demands on the precision of the

aınıthmetic as the length of the input sequence grows. Modifying the
rithm to incorporate occasional rescaling and finite precision

arilbmetis in a consistent way yields an arithmetic code.
We now describe in somewhat more detail the workings of the

·c Elias code. The encoder at each time n will look at an input
bol Xn and then, given its past actions, determine a subinterval

29

b;). It may or may not then output code symbols, depending
111 is. Beginning at time n == O, if the first input symbol xo = O

= [O,q). If the first symbol is a 1, set 10 = [q, 1). Thus the time O
7 - terval has length equal to the probability of the symbol seen. Note

re know the first subinterval JO into two furhter subintervals
& a rııtional to the input probabilities: [ac, ao+q(b0-ao)) (having length
•••. cıo)) and [ao+q(bo-ao)), ho). If Xı = O, then Iı is the first
a F - terval. Otherwise it is the second symbol xı. In addition, it
fl ~i6es the first subinterval. Otherwise it is the second. Knowing the

aııd subinterval since it is a subset of the first interval. Thus it
--ıc~ifirfies also the first input symbol. This procedure is then continued,

time dividing the previous subinterval into two subintervals
a ıı,ortional to the input probabilities. The algorithm produces at time n

mterval of length equal to the probability of the input sequence
p ıdoced up to that time. Knowing the subinterval In is sufficient to

etely determine the original input sequence up to the nth symbol,

The sequence subintervals In is itself used to produce the code
..ı,oı sequence as follows. For each n, the subintervals endpoints an

bn of In both have binary expansions. At time O check to see if the
term in the binary expansions of a0 and b0 agree. This will be the
if either 10 c [O, 1/2) or 10 c [l/2, 1). If this is the case, the

mcoder produces the common symbol in the binary expansion, u0 = O if
[O, l/2) and u0 = 1 if 10 c [1/ı, 1). If further binary symbols agree,
these too are released.
If the first symbols in the binary expansions of the interval

oints do not agree, then no encoder symbol is output and the same
is conducted on /1. The encoder repeats the test for l« for increasing
til an and b; of In agree.

In general, at time n, the encoder will have found the largest k for
ich the first k binary symbols in the binary expansions for an and bn

30

· will have produced the common symbols as the output code
J uı.ı · This condition is equivalent to

[L u, 2-i, L U;2-i + 2-k)

ula 10

ing the largest integer for which the formula holds.

The decoder upon encountering k symbolls from the encoder will
at the above inclusion is true and will be able to reconstruct the

ı ıesponding n input symbols. For example, denote the interval on the
hand side by Jk. The decoder tests to see if

O,q) or Jk c [q,1). If the former is true, then xO =O.If the
7 77 ı is true, xO =1. One of them must be true since the encoder
--•~d symbols. The decoder continues in this way, checking to see if

longs to one of the possible lj for increasing} (the possible lj are--.ı by the same recursion used at the input) until it is found that Jk
a subset of one of the possible lj, at which point the decoder

wait for more encoded symbols.
The code is noiseless and must look at a variable number of input

bols for each code symbol produced. Although we will not prove it,
be shown that for an iid input the average number of code

ıı.,mbols produced for each input symbols will converge to the entropy
e source as the encoded sequence becomes long. Unfortunately,
ever, the code as described is impactible because the precision

-.ıııoired to specify the inter val endpoints grows without bound. This
erect can be surmounted by modifying the encodeing algorithm to use
-u precision arithmetic. Roughly speaking, one simply computes the

ed intervals approximately to within accuracy of the fixed
ision arithmetic. In order to avoid overlapping intervals due to the

31

approximation of the endpoints, a rule is needed to adjust the endpoints
so as to produce disjoint intervals. This can be accomplish by suitable
scaling and rounding. Although the resulting code no longer yields an
average word length exactly equal to the entropy, it can be made
arbitrarily close by using sufficiently high precision aruthmetic.
Furthermore, the approach can be extanded to sources with memory by
carving up the unit interval according to condition of probabilities
instead of marginal probabilities. The conditional probabilities can,
intern, be estimated from the source itself while coding is going on.

Arithmetic coding is more complicated to implement then
Huffman coding, but its compression is typically greater and hence it is
a popular approach for entropy coding where the extra compression
justifies the extra complexity.

Universal and Adaptive Entropy Coding

Both Huffman codes and arithmetic codes assume a priori
knowledge of the input probabilities. This information is often not
known in practice. Furthermore, the probabilities with time because of
nonstationarities of real data, e.g., different computer files may have
differing probabilities of O and 1, varying from equally distributed (for
programs) to highly skewed (for facsmile data). Hence better
performance will usually be achieved if a code is flexible or robust in
the sense of being able to change according to the local statistical
behaviour of the input of being compressed. In other words, a smart
code should adapt to the source at hand.

Perhaps the earliest approach to adaptive entropy coding was that
developed by Robert Rice of JPL and subsequently called the "Rice
machine". In his example the input process tended to have two distinct
modes with correponding distributions. The modes will remain in effect
for long periods of time relative to the codeword sizes. Hence his
simple but elegant solution was to design two entropy codes, one for

32

each mode. Along lock of input symbols could be encoded by
simultaneously encoding the input with both codes and seeing which
code yielded the most compression. The encoder then send one bit
describing which code was used followed by the long encoded
sequence to the decoder. The lead bit told the decoder which decoder
to use to produce the original sequence. The single bit overhead
describing which code to use could be made small (in its constribution
to the overall bit per sample) by making the "superblock" length large.
This approach to noiseless coding was an early example of what later
came to be known as universal codes: have a collection of codes
matched to different input modes and choose the code which yields the
best compression alternatively one can observe the input sequence and
guess (or estimates or identify) which mode is in effect, possibly by
looking at the histograms or relative frequencies of symbol occurances,
and then choose the code designed for that mode. This latter encoder
tends to be simpler than the universal encoder if there are many modes,
but it might not choose the best code for the input sequence (that is,
the code designed for the mode guessed to be in effect might not yield
the best compression on the current input sequence) . This latter
approach, estimating the input statistics and using a code matched to
those statistics, is referred to as adaptive entropy coding. Clearly the
universal and adaptive techniques are intimately related.

Lynch-division and enumerative coding

One of the earliest adaptive codes was a simple and natural
means of encoding binary vectors observed by Lynch and Davisson and
generalized by cover. the idea is this: Given an input vector dimension
N,first count the number of 1 's and call this number w(the weigth of the
vector). The entrophy encoded vector then consists of a prefix giving

33

this count (possibly in binary notation for a binary code) followed by an
index specifying which of all of the

NI
W! (N-w)I

possible weight w vectors is input. The references provide simple algorithm
for computing this index or enumaerating the collection of all weight w
vectors. The decoder then reverses the procedure. Note that the determination
of w can be viewed as an estimate of an underlying bunary symbol probability
since w IN İs the relative frequency of I's in the input sequence. It can be
shown that as the vestor size becomes large, this approach performs near the
entropy bound if the source is memoryless. In other words, the code is nearly
optimal even though its underlying statistics are not known in advance.

Adaptive Huffman coding

In principal it is straightforward tomake the Huffman codes adaptive by
combining the ideas. One approach is to absorve a large block of N symbols
and estimate the underlying probability distribution from the relative
frequencies of the symbols. The estimate of symbol a occuring would then be
simply n» (a) IN, where nN (a) is the count of a' s appearence in the block
of length N. this probability vector would serve as a prefix to along
codeword. Given this vector both encoder and decoder could designan
identical Huffman code which would then be used to actually encode the
entire data block. If the block is large enough, the overhead information in the
prefix would contribute only a small amount to the average bit rate. Although
straightforward, this scheme has the obvious drawback of a large delay. In
addition, it implicity assumes that the underlying distributions remain constant
over the large block size.

Another approach is more adaptive in spirit. Suppose that we have a
initial Huffman code based on a priori statistics, but we wish to modify the

34

··:--...
; I ,,, Ji; ' '

/;' ~_" ı• • I ı·"'

/
/,Q-
~

. l.JJ

estimates of these probabilities as more data arrive and to adapt the codl ?.·~ l '=.;:\.

correspondingly.

A strategy similar to the previous construction would be as follows.
Suppose that at time N~l we have probability estimates PN-ı (a;) for all the
source symbols ao, a1, , aM-1,

PN (a)= (nN-1(ai) I N-1),

along with the corresponding Huffman code. The Nth input symbol x» = a is
then encoded and decoded using this Huffman code and all of the
probabilities are updated using the new relative frequencies: since only the
count for the symbol a is changed,

PN (a) = (nN (a) IN) = ((N-l)PN-ı (a) + 1) IN

PN (a;)= (nN(_ a;) IN)= ((N-l)PN-ı(a;) IN if a; ;r a

These new and improved probabilities are known to both the encoder and
decoder, which can be then design a new Huffman code for use on the next
input symbol.

Although theoretically a reasonable way to adapt, this code has
complexity bordering on the ridiculous. For each new symbol a brand new
code must be designed. Furthermore, the increasing precision demanded of
the arithmetic as N grows large is not practicable. A more practical approach
is found by using the structure of Huffman codes emphasising the counts
rather than the relative frequencies. The main idea is simple. Because of the
sibling property of Huffman codes, we need not redesign the entire tree at
each step. If the probabilty estimates are modified a new symbol so that a
change in the ordering results and the sibling property is violated. We only
have to do some minor surgery on the tree to regain the sibling property and
hence have a Huffman code for the modified probability estimates.

35

Suppose now that instead of saving the probabilities, we have
somethingproportional-toprobabilities. For the moment suppose that at each
step we associate a set of weights w, aith the source symbols a; The weights
are nonnegative and we could form explicit estimates of the probabilities by
normalizing;that is,

M-1

P(a,) = wi I t wk ,
k=O

but in fact we will not do this. The weights canbe used in place of
probabilities to design a Huffman code and to find the corresponding
ordered tree W of siblings guaranteed by the sibling property.

Suppose now that at time N we have (as befor) a Haffınan code
together with its ordered list, W (now containing the weights instead of
probabilities but the order of listing nodes is the same). As before we
see a new symbol and we begin to encode it with the currently,
available tree. We first select the leaf corresponding to the symbol in
the current tree. Befor continuing through the tree, however, we
increment the weight of this node by one; that is, the new weight of the
node is 1 plus the old weight. We then check the ordered list to see if
the weight of this node is still no greater than the node above it in the
ordered list. If this is the case, then this part of the tree has not changed
and we advance to the parent node of the leaf, producing the branch
label on the way. If, on the other hand, the weight of the current node
now exceeds that of the node above it on the list, we no longer have an
ordered list and the old tree is no longer a Huffman code for the new
set of weights. Thus we must rearrange things before advancing. Look
above the current node and find the (highest weight) node in the list
that has a weight that is less than the current node. Exchange the
current node with that higher node, forcing its weight to be listed
correctly in the ordered list. This exchange carries with it all of the

36

corresponding subtree information; that is the current node losses its all
parents and inhehrets the parent of the former occupant of the higher
place in the list. Likewise the dethroned higher node exchanges parents.
(tracking the detailsof the tree exchanges requires an approprimate
data structure for storing the trees and is treated in some detail in
Gallager). Now that weight here current node has moved up to its
appropriate (higher weight) position in the ordered list W, we once
again have a Haffman code for the new weights (at least up ot the
current node in its new position) . Thus we can advance to the (new)
parents nodes and produce an output symbol, the label of the branch.

We have now either arrived at a new node in the original tree, or
exchanged nodes and arrived at a new node in a modified tree. Either
way we have produced a symbol and arrived at a new node. The
process now repeats. Augment the weight of the new node and check
its position in W. Either the tree is not changed and we can advance, or
we must exchange nodes and advance in a modified tree. This process
continues until we arrive at the root, at which time a complete word is
produced for the input symbol. note that the weights of all the nodes
visited have been augmented by one.

An obvious difficulty with this scheme is that as the number of
inputs observed increases, the weights grow without bound. This can be
resolved by periodically dividing the weights by some constant to reset
them. The period of this rescaling and the size of the constant
effectively determine how slowly or rapidly the adaptation algorithm
forgets the past.

The program codes "compact" on Unix systems is an adaptive
Huffman code based on Gallager's algorithm. As described in the
on-line manual, the algorithm compresses text by %38, PASCAL source
code by %43, C source code by %36, and binary by %19. Thus the
compression is typically less than 2: 1.

A final adaptive code which makes no assumptions on the input
statistics and which does not explicitly estimate those statistics is of

37

sufficient importance to merit its own section. The next section is
devoted to a simple and elegant technique for noiseless coding due to
Ziv and Lempel.

Ziv-Lempel Coding

The final noiseless code that we consider is inherently universal
in its operation. It is called the Ziv-Lempel code after its inventors. The
code shares the property of the arithmetic codes that variable numbers
of input symbols are required to produce each code symbol. unlike both
Huffman and arithmetic codes, however, the code does not use any
knowledge of the probability distribution of the inputs. As with the
Elias code, the Ziv-Lempel code achieves the entropy lower bound then
applied to a suitably well-behaved source. Also as with the Elias code,
the Ziv-Lempel code is not practicable in its simlest form and varitions
are required for real applications that require some loss of optimality.

Once again we sketch the basic idea of the code by means of a
binary example. We use a variation of the Ziv-Lempel algorithm
suggested by Welch who corrected an error in the original algorithm
and whose paper was largely responsible for popularizing the algorithm
in the computer science community.

The basic idea is that an input sequence is recursively parsed into
nonoverlapping blocks of variable size while constructing a dictionary
of blocks seen thus far. The dictionary is initialized with the available
single symbols, near O and I. Each successive block in the parsing is
chosen to be the argest (longest) word w that has appeared in the
dictionary and hence the word wa formed by concatenating w and
thefollowing symbol is not in the dictionary. Before continuing the
parsing wa is added to the dictionary and a becomes the first symbol in
the next block. Before detailing the parsing and dictionary construction,
we show how the parsing along works.

38

Suppose that we see the sequence

01100110010110000100110

parsing this sequence using the above rule yields the following
segmentation, where the parsed blocks are enclosed in parantheses and
the new dictionary word (the parsed block followed by the first symbol
of the next block) written as a subscript:

(O)oı (1)ıı (1)ı o(O)oo(1 O)ıoo(O 1)oıo(O 11)oııo(OO)ooo(OO)ooı(1 OO)ı ooı (11)ı ıo(O).

The parsed data implies a code by indexing the dictionary words in the
order in which they were added and sending the indices to the decoder.
We now consider these operations in more detail.

For an input sequence x0x 1 we will produce an output binary
sequence uşu, The encoder will map a variable number of input
symbols into a fixed number, say N, of coded symbols. The N coded
symbols should be thought of as an integer between O and 2N -1.
Both encoder and decoder will construct a code table of 2N entries as
the data is processed. The table will consist of variable length input
strings, each assigned an integer (or binary N-tuple) codeword. At
time O the encoder and decoder both have identical tables assigning
integers to single input symbols. At step n in the encoding process the
encoder will look at the k(n)th input symbol, where the pointer k(n)
will be made explicit shortly. The encoder then finds the largest integer
I for which the sequence xk(nJ, Xk(nJ+J, ... , xk(nJ+I-J is contained in its table
and hence the seuence xk(nJ, Xk(nJ+J, ... , xk(nJ+ı is not contaned in the
table. The encoder then produces as a codeword the integer index of
the existing word xk(nJ, xk(nJ+J, ... , Xk(nJ+l-J and also adds the new word
xk(nJ, xk(nJ+ 1, ... , xk(nJ+l to the table, assigning it the next available index.

39

The encoder then sets the pointer for the next step at k(n+ 1) = k(n)+l,
that is, it will begin the next step on the last input symbol considered in
the current step.

As an example of encodeing, suppose we begin with table7 and
we wish to encode the binary O 110011001O11000010011 O. The steps
are depicted in tables 8 through table 15.

Input string index
o o
1 1

table 8

input string index
o o
1 1

01 2

table 9

input string index
o o
1 1

01 2
11 3

table 10

40

table 11

table 13

41

input string index
o o
I I

Ol 2
II 3
10 4
00 5
011 6
100 7

table 14

input string index
o o
I I
Ol 2
II 3
Ol 4
00 5
011 6
100 7
010 8

table 15

Looking through the sequence of tables, it can be seen that things start
slowly as the table builds. At completion of all steps in the tables, the
encoder has produced the sequence of integers (or N-dimensional
binary vectors)

42

0110242

Before describing the operation of the decoder we observe an
important property of the encoder:
The last-first property: The lastsymbol of the most recent word added
to the table is the first symbol of the next parsed vector.

Let us now describe the operation with a table:

Unfortunately, there is a problem with the agorithm as described. There
exists a type of sequence which at first glance appears confusing to the
decoder. Consider, for example, a ternary source with symbols { O,a,b
} and an input sequence

aOOObaOa

43

The initial code table is

input string index
o o
a 1
b 2

table 17

The encoder will parse this sequence as

(a)a,o(O)o,o(O,O)o,o,b(b)b,a(aO)a,O,a

andtake~ejons depictedas

time send new entry index
1 1 (for O) (a,O) 3
2 O (for O) (0,0) 4
3 4 (for (0,0) (0,0,b) 5
4 2 (for b) (b,O) 6
5 3 (for (a,O)) (a,O,a) 7

table 18

The decoder then begins as previously described and reforms the
actions of tablel9. The problem is immediate. The decoder receives an
index for the table entry 4, but the entry does not yet exist in the table!
Without additional guidence, the decoder is stuck. It turns out that this
behaviour can arise whenever one sees a pattern of the form! Without
additional guidence, the decoder is stuck. It turns out that this
behaviour can arise whenever one sees a pattern of the form xwxwx,

44

where x is a single symbol and w is either empty or sequence of
symbols such that xw already appears in the decoder and encoder table,
but xwx does not.

The code is noiseless and can be shown to be optimum in the
limit of unbounded table size. The disadventage of the algorithm is that
unmangeably large tables may be required in some applications in order
to achieve the desired performance. Any real application must
necessarily have a bound on table size. Once reached, the encoder can
no longer add codewords and must simply use the existing dictionary.
This dictionary can be used in a statistic fahion to encode the remaining
input, or it can dynamically adapt to track varying input behaviour.

45

CONCLUSION

46

REFERENCES

1-COMPUTER CODING OF FUNDAMENTAL:(page 355)

M. L. Gambhir

2- UNIVERSAL & ADAPTIVE ENTROPY CODING :
Robert G. Tracy
Russell S. Fling

3- HUFFMAN CODING : (page 313)
William Brown

