
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

AUTOMATIONOF PHARMACY

Graduation Project
COM- 400

Student: Murat Everekli

Supervisor: Assist. Professor Dr. Elbrus lmanov

Nicosia - 2008

1 ıııı~ıımııwı~ııı~ı
NEU

ACKNOWLEDGEMENTS

"First I uould fil<:g to tfıanf;__my supe!Visor Yard.'])oç.Vr Imanou 'Elbrus for his inualuable

e?(perience and motivation in my Worf;_ and myse[j over the course of this (jraıiuation Project.

'Without his encouragement and direction, this uoık; uiould not fıave Geen completed ana I

am rea[[y thankfu! to my teacher.

Second, I uould fil<:g to e?(JJress mygratitude to 9ı/f,ar 'East 'University for the scholarship

tfıat made the ıcork possible.

%ire£ I thank; myf .amilu for their constant encouragement and support during the

preparation of this Project. I am nothing without their support. I sfıa[[never forget their

sacrifices for my education so tfıat I can enjoy my successjul [ije as they are expectinq.

Especiallu 'My father Vt. Ta ruk 'Evere/efi thanks so mucfı togive me all of his [ije and health.

area e?(JJerience and R._now[erfge. I unl] neverforget myfather, my mother Fatma 'EvereRfı~

and my sisters Sezin 'Evere/efi.

I want to tfıanf;__ to myfriends 'Mefımet 'J(a[e, Cevdet 'Dikiciler, 'Berna 'J(üçük.ı and 'Esra

Of;__uyan for their help, they get tired witfı me, and they helped me everytime whenever I

want. I thank, them witfı my a[[

:[ina[fJ, 'My Gest friend 'Ea. Jl.yşen Jl.yıiın tfıank.ş so mucfı to her inualuable affection and
"'giving me a[[infonnation about pharmacu system and medicines. She mayget peaceful in a[[

her [ije."

ABSTRACT

The Health is very important in our life because that is the every thing when

think logical. So those Health sectors always develop with using technology. Medicine

sector is developed parallel with Health sector. Everyday, companies produce new

medicines. Those medicines to transport patients is using mediator, Pharmacy.

Pharmacy also includes more modem services related to patient and providing drug

information.

Pharmacists are the experts in drug discovery, development, preparation and

usage of medicines but some problems about administer, control and automation of

pharmacy. Because pharmacists have so much medicines so much formula and so much

patients in pharmacy.

The aim of this project is the easy and practical controlling, administering to sell

and stock. The main problem's for pharmacist is control the selling and stock speedly.

My main goal is wanted to design my Project to solving the problem in this project.

il

1.1. Introduction to Delphi
1.2. What is Delphi?
1.3. What kind of programming can you do with Delphi?
1.4. Versions are there and how do they differ?
1.5. What's new in Delphi 7

1 .5.1. Code Insight changes
1.5.2. Debugger changes
1.5.3. Miscellaneous improvements
1.5.4. Attachments
1.5.5. Type support
1.5.6. Other enhancements
1.5.7. Database technology changes (Enterprise editions)
1.5.8. Component library changes
1.5.9. New unit and components

1.6. Some Knowledge About Delphi
1.6.1. Example: Try first Delphi Program
1.6.2. Delphi Style

1.7. How Delphi Helps You Define Patterns
1. 7. 1. Delphi examples of design patterns
1.7.2. Pattern: Singleton

1. 7 .2.1. Definition
1.7.2.2. Applications in Delphi
1. 7 .2.3. Implementation example

1.7.3. Pattern: Adapter
1.7.3.1. Definition
1.7.3.2. Applications in Delphi
1. 7 .3 .3. Implementation example

1. 7.4. Pattern: Template Method
1.7.4.1. Definition
1.7.4.2. Applications in Delphi
1.7.4.3. A typical example of abstraction is the Tgraphic 21
1.7.4.4. Implementation example

1 .7.5. Pattern: Builder
1.7.5.1. Definition
1.7.5.2. Applications in Delphi
1 .7.5.3. Implementation example

1.5.6. Pattern: Abstract Factory
1.7.6.1. Definition
1 .7.6.2. Applications in Delphi
1. 7 .6.3. Implementation example

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
LIST OF ABBREVIATIONS
INTRODUCTION
CHAPTER ONE: DELPHI

ll1

i
ii ...
lll .
IV

1
2
2
4
5
6
8
9
9
10
10
11
11
12
12
12
13
14
16
17
18
19
19
19
19
19
19
20
20
20
20
20

21
21
21
22
22
22
22
23
23

1.7.7. Pattern: Factor Method 23
1.7.7.1. Definition 23
1.7.7.2. Application in Delphi 23
1.7.7.3. Implementation example 24

1 .8. Key Elements of Delphi Class Definitions 24
1.8.1. Unit Structure 24
1.8.2. Class Interfaces 24
1.8.3. Properties 24
1.8.4. Inheritance 25
1.8.5. Abstract Methods 27
1.8.6. Messages 27
1.8.7. Events 27
1.8.8. Constructors and Destructors 28

1 .9. The VCL to Applications Developers 28
1.9.1. The VCL to Component Writers 29
1.9.2. The VCL is made up of Components 29
1.9.3. Component Types, Structure and VCL hierarchy 30
1.9.4. Component Types 30

1.9.4.1. Standard components 30
1.9.4.2. Custom components 31
1.9.4.3. Graphical components 32
1.9.4.4. Non-visual components 32
1.9.4.5. Structure of a component 32
1.9.4.6. Component properties 32

1. 1 O. Properties Provide Access to Internal Storage Fields 33
1.10.1. Property-access Method 34
1. 10.2. Types of Properties 35
1.10.3. Methods 36
1.10.4. Events 36
1.10.5. Containership 37
1.10.6. Ownership 38
1.10.7. Parenthood 38

CHAPTER TWO: DATABASE 40
2. 1. Demerits to Absence of Database 40
2.2. Merits of Database 41
2.3. Database Design 41
2.4. Database Models ~ 42

2.4.1. Flat Model 43
2.4.2. Network Model 43
2.4.3. Relational Model 43

2.4.3.1. Why we use a relational database design 44
2.5. Relationship between Tables 45

2.5.1. One-to-one Relationships 45
2.5.2. One-to-many Relationship 45

2.6. Data Modeling 46
2.6.1. Database Normalization 46
2.6.2. Primary Key 46
2.6.3. Foreign Key 47
2.6.4. Compound Key 48

IV

CHAPTER TREE: MY PROJECT 49
3. I. My Database and Tables 49
3.2. My Automation of Pharmacy Program 5 I

3.2.1. Login Form 51
3.2.2. Main Form 52
3.2.3. New Patient Form 53
3.2.4. New Doctor Form 54
3.2.5. New Drug Form 55
3.2.6. Stock Entry and Stock Exit Forms 56
3.2.7. Selling with SSK Formulas and with Formulas Forms 57
3.2.8. Selling without Formulas Forms 58
3.2.9. Account Control Forms 59
3.2.10. Stock Controlling System Forms 60
3.2.11. Selling Controlling System Forms 61
3.2.12. Tools Forms 63
3.2.13. About Forms 64

CONCLUSION 65
REFERENCES 66
APPENDIX 67

V

LIST OF ABBREVIATIONS

SSK

UNFO

FORM

Bağ-Kur

Sosyal Sigortalar Kurumu

Unformal Prescription

Formal Prescription

Employer

vı

INTRODUCTION

In the near future, the technology is developed a lot and started to use by anyone

in the world no matter who he/she is. Because of the technology is entered to every

platform of our life person needed to combine both software and hardware. Without

software the machines are nothing. They need software to operate.

The automation is also became a part of our lives. The people operate with

automation systems in everywhere. This Automation is used to keep the information

about the receiving, coming and going documents. We will control the stock and

operate it with using automation system. I used Borland Delphi 7 in my project,

because I find it easy and I liked its coding system.

In this project pharmacists can keep patient information, doctor information and

medicines information. He /she can control stock information and selling information in

specific time period who can be print out this information in my project. The software

can be used at every pharmacy easily. Firstly Patient must enter the information about

the medicines. Barcode system is the best primary keys for all things in database.

Pharmacists can control everything with using this system. I adapted barcode system in

this project.

The objective of this project is to develop pharmacy automation. The project

consists of introduction, three chapters and conclusion.

Chapter One describes the information about the Delphi 7. In this chapter have

the Delphi 7's properties, components and some examples.

Chapter Two describes the Database. In this chapter I described the Databasing

system. How to create table, how to controlling this table and how to do database

normalization.

The last chapter I explained my project Database. Than I presents my program. I

advertised the parts of program. How to using this unit easily and explanation of the

program followed by the Appendices.

CHAPTER!

DELPHI

1.1 INTRODUCTION TO DELPHI

The name "Delphi" was never a term with which either Olaf Helmer or Norman

Dalkey (the founders of the method) were particular happy. Since many of the early

Delphi studies focused on utilizing the technique to make forecasts of future

occurrences, the name was first applied by some others at Rand as a joke. However, the

name stuck. The resulting image of a priestess, sitting on a stool over a crack in the

earth, inhaling sulfur fumes, and making vague and jumbled statements that could be

interpreted in many different ways, did not exactly inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information

"sounds" so easy to do that many people have done "one" Delphi, but never a second.

Since the name gives no obvious insight into the method and since the number of

unsuccessful Delphi studies probably exceeds the successful ones, there has been a long

history of diverse definitions and opinions about the method. Some of these

misconceptions are expressed in statements such as the following that one finds in the

literature:

It is a method for predicting future events.

It is a method for generating a quick consensus by a group.
<'

It is the use of a survey to collect information.

It is the use of anonymity on the part of the participants.

It is the use of voting to reduce the need for long discussions.

It is a method for quantifying human judgement in a group setting.

Some of these statements are sometimes true; a few (e.g. consensus) are actually

contrary to the purpose of a Delphi. Delphi is a communication structure aimed at

producing detailed critical examination and discussion, not at forcing a quick

compromise. Certainly quantification is a property, but only to serve the goal of quickly

2

identifying agreement and disagreement in order to focus attention. It is often very

common, even today, for people to come to a view of the Delphi method that reflects a

particular application with which they are familiar. In 1975 Lins tone and Turoff

proposed a view of the Delphi method that they felt best summarized both the technique

and its objective:

"Delphi may be characterized as a method for structuring a group

communication process, so that the process is effective in allowing a group of

individuals, as a whole, to deal with complex problems." The essence of Delphi is

structuring of the group communication process. Given that there had been much earlier

work on how to facilitate and structure face-to-face meetings, the other important

distinction was that Delphi was commonly applied utilizing a paper and pencil

communication process among groups in which the members were dispersed in space

and time. Also, Delphis were commonly applied to groups of a size (30 to 100

individuals) that could not function well in a face-to-face environment, even if they

could find a time when they all could get together.

Additional opportunity has been added by the introduction of Computer

Mediated Communication Systems (Hiltz and Turoff, 1978; Rice and Associates, 1984;

Turoff, 1989; Turoff, 1991). These are computer systems that support group

communications in either a synchronous (Group Decision Support Systems, Desanctis

et. al., 1987) or an asynchronous manner (Computer Conferencing). Techniques that

were developed and refined in the evolution of the Delphi Method (e.g. anonymity,

voting) have been incorporated as basic facilities or tools in many of these computer

based systems. As a result, any of these systems can be used to carry out some form of a

Delphi process or Nominal Group Technique (Delbecq, et. al., 1975f

The result, however, is not merely confusion due to different names to describe

the same things; but a basic lack of knowledge by many people working in these areas

as to what was learned in the studies of the Delphi Method about how to properly

employ these techniques and their impact on the communication process. There seems

to be a great deal of "rediscovery" and repeating of earlier misconceptions and

difficulties.

3

Given this situation, the primary objective of this chapter is to review the

specific properties and methods employed in the design and execution of Delphi

Exercises and to examine how they may best be translated into a computer based

environment.

1.2 WHAT IS DELPHI?

Delphi is an object oriented, component based, visual, rapid development

environment for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market.The term "visual" describes Delphi very well. All of the user

interface development is conducted in a What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers

(the previous versions of which went by the name "Turbo Pascal") from the company

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal

compilers that preceded it, Delphi is not just a compiler, but a complete development

environment. Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed.below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

• Image/Icon/Cursor creation I editing tools

4

• Version Control CASE tools What's more, the development environment itself is

extensible, and there are a number of add ins available to perform functions such as

memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications

that will run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tools.

This specialisation on one platform and one operating system, makes Delphi a

very strong tool. The code it generates runs very rapidly, and is very stable, once your

own bugs have been ironed out!

1.3 WHAT KIND OF PROGRAMMING CAN YOU DO WITH

DELPHI?

The simple answer is "more or less anything". Because the code is compiled, it

runs quickly, and is therefore suitable for writing more or less any program that you

would consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing

machines, toasters or fuel injeçtion systems, but for more or less anything else, it can be

used (and the chances are that probably someone somewhere hasl)

Some projects to which Delphi is suited:

• Simple, single user database applications
• Intermediate multi-user database applications
• Large scale multi-tier, multi-user database applications
• Internet applications
• Graphics Applications
• Multimedia Applications
• Image processing/Image recognition
• Data analysis
• System tools

5

This is not intended to be an exhaustive list, more an indication of the depth and

breadth of Delphi's applicability. Because it is possible to access any and all of the

Windows API, and because if all else fails, Delphi will allow you to drop a few lines of

assembler code directly into your ordinary Pascal instructions, it is possible to do more

or less anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs)

and can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements

of code that can be dropped directly on to a form in your application, and exist in object

form, performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.4 VERSIONS ARE THERE AND HOW DO THEY DIFFER?

Borland (as they were then) has a long tradition in the creation of high speed

compilers. One of their best known products was Turbo Pascal - a tool that many

programmers cut their teeth on. With the rise in importance of the Windows

environment, it was only a matter of time before development tools started to appear

that were specific to this new environment.

In the very beginning, Windows produced SDKs (software development kits)

that were totally non-visual (user interface development was totally separated from the

development of the actual application), and required great patience and some genius to

get anything working with. Whilst these tools slowly improved, they still required a

really good understanding of the inner workings of Windows.

To a great extent these criticisms were dispatched by the release of Microsoft's

Visual Basic product, which attempted to bring Windows development to the masses. It

6

achieved this to a great extent too, and remains a popular product today. However,it

suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers weren't so
keen!

Into this environment arrived the eye opening Delphi I product, and in many

ways the standard for visual development tools for Windows was set. This first version

was a 16 bit compiler, and produced executable code that would run on Windows 3.1

and Windows 3.1 I. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.

Delphi 2 was released quite soon after Delphi I, and in fact included a full

distribution of Delphi I on the same CD. Delphi 2, (and all subsequent versions) have

been 32 bit compilers, producing code that runs exclusively on 32bit Windows

platforms. (We ignore for simplicity the WIN32S DLLs which allow Win 3.lx to run

some 32 bit applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0)

expected shortly. In its latest version, Delphi has become somewhat feature loaded, and
1'

as a result, we would argue, less stable than the earlier versions. However, in its

defence, Delphi (and Borland products in general) have always be~n more stable than

their competitors products, and the majority of Delphi 4's glitches are minor and

forgivable - just don't try and copy/paste a selection of your code, midway through a

debugging session!

The reasons for the version progression include the addition of new components,

improvements in the development environment, the inclusion of more internet related

support and improvements in the documentation. Delphi at version 4 is a very mature

product, and Inprise has always been responsive in developing the product in the

direction that the market requires it to go. Predominantly this means right now, the

7

inclusion of more and more Internet, Web and CORBA related tools and components - a

trend we are assured continues with the release of version 5.0

For each version of Delphi there are several sub-versions, varying in cost and

features, from the most basic "Developer" version to the most complete (and expensive)

"Client Server" version. The variation in price is substantial, and if you are

contemplating a purchase, you should study the feature list carefully to ensure you are

not paying for features you will never use. Even the most basic "Developer" version

contains the vast majority of the features you are likely to need on a day to day basis.

Don't assume that you will need Client Server, simply because you are intending to

write a large database application - The developer edition is quitcapable ofthis.

1.5 What's New in Delphi 7

Delphi 7 includes new features and enhancements in the following areas:

• "IDE changes"

• "Web technology changes (Professional and Enterprise editions)"

• "COM changes (Professional and Enterprise editions)"

• "Database technology changes (Professional and Enterprise editions)"

• "Component library changes"

• "Runtime library changes"

• "Compiler changes" on page 8

• "Rave Reports support (Professional and Enterprise editions)"

• "ModelMaker support (Professional and Enterprise editions)"

• "Documentation changes"

If you are upgrading from a previous version of Delphi, see "Upgrade and compatibility

issues"

IDE changes The IDE has new features in the following areas:

Compiler messages

• The new Viewl/vdditional Message Info command displays a Message Hints window

from which you can download and view information about compiler messages from

Borland's Web site.

8

• The new ProjectJOptionsJCompiler Messages page gives you greater control over

which compiler warnings are generated.

Component palette changes

• There is a new CLX-only version of the System page displayed when you open a CLX

application in Delphi. It includes several directory and file components. In previous

releases, the System page was displayed only for VCL applications and included

components for system-level access.

• The new Indy Intercepts and Indy 1/0 Handlers pages provide open source Internet

protocol components. (Professional and Enterprise editions)

• The new 1W Standard, 1W Data, IW Client Side, and IW Control pages provide

Intra Web components for developing Web-based applications.

• The new Rave page provides components for adding report generation to your

applications.

• If a component page can be scrolled horizontally to display additional icons, a new

drop-down menu button can also be used to list the additional icons.

1.5.1 Code Insight changes

• Code completion is now faster and lets you browse to the declaration of items in the

code completion list by using Ctrl+click on any identifier in the list.

• New HTML code completion automatically displays valid HTML elements and

attributes in the Code editor. (Professional & Enterprise editions only)

• You can create customized code completion managers by using the OpenTools APL

See "Extending the IDE" in thq Delphi online help for details.

• The ToolsJEditor Options.Code Insight page lets you set colors for the symbols

displayed in the Code Insight tools.

1.5.2 Debugger changes

• The Watch List now has:

• Multiple tabs, allowing you to organize watches into distinct watch groups for easier

debugging. To add a watch group, right-click the Watch List and select Add Group.

• A Watch Name column and a Value column. To show/hide the column headers, right

click the Watch List and select Show Column Headers.

• A checkbox to enable or disable individual watches.

9

as part of a multipart form. When an application receives the attachment, it saves it to a

temporary file, which is then available to your application.

1.5.5 Type support

• You can now customize the conversion between remotable classes and their SOAP

representation by overriding two new virtual methods that were added to TRemotable:

ObjectToSOAP and SOAPToObject.

• Exception objects for exceptions that occur when responding to a Web Service request

(ERemotableException instances) now contain more information from the SOAP fault

packet.

• Type definitions are automatically registered with the remotable type registry when

you register an invokable interface.

• TXSDecimal has a new AsBcd property for easier conversion between XML and

native types. Similarly, TXSHexBinary has a new AsByteArray property. Remotable

classes that represent time values now let you work with fractional seconds rather than

milliseconds.

1.5.6 Other enhancements

• New events on THTTPReqResp let you to intercept the HTTP message before it is

sent, and to monitor progress while sending or receiving long messages.

• THTTPSoapPascallnvoker now publish events that let you write code to execute

before or after the invoker executes a requested method call.

• You now have more contrql over the mapping between invokable interfaces and

WSDL documents. TWSDLHTMLPublish now publishes several events to let you

control the generated WSDL. You can also identify the mapping ... between function

return values and parameter names, the use of namespaces, and default SOAP actions.

On the client side, literal encodings are now supported as well as RPCstyle encoding.

• A new interface, IRIOAccess lets you access the remote interfaced object that

implements an invokable interface.

• The IOPConvert interface has a new property: Encoding. This allows you to specify

the character set to use for encoded messages that are passed between the client and

Web Service provider.

11

• There are changes to Web Services that affect DataSnap applications. For more

information, see "Database technology changes (Professional and Enterprise editions)" .

• The TLinkedRIO constructor now automatically generates separate file names for each

method you call, making debugging easier.

• TOPToSoapDomConvert now has two new events that you can use when debugging

the deserialization of SOAP packets.

• You can now use overloaded methods on invokable interfaces that you define.

1.5.7 Database technology changes (Professional and Enterprise editions)

• The dbExpress drivers have been updated for Informix SE, Oracle 9i, DB2 7 .2,

InterBase 6.5, and MySQL 3.23.49. A new driver is available for MSSQL 2000.

• There are several new and changed database components. See "Component library

changes" on page 6 for details.

• Borland has deprecated SQL Links; no further enhancements will be made to SQL

Links and it will not be included with Delphi after 2002. Borland recommends using

dbExpress for SQL server database access in Delphi.

1.5.7 Component library changes

• VCL applications now include components that enable support for Windows common

controls version 6. Your application will automatically use the new Windows controls

on Windows XP systems if it finds a suitable manifest file. For more information, see

"Common controls and XP themes" in the Developer's Guide or online Help .

••
1.5.8 New unit and components

• The new DBClientActns unit contains three new action components for working with

client datasets: TClientDataSetApply, TClientDataSetUndo, and TClientDataSetRevert.

• The dbExpress page of the Component palette includes TSimpleDataSet for use with

simple, two-tier database applications (TSimpleDataSet replaces TSQLClientDataSet).

• The Dialogs page of the Component palette includes TPageSetupDialog for providing

a Windows standard page setup dialog box.

• The Additional page of the Component palette includes TXPColorMap,

TStandardColorMap, and TTwilightColorMap for colorizing menus and toolbars.

12

• The new CLX version of the System page of the Component palette includes new

directory and file components.

• The new Indy Intercepts and Indy I/O Handlers pages on Component palette provide

Internet protocols. (Professional and Enterprise editions)

Changed components;

• The CLX versions of TOpenDialog and TSaveDialog have been expanded to support

additional features such as file previewing.

• The VCL version of TCustomForm has two new properties, ScreenSnap and

SnapBuffer, which control whether a form snaps to the edge of the screen when the

form is moved.

• TCustomComboBoxEx has a new AutoCompleteOptions property that enables a

combo box to respond to user keystrokes.

• CLX dialog objects that descend from TOpenDialog and TQtDialog can now use

Windows Common Dialogs in place of Qt Dialogs. This behavior is controlled by the

UseNativeDialog property, which defaults to true.

Deprecated components;

• Information about deprecated components can be found in the readme.txt file in the

Delphi7 directory.

1.6 SOME KNOWLEDGE ABOUT DELPHI

Delphi is a Rapid Application Development (RAD) environment. It allows you

to drag and drop components dh to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

13

For the purposes of this series I will be using Delphi 7. There are more recent

versions available (2005 and 2006) however Delphi 7 should be available inexpensively

compared to the new versions which will set you back a lot of money. Delphi 7 will

more than likely be available in a magazine for free.

1.6.1 Example: Try First Delphi Program

First thing is first, fire up your copy of Delphi and open the Project > Options

menu. To compile a console application you need to change a setting on the Linker tab

called 'Generate console application', check the box and click OK. Now select File >

Close All if anything is already loaded. Then select File > New > Other > Console

Application.

Notice the first line refers to the keyword program. You can rename this to

HelloWorld. You can also remove the commented portion enclosed in curly brackets.

The uses keyword allows you to list all units that you want to use in the program. At the

moment just leave it as it is, SysUtils is all we need.

Your unit should now look like this:

Delphi Code:

program HelloWorld;

($APPTYPE CONSOLE} ı.

uses

SysUtils;

begin

end.

Now what we have just done is written a program, it currently doesn't do a thing

however. Hit the run button and see the result. Now wasn't that completely worthless.

14

Luckily this isn't the end of the article so we'll actually have a worthwhile program at

the end of it. All we need to do is insert some code in the main procedure we have just

made.

Every good programmer's first program was 'Hello World' and you'll be no

exception. All we need to do is use the WriteLn procedure to write 'Hello World!' to

the console, simple.Notice the semicolon at the end of the line, at the end of any

statement you need to add a semicolon. Run the program and see the results ...

Now I don't know about you but I saw hello world flash up and go away in a

second, if you didn't write the program you wouldn't even know what it said. To solve

this problem we need to tell the program to leave the console open until the user is

ready to close it. We can use ReadLn for this which reads the users input from the

console.

Delphi Code:

program HelloWorld;

($APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!'+ #Jı-3#10+ #13#10 +

'Press RETURN to end ... ');

ReadLn;

end.

I have added a few extra things into the 'Hello World' string so the user knows

what to do to end the program as it could be a bit confusing. '#13#1 O' is to insert a

carriage return as 13 and I O are the ASCII codes for a carriage return followed by a new

line feed. ASCII can be inserted in this way into strings.

15

1.6.2 Delphi Style

Coding style, the way you format your code and the way in which you present it

on the page.At the end of the day who cares about my style, I can read it, and Delphi

strips all the spaces out of it and doesn't care if I indent. Why waste my time?

Neatly present code which conforms to the accepted standards not only makes

your code much easier for you to read and debug but also but any one else who might

read your code to help you, or learn from you can do so with ease. After all which code

is easier to follow, example 1 or 2?

Delphi Code:

II Example I

procedure xyz();

var

x,y,z,a:integer;

begin

x:=1;y:=2;

for z:=x to y do begin

a:=power(z,y);

showmessage(inttostr(a));

end;

end;

Delphi Code:

II Example 2

procedure XYZ();

var

X,Y,Z,A: Integer;

16

begin

X := 1;

y :=2;

for Z := X to Y do

begin

A := Power(Z, Y);

ShowMessage(IntToStr(A));

end; II for end

end; II procedure end

Design patterns are frequently recurring structures and relationships in object

oriented design. Getting to know them can help you design better, more reusable code

and also help you learn to design more complex systems.

Much of the ground-breaking work on design patterns was presented in the book

Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,

Johnson and Vlissides. You might also have heard of the authors referred to as "the

Gang of Four". If you haven't read this book before and you're designing objects, it's an

excellent primer to help structure your design. To get the most out of these examples, I

recommend reading the book as well.

Another good source of pattern concepts is the book Object Models: Strategies,

Patterns and Applications by Peter Coad. Coad's examples are more business oriented

and he emphasises learning strategies to identify patterns in your own ;,_,ork.

1.7 HOW DELPHI HELPS YOU DEFINE PATTERNS

Delphi implements a fully object-oriented language with many practical

refinements that simplify development.

17

The most important class attributes from a pattern perspective are the basic

inheritance of classes; virtual and abstract methods; and use of protected and public

scope. These give you the tools to create patterns that can be reused and extended, and

let you isolate varying functionality from base attributes that are unchanging.

Delphi is a great example of an extensible application, through its component

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual

and abstract constructors and operations.

1.7.1 Delphi Examples of Design Patterns

I should note from the outset, there may be alternative or better ways to

implement these patterns and I welcome your suggestions on ways to improve the

design. The following patterns from the book Design Patterns are discussed and

illustrated in Delphi to give you a starting point for implementing your own Delphi

patterns.

Pattern Name

Singleton

Adapter

Template Method

Builder

Abstract Factory

Factory Method

Definition
"Ensure a class has only one instance, and provide a global point
of access to it."
"Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces."
"Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm's structure."
"Separate the construction of a complex object from its
representation so that the same construction process can create
different representations."
"Provide an interface for creating families of related or
dependant objects without specifying their concrete classes."
"Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory method lets a class
defer instantiation to subclasses."

Note: These definitions are taken from Design Patterns.

18

1.7.2 Pattern: Singleton

1.7.2.1 Definition

"Ensure a class has only one instance, and provide a global point of access to it."

This is one of the easiest patterns to implement.

1.7.2.2 Applications in Delphi

There are several examples of this sort of class in the Delphi VCL, such as

TApplication, TScreen or TClipboard. The pattern is useful whenever you want a single

global object in your application. Other uses might include a global exception handler,

application security, or a single point of interface to another application.

1.7.2.3 Implementation Example

To implement a class of this type, override the constructor and destructor of the

class to refer to a global (interface) variable of the class.

Abort the constructor if the variable is assigned, otherwise create the instance

and assign the variable.

In the destructor, clear the variable if it refers to the instance being destroyed.

Note: To make the creation and destruction of the single instance automatic,
1'

include its creation in the initialization section of the unit. To destroy the instance,

include its destruction in an ExitProc (Delphi 1) or in the finalizatio~ section of the unit

(Delphi 2).

1.7.3 Pattern: Adapter

1.7.3.1 Definition

"Convert the interface of a class into another interface clients expect. Adapter

lets classes work together that couldn't otherwise because of incompatible interfaces."

19

1.7.3.2 Applications in Delphi

A typical example of this is the wrapper Delphi generates when you import a

VBX or OCX. Delphi generates a new class which translates the interface of the

external control into a Pascal compatible interface. Another typical case is when you

want to build a single interface to old and new systems.

Note Delphi does not allow class adaption through multiple inheritance in the

way described in Design Patterns. Instead, the adapter needs to refer to a specific

instance of the old class.

1.7.3.3 Implementation Example

The following example is a simple (read only) case of a new customer class, an

adapter class and an old customer class. The adapter illustrates handling the year 2000

problem, translating an old customer record containing two digit years into a new date

format. The client using this wrapper only knows about the new customer class.

Translation between classes is handled by the use of virtual access methods for the

properties. The old customer class and adapter class are hidden in the implementation of

the unit.

1.7.4 Pattern: Template Method

1.7.4.1 Definition

!l

"Define the skeleton of an algorithm in an operation, deferring some steps to

subclasses. Template Method lets subclasses redefine certain steps of an algorithm

without changing the algorithm's structure."

This pattern is essentially an extension of abstract methods to more complex

algorithms.

1.7.4.2 Applications in Delphi

Abstraction is implemented in Delphi by abstract virtual methods. Abstract

methods differ from virtual methods by the base class not providing any

20

implementation. The descendant class is completely responsible for implementing an

abstract method. Calling an abstract method that has not been overridden will result in a

runtime error.

1.7.4.3 A typical example of abstraction is the TGraphic class.

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile.

Other developers have frequently used TGraphic as the basis for other graphics objects

such as PCX, GIF, JPG representations. TGraphic defines abstract methods such as

Draw, LoadFromFile and SaveToFile which are then overridden in the concrete classes.

Other objects that use TGraphic, such as a TCanvas only know about the abstract Draw

method, yet are used with the concrete class at runtime.

Many classes that use complex algorithms are likely to benefit from abstraction

using the template method approach. Typical examples include data compression,

encryption and advanced graphics processing.

1.7.4.4 Implementation Example

To implement template methods you need an abstract class and concrete classes for

each alternate implementation. Define a public interface to an algorithm in an abstract

base class. In that public method, implement the steps of the algorithm in calls to

protected abstract methods of the class. In concrete classes derived from the base class,

override each step of the algorithm with a concrete implementation specific to that

class. ~

1.7.5 Pattern: Builder

1.7.5.1 Definition

"Separate the construction of a complex object from its representation so that the

same construction process can create different representations."

A Builder seems similar in concept to the Abstract Factory. The difference as I

ee it is the Builder refers to single complex objects of different concrete classes but

containing multiple parts, whereas the abstract factory lets you create whole families of

21

concrete classes. For example, a builder might construct a house, cottage or office. You

might employ a different builder for a brick house or a timber house, though you would

give them both similar instructions about the size and shape of the house. On the other

hand the factory generates parts and not the whole. It might produce a range of windows

for buildings, or it might produce a quite different range of windows for cars.

1. 7 .5.2 Applications in Delphi

The functionality used in Delphi's VCL to create forms and components is

similar in concept to the builder. Delphi creates forms using a common interface,

through Application.CreateForm and through the TForm class constructor. TForm

implements a common constructor using the resource information (DFM file) to

instantiate the components owned by the form. Many descendant classes reuse this same

construction process to create different representations. Delphi also makes developer

extensions easy. TForm's OnCreate event also adds a hook into the builder process to

make the functionality easy to extend.

1.7.5.3 Implementation Example

The following example includes a class TAbstractFormBuilder and two concrete

classes TRedFormBuilder and TBlueFormBuilder. For ease of development some

common functionality of the concrete classes has been moved into the shared

TAbstractFormBuilder class.

1. 7 .6 Pattern: Abstract Factor)'

1.7.6.1 Definition

"Provide an interface for creating families of related or dependant objects

without specifying their concrete classes."

The Factory Method pattern below is commonly used in this pattern.

22

1. 7 .6.2 Applications in Delphi

This pattern is ideal where you want to isolate your application from the

implementation of the concrete classes. For example if you wanted to overlay Delphi's

VCL with a common VCL layer for both 16 and 32 bit applications, you might start

with the abstract factory as a base.

1.7.6.3 Implementation Example

The following example uses an abstract factory and two concrete factory classes

to implement different styles of user interface components. TOAbstractFactory is a

singleton class, since we usually want one factory to be used for the whole application.

At runtime, our client application instantiates the abstract factory with a concrete

class and then uses the abstract interface. Parts of the client application that use the

factory don't need to know which concrete class is actually in use.

1.7.7 Pattern: Factory Method

1.7.7.1 Definition

"Define an interface for creating an object, but let subclasses decide which class

to instantiate. Factory method lets a class defer instantiation to subclasses."

The Abstact Factory pattern can be viewed as a collection of Factory Methods.

1.7.7.2 Applications in Delphi

This pattern is useful when you want to encapsulate the construction of a class

and isolate knowledge of the concrete class from the client application through an

abstract interface.

One example of this might arise if you had an object oriented business

application potentially interfacing to multiple target DBMS. The client application only

wants to know about the business classes, not about their implementation-specific

storage and retrieval.

23

1.7.7.3 Implementation Example

In the Abstract Factory example, each of the virtual widget constructor functions

is a Factory Method. In their implementation we define a specific widget class to return.

1.8 KEY ELEMENTS OF DELPHI CLASS DEFINITIONS

1.8.1Unit Structure

Delphi units (.PAS files) allow declaration of interface and implementation

sections. The interface defines the part that is visible to other units using that unit. The

keyword uses can be added to a unit's interface or implementation section to list the

other units that your unit uses. This indicates to the compiler that your unit refers to

parts of the used unit's interface. Parts of a unit declared in the implementation section

are all private to that unit, i.e. never visible to any other unit. Types, functions and

procedures declared in the interface of a unit must have a corresponding

implementation, or be declared as external (e.g. a call to a function in a DLL).

1.8.2 Class Interfaces

Classes are defined as types in Delphi and may contain fields of standard data

types or other objects, methods declared as functions or procedures, and properties. The

type declaration of a class defines its interface and the scope of access to fields,
I'

methods and properties of the class. Class interfaces are usually defined in the interface

of a unit to make them accessible to other modules using that unit. However they don't

need to be. Sometimes a type declaration of a class may be used only within the

implementation part of a unit.

1.8.3Properties

Properties are a specialised interface to a field of a defined type, allowing access

control through read and write methods. Properties are not virtual, you can replace a

property with another property of the same name, but the parent class doesn't know

24

about the new property. It is however possible to make the access methods of a property

virtual.

1.8.4 Inheritance

Delphi's inheritance model is based on a single hierarchy. Every class inherits

from TObject and can have only one parent.

A descendant class inherits all of the interface and functionality of its parent

class, subject to the scope described below.

Multiple inheritance from more than one parent is not allowed directly. It can be

implemented by using a container class to create instances one or more other classes

and selectively expose parts of the contained classes.

Private, Protected, Public and Published ScopeScope refers to the visibility of

methods and data defined in the interface of a class, i.e. what parts of the class are

accessible to the rest of the application or to descendant classes.

The default scope is public, for instance the component instances you -add to a

form at design time. Public says "come and get me"; it makes the data or method visible

to everything at runtime.

Published parts of a class are a specialized form of Public scope. They indicate

special behaviour for classes derived from TPersistent. A persistent class can save and
••restore its published properties to persistent storage using Delphi's standard streaming

methods. Published properties also interact with Delphi Object Inspector in the IDE. A
~

class must descend from TPersistent in order to use Published. There's also not much

point in publishing methods, since you can't store them, although Delphi's compiler

doesn't stop you. Published also lets another application access details of the class

through Delphi's runtime type information. This would be rarely used, except in

Delphi's design time interaction with its VCL.

Encapsulation or information hiding is essential to object orientation, so

Protected and Private scope let you narrow the access to parts of a class.

25

Protected parts are visible only to descendant classes, or to other classes defined

in the same unit.

Private parts are visible only to the defining class, or to other classes defined in

the same unit.

It's important to note that once something is given public or published scope, it

cannot be hidden in descendant classes.

Static, Virtual and Dynamic Methods; Override and Inherited

Methods declared as virtual or dynamic let you change their behaviour using

override in a descendant class. You're unlikely to see a virtual method in the private part

of a class, since it could only be overridden in the same unit, although Delphi's compiler

doesn't stop you from doing this.

Override indicates that your new method replaces the method of the same name

from the parent class. The override must be declared with the same name and

parameters as the original method.

When a method is overridden, a call to the parent class's method actually

executes the override method in the real class of the object.

Static methods on the other hand have no virtual or override declaration. You

can replace a method of a class in a descendant class by redeclaring another method,
I'

however this is not object oriented. If you reference your descendant class as the parent

type and try to call the replaced method, the static method of the parent class is
'

executed. So in most cases, it's a bad idea to replace a static method.

Virtual and dynamic methods can be used interchangeably. They differ only in

their treatment by the compiler and runtime library. Delphi's help explains that dynamic

methods have their implementation resolved at compile time and run slightly faster,

whereas virtual methods are resolved at runtime, resulting in slightly slower access but

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help

suggests using dynamic when you have a base class with many descendants that may

not override the method.

26

The inherited directive lets you refer back to a property or method as it was

declared in the parent class. This is most often used in the implementation of an

override method, to call the inherited method of the parent class and then supplement its

behaviour.

1.8.5 Abstract Methods

Abstract is used in base classes to declare a method in the interface and defer its

implementation to a descendant class. I.e. it defines an interface, but not the underlying

operation. Abstract must be used with the virtual or dynamic directive. Abstract

methods are never implemented in the base class and must be implemented in

descendant classes to be used. A runtime error occurs if you try to execute an abstract

method that is not overridden. Calling inherited within the override implementation of

an abstract method will also result in a runtime error, since there is no inherited

behaviour.

1.8.6 Messages

Delphi's handling of Windows messages is a special case of virtual methods.

Message handlers are implemented in classes that descend from TControl. I.e classes

that have a handle and can receive messages. Message handlers are always virtual and

can be declared in the private part of a class interface, yet still allow the inherited

method to be called. Inherited in a message handler just uses the keyword inherited,

there is no need to supply the name of the method to call.

1.7.7 Events

Events are also an important characteristic of Delphi, since they let you delegate

extensible behaviour to instances of a class. Events are properties that refer to a method

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour

to let you use inherited in an event. . Inherited in an event handler just uses the keyword

inherited, there is no need to supply the name of the method to call.

27

Events are particularly important to component developers, since they provide a

hook for the user of the component to modify its behaviour in a way that may not be

foreseen at the time the component is written.

1.8.8 Constructors and Destructors

The constructor and destructor are two special types of methods. The constructor

initializes a class instance (allocates memory initialized to O) and returns a reference

(pointer) to the object. The destructor deallocates memory used by the object (but not

the memory of other objects created by the object).

Classes descended from Tübject have a static constructor, Create, and a virtual

destructor Destroy.

TComponent introduces a new public property, the Owner of the component and

this must be initialized in the constructor. TComponent's constructor is declared virtual,

i.e. it can be overridden in descendant classes.It is essential when you override a virtual

constructor or destructor in a TComponent descendant to include a call to the inherited

method.

1.9 THE VCL TO APPLICATIONS DEVELOPERS

Applications Developers create complete applications by interacting with the
~

Delphi visual environment (as mentioned earlier, this is a concept nonexistent in many

other frameworks). These people use the VCL to create their user-interface and the

other elements of their application: database connectivity, data validation, business

rules, etc ..

Applications Developers should know which properties, events, and methods

each component makes available. Additionally, by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

applications by extending components or creating new ones. Then they can maximize

the capabilities of these components, and create better applications.

28

1.9.1 The VCL to Component Writers

Component Writers expand on the existing VCL, either by developing new

components, or by increasing the functionality of existing ones. Many component

writers make their components available for Applications Developers to use.

A Component Writer must take their knowledge of the VCL a step further than

that of the Application Developer. For example, they must know whether to write a new

component or to extend an existing one when the need for a certain characteristic arises.

This requires a greater knowledge of the VCL's inner workings.

1.9.2 The VCL is made up of components

Components are the building blocks that developers use to design the user

interface and to provide some non-visual capabilities to their applications. To an

Application Developer, a component is an object most commonly dragged from the

Component palette and placed onto a form. Once on the form, one can manipulate the

component's properties and add code to the component's various events to give the

component a specific behavior. To a Component Writer, components are objects in

Object Pascal code. Some components encapsulate the behavior of elements provided

by the system, such as the standard Windows 95 controls. Other objects introduce

entirely new visual or non-visual elements, in which case the component's code makes

up the entire behavior of the component.

The complexity of different components varies widely. Some might be simple

while others might encapsulate a elaborate task. There is no limit to what a component

can do or be made up of. You can have a very simple component like a TLabel, or a

much more complex component which encapsulates the complete functionality of a

spreadsheet.

29

1.9.3 Component Types, Structure and VCL hierarchy

Components are really just special types of objects. In fact, a component's

structure is based on the rules that apply to Object Pascal. There are three fundamental

keys to understanding the VCL.

First, you should know the special characteristics of the four basic component

types: standard controls, custom controls, graphical controls and non-visual

components.

Second, you must understand the VCL structure with which components are

built. This really ties into your understanding of Object Pascal's implementation. Third,

you should be familiar with the VCL hierarchy and you should also know where the

four component types previously mentioned fit into the VCL hierarchy. The following

paragraphs will discuss each of these keys to understanding the VCL.

1.9.4 Component Types

As a component writer, there four primary types of components that you will

work with in Delphi: standard controls, custom controls, graphical controls, and non

visual components. Although these component types are primarily of interest to

component writers, it's not a bad idea for applications developers to be familiar with

them. They are the foundations on which applications are built.

1.9.4.1 Standard Components

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox and Tedit, for example. You will find

these components on the Standard page of the Component Palette. These components

are Windows' common controls with Object Pascal wrappers around them.

Each standard component looks and works like the Windows' common control

which it encapsulates. The VCL wrapper's simply makes the control available to you in

the form of a Delphi component-it doesn't define the common control's appearance or

30

functionality, but rather, surfaces the ability to modify a control's

appearance/functionality in the form of methods and properties. If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS.PAS.

If you want to use these standard components unchanged, there is no need to

understand how the VCL wraps them. If, however, you want to extend or change one of

these components, then you must understand how the Window's common control is

wrapped by the VCL into a Delphi component.

For example, the Windows class LISTBOX can display the list box items ın

multiple columns. This capability, however, isn't surfaced by Delphi's TListBox

component (which encapsulates the Windows LISTBOX class). (TListBox only

displays items in a single column.) Surfacing this capability requires that you override

the default creation of the TListBox component.

This example also serves to illustrate why it is important for Applications

Developers to understand the VCL. Just knowing this tidbit of information helps you to

identify where enhancements to the existing library of components can help make your

life easier and more productive.

1.9.4.2 Custom components

Unlike standard components, custom components are controls that don't already

have a method for displaying "themselves, nor do they have a defined behavior. The

Component Writer must provide to code that tells the component how to draw itself and

determines how the component behaves when the user interacts with it. Examples of

existing custom components are the TPanel and TStringGrid components.

It should be mentioned here that both standard and custom components are

windowed controls. A "windowed control" has a window associated with it and,

therefore, has a window handle. Windowed controls have three characteristics: they can

receive the input focus, they use system resources, and they can be parents to other

controls. (Parents is related to containership, discussed later in this paper.) An example

of a component which can be 'a container is the TPanel component.

31

1.9.4.3 Graphical components

Graphical components are visual controls which cannot receive the input focus

from the user. They are non-windowed controls. Graphical components allow you to

display something to the user without using up any system resources; they have less

"overhead" than standard or custom components. Graphical components don't require a

window handle-thus, they cannot can't get focus. Some examples of graphical

components are the TLabel and TShape components.

Graphical components cannot be containers of other components. This means

that they cannot own other components which are placed on top of them.

1.9.4.4 Non-visual components

Non-visual components are components that do not appear on the form as

controls at run-time. These components allow you to encapsulate some functionality of

an entity within an object. You can manipulate how the component will behave, at

design-time, through the Object Inspector. Using the Object Inspector, you can modify a

non-visual component's properties and provide event handlers for its events. Examples

of such components are the TOpenDialog, TTable, and TTimer components.

1.9.4.5 Structure of a component

All components share a similar structure. Each component consists of common

elements that allow developersto manipulate its appearance and function via properties,

methods and events. The following sections in this paper will discuss these common

elements as well as talk about a few other characteristics of components which don't

apply to all components.

1.9.4.6 Component properties

Properties provide an extension of an object's fields. Unlike fields, properties do

not store data: they provide other capabilities. For example, properties may use methods

to read or write data to an object field to which the user has no access. This adds a

certain level of protection as to how a given field is assigned data. Properties also cause

"side effects" to occur when the user makes a particular assignment to the property.

32

Thus what appears as a simple field assignment to the component user could trigger a

complex operation to occur behind the scenes.

1.10 PROPERTIES PROVIDE ACCESS TO INTERNAL STORAGE

FIELDS

There are two ways that properties provide access to internal storage fields of

components: directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

FMaxLength: Integer;

protected

procedure SetMaxLength(Value: Integer);

published

property MaxLength: Integer read

FMaxLength write SetMaxLength default O;

end;

The code above is snippet of the TCustomEdit component class. TCustomEdit is

the base class for edit boxes and memo components such as TEdit, and TMemo.

TCustomEdit has an internal field FMaxLength of type Integer which specifies

the maximum length of characters which the user can enter into the control. The user

doesn't directly access the FMaxLength field to specify this value. Instead, a value is

added to this field by making an assignment to the MaxLength property.

33

The property MaxLength provides the access to the storage field FMaxLength.

The property definition is comprised of the property name, the property type, a read

declaration, a write declaration and optional default value.

The read declaration specifies how the property is used to read the value of an

internal storage field. For instance, the MaxLength property has direct read access to

FMaxLength. The write declaration for MaxLength shows that assignments made to the

MaxLength property result in a call to an access method which is responsible for

assigning a value to the FMaxLength storage field. This access method is

SetMaxLength.

1.10.1 Property-access methods

Access methods take a single parameter of the same type as the property. One of

the primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the SetMaxLength method below.

procedure TCustomEdit.SetMaxLength(Value: Integer);

begin

if FMaxLength <> Value therr

begin

FMaxLength := Value;

if HandleAllocated then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

34

The code in the SetMaxLength method checks if the user is assigning the same

value as that which the property already holds. This is done as a simple optimization.

The method then assigns the new value to the internal storage field, FMaxLength.

Additionally, the method then sends an EM_LIMITTEXT Windows message to the

window which the TCustomEdit encapsulates. The EM_LIMITTEXT message places a

limit on the amount of text that a user can enter into an edit control. This last step is

what is referred to as a side-effect when assigning property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

Providing access to internal storage fields through property access methods

offers the advantage that the Component Writer can modify the implementation of a

class without modifying the interface. It is also possible to have access methods for the

read access of a property. The read access method might, for example, return a type

which is different that that of a properties storage field. For instance, it could return the

string representation of an integer storage field.

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.10.2 Types of properties

,_

:Property type

Simple

Object Inspector treatment

Numeric, character, and string properties appear in the Object
Inspector as numbers, characters, and strings, respectively. The user
can type and edit the value of the property directly.
Properties of enumerated types (including Boolean) display the value
as defined in the source code. The user can cycle through the possible
values by double-clicking the value column. There is also a drop
down list that shows all possible values of the enumerated type.

Properties of set types appear in the Object Inspector looking like a
set. By expanding the set, the user can treat each element of the set as
a Boolean value: True if the element is included in the set or False if

Enumerated

Set

35

[it's not included.

!Object

!Properties that are themselves objects often have their own property
jeditors. However, if the object that is a property also has published
[properties, the Object Inspector allows the user to expand the list of
jobject properties and edit them individually. Object properties must
ldescend from TPersistent.
;.

ArrayI
Array properties must have their own property editors. The Object!
Inspector has no built-in support for editing array properties. ·

Properties can be of the standard data types defined by the Object Pascal rules.

Property types also determine how they are edited in Delphi's Object Inspector. The

table below shows the different property types as they are defined in Delphi's online

help.

For more information on properties, refer to the "Component Writers Guide"

which ships with Delphi.

1.10.3 Methods

Since components are really just objects, they can have methods. We will

discuss some of the more commonly used methods later in this paper when we discuss

the different levels of the VCL hierarchy.

1.10.4 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

Components contain special properties called events to which the component

user assigns code. This code will be executed whenever a certain event occurs. For

instance, if you look at the events page of a TEdit component, you'll see such events as

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

36

When the user of a component assigns code to one of those events, the user's

code is referred to as an event handler. For example, by double clicking on the events

page for a particular event causes Delphi to generate a method and places you in the

Code Editor where you can add your code for that method. An example of this is shown

in the code below, which is an OnClick event for a TButton component.

It becomes clearer that events are method pointers when you assign an event

handler to an event programmatically. The above example was Delphi generated code.

To link your own an event handler to a TButton's OnClick event at run time you must

first create a method that you will assign to this event. Since this is a method, it must

belong to an existing object. This object can be the form which owns the TButton

component although it doesn't have to be. In fact, the event handlers which Delphi

creates belong to the form on which the component resides. The code below illustrates

how you would create an event handler method.

When you define methods for event handlers, these methods must be defined as

the same type as the event property and the field to which the event property refers. For

instance, the OnClick event refers to an internal data field, FOnClick. Both the property

OnClick, and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvent = procedure (Sender: TObject) of object;

Note the use of the of object specification. This tells the compiler that the
I'>

procedure definition is actually a method and performs some additional logic like

ensuring that an implicit Self parameter is also passed to this metho~ when called. Self

is just a pointer reference to the class to which a method belongs.

1.10.5 Containership

Some components in the VCL can own other components as well as be parents

to other components. These two concepts have a different meaning as will be discussed

in the section to follow.

37

1.10.6 Ownership

All components may be owned by other components but not all components can

own other components. A component's Owner property contains a reference to the

component which owns it.

The basic responsibility of the owner is one of resource management. The owner

is responsible for freeing those components which it owns whenever it is destroyed.

Typically, the form owns all components which appear on it, even if those components

are placed on another component such as a TPanel. At design-time, the form

automatically becomes the owner for components which you place on it. At run-time,

when you create a component, you pass the owner as a parameter to the component's

constructor. For instance, the code below shows how to create a TButton component at

run-time and passes the form's implicit Self variable to the TButton's Create constructor.

TButton.Create will then assign whatever is passed to it, in this case Self or rather the

form, and assign it to the button's Owner property.

MyButton := TButton.Create(self);

When the form that now owns this TButton component gets freed, MyButton

will also be freed.

You can create a component without an owner by passing nil to the component's

Create constructor, however, you must ensure that the component is freed when it is no

longer needed. The code below'shows you how to do this for a TTable component.

1.10.7 Parenthood

Parenthood is a much different concept from ownership. It applies only to

windowed components, which can be parents to other components. Later, when we

discuss the VCL hierarchy, you will see the level in the hierarchy which introduces

windowed controls.

Parent components are responsible for the display of other components. They

call the appropriate methods internally that cause the children components to draw

themselves. The Parent property of a component refers to the component which is its

38

parent. Also, a component's parent does not have to be it's owner. Although the parent

component is mainly responsible for the display of components, it also frees children

components when it is destroyed.

Windowed components are controls which are visible user interface elements

such as edit controls, list boxes and memo controls. In order for a windowed component

to be displayed, it must be assigned a parent on which to display itself. This task is done

automatically by Delphi's design-time environment when you drop a component from

the Component Palette onto your form.

39

CHAPTER2

DATABASE

Every thing around us has a particular identity. To identify anything system,

actor or person in words we need a data or information. So this information is valuable

and in this advanced era we can store it in database and access this data by the blink of

eye.

For an instant if we go through the definitions of database we may find

following definitions.

A database is a collection of related information.

A database is an organized body of related information.

2.1 DEMERITS TO ABSENCE OF DAT ABASE

A glance on the past will may help us to reveal the drawbacks in case of

absence of database.

In the past when there wasn't proper system of database, Much paper work was

need to do and to handle great deal of written paper documentation was giant among the

problems itself.

In the huge networks to deal with equally bulky data, more workers are needed

which affidavit cost much labor expanses.

The old criteria for saving data and making identification was much time consuming

such as if we want to search the particular data of a person.

Before the Development of Computer database it was a great problem to search

for some thing. Efforts to avoid the headache of search often results in new

establishments of data.

40

Before the development of database it seemed very unsafe to keep the worthy

information. In Some situation some big organization had to employee the special

persons in order to secure the data.

Before the implementation of database any firm had to face the plenty of

difficulties in order to maintain their Management. To hold the check on the expenses of

the firm, the manager faced difficulties.

2.2 MERITS OF DAT ABASE

The modem era is known as the golden age computer sciences and technology.

In a simple phrase we can express that the modem age is built on the foundation of

database.

If we carefully watch our daily life we can examine that some how our daily life

is being connected with database.

There are several benefits of database developments.

Now with the help of computerized database we can access data in a second.

By the development of the database we can make data more secure.

By the development of database we can reduce the cost.

2.3 DAT ABASE DESIGN

The design of a database has to do with the way data is store~ and how that data
'is related. The design process is performed after you determine exactly what

information needs to be stored and how it is to be retrieved.

A collection of programs that enables you to store, modify, and extract

information from a database. There are many different types of DBMS ranging from

small systems that run on personal computers to huge systems that run on mainframes.

The following are examples of database applications:

41

Computerized library systems

Automated teller machines

Flight reservation systems

Computerized parts inventory systems

From a technical standpoint, DBMS can differ widely. The terms relational,

network, flat, and hierarchical all refer to the way a DBMS organizes information

internally. The internal organization can affect how quickly and flexibly you can extract

information.

Requests for information from a database are made in the form of a query.

Database design is a complex subject. A properly designed database is a model

of a business, Country Database or some other in the real world. Like their physical

model counterparts, data models enable you to get answers about the facts that make up

the objects being modeled. It's the questions that need answers that determine which

facts need to be stored in the data model.

In the relational model, data is organized in tables that have the following

characteristics: every record has the same number of facts, every field contains the same

type of facts (Data) in each record, and there is only one entry for each fact. No two

records are exactly the same.

The more carefully you design, the better the physical database meets users'

needs. In the process of designing a complete system, you must consider user needs

from a variety of viewpoints.

2.4 DATABASE MODELS

Various techniques are used to model data structures. Certain models are more

easily implemented by some types of database management systems than others. For

any one logical model various physical implementation may be possible. An example of

this is the relational model: in larger systems the physical implementation often has

42

indexes which point to the data; this is similar to some aspects of common

implementations of the network model. But in small relational database the data is often

stored in a set of files, one per table, in a flat, un-indexed structure. There is some

confusion below and elsewhere in this article as to logical data model vs. its physical

implementation.

2.4.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data

elements, where all members of a given column are assumed to be similar values, and

all members of a row are assumed to be related to one another. For instance, columns

for name and password might be used as a part of a system security database. Each row

would have the specific password associated with a specific user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is the basis of the

spreadsheet.

2.4.2 Network Model

The network model allows multiple datasets to be used together through the use

of pointers (or references). Some columns contain pointers to different tables instead of

data. Thus, the tables are related by references, which can be viewed as a network

structure. A particular subset of the network model, the hierarchical model, limits the

relationships to a tree structure, instead of the more general directed graph structure
!'I,

implied by the full network model.

2.4.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Cod in

1970 as a way to make database management systems more independent of any

particular application. It is a mathematical model defined in terms of predicate logic and

set theory.

Although the basic idea of a relational database has been very popular, relatively

few people understand the mathematical definition and only a few obscure DBMSs

43

implement it completely and without extension. Oracle, for example, can be used in a

purely relational way, but it also allow tables to be defined that allow duplicate rows an

extension (or violation) of the relational model. In common English usage, a DBMS is

called relational if it supports relational operational operations, regardless of whether it

enforces strict adherence to the relational model. The following is an informal, not

technical explanation of how "relational" database management systems commonly

work.

A relational database contains multiple tables, each similar to the one in the

"flat" database model. However, unlike network databases, the tables are not linked by

pointers. Instead, keys are used to match up rows of data in different tables. A key is

just one or more columns in one table that correspond to columns in other tables. Any

column can be a key, or multiple columns can be grouped together into a single key.

Unlike pointers, it's not necessary to define all the keys in advance; a column can be

used as a key even if it wasn't originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique

key. Typically one of the unique keys is the preferred way to refer to row; this is

defined as the table's primary key.

When a key consists of data that has an external, real-world meaning (such as a

person's name, a book's ISBN, or a car's serial number), it's called a "natural" key. If

no nature key is suitable, an arbitrary key can be assigned (such as by given employees

ID numbers). In practice, most databases have both generated and natural keys, because
"

generated keys can be used internally to create links between rows that can't break,

while natural keys can be used, less reliably, for searches and for integration with other.
databases. (For example, records in two independently developed databases could be

matched up by social security number, except when the social security numbers are

incorrect, missing, or have changed).

2.4.3.1 Why we use a Relational Database Design

Maintaining a simple, so-called flat database consisting of a single table doesn't

require much knowledge of database theory. On the other hand, most database worth

maintaining are quite a bit more complicated than that. Real life databases often have

44

hundreds of thousands or even millions of records, with data that are very intricately

related. This is where using a full-fledged relational database program becomes

essential. Consider, for example, the Library of Congress, which has over 16 million

books in its collection. For reasons that will become apparent soon, a single table

simply will not do for this database.

2.5 RELATIONSHIPS BETWEEN TABLES

When you create tables for an application, you should also consider the

relationships between them. These relationships give a relational database much of its

power. There are three types of relationships between tables: one-to-one, one-to-many

and many-to-many relationships.

2.5.1 One-To-One Relationships

In a one-to-one relationship, each record in one table corresponds to a single

record in a second table. This relationship is not very common, but it can offer several

benefits. First, you can put the fields from both tables into a single, combined table. One

reason for using two tables is that each field is a property of a separate entity, such as

owner operators and their tracks. Each operator can operate just one truck at a time, but

the fields for the operator and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table

by placing some of the table's columns in a second, separate table. This approach makes

particular sense when a table lras some fields that are used infrequently. Finally, a one

to-one relationship can support in a table requires security, placing them in a separate

table lets your application restrict to certain fields. Your application can link the

restricted table back to the main table via a one-to-one relationship so that people with

proper permissions can edit, delete, and add new records to these fields.

2.5.2 One-To-Many Relationships

A one-to-many relationship, in which a row from one table corresponds to one

or more rows from a second table, is more common. This kind of relationship can form

the basis for a Many-To-Many relationship as well.

45

2.6 DAT A MODELING

In information system design, data modeling is the analysis and design of the

information in the system, concentrating on the logical entities and the logical

dependencies between these entities. Data modeling is an abstraction activity in that the

details of the values of individual data observations are ignored in favor of the structure,

relationships, names and formats of the data of interest, although a list of valid values is

frequently recorded. It is by the data model that definitions of what the data means is

related to the data structures.

While a common term for this activity is "Data Analysis" the activity actually

has more in common with the ideas and methods of synthesis (putting things together),

than it does in the original meaning of the term analysis (taking things apart). This is

because the activity strives to bring the data structures of interest together in a cohesive,

inseparable, whole by eliminating unnecessary data redundancies and relating data

structures by relationships.

2.6.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design

that allows for consistent storage and efficient access of data in a relational database.

These steps reduce data redundancy and the risk of data becoming inconsistent.

However, many relational DBMS lack sufficient separation between the logical

database design and the physical implementation of the data store, such that queries

against a fully normalized database often perform poorly. In this case de-normalizations

are sometimes used to improve performance, at the cost of reduced consistency.

2.6.2 Primary Key

In database design, a primary key is a value that can be used to identify a

particular row in a table. Attributes are associated with it. Examples are names in a

telephone book (to look up telephone numbers), words in a dictionary (to look up

definitions) and Dewey Decimal Numbers (to look up books in a library).

46

In the relational model of data, a primary key is a candidate key chosen as the main

method of uniquely identifying a relation. Practical telephone books, dictionaries and

libraries can not use names, words or Dewey Decimal System Numbers as candidate

keys because they do not uniquely identify telephone numbers, word definitions or

books. In some design situations it is impossible to find a natural key that uniquely

identifies a relation. A surrogate key can be used as the primary key. In other situations

there may be more than one candidate key for a relation, and no candidate key is

obviously preferred. A surrogate key may be used as the primary key to avoid giving

one candidate key artificial primacy over the others. In addition to the requirement that

the primary key be a candidate key, there are several other factors which may make a

particular choice of key better than others for a given relation.

The primary key should generally be short to minimize the amount of data that

needs to be stored by other relations that reference it. A compound key is usually not

appropriate. (However, this is a design consideration, and some database management

systems may be better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed

during the course of normal operations of the database. (Recall that a primary key is the

means of uniquely identifying a tuple, and that identity by definition, never changes.)

This avoids the problem of dangling references or orphan records created by other

relations referring to a tuple whose primary key has changed. If the primary key is

immutable, this can never happen.

2.6.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that

points to a key field of another database record in another table where the foreign key of

one table refers to the primary key of the other table. This way references can be made

to link information together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a

book in the e-mail. Instead, they can include the ISBN of the book, and interested

persons can then use the number to get information about the book, or even the book

47

itself. The ISBN is the primary key of the book, and it is used as a foreign key in thee

mail.

Note that using a foreign key often assumes its existence as a primary key

somewhere else. Improper foreign key/primary key relationships are the source of many

database problems.

2.6.4 Compound Key

In database design, a compound key (also called a composite key) is a key that

consists on 2 or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within

the data model. This means that any one, none or all, of the multiple attributes within

the compound key can be foreign keys. Indeed, a foreign key may, itself, be a

compound key.

Compound keys almost always originate from attributive or associative entities

(tables) within the model, but this is not an absolute value.

48

CHAPTER3

Automation Of Pharmacy

3.1 Database and Tables

Paradox is a relational database management system currently published by

Corel Corporation. It was originally released for DOS by Ansa Software, but a

Windows version was released by Borland in 1992.

The Paradox database driver works in one of two modes. One mode is when

either of the following is installed. Paradox recovery is a data recovery program for

paradox databases [.db].

We prefer to use Paradox database system in this project. Because this system's

usage is easy and very useful and maximum record number is enough to pharmacy

system storage.

We used 5 tables; Patient table, Doctor Table, Drug Table, Selling Table and

Account table. Patient table, doctor table, drug table and selling table are related with

each other. Patient table's, doctor table's and drug table's primary keys use in selling

table. See my table design in Figure 3.1.1 .

First table name is Patient Table. Patient table's primary key is Identitiy_No.

This table connected to Sell Information table with using Identity number. When the

users went to sell drug and enter the patient's identity number, patient's name and

surname automatically fill the edit with using this primary key.

Second table is the Drug Table. Drug table's primary key is barcode. Barcode

system is the international unique. Every drug has a unique barcode number. Using this

primary key I relate the sell information table. The users enter the barcode number with

using barcode reader, primary key catch the drug's name, quality, tax proportion,

benefit proportion and net cost. Than using this information and write this data to sell

information table.

49

Doctor Table

Sell lrıformatıon Table

Account Table

Hanıe

i:lyas
Murat
aysen
seda
asd asd
we

Figure 3.1.1 Project's tables

Third table is the Doctor Table. We use a Diplomaed Number,as a primary key.

The users enter the doctor's diplomaed number, doctor name and surname enters the

sell information table automatically.

Sell Information Table is the most important table. Table's primary key ıs

SellID. First three table related with this table.

Last table name is Account. Account table primary key is Name but this table is

not related with other table.

50

3.2 Automation of Pharmacy Program's Forms

In our project We used 19 forms. We wanted to connected database and

program; We used datasource, query and table components. And We used much more

than 60 buttons, 120 editboxs, 100 labels, 30 dbeditboxs, graphs and calendars.

3.2.1 Login Form

Figure 3.2.1.1 Login area Figure 3.2.1.2 When enter wrong

password

When the program is started, this window opens. This is the login area. (Figure

3.2.1) Users must be having Usemame and Password. If he/she has not got, who applies

to get account. The users can control his/her account in account control area. When
1'

users enter usemame and password true, the main menu opens.

If users enter wrong usemame or password, the program shows this window.

(Figure 3.2.2)

51

3.2.2 Main Form

Figure 3.2.2.1 Main Menu

When user passes the login page; the main menu opens. (Figure 3.2.3) Main

menu have 9 top main menus;

• New entry uses to enter new patient, doctor and drugs.

• Operation stock menu has stock entry and stock exit.

• Operation with formulas has two areas. SSK formulas sales and formulas sales.

• Operation without formulas area use to sell without formulas

• Account control menu has new account area and delete account area.

• Pharmacy information system has two areas. Stock controlling system and

selling controlling area.

• Tools; calculator, internet browser and Microsoft word.

• In the About area; help and about.

• Last main menu is the Exit button.

52

6 quick buttons, calendars and close account button. The users can control the date and

time. 6 quick buttons are the most use area; New Patient, selling with SSK formulas,

selling with formulas, stock entry, new account and calculator. If the users want to close

your account; he/she will use the Close Account button in main form.

3.2.3 New Patient Form

Figure 3.2.3.1 New Patient

This form is related with the Patient Table. We used this form to insert new

record, edit or delete the record into patient table. Identity Number must be entering.

Because this is the primary key. Users can search with using Search Area who search

with using identity number, name, surname, city, foundation name, patient type, register

no or report serial number. Information area uses to information about the active

editbox. We used dbgrid to see patient table in there.

53

3.2.4 New Doctor Form

Figure 3.2.4.1 New Doctor

This form is related wiıh the Doctor Table. We used this form to insert new

record, edit or delete the record into doctor table. Diplomaed Number must be entering.

Because this is the primary key. ID number is _the autoincrement .which the system

automatically gives. Users can search with using Search Area who searches with using

id number, name, surname, diplomaed number, foundation name, branch or

organization. Information area uses to information about the active editbox. We used

dbgrid to see doctor table in there.

54

3.2.S New Drug Form

Figure 3.2.5.1 New Drug

This form is related with the Drug Table. We used this form to insert new

record, edit or delete the record jnto drug table. Barcode must be entering. Because this

is the primary key. When the user enters the barcode number, he/she can use barcode

machine. Users can search with using Search Area who searches with using barcode

number, name of drug or company name. Information area uses to information about the

active editbox. We used dbgrid to see drug table in there. This form's important part is

formula drug is true or false. This is important because when the users want to sell the

formula drug to buyer who is not having formula, system will be error and the buyer can

not buy.

55

3.2.6 Stock Entry and Stock Exit Forms

Figure 3.2.6.1 Stock Entry

869951637~1 B Anestcıl 3ü g 83 122 2,33 Pomad Gebelik.de Ku 5
8699760610233 TearsNatu 15 ml H2 ~
8699508340019 Systıal 20 mçı Fl

Göz Damidsı Aicorı
Jel Ulagaıı ArıtiC>.leıpk

Figure 3.2.6.2 Stock Exit

These forms are related with the Drug Table too. We used these forms to add

quantity or subtract quantity from the stock. Barcode must be entering to change

quantity which is the primary key. When the barcode machine read the barcode number,

name of drug automatically fill. Than user enter quantity to add or subtract. Information

area uses to information about the active editbox. We used dbgrid to see drug table in

there.

56

3.2.7 Selling with SSK Formulas and Selling with Formulas Forms

2 23 05 2008 : 22:05 34 86~090115 Maie,;,
3 23.05.2008 16:04:43 8699536090115 Maie,;k
4 2105.20()9 13:39:30 8699546010011 ,Aspiıin
5 23.05.2008 13:38:51 8699546010011 Aspititı
6 22.052008 121242 8699536090115 ·M,ie,;k
7 22.05.2008 10:46:16 8699536090115 'Mai~~ik
8 22.05.2008 10:36:07 8699536090115 Maie,;k

:Muıat Everekj 10321032 ssk 123456
Muıal EYeieH 10321032 ssk 123456
Mu,at Eveıekli 10321032 "' 123456
Muıat Eveıekli ·unıo
Sema Küçük tUn/o
Sezin Eveıek& Un/o

.es asd Un/o

2334444 SSK Working 321 321

Figure 3.2.7.1 Selling with SSK's Formulas

These forms are related with the Selling Table. We used these forms to sell

drugs. SellID is the primary key which is the autoincrement. System takes the number

automatically when the sell will complete. Date and time are the system times which are

automatically fill too. The pharmacist enters the barcode number with using barcode
!<

reader, automatically catch the name of drug, tax proportion, benefit proportion, net cost

and quantity from drug table after he/she enter quantity. Than eptered the patient

number by using barcode reader, automatically catch the name and surname of patient.

Finally the user enters doctor number and automatically doctor's name and surname

entered. After that the users enter the sell button, the system calculate the benefit cost,

tax cost, one of price and total cost than send this data to selling table. The user controls

this data from the Selling Information area. Selling with formulas form look like Figure

3.2.7.1 . Only one difference is type of data in selling table. Selling with using SSK

foım fills the type SSK or if selling with using Formulas form fills the type FORM.

57

3.2.8 Selling without Formulas Forms

3; 23.05.2008
4·23.05.2008 13:39:30 ·869954601D011 =Aspirin

. s: 23.0s. 2008 , ·3j8:"51. "\i6.9954io"i Oi:iı, A~p~in
s 22.os.2000 12:12:42 ·'.8ss95"i60sci,.is ~i~~~ik.
7'25.05.2008 ·22:56:37 8699536090115 Majezil<.
8,22.05.2008 .10:36:07 .8699536090115.Majezik
s;22.ö5.2008 -~·,·0:23:oı '.869953609öiıs ·

,·oi zzos 2ooa···;·;·o:",9i59 ; s69953so9oı ıs
12'12.05.2008 '19:46:08 ,8699504120097
ıa.rzos.zooe iıs:43:26]00995Q412oos1

Surname [Address

E vetek1i Meltem

Surname

Everekli
Dıplomoed N jBranch
123456 Dentist

Organization
SSK

Tel_N
2375811

Everekj

Everekti
Muret Everekj

Berna Küçuk
Mehmet Kale

esd
esd asd
Mehmet Kale

Everekji

Everek]

10321032
10321032

10321032
10321032

Figure 3.2.8.1 Selling Without Formulas

This form is related with the Selling Table. We used this form to sell without

formulas drugs. SellID is the primary key which is the autoincrement. System takes the

number automatically when the sell will complete. Date and time are the system times

which are automatically fill too. The pharmacist enters the barcode number with using

barcode reader, automatically catch the name of drug, tax proportion, benefit

proportion, net cost and quantity from drug table after program control this drug is

formulas or unformulas. If the drug is formulas,

program doesn't permission to sell. (Figure 3.2.i2)

If drug is unformulas than the user can enter the

patient name and surname. Finally the users enter the

sell button, the system calculate the benefit cost, tax

cost, one of price and total cost than send this data to

selling table. The user controls this data from the

Selling Information area. (Figure 3.2.8.1)

58

Figure 3.2.8.2 Selling Warning

3.2.9 Account Control Forms

Figure 3.2.9.1 New Account

These forms are related with the Account Table. We used these forms to create a

new user or delete the user. To create new account firstly enters usemame and

password. (Figure 3.2.9.1) This form has a password control. Users must be same

password to create new account. When ready to use new account, user can logout and

other new user enter new usemame and password to pass the main form.

Murat
aysen
seda
asd

Figure 3.2.9.1 Delete Account

Delete account form is used account table. When the users want to delete

whoever one, firstly search and find the user and click the delete.

59

3.2.10 Stock Controlling System Forms

Figure 3.2.10.1 Stock Controlling System

We created this form to controlling the stock. (Figure 3.2.10.1) This form related

with the drug tables. Users firstly select the search groups than enter the search

parameters. Finally he/she click the Show Report to see report. Users can search with

using barcode, name, company name, formulas or all drugs groups. In the Information

Area program gives the short information about the how to show report.

Stock Controlling System
aarcooe N:::ı me of Drug Ouarıtttv Company Narne F ornıuı Posittcn

8(399546010Cı 11 4.spirln 81 83,:eı F K5 !'.
8699516379018 Anes1ol 200 aanccz T 83

8699760610233 Tears Natu 186 e.ıcco T H2

8599::",083400 19 Sy strar 400 Ul2ga~ T F1

869970411..:414 Strepsils 198 t:..b,:1i tbrarurn F E3

0ı399535090115 u ejez n, 37,3 Sanovet F A,1

Page ı of ı

Bsnefit

2.3

2. 33

2. 33

Figure 3.2.10.2 Stock Controlling System's Report

When the user selects the search groups than click the show report, this form

will show (Figure 3.2.10.2) who take the print out this report.

60

3.2.11 Selling Controlling System Forms

k-fl:h.t £,~·~ikli
i. 1,.1t;.nt ~.•"'1'fi~tf
2 ~fo.:r:a~ E-v.~r.ı,Jdi iü32lW'2

tl':nfo"

3.tm.ı· Ut'lfp
Mıüı:ın=.t ıc.t, Utı.fo

:a,a cud Uf!:fo
~;!;(~~ 2 ,;d ul u.nfo

1\efa:lınuıt Kale Urifo
},JU<ı".rt Et,ıtr.ı-Hi 10321(;32 ,.uk · 12-H.5-6 F.ır-k E,~-M-ec'kl-i

Figure 3.2.11.1 Selling Controlling System

This form is used to control the sells. User can choose the drug name with using

barcode, patient with using patient number or doctor with using doctor number to filter.

Than user can date filtered. After date,

Between dates or Before date or not

Figure 3.2.11.2 Graphical View

select the date and o~ly using first

filtered. If the user clicks Graphical

Analysis, Graphical View form will show

with using filtered conditional. This

graph shows the name of drug and how

many sells in the filtered date. We used

the 3D graphic to give information about

the sells.

61

/'>

I
Selling Conrolling System

Date Drug Narne Patient Nuru. Patient N Doctor Type Ouan Benefit Tax Cost

23.05.2008 f'<ı1ajezik 10321032 tv1urat Faruk ssk 2 30.523 14.672 0.00341857

23.05.2008 Majezik 10321032 Murat Faruk ss k 2 30.523 14,672 0.00341857 I
23.0UOOS Aspirin 10321032 Murat Faruk ssk 2 26,036 12.6784 0,00291603 I

2305.2008 A.sp-irin Murat Unfo 2 26,036 12 6784 0.,00291603

24.05.2008 Majezik 10321032 Murat Faruk ssk 2 30.523 14.672 0,00341857

24.05.2008 Maj ezik 10321032 tı:1urat Faruk ssk 1 0.,52615 0.075059 6}7768428

24.05.2008 Majezik 10321032 Murat Faruk ssk 0.152€15 0.075069 20. 3330528

Reca rd CO Uf'JT Tctal Benefit 143.94€23 Total Tax 69 522938 Total Cost: 2712682485

Page ıcf ı

Figure 3 .2.11.3 Selling Controlling System Report

If the user clicks the Print Preview, this report will show. (Figure 3.2.11.3) User

can print out. Report has Record Count, Total Benefit, Total Tax and Total Cost. This

information controlled and filtered by the user.

3.2.12 Tools Forms

These forms are Calculator, Internet Browser and Microsoft Word.

Figure 3.2.12.1 Calculator

62

Calculator form is simple calculator. (Figure 3.2.12.1) Second form is an

Internet Browser. The user can connect to internet. (Figure 3 .2.12.2) If the user clicks

the Duty Pharmacy button, the program connects the web page about the duty

pharmacy. The user controls the duty pharmacy. (Figure 3.2.12.3)

Figure 3.2.12.2 Internet Browser

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

Figure 3.2.12.3

63

3.2.13 About Forms

This area has 2 forms; Help and Version. Version form shows in Figure 3.2.13.1.

Second form is about the short information about the program and how to use for

helping the users. (Figure 3.2.13.2)

®1-2®$:-Cwn.pt,ıtşr l.::t:.)gJm~.ııt-d.09,
Mı,@t çVE!lE~Ü

,.~Close

Figure 3.2.13.1 Version

These formsare related with the Selling Table. I used these formsto sell drugs SelllD is the primarykey which is the

autoincrement Systemtakes the numberautomaticallywhen the sell will complete Date and time are the systemtimes

"which are automaticallyfill too. The pharmacistenters the barcode numberwith usingbarcode reader, automaticallycatch

catch the nameof drug, tax proportion,benefit propoıtıon,net cost and quantity fromdrug table after he/she enter quantity.

Than entered the patient numberby using barcode reader, automaticallycatch the name and sun::ımeof patient Finally

the userentersdoctor numberand automaticallydoctor's nanie and surnameentered Alter that the usersenter the sell

button, the systemcalculate the benefit cost, tax cost, one of price and total cost than send this data to sellingtable. The

user controlsthis data fromthe Selling Informationarea. Only one difference is type of data in selling table. Selüngwith

using Formulasformfills the type FORM.

This formıs related with the Selling Table. I used this formto sell without formulasdrugs SelllD is the primarykey which is

autoincrement.Systemlakes the numberautomaticallywhen the sell will complete.Date and timeare the systemtimes

which are automaticallyfill too.

Figure 3.2.13.2 Help

64

CONCLUSION

The main aim of this program was control the stock and selling easily so that I

completed this program under the light of my aim.

Delphi has many components that are allows us to write windows programs

more than quickly and more easily. I have used businessskin components to have better

vision in customer relationship management software program which I have designed.

customer relationship management program will facilitate the service of employees who

are face to face with customers in businesses such as customer support and marketing.

The aim of customer relationship management software to obtain facility in working of

user and to give the best service to customer. That's why the program allows user to

check all done works with more detailed information about customers and their

products. Using the details of customers registered in customer relationship

management program, company can contact with customer directly in emergency

situations and you can see any changing in stocks quickly. I prefered to use Barcode

reader to control to selling and stock more fast.

This program designed for smaller size business companies but it can be

developed for large business areas on demand

65

REFERENCES

[1] Delphi 2007 Handbook by Alister Christie (09 October 2007)

[2] Inside Delphi 2006 by Ivan Hladni (25 November 2005)

[3] Introducing Delphi Programming: Theory through Practice by John Barrow, Linda

Miller, Katherine Malan and Helene Gelderblom

[4] Delphi 7 Edition Book by Ihsan Karagülle

[5] http://groups.google.com 'group of Delphi 2007'

[6] http://www.delphiturk.com

[7] http://www.lkeydata.com/sql

66

APPENDIX

Program Code

Form -1- Main Menu:

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, jpeg, ExtCtrls, Menus, ComCtrls, StdCtrls, SkinCtrls, spcalendar,
SkinBoxCtrls;

type
TForml = class(TForm)

Image9: Tlmage;
MainMenul: TMainMenu;
NewEntryl: TMenultem;
New Patient}: TMenultem;
New Doctor I: TMenultem;
NewDrogl: TMenultem;
OperationStockl: TMenultem;
StockEntryl: TMenultem;
StockExitl: TMenultem;
OperationwithFormulal: TMenultem;
Operation WithOutFormulal: TMenultem;
OperationWithOutFormula2: TMenultem;
SellignWithFormulasl: TMenultem;
SellingWithOutFormulasl: TMenultem;
Pharmacy I: TMenultem;
StockControllingSysteml: TMônultern;
SellingControllingSysteml: TMenultem;
About I: TMenultem;
Help I: TMenultem;
Version2: TMenultem;
Exit I: TMenultem;
StatusBarl: TStatusBar;
Timerl: TTimer;
oolsl: TMenultem;
Calculater 1: TM enult em;
Calculater2: TMenultem;
AccountControll: TMenultem;
New Account I: TMenultem;
DeleteAccountl: TMenultem;
Image I: Timage;
Image2: Tlmage;

67

Image3: Tlmage;
Image4: Timage;
Image5: Tlmage;
Image6: Tlmage;
Image7: Tlmage;
Image8: Tlmage;
Imagel O: Tlmage;
Imagel 1: Tlmage;
Image12: Tlmage;
Image13: Tlmage;
Image14: Tlmage;
Image15: Tlmage;
Imagel 6: Tlmage;
Image17: Tlmage;
Imagel 8: Tlmage;
Imagel 9: Tlmage;
spSkinShadow Label 1: TspSkinShadow Label;
spSkinMonthCalendarl: TspSkinMonthCalendar;
spSkinButtonl: TspSkinButton;
Wordl: TMenultem;
procedure ImagelMouseDown(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
procedure ImagelMouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
procedure New Patient I Click(Sender: TObject);
procedure NewDoctorl Click(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure NewDrogl Click(Sender: TObject);
procedure StockEntryl Click(Sender: TObject);
procedure StockExitlClick(Sender: TObject);
procedure Exit IClick(Sender: TObject);
procedure NewAccountlCiick(Sender: TObject);
procedure DeleteAccountl Click(Sender: TObject);
procedure Image4MouseDown(Sender: TObject; Button: TMouseButton;

ı.
Shift: TShiftState; X, Y: Integer);

procedure Image4MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image3MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image3MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image2MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image2MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image5MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image5MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

68

procedure Image6MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Image6MouseUp(Sender: Tübject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure Operation WithOutFormulal Click(Sender: TObject);
procedure Sellign WithFormulas 1 Click(Sender: Tübject);
procedure Calculater2Click(Sender: TObject);
procedure Image6Click(Sender: Tübject);
procedure Image4Click(Sender: Tübject);
procedure ImagelClick(Sender: Tübject);
procedure Image2Click(Sender: Tübject);
procedure Image3Click(Sender: Tübject);
procedure Image5Click(Sender: TObject);
procedure SellingWithüutFormulas 1 Click(Sender: TObject);
procedure StockControllingSysteml Click(Sender: TObject);
procedure spSkinButtonl Click(Sender: TObject);
procedure SellingControllingSysteml Click(Sender: TObject);
procedure Calculaterl Click(Sender: Tübject);
procedure FormCreate(Sender: Tübject);
procedure Version IClick(Sender: TObject);
procedure WordlClick(Sender: TObject);
procedure Version2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml: TForml;

implementation

uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, Unit8, Unit9, UnitlO,
Unitll, Unit12, Unit13, Unitl4., UnitlS, Unit16, Unit17, Unit19;

{ $R *.dfm}

procedure TForml .ImagelMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
imagel .Picture:=imagel 4.Picture;
end;

procedure TForml .ImagelMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image lPicture.e.image 15 .Picture;
form2.show;
forml .Hide;

69

end;

procedure TForml.NewPatientlClick(Sender: TObject);
begin
form2.show;
form! .Hide;
end;

procedure TForml .New Doctor! Click(Sender: TObject);
begin
form3.show;
form I .Hide;
end;

procedure TForml .Timer l Timer(Sender: TObject);
function IsCapsLockOn : boolean;
begin Result:= O<> (GetKeyState(VK_CAPITAL) and $01);
end;
begin
status bar I .Panels[O]. Text.=timetostrüime);
status bar I .Panels[I].Text:=datetostr(date);
form 1 .Caption:=copy(caption,2,length(caption)- I)+caption[1];
if(IsCapsLockOn=true)then begin
statusbarl .Panels[2].Text:='Caps ON';
end
else begin
statusbarl .Panels[2] .Text:='Caps OFF';
end;
end;

procedure TForml .FormActivate(Sender: TObject);
begin
statusbarl .Panels[O].Width:=50;
statusbarl .Panels[1]. Width:=63;
spskinmon thcalendar 1.Date:=(date);

lo
end;

procedure TForml .NewDrogl Click(Sender: TObject);
begin
form4.show;
form} .Hide;
end;

procedure TForml .StockEntryl Click(Sender: TObject);
begin
form5.show;
form 1 .Hide;
end;

procedure TForml .StockExitlClick(Sender: TObject);

70

begin
form6.show;
forml.Hide;
end;

procedure TForml.ExitlClick(Sender: TObject);
var
x:word;
begin
x:=application.MessageBox('Do you want to EXIT?','EXIT',36);
if(x=IDYES)then
begin
form 1. Close;
form7 .Close;
end;
end;

procedure TForml.NewAccountlClick(Sender: TObject);
begin
form8.show;
end;

procedure TForml .DeleteAccountl Click(Sender: TObject);
begin
form9.show;
end;

procedure TForml .Image4MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image4.Picture:=image7 .Picture;
end;

procedure TForml .Image4MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin "
image4.Picture:=image8.Picture;
form5.show;
forml .Hide;
end;

procedure TForml.Image3MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image3.Picture:=imagel O.Picture;
end;

procedure TForml .Image3MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin

71

image3.Picture:=imagel 1.Picture;
end;

procedure TForml.lmage2MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image2 .Picturer=image 12.Picture;
end;

procedure TForml .lmage2MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image2.Picture:=imagel 3 .Picture;
end;

procedure TForml.ImageSMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image5.Picture:=imagel 6.Picture;
end;

procedure TForml .ImageSMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image5.Picture:=imagel 7 .Picture;
end;

procedure TForml .Image6MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
image6.Picture:=imagel 8.Picture;
end;

procedure TForml .Image6MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

I\
begin
image6.Picture:=image 19 .Picture;
end;

procedure TForml .OperationWithOutFormulal Click(Sender: TObject);
begin
form IO.show;
form I .Hide;
end;

procedure TForml .Sellign WithFormulasl Click(Sender: TObject);
begin
form I I.show;
forml .Hide;
end;

72

procedure TForml .Calculater2Click(Sender: TObject);
begin
form12.show;
end;

procedure TFornıl.Image6Click(Sender: TObject);
begin
form 12.Show;
end;

procedure TForml.lmage4Click(Sender: TObject);
begin
form5.show;
forml .Hide;
end;

procedure TForml.Imagel Click(Sender: TObject);
begin
form2.show;
forml.Hide;
end;

procedure TFoıml .Image2Click(Sender: TObject);
begin
forml O.show;
forml .Hide;
end;

procedure TForm 1.lmage3Click(Sender: TObject);
begin
forml 1 .show;
forml .Hide;
end;

l'<
procedure TForml .Image5Click(Sender: TObject);
begin
form8.show;
fornıl .Hide;
end;

procedure TForml .SellingWithOutFormulas 1 Click(Sender: TObject);
begin
forml3.show;
forml .Hide;
end;

procedure TForml .StockControllingSysteml Click(Sender: TObject);
begin
form14.show;

73

end;

procedure TForml .spSkinButtonl Click(Sender: Tübject);
begin
form l .Close;
form7 .Show;
end;

procedure TForml .SellingControllingSysteml Click(Sender: TObject);
begin
forml5.show;
forml .Hide;
end;

procedure TForml .Calculaterl Click(Sender: Tübject);
begin
forml6.show;
end;

procedure TForml .FormCreate(Sender: Tübject);
begin
Borderlcons := Borderlcons - [BiSystemMenu);
end;

procedure TForml .Version I Click(Sender: Tübject);
begin
form17.show;
end;

procedure TForml .Wordl Click(Sender: Tübject);
begin
winExec('c:\windows\notepad.exe',SW _SHOW);
end;

procedure TForml .Version2Click(Sender: Tübject);
begin !'

forml9.show;
end;

end.

74

Form -2- New Patient:

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DBCtrls, Mask, Buttons, ExtCtrls, Grids, DBGrids, DB,
DBTables, SkinCtrls;

type
TForm2 = class(TForm)

Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
Labell 1: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBComboBoxl: TDBComboBox;
DBComboBox2: TDBComboBox;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
RadioGroupl: TRadioGroup;
Editl: TEdit;
Label12: TLabel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
DBGridl: TDBGrid;
GroupBoxl: TGroupBox;
Label 13: TLabel;
DataSource 1: TDataSource;
Queryl: TQuery;
BitBtn6: TBitBtn;
procedure DBEditlClick(Sender: TObject);

75

procedure DBEdit2Click(Sender: TObject);
procedure DBEdit3Click(Sender: TObject);
procedure DBEdit4Click(Sender: TObject);
procedure DBEdit5Click(Sender: TObject);
procedure DBEdit6Click(Sender: TObject);
procedure DBEdit7Click(Sender: TObject);
procedure DBComboBoxlClick(Sender: TObject);
procedure DBComboBox2Click(Sender: TObject);
procedure DBEdit8Click(Sender: TObject);
procedure DBEdit9Click(Sender: TObject);
procedure EditlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn5Click(Sender: Tübject);
procedure BitBtn6Click(Sender: TObject);
procedure DBEditlKeyPress(Sender: TObject; var Key: Char);
procedure DBEdit2KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit3KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit4KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit5KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit6KeyPress(Sender: TObject; var Key: Char);
procedure DBComboBoxl KeyPress(Sender: TObject; var Key: Char);
procedure DBComboBox2KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit8KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit9KeyPress(Sender: TObject; var Key: Char);
procedure DBEdit7KeyPress(Sender: TObject; var Key: Char);
procedure EditlChange(Sender: TObject);
procedure BitBtnl Click(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormActivate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form2: TForm2;

implementation

uses Unit I;

{$R *.dfm}

procedure TFonn2.DBEdit1Click(Sender: TObject);
begin
label13.Caption:='Enter the National number. Ex=> T.C. Identity Number';
end;

76

procedure TForm2.DBEdit2Click(Sender: TObject);
begin
labell3.Caption:='Enter the Name of Patient.';
end;

procedure TForm2.DBEdit3Click(Sender: TObject);
begin
labell3.Caption:='Enter the Surname of Patient.';
end;

procedure TForm2.DBEdit4Click(Sender: TObject);
begin
labell 3 .Caption:='Enter the Address'#39's of Patient';
end;

procedure TForm2.DBEdit5Click(Sender: TObject);
begin
labell 3.Caption:='Enter the Town'#39's of Patient';
end;

procedure TForm2.DBEdit6Click(Sender: TObject);
begin
label) 3.Caption:='Enter the City'#39's of Patient';
end;

procedure TForm2.DBEdit7Click(Sender: TObject);
begin
labell3.Caption:='Enter the Telefon Number.';
end;

procedure TForm2.DBComboBoxl Click(Sender: TObject);
begin
labell3.Caption:='Enter the Fundation Name of Patient. 3 alternative to choose';
end; ••
procedure TForm2.DBComboBox2Click(Sender: TObject);
begin
label 13 .Captiorı.e'Enter the Patient Type';
end;

procedure TForm2.DBEdit8Click(Sender: TObject);
begin
labell 3.Caption:='Enter the Patient'#36's Register Number';
end;

procedure TForm2.DBEdit9Click(Sender: TObject);
begin
labell3.Caption:='Enter the Report Serial Number';
end;

77

procedure TForm2.EditlClick(Sender: TObject);
begin
labell3.Caption:='Select the data than enter the search word!';
end;

procedure TForm2.BitBtn2Click(Sender: Tübject);
begin
dbeditl .Text.>";
dbedit2.Text:=";
dbedit3.Text:=";
dbedit4.Text:=";
dbedit5.Text:=";
dbedit6.Text:=";
dbedit7 .Text:=";
dbedit8.Text:=";
dbedit9.Text:=";
dbcomboboxl .Text:=";
dbcombobox2.Text:=";
dbeditl .SetFocus;
query 1 .Insert;
end;

procedure TForm2.BitBtn3Click(Sender: TObject);
begin
query I.Post;
end;

procedure TFonn2.BitBtn4Click(Sender: TObject);
begin
query I.Edit;
dbeditl .SetFocus;
end;

procedure TForm2.BitBtn5Click(~ender: TObject);
var
x:word;
begin
x:=application.MessageBox('Do you want to DELETE?','DELETE',36);
if(x=IDYES)then
begin
query I.Delete;
end;
end;
procedure TForm2.BitBtn6Click(Sender: TObject);
begin
form I.Show;
form2.Close;
end;

78

procedure TForm2.DBEdit1KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#13)then dbedit2.SetFocus;
end;

procedure TForm2.DBEdit2KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#13)then dbedit3.SetFocus;
end;

procedure TForm2.DBEdit3KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l 3)then dbedit4.SetFocus;
end;

procedure TForm2.DBEdit4KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#13)then dbedit5.SetFocus;
end;

procedure TForm2.DBEdit5KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l 3)then dbedit6.SetFocus;
end;

procedure TForm2.DBEdit6KeyPress(Sender: TObject; var Key: Char);
begin
if(key=# 13)then dbedit7 .SetFocus;
end;

procedure TForm2.DBComboBox1KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#13)then dbcombobox2.SetFocus;
end;

procedure TForm2.DBComboBÔx2KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l3)then dbedit8.SetFocus;
end;

procedure TForm2.DBEdit8KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#l 3)then dbedit9.SetFocus;
end;

procedure TForm2.DBEdit9KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l 3)then bitbtn3.SetFocus;
end;

79

procedure TForm2.DBEdit7KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#l3)then dbcomboboxl .SetFocus;
end;

procedure TForm2.Edit1Change(Sender: TObject);
begin
if(radiogroup 1 .Itemlndex=O)then
begin
queryl .Close;
queryl .SQL.Clear;
queryl.SQL.Add('select * from patient_tb where identity_no
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;
if(radiogroup 1. Itemlndex= 1)then
begin
queryl .Close;
queryl .SQL.Clear;
queryl .SQL.Add('select * from patient_tb where name
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;
if(radiogroup 1 .ltemlndex=2)then
begin
queryl .Close;
query I .SQL.Clear;
query I .SQL.Add('select * from patient_tb where surname
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;
if(radiogroup 1 .Itemlndexeô)then
begin
queryl .Close;
queryl .SQL.Clear;

"queryl .SQL.Add('select * from patient_tb where city like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;
if(radiogroup 1 .ltemlndex=4)then
begin
queryl .Close;
queryl .SQL.Clear;
query 1 .SQL.Add('select * from patient_tb where foundation_n
like'+#39+(editl .Text)+'%'+#39);
query I.Open;
end;
if(radiogroup 1 .ltemlndex=5)then
begin
query I .Close;
query l .SQL.Clear;

80

queryl.SQL.Add('select * from patient_tb where patient_T
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;
if(radiogroup 1 .ltemlndex=6)then
begin
queryl .Close;
query} .SQL.Clear;
queryl .SQL.Add('select * from patient_tb where Register_N
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;
if(radiogroup 1.Itemlndex=7)then
begin
queryl .Close;
queryl .SQL.Clear;
query} .SQL.Add('select * from patient_tb where Report_Serial_N
like'+#39+(edit} .Text)+'%'+#39);
query} .Open;
end;
end;

procedure TForm2.BitBtn1Click(Sender: TObject);
begin
editl .Text:=";
query 1 .Refresh;
radio group 1 .ltemlndex :=- 1;
end;

procedure TForm2.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin

key:= #O;
Perform(WM_NEXTDLGCTL, O, O);

"-end;
end;
procedure TForm2.FormActivate(Sender: TObject);
begin
query 1 .Insert;
end;

end.

81

Form -3- New Doctor

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Grids, DBGrids, Buttons, ExtCtrls, DBCtrls, Mask, DB,
DBTables, SkinCtrls;

type
TForm3 = class(TForm)

Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBComboBoxl: TDBComboBox;
DBComboBox2: TDBComboBox;
RadioGroup l: TRadioGroup;
Editl: TEdit;
Label 12: TLabel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
DBGridl: TDBGrid;
GroupBoxl: TGroupBox;
Label 13: TLabel;
Query I: TQuery;
DataSource 1: TDataSource;
Label7: TLabel;
DBEdit5: TDBEdit;
BitBtn6: TBitBtn;
procedure DBEditlC!ick(Sender: Tübject);
procedure DBEdit2Click(Sender: TObject);
procedure DBEdit3Click(Sender: TObject);
procedure DBComboBoxl Click(Sender: TObject);
procedure DBComboBox2Click(Sender: Tübject);
procedure DBEdit4Click(Sender: TObject);
procedure EditlChange(Sender: Tübject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);

82

procedure BitBtnSClick(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure spSkinButtonl Click(Sender: TObject);
procedure FormActivate(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form3: TForm3;

implementation

uses Unit I, Unit2;

{$R *.dfm}

procedure TForm3.DBEditlClick(Sender: TObject);
begin
label 13.Caption:='Enter the Name'#39's of Doctor.';
end;

procedure TForm3.DBEdit2Click(Sender: TObject);
begin
labell 3.Caption:='Enter the Sumame'#39's of Doctor.';
end;

procedure TForm3.DBEdit3Click(Sender: TObject);
begin
label I 3.Caption:='Enter the Diplomaed numbers'#39's of Doctor. Contact the Doctor!';
end; ..
procedure TForm3.DBComboBox1Click(Sender: TObject);
begin
label 13 .Caption.e'Select the Brach '#39's of Doctor.';
end;

procedure TForm3.DBComboBox2Click(Sender: Tübject);
begin
labell3.Caption:='Select the Organization'#39's of Doctor.';
end;

procedure TForm3.DBEdit4Click(Sender: TObject);
begin
label13.Caption:='Enter the Tel Number'#39's of Doctor.';
end;

83

procedure TForm3.EditlChange(Sender: TObject);
begin
if(radiogroup 1 .ltemlndex=O)then
begin
queryl .Close;
queryl .SQL.Clear;
queryl.SQL.Add('select * from Doctor_tb where ID like'+#39+(editl.Text)+'%'+#39);
queryl .Open;
end;

if(radiogroup 1. Item Index= 1)then
begin
queryl .Close;
queryl.SQL.Clear;
queryl.SQL.Add('select * from Doctor_tb where Name
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;

if(radiogroupl .ltemlndex=2)then
begin
queryl .Close;
queryl .SQL.Clear;
query} .SQL.Add('select * from Doctor_tb where Surname
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;

if(radiogroup 1. Itemlndex=3)then
begin
query} .Close;
queryl .SQL.Clear;
queryl .SQL.Add('select * from Doctor_tb where Diplomoed_N
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;

if(radiogroup 1 .Itemlndexeüjthen
begin
queryl .Close;
query I .SQL.Clear;
query I .SQL.Add('select * from Doctor_tb where Branch
like'+#39+(editl .Text)+'%'+#39);
query I .Open;
end;

if(radiogroup 1 .Itemlndex=O)then
begin
query 1 .Close;

84

queryl .SQL.Clear;
queryl .SQL.Add('select * from Doctor_tb where Organization
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;

end;

procedure TForm3.BitBtn2Click(Sender: TObject);
begin
dbeditl .Text:=";
dbedit2.Text:=";
dbedit3.Text:=";
dbedit4.Text:=";
dbedit5.Text:=";
dbcomboboxl .Text:=";
dbcombobox2.Text:=";
dbeditl .SetFocus;
query I .Insert;
end;

procedure TForm3.BitBtn3Click(Sender: TObject);
begin
queryl .Post;
end;

procedure TForm3.BitBtn5Click(Sender: TObject);
var
x:word;
begin
x:=application.MessageBox('Do you want to DELETE?','DELETE',36);
if(x=IDYES)then
begin
queryl .Delete;
end;

end;
procedure TForm3.BitBtn4Click(Sender: TObject);
begin
queryl .Edit;
dbeditl .SetFocus;
end;

procedure TForm3.BitBtn6Click(Sender: TObject);
begin
form3.Close;
forml .show;
end;

procedure TForm3.BitBtnlClick(Sender: TObject);

85

begin
editl .Text:=";
queryl .Refresh;
radiogroup 1 .ltemlndex:=- 1;
end;

procedure TForm3.spSkinButton1Click(Sender: TObject);
begin
form3.close;
forml .Show;
end;

procedure TForm3.FormActivate(Sender: TObject);
begin
query 1 .Insert;
end;

end.

86

Form -4- New Drug

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, DBCtrls, Mask, Buttons, ExtCtrls, DB,
DBTables, SkinCtrls;

type
TForm4 = class(TForm)

Label 1: TLabel;
GroupBoxl: TGroupBox;
Label13: TLabel;
RadioGroupl: TRadioGroup;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
BitBtnl: TBitBtn;
Edit I: TEdit;
DBEditl: TDBEdit;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
Label 1 1: TLabel;
Label12: TLabel;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBComboBoxl: TDBComboBox;
DBEdit4: TDBEdit;
DBComboBox2: TDBComboBox;
DBComboBox3: TDBComboBox;
DBComboBox4: TDBComboBox;
DBEdit5: TDBEdit;
DBComboBox5: TDBComboBox;
DB Memo I: TDBMemo;
Labell4: TLabel;
DBGridl: TDBGrid;
Queryl: TQuery;
DataSourcel: TDataSource;
Label7: TLabel;
Label 15: TLabel;

87

DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
Label16: TLabel;
DBCheckBoxl: TDBCheckBox;
DBEdit8: TDBEdit;
BitBtn6: TBitBtn;
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn5Click(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure RadioGroup 1 Click(Sender: TObject);
procedure DBEditlClick(Sender: TObject);
procedure DBEdit2Click(Sender: TObject);
procedure DBEdit3Click(Sender: TObject);
procedure DBComboBoxlC!ick(Sender: TObject);
procedure DBEdit4Click(Sender: TObject);
procedure DBComboBox2Click(Sender: TObject);
procedure DBComboBox3Click(Sender: TObject);
procedure DBComboBox4Click(Sender: TObject);
procedure DBEdit5Click(Sender: TObject);
procedure DBComboBox5Click(Sender: TObject);
procedure DBMemol Click(Sender: TObject);
procedure spSkinButtonl Click(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure DBEdit8Click(Sender: TObject);
procedure DBEdit6Click(Sender: TObject);
procedure DBEdit7Click(Sender: TObject);
procedure DBCheckBox 1 Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form4: TForm4;

implementation

uses Unitl;

{$R *.dfm}

procedure TForm4.BitBtn2Click(Sender: TObject);
begin
dbeditl .Text.e";
dbedit2.Text:=";

88

dbedit3.Text:=";
dbedit4.Text:=";
dbedit5.Text:=";
dbcombobox I .Text:=";
dbcombobox2.Text:=";
dbcombobox3.Text:=";
dbcombobox4.Text:=";
dbcombobox5.Text:=";
dbedit6.Text:=";
dbmemo l.Text.e";
dbeditI .SetFocus;
query I .Insert;
end;

procedure TForm4.BitBtn3Click(Sender: Tübject);
begin
if dbedit7 .Text="then begin
dbedit7.Text:='0';
end;
query I .Post;
end;

procedure TForm4.BitBtn4Click(Sender: Tübject);
begin
query I.Edit;
dbeditl .SetFocus;
end;

procedure TForm4.BitBtn5Click(Sender: Tübject);
var
x:word;
begin
x:=application.MessageBox('Do you want to DELETE?','DELETE',36);
if(x=IDYES)then
begin
query I .Delete;
end;
end;
procedure TForm4.BitBtn6Click(Sender: Tübject);
begin
form4.Close;
form I .show;
end;

procedure TForm4.Editl Change(Sender: TObject);
begin
if(radiogroupl .Iternlndex=Ojthen
begin
query I .Close;
query l .SQL.Clear;

89

queryl .SQL.Add('select * from Drug_tb where Barcode
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;

if(radiogroup l .Itemlndex= l)then
begin
queryl.Close;
queryl .SQL.Clear;
queryl.SQL.Add('select * from Drug_tb where Name like'+#39+(editl.Text)+'%'+#39);
query} .Open;
end;

if(radiogroup 1.Itemlndex=2)then
begin
queryl .Close;
queryl .SQL.Clear;
queryl.SQL.Add('select * from Drug_tb where Company_Na
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
end;

end;
procedure TFoım4.BitBtn1Click(Sender: TObject);
begin
editl .Text:=";
queryl .Refresh;
radiogroup l .ltemlndex:=-1;
end;

procedure TForm4.RadioGrouplClick(Sender: TObject);
begin
editl .SetFocus;
end;

procedure TForm4.DBEditl Cli'ck(Sender: TObject);
begin
label13.Caption:='Enter the Barcode Number to use Barcode Reader\
end;

procedure TForm4.DBEdit2Click(Sender: TObject);
begin
label 13.Caption:='Enter the Name of Drug';
end;

procedure TForm4.DBEdit3Click(Sender: TObject);
begin
label 13.Caption:='Enter the Diklokenak Volume';
end;

90

procedure TForm4.DBComboBox1Click(Sender: TObject);
begin
label13.Caption:='Choose the Volume';
end;

procedure TForm4.DBEdit4Click(Sender: TObject);
begin
label13.Caption:='Enter the position in your Pharmacy';
end;

procedure TForm4.DBComboBox2Click(Sender: TObject);
begin
label13.Caption:='Choose the Tax Propartion';
end;

procedure TForm4.DBComboBox3Click(Sender: TObject);
begin
label13.Caption:='Choose the Propartion of Benefit';
end;

procedure TForm4.DBComboBox4Click(Sender: TObject);
begin
labell 3.Caption:='Choose the Pharmaceutical Form';
end;

procedure TForm4.DBEdit5Click(Sender: TObject);
begin
labell3.Caption:='Enter the Company Name';
end;

procedure TForm4.DBComboBox5Click(Sender: TObject);
begin
labell3.Caption:='Choose the Drog#39s Group';
end;

..
procedure TForm4.DBMemol Click(Sender: TObject);
begin
labell 3.Caption:='Enter the General Information';
end;

procedure TForm4.spSkinButtonl Click(Sender: TObject);
begin
form-l.Close;
form I .Show;
end;

procedure TForm4.FormActivate(Sender: TObject);
begin
queryl .Insert;
end;

91

procedure TForm4.DBEdit8Click(Sender: TObject);
begin
label13.Caption:='Number of piace in box';
end;

procedure TForm4.DBEdit6Click(Sender: TObject);
begin
label13.Caption:='Enter the net Price of the Drog#39s';
end;

procedure TForm4.DBEdit7Click(Sender: TObject);
begin
label13.Caption:='Enter the quantity of the Drog#39s';
end;

procedure TForm4.DBCheckBox1Click(Sender: TObject);
begin
label 13.Caption:='Important this drug is formal or unformal ! ! ';
end;

end.

92

Form -5- Stock Entry

unit Unit5;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, StdCtrls, Grids, DBGrids, Buttons, Mask, DBCtrls,
SkinCtrls;

type
TForm5 = class(TForm)

Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
BitBtnl: TBitBtn;
BitBtn3: TBitBtn;
GroupBoxl: TGroupBox;
Label 13: TLabel;
Editl: TEdit;
Query2: TQuery;
DataSource2: TDataSource;
DataSourcel: TDataSource;
DBGrid2: TDBGrid;
DBEdit3: TDBEdit;
Table I: TTable;
Label4: TLabel;
Edit2: TEdit;
DBGridl: TDBGrid;
spSkinShadowLabel 1: TspSkinShadowLabel;
Edit3: TEdit;
BitBtn6: TBitBtn;
procedure BitBtn3Click(Sender: Tübject);
procedure BitBtnl Click(Sender: Tübject);
procedure BitBtn6Click(Sender: Tübject);
procedure Edit2Change(Sender: Tübject);
procedure FormActivate(Sender: Tübject);
procedure Edit2KeyPress(Sender: Tübject; var Key: Char);
procedure spSkinButtonl Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form5: TForm5;

implementation

93

uses Unit4, Unitl;

{$R *.dfm}

procedure TForm5.BitBtn3Click(Sender: TObject);
var
x,y,z: integer;
begin
if editl.Text="then
showmessage ('Please Enter Quantity')
else
begin
table 1.Locate('barcode' ,edit2. Text,[loPartialKey ,loCaselnsensitive]);
x:= strtoint(editl .Text);
y:= strtoint(dbedit3.Text);
z:=x+y;
label4.Caption:=inttostr(z);
tablel .Edit;
table 1.FieldValues['Quantity'] :=label4.Caption;
tablel .Refresh;
tablel .Next;
end;
end;

procedure TForm5.BitBtnl Click(Sender: TObject);
begin
Query2.Refresh;
edit3.Clear;
editl.Clear;
edit2.Clear;
end;

procedure TForm5.BitBtn6Click(Sender: TObject);
. ~

begın
form5.Close;
form I .Show;
end;

procedure TForm5.Edit2Change(Sender: TObject);
var
num:integer;
begin
Query2.Close;
Query2.SQL.Clear;
Query2.SQL.Add('select Barcode,Name from drug_tbl where barcode
like'#39+(edit2.Text)+'% '+#39);
Query2.0pen;
edit3.Text:=DBGridl .Fields[l].AsString;

94

if(Query2.RecordCount=O)then
begin
num:=Application.MessageBox('Do you want to tum New Drug?','This Drug Not
Found',
MB_ YESNOCANCEL+MB_ICONQUESTION);
if nunı=mrYes then begin
forms. Close;
form4.Show;
end;
if nunı=mrNO then begin
edit2.Text:=";
edit I .Text:=";
edit3.Text:=";
edit2.SetFocus;
end;
end;
if edit2.Text="then
edit3. Text:="
else begin
tablel .Filtered.efalse;
tablel .Filter:='Barcode='+edit2.Text;
tablel .Filtered.etrue;
end;
end;

procedure TForm5.FormActivate(Sender: Tübject);
begin
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
edit2.SetFocus;
end;

procedure TForm5.Edit2KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#13)then edit I .SetFocus;"
end;

procedure TForm5.spSkinButtonl Click(Sender: Tübject);
begin
form5.Close;
form I .Show;
end;

end.

95

Form -6- Stock Exit

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls, Grids, DBGrids, DB,
DBTables, SkinCtrls;

type
TForm6 = class(TForm)
DataSourcel: TDataSource;
DBGridl: TDBGrid;
BitBtnl: TBitBtn;
BitBtn3: TBitBtn;
Label4: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
GroupBox2: TGroupBox;
Label9: TLabel;
DBEdit5: TDBEdit;
Table I: TTable;
Edit I: TEdit;
Edit2: TEdit;
spSkinShadowLabel 1: TspSkinShadowLabel;
Edit3: TEdit;
BitBtn6: TBitBtn;
procedure BitBtn3Click(Sender: Tübject);
procedure Edit2Change(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure spSkinButtonl Click(Sender: TObject);

"private
{ Private declarations }

public
{ Public declarations }

end;

var
Form6: TForm6;

implementation

uses Unit5, Unit I;

{ $R *.dfm}

96

procedure TForm6.BitBtn3Click(Sender: TObject);
var
x,y,z: integer;
begin
if editl .Text="then
showmessage ('Please Enter Quantity')
else
begin
tablel .Locate('barcode',edit2.Text,[loPartialKey,loCaselnsensitive]);
x:= strtoint(editl .Text);
y:= strtoint(dbedit5.Text);
z:=Y-X;
label8.Caption:=inttostr(z);
tablel .Edit;
tablel .FieldValues['Quantity'] :=label8.Caption;
table 1 .Refresh;
tablel .Next;
end;
end;

procedure TForm6.Edit2Change(Sender: TObject);
begin
form5.Query2.Close;
form5.Query2.SQL.Clear;
form5.Query2.SQL.Add('select Barcode,Name from drug_tbl where barcode
like'#39+(edit2.Text)+'%'+#39);
form5. Query2. Open;
edit3.Text:=form5.DBGridl .Fields[1].AsString;
if(form5. Query2.RecordCount=O)then
begin
ShowMessage('Not Found this Drug, turn new drug and add it!!');
end;
if edit2.Text="then
else begin
table I .Filtered.efalse;

l'<
table 1 .Filter:='Barcode='+edit2. Text;
tablel .Filtered:=true;
end;
end;

procedure TForm6.FormActivate(Sender: TObject);
begin
edit2.Text:=";
edit3.Text:=";
edit I .Text:=";
edit2.SetFocus;

end;

procedure TForm6.BitBtn6Click(Sender: TObject);

97

begin
form6.close;
forml.show;
end;

procedure TForm6.spSkinButtonl Click(Sender: TObject);
begin
form6.Close;
form I.Show;
end;

end.

98

Form -7- Login

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, IdBaseComponent, IdComponent, IdTCPConnection, IdTCPClient,
IdHTTP, Grids, StdCtrls, ExtCtrls, DB, DBTables, Buttons, Mask,
SkinBoxCtrls, SkinCtrls;

type
TForm7 = class(TForm)
Editl: TEdit;
Edit2: TEdit;
DataSourcel: TDataSource;
Queryl: TQuery;
spSkinShadow Label 1 : TspSkinShadow Label;
spSkinShadow Label3: TspSkinShadow Label;
spSkinShadow Label2: TspSkinShadow Label;
spSkinButtonl: TspSkinButton;
spSkinButton2: TspSkinButton;
procedure BitBtnl Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure Editl KeyPress(Sender: TObject; var Key: Char);
procedure Edit2KeyPress(Sender: TObject; var Key: Char);
procedure FormActivate(Sender: Tübject);
procedure spSkinButtonl Click(Sender: TObject);
procedure spSkinButton2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form7: TForm7;

implementation

uses Unit I, Unit8;

{$R *.dfm}

procedure TForm7 .BitBtnl Click(Sender: TObject);
begin
query I .Close;
query I .SQL.Clear;

99

queryl.SQL.Add('Select * from enter where Narne='+#39+editl.Text+#39+' and
Passs='+#39+edit2.Text+#39);
query I .Open;
if query I.RecordCount=O then
spskinshadow label2. Visible:=true
else begin
forrn7 .Hide;
form I.Show;
form I .spSkinShadowLabel 1.Caption:='Welcome '+edit I.Text;
end;
end;
procedure TForrn7.BitBtn2Click(Sender: TObject);
begin
edit I .Text:=";
edit2.Text:=";
spskinshadowlabel2.Visible:=false;
end;

procedure TForm7.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
if (key=#l3)then edit2.SetFocus;
end;

procedure TForm7.Edit2KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#13) then spskinbuttonl.SetFocus;
end;

procedure TForm7.ForrnActivate(Sender: TObject);
begin
editl .SetFocus;
editl .Text:e";
edit2.Text:=";
end;

••procedure TForrn7.spSkinButtonl Click(Sender: TObject);
begin
query I .Close;
query I .SQL.Clear;
queryl .SQL.Add('Select * from enter where Name='+#39+editl .Text+#39+' and
Passs='+#39+edit2.Text+#39);
query I .Open;
if query I .RecordCount=O then
spskinshadowlabel2.Visible:=true
else begin
form7 .Hide;
forml .Show;
forml .spSkinShadowLabell .Caption.v'Welcome +edit l .Text;
end;
end;

100

procedure TForm7.spSkinButton2Click(Sender: TObject);
begin
editl .Text:=";
edit2.Text:=";
spskinshadowlabel2. Visible.efalse;
editl .SetFocus;
end;

end.

101

Form -8- New Account

unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, Mask, DBCtrls, DB, DBTables, SkinCtrls;

type
TForm8 = class(TForm)

DBEditl: TDBEdit;
DBEdit2: TDBEdit;
Editl: TEdit;
BitBtnl: TBitBtn;
BitBtn3: TBitBtn;
DataSourcel: TDataSource;
Queryl: TQuery;
spSkinShadow Label 1: TspSkinShadow Label;
spSkinShadow Label2: TspSkinShadow Label;
spSkinShadowLabel3: TspSkinShadowLabel;
spSkinShadow Label4: TspSkinShadow Label;
BitBtn6: TBitBtn;
procedure BitBtnl Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn2Click(Sender: Tübject);
procedure BitBtn6Click(Sender: Tübject);
procedure FormActivate(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form8: TForm8;

implementation

uses Unitl;

{$R *.dfm}

procedure TForm8.BitBtn1 Click(Sender: Tübject);
var
a:word;
begin
if (dbedit2.Text=editl .Text) then
a:=application.MessageBox('Are you sure add this user?','Are you sure',36);

102

if(a=IDYES)then begin
queryl .Insert;
queryl .Post;
dbeditl .Clear;
dbedit2.Clear;
editl .Text:=";
end

else begin
spskinshadowlabel4. Visibler=true;
dbeditl .Clear;
dbedit2.Clear;
editl .Text:=";

end
end;

procedure TForrn8.BitBtn3Click(Sender: TObject);
begin
dbeditl .Clear;
dbedit2.Clear;
editl .Text:=";
spskinshadow label4. Caption.e";
dbeditl .SetFocus;
end;

procedure TForm8.BitBtn2Click(Sender: TObject);
begin
forrn8.Close;
form I .show;
end;

procedure TForrn8.BitBtn6Click(Sender: TObject);
begin
forrn8.Close;
forml .Show;
end;

••procedure TForrn8.FormActivate(Sender: TObject);
begin
dbeditl .SetFocus;
end;

end.

103

Form -9- Delete Account

unit Unit9;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, Grids, DBGrids, DB, DBTables, SkinCtrls;

type
TForm9 = class(TForm)

Query 1: TQuery;
DataSourcel: TDataSource;
DBGridl: TDBGrid;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
Editl: TEdit;
BitBtn6: TBitBtn;
procedure BitBtn2Click(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure spSkinButtonl Click(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form9: TForm9;

implementation

••uses Unitl;

{$R*.dfm}

procedure TForm9.BitBtn2Click(Sender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are you sure?' ,'Warning' ,36);
if(a=IDYES)then begin
query 1 .Delete;
end;
end;

procedure TForm9.FormActivate(Sender: TObject);

104

begin
queryl .Refresh;
end;

procedure TForm9.BitBtn1Click(Sender: TObject);
begin
query 1. Close;
queryl .SQL.Clear;
queryl.SQL.Add('select * from enter where name like'+#39+(editl.Text)+'%'+#39);
queryl .Open;
end;

procedure TForm9 .spSkinButton 1 Click(Sender: TObject);
begin
form9.Close;
forml.show;
end;

procedure TForm9.BitBtn6Click(Sender: TObject);
begin
form9.Close;
forml .Show;
end;

end.

105

Form -10- SSK's Formulas

unit UnitlO;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, SkinCtrls, Grids, DBGrids, DB, DBTables, StdCtrls, Buttons,
ExtCtrls;

type
TFormlO = class(TForm)

spSkinShadowLabell: TspSkinShadowLabel;
spSkinShadow Label2: TspSkinShadow Label;
spSkinShadow Label3: TspSkinShadowLabel;
spSkinShadow Label4: TspSkinShadow Label;
spSkinShadow Labels: TspSkinShadow Label;
spSkinShadow Label 6: TspSkinShadow Label;
Edit I: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Edit6: TEdit;
Edit7: TEdit;
spSkinShadow Label 7: TspSkinShadow Label;
Edit8: TEdit;
DataSourcel: TDataSource;
DBGridl: TDBGrid;
DBGrid2: TDBGrid;
Table2: TTable;
DataSource2: TDataSource;
DataSource3: TDataSource;
Table3: TTable;
DBGrid3: TDBGrid;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
Timerl: TTimer;
Table I: TTable;
BitBtnl: TBitBtn;
Label 1 : TLabel;
DataSource4: TDataSource;
Table4: TTable;
DBGrid4: TDBGrid;
spSkinShadow Label 8: TspSkinShadow Label;
spSkinShadowLabel9: TspSkinShadowLabel;
spSkinShadow Label 1 O: TspSkinShadow Label;
Edit9: TEdit;
EditlO: TEdit;

106

Editl 1: TEdit;
GroupBoxl: TGroupBox;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
Labell O: TLabel;
Label 1 1 : TLabel;
Label12: TLabel;
Labell 3: TLabel;
Label14: TLabel;
Label15: TLabel;
BitBtn6: TBitBtn;
procedure Timerl Timer(Sender: Tübject);
procedure FormActivate(Sender: Tübject);
procedure Edit8Change(Sender: Tübject);
procedure BitBtn2Click(Sender: Tübject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn3Click(Sender: Tübject);
procedure BitBtn4Click(Sender: TObject);
procedure Edit9Change(Sender: Tübject);
procedure Edit3Change(Sender: Tübject);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure Edit8KeyPress(Sender: Tübject; var Key: Char);
procedure Edit5KeyPress(Sender: Tübject; var Key: Char);
procedure Edit9KeyPress(Sender: TObject; var Key: Char);
procedure BitBtn6Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations } ••

end;

var
Formlü: TFormlO;

implementation

uses Unit5, Unit2, Unit3, Unitl;

{$R *.dfm}

procedure TForm 1 O.Timerl Timer(Sender: Tübject);
begin
editl .Text:=datetostr(date);
edit2.Text:=timetostr(time);

107

end;

procedure TFormlO.FormActivate(Sender: Tübject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit6.Text:=";
edit7.Text:=";
edit8.Text:=";
edit9 .Text:=";
editlO.Text:=";
editl 1 .Text:=";
table3.Insert;
edit3 .SetFocus;
end;

procedure TForm10.Edit8Change(Sender: TObject);
begin
if edit8.Text=" then
else begin
form2.Queryl .Close;
form2.Queryl .SQL.Clear;
form2.Queryl .SQL.Add('select * from Patient_tb where Register_N
like'#39+(edit8.Text)+'% '+#39);
form2.Queryl .Open;
edit6.Text:=form2.DBGridl .Fields[1].AsString;
edit7 .Text:=form2.DBGridl .Fields[2].AsString;
table2.Close;
table2.0pen;
table2.Filtered:=false;
table2.Filter:='register_n='+edit8.Text;
tablel .Filtered:=true;
if(form2.Queryl .RecordCount=O)then
begin

"ShowMessage('Not Found this Patient, tum new drug and add itl!');
end;
end;
end;

procedure TForm10.BitBtn2Click(Sender: TObject);
var
a,b,c,d,suml ,sum2:real;
num:integer;
begin
num:=Application.MessageBox('Are you sure to do SELL?','! !SELL!!',
MB_ YESNOCANCEL+MB_ICONQUESTION);
if num=mr Yes then begin
if edit5.Text="then
showmessage('Please Enter Quantity')

108

else begin
table3 .Edit;
table3 .FieldB yName('Date').AsString:=edit 1.Text;
table3.FieldByName('Time').AsString:=edit2.Text;
table3.FieldByName('DrugBarcode').AsString:=edit3.Text;
table3.FieldByName('DrugName').AsString:=edit4.Text;
table3.FieldByName('Quantity').AsString:=edit5.Text;
table3.FieldByName('PatientName').AsString:=edit6.Text;
table3.FieldByName('PatientSunıame').AsString:=edit7.Text;
table3.FieldByName('number').AsString:=edit8.Text;
table3.FieldByName('type').AsString:='ssk';
table3 .FieldB yName('DoctorNum').AsString:=edit9 .Text;
table3.FieldByName('DoctorName').AsString:=edit10.Text;
table3.FieldByName('DoctorSumame').AsString:=editl 1.Text;
label 1. Caption: =table I .Fields[13].AsS tring;
tablel .Edit;
table l .FieldB yName('Quantity').AsString: =inttostr(strtoint(label 1. Caption)
strtoint(edit5.Text));
tablel .Post;
label5 .Caption:=table3 .Fields[4] .AsString;
label 8.Caption:=table3 .Fields [5] .AsS tring;
label7 .Caption.etable l .Fields[5] .AsString;
label6.Caption:=tablel .Fields[6].AsString;
label9.Caption:=table I .Fields[12].AsString;
a:=strtofloat(label6.Caption);//benefit 2.3
b:=strtofloat(label7 .Caption);//tax 1, 12
c:=strtofloat(label8.Caption);//quantity
d:=stıtofloat(label9. Caption) ;//net price 5 ,66
table3 .FieldB yName('BenefitCost').AsString:=floattostr(d*(a*O.O 1));
suml :=(d*(a*0.01));//benefit cost
suml ı=sum l +d;//benefit+netPrice
table3.FieldB yName('TaxCost').AsString:=floattostr(sum 1 *(b*O.O1));//tax cost
sum2:=(suml *(b*0.01));
table3 .FieldB yName('Total Cost').AsS tring.efloattostn (sum 1 +sum2)*c);
label 1 O.Caption:=floattostr(suml +sum2);

. A
label 11.Captıon:=floattostr((suml +sum2)*c);
table3 .Post;
end;
end;
if num=mrCancel then begin
form 1 O.Close;
forml .show;
end;
end;

procedure TFormlO.BitBtnlClick(Sender: Tübject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";

109

edit6.Text:=";
edit7 .Textr=";
edit8.Text:=";
edit9.Text:=";
editlü.Text:=";
editl 1.Text:=";
edit3.SetFocus;
table3. Insert;
end;

procedure TForrn10.BitBtn3Click(Sender: Tübject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit6.Text:=";
edit7.Text:=";
edit8.Text:=";
edit9.Text:=";
editl O.Text:=";
editl I .Text:=";
edit3.SetFocus;
end;

procedure TForrnlO.BitBtn4Click(Sender: Tübject);
begin
formlO.Close;
forml .Show;
end;

procedure TForrnlO.Edit9Change(Sender: Tübject);
begin
if edit9.Text=" then
else begin
forrn3. Query 1. Close;
form3.Queryl .SQL.Clear;
forrn3.Queryl.SQL.Add('select * from Doctor_tb where Diplomoed_N
like'#39+(edit9 .Text)+'% '+#39);
forrn3 .Queryl .Open;
editl O.Text:=form3.DBGridl .Fields[1].AsString;
editl 1 .Text:=form3.DBGridl .Fields[2].AsString;
table4.Close;
table4.0pen;
table4.Filtered:=false;
table4.Filter:='Diplomoed_N='+edit9.Text;
table4.Filtered:=true;
if(forrn3 .Queryl .RecordCount=O)then
begin
ShowMessage('Not Found this Doctor, tum New Doctor and add it!!');
end;

110

end;
end;

procedure TForm10.Edit3Change(Sender: Tübject);
begin
if edit3.Text=" then
else begin
tablel .Close;
table! .Open;
table! .Filtered.efalse;
tablel .Filter:='barcode=' +edit3. Text;
table! .Filtered:=true;
edit4.Text:=dbgrid2.Fields[1] .AsString;
end;
end;

procedure TForm10.Edit3KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l 3)then edit5.SetFocus;
end;

procedure TForm10.Edit8KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#13)then edit9.SetFocus;
end;

procedure TForm10.Edit5KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l 3)then edit8.SetFocus;
end;

procedure TForm10.Edit9KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#13)then bitbtn2.SetFocus;
end;

procedure TForm10.BitBtn6Click(Sender: Tübject);
begin
form IO.Close;
form I .Show;
end;

end.

111

Form -11- Sellign With Formulas

unit Unitl 1;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls, DB, DBTables, Grids, DBGrids, Buttons,
SkinCtrls;

type
TForml l = class(TForm)

spSkinShadow Label 1: TspSkinShadow Label;
spSkinShadow Label2: TspSkinShadow Label;
spSkinShadowLabel3: TspSkinShadowLabel;
spSkinShadow Label 4: TspSkinShadow Label;
spSkinShadow Label5: TspSkinShadow Label;
spSkinShadowLabel6: TspSkinShadowLabel;
spSkinShadow Label7: TspSkinShadow Label;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Edit6: TEdit;
Edit7: TEdit;
Edit8: TEdit;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
DataSourcel: TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
DBGridl: TDBGrid; ıo.

DBGrid2: TDBGrid;
DBGrid3: TDBGrid;
Tablel: TTable;
Table2: TTable;
Table3: TTable;
Label 1 : Tl.abel;
Timerl: TTimer;
Table4: TTable;
DataSource4: TDataSource;
DBGrid4: TDBGrid;
spSkinShadow Label 8: TspSkinShadow Label;
spSkinShadow Label 9: TspSkinShadow Label;
spSkinShadow Label 1 O: TspSkinShadow Label;
Edit9: TEdit;

112

Editl O: TEdit;
Editl 1: TEdit;
GroupBoxl: TGroupBox;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
Labell 1: TLabel;
Label12: TLabel;
Label13: TLabel;
Label14: TLabel;
Label15: TLabel;
procedure Timerl Timer(Sender: TObject);
procedure BitBtnl Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure Edit3Change(Sender: Tübject);
procedure Edit6Change(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure Edit9Change(Sender: TObject);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure Edit5KeyPress(Sender: TObject; var Key: Char);
procedure Edit6KeyPress(Sender: TObject; var Key: Char);
procedure Edit9KeyPress(Sender: TObject; var Key: Char);

private
{ Private declarations }

public
{ Public declarations }

end;
••

var
Forml 1: TForml 1;

implementation

uses Unit5, Unit2, Unit3, Unit 10, Unitl;

{$R *.dfm}

procedure TForm 11 .Timerl Timer(Sender: Tübject);
begin
editl .Text:=datetostr(date);
edit2.Text:=timetostr(time);
end;

113

procedure TForml 1 .BitBtnl Click(Sender: TObject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit6.Text:=";
edit7 .Text:=";
edit8.Text:=";
edit9.Text:=";
editlO.Text:=";
editl 1 .Text:=";
edit3.SetFocus;
table3 .Insert;
end;

procedure TForml 1 .BitBtn2Click(Sender: TObject);
var
a,b,c,d,suml ,sum2:real;
num:integer;
begin
num:=Application.MessageBox('Are you sure to do SELL?','! !SELL!!',
MB_ YESNOCANCEL+MB_ICONQUESTION);
if num=mrYes then begin
if edit5.Text="then
showmessage('Please Enter Quantity')
else begin
table3 .Edit;
table3.FieldByName('Date').AsString:=editl .Text;
table3 .FieldB yName('Time').AsS tring:=edit2.Tex t;
table3 .FieldB yName('DrugBarcode').AsS tring:=edit3. Text;
table3.FieldByName('DrugName').AsString:=edit4.Text;
table3.FieldByName('Quantity').AsString:=edit5.Text;
table3 .FieldB yName('PatientN ame').AsString:=edit7 .Text;
table3.FieldByName('PatientSumame').AsString:=edit8.Text;

l<

table3.FieldByName('number').AsString:=edit6.Text;
table3 .FieldB yName('type').AsString: ='formulas';
table3.FieldByName('DoctorNum').AsString:=edit9.Text;
table3 .FieldB yName('DoctorN ame') .AsS tringr=editl O.Text;
table3.FieldByName('DoctorSumame').AsString:=editl 1 .Text;
label 1 .Caption.etable l .Fields[13].AsString;
table I .Edit;
table l .FieldB yName('Quantity').AsString:=inttostr(strtoint(label l .Caption)
strtoint(edit5.Text));
tablel .Post;
label6.Caption:=table3 .Fields[4] .AsString;
label7 .Caption:=table3.Fields[5].AsString;
label8.Caption:=table I .Fields[5] .AsString;
label 9.Caption: =table I .Fields[6] .AsS tring;
label 13.Caption:=tablel .Fields[12].AsString;

114

a:=strtofloat(label9. Caption);/ !benefit
b:=strtofloat(label8.Caption);//tax
c:=strtofloat(label7 .Caption);// quantity
d:=strtofloat(label 13 .Caption);//net price
table3.FieldByName('BenefitCost').AsString:=floattostr(d*(a*0.01));
suml :=(d*(a*0.01));//benefit cost
sum 1 :=sum 1 +d;//benefit +netPrice
table3 .FieldB yName('TaxCost').AsString:=floattostr(sum 1 *(b*O.O 1));//tax cost
sum2:=(suml *(b*0.01));
table3 .FieldB yName('Total Cost').AsString:=floattostr((sum 1 +sum2)*c);
label 14.Caption:=floattostr(suml +sum2);
label 15.Caption:=floattostr((suml +sum2)*c);
table3.Post;
end;
end;
if num=mrCancel then begin
form IO.Close;
form I.show;
end;
end;

procedure TForml 1.BitBtn3Click(Sender: TObject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit6.Text:=";
edit7 .Text:=";
edit8.Text:=";
edit3.SetFocus;
end;

procedure TForml 1.BitBtn4Click(Sender: TObject);
begin
form I I.Close;
form I.Show; "
end;

procedure TForml 1.Edit3Change(Sender: TObject);
begin
if edit3.Text=" then
else begin
table I .Close;
table I .Open;
table I .Filtered.efalse;
table I .Filter:='barcode='+edit3.Text;
table I .Filtered:=true;
edit4.Text:=dbgrid2.Fields[1].AsString;
end;
end;

115

procedure TForml 1.Edit6Change(Sender: TObject);
begin
if edit6.Text=" then
else begin
form2.Queryl .Close;
form2.Queryl .SQL.Clear;
form2.Queryl .SQL.Add('select * from Patient_tb where Register_N
like'#39+(edit6.Text)+'%'+#39);
form2. Query 1. Open;
edit7 .Text:=form2.DBGrid I .Fields[1] .AsString;
edit8.Text:=form2.DBGridl.Fields[2].AsString;
table2.Close;
table2.0pen;
tablez.Filteredr=false;
table2.Filter:='register_n='+edit6.Text;
tablel .Filtered:=true;
if(form2.Queryl .Record'Count=Olthen
begin
ShowMessage('Not Found this Patient, tum new drug and add it]!');
end;
end;
end;

procedure TForml 1.FormActivate(Sender: TObject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit6.Text:=";
edit7.Text:=";
edit8.Text:=";
edit9.Text:=";
edit 1 O.Text:=";
editl 1.Text:=";
edit3 .SetFocus;
end;

procedure TForml 1.Edit9Change(Sender: TObject);
begin
if edit9.Text=" then
else begin
form3.Query1 .Close;
form3 .Queryl .SQL.Clear;
form3.Queryl .SQL.Add('select * from Doctor_tb where Diplomoed_N
like'#39+(edit9 .Text)+'% '+#39);
form3. Query 1 . Open;
edit10.Text:=form3.DBGridl .Fields] 1].AsString;
editl 1.Text:=form3.DBGridl .Fields[2].AsString;
table4.Close;

116

table4.0pen;
table4.Filtered:=false;
table4.Filter:='Diplomoed_N='+edit9.Text;
table4.Filtered:=true;
if(form3 .Queryl .RecordCount=O)then
begin
ShowMessage('Not Found this Doctor, tum new doctor!");
end;
end;
end;

procedure TForml l .Edit3KeyPress(Sender: Tübject; var Key: Char);

begin
if(key=#l3) then edit5.SetFocus;
end;

procedure TForml l .Edit5KeyPress(Sender: TObject; var Key: Char);

begin
if(key=#l 3) then edit6.SetFocus;
end;

procedure TForml l .Edit6KeyPress(Sender: TObject; var Key: Char);

begin
if(key=#13) then edit9.SetFocus;
end;

procedure TForml l .Edit9KeyPress(Sender: Tübject; var Key: Char);

begin
if(key=#l3) then bitbtn2.SetFocus;
end;

end.

117

Form -12- Calculator

unit Unitl 2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls;

type
TForm12 = class(TForm)

Button I: TButton;
RichEditl: TRichEdit;
Button2: TButton;
Button3: TButton;
Button4: TButton;
Buttons: TButton;
Button6: TButton;
Button7: TButton;
Button8: TButton;
Button9: TButton;
Button I O: TButton;
Button I 1: TButton;
Button I 2: TButton;
Button13: TButton;
Button14: TButton;
Button15: TButton;
Button16: TButton;
Button I 7: TButton;
Button18: TButton;
Button I9: TButton;
procedure Button I Click(Sender: Tübject);
procedure Button2Click(Sender: Tübject);
procedure Button3Click(Sender: TObject);
procedure B utton4Click(Sender: TObj ect);
procedure Button5Click(Sender: TObject);
procedure Button6Click(Sender: Tübject);
procedure Button7Click(Sender: Tübject);
procedure Button8Click(Sender: Tübject);
procedure Button9Click(Sender: Tübject);
procedure ButtonlOClick(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure Buttonl lClick(Sender: TObject);
procedure Button12Click(Sender: TObject);
procedure Button 13Click(Sender: Tübject);
procedure Button14Click(Sender: TObject);
procedure Buttonl5Click(Sender: Tübject);
procedure Button16Click(Sender: Tübject);
procedure Button I 7Click(Sender: TObject);

118

procedure Button I 8Click(Sender: TObject);
procedure Button I9Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form12: TForm12;
numl :integer;
num2: integer;
operation: integer;
result I:integer;
result:real;

implementation

uses Unit I, Unit14;

{$R *.dfm}

procedure TForml 2.Buttonl Click(Sender: TObject);
begin
richeditl .Text.erichedit l .Text+'l ';
end;

procedure TForml2.Button2Click(Sender: TObject);
begin
richeditl .Text.erichedit l .Text+'Z';
end;

procedure TForm12.Button3Click(Sender: Tübject);
begin
richeditl .Text.erichedit l .Text+'3';

"end;

procedure TForm12.Button4Click(Sender: TObject);
begin
richeditl .Text:=richeditl .Text+'4';
end;

procedure TForm 12.Button5Click(Sender: Tübject);
begin
richeditl .Text:=richeditl .Text+'5';
end;

procedure TForml 2.Button6Click(Sender: TObject);
begin
richeditl .Text:=richeditl .Texı-ı 'ô';

119

end;

procedure TForm12.Button7Click(Sender: TObject);
begin
richeditl .Text:=richeditl .Text+'7';
end;

procedure TForm12.Button8Click(Sender: TObject);
begin
richeditl .Text.erichedit l .Text+'8';
end;

procedure TForm12.Button9Click(Sender: TObject);
begin
richeditl .Text.erichedit l .Text+'9';
end;

procedure TForm12.ButtonlOClick(Sender: TObject);
begin
richeditl .Text:=richeditl .Text+'O';
end;

procedure TForml 2.FormActivate(Sender: TObject);
begin
richeditl .Text:=";
end;

procedure TForml 2.Buttonl 1 Click(Sender: TObject);
begin
numl :=StrTolnt(richeditl .Text);
operation:=4;
richeditl .Text:=";
buttonl 8.enabled:=true;
end;

"procedure TForml 2.Buttonl 2Click(Sender: TObject);
begin
numl :=StrTolnt(richeditl .Text);
operation:=3;
richeditl .Text:=";
button I 8.enabled:=true;
end;

procedure TForm 12.Button 13Click(Sender: TObject);
begin
numl :=StrTolnt(richeditl .Text);
operation:=2;
richeditl .Text:=";
button 18.enabled:=true;
end;

120

procedure TForm12.Button14Click(Sender: TObject);
begin
numl :=StrTolnt(richeditl .Text);
operationr=l ;
richeditl .Text:=";
button I 8.enabled:=true;
end;

procedure TForml2.Button15Click(Sender: TObject);
begin
richeditl .Text:=";
num l r=O;
num'Zı=O;
richeditl .Text:=";
richeditl .SetFocus;
end;

procedure TForm12.Button16Click(Sender: TObject);
begin
richeditl .Text.>";
button I 8.enabled:=false;
richeditl .SetFocus;
end;

procedure TForrn 12.Buttonl 7Click(Sender: TObject);
begin
nurnl :=StrTolnt(richeditl.Text);
result I :=nurnl *nurnl;
richeditl .Text:=inttostr(resultl);
end;

procedure TForrnl 2.Buttonl 8Click(Sender: TObject);
begin
nurn2:=StrTolnt(richeditl .Text);
if operation=I then result:=nurnf +nurn2;
if operation=Z then result:=numl-nurn2;
if operation=ô then result:=nurnl *num2;
if operation=İ then result:=numl/nurn2;
richeditl .Text:=floattostr(result);
end;

procedure TForml 2.Buttonl 9Click(Sender: TObject);
begin
richeditl .Clear;
form 14.close;
form} .show;
end;

end.

121

Form -13- Selling WithOut Formulas

unit Unit13;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, DB, DBTables, StdCtrls, ExtCtrls, SkinCtrls;

type
TForm13 = class(TForm)
Tablel: TTable;
Table2: TTable;
Table3: TTable;
Table4: TTable;
DataSource 1: TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
DataSource4: TDataSource;
DB Grid I: TDBGrid;
DBGrid2: TDBGrid;
DBGrid3: TDBGrid;
DBGrid4: TDBGrid;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Edit7: TEdit;
Edit8: TEdit;
Label 1: TLabel;
spSkinShadow Label 1 : TspSkinShadow Label;
spSkinShadow Label 2: TspSkinShadowLabel;
spSkinShadow Label3: TspSkinShadow Label;
spSkinShadow Label6: TspSki;Shadow Label;
spSkinShadowLabel4: TspSkinShadowLabel;
spSkinShadow Label5: TspSkinShadow Label;
Timerl: TTimer;
GroupBoxl: TGroupBox;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
Label 1 1: TLabel;

122

Label12: TLabel;
Label13: TLabel;
Label14: TLabel;
Label 15: TLabel;
spSkinButtonl: TspSkinButton;
spSkinButton2: TspSkinButton;
spSkinButton3: TspSkinButton;
spSkinButton4: TspSkinButton;
procedure spSkinButton4Click(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure spSkinButtonl Click(Sender: TObject);
procedure spSkinButton2Click(Sender: TObject);
procedure spSkinButton3Click(Sender: TObject);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure Edit5KeyPress(Sender: Tübject; var Key: Char);
procedure Edit7KeyPress(Sender: TObject; var Key: Char);
procedure Edit8KeyPress(Sender: TObject; var Key: Char);
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form13: TForm13;

implementation

uses Unitl;

{$R *.dfm}

procedure TForm13.spSkinButton4Click(Sender: TObject);
begin "
form13.Close;
forml.show;
end;

procedure TForm13.Timer1Timer(Sender: TObject);
begin
edit I.Text:=datetostr(date);
edit2.Text:=timetostr(time);
end;

procedure TForml 3.FormActivate(Sender: TObject);
begin
edit3.Text:=";
edit4.Text:=";

123

edit5.Text:=";
edit7 .Text:=";
edit8.Text:=";
tablel .Insert;
edit3 .SetFocus;
end;

procedure TForm13.Edit3Change(Sender: Tübject);
begin
if edit3.Text=" then
else begin
table2.Close;
table2.0pen;
table2.Filtered:=false;
table2.Filter:='barcode='+edit3.Text;
table2.Filtered:=true;
edit4.Text:=dbgrid2.Fields[1] .AsString;
end;
if table2.FieldB yName('Formul ').AsString='T'then begin
showmessage('This Drug is a Formul; You can NOT sell this!!');
edit4.Text:=";
edit3.Text:=";
edit3 .SetFocus;
end;
end;
procedure TForml 3.spSkinButtonl Click(Sender: Tübject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit7 .Text:=";
edit8.Text:=";
edit3 .SetFocus;
tablel .Insert;
end;

••
procedure TForml3.spSkinButton2Click(Sender: Tübject);
var
a,b,c,d,sum 1,sum2:real;
num:integer;
begin
num:=Application.MessageBox('Are you sure to do SELL?','!!SELL!!',
MB_ YESNOCANCEL+MB_ICONQUESTION);
if num=mrYes then begin
if edit5.Text="then
showmessage('Please Enter Quantity')
else begin
tablel .Edit;
tablel .FieldByName('Date').AsString:=editl .Text;
tablel .Fiel dB yName('Time').AsString:=edit2.Text;

124

tablel .FieldByName('DrugBarcode').AsString:=edit3.Text;
tablel .FieldByName('DrugName').AsString:=edit4.Text;
table 1.FieldB yName('Quantity').AsString:=edit5. Text;
table I .FieldB yName('PatientName').AsString:=edit7 .Text;
tablel .FieldByName('PatientSumame').AsString:=edit8.Text;
tablel.FieldByName('type').AsString:='Unformula';
label 1.Caption:=table2.Fields[13] .AsString;
table2.Edit;
table2.FieldB yName('Quantity').AsString:=inttostr(strtoint(label 1. Caption)
strtoint(edit5.Text));
table2.Post;
label6.Caption:=tablel .Fields[4] .AsString;
label7 .Caption:=tablel .Fields[5] .AsString;
label8.Caption:=table2.Fields[5].AsString;
label9. Caption:=table2 .Fields[6] .AsString;
label 13 .Caption:=table2.Fields[12] .AsString;
a:=strtofloat(label9 .Caption) ;//benefit
b:=strtofloat(label8.Caption);//tax
c:=strtofloat(label7. Caption);// quantity
d.estrtofloaulabel 13 .Caption);//net price
table I .Fiel dB yName('BenefitCost').AsString:=floattostr(d*(a*O.O 1));
suml :=(d*(a*0.01));//benefit cost
suml :=suml +d;//benefit+netPrice
tablel .FieldByName('TaxCost').AsString:=floattostr(suml *(b*0.01));//tax cost
sum2:=(suml *(b*0.01));
table I .FieldB yName('TotalCost').AsString:=floattostr((sum 1 +sum2)*c);
label 14.Caption:=floattostr(sum 1 +sum2);
label 15.Caption:=floattostr((suml +sum2)*c);
tablel .Post;
end;
end;
if num=mrCancel then begin
forml3.Close;
forml .show;
end;
end;

procedure TForm 13 .spSkinB utton3Click(Sender: Tübject);
begin
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit7.Text:=";
edit8.Text:=";
edit3 .SetFocus;
end;

procedure TForm13.Edit3KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l3) then edit5.SetFocus;

125

end;

procedure TForm13.Edit5KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#13) then edit7.SetFocus;
end;

procedure TForm13.Edit7KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#l3) then edit8.SetFocus;
end;

procedure TForm13.Edit8KeyPress(Sender: Tübject; var Key: Char);
begin
if(key=#l 3) then spskinbutton2.SetFocus;
end;

end.

••

126

Form -14- Stock Controlling System

unit Unit14;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, QuickRpt, DB, DBTables, StdCtrls, QRCtrls, SkinCtrls;

type
TForml 4 = class(TForm)

QuickRepl: TQuickRep;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
PageFooterBandl: TQRBand;
PageHeaderBandl: TQRBand;
SummaryBandl: TQRBand;
QRLabel 1: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabel5: TQRLabel;
QRDBTextl: TQRDBText;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBText5: TQRDBText;
QRLabel6: TQRLabel;
RadioGroup 1: TRadioGroup;
spSkinButtonl: TspSkinButton;
Editl: TEdit;
Query l : TQuery;
DataSource2: TDataSource;
spSkinButton2: TspSkinButton;

l'QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
spSkinShadowLabel 1: TspSkinShadowLabel;
GroupBoxl: TGroupBox;
spSkinButton3: TspSkinButton;
spSkinShadowLabel2: TspSkinShadow Label;
spSkinShadowLabel3: TspSkinShadow Label;
spSkinShadow Label4: TspSkinShadow Label;
spSkinShadowLabel5: TspSkinShadow Label;
spSkinShadowLabel6: TspSkinShadowLabel;
spSkinShadow Label7: TspSkinShadow Label;
procedure ButtonlClick(Sender: Tübject);
procedure FormActivate(Sender: Tübject);

127

procedure spSkinButton 1 Click(Sender: TObject);
procedure RadioGroup 1 Click(Sender: TObject);
procedure spSkinButton2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form14: TForm14;

implementation

uses Unitl;

{$R *.dfm}

procedure TForm14.Button1Click(Sender: TObject);
begin
quickrepl .Preview;
end;

procedure TForm14.FormActivate(Sender: TObject);
begin
quickrepl .Visible:=false;
end;

procedure TForm14.spSkinButton1Click(Sender: TObject);
begin
if(radiogroup 1 .ltemlndex=O)then begin
query I.Close;
queryl .SQL.Clear;
queryl .SQL.Add('select * from drug_tbl where barcode
like'+#39+(editl .Text)+'%'+#39);

••queryl .Open;
if(query 1 .RecordCount=O)then begin
qrlabel6.Caption:='Drug Not FOUND!';
end else
qrlabel6.Caption:='Stock Controlling System';
end;

if(radiogroup 1 .Itemlndexe l)then begin
queryl .Close;
queryl .SQL.Clear;
queryl .SQL.Add('select * from drug_tbl where name like'+#39+(editl .Text)+'%'+#39);
query 1 . Open;
if(query l .RecordCount=O)then begin
qrlabel6.Caption:='Drug Not FOUND!';
end else

128

qrlabel6.Caption:='Stock Controlling System';
end;

if(radiogroup 1 .Itemlndex=2)then begin
queryl .Close;
queryl.SQL.Clear;
queryl.SQL.Add('select * from drug_tbl where Company_N
like'+#39+(editl .Text)+'%'+#39);
queryl .Open;
if(query 1 .RecordCount=O)then begin
qrlabel6.Caption:='Company Name Not FOUND!';
end else
qrlabel6.Caption:='Stock Controlling System';
end;

if(radiogroup 1 .Itemlndexeô)then begin
queryl .Close;
queryl .SQL.Clear;
queryl .SQL.Add('select * from drug_tbl where Formul like'+#39+('T')+'%'+#39);
query 1.Open;
if(queryl .RecordCount=O)then begin
qrlabel6.Caption:='Not Having Formul Drug!';
end else
qrlabel6.Caption:='Stock Controlling System';
end;

if(radiogroup 1.Itemlndex=4)then begin
queryl .Close;
queryl .SQL.Clear;
queryl .SQL.Add('select * from drug_tbl where Formul like'+#39+('F')+'%'+#39);
queryl .Open;
if(queryl .RecordCount=O)then begin
qrlabel6.Caption:='Not Having NonFormul Drug!';
end else
qrlabelô.Captionr='Stock Controlling System';

"end;

if(radiogroupl .Itemlndex=S)then begin
queryl .Close;
queryl .SQL.Clear;
queryl.SQL.Add('select * from drug_tbl');
queryl .Open;
end;

quickrep I.Preview;
end;

procedure TForm 14.RadioGroup 1 Click(Sender: TObject);

129

begin

if(radiogroup Lltemlndex=ô) or (radio group l.Itemlndex=l) or
(radio group 1.Itemlndex=5)then begin
edit 1. Visible.efalse;
end
else begin
editl .Visible.etrue;
end;

end;

procedure TForm14.spSkinButton2Click(Sender: TObject);
begin
forml4.Close;
forml.Show;
end;

end.

••

130

Form -15- Selling Controlling System

unit Unit15;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables, Mask,
SkinBoxCtrls, Buttons, SkinCtrls, QRCtrls, QuickRpt;

type
TFormlS = class(TForm)
Tablel: TTable;
DataSource 1: TDataSource;
DBGridl: TDBGrid;
RadioGroupl: TRadioGroup;
BitBtnl: TBitBtn;
spSkinDateEditl: TspSkinDateEdit;
spSkinDateEdit2: TspSkinDateEdit;
spSkinRadioGroup 1: TspSkinRadioGroup;
BitBtn2: TBitBtn;
GroupBoxl: TGroupBox;
spSkinShadowLabell: TspSkinShadowLabel;
Editl: TEdit;
BitBtn3: TBitBtn;
Edit2: TEdit;
spSkinShadow Label 2: TspSkinShadowLabel;
GroupBox2: TGroupBox;
Edit3: TEdit;
Edit4: TEdit;
spSkinShadow Label3: TspSkinShadow Label;
spSkinShadowLabel4: TspSkinShadowLabel;
spSkinShadow Label5: TspSkinShadow Label;
Edit5: TEdit;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
BitBtn6: TBitBtn;
GroupBox4: TGroupBox;
Edit6: TEdit;
Edit7: TEdit;
Edit8: TEdit;
BitBtn8: TBitBtn;
spSkinShadow Label 8: TspSkinShadow Label;
spSkinShadowLabel9: TspSkinShadowLabel;
spSkinShadow Label 1 O: TspSkinShadow Label;
BitBtn9: TBitBtn;
QuickRep 1: TQuickRep;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;

131

var
Form15: TForm15;

implementation

uses Unitl, Unit18;

{$R *.dfm}

procedure TForm15.BitBtn2Click(Sender: Tübject);
begin
tablel .Close;
tablel.Open;
tablel .Filteredr=false;
tablel .Refresh;
end;

procedure TForml 5.spSkinRadioGrouplClick(Sender: Tübject);
begin
if spskinradiogroupl .Itemlndex=O then
begin
spskindateeditl .Visible:=true;
spskindateedit 1. V isible:=false;
end;
if spskinradiogroupl .Itemlndex=l then
begin
spskindateeditl .Visible:=true;
spskindateeditl .Visible:=true;
end;
if spskinradiogroupl .Itemlndex=2 then
begin
spskindateeditl .Visibler=true;
spskindateedit 1. Visible.efalse;
end;
end;

..

procedure TForml 5.BitBtnlClick(Sender: TObject);
begin

if spskinradiogroup l .Itemlndex=1 then begin
tablel .IndexName.v'datee';
table 1.SetRange([spskindateeditl .Text],[spskindateedit2.Text]);
tablel .Apply Range;
end;

if spskinradiogroupl .Itemlndex=ü then begin
table I .Index.Narrıer='datee';
tablel .SetRangeStart;
table 1.FieldB yName('date') .AsDate Time: =strtodate(spskindateedit2.Text);

133

table I .Apply Range;
end;

if spskinradiogroupl .Itemlndex=2 then begin
table! .IndexName.e'daree';
table! .SetRangeEnd;
table l .FieldB yN ame('date').AsDateTime:=strtodate(spskindateedit2. Text);
tablel .Apply Range;
end;

end;
procedure TForm15.BitBtn3Click(Sender: TObject);
begin
if editl .Text=" then
else begin
tablel .Close;
tablel .Open;
tablel .Filteredr=false;
tabi el .Filter:='Drugbarcode='+editl .Text;
tablel .Filtered.etrue;
edit2.Text:=dbgrid I.Fields[4].AsString;
end;
end;

procedure TForm I 5.BitBtn4Click(Sender: Tübject);
begin
if edit3.Text=" then
else begin
table I.Close;
table I.Open;
table l .Filtered.efalse;
tablel .Filterc='Number=t+editô.Text;
tablel .Filtered:=true;
edit 4.Text.edbgrid I .Fields[6] .AsString;
edit5.Text:=dbgridl .Fields[7].AsString;
end· •'end;

procedure TForm15.BitBtn8Click(Sender: TObject);
begin
if edit6.Text=" then
else begin
table I .Close;
tablel .Open;
table I.Filtered: =false;
table l .Filter:='DoctorNum='+edit6.Text;
tablel .Filtered:=true;
edit7 .Text:=dbgrid I .Fields[11].AsString;
edit8.Text:=dbgrid1 .Fields[12].AsString;
end;

134

end;

procedure TForm15.BitBtn5Click(Sender: TObject);
var
count:integer;
benefit:real;
tax:real;
cost:real;
begin
benefit:=0.0;
tax:=0.0;
cost:=0.0;
count:=tablel .RecordCount;
qrlabel 16.Caption:=inttostr(count);
tablel .First;
while not tablel .Eof do begin
benefit.ebenefit+table l .Fields[15].AsFloat;
tax.etax +tablel .Fields[14] .AsFloat;
cost:=cost+table 1 .Fields[13].AsFloat;
table} .Next;
end;
qrlabel 17 .Caption.efloattostrrbenefit):
qrlabel 18.Caption:=floattostr(tax);
qrlabel 19.Caption:=floattostr(cost);
quickrepl .Preview;
end;

procedure TForm15.FormActivate(Sender: TObject);
begin
quickrep I. Visible:=false;
end;

procedure TForm15.BitBtn9Click(Sender: TObject);
begin
form I5.Close;
form I.show;

end;

procedure TForml5.BitBtn6Click(Sender: TObject);
begin
forml8.show;
end;

end.

135

Form -16- Internet Browser

unit Unitl 6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, OleCtrls, SHDocVw;

type
TForm16 = class(TForm)

WebBrowserl: TWebBrowser;
Editl: TEdit;
GO: TBitBtn;
BitBtn2: TBitBtn;
Back: TBitBtn;
Forward: TBitBtn;
DutyPharmacy: TBitBtn;
Exit: TBitBtn;
Label I: TLabel;
BitBtnl: TBitBtn;
procedure ExitClick(Sender: TObject);
procedure GOClick(Sender: Tübject);
procedure DutyPharmacyClick(Sender: TObject);
procedure BitBtn2Click(Sender: Tübject);
procedure ForwardClick(Sender: TObject);
procedure BackClick(Sender: Tübject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure FormActivate(Sender: TObject);
procedure BitBtnl Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;
..

var
Forml6: TForm16;

implementation

uses Unit I;

{$R *.dfm}

procedure TForml6.ExitClick(Sender: TObject);
begin
form16.Close;
forml .show;

136

end;

procedure TForml6.GOClick(Sender: Tübject);
begin
webbrowserl .Navigate(editl .Text);
end;

procedure TForm16.DutyPharmacyClick(Sender: Tübject);
begin
webbrowserl .Navigate(label I .Caption);
end;

procedure TForm16.BitBtn2Click(Sender: Tübject);
begin
web browser I.Refresh;
end;

procedure TForm16.ForwardClick(Sender: Tübject);
begin
webbrowserl .GoForward;
end;

procedure TForml 6.BackClick(Sender: Tübject);
begin
webbrowserl .GoBack;
end;

procedure TForm16.Editl KeyPress(Sender: Tübject; var Key: Char);
begin
if (key=#l 3)then
webbrowserl .Navigate(editl .Text);
end;

procedure TForm16.ForrnActivate(Sender: Tübject);
begin
edit I.SetFocus;
end;

..

procedure TForm16.BitBtn1Click(Sender: Tübject);
begin
webbrowserl .Stop;
end;

end.

137

Form -17- Help

unit Unitl 7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, SkinCtrls, StdCtrls;

type
TForml 7 = class(TForm)

spSkinButtonl: TspSkinButton;
spSkinButton2: TspSkinButton;
spSkinButton3: TspSkinButton;
spSkinButton4: TspSkinButton;
spSkinButton5: TspSkinButton;
spSkinButton6: TspSkinButton;
spSkinButton7: TspSkinButton;
spSkinButton8: TspSkinButton;
Panell: TPanel;
Panel2: TPanel;
Panel3: TPanel;
Panel4: TPanel;
Panel5: TPanel;
Panel6: TPanel;
Panel7: TPanel;
Panel8: TPanel;
Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
spSkinShadowLabell: TspSkinShadowLabel;
spSkinShadow Label2: TspSkinShadow Label;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
spSkinShadow Label3: TspSkinShadow Label;
LabellO: TLabel;
Label I I: TLabel;
Labell2: TLabel;
Label I3: TLabel;
spSkinShadowLabel4: TspSkinShadow Label;
Label14: TLabel;
Labell5: TLabel;
Labell6: TLabel;
Label 17: TLabel;
Labell8: TLabel;
Label 19: TLabel;

..

138

spSkinShadowLabelS: TspSkinShadowLabel;
Label20: TLabel;
Label21: TLabel;
Label22: TLabel;
Label23: TLabel;
Label24: TLabel;
Label25: TLabel;
Label26: TLabel;
Label27: TLabel;
Label28: TLabel;
Label30: TLabel;
Label29: TLabel;
Label31: TLabel;
spSkinShadow Label6: TspSkinShadow Label;
Label32: TLabel;
Label33: TLabel;
Label34: TLabel;
Label35: TLabel;
Label36: TLabel;
spSkinShadow Label 7: TspSkinShadow Label;
Label37: TLabel;
Label38: TLabel;
Label39: TLabel;
Label40: TLabel;
Label41 : TLabel;
Label42: TLabel;
Label43: TLabel;
Label44: TLabel;
Label45: TLabel;
Label46: TLabel;
Label4 7: TLabel;
spSkinShadow Label 8: TspSkinShadow Label;
Label48: TLabel;
Label49: TLabel;
LabelSO: TLabel;
Labels 1: TLabel;
procedure spSkinButtonl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure spSkinButton2Click(Sender: TObject);
procedure spSkinButton3Click(Sender: TObject);
procedure spSkinButton4Click(Sender: TObject);
procedure spSkinButtonSClick(Sender: TObject);
procedure spSkinButton6Click(Sender: TObject);
procedure spSkinButton7Click(Sender: Tübject);
procedure spSkinButton8Click(Sender: TObject);

..

private
{ Private declarations }

public
{ Public declarations }

end;

139

var
Form17: TForm17;

implementation

{$R *.dfm}

procedure TForml 7.spSkinButtonlClick(Sender: Tübject);
begin
panel 1.Visible:=true;
panel2. Visible.efalse;
panel3. Visible.efalse;
panel4.Visible:=false;
panel5.Visible:=false;
parıelô.Visible.efalse;
panel7.Visible:=false;
panel 8.Visible:=false;
end;

procedure TForml 7.FormCreate(Sender: Tübject);
begin
panel 1. Visible:=true;
panel2. Visible.efalse;
panel3 .Visible:=false;
panel 4.Visible.efalse;
panel 5.Visible.efalse;
panel 6.Visible:=false;
panel7 .Visible.efalse;
panel8.Visible:=false;
end;

procedure TForml 7.spSkinButton2Click(Sender: TObject);
begin
panel 1. Visible.<false;
panel2.Visible:=true;
panel3. Visible.efalse;
panel-l.Visible.efalse;
panelô.Visible.efalse;
panel 6.Visible:=false;
panel7. Visible:=false;
panel8.Visible:=false;
end;

..

procedure TForm I 7 .spSkinButton3Click(Sender: TObject);
begin
panel 1. V isible.efalse;
panel 2.Visible.efalse;
panel3. Visible.etrue;
panel-l.Visible.efalse;

140

panelS.Visible:=false;
panel6.Visible:=false;
panel7. Visible.efalse;
panel 8.Visible.efalse;
end;

procedure TForml 7.spSkinButton4Click(Sender: TObject);
begin
panel 1. Visible.efalse;
panel 2. Visible.efalse;
panel3.Visible:=false;
panel4.Visible:=true;
panels. Visible.efalse;
panel6.Visible:=false;
panel7. Visible.efalse;
panel8.Visible:=false;
end;

procedure TForml 7.spSkinButtonSClick(Sender: TObject);
begin
panel 1. Visible.efalse;
panel2.Visible:=false;
panelô.Visible.efalse;
panel-i.Visible.efalse;
panelS.Visible:=true;
panelô.Visible.efalse;
panel7. Visible.efalse;
panel8.Visible:=false;
end;

procedure TForml 7 .spSkinButton6Click(Sender: TObject);
begin
panel 1 .Visible:=false;
panel 2. Visible:=false;
panel3. Visible.efalse;
panel 4. Visible.efalse;
panels. Visible.efalse;
panel6.Visible:=true;
panel7. Visible:=false;
panel8.Visible:=false;
end;

procedure TForml7.spSkinButton7Click(Sender: TObject);
begin
panel 1. Visible:=false;
panel2. Visible.efalse;
panelô.Visible.efalse;
panel 4. Visibler=false;
panel.i.Visible.efalse;
panel 6. V isible.efalse;

141

panel7. Visible:=true;
panel 8. Visible:=false;
end;

procedure TForml 7.spSkinButton8Click(Sender: TObject);
begin
panel 1. Visible:=false;
panel2. Visible.efalse;
panel3. Visible:=false;
panel 4.Visible.efalse;
panels. Visible.efalse;
panel 6. Visible.efalse;
panel7. Visible.efalse;
panel8.Visible:=true;
end;

end.

..

142

Form -18- Graphical Analysies

unit Unitl 8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, TeEngine, Series, ExtCtrls, TeeProcs, Chart;

type
TForm18 = class(TForm)

Chartl: TChart;
Series 1: TPieSeries;
BitBtnl: TBitBtn;
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure BitBtnlClick(Sender: TObject);
procedure FormActivate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form18: TForm18;

implementation

uses UnitlS;

{$R *.dfm}

procedure TForml 8.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin

key:= #O;
Perform(WM_NEXTDLGCTL, O, O);

end;

..

end;

procedure TForml 8.BitBtnl Click(Sender: TObject);
begin
forml 8.Close;
end;

procedure TForml 8.FormActivate(Sender: TObject);
var
c 1 ,c2,c3: integer;

143

begin
cl:=0;
c2:=0;
c3:=0;
form15.Tablel .First;
while not form15.Tablel.Eof do begin

if form15.Tablel .Field.ByName('DrugBarcode').AsString='8699536090115' then
cl:=cl+l;
if form15.Tablel .FieldByName('DrugBarcode').AsString='8699546010011' then
c2:=c2+1;
if form 15.Tablel .FieldB yName('DrugBarcode').AsString='8699504120097' then
c3:=c3+ 1;

form15.Tablel .Next;
end;
series I.Clear;
series I .Add(c 1, 'Maj ezik' ,clred);
series 1 .Add(c2, 'Aspirin' ,clgreen);
series I.Add(c3,'Cataflam',clblue);
end;

end.

144

Form -19- About

unit Unitl 9;

interface

uses
Windows,
Dialogs, jpeg. "C"

· . Controls, Forms,

~~......u.o
S~;_.. Saadowl.a bel;

hadowLabel;
_ Shadow Label;

~,6:TspSkinShadowLabel;
Box:

111: TspSkinShadowLabel;
112: TspSkinShadowLabel;

PJ~~'""owLabel 13: TspSkinShadowLabel;
pSkL'JShadowLabel 14: TspSkinShadowLabel;

hadowLabel15: TspSkinShadowLabel;
p'Skin'Shadowl.abel 16: TspSkinShadowLabel;

BitBtnl: TBitBtn;
Imagel: Tlmage;
procedure BitBtnlClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form19: TForm19;

implementation

{ $R *.dfm}

procedure TForml 9.BitBtnl Click(Sender: TObject);
begin
forml 9.Close;
end;

end.

145

