
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Traffic Light Controller
With VHDL

Graduation Project
COM-400

Student: Adem KILIC

Supervisor: Mr.Mehmet Ozakman

Nicosia-2007

..
--· ;..:--=--==-~=~

~
. .Y::: c: ' T ' ·--.:..~

~'(?._:.')I y "'~·· v~ t. ' \ './ \ ,\ .•.•..) ~ \\ \

AcKNowLEDGEMENTs 1r!P· ,f· ~~~\11· l i- £).-' ,.)\
"') ,.
vi f.''J t: · f t :J, ui ,

First, I feel proud to pay my special regards to my project adviser 'Mehmet (1£J}kman :~'] . to. i1
\ <'lt,. (_;;;,· I

He never disappointed me in any affair. He delivered me too much information {gf_fY
his best of efforts to make me able to complete my project.

Second, I would like to thank Assoc. Pr. Dr. Rahib Abiyev for teaching programming

methods in C languages, so it has been possible to work on the project via a widely used

programming language.

Last, more over I want to pay special regards to my parents and especially my wife

Nurten Ciftci Kilic and my daughter Alyanur Kilic who are enduring these all expenses

and supporting me in all events. I am nothing without their supports. They also

encouraged me in Crises. I shall never forget their sacrifices for my education so that I

can enjoy my successful life as they are expecting. They may get peaceful life in Heaven.

At the end I am again thankful to those all persons who helped me or even encouraged

me to complete me, my project. My all efforts to complete this project might be fruitful.

To the best of my knowledge, I want to honor those all persons who have supported me

or helped me in my project. I also pay my special thanks to my all friends who have

helped me in my project and gave me their precious time to complete my project.

ABSTRACT

Today is electronic design VHDL is a behavioral language to describe design

without going to complex of the electronic circuit diagram. We have done our design

using VHDL and verify the design using simulation tools. We wrote the VHDL code to

the synthesis tools which generate detailed electronic circuits.
We use VHDL language in the project. First we have defined the specification

of the inputs and outputs of the traffic light controller than the function of the project.

We have divided the project into the smaller modules which have been verified its

function. Then we connected of these functions together under top level module to

complete the design. We used a test bench to verify function of design. We used the

synthesis tool to generate the detailed design, and then we converted the specification.

Also VHDL entity is constructed to define the inputs and the outputs, after that we

constructed VHDL architecture to define each module of the project.

The synthesizer that generates the design taking the consideration of the Xilinx

FPGA device that we specified at the top level design. Each programmable chips have

own characteristic. The same VHDL code is portable and can be synthesized to

different FPGA programmable devices. We used Xilinx development system and Xilinx

programmable devices because each vendor's tools are developed its on programmable

devices.

11

TABLE OF CONTENS

ACKNOWLEDGEMENT 1

ABSTRACT 11

TABLE OF CONTENTS 111

INTRODUCTION 1

CHAPTER ONE: INTRODUCTION TO TRAFFIC LIGHT

CONTROLLER DESIGN 2

1.1. General System Requirement 2

1.2. Developing a Block Diagram of the System 3

1.3. State Diagram 3

1.4. Description of the State Diagram 4

CHAPTER TWO: TRAFFIC LIGHT CONTROLLER

DESIGN & SIMULATION

2.1. ISE General Information
2.1.1. Xilinx ISE Overview

2.1.2. Design Entry

2.1.3., Synthesis

2.1.4. Implementation

2.1.5. Verification

2.1.6. Device Configuration

2.1. 7. Architecture Support

2.1.8. Operating System Support

2.2. Using Project Navigator
2.2.1. Project Navigator Overview

2.2.2. Project Navigator Main Window

2.2.3. Using the Sources Window

2.2.4. Using the Processes Window

2.2.5. Process Types

2.2.6. Process Status

2.2.7. Running Processes

5

5

5

5

5

5

6

6

6

7

7

7

7

9

10

10

11

11

111

2.2.8. Setting Process Properties 13

2.2.9. Using the Workspace 13

2.2.10. Using the Transcript Window 14

2.2.11. Using the Toolbars 14

2.3. Creating a Project 14

2.4. Creating Traffic Light Project on ISE 18

2.5. Creating a Source File 20

2.6. Creating Counter.vhd VHDL Module 24

2.7. Creating a Test Bench Waveform 26

2.8. Creating Counter.vhd Test Bench Waveform 26

2.9. Creating a State Machine Diagram 31

2.10. Creating Top-Level VHDL Design 37

CHAPTER THREE: TRAFFIC LIGHT CONTROLLER

INVHDL 40

3 .1. Very High Speed Integrated Circuit HDL 40
3 .1.1. History of VHDL 40

3.1.2. VHDL-Application Field 42

3.1.3. VHDL Language and Syntax 42

3.1.4. VHDL Structural Elements 43

3.1.5. Declaration ofVHDL Objects 44

3 .1.6. Entity 44

3 .1. 7. Architecture 4 5

3.1.8. Architecture Structure 46

3.1.9. Process 47

3.1.10. Signals 47

3 .2. Sequential Statements in VHDL 48
3 .2.1. IF Statement 49

3 .2.2. CASE Statement 49

3.2.3. FOR Loops 50

3.2.4. Loop Syntax 50

3.2.5. WAIT Statement 50

3.2.6. WAIT Statements and Behavioral Modeling 51

IV

3.2.7. Variables

3.2.8. Variables and Signals

3.2.9. Use of Variables

3.3. VHDL Codes ofCounter.vhd

3.4. VHDL Codes of STAT MAC.vhd

3.5. VHDL Codes of top.vhd

CHAPTER FOUR: TRAFFIC LIGHT CONTROLLER

51

51

52

52

53

57

SYNTHESIS 60

4.1. XST Design Flow Overview 60

4.2. XST Input and Output Files 61

4.3. XST Detailed Design Flow 62

4.3.1. HDL Parsing 62

4.3.2. HDL Synthesis 62

4.3.3. Low Level Optimization 63

CONCLUSION 65

REFERENCES 66

V

INTRODUCTION

The term "digit" comes from the Latin word "digitus" which means finger. Human

beings can most easily learn counting by using their fingers, that's why the word digit is

used for denoting number.

The term digital is derived from the way computers perform operations, by counting

digits. For many years, applications of digital electronics were confined to computer

systems. Today, digital technology is applied wide range of areas in addition to computers.

Such applications as television, communications systems, radar, navigation and guidance

systems, military systems, medical instrumentation, industrial process control, and

consumer electronics use digital techniques. Over the years digital technology has

progressed from vacuum-tube circuits to discrete transistor to complex integrated circuits,

some of which contain millions of transistors.

The objective of this project is controlling of a traffic light for safe traffic flow in

where it is stand by using VHDL tool. The project consists of introduction, four chapters,

and conclusion.

Chapter One presents specification and requirements of the traffic light controller

depending on basic minimal diagram.

Chapter Two presents the steps how the project "Traffic Light Controller System" is

constructed on ISE software environment tool. It also presents the architectural

construction of the components and the description of the functions of each component.

Chapter Three describes the VHDL (Very High Speed Integrated Circuit Hardware

Description Language). It also gives brief information about history and development of

VHDL and how declaration of its object and sequential statements are used. Additionally, it

consists of the complete VHDL codes of the project.

Chapter Four describes how a prepared pr9ject is synthesis in Integrated Software

Environment.

Finally, the conclusion section presents how the described hardware (in VHDL) is

constructed on the device with the complete code within the project.

CHAPTER ONE: INTRODUCTION TO TRAFFIC LIGHT

CONTROLLER DESIGN

The aim of this project is to define the process of designing a traffic light

controlling application using VHDL and implementing on Xilinx Spartan-3E device.

Firstly, we construct the system requirements and a state diagram to define the sequence of

operation.

1.1. General System Requirement

A digital controller is necessitated to control a traffic light at the intersection of a

predefined time intervals. We should be define a timer that count 0000 to 1111 and a reset

to move the initial state (RED) whatever position of the state in the system.

Reset rotate red light

RFDUGHT I •• I RFDTJGHT I • <, 0--. 1 AMRFR UGHT 1 0 A MRFR T JGHT I

0 0 GRFFNTJGHT I I GRFFNUGHT I
TIMER BETWEEN "0000" AND "1111" TIMER BETWEEN "I 111" AND "O I 00"

.------- t
I RFDUGHT I

AMRFR UGHT

i O I RFDUGHT 1

O -- 1 AMRFR TIGHT
1

0

0
0

GRFFN TJGHT GRFFN T JGHT

TIMER BETWEEN "0011" AND "0000" TIMER BETWEEN "O I 00" AND "0011"

Figure 1. 1 Requirements for the traffic light sequence.

2

1.2. Developing a Block Diagram of the System

From the requirements we can develop a block diagram of the system. First, we

consider that the system must control three different lights. These are the red, yellow, and

green lights.

Using the minimal system block diagram we can begin to feel in the details. The

system has four details as indicated in the below figure 1.2. So a logic circuit is needed to

control the sequence of the states. Also circuits are needed to generate the proper time

intervals of 1111 ns and 0000 ns in binary base that are required in the system and to

generate a clock signal for cycling the system. The time intervals are inputs to the

sequential logic because the sequencing of states is a function of these variables. Logic

circuits are also needed to determine which of the four states of the system is in at any

given time, to generate the proper outputs to lights.

Traffic light control logic

CLOCK RED

AMBER

GREEN
RESET

Figure 1. 2. A minimal system block diagram.

Traffic light

1.3. State Diagram

A state diagram graphically shows the sequence of states in a system and the

conditions for each state and for transitions from one state to the next.

Before traditional state diagram can be developed, the variables that determined

how the system sequences through its states must be defined these variables and their

symbols are listed as follows:

3

• 0000 to 1111 timer is on =TIMER

• Red state carrier =RESET

• RD for red light output

• AMB for amber light output

• GRN for green light output

1.4. Description of the State Diagram

A state diagram is shown in figure CIZ. Each of the four states is labeled according to

color name abbreviation as indicated by the ellipses. Each of the arrows going from one

state to the next indicates a state transition under the condition defined by the equation

associated variables. Also TIMER is associated with four bit up-counter

• RED State:

The street light is red this system remains in the state for a period from 0000 to

1111. The system goes to the next state when the TIMER is equal to 1111.

• REDAMB State:

The street light is red and amber the system remains in this state for a period from

1111 to 0100. The system goes to the next state when the TIMER is equal to 0100.

• GREEN State:

The street light is green and the system remains in this state for a period from 0100

to 0011. The system goes to the next state when the TIMER is equal to 0011.

• AMBER State:

The street light is amber and the system remains in this state from 0011 to 0000.

The system goes to the next state when the TIMER is equal to 0000.

4

CHAPTER TWO: TRAFFIC LIGHT CONTROLLER DESIGN &

SIMULATION

2.1. ISE General Information

2.1.1. Xilinx ISE Overview

The Integrated Software Environment (ISE™) is the Xilinx® design software suite

that allows us to take our design from design entry through Xilinx device programming.

The ISE Project Navigator manages and processes our design through the following steps

in the ISE design flow.

2.1.2. Design Entry

Design entry is the first step in the ISE design flow. During design entry, we create

our source files based on our design objectives. We can create our top-level design file

using a Hardware Description Language (HDL), such as VHDL, Verilog, or ABEL, or

using a schematic. We can use multiple formats for the lower-level source files in our

design. Ifwe are working with a synthesized EDIF or NGC/NGO file, we can skip design

entry and synthesis and start with the implementation process.

2.1.3. Synthesis

After design entry and optional simulation, we run synthesis. During this step,

VHDL, Verilog, or mixed language designs become netlist files that are accepted as input

to the implementation step.

2.1.4. Implementation

After synthesis, we run design implementation, which converts the logical design

into a physical file format that can be downloaded to the selected target device. From

Project Navigator, we can run the implementation process in one step, or we can run each

of the implementation processes separately. Implementation processes vary depending on

whether we are targeting a Field Programmable Gate Array (FPGA) or a Complex

Programmable Logic Device (CPLD).

5

2.1.5. Verification

We can verify the functionality of our design at several points in the design flow.

We can use simulator software to verify the functionality and timing of our design or a

portion of our design. The simulator interprets VHDL or Verilog code into circuit

functionality and displays logical results of the described HDL to determine correct circuit

operation. Simulation allows us to create and verify complex functions in a relatively small

amount of time. We can also run in-circuit verification after programming the device.

2.1.6. Device Configuration

After generating a programming file, we configure our device. During

configuration, we generate configuration files and download the programming files from a

host somputer to a Xilinx device. Xilinx ISE Overview Architecture Support

2.1.7. Architecture Support

The ISE™ software supports the following device families.

Table 2. 1 Supported devices by ISE.

Spartan™-II

Spartan-IIE

Spartan-3

Spartan-3E

Spartan-3L

Virtex™

Virtex-E

Virtex-II

Virtex-II Pro

Virtex-II Pro X

Virtex-4

Virtex-5 LX

Cool Runner™ XPLA3

Cool Runner-II

XC9500™

XC9500XL

XC9500XV

6

2.1.8. Operating System Support

The ISE™ software is supported on the following operating systems.

Table 2. 2 Supported operating systems by ISE.

Solaris®

Windows XP® Professional

Windows 2000® Professional

Solaris 8

Solaris 9

Red Hat® Enterprise WS 3.0 32-bit/64-bit

Red Hat Enterprise WS 4.0 32-bit/64-bit

Windows®

Linux

2.2. Using Project Navigator

2.2.1. Project Navigator Overview

Project Navigator organizes our design files and runs processes to move the design

from design entry through implementation to programming the targeted Xilinx® device.

Project Navigator is the high-level manager for our Xilinx FPGA and CPLD designs, which

allows us to do the following:

1. Add and create design source files, which appear in the Sources window

2. Modify the source files in the Workspace

3. Run processes on the source files in the Processes window

4. View output from the processes in the Transcript window

2.2.2. Project Navigator Main Window

The following figure shows the Project Navigator main window, which allows to

manage our design starting with design entry through device configuration.

7

4 5

FPGADesi111Summa,y

digvidenc. ise

~ Processes J

111~~·
u: ! i Tatge!
1 ! Device·
I ! Produc; • -- - -
I ! Version: ,_i

I
:· Logic Utilizalion

. i Ntmber of Slice Fl~
.:J! i Flops .

1,,,.:-- ••. -- ~--- __ ,. __ ---- ----4···1 ! Niinber of 4 nput I 1,53
IP'.oiect Propeties . i LUT s
j ~ EnableEnhancedDe~gnSummaryl i'logicDistribution ; •. 1,,

r: B ~:~: ~~:;:~~~~:;ssages I i N;,b~ of ;~:;~d'' '1' · : ·r
Enh<J1ced Desi111 Summary Contents f ! Sices

D Show Partition Data i Number ol Sices 13 139
D Show Errors ! containing only related
D ShowWarnr,gs I ,-i 1_0~_·c _
~ Show Famg Constraints J . Number ol Sjces jl j
D Show Clock Report ! ·, ,,-.~~~-,--,.~~~~

_ Design Overview
'···· 0 St.rnmary
: .. G?] IOB Properties
L. 0 T irring Constraints
!" 0 Pinolt Report
L.. 0 Clock Report

Hierarcfl,
!· ~ agvidenc
~- Cl ,c4vf,12·12sl363

&@~dve_ccir_top (dve_ccrr_lop.v)
~- 0~DATAPATH - dve_ccir_dp~(dve_ccir_d~.v)
· :···0prescale, · dve_ccir_ml8, (dve_ccr_mlt8,9 v) _

L .. lv'lr~Ant.<o ,,A.a"•~,, """· cc• 1;"''~
-iyErrors and Warnings
, 0 Synthesis Messages
i 0 Translation Messages

led . ~-··· 0 Map Messages
····-·---.. t x 111-- 0 Place and Rolte Messages ·================;=,=====.!!.I i·· 0 Tmng Messages

/ ... 0 B~gen Messages
L.. 0 All Cc,rent Messages

[Used f Available
-- 52 10.944- Processes:

j-·c::l Add E~sting Source
!-~· [:] Create New Source
, ... X: View Design"Summary ~-4» UD~nlll~ti~
$- ~ User Const1aints
$-,~0Synthes~e -XST
ID· ,~Olmplement Design
$-,~ Generate Pro11amrring File
'---!:J Update Bitstrearn with Processor Data

10,944

5,472

93.:r
.!I

11 __ ,,"u'_°' """loo"_'."''",..,""_"' t.o '"_' o,e_e_cir_top.v".

~' r~ Con~ I QEnors ! 'i\Warrings i l!TclComole I 'A Fn:linFiles
====

Process "Generate Post-Place & Route Static Timing" completed successfully

Figure 2. 1 Project Navigator Main Window

1 Toolbar

2 Sources window

3 Processes window

4 Workspace

5 Transcript window

8

2.2.3. Using the Sources Window

The first step in implementing our design for a Xilinx® FPGA or CPLD is to

assemble the design source files into a project. The Sources tab in the Sources window

shows the source files us create and add to our project, as shown in the following figure.

- -·- - ~

3 Sources for: j Synthesis/lmplem1...:.J Number of: J LUT s
Hierarchy J~~~()lJr~e~J Preserve
!···· ~ digvidenc
El·· CJ xc4vfx12-12sf363

El·· G'.'.J~dve_ccir_top (dve_c .
~ .. -G'.j~DATAPATH -dv 1,281
' l···G'.'.Jprescaler · dve_ .

!····G'.'.JCHROMA_FIR · .
L. .. ~ .. ,.,..,,II, .-1,, .•.......... ;

routing -
inherit(routing)

~ Sources -J lfpl Snapshots J lfD Libraries
Figure 2. 2 Source Window

The Design View ("Sources for") drop-down list at the top of the Sources tab allows us to

view only those source files associated with the selected Design View (for instance,

Synthesis/Implementation). The "Number of'' drop-down list, Resources column, and

Preserve column are available for designs that use Partitions.

The Sources tab shows the hierarchy of our design. We can collapse and expand the

levels by clicking the plus (+) or minus (-) icons. Each source file appears next to an icon

that shows its file type. The file we select determines the processes available in the

Processes window. We can double-click a source file to open it for editing in the

Workspace. For information on the different file types, you can change the project

properties, such as the device family to target, the top-level module type, the synthesis tool,

the simulator, and the generated simulation language.

Depending on the source file and tool we are working with, additional tabs are available

in the Sources window:

• Always available: Sources tab, Snapshots tab, Libraries tab

• Constraints Editor: Timing Constraints tab

• Floorplan Editor: Translated Netlist tab, Implemented Objects tab

9

• Schematic Editor: Symbols tab

• Technology Viewer: Design tab

• Timing Analyzer: Timing tab

2.2.4. Using the Processes Window

The Processes tab in the Processes window allows us to run actions or "processes"

on the source file we select in the Sources tab of the Sources window. The processes

change according to the source file we select. The Process tab shows the available

processes in a hierarchical view. We can collapse and expand the levels by clicking the plus

(+) or minus (-) icons. Processes are arranged in the order of a typical design flow: project

creation, design entry, constraints management, synthesis, implementation, and

programming file creation.

Depending on the source file and tool we are working with, additional tabs are available

in the Processes window:

• Always available: Processes tab

• Floorplan Editor: Design Objects tab, Implemented - Selection tab

• ISE Simulator: Hierarchy Browser tab

• Schematic Editor: Options tab

• Timing Analyzer: Timing Objects tab

2.2.5. Process Types

The following types of processes are available as we work on our design:

• Tasks,~

When we run a task process, the ISE software runs in "batch mode," that is, the

software processes our source file but does not open any additional software tools in the

Workspace. Output from the processes appears in the Transcript window.

• Reports~

Most tasks include report sub-processes, which generate a summary or status report, for

instance, the Synthesis Report or Map Report. When we run a report process, the report

appears in the Workspace.

• Tools~

10

When we run a tools process, the related tool launches in standalone mode or appears in

the Workspace where we can view or modify our design source files. The icons for tools

processes vary depending on the tool. For example, the Timing Analyzer icon is shown

above.

2.2.6. Process Status

As we work on our design, we may make changes that require some or all of the

processes to be rerun. For example, if we edit a source file, it may require that the Synthesis

process and all subsequent process be rerun. Project Navigator keeps track of the changes

we make and shows the status of each process with the following status icons:

• Running·-

This icon shows that the process is running.

• Up-to-date rD
This icon shows that the process ran successfully with no errors or warnings and does

not need to be rerun. If the icon is next to a report process, the report is up-to-date;

however, associated tasks may have warnings or errors. If this occurs, we can read the

report to determine the cause of the warnings or errors.

• Warnings reported i
This icon shows that the process ran successfully but that warnings were encountered.

• Errors reported 0
This icon shows that the process ran but encountered an error.

• Out-of-Date .,,,.,.

This icon shows that we made design changes, which require that the process be rerun.

If this icon is next to a report process, we can rerun the associated task process to create an

up-to-date version of the report.

• No icon

If there is no icon, this shows that the process was never run.

2.2.7. Running Processes

To run a process, we can do any of the following:

• Double-click the process

11

• Right-click while positioned over the process, and we select Run from the popup

menu, as shown in the following figure.

Run
Rerun
Rerun All
Stop
Open Without Updating

Properties, • ,

Figure 2. 3 Run Comment

• Select the process, and then click the Run toolbar button~.

• To run the Implement Design process and al) preceding processes on the top module

cPa for the design, select Process > Implement Top Module, or click the Implement

Top Module toolbar button®.

When we run a process, Project Navigator automatically processes our design as follows:

• Automatically runs lower-level processes

When we run a high-level process, Project Navigator runs associated lower-level

processes or sub-processes. For example, if we run Implement Design for our FPGA

design, all of the following sub-processes run: Translate Map, and Place & Route.

• Automatically runs preceding processes

When we run a process, Project Navigator runs any preceding processes that are

required, thereby "pulling" our design through the design flow. For example, to pull our

design through the entire flow, double-click Generate Programming File.

• Automatically runs related processes for out-of-date processes

If we run an out-of-date process, Project Navigator runs that process and any related

processes required to bring that process up to date. It does not necessarily run all preceding

processes. For example if we change our UCF file, the Synthesize process remains up to

date, but the Translate process becomes out of date. If we run the Map process, Project

Navigator runs Translate but does not run Synthesize.

12

2.2.8. Setting Process Properties

Most processes have a set of properties associated with them. Properties control

specific options, which correspond to command line options. When properties are available

for a process, we can right-click while positioned over the process and select Properties

from the popup menu, as shown in the following figure.

Run
Rerun
Rerun All
Stop
Open Without Updating

Prope1t1es.,, j ~~~-~·-------===
Figure 2. 4 Properties Comment

When we select Properties, a Process Properties dialog box appears, with standard

properties that we can set. The Process Properties dialog box differs depending on the

process we select.

After we become familiar with the standard properties, we can set additional,

advanced properties in the Process Properties dialog box; however, setting these options is

not recommended if we are just getting started with using the ISE software. When we

enable the advanced properties, both standard and advanced properties appear in the

Process Properties dialog box.

2.2.9. Using the Workspace

When we open a project source file, we open the Language Templates, or run

certain processes, such as viewing reports or Jogs, the corresponding file or view appears in

the Workspace. We can open multiple files or views at one time. Tabs at the bottom of the

Workspace show the names for each file or view. A tab is clicked to bring it to the front.

To open a file or view in a standalone window outside of the Project Navigator Workspace,

the Float toolbar button is used. To dock a floating window, the Dock toolbar button is

used.

• Float i:!l
• Dock

13

The Dock tool bar button is only available from the floating window.

2.2.10. Using the Transcript Window

The Console tab of the Transcript window shows output messages from the processes

we run. If a line number appears as part of the message, we can right-click the message and

select Goto Source to open the source file with the appropriate line number highlighted.

• Warning

ErrorO •
Depending on the source file and tool we are working with, additional tabs are available

in the Transcript window:

• Always available: Console tab, Errors tab, Warnings tab, Tel Console tab, Find in

Files tab.

• ISE Simulator: Simulation Console tab.

• RTL and Technology Viewers: View by Name tab, View by Category tab.

2.2.11. Using the Toolbars

Toolbars provide convenient access to frequently used commands. To execute a

command a tool bar button click once on. To see a short popup description of a tool bar

button, the mouse pointer is holding over the button for about two seconds. A longer

description appears in the status bar at the bottom of the main window.

For Help on a toolbar button, the Help toolbar button\? is clicked, and then the

toolbar button is clicked for which we want Help. For more information on getting Help,

we should see Using Xilinx Help.

2.3. Creating a Project

Project Navigator allows us to manage our FPGA and CPLD designs usmg an

ISE™ project, which contains all the files related to our design. First, we must create a

project and then add source files. With our project open in Project Navigator, we can view

and run processes on all the files in our design. Project Navigator provides a wizard to help

us create a new project, as follows.

To Create a Project

1. Select File > New Project.

14

2. In the New Project Wizard Create New Project page, steps are as follows:

• In the Project Name field, we enter a name for the project. It follows the

naming conventions described in File Naming Conventions.

• In the Project Location field, we enter the directory name or browse to the

directory. _

• In the Top-Level Source Type drop-down list, we select one of the

following:

o HDL

We select this option i[our top-level design file is a VHDL, Verilog, or

ABEL (for CPLDs) file. An HDL Project can include lower-level modules

of different file types, such as other HDL files, schematics, and "black

boxes," such as IP cores and EDIF files.

o Schematic

We select this option if our top-level design file is a schematic file. A

schematic project can include lower-level modules of different file types,

such as HDL files, other schematics, and "black boxes," such as IP cores and

EDIF files. Project Navigator automatically converts any schematic files in

our design to structural HDL before implementation; therefore, we must

specify a synthesis tool when working with schematic projects, as described

in step 5.

3. Click Next.

4. In the Device Properties page, we should set the following options. These settings

affect other project options, such as the types of processes that are available for our

design.

• Product Category

• Family

To target a Spartan-3L™ device, Spartan-3™ should be selected as the family.

When creating an EDIF project, the device family information is read from our

EDIF project file, and changing the device family is not recommended.

• Device

15

To target a Spartan-3L device, device that ends in I should be selected, such as

xc3s20001.

• Package

• Speed

• Top-Level Source Type

This is automatically set.

• Synthesis Tool

We select one of the following synthesis tools and the HDL language for our

project. VHDL/Verilog is a mixed language flow. If we plan to run behavioral

simulation, our simulator must support multiple language simulation.

o XST (Xilinx® Synthesis Technology)

XST is available with ISE Foundation™ software installations. It

supports projects that include schematic design files and projects that

include mixed language source files, such as VHDL and Verilog sources

files in the same project. For more information, see.

• Simulator

We select one of the following simulators and the HDL language for simulation.

The language we select determines the default language in which to generate

simulation netlists and other generated files that affect simulation. We can also

select the language in which to generate files by setting process properties as

described in Setting Process Properties.

o ISE Simulator (Xilinx®, Inc.)

This simulator allows us to run integrated simulation processes as part of

our ISE design flow.

o ModelSim (Mentor Graphics®, Inc.)

We can run integrated simulation processes as part of our ISE design

flow using any of the following ModelSim® editions: ModelSim Xilinx

Edition (MXE), ModelSim MXE Starter, ModelSim PE, or ModelSim SE™.

o Others

We select this option if we do not have ISE Simulator or ModelSim

installed or if we want to run simulation outside of Project Navigator. This

16

instructs Project Navigator to disable the integrated simulation processes for

our project.

• Enable Enhanced Design Summary

We select this option to show the number of errors and warnings for each of the

Detailed Reports in the Design Summary.

• Enable Message Filtering

We select this option to show the number of messages we filtered in the Design

Summary. We must enable this option, filter messages, and then run the software to

show the number of filtered messages.

• Display Incremental Messages

We select this option to show the number of new messages for the most recent

software run in the Design Summary. We must enable this option and then run the

software to show the number of new messages.

5. If we are creating an HDL or schematic project, we click Next, and optionally, we

create a new source file for our project in the Create New Source page. We can only

create one new source file while creating a new project. We can create additional

new sources after our project is created.

6. We click Next, and optionally, we add existing source files to our project in the Add

Existing Sources page.

7. We click Next to display the Project Summary page.

8. We click Finish to create the project.

If we prefer, we can create a project using the New Project dialog box instead of the

New Project Wizard, as described above. To use the New Project dialog box, we should

deselect the Use new project wizard option in the ISE General Options page of the

Preferences dialog box.

What to Expect:

Project Navigator creates the project file, project_name.ise, in the directory we

specified. All source files related to the project appear in the Project Navigator Sources tab.

Project Navigator manages our project based on the project properties (top-level module

type, device type, synthesis tool, and language) we selected when we created the project. It

organizes all the parts of our design and keeps track of the processes necessary to move the

17

design from design entry through implementation to programming the targeted Xilinx

device. For information on changing project properties, we see Changing Project, Source,

and Snapshot Properties.

What to Do Next:

We can perform any of the following:

• To create and add source files to our project.

• To add existing source files to our project.

• To run processes on our source files.

2.4. Creating Traffic Light Project on ISE

First of all, we click the shortcut icon of the Xilinx - ISE to open Project Navigator

Main Window. Then, to create a new project, we select File> New Project.

P'.-- ll!!lll&lllt:i]
1111 Edit \/19'l'II' Project soiree Process Whdow Help

Wi,]oc Df)li'll'll r,.

D New ctrl+N IU ccen etrl+o .,

- CpenPrOJeCt... Cpen Exafrl)le ...
ckis.'?F-'rr,_ioc-

Recent Files

Recent Projects

Exit

~TRAFACLIG!:!fCO ... _ J:1 untitled Paint
CAPS 1\1...M scru.

~!lee> t7;66Q\i 12,s?'

Figure 2. 5. Project Navigator Main Window

In the New Project Wizard we can create New Project page, doing the following:

• In the Project Name field, we enter project name "Traffic_Lights_Controller".

18

• In the Project Location field, we enter the directory name "C:\VHDLProjects\

Traffic_ Lights_ Controller\" to the directory.

• In the Top-Level Source Type drop-down list, we select HDL in which our top

level design file is a VHDL, Verilog, or ABEL (for CPLDs). An HDL Project can

include lower levels models of different files types.

Enter a Name and Location for the Project

Project Name: Project Location

!Traffic_Lights_Controlleq !]C:\\/HDLProjects\ Traffic_Lights_Controller I D

Select the Type of Top-Level Source for the Project

Top-Level Source T ype:

More Info < Back [Next> j [Cancel

Figure 2. 6. New Project Window - Project Name.

In the Device Properties page, we set the following options. These settings affect other

project options, such as the types of processes that are available for our design.

• We select all section in the Product Category section.

• We select Spartan-3E family in the Family section.

• We select XC3S100E device in the Device section.

• We select TQ144 package in the Package section.

• We construct speed -4 in the Speed section.

• HDL is automatically selected in the Top-Level Source Type section.

19

• XST (VHDL/Verilog) is selected in the Synthesis Tool section.

• We select ModelSim-XE VHDL simulator in the Simulator section.

Then we click Next and not add any new source or existing source in the wizard that is

optional. After finishing Project Navigator, it creates the project file Traffic Lights

Controller ise, in the directory we specified.

Select the Device and Design Flow for the Project
--- ----

Property Name Value

Product Category ,fAii
Family

Device

Package

Speed

Top-Level Source Type : HDL
Synthesis Tool i XST (VHDLNerilog) ~
Simulator : Modelsim·XE VHDL " -
Enable Enhanced Design Summary ~
Enable Message Filtering D
Display Incremental Messages D

< Back] [I Next>] [Cancel More Info

Figure 2. 7. New Project Window - Device and Design Flow

2.5. Creating a Source File

A source file is any file that contains information about a design. Project Navigator

provides a wizard to help us create new source files for our project. If we are targeting a

Spartan-3A or Virtex-5 device, we can use the New Source Wizard to pre-assign package

pins for an empty project. For details, Pre-Assigning Package Pins in the New Source

Wizard.

What to Do First, We open a project in Project Navigator.

To Create a Source File:

• We select Project> New Source.

20

• In the New Source Wizard, we select the type of source we want to create. Different

source types are available depending on our project properties (top-level module

type, device type, synthesis tool, and language). Some source types launch

additional tools to help us create the file, as described in Source File Types.

• We enter a name for the new source file in the File Name field. Then we follow the

naming conventions described in File Naming Conventions.

• In the Location field, we enter the directory name or browse to the directory.

• We select Add to Project to automatically add this source to the project. State

machines created with StateCAD cannot be automatically added to the project. We

must add them manually.

• Click Next.

• If we are creating a source file that needs to be associated with an existing source

file, we should select the appropriate source file, and click Next. If this does not

apply, skip to the next step.

• In the New Source Information window, we can read the summary information for

the new source, and we click Finish.

After we click Finish, the New Source wizard closes. In some cases, a related tool is

launched in which we can finish creating our file. After the source file is created, it appears

in the Project Navigator Sources tab. If we selected Add to Project when creating the source

file, the file is automatically added to the project.

Sources File Types:

The following table shows the source file types that appear in the Project Navigator

Sources tab. Available source types vary depending on our project properties (top-level

module type, device type, synthesis tool, and language). The last column describes what to

expect when creating the file with the New Source wizard and, if applicable, includes the

tool launched when using the New Source wizard or when editing the file from Project

Navigator.

21

File Type

Project

Schematic

State

diagram

Test Bench

Waveform

Undefined

Extension Icon

.ise

.sch

.dia

.tbw

NIA

Description

Contains

property

status,

information

process

settings,

and

for

managing the ISE™

project.

New Source Wizard

Behavior/Tool Launched

NIA

Opens the schematic file in

Contains a schematic the Project Navigator

design. Workspace. For details, see

the Schematic Overview.

Launches StateCAD in which

Contains a

diagram file.

state

Contains a graphical

representation of a

test bench that can be

converted to an HDL

we can

diagram.

Working

define your state

For details, see

with State

Machines.

Prompts you to associate the

file with a source and opens

the Test Bench Waveform

Editor in the Project

Navigator Workspace with

the signals populated. For

fixture.

test bench or test details, see the ISE Simulator

Contains

Help. This file is for use with

the Xilinx® Test Bench

Waveform Editor only.

an

instantiated module NI A

that has not been

22

added to the ISE

project but IS

referenced by a

source file in the ISE

project.

User

Document

.doc, .txt,

.wn

Contains user

information that is not

implemented with the N/ A

project, for example, Must be added to the project.

supporting

documentation.

VHDL

Module
.vhd

Contains VHDL

design code.

Opens the file in the text

editor we specify in the Editor

Options page of the

VHDL

Test Bench

.vhd

Preferences dialog box.

Prompts we to associate the

file with a VHDL source and

Defines the stimulus then opens a skeleton test

to the ports of an bench file in the text editor

HDL file. we specify in the Editor

Options page of the

Preferences dialog box.

Figure 2. 8. Source File Type

2.6. Creating Counter.vhd VHDL Module

To create a new source file we click Project > New Source. In the New Source

Wizard, we select the type of source is VHDL Module and its name given as Counter to

create 4 bit counter.

23

File name:

~ User Document
vi \/ erilog Module

\/ erilog Test Fixture
~\/HDL Module

. VHDL Library
!J VHDL Package
~VHDL Test Bench

Jcounteq

Location:

C:WHDLProjects\Traffic_Lights_Controller ~ Q

More Info c Back f Next>] Cancel

Figure 2. 9. New Source Window

After Next button clicking it pass to the define part and we declare three ports:

"clock", "reset", and "count." The clock and reset ports direction signed "in" also count

"inout" with 4 bit bus. After clicking Next the source file generated automatically and

added to the project.

A typical VHDL module consists of library declarations, an entity, and architecture.

The library declarations are needed to tell the compiler which packages are required. The

entity declares all ports associated with the design. Count (3 up to 0) means that count is a

4-bit logic vector. This design has two inputs -clock and -reset also one output, a 4 bit bus

called "count." The actual functional description of the design appears after the begin

statement in the architecture. The function of this design is to increment a signal "count"

when clock equal to 1 and there is an event on the clock. This. is resolved into a positive

edge. The reset is synchronous as is evaluated before the clock action. The area still within

the architecture but before the begin statement is where declarations reside.

24

Entity Name [counter -= _ __ __ _ - J
Architecture Name !Behavioral -·===i
I Port Nam;
clock

[reset

Jcount

Direction LSB Bus MSB

m r.l
m a
inout m
m m
m ~
in a
m .., - r.l m

m -,J•
m a:
m Ill
m mi

D
D
~
D
D
D
D
D
D
D
D
D

3 0

More Info < Back] IJ Ne~t > I [Cancel

Figure 2. 10. VHDL Source Window

If we notice that a file called "counter.vhd" has been added to the project in the

Sources in Project Window of the Project Navigator. And we double click on counter.vhd

source and we added to process source on it. These codes are shown below.

process (CLOCK,RESET)

begin

if RESET= '1' then

COUNT<= "0000";

elsif CLOCK =' l' and CLOCK'event then

COUNT <= COUNT + 1;
end if;

end process;

We define a clock process with parameters CLOCK and RESET in which whenever

reset is active COUNT is cleared. On the other hand, if CLOCK rising edge event and

CLOCK active are occurred together that are initiate to counter to up one by one.

25

2.~. Creating a Test Bench Waveform

The ISE Simulator tools provide a Waveform Editor in which we can graphically

create test benches or test fixtures. Using the Waveform Editor window, we can specify

stimulus, expected outputs and test bench length, using waveforms and menus.

By editing waveforms graphically, using mouse-clicks and menus, we can see our

design stimulus and expected simulation results in a familiar waveform view. We do not

need any knowledge of HDL or language scripting to verify that our design will behave as

we intended. We can save our waveforms and test bench properties into a Test Bench

Waveform (.tbw) file that is added to our ISE project. We can then use this TBW file to

drive our design simulation, in the same way we would use an HDL test bench.

At any point in our Test Bench Waveform design, we can choose .to view the

equivalent HDL test bench. We can also write out the equivalent HDL test bench or test

fixture and add it to our project. Therefore if we wish, we may begin our test bench

creation graphically, and after the initial test bench framework is written, we can choose to

continue test bench development in HDL, outside of the Waveform Editor.

2.8. Creating a counter_tb Test Bench Waveform

Before simulate a VHDL file, we must first create a testbench. Again from the

project menu, we select new source and we indicate the source type as Test Bench Wave

Form that is file name given "counter_tb."

26

"'""Bf~M File --

File name:

~ User Document
vi \/erilog Module

\/ erilog Test Fixture
~ \/HDL Mod1Jle

. \/HDL Library
~ \/HDL Package
"·· \/HDL Test Bench

1counter_tb

Location:

JC: \\/HDLProjects\ T raffic_Lights_Controller 10

~ Add to project

< Back Ii Next> J [Cancel j

Figure 2. 11. Adding Test Bench WaveForm

After clicking the Next button the testbench is going to simulate the counter

module, so when asked which source we want to associate the source with, selected

"Counter" and click Next button.

Select a source with which to associate the new source.

More Info j < Back j i Next > Cancel

Figure 2. 12. Associate Source Window

27

We review the information and click the Finish button. The HDL Bencher tool now

reads in the design. We set the frequency of the system clock, setup requirements, and

output delays in the "Initialize Timing" box.

We set initialize timing as follows:

• We select single clock in which clock event is set as rising edge.

• We select Clock high time 100 ns.

• We select Clock low time 100 ns.

• We set input setup time 15 ns.

• We set output valid delay 15 ns.

r
• Maxirnurn •:

output delay :
'

~ ~· . ¢. Pfllnirnurn
:•input •
: setup

' '
Clock :~ Clock --:
high for : low for :

Clock Timing Information

Inputs are assigned at "Input Setup Time" and
outputs are checked at "Output Valid Delay".

@ Rising Edge 0 Falling Edge

Q Dual Edge (DDR or DET)
Clock High Time I 1 00 ~ =:J ns
Clock Low Time B..§L =:J ns

Input Setup Time 115 - - J ns
Output Valid Delay 115 I ns

Offset IO I ns
Global Signals

[] PRLD (CPLD) [] GSR(FPGA)

High for Initial: f i_oo - I ns

Clock Information

[clock 1::1! ® Single Clock
0 Multiple Clocks

0 Combinatorial (or internal clock)

Combinatorial Timing Information

Inputs are assigned, outputs are decoded then
checked. t,, delay between inouts and outputs avoids
assignment/checking conflicts.

Check Outputs@:[] ns After Inputs are Assigned

Assign Inputs ,50 _: ns P.fter Outputs are Checked

Initial Length of Test Bench: I 1 000 I ns

T irne Scale: I ns i:il!
[] Add Asynchronous Signal Support

< Back [Finish] (Cancel

Figure 2. 13. Initial Timing and Clock Wizard

28

If we note that the blue cells are for entering input stimulus and the yellow cells are

for entering expected response. When entering a stimulus, we are clicking the left mouse

button on the cell will cycle through the available values for that cell.

We open a pattern text field and button by double clicking on a signal's cell or a

single clicking on a bus cell. From this pattern window, we can enter a value in the text

field or we can click on the pattern button to open a pattern wizard.

We enter the input stimulus as follows:

• We set the reset cell below CLK cycle 1 to a value of" 1."

• We set the reset cell below CLK cycle 2 to a value of "O."

Then, we click the yellow COUNT [3 :O] cell under CLK cycle 1 and again click Pattern

button to launch the Pattern Wizard and set parameters as follows:

• Pattern Type is set count up .

• Number of cycle is set 16 .

• Radix is selected binary .

• Initial value is set 0000 .

• Terminal value is set 1111 .

• Increment by is set 1 .

• Count Every is set 1 .

29

General Pattern Information

Pattern Type: I Count Up W Number of Cycles: J16 i
Radix

@ Binar}' 0 Decimal 0 Hexadecimal

Pattern Parameters

~

[_rementB_y:

2 ~ Count Every

11 I

J
Initial Value:

Terminal Value:

11111

~ OK ~ [Cancel Help

Figure 2. 14. Pattern Wizard Window.

After all we see that it's waveform look like Figure 4 - 10.

File View Test Bench Simulation Window

End Time:
3100 ns 100 ns

I I
500 ns

I I I
900 ns

I I I
1 300 ns
I I I

1700 ns
I I I

21 00 ns
I I I

2500 ns
I I I

2900 ns
I I

i1J1 clock
an reset

1±1 ~ counip OJ 15

I Time:---~

Figure 2. 15. Waveform Window

Then we click File > Save to save the waveform and closed the HDL Bencher tool.

Now that the testbench is created, we can simulate the design.

We select "counter tb.tbw" in the ISE source window and we expand the

ModelSim simulator by clicking in the process window. Then right click on Simulate

30

r ~:;-r-y-··- -, 1:
~').. I

lj ~ ("' • I::, ,.;: ' . 11- C-:~·
•~{() ~ I l,,t • ..

Behavioral VHDL model we can select properties in the simulation run time fi~hlj~ype -.J .J?. "i.'J i
~- ~lb, I\'~;;

"all" and pressed OK. ~:~_ 11 __ . .:'

Format Window

813750 ps to 3102164 ps

Figure 2. 16. Wave Window

ISE software automates the simulation process by creating and launching a

simulation macro file (a ".do" file, or a ".fdo" file). This creates the design library,

compiles the design and testbench source files, and calls a user editable ".do" file called

"counter_tb.udo." it also invokes the simulator, opens all the viewing windows, adds all the

signals to the list window, and runs the simulation for the time specified by the simulation

run time property. After all we see that figure 4- 11. Then, we use File > Exit to close the

ModelSim simulator.

2.9. Creating a State Machine Diagram

For our traffic light design, the counter acts as a timer that determines the transitions

of a state machine.

The state machine will run through four states, each state controlling a combination of

the three lights.

• State 1: Red Light

• State 2: Red and Amber Light

• State 3: Green Light

• State 4: Amber Light

31

To invoke the state machine editor, we select new source from the project menu.

Highlight State Diagram and its name given as "stat_ mac.dia." clicked next button, then the

finish button.

",J Implementation Constraints File
State Diagram

~

Test Bench \liaveForm
User Document
Verilog Module

File name:

[stat_macdi~

Location:

~VHD LProjects\ Tr affic_Lights_Controller JD
\/HDL l.ibrery

~VHDL Package
"·· VHDL Test Bench

@ Add to project ~~~~~~~~~~~~~~~~~~

Ne~> I [Cane~ More Info < Back

Figure 2. 17. New Source Window

To open the state machine wizard we clicked the Draw State Machines button in the

main toolbar. We set the number of sates to "4" and hit next button.

32

Select the appearance
of the state machine.

Preview

Number of states (3 .. 16].

14 .2) ...:..J

!?EU[

)1.\. RBa ' 5TRTD .--.\....__.
u•

"'' ~-
/

Shape of state machine

("" Column

("" Multi-Column

j ("" Row

r. Geometric

u•

t:lack Next> Cancel

Figure 2. 18. State Machine Wizard Window

Then, we press to the next button to build a synchronous state machine for reset.

Consider the specific device being used when selecting
the reset mode. For example, FPGAs often include a very
efficient global asynchronous reset.

Select whether the reset is synchronous or asynchronous.
Later, to change reset modes, edit the reset's condition. F • •••

[

Reset Mode
. ("" Asynchronous r. Synchronous

Help < Back Next> Cancel

Figure 2. 19. Reset State Machine Wizard

We setup transition box depending on the conditions and also we substitute type

"TIMER" in the next field and finish it. We hit state CAD floor, all state appear on it. It

shown in figure 2.17.

33

Each state can have a transition which returns to it
(loop back), as well as transitions going from it to the
next state and previous state. The sample window
shows the effects of your selections.

To place the state machine .. click Finish. Move the
cursor to the desired location and click the left mouse
button.

Sample

Add Transitions Set condition to

r Loop back: J<.ruE.L':il:.

P' Next: (TIMER

r Previous: I Default

Help < Back Finish Cancel

Figure 2. 20. Setup Transition Window

TIMER

S! TIMER

TIMER

Figure 2. 21. State Diagram Scheme

Our design has three outputs named RD, AMB, and GRN in the logic wizard; we

declare these outputs in the DOUT field. At this stage we rename all state and declared

outputs as follows:

• State O renamed as RED with outputs RD = 1, AMB =O, and GRN = 1.

• State 1 renamed as REDAMB with outputs RD = 1, AMB =O, and GRN = 1.

• State 2 renamed as GREEN with outputs RD = 1, AMB =O, and GRN = 1.

34

• State 3 renamed as AMBER with outputs RD = 1, AMB =O, and GRN = 1.

After this operation we double click on transition line between state "RED" and state

"REDAMB." In the edit condition window, we set a transition to occur when timer is 1111

by editing the condition field to TIMER= "1111." We repeated for all other states.

Transition REDAMB to GREEN, TIMER = "0100", GREEN to AMBER, TIMER

"0011", AMBER to RED, TIMER = "0000." Hence, the traffic light completes a RED,

REDAMB, GREEN, and AMBER once every three cycles of the counter.

Finally, we declare the vector TIMER by clicking on the button on the left hand

side of the toolbar. After dropping the marker on the page, double clicked on it, we enter

the name "TIMER" with a width of 4 bits (Range 3:0). We click OK button it shows that in

figure 2-18.

TIMER[3:0] • ~ES'i-f~ 9llii RD='1'; - \
\, AMB = 'O'; !
\ GRN = 'O' r;(

TIMER = "0000" rz/"'~-> ~ TIMER = "1111"

/ ~Q

TIMER= "0011"
0"/

,,. TIMER ="OlOO"

Figure 2. 22. State Machine Drawing

35

Also we can see all variables on the state machine clicking variables section. It is

shown figure 2- 19.

~@r:JJ.Im
~---' -~~-..:..-···- ··- - ···--·,----· ~ - lti

Clear all pin I Next pin# ~ jJ Delete all I Delete I Addft.4odify I Help I Cancel,~

Name: Type Active Pin/Node Pin It

I INPUT... I HIGH ... I PIN ... 11
At.AB OUT:REG HIGH PIN
CLK CLOCK HIGH PIN
GRN OUT:REG HIGH PIN
RD OUT:REG HIGH PIN
RESET INPUT HIGH PIN
TIMER VECTOR HIGH PIN

r List Subbits Add new variables as: HIGH ... I l
Figure 2. 23. Variables Window

Then we click on the Generate HDL button on the top toolbar. The results window

should read "Compiled perfectly." We close the dialog box and the generated HDL

Browser Window saving with StateCAD. The state machine can now be added to the ISE

Project.

In the next step, we go to the Project Menu and select Add Source in the Project

Navigator. In the existing source box, we find "stat_mac.dia." if it not added automatically

to the ISE Project.

36

2.10. Creating Top-Level VHDL Design

At this point in the flow, two modules in the design are connected together by a top

level file. Some designers like to create a top level schematic diagram, while others like to

keep the design entirely text based. First the counter and state machine will be connected

using top.vhd file in the entirely text based.

From the project menu, we select new source create a VHDL module that name given

" "top.

",~ Implementation Constraints File
State Diagram

.n.1 Test Bench WaveForm
File name:

top

Location:

More Info · j < Back Ne~t > Cancel

Figure 2. 24. New Source Window

Then, we click on the next button and fill out the define VHDL Source dialog box,

as shown in figure 2.20.

37

Port Name

I clock
.---·--- Bus MSB ao

io
r.lD mo
i[o
l:iD
'1D
~D
~D

~----1=1n = °ID l . _ _aj

Direction LSB

Architecture Namej LB_e_h_a_v_io_ra_l _

in

reset m
red_light

amber_light

green_light

out

out

out

in

m

< Back] [j Next> I [Cancel More Info

Figure 2. 25. Define VHDL Source Window

We click on the next button, then the finish button. Our new file, "top.vhd," should

look like Figure 4- 19.

In the top.vhd, we declare a signal called "timer" by adding the following line in the

component declarations inside the architecture:

Signal timer: std _logic_ vector (3 downto O); after that we connect the counter and

state machine instantiated modules. When we save "top.vhd," the source windows

automatically rearrange depending on the instantiated modules.

Now we can simulate the entry design. First we add a new testbench waveform

source, associated with the module "top." In the waveform diagram, we enter the input

stimulus as follows:

• We set RESET cell below CLK cycle 1 to a value of "I."

• We click the RESET cell below CLK cycle 2 to reset if low

• We scroll to the 641h clock cycle right clicking and selecting set end of testbench.

38

File View Test Bench Simulation Windcrw

End Time:
13100 ns

ilJI clock
ill\ reset
~II amber_light

~II green_light
~II red_light

8500 ns 9700 ns 10900 ns
L J I I I I I I I I

o 11 111 111 111 111 111 I I I I I I 11 I 111 I 11 111 I 11 I I
o I rt 11111111111111 I I I I I I 111111111111111 11

Time: ---

Figure 2. 26. Waveform Diagram

Then we click File > Save to save the waveform and closed the HDL Bencher tool.

Now that the testbench is created, we can simulate the design.

We select "top_tb.tbw" in the ISE source window and we expand the ModelSim

simulator by clicking in the process window. Then right 'click on Simulate Behavioral

VHDL model we can select properties in the simulation run time field, type "all" and

pressed OK.

File Edit Cursor Zoom Bookmark Format Window

.-..11, -~; . ·~ I I -, .

0 ps to 1328927 4 ps

Figure 2. 27. Waveform Window

39

CHAPTER THREE: TRAFFIC LIGHT CONTROLLER IN VHDL

3 .1. Very High Speed Integrated Circuit Hardware Description Language

VHDL development was initiated originally from the American Department of

Defense (DoD). They requested a language for describing a hardware, which had to be

readable for machines and humans at the same time and strictly forces the developer to

write structured and comprehensible code, so that the source code itself can serve as a kind

of specification document. Most important was the concept of concurrency to cope with the

parallelism of digital hardware. Sequential statements to model very complex functions in a

compact form were also allowed.

In 1987, VHDL was standardized by the American Institute of Electrical and

Electronics Engineers (IEEE) for the first time with the first official update in 1993. Apart

from the file handling procedures these two versions of the standard are compatible. The

standard of the language is described in the Language Reference Manual (LRM).

A new and difficult stage was entered with the effort to upgrade VHDL with

analogue and mixed-signal language elements. The upgrade is called VHDL-AMS

(analogue- mixed- signal) and it is a superset of VHDL. The digital mechanisms and

methods have not been altered by the extension.

For the time being, only simulation is feasible for the analogue part because

analogue synthesis is a very complex problem affected by many boundary conditions. The

mixed signal simulation has to deal with the problem of synchronizing the digital- and

analogue simulators, which has not been solved adequately, yet.

3.1.1. History of VHDL

The acronym VHDL stands for the VHSIC Hardware Description Language. The

VHSIC, refers to the Very High Speed Integrated Circuit program. The Department of

Defence sponsored this program. During the program, the increasing complexity of digital

systems that were made possible by continuous advanced in semiconductor and packaging

technologies was found to have a fundamental impact on the economics of the design of

military and space electronic systems.

40

The idea of being able to simulate "documents" was so obviously attractive m

which logic simulators were developed that could read the VHDL files. The next step was

the development of logic synthesis tools that read the VHDL, and output a definition of the

physical implementation of the circuit. Modern synthesis tools can extract RAM, counter,

and arithmetic blocks out of the code, and implement them according to what the user

specifies. Thus, the same VHDL code could be synthesized differently for lowest cost,

highest power efficiency, highest speed, or other requirements.

VHDL has a syntax that is essentially a subset of the Ada programming language,

along with an added set of constructs to handle the parallelism inherent in hardware

designs. VHDL is strongly-typed and case insensitive. A team of DoD contractors was

awarded the contract to develop the language and the first version was released in 1985. the

language was subsequently transferred to the IEEE for standardization, after which

representatives fnm industry, government and academe were involved in its further

development. The language was ratified and become IEEE 1076-1987 standards, after five

years with the addition of new features, forms the 1076-1993 version of the language.

Unless otherwise stated, simulation and synthesis compilers will generally support both

versions and will provide mechanisms to control which version of the language is being

supported.

VHDL is a language that describes digital systems. A simulator will use its

descriptions to simulate the behaviour of the system without having to actually construct it.

Alternatively, synthesis compilers can utilize such as a description to create descriptions of

the digital hardware for implementing the system. Altough VHDL has been investigated for

its use in describing and simulating analog systems, the language is used predominantly in

the design of digital electronic systems.VHDL is a language which is permanently extended

and revised. The original standard itself needed more than 16 years from the initial concept

to the final, official IEEE standard. When the document passed the committee it was agreed

that the standard should be revised every 5 years. The first revision phase resulted in the

updated standard of the year 1993.

Independently of this revision agreement, additional effort is made to standardize

"extensions" of the pure language reference. These extensions cover for examples packages

(std_logic_l 164, numeric_bit, numeric_std ...) containing widely needed data types and

41

subprograms, or the definition of special VHDL subsets like the synthesis subset IEEE

1076.6.

3.1.2. VHDL - Application Field

VHDL is used mainly for the development of Application Specific Integrated

Circuits (ASICs). Tools for the automatic transformation of VHDL code into a gate-level

netlist were developed already at an early point of time. This transformation is called

synthesis and is an integral part of current design flows.

For the use with Field Programmable Gate Arrays (FPGAs) several problems exist.

In the first step, Boolean equations are derived from the VHDL description, no matter,

whether an ASIC or a FPGA is the target technology. But now, this Boolean code has to be

partitioned into the configurable logic blocks (CLB) of the FPGA. This is more difficult

than the mapping onto an ASIC library. Another big problem is the routing of the CLBs as

the available resources for interconnections are the bottleneck of current FPGAs. While

synthesis tools cope pretty well with complex designs, they obtain usually only suboptimal

results. Therefore, VHDL is hardly used for the design of low complexity Programmable

Logic Devices (PLDs).

VHDL can be applied to model system behavior independently from the target

technology. This is either useful to provide standard solutions, e.g. for micro controllers,

error correction (de-)coders, etc, or behavioral models of microprocessors and RAM

devices are used to simulate a new device in its target environment.

An ongoing field of research is the hardware/software co-design. The most interesting

question is which part of the system should be implemented in software and which part in

hardware. The decisive constraints are the costs and the resulting performance.

3.1.3. VHDL Language and Syntax

VHDL is generally case insensitive which means that lower case and upper case

letters are not distinguished. This can be exploited to define own rules for formatting the

VHDL source code. VHDL keyword could for example be written in lower case letters and

self defined identifiers in upper case letters. This convention is valid for the following

slides.

42

Statements are terminated in VHDL with a semicolon. That means as many line

breaks or other constructs as wanted can be inserted or left out. Only the semicolons are

considered by the VHDL compiler. List is normally separated by commas. Signal

assignments are notated with the composite assignment operator'<='.

Self defined identifier as defined by the VHDL 87 standard may contain letters,

numbers and underscores and must begin with a letter. Further no VHDL keywords may be

used. The VHDL 93 standard allows defining identifiers more flexible as the next slide will

show.

3.1.4. VHDL Structural Elements

• Entity: Interface

• Architecture: Implementation, behavior, function

• Configuration: Model chaining, structure, hierarchy

• Process: Concurrency, event controlled

• Package: Modular design, standard solution, data types, constants

• Library: Compilation, object code

The main units in VHDL are entities, architectures, configurations and packages

(together with package bodies). While an entity describes an interface consisting of the port

list most of the time, architecture contains the description of the function of the

corresponding module. In general, a configuration is used for simulation purposes, only. In

fact, the configuration is the only simulatable object in VHDL as it explicitly selects the

entity/architecture pairs to build the complete model. Packages hold the definition of

commonly used data types, constants and subprograms. By referencing a package, its

content can be accessed and used.

Another important construct is the process. While statements in VHDL are

generally concurrent in nature, this construct allows for a sequential execution of the

assignments. The process itself, when viewed as a whole object, is concurrent. In reality,

the process code is not always executed. Instead, it waits for certain events to occur and is

suspended most of the time.

43

A library in VHDL is the logical name of a collection of compiled VHDL units

(object code). This logical name has to be mapped by the corresponding simulation or

synthesis tool to a physical path on the file system of the computer.

3.1.5. Declaration of VHDL Objects

A subprogram is similar to a function in C and can be called many times in a VHDL

design. It can be declared in the declarative part of an entity, architecture, process or even

another subprogram and in packages. As a subprogram is thought to be used in several

places (architectures) it is useful to declare it in a package, always.

Components are necessary to include entity/architecture pairs in the architecture of

the next higher hierarchy level. These components can only be declared in architecture or a

package. This is useful, if an entity/architecture pair might be used in several architectures

as only one declaration is necessary in this case.

Configurations, themselves, are complete VHDL design units. But it is possible to

declare configuration statements in the declarative part of architecture. This possibility is

only rarely used, however, as it is better to create an independent configuration for the

whole model.

Constants and data types can be declared within all available objects.

Port declarations are allowed in entities, only. They list those architecture signals

that are available as interface to other modules. Additional internal signals can be declared

in architectures, processes, subprograms and packages. Please note that signals can not be

declared in functions, a special type of a subprogram.

Generally, variables can only be declared in processes and subprograms. In

VHDL'93, global variables are defined which can be declared in entities, architectures and

packages.

3.1.6. Entity

On the following pages, a full-adder consisting of two half-adders and an OR gate

will be created step by step. We confine ourselves to a purely structural design, i.e. we are

using gate level descriptions and do not need any synthesis tools. The idea is to

demonstrate the interaction of the different VHDL objects in a straightforward manner.

The interface between a module and its environment is described within the entity

44

declaration which is initiated by the keyword ' entity '. It is followed by a user-defined,

(hopefully) descriptive name, in this case: half-adder. The interface description is placed

between the keyword ' is ' and the termination of the entity statement which consists of the

keyword ' end ' and the name of the entity. In the new VHDL'93 standard the keyword '

entity ' may be repeated after the keyword ' end ' for consistency reasons.

The input and output signal names and their data types are defined in the port

statement which is initiated by the keyword ' port '. The list of ports is enclosed in a '(' ')'

pair. For each list element the port name(s) is given first, followed by a ':', the port mode

and the data type. Within the list, the ';' symbol is used to separate elements, not to

terminate a statement. Consequently, the last list element is not followed by a ';'!

Several ports with the same mode and data type can be declared by a single port

statement when the port names are separated by','. The port mode defines the data flow (in:

input, i.e. the signal influences the module behavior; out: output, i.e. the signal value is

generated by the module) while the data type determines the value range for the signals

during simulation.

A-r-:1-SUM
B-t___2_j- CARRY

Figure 3. 7 Entity

3.1.7. Architecture

The architecture contains the implementation for an entity which may be either a

behavioral description (behavioral level or, if synthesizable, RT level) or a structural netlist

or a mixture of those alternatives.

Architecture is strictly linked to a certain entity. An entity, however, may very well

have several architectures underneath, e.g. different implementations of the same algorithm

or different abstraction levels. Architectures of the same entity have to be named differently

in order to be distinguishable. The name is placed after the keyword ' architecture ' which

initiates an architecture statement. 'RTL' was chosen in this case.

It is followed by the keyword ' of ' and the name of entity that is used as interface

('HALF ADDER'). The architecture header is terminated by the keyword ' is ', like in entity

45

-
statements. In this case, however, the keyword ' begin ' must be placed somewhere before

the statement is terminated. This is done the same way as in entity statements: The keyword

' end ', followed by the architecture name. Once again, the keyword ' architecture ' may be

repeated after the keyword' end' in VHDL'93.

As the VHDL code is synthesizable, RTL was chosen as architecture name. In case

of this simple function, however, there is no difference to behavioural (algorithmic)

description. We will use 'BEHAVE', 'RTL', 'GATE', 'STRUCT' and 'TEST' to indicate the

abstraction level and the implemented behavior, respectively. The name 'EXAMPLE' will

be used whenever the architecture shows the application of new VHDL elements and is not

associated with a specific entity .

.A -t ~-.---1- SUM rrr r
IB -t:::::::::::j- CARRY

Figure 3.18 Architecture

3.1.8. Architecture Structure

Each architect is split into an optional declarative part and the definition part.

The declarative part is located between the keywords' is' and' begin'. New objects that are

needed only within the architecture constants, data-types, signals, subprograms, etc. can be

declared here.

The definition part is initiated by the keyword ' begin ' and holds concurrent

statements. These can be simple signal assignments, process statements, which group

together sequential statements, and component instantiations. Concurrency means that the

order in which they appear in the VHDL code is not important. The signal SUM, for

example, gets always the result of (3 + 7), independently of the location of the two r
assignments to the signals DIGIT_A and DIGIT_B.

Signal assignments are carried out by the signal assignment operator ' <= '. The

symbol represents the data flow, i.e. the target signal whose value shall be updated is

placed on the left side of the operator. The right side holds an expression that evaluates to

the new signal value. The data types on the left and on the right side have to be identical.

46

Please remember that the signals that are used in this example were defined implicitly by

the port declaration of the entity.

3.1.9. Process

Because the statements within architecture operate concurrently another VHDL

construct is necessary to achieve sequential behavior. A process, as a whole, is treated

concurrently like any other statement in architecture and contains statements that are

executed one after another like in conventional programming languages. In fact it is

possible to use the process statement as the only concurrent VHDL statement.

The execution of a process is triggered by events. Either the possible event sources

are listed in the sensitivity list or explicit wait statements are used to control the flow of

execution. These two options are mutually exclusive, i.e. no wait statements are allowed in

a process with sensitivity list. While the sensitivity list is usually ignored by synthesis tools,

a VHDL simulator will invoke the process code whenever the value of at least one of the

listed signals changes. Consequently, all signals that are read in a purely combinational

process i.e. that influence the behavior, have to be mentioned in the sensitivity list if the

simulation is to produce the same results as the synthesized hardware. Of course the same

is true for clocked processes, yet new register values are to be calculated with every active

clock edge, only. Therefore the sensitivity list contains the clock signal and asynchronous

control signals (e.g. reset).

A process statement starts with an optional label and a ':' symbol, followed by the '

process ' keyword. The sensitivity list is also optional and is enclosed in a '(' ')' pair. Similar

to the architecture statement, a declarative part exists between the header code and the

keyword ' begin '. The sequential statements are enclosed between ' begin ' and ' end

process '. The keyword ' process ' has to be repeated! If a label was chosen for the process,

it has to be repeated in the end statement, as well.

3.1.10. Signals

Each signal has a predetermined data type which limits the amount of possible

values for this signal. Synthesizable data types offer only a limited number of values, i.e. it

is possible to map these values to a certain number of wires. Only the most basic data types

are already predefined in VHDL, like bit, bit vectors and integer.

47

The user can define his own data types which might become necessary to enhance

the accuracy of the model (tri-state drivers, for example, may be set to high impedance

instead of a low or high voltage level), for better and to allow for automatic error detection.

tus.er _def_ry

Figure 3. 1. Signals

3 .2. Sequential Statements in VHDL

All statements in processes or subprograms are processed sequentially, i.e. one after

another. Like in ordinary programming languages there exist a variety of constructs to

control the flow of execution. The 'if clause is probably the most obvious and most

frequently used. The IF condition must evaluate to a Boolean value (true or false). After the

first IF condition, any number of ELSIF conditions may follow. Overlaps may occur within

different conditions. An ELSE branch, which combines all cases that have not been covered

before, can optionally be inserted last. The IF statement is terminated with END IF.The

first IF condition has top priority: if this condition is fulfilled, the corresponding statements

will be carried out and the rest of the IF - END IF block will be skipped.

The example code shows two different implementations of equivalent behavior. The

signal assignment to the signal Z in the first line of the left process (architecture

EXAMPLE!) is called a default assignment, as its effects will only be visible if it is not

overwritten by another assignment to Z. Note that the two conditions of the if and elsif part

overlap, because X =" 1111" is also true when X>" 1000". As a result of the priority

mechanism of this if construct, Z will receive the value of B if X =" 1111 ".

48

sequential
statement 1

sequential
statement 2

sequential ·1
statement3

Figure 3.2 Sequential Statements

3.2.1. IF Statement

The if condition must evaluate to a Boolean value ('true' or 'false'). After the first if

condition, any number of elsif conditions may follow. Overlaps may occur within different

conditions. An else branch, which combines all cases that have not been covered before,

can optionally be inserted last. The if statement is terminated with 'end if.

The first if condition has top priority: if this condition is fulfilled, the corresponding

statements will be carried out and the rest of the 'if - end if block will be skipped.

3.2.2. CASE Statement

While the priority of each branch is set by means of the query's order in the IF case,

all branches are equal in priority when using a CASE statement. Therefore it is obvious that

there must not be any overlaps. On the other hand, all possible values of the CASE

EXPRESSION must be covered. For covering all remaining, i.e. not yet covered, cases, the

keyword ' others ' may be used.

The type of the EXPRESSION in the head of the CASE statement has to match the type of

the query values. Single values of EXPRESSION can be grouped together with the 'I'
symbol, if the consecutive action is the same. Value ranges allow covering even more

choice options with relatively simple VHDL code.

49

Ranges can be defined for data types with a fixed order, only, e.g. user defined

enumerated types or integer values. This way, it can be decided whether one value is less

than, equal to or greater than another value. For ARRAY types (e.g. a BIT_ VECTOR)

there is no such order, i.e. the range "0000" TO "O 100" is undefined and therefore not

admissible.

3.2.3. FOR Loops

Loops operate in the usual way, i.e. they are used to execute the same some VHDL

code a couple of times. Loop labels may be used to enhance readability, especially when

loops are nested or the code block executed within the loop is rather long. The loop variable

is the only object in VHDL which is implicitly defined. The loop variable can not be

declared externally and is only visible within the loop. Its value is read only, i.e. the

number of cycles is fixed when the execution of the for loop begins.

If a for loop is to be synthesized, the range of the loop variable must not depend on

signal or variable values (i.e., it has to be locally static). By means of the range assignment,

both the direction and the range of the loop variable is determined. If a variable number of

cycles is needed, the while statement will have to be used. While loops are executed as long

as condition evaluates to a 'true' value. Therefore this construct is usually not synthesizable.

3.2.4. Loop Syntax

The loop label is optional. By defining the range the direction as well as the

possible values of the loop variable is fixed. The loop variable is only accessible within the

loop. For synthesis the loop range has to be locally static and must not depend on signal or

variable values. Loops are not generally synthesizable.

3.2.5. WAIT Statement

As mentioned before, processes may be coded in two flavors. If the sensitivity list is

omitted, another method will be needed to stop process execution. Wait statements put the

process execution on hold until the specified condition is full-filled. If no condition is

given, the process will never be reactivated again. Wait statements must not be combined

with a sensitivity list, independent from the application field.

50

3.2.6. WAIT Statements and Behavioral Modeling

Wait constructs, in general, are an excellent tool for describing timing

specifications. For example it is easy to implement a bus protocol for simulation. The

timing specification can directly be translated to simulatable VHDL code. But keep in mind

that this behavioral modeling can only be used for simulation purposes as it is definitely not

synthesizable.

flU M"IA. \~LID . i~ax 20 I min 10 ns ., I ... ·•I ...•
CPU_DATA

min on --..1 1.--
CPU DA'fA R!EAO ~

data read

Figure 3.3 Wait Statement Model

3.2.7. Variables

Variables can only be defined in a process and they are only accessible within this

process.

Variables and signals show a fundamentally different behavior. In a process, the last

signal assignment to a signal is carried out when the process execution is suspended. Value

assignments to variables, however, are carried out immediately. To distinguish between a

signal and a variable assignment different symbols are used: ' <= ' indicates a signal

assignment and ' := ' indicates a variable assignment.

3.2.8. Variables and Signals

The two processes shown in the example implement different behavior as both

outputs X and Y will be set to the result of B+C when signals are used instead of variables.

Please note that the intermediate signals have to added to the sensitivity list, as they are

read during process execution.

51

3.2.9. Use of Variables

Variables are especially suited for the implementation of algorithms. Usually, the

signal values are copied into variables before the algorithm is carried out. The result is

assigned to a signal again afterwards. Variables keep their value from one process call to

the next, i.e. if a variable is read before a value has been assigned, the variable will have to

show storage behavior. That means it will have to be synthesized to a latch or flip-flop

respectively.

(

Process

1-blesl \
)

Figure 3.13 Use of Variables

3.3. VHDL Codes of Counter.vhd

We show all codes of counter.vhd and explain its statements.

Counter.vhd

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD _LOGIC_ UNSIGNED.ALL;

entity Counter is

Port (clock : in STD LOGIC;

reset : in STD _LOGIC;

count: inout STD_LOGIC_ VECTOR (3 downto O));

52

end Counter;

architecture Behavioral of Counter is

begin

process(CLOCK,RESET)

variable temp_int: integer :=O;

begin

if RESET = '1' then

COUNT <=conv _std_logic_ vector(temp_int,4);

elsifCLOCK ='l' and CLOCK'event then

temp_int:= temp_int + 1;
COUNT<=conv _std_logic_ vector(temp_int,4);

end if;

end process;

end Behavioral;

3.4. VHDL Codes of STAT MAC.vhd

We show all codes of STAT_MAC.vhd and explain its statements.

STAT MAC.vhd

LIBRARY ieee;

USE ieee.std_logic_l 164.all;

ENTITY SHELL STAT MAC IS - -

PORT (CLK,RESET,TIMERO,TIMERl,TIMER2,TIMER3: IN std_logic;

AMB,GRN,RD: OUT std Iogic);

END;

ARCHITECTURE BEHAVIOR OF SHELL STAT MAC IS - -

TYPE type_sreg IS (AMBER,GREEN,RED,REDAMB);

SIGNAL sreg, next_sreg: type_sreg;

SIGNAL next_AMB,next_ GRN,next_RD: std_logic;

BEGIN
PROCESS (CLK, next_sreg, next_AMB, next_GRN, next_RD)

BEGIN

53

IF CLK='l' AND CLK'event THEN

sreg <= next_sreg;

AMB <= next_AMB;

GRN <= next_GRN;

RD<= next_RD;

END IF;

END PROCESS;

PROCESS (sreg,RESET,TIMERO,TIMER1,TIMER2,TIMER3)

BEGIN

next_AMB <= 'O'; next_GRN <= 'O'; next_RD <= 'O';

next_ sreg<=AMBER;

IF (RESET=' I') THEN

next_ sreg<=RED;

next_ GRN<='O';

next_ AMB<='O';

next RD<=' I'·
- '

ELSE

IF NOT ((sreg=AMBER) OR (sreg=GREEN) OR (sreg=RED) OR

(sreg=REDAMB)) THEN

next_ sreg<=RED;

next RD<=' I'·
- '

next AMB<='O'·
- '

next_ GRN<='O';

ELSE

CASE sreg IS

WHEN AMBER=>

IF (std _logic_ vector'(TIMER3, TIMER2,

TIMERJ, TIMERO)) =

std _logic_ vector'("OOOO") THEN

54

next_sreg<=RED;

next_ RD<=' 1 ';

next AMB<='O'·
- '

next GRN<='O'·
- '

ELSE

next_sreg<=AMBER;

next AMB<='l'· - '
next GRN<='O'·

- '
next RD<='O'·

- '
END IF;

WHEN GREEN=>

IF (std_logic_vector'(TIMER3, TIMER2,

TIMERl, TIMERO)) =
std _logic_ vector'("OO 11 ") THEN

next_ sreg<= AMBER;

next_AMB<='l ';

next_ GRN<='O';

next_RD<='O';

ELSE

next_ sreg<=GREEN;

next GRN<='l'·
- '

next AMB<='O'·
- '

next RD<='O'·
- '

END IF;

WHEN RED=>

IF (std_logic_ vector'(TIMER3, TIMER2,

TIMERl, TIMERO)) =
std _logic_ vector'(" 1111 ") THEN

next_sreg<=REDAMB;

next_ RD<=' 1 ';

next_AMB<='l ';

55

next GRN<='O'·
- '

ELSE

next_sreg<=RED;

next RD<=' l '· - '
next AMB<='O'· - '
next GRN<='O'· - '

END IF;

WHEN REDAMB =>

IF (std_logic_ vector'(TIMER3, TIMER2,

TIMER!, TIMERO)) =
std _logic_ vector'("O 100") THEN

next_sreg<=GREEN;

next_GRN<='l';

next_AMB<='O';

next RD<='O'·
- '

ELSE

next_ sreg<=REDAMB;

next_RD<='l';

next_AMB<='l';

next_ GRN<='O';

END IF;

WHEN OTHERS =>

END CASE;

END IF;

END IF;

END PROCESS;

END BEHAVIOR;

LIBRARY ieee;

USE ieee.std_logic_l 164.all;

ENTITY STAT MAC IS

56

PORT (TIMER: IN std_logic_vector (3 DOWNTO O);

CLK,RESET: IN std_logic;

AMB,GRN,RD : OUT std_logic);

END;

ARCHITECTURE BEHAVIOR OF STAT MAC IS

COMPONENT SHELL STAT MAC

PORT (CLK,RESET,TIMERO,TIMER1,TIMER2,TIMER3: IN std_logic;

AMB,GRN,RD : OUT std_logic);

END COMPONENT;

BEGIN

SHELLI STAT MAC SHELL STAT MAC PORT MAP

(CLK=>CLK,RESET=>RESET,TIMERO=>

TIMER(O), TIMER 1 => TIMER(1), TIMER2=> TIMER(2), TIMER3=> TIMER(3),A

MB=>AMB,GRN=>GRN

RD=>RD)· ' '
END BEHAVIOR;

3.5. VHDL Codes oftop.vhd

We show all codes of top.vhd and explain its statements.

top.vhd

library IEEE;

use IEEE.STD_LOGIC_l 164.ALL;

use IEEE.STD _LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity top is

Port (clock: in STD _LOGIC;

reset : in STD _LOGIC;

red_light: out STD _LOGIC;

57

amber_light: out STD_LOGIC;

green_light: out STD _LOGIC);

end top;

architecture Behavioral of top is

signal timer :std _logic_ vector (3 downto O);

component counter

port(

CLOCK: in std _logic;

RESET: in std _logic;

COUNT: inout std _logic_ vector(3 downto 0)

);

end component;

component stat_mac

port(

TIMER: in std _logic_ vector(3 downto O);

CLK: in std_logic;

RESET: in std_logic;

AMB: out std_logic;

GRN: out std_logic;

RD: out std_logic

);

end component;

begin

Inst_counter: counter PORT MAP(

CLOCK => clock,

RESET => reset,

58

COUNT=>timer

);

Inst_stat_mac: stat_mac PORT MAP(

TIMER => timer,

CLK => clock,

RESET => reset,

AMB =>amber_light,

GRN =>green_light,

RD =>red _light

);

end Behavioral;

59

CHAPTER FOUR: TRAFFIC LIGHT CONTROLLER SYNTHESIS

4.1. XST Design Flow Overview

After design entry and optional simulation, we run synthesis. In the Sources tab, we

select Synthesis/Implementation from the Design View drop-down list, and we select the

top moduletP1:1. In the Processes tab, with double-click Synthesize.

The ISE™ software includes Xilinx® Synthesis Technology (XST), which

synthesizes VHDL, Verilog, or mixed language designs to create Xilinx-specific netlist

files known as NGC files. Unlike output from other vendors, which consists of an EDIF file

with an associated NCF file, NGC files contain both logical design data and constraints.

XST places the NGC file in our project directory and the file is accepted as input to the

Translate (NGD Build) step of the Implement Design process. To specify XST as our

synthesis tool, we must set the Synthesis Tool Project Property to XST.

The following figure shows the flow of files through the XST software.

Xilin~ $ynthes·is Techooloqv (XST)
Specilic Optimization

TL Vls•11·G.r Technolo-gy Viewer & I Syllthesls R1s:p-0rt
lmplsrnantauon Tools Files

Figure 4. 1. XST Design Flow

60

4.2. XST Input and Output Files

XST supports extensive VHDL and Verilog subsets from the following standards:

• VHDL: IEEE 1076-1987, IEEE 1076-1993, including IEEE standard and

Synopsys®

• Verilog: IEEE 1364-1995, IEEE 1364-2001.

In addition to a VHDL or Verilog design description, XST can also accept the

following files as input:

• XCF
Xilinx constraints file in which we can specify synthesis, timing, and specific

implementation constraints that can be propagated to the NGC file.

• Core files

These files can be in either NGC or EDIF format. XST does not modify cores. It

uses them to inform area and timing optimization. Cores are supported for FPGAs only,

not CPLDs.

In addition to NGC files, XST also generates the following files as output:

• Synthesis Report

This report contains the results from the synthesis run, including area and timing

estimation.

• RTL schematic

This is a schematic representation of the pre-optimized design shown at the Register

Transfer Level (RTL). This representation is in terms of generic symbols, such as

adders, multipliers, counters, AND gates, and OR gates, and is generated after the HDL

synthesis phase of the synthesis process. Viewing this schematic may help we discover

design issues early in the design process.

• Technology schematic:

This is a schematic representation of an NGC file shown in terms of logic elements

optimized to the target architecture or "technology," for example, in terms of LUTs,

carry logic, I/0 buffers, and other technology-specific components. It is generated after

the optimization and technology targeting phase of the synthesis process. Viewing this

schematic allows we to see a technology-level representation of our HDL optimized for

a specific Xilinx architecture, which may help we discover design issues early in the

61

design process. When the design is run in Incremental Synthesis mode, XST generates

multiple NGC and NGR files, which each represent a single user design partition.

4.3 XST Detailed Design Flow

The following figure shows each of the steps that take place during XST synthesis. The

following sections describe each step in detail.

HDL P11r•lng
ide11lificalioo o! langciage Scyntal! errors

HDL SynthHI•
aero recqg:n!tion, FSM el(traction, resource sharin9

Low Level Optimlution
macro lmptementatior1, timing oplimlz.aliOO
technology mapp.n:ii. reg1stet replJcalion

D-ll(III

Figure 4. 2. XST Detailed Design Flow

4.3.1. HDL Parsing

During HDL parsing, XST checks whether your HDL code is correct and reports any

syntax errors.

4.3.2. HDL Synthesis

During HDL synthesis, XST analyzes the HDL code and attempts to infer specific

design building blocks or macros (such as MUXes, RAMs, adders, and subtracters) for

which it can create efficient technology implementations. To reduce the amount of inferred

62

macros, XST performs a resource sharing check. This usually leads to a reduction of the

area as well as an increase in the clock frequency.

Finite state machine (FSM) recognition is also part of the HDL synthesis step. XST

recognizes FSMs independent of the modeling style used. To create the most efficient

implementation, XST uses the target optimization goal, whether area or speed, to determine

which of several FSM encoding algorithms to use. We can control the HDL synthesis step

using constraints and enter constraints using any of the following methods:

• HDL source file

We enter VHDL attributes or Verilog metacomments.

• XCF

We enter global parameters and module-level constraints in the Xilinx constraints

(XCF) file.

• Project Navigator Process Properties

We set global parameters, such as the optimization goal or effort level. We can

modify the synthesis properties in the following tabs of the Synthesize Process

Properties dialog box:

4.3.3 Low Level Optimization

During low level optimization, XST transforms inferred macros and general glue logic

into a technology-specific implementation. The flows for FPGAs and CPLDs differ

significantly at this stage as follows:

• FPGA Flow

The FPGA flow is timing-driven and can be controlled using constraints, such as

PERIOD and OFFSET. During low level optimization, XST infers specific

components, such as the following:

o Carry logic (MUXCY, XORCY, MULT_AND)

o RAM (block or distributed)

o Shift Register LUTs (SRL16, SRL16E, SRLC16, SRLC16E)

o Clock Buffers (IBUFG, BUFGP)

o Multiplexers (MUXF5, MUXF6, MUXF7, MUXF8)

63

The use of technology-specific features may come from a macro implementation

mechanism or from general logic mapping. Due to mapping complexity issues, not all

available FPGA features may be used. The FPGA synthesis flow supports advanced design

and optimization techniques, such as Register Balancing, Incremental Synthesis, and

Modular Design.

• CPLD Flow

The CPLD flow is not timing driven. We cannot specify the frequency of a clock or

of an offset value. The goal of the CPLD flow is to reduce the number of logic levels.

During low level optimization, XST generates a netlist that contains elements such as

'AND' and 'OR' gates. The CPLD Fitter then determines how to fit these equations to

the targeted device. XST supports a special optimization mode, called Equation

Shaping, in which XST optimizes and reduces the Boolean equations to sizes accepted

by device macrocells. This forces the CPLD Fitter to retain the equation modifications

through the KEEP and COLLAPSE constraints in the NGC file.

64

CONCLUSION

Today, most devices that people use for the routine tasks of their daily lives

amongst some of them regulate our activities such as traffic lights are produced by using

hardware design languages. One of the most widely used is VHDL that can be used for a

wide variety of applications. Under these circumstances, VHDL is effective hardware

description tool by the means of specification, design, synthesis and implementation for a

project.

In the first section, specification and requirements of the traffic light controller

depending on basic minimal diagram. In the second section the steps how the project

"Traffic Light Controller System" is constructed on ISE software environment tool. It also

presents the architectural construction of the components and the description of the

functions of each component. Third section describes the VHDL (Very High Speed

Integrated Circuit Hardware Description Language). It also gives brief information about

history and development of VHDL and how declaration of its object and sequential

statements are used. Additionally, it consists of the complete VHDL codes of the project.

The last one describes how a prepared project is synthesis in Integrated Software

Environment.

The objective of this project is to describe the process of designing a traffic light

controlling application using VHDL software tool with ISE environment and implementing

on Xilinx Spartan-3E device.

At the beginning, we are inspired by controlling a hardware using hardware

description language. To do so, we had to understand this description language prior to try

to use it. Before we worked on small example modules on ISE examples and then we

improved our project specifications. Then we split up to 3 modules to minimize complexity

of the project. First modules counter counts up to 16. Second module describes the traffic

light status and function depending on the interval. Last module is used to combine first

and second module.

Traffic light controller can be further improved for multiple junctions to insure safe traffic

flow .Even though; in the future the drivers who breach the red lights might be detected by

the sensors placed on the traffic light.

65

REFERENCES

[1] Thomas L. Floyd, Digital Fundamentals: Pearson Education, Inc. Prentice

Hall PTR Upper Saddle River, New Jersey 07458, 2006.

[2] Richard 5. Sandige, Digital Design Essentials: Prentice Hall, Inc. Upper

Saddle River, New Jersey 07458, 2002.

\

66

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	--· ;..:--=--==-~=~
	AcKNowLEDGEMENTs 1r!P· ,f· ~~~\11·
	\ <'lt,. (_;;;,· I

	Page 1
	Titles
	ABSTRACT

	Page 2
	Titles
	TABLE OF CONTENS
	ACKNOWLEDGEMENT 1
	ABSTRACT 11
	TABLE OF CONTENTS 111
	INTRODUCTION 1
	CHAPTER ONE: INTRODUCTION TO TRAFFIC LIGHT
	CONTROLLER DESIGN 2
	1.1. General System Requirement 2
	1.2. Developing a Block Diagram of the System 3
	1.3. State Diagram 3
	1.4. Description of the State Diagram 4
	CHAPTER TWO: TRAFFIC LIGHT CONTROLLER
	DESIGN & SIMULATION
	2.2. Using Project Navigator
	5
	5

	Page 3
	Titles
	2.3. Creating a Project 14
	2.4. Creating Traffic Light Project on ISE 18
	2.5. Creating a Source File 20
	2.6. Creating Counter.vhd VHDL Module 24
	2.7. Creating a Test Bench Waveform 26
	2.8. Creating Counter.vhd Test Bench Waveform 26
	2.9. Creating a State Machine Diagram 31
	2.10. Creating Top-Level VHDL Design 37
	CHAPTER THREE: TRAFFIC LIGHT CONTROLLER
	INVHDL 40
	3 .1. Very High Speed Integrated Circuit HDL 40
	3 .2. Sequential Statements in VHDL 48

	Page 4
	Tables
	Table 1

	Page 5
	Titles
	INTRODUCTION

	Page 6
	Titles
	CHAPTER
	ONE:
	INTRODUCTION
	TO
	TRAFFIC
	LIGHT
	CONTROLLER DESIGN
	1.1. General System Requirement
	.------- t
	i
	0
	0

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 7
	Titles
	1.2. Developing a Block Diagram of the System
	1.3. State Diagram

	Images
	Image 1
	Image 2

	Page 8
	Titles
	1.4. Description of the State Diagram

	Page 9
	Titles
	CHAPTER TWO: TRAFFIC LIGHT CONTROLLER DESIGN &
	2.1. ISE General Information

	Page 10
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 11
	Titles
	2.2. Using Project Navigator
	7

	Images
	Image 1

	Page 12
	Titles
	93.:r
	111~~·
	u:
	,_i
	1,,,.:-- ŁŁ. -- ~--- __ ,. __ ---- ----4···1 ! Niinber of 4 nput I 1,53
	,,-.~~~-,--,.~~~~
	·================;=,=====.!!.I i·· 0 Tmng Messages
	.!I
	11 __ ,,"u'_°' """loo"_'."''",..,""_"' t.o '"_' o,e_e_cir_top.v".
	====
	Figure 2. 1 Project Navigator Main Window
	1 Toolbar
	2 Sources window
	3 Processes window
	4 Workspace
	5 Transcript window
	8

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 13
	Titles
	3

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 1
	Titles
	~~~-~·-------=== 
	13 


	Page 2
	Titles
	Ł 
	Ł 
	2.3. Creating a Project 


	Page 3
	Page 4
	Images
	Image 1


	Page 5
	Page 6
	Titles
	2.4. Creating Traffic Light Project on ISE 
	., 
	- 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 7
	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Titles
	2.5. Creating a Source File 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 9
	Page 10
	Page 11
	Titles
	2.6. Creating Counter.vhd VHDL Module 

	Tables
	Table 1


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 14
	Titles
	2.~. Creating a Test Bench Waveform 
	2.8. Creating a counter_tb Test Bench Waveform 

	Images
	Image 1


	Page 15
	Titles
	10 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 16
	Titles
	We review the information and click the Finish button. The HDL Bencher tool now 
	reads in the design. We set the frequency of the system clock, setup requirements, and 
	We set initialize timing as follows: 
	r 
	Ł Maxirnurn Ł: 
	~ ~· . ¢. 
	Pfllnirnurn 
	:Łinput Ł 
	: setup 
	Clock :~ Clock --: 
	high for : low for : 
	28 

	Images
	Image 1
	Image 2


	Page 17
	Tables
	Table 1


	Page 18
	Titles
	J 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 19
	Titles
	r ~:;-r-y-··- -, 1: 
	I::, ,.;: 
	' . 
	l,,t Ł .. 
	2.9. Creating a State Machine Diagram 

	Images
	Image 1


	Page 20
	Titles
	JD 

	Images
	Image 1
	Image 2


	Page 1
	Titles
	14 .2) 
	)1.\. 
	.--.\....__. 
	"'' ~- 
	F 
	< Back 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 2
	Titles
	Our design has three outputs named RD, AMB, and GRN in the logic wizard; we 
	declare these outputs in the DOUT field. At this stage we rename all state and declared 
	34 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 3
	Titles
	Ł ~ES'i-f~ 

	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Tables
	Table 1


	Page 5
	Titles
	2.10. Creating Top-Level VHDL Design 
	" 

	Images
	Image 1
	Image 2
	Image 3


	Page 6
	Titles
	ao 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 7
	Titles
	.-..11, 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 8
	Titles
	CHAPTER THREE: TRAFFIC LIGHT CONTROLLER IN VHDL 
	3 .1. Very High Speed Integrated Circuit Hardware Description Language 

	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Titles
	42 

	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Titles
	A-r-:1-SUM 

	Images
	Image 1


	Page 14
	Titles
	- 
	.A -t ~-.---1- SUM 
	IB -t:::::::::::j- CARRY 


	Page 15
	Images
	Image 1


	Page 16
	Titles
	3 .2. Sequential Statements in VHDL 

	Images
	Image 1
	Image 2


	Page 17
	Titles
	sequential 
	sequential 
	sequential ·1 
	statement3 


	Page 18
	Images
	Image 1


	Page 19
	Titles
	... ·ŁI ...Ł 
	--..1 1.-- 
	51 

	Images
	Image 1
	Image 2


	Page 20
	Titles
	( 
	1-blesl 
	\ 
	3.3. VHDL Codes of Counter.vhd 

	Images
	Image 1
	Image 2


	Page 1
	Titles
	3.4. VHDL Codes of STAT MAC.vhd 

	Images
	Image 1


	Page 2
	Page 3
	Page 4
	Page 5
	Titles
	' ' 
	3.5. VHDL Codes oftop.vhd 

	Images
	Image 1


	Page 6
	Titles
	); 

	Images
	Image 1
	Image 2


	Page 7
	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Titles
	CHAPTER FOUR: TRAFFIC LIGHT CONTROLLER SYNTHESIS 
	4.1. XST Design Flow Overview 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 9
	Titles
	4.2. XST Input and Output Files 

	Images
	Image 1


	Page 10
	Titles
	4.3 XST Detailed Design Flow 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	REFERENCES 



