
• -· ·---------- -

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

LIBRARY USER INTERFACE

GRADUATION PROJECT
COM -400

STUDENT: ZIAD ABDELHAMIED
971002

SUPERVISOR: MR.OKAN DONANGIL

..
•

NICOISA-2000

Table of Contents:

Acknowledgments

Abstract II

Introduction. 1

1. Basics Of Web Design. 2

1.1. Web Programming Language. 2

1.1.1. Html.

SGML: Parent OfHTML.

2

3

1.2. Some Guidelines For Developing Effective Web User Interfaces. 5

1.2.1. Streamlining Forms To Make Data Entry Easier. 5

1.2.2. Optimizing For Limited Bandwidth. 5

1.2.3. Use Colors Effectively. 6

1.2.4. Use Fonts Effectively. 7

1.2.5. Using Capabilities Of The "Intelligent Client". 7

2. Understanding Web Database Technology. 8

2.1. The Web Side. 8

2.1.1. Web Clients. 10

The Client/Server Model. 11

2.1.1.1. Client-Side Processing.

Dynamic Html (DHTML). •
12

13

2.1.2. Web Servers. 13

2.1.2.1. Server-Side Processing.

CG/ Versus AP/: Wlıiclı Is Better?

14

17

2.2. The Database Side. 18

2.2.1. Database Queries & SQL.

A BriefHistory OfSQL.

18

19

• Using Microsoft's Active Server Pages.

20

20

23

27

27

29

30

34

34

35

36

36

38

39

41

42

47

48

2.2.2. Database Servers.

History OfDBMS Models.

2.3. Open Database Connectivity (ODBC).

2.4. Summery Of The More Common Db & Db Tools.

2.4.1. Databases Available.

Side-By-Side Comparison.

2.5. Database Tools.

3. Active Server Page (Asp).

• Getting Input From Html Forms.

• AccessingA Database.

Ado And FrontPage 2000.

4. Some Views Of The Project.

• The Find Drop-Down Menu.

• Book Reservation.

• The Internet Search Page.

Conclusion.

References.

•

Acknowledgment:

I would like to thank my parents, who showed me how to be human, taught me
how to use the pen and was always there for me. Thanks for everything.

I would also like to thank my supervisor Mr.Okan Donangil. Without your
support and understand this was going to be really difficult.

Ziad Abdelhamied

•

I

Abstract:

Library and Internet, two terms lead to the world of knowledge. Joining the two terms
by designing a web library user interface with all the facilities of both library and
Internet is defiantly making that world of knowledge unlimited. And this is what my
project about.

•.
•

II

Introduction:
mtaıner ff&o S//'c'S aYc' ./DCfCa'J.YDF/Y oe.C0.6'7/.,ZCT me bgck;r...~ . .C+Z. • • 'O~.,,,, ~ L/J.oes 0-1 ~./e 1J.7for.ll:7aı-1on

infrastructures within organizations. Prior to intranets, information in organizations was

usually scattered across countless servers with obscure server names, user names, and

passwords. To make matters more con!USmg, \'nere V<M 111:ı~~ ~~, '\. ~~

to access and view the information. One document could be stored in Microsoft Word

format on one server, another document could be stored as a Postscript file on another

server, and yet another document could be stored in WordPerfect format on another

~l!:t'll:!..\..~'0\ '0\\\':J faQı. \l~l:!..t~\ı.ö.'11:!.. \.'0 tl:!..m.l:!..m.\)l:!..t a\\ \\ı.ıc '0\)<s<:ı\lll!. <sıct'lıcl l\ö.m.ıcıs~ \l-Sl!.l l\am.eıs~

and passwords, they had to have countless helper applications (such as Postscript fıle

viewer, Microsoft Word viewer, and so on) installed on their computers to browse

information. lntranets solved this information-distribution problem by providing a

cross-platform medium, Hypertext Transport Protocol (HTTP), and document format,

Hypertext Markup Language (HTML).

Other reason that let me choose to design the library user interface as a web is

the ability to provide the library services and information for students even when they

are outside the university campus. That is simply by connecting to the university
;

website through the Internet.

The information I'm providing in the library web need two types ofweb pages:

• Static for providing the fixed information like contacts, online books... etc. this

type of pages is displayed as it is and contains the information that is rarely

changes.

• Dynamic for retrieving the information on the library databases. Also called

interactive because the information on it depends on the query entered by the
•user.

Chapter 1 Basics of web design

1.1 Web programming Language

1.1.1 HTML

The lingua franca of the Web is Hypertext Markup Language (HTML). The

main function ofHTML is to provide information that the browser can use to make

formatting decisions for displaying the contents of a web document. This markup

information includes basic text formatting, such as codes to bold or underline marked

text. It also includes directions for inserting other files into the current file, particularly

graphics. But the most distinctive feature of HTML is that it gives you the ability to

mark areas of the document (both text and images) as hypertext.

Hypertext refers to a collection of documents that are cross-referenced, or

linked. The advantage of hypertext is that connections between ideas can be easily

conveyed by the author and followed by the reader. In traditional text, reading is linear:

page 1, then page 2, until the end. Hypertext allows a nonlinear arrangement of

connected ideas to be presented to readers, who can follow any thread of discussion

they wish. More important, since all of these hypertext documents are located on the

Web, documents can be linked to each other. This provides an enormous amount of

flexibility in writing hypertext documents. For example, if this report were a hypertext

document, I could link all of the computer terms that I discuss to their definitions in The

Free Online Dictionary of Computing.

WEB LINK
The Free Online Dictionary of Computing is a huge compendium of

•
computer and computing terminology. It's an excellent resource, located

at www.instantweb.com/foldoc/index.html.

2

SGML: Parent of HTML

devices almost as soon as they became commercially available. Unfortunately, however,

The publishing industry enthusiastically accepted computers as labor-saving

'the industry quickly realized that computers had problems figuring out what to do with

text. The text itself wasn't the problem; it was more an issue of formatting text properly.

The underlying need was for the computer to understand that a block of text was, for

example, a headline, which may be treated differently by different publishers and in

different contexts, but nevertheless should always be treated as a headline.

The answer to this problem was the Standardized General Markup Language

(SGML), which was adopted by the International Standards Organization (ISO) in 1986.

It provides a human-readable way to apply structure to the content of a text document

such that it will be consistently formatted and interpreted. In essence, the SGML

contains all of the information about the text that is not the text itself. (Note that SGML J

and WYSIWYG (what-you-see-is-what-you-get) are not the same! A WYSIWYG word I
processor may ensure that the title is in 18-point bold italic Times New Roman font, but I
the program does not know that it is a title. SGML on the other hand, recognizes the text\!

as a title and thus can determine how to present information that is defined as a title.) 1
i

An SGML document consists of two essential components: text that has been I
!

"tagged" or "marked-up" with SGML information; and a document type definition !

(DTD) that explains and defines the tags for the document, describes the contents of

each element, and delineates the relationship between elements. For example, a DTD

for a play could contain a tag called <SCENE>, which contains a paragraph of

information about the scene and a number of <STAGE DIRECTION>, <SPEAKER>,

and <LINE> tags.

HTML is essentially a specific DTD for.hypertext documents that more or less

conforms to SGML standards. More recently, the more powerful eXtensible Markup

Language (XML) DTD has been accepted by the World Wide Web Consortium (W3C)
H. as a new standard for Web content. Microsoft has also lent its weight to the standard by

ilpromising to use XML for its Office suite of products and by using it to construct its

Active Channel Format for push technology in Internet Explorer 4.0.

HTML is text-based language, which makes it much easier to create, maintain,

and transfer web documents among different computer platforms and operating systems.

3

HTML formatting is applied to document components using tags. In most cases, a pair

of tags mark the extent of the formatting. The start tag is always of the form

<TAGNAME> and the end tag is always of the form </TAGNAME>. The tag is case

insensitive. The tag name that indicates text should be underlined is the letter U; for

example, this statement:

<U>This text will be underlined</U> and this text will not.

would produce:

This text will be underlined and this text will not.

when it is interpreted by the browser.

One important thing to note is that the HTML documents are static. The

formatting is embedded in the web document, stored on the server, and then accessed by

the client. There is no provision for changing the content of web pages, especially with

regard to input from the user. Essentially, the only thing a user can do is request a

document, and all the server can do is provide it.

As the Web matured, HTML became a limiting factor for many projects that

people wanted to execute. To address some of these limitations, the Internet

Engineering Task Force (IETF) began to draft a new specification of HTML. But

browser manufacturers, principally Netscape, responded even faster by implementing

their own proprietary extensions to HTML that were only recognized by their own

browser. Some of these extensions became part of the new HTML specification, while

others remained Netscape-specific. This process is ongoing, with Microsoft also playing

a major role.

NOTE •
The HTML specification has undergone a number of revisions. For the

latest information on HTML specifications and proposed changes, go

straight to the source: the World Wide Web Consortium coordinates

nearly all aspect of the Web's growth. You can find the W3C at

www.w3c.org/.

One of the most important additions to the HTML 2.0 specification was the

capability to create forms for user feedback. A basic set of components, such as text

4

boxes, buttons, and list boxes, were defined to make web documents more interactive.

These components changed the nature of web documents so that two-way

communication between the browser and the server was more useful. This addition

made rudimentary web databases a possibility.

1.2 Some Guidelines for Developing Effective Web User Interfaces
Web user interfaces are quite different compared with the user interfaces of

traditional applications. They are especially different from Windows applications.

The following are some guidelines for building effective user interfaces :

• Streamline forms to make data entry easier

• Optimize for limited bandwidth

• Use colors effectively

• Use fonts effectively

• Use the capabilities of the "intelligent client"

1.2.1 Streamlining Forms to Make Data Entry Easier
When building data entry forms, you should streamline them for ease of data

entry. You can do this by trying to organize data entry fields into a logical order. Fields

that are most likely to be filled in should be near the top of the form so they can be

filled out without the need to skip a lot of fields.
Design your interface so that the reader does not have to scroll off the screen.

Depending on the information, it might be better to offer a way to continue to a second

screen instead of forcing the user to scroll down.
~

You should specify default values for HTML data-entry controls. By supplying

the most common default values, you help the user complete the form easily and
• •

quickly.
A final suggestion for entry forms is to clearly mark any fields that are required.

By marking these fields, you show users exactly what they must enter.

TIP: It is good programming practice to include default data values to

guide the user toward entering valid data.

1.2.2 Optimizing for Limited Bandwidth

5

Watch the size of your files when building data entry forms. No matter how well

your Web forms are designed, they serve little purpose if they take too long to load and

display on a Web browser. Web users are not always as patient as you would like them

to be. If a page does not load within about 30 seconds, the user might move somewhere

else (and fill in someone else's form!). Watch out for the following when designing Web

forms to ensure the Web form loads quickly:

Avoid using large graphics in Web forms. In fact, most Web forms really do not

require any graphics. Use graphics only if you have to.

Use Java applets and ActiveX controls only if you have to. Java applets and

ActiveX controls can be used to add some flair to Web forms; however, they add to the

form's file size and, in some cases, affect the time it takes to render the Web form.

Avoid using complex background graphics in Web forms. They take longer to

load and add to the total file size of the Web form. Plain white backgrounds are fine for

most Web forms. If you must do something fancy, select a two-color Web graphic with

a left-hand border.
Avoid complex form controls. For example, avoid using a drop-down list with

many selection items. Each item you add to a drop-down list must be downloaded with

the form. If you have several drop-down lists with many items, then this can begin to

add up in size.

TIP: Try not to add more than about 50 items to a selection list.

1.2.3 Use Colors Effectively
Colors can be used to make your Web forms more interesting and visually

appealing. There is a flip side to using colors, however. Ineffective use of colors can

make your Web forms unattractive and difficult to use.
When using colors, stick to a limited number of very dark and light colors. If

you are using a light color for the text, use a dark color for the background to add

contrast. Here are some guidelines for using colors more effectively:

Don't overuse colors. Keep the number of colors on your page to a minimum.

6

Don't assume the reader is using a monitor that supports a high number of

colors. Browse your Web page with a browser running on a computer with only 256

colors. This is especially important if you are using images on your page.

Use colors only when necessary. A good use öf colors is to display the labels of

required data fields in red.

TIP: After building a Web form that uses colors, ask someone else to

give you feedback on your color scheme.

1.2.4 Use Fonts Effectively
Fonts can be used to add a professional touch to your Web forms. When using

fonts in Web pages (as well as Web forms), it's best to stick to fonts that are available in

virtually all computers, such as

• Arial

• Courier

• Times Roman
Fonts, like colors, should not be overused. You should limit the number of

different fonts used to as few as possible.

1.2.5 Using Capabilities of the "Intelligent Client"
When designing a Web site, you need to determine what browsers will be used

to access your site. In addition to considering which browsers, you need to consider

which versions. By knowing which browsers and versions are accessing your site, you

can add more functionality t<J your pages by taking advantage of the browsers' built-in

functionality.
For example, if you know that both Netscape Navigator and-Microsoft Internet

Explorer browsers are going to be used and if you know that you want to use scripting,

then you should design your pages with JavaScript rather than VBScript. JavaScript is

supported by both browsers, so your code will be portable. If you use VB Script, the

Netscape browsers might not be able to run your scripts.

You can use the browser's intelligence to help design more user-friendly

applications. With client-side scripting, you can create a more effective Web user

interface by giving the user instant feedback if a data entry field is not filled in properly.

Client-side validation is not a substitute for server-side data validation, however. You

7

still need to plan on validating data on the server by using an ASP subroutine. Client

side data validation complements server-side data validation. It is not a substitute.

NOTE: Microsoft FrontPage can automatically generate JavaScript code

that validates the form data on the client side.

•

8

Chapter 2 Understanding Web Database Technology

There are three basic components to any web-based database application: web

technology, database technology, and the technology that connects them. The software

that connects the Web to the database is often called middleware since it sits between

the application and the network. Figure 2.1 shows this generic layout and lists some of

the technologies that will be covered in this report.

Native Databaşe
Gateways

Figure 2.1 The three clouds of Web database technology.

2.1 The Web Side
Understanding how the Web works is essential to understanding how to put a

database on the Web.
At its most basic level, the Web is a way to share information. The information

is stored in a standard format that includes both the actual textual and/or numeric data

and some degree of formattin~ control. This information is stored on a remote computer

that is connected to a network, either the global Internet or some private network (a

company's intranet for example). The real innovation is that the information is" .
accessible to anyone connected to the network, not just people who have usage

privileges on the computer. The basic outline of this process (as shown in Figure 2.2) is:

1. User requests a file from the remote computer using a web browser.

2. Web browser passes request through HTTP.

3. Web server on remote computer receives request and processes it.

4. If the file exists on the remote computer and is web-accessible, the remote

computer delivers the file to the web server.
5. The web server forwards the file to the appropriate web browser client.

9

6. Web browser interprets the formatting embedded in the file and presents it to the

user.

e 3. Webserverprocesses

request. ' Remote Computer
(Server)

4. FIie ıs retrievedby ı--------~
web server.

i I

2. HTIP I I 5. HTIP
request reply

6. HTML-tomıatted
~t.

ı. User requesıs
file.

User
(Client)

Figure 2.2 Web client/server diagram.

2.1.1 Web Clients
Web clients are normally called web browsers. The most commonly encountered

browsers (Table 2.1), Netscape Navigator, Microsoft Internet Explorer, and the

venerable Mosaic, are the user's gateway to the information available on the Web.

These clients have three main functions:

1. Communicate with web servers on the Internet using the HTTP protocol.

2. Provide the tools to navigate between web documents and servers.

3. Offer a means of viewing the content of web documents.

The integration of these functions is what has made the Web so popular in

comparison to older technologies such as anonymous FTP (file transfer protocol) and

Gopher.

Table 2.1 Web Browser Popularity*
•

Server Browserwatch Georgia Tech Zona Research

Netscape Navigator 58 60 62

Microsoft Internet Explorer 31 15 36

Others (including AOL) 11 25 2

10

*Based on percentage of users.

Sources: Browserwatch user survey (4/13/98), Georgia Tech 8th WWW

Survey of self-reported webmasters (11/16/97), and Zona Reseach press

release on corporate web browser choices (9/29/97).

rr== .i The Clıent/Server Model
~ 'j The relationship between the web browser and the remote computer is an
•I example of the client/server model. In this scenario, the remote computer acts as a web

I server and the web browser acts as the client. The client sends a request for information

lor some action to the server. The server responds, typically by presenting a file to theı client. The browser then takes the file, processes it, and presents it to the user.

I The client/server model was developed to address a number of needs, primarilyI for large-scale installations such as government and industry. In the early days of

'ı mainframe computers, the clients were directly connected to the mainframe. Often
I
called dumb terminals, the clients typically consisted solely of a monitor and a

'ıI keyboard. One major advantage of this scheme is that a single powerful server can

I simultaneously respond to a number of different users. Because the clients are relatively
dI cheap and the server is fairly expensive, this model controls costs since client terminals

! can be added as the number of users increase instead of buying one computer per
I person.

Another advantage of the client/server model is that files can be shared more

I easily since they are located on the same machine. Centralized storage makes it easier to

I collaborate on files.
I
[I The problem with the client/server model is that the demand {or processor time
I •I and storage space is always increasing and those resources are finite. It's much more
iI expensive to upgrade a large server than it is to replace a few desktop machines. EvenI more problematic is the "eggs in one basket" nature of the client/server model. When all

i users are working on one machine, a failure of the server results in a loss of computing
i! power for everyone. Desktop machines can fail without affecting as many other people,
' II 1 . Iİ and can usually be replaced with a spare?whereas there are rarely extra servers yıng I
' Iı around as replacement~! I

11

! It is interesting to note that we've come full circle in the past 30 years from the I
. II mainframe approach to desktop machines back to mainframes. The "network computer" Ir ,
t I! or "thin client" that is being promoted by Sun and other manufacturers harkens back to I
İ Iı ~ent/server model of the 1970s. __ J
2.1.1.1 Client-side Processing

A more recent advance in web technology is client-side processing. Earlier in

the discussion about the client/server model, I implied that the server did all the work

while the client passively displayed it. This is true to a great extent for most web

documents, but there are a growing number of options for incorporating more dynamic

elements into web documents that can be interpreted by the browser itself.

The earliest arrival was Netscape's Livewire, which is now known as JavaScript.

JavaScript and Microsoft's newer VBScript (roughly based on their Visual Basic

programming environment) are both text-based languages directly embedded into the

web document. Both are also event-driven languages that can manipulate the elements

of a web document through the browser. The scripting capabilities consist primarily of

triggered responses to browser events. These events range from direct user interaction,

such as mouse clicks on elements of the page to more global browser events, such as the

loading or unloading of a particular page.

NOTE
JavaScript has absolutely nothing to do with Java. It is not a different nor

an easier version of the-Java programming language. The name switch is

essentially a marketing ploy by Netscape!

Scripting languages such as these are relatively easy to use, though not very

powerful. Their main advantage is that they let the page react dynamically to the

conditions or changes of the browser without needing to access the server. In essence,

the scripts execute in the browser. This cuts down on the number of exchanges between

the web server and the browser, which speeds up performance.
For example, JavaScript can be embedded in a page to change the layout, based

on the type of browser that is being used to take advantage of browser-dependent

HTML extensions. Another common use is to have a simple script that changes the state

12

of a small, button like image on a web page from an on state to an off state when

clicked. The most relevant use of scripts for web databases, however, is to validate data

entries. If a text box is set up to contain a five-digit zip code, client-side scripting can

check the length of the string in the text box and notify the user that an entry is incorrect

before it is sent to the server. These types of scripted validation routines are very

common in web database design.
i! Dynamic HTML (DHTML)
rI One of the goals of web developers is to be able to dynamically change the
ıI actual HTML code on a web page without having to interact with 'the server. This

I allows far more interactivity without having to squeeze interactivity programming back ,

1 and forth through the narrow data bottleneck between the client browser and the remote

server. This dynamic HTML (DHTML) is in active development and some features are

I already integrated into the 4.x version browsers from both Netscape and Microsoft.

\ Of course, Microsoft and Netscape both implement DHTML using differing

1
technologies and specifications. Currently, there is virtually no way to script cross

I browser DHTML. But the W3C is working on DHTML standards, and by the time
I! going on, may have smoothed some of the differences.
L - --

2.1.2 Web Servers
Web servers are the workhorses of the World Wide Web. Their fundamental

duty is to receive, interpret, and respond to the requests of web clients. Servers are

responsible for providing the greatest percentage of web traffic across the network.

The phrase "web server" is often used in two distinct ways. At the most basic

level, a web server is a piece of software that is actively "listening" for client HTTP

requests. Some of the most popular web server packages (Table 2.2) 'include the original

NCSA web server, Netscape Suitespot server and its other varieties, Microsoft Internet

Information Server (IIS), O'Reilly Website Server, and the Apache web server.

Table 2.2 Web Server Popularity*

Server Netcraft Georgia Tech Zona Research

Netscape Navigator 58 60 62

Netscape servers 12 22 42

13

Microsoft IIS 21 21 28

Apache server 48 30 NIA

Others (including Macs) 19 27
30 (inlcudes

Apache)

*Based on percentage of users.

Sources: Netcraft automatic monthly survey (4/98) of most of a\\

available sites (2,215,195 in this survey), Georgia Tech 8th WWW

Survey of self-reported webmasters (11/16/97), and Zona Research

survey reported in ZDNet 12/15/97.

The other sense of the phrase "web server" is the more traditional notion of a

physical machine dedicated to a particular task. In many cases, especially in the

business world, a particular computer (or cluster of computers) is dedicated solely to

running a web server software package. In this case, there is no real difference between

the software and the machine that is running that software. In other cases, the server

software may be running on someone's desktop machine, sharing space with the normal

day-to-day work that is done on the machine. Obviously, a dedicated machine is

preferable for serving web documents.

2.1.2.1 Server-side Processing
The bulk of the web server's work consists of sending files to a web client. But

• •
as the Web has grown in popularity as a general computing idiom, facilities for

interactivity \ıave graô.ua\\y maıie füeır ~ay 111\0 ı::,erver <::,<)1\.~are.1:\ıe a\)\.\l\'j \o reı::,\)Oi\11

to client responses appeared in web server software to handle data that was entered into

HTML forms. The information provided by the web client is processed by a program

running on the server. The program on the server then either redirects the client to a

URL based on the results of the program, or it dynamically generates a new web page in

response to the input.

14

The Common Gateway Interface (CGI) is the most straightforward way to

process responses from the Web. In a typical setup, an HTML form is submitted to the

server, and that form data is then passed through CGI to a processing program. CGI also

provides access to a standard set of general information (see Table 2.3) about the web

client, such as the type of browser being used by the client.

Table 2.3 List of CGI Environment Variables

Variable Description

The authentication method used to validate a user.
AUTH TYPE

CONTENT LENGTH

CONTENT TYPE

DOCUMENT ROOT

The length of the data (in bytes or the number of

characters) passed to the CGI program through the

standard input.

The MIME type of the query data, such as

text/html.

The directory from which web documents are

served.

GATEWAY _INTERFACE The revision of the Common Gateway Interface that

the server uses.

HTTP ACCEPT

HTTP FROM

HTTP REFERER

HTTP USER AGENT- -

PATH INFO

PATH TRANSLATED

QUERY_STRING

A list of the MIME types that the client can accept.

@I The email address of the user making the request.

Most browsers do not support this variable.

The URL of the document that the.client points to

before accessing the CGI program.

The browser the client is using to issue the request.

Extra path information passed to a CGI program.

The translated version of the path given by the

variable PATH INFO.

The query information passed to the program. It is

15

appended to the URL with a question mark(?).

REMOTE ADDR
The remote IP address of the user making the

request.

REMOTE HOST
The remote hostname of the user making the

request.

REMOTE IDENT The user making the request. This variable will be

set only if the NCSA identityCheck flag is enabled

and the client machine supports the RFC 931

identification scheme (ident daemon).

REMOTE USER The authenticated name of the users.

REQUEST_ METHOD
The method with which the information request was

issued.

SCRIPT NAME The virtual path (e.g., /cgi-bin/program) of the

script being executed.

SERVER NAME The server's hostname or IP address.

SERVER PORT
The port number of the host on which the server is

runnıng.

SERVER PROTOCOL The name and revision of the information protocol

the request came in with.

Server-side processing is essential to any database-oriented web application.

CGI provides one method for accessing programs that reside on the server, but it is

fairly slow and requires a fair knowledge of the operating system (often Unix) and at

least one programming language (usually Perl). Both Microsoft and Netscape have

addressed the speed and complexity issues by incorporating application programming

interfaces (AP Is) into their web servers. The API allows software developers to access

the server software directly, instead of through CGI, which drastically increases

processing speed of forms and allows for a great deal of server customization.

16

r.==.-ıi CGI versus API: Which Is Better?

I The basic argument between CGI and vendor-specific API interfaces for server-

! side processing boils down to compatibility. The Web was originally designed to be
İ.

! platform-independent. An HTML file from a particular server running a specific

I operating system, for example, can be interpreted by a browser running on any other

I platform. But, as early browser developers quickly noticed, there were many featuresl that could be added to HTML to increase its usefulness. Unfortunately, these extensions
Ii to HTML could not be interpreted by other browsers since they were not part of the

I standard. This put the web page designer and the web surfer in the difficult position of
ıI making choices between compatibility and features.

I The choice between using CGI or API-specific software to handle server-side

I processing is at once more complex and more straightforward. Since the web client is

lhınaware of the method of server-side processing, all of the ramifications about

! implementing it rest on the web designer. This means that changes should be mor~ or

İ less transparent to the outside world. But since server-side processing requires a sizable

I investment of programming effort, changes are much more expensive.

I The main advantage of CGI is that it is a universal format. All web serversıI implement some flavor of CGI capability. This means that if a program for processing a

I web form is written in Fortran-90 for an NCSA web server running on a Solaris 2.5
i
11· operating system, the same Fortran-90 program can be recompiled to run on a Windows

NT 4.0 server running Netscape Enterprise Server. Both the HTML-based web formsI and the processing program are fairly portable.

! The downside of CGI is that it's slow. Each time a web client activates a

!!program through CGI, a new ınstance of that processing program is started. So if 28

users submit forms to be processed, the server has to run 28 separate copies of the..
processing program! This will drastically affect the server if the processing is long or

II complex, or if there are many users.
ll Some server developers have tried to address this problem by allowing other

I pieces of software to directly interface with the server through an APL This greatly j
, I

I enhances the speed of processing since only one copy of the processing program is /

I active. Each request for processing is either queued for sequential processing or handled I
! I
! in parallel through multitasking or multithreading. Iı - .. . -

17

In exchange for the speed, however, this type of approach locks you into a \

l specific vendor. If you develop a custom program or buy a package that addresses the I
' !I API of a particular web server platform, a new package must be developed or purchasedj
! !! to use any other server. A custom application written using Microsoft's ISAPI with I
t I
I Internet Information Server is practically useless on a Netscape server. Iı !I CGI is fine for simple scripts or institutions with deep programming expertise. It I
I is also probably a good choice if you are outsourcing your web hosting since CGI can I
' II be used with virtually any Internet service provider. But I think the speed of API-based 1

' Il applications and the powerful tools that have been developed to support building them I
I make it the clear winner for high-volume sites and applications that are hosted in-house. I__J

2.2 The Database Side
Databases are a much more mature technology than the Web. Early systems

were based on paper records, and later punch cards. Computer technology was applied

to complex data processing tasks from their inception. Databases were one of the

primary applications of early mainframes, and finally reached the desktop in the 1980s.

During that period of development, a number of standards emerged to make it easier for

different pieces of database software to be integrated. The large majority of this work

was focused on relational databases since their use was so widespread.

2.2.1 Database Queries & SOL?
The most basic function of a database is to provide data based on user requests.

In the early 1970s, IBM created a structured query language, better know as SQL to

provide access to its relational database package.
•

SQL is based on the work of Dr. E. F. Codd, the father of the relational database.

Since this was the first relational database software package, this language became the

de facto standard for database development. It was officially adopted by both the

American National Standards Institute (ANSI) and the International Standards

Organization (ISO) in the late 1980s.
Fortunately, almost every commercial database understands SQL. This lingua

franca of the database world makes it fairly easy to port data from one database package

18

to the next. If a particular database operation is implemented using SQL, there should

be no difference in how the query works on any other SQL-compliant database. This

also means that it is definitely worth expending some time and energy to learn SQL!

NOTE
In reality, SQL is a language with as many dialects are there are vendors.

Many have added their own extensions to the "standard" implementation

of SQL. Many have also made different choices about how to quote

strings or defaults for sort orders. In general though, very little tweaking

should be required when moving typical SQL code among database

vendors.

II A Brief History of SOL
i SQL first appeared in a prototype relational database system, System R,

developed at the IBM San Jose Research Laboratory in 1974 by a team led by Donald

I Chamberlain. The database language they developed was called Structured English
Ii QUEry Language, or SEQUEL. As System Revolved into more sophisticated products,
fI like IBM DB2, SEQUEL evolved into SQL.l SQL is firmly rooted in mathematical logic, specifically relational calculus.I More formally, it is a mathematical formalization ofrelational algebra based on fırst

i order predicate logic. Since that definition is probably as clear as mud to most of us,

\ let's simply say that SQL is a nonprocedural and fairly English-like query language for

\ databases.I The first standard implementation of SQL was dubbed SQL-86 by the
II International Standards Organization. There is also an SQL-89 and more recently SQL-

l 92, also known as SQL2. To further complicate matters, both standards have multiplel 1evels of compliance. And many vendors have yet to meet the full specification of
ıI specific compliance levels. So, despite the implication that there is one specific standard

I implementation of the SQL language, there are actually a number of dialects.
ı'I Essentially, each database vendor has its own slightly different version of SQL, though

the core functionality of each is nearly identical.
" It incorporates a number of object-oriented features into the relational database

19

rr==- . -!design. A number of manufacturers are also writing database APis based on SQL, suchI as Microsoft ODBC (discussed later in this report).

SQL is a very simple language, but its elements can be combined to quickly

create powerful effects. It is also a language that reads very much like normal English

(more so than HTML!), which certainly makes it easier to talk about. SQL can be used

to do virtually anything to data in a relational database. It can perform maintenance

tasks, such as deleting records or creating new tables, as well as provide a way to find

data in the database. The basic commands are given in Table 2.4.

Table 2.4 Basic SQL Commands

Command Description

DELETE Remove data from a table.

INSERT Add data to a table.

SELECT Find data matching a specified set of criteria.

UPDATE Change existing data in a table.

2.2.2 Database Servers
Database management systems (DBMS) have their roots in terminal-based

mainframe applications. This means most modem databases are modeled on the

client/server architecture. In other words, each DBMS consists of two distinct parts:

client software that makes requests and a server that interprets the request and returns
••

the appropriate data. In some cases, both pieces of software are integrated for use on the

desktop computing platform (like Microsoft Access). In most cases however, there is a

separate software package for each role.
r---
1 History of DBMS Models
I I DBMS software was developed not long after computers became commercially
iI available. While relational DBMS are in widespread use and OODB software is 1

I becoming more common, there are two other DBMS models that were extensively used \

\in the 1960s and through the present day. All of these systems were designed to run on I
I . f ıI m_"'l1__1"'1"e computer systems. j

20

\ The hierarchical database model (HDM) was one of the earliest DBMS systems

l\ to gain popularity. The basic architecture, shown in Figure 2.3, looked like an inverted

\ tree, starting with a root table with additional data tables as branches from the root. The

\ only possible relationship in this model was parent-child. A single parent could be
ıI associated with many children, but each child could only be associated with one parent.
Iı
I
I
l
Iı
i

I
l
I
I
i

\1

II Figure 2.3 Hierarchical database model.
I\ The data was linked either using a pointer or through the physical arrangement

\of tables. To access data, the DBMS had to start with the root and work through each

\branch leading to the desired record. Queries in such a system required extensive

\ knowledge of the physical layout of the tables.
i\ HDM had a number of advantages as a DBMS. It was an especially efficient

I architecture for accessing data stored on magnetic tape, which was the primary method I
\ of storing large data in the 1970s. lt also had built-in referential integrity since the 11

I parent and child records were explicitly linked (adding a child required the existence of \
I I

\ a parent, and deleting a parent Jed to the deletion ofl inked child records). \
\ One drawback to HDM was the amount of redundant data that the design \

I required in many situations. Another drawback was that complex relationships, \

\ especially many-to-many relationsinps, were exceedingly difficult to create. Both of \I these factors could lead to situations where certain queries were impossible without \

\;,.,constructingthe physical architecture of the databaSe. • \. I

\ The network database model (NDM) was another DBMS architecture that was \
ı !
\popular on mainframe systems. It fixed a number of the problems in the HDM. The i
\ architecture was essentially the same as the HDM with the primary difference that child \

\ branches could be shared by parent tables, as shown in Figure 2.4. The relationship was \
• I
\ then a logical set where one table was the owner and the connected table(s) represented !
l \
\ each member of the set. This arrangement allowed a one-to-many relationship between I
ı .. -- -- .

~

Branch
CBranch

l \ Leaf J
~Leaf

21

! an owner and a member, and a one-to-one relationship between records in the member
I! and the owner table. It also allowed records to exist in a member table without being

! related to an existing record in the owner table.
ı
Iııı
i
'
I
lıFigure 2.4 Network database model.

The advantage ofNDM was that data could be accessed starting from any table

Owner

Fe~ber Owner/Member

1

-------- /''-------------- -: ' --... / '
I Member I Owner/MemberMember

and worked through the appropriate sets in the correct order. This greatly increased the

complexity of questions that could be answered using the database. Queries also

accessed data very quickly in this model.

Unfortunately, it was still necessary to know the structure of the database toI work through the appropriate sets to find data. It was also exceedingly difficult to
fI change the structure of the database since the logical sets for a particular query were
ı

I
' related to the logical layout of the database.

: As each model was implemented, the database users came up with questions toI ask of the data that required more complex models. The relational database model

ı (RDM) was developed in the late 1960s to address the inadequacies of the HDM and
f.

INDM approaches to database design. This is by far the most common model for modernI databases. But in keeping with the patterns of progress, the object-oriented database
1

I model (OODM) is growing irrpopularity in situations where the RDM is not effective I
I (such as media management and where inheritance is important or where data items are \

I linked in complex ways to other data items). The-power that each suôcessi ve model I
f gıves the user sımply results ın users wantıng even more power! II _ . _ _ _ _ _ _ . I

While this client/server architecture has much in common with the Internet's

client/server model, there is one significant difference: Each server DBMS can only be

accessed by a specific client. In other words, a Brand X RDBMS server requires a

Brand X RDBMS client. This makes merging data from different sources or porting

data to a new database platform a nontrivial task. This problem was alleviated in some

ways by the introduction of SQL, which provides a common syntax for database

22

functions. But each vendor has created their own dialect of SQL that accesses the full

capabilities of their database server and thus requires their own specific client to

generate the proprietary SQL code. In other words, the basic commands are the same,

but any significant database application is going to require a significant amount of

tweaking to port to a new DBMS.

2.3 Open Database Connectivity {ODBC)
In 1988, a number of database vendors, including Microsoft, Sybase, DEC, and

Lotus, were all individually working on a way to solve this problem by providing

common access to databases from a variety of vendors. The goal was to allow any

program to transparently access data stored in the native data format of any database

plication. They pooled their efforts and jointly developed the Open Database

ectivity (ODBC) standard, which they released in 1992. Late that same year,

was adopted by the ANSI SQL committee, which officially made it the standard

for database access.
BC provides an abstraction layer between the application interface and the

ich effectively hides the differences and peculiarities of each specific

ODBC standard model is shown in Figure 2.5. This model provides a

dent development environment for database applications. In effect, a

can be written once using calls to ODBC, and can then access data

C-compliant DBMS. The only required component is an ODBCstored in any

specific syntax

a particular DBMS that can translate the database query into the

ts particular~database format.
ade the developer's job much easier. It provides a common way to

ile SQL provides the common syntax to perform database
•

bined, these technologies make database application development

For example, an application can be written using an inexpensive

abase on a desktop machine, which can be ported to a large server

strength DBMS package simply by changing the ODBC driver for

manipulations. C

much more effici

running an industrf

that application.

23

ABC Database
XYZ Database

ı II,
ODBC Driver
tor Product ABCODBC Driver

tor Product XYZ

~~/

ODBC Manager /

Client Application

Figure 2.5 ODBC standard models.

NOTE
The differences among individual database packages are handled by

configuring the driver options for each database. For example, Microsoft

SQL Server implements a security requirement that forces each database

user to log in with a name and password before manipulating a database.

The ODBC driver for MS-SQL Server allows these parameters to be set.

Microsoft Access, on the other hand, has no such requirement, so its

ODBC driver does not have that set of parameters.

In practice, ODBC is much more relevant to the Windows platform than Unix or

Macintosh. Virtually every Windows database is ODBC-compliant. Many of the larger

database vendors have ODBC drivers that allow Windows-based applications to access

databases running on a Unix database server, but some do not. Development tools for. . -

accessing ODBC-compliant databases are also few and far between for platforms other

than Windows. This is changing as Microsoft and various Unix vendors merge their

standards technologies; but currently, ODBC is mainly a Windows standard.
Figure 2.6 shows a schematic diagram of the role that these products play and

the technologies that can be used to make the various connections among the

components.

24

et HTTP- ~::~ I Database I

Figure 2.6 Schematic of database middleware solutions.
A more detailed explanation of the steps involved in retrieving data from the

database is:
1. The web client makes a request using some sort of form or hypertext link (like a

button).
2. The request is sent to the web server through HTTP.
3. The web server receives the request and passes it to the middleware through

either CGI or the server's native APL
4. The middleware processes the request, formulates the appropriate SQL

commands, and passes it to the database server using ODBC or to its own

database server as appropriate.
5. The database server receives the SQL request through ODBC and translates it

into native instructions
6. The database server receives the requested data from the database and sends it

back to the middleware. •
7. The middleware formats or processes the returned data into some format

appropriate to the Web and sends it to the web server.

8. The web server returns the data from the database to the web client.
This is a much more complex process than the typical request for a web page

from the server, which takes less than half that many steps!
The advantage of this approach is that any ODBC-compliant can be plugged into

the web application. In fact, one application could access data stored in several different

database systems and combine it. The user has no way of knowing how many different

25

databases are being accessed nor what kind of databases they are. The main problem

with this method is that a number of these steps can become speed and bandwidth

bottlenecks. It is also impossible to further tweak the speed of the individual

components in any significant way.
In some cases, vendors have addressed the need for web applications by creating

entirely new web server software from scratch to address shortcomings in the existing

servers. The desire to access databases has been one of the primary forces driving these

types of developments. Figure 2.7 shows the architecture of a server that integrates

database and web server functionality.

Figure 2. 7 Schematic of an integrated web database server.

This scheme makes the server processing more straightforward. The general

sequence of events is:
1. The web client makes a request using some sort of form or hypertext link (like a

button).
2. The request is sent to the integrated server through HTTP .

•
3. The integrated server receives the request and translates data requests into native

instructions for the database (or queries an internal database).
4. The integrated server receives the requested data from the data~ase and sends it

back to the web client as HTML.
This scenario is essentially identical to the normal web page request scheme. It

allows the vendor to make any number of speed and throughput tweaks, because there

are no standards bodies to satisfy. But creating an integrated server from scratch is a

time- and labor-intensive process that leads to much higher costs for this sort of tool.
)

26

It's also less likely that any ODBC database can be plugged in since the server is

optimized for specific databases or even a proprietary integrated database.

2.4 Summery of the more common DB & DB tools

2.4.1 Databases Available
This section lists some of the more common database solutions that are widely

used on the Web.

Oracle

Oracle is the largest database developer in the world, providing databases for

Windows NT and various UNIX flavors. Oracle has created its own set of tools (mainly

PL/SQL, in conjunction with the Oracle Web Agent). These tools, coupled with the

Oracle Web server, allow you to create Web pages with little effort using information

stored in the database. PL/SQL allows you to form stored procedures that help speed the

database query. The Oracle database engine is a good choice for large businesses that

handle large amounts of information but, of course, you're going to pay for that.

Sybase

Sybase System 11 is a SQL database product that has tools for a dynamic Web

page production. A product by Powersoft, the Netimpact Studio, integrates with Sybase

to provide a rich set of tools to help anyone create dynamic HTML documents. The

Netlmpact Studio consists of an HTML browser/editor accompanied by a personal web

server. They allow you to create pages using a WYSIWYG interface. The Studio also

comes with a Web database, support for JavaScript, and support for connecting to

application servers.

Netimpact can be used in conjunction with PowerBuilder, an application used to create

plug-ins and ActiveX components. It also can be used to complement Optima++, which

is used to create plug-ins and supports Java applet creation.

Sybase can also be used with web.sql to create CGI and NSAPI (Netscape Server

Application Programming Interface) applications that access the Sybase database server

using Perl. Sybase is available for Windows NT, and UNIX.

mSQL

mSQL is a middle-sized SQL database server for UNIX that is much more

affordable than the commercial SQL servers available on the market. Written by David

Hughes, it was created to allow users to experiment with SQL and SQL databases.

27

Version 1.0.16 is free for non-commercial use, but you have to pay for individual and

commercial use.

Illustra
Illustra, owned by Informix, is the commercial version of the Berkeley's

Postgres. Available for both Windows NT and UNIX, Illustra uses an ORDBMS, or

Object-Relational Database Management System. By using ORDBMS, queries are

performed at very quick speeds. Illustra also uses DataBlade modules that help perform

and speed queries. The Web Datablade module version 2.2 allows the incorporation of

your data on the Web with reduced effort.

Microsoft SQL
Microsoft released its own SQL database server as a part of its Windows NT

Back Office Suite. Microsoft is trying to compete with Oracle and Sybase. It has

released the server, but you must also buy the SQL Server Internet Connector. These

two products allow you to provide unlimited access to the server from the Web.

Postgres95
Postgres95 is a SQL database server developed by the University of California

at Berkeley for use on UNIX systems. Older versions of Postgres are also available but

no longer supported.

Ingres
Ingres (Interactive Graphics Retrieval System) comes in both a commercial and

public domain version. Berkeley originally developed Ingres to work with graphics in a

database environment, but the school no longer supports the public domain version.

You can still find it on the university's Web site.
••Ingres uses the QUEL query language as well as SQL. QUEL is a superset of the

original SQL, making Ingres even more powerful. The public domain version is

• available for UNIX systems.
Computer Associates owns the commercial version of Ingres, called Openingres. This

version is quite robust and capable of managing virtually any database application. The

commercial version is available for UNIX, VMS, and Windows NT.

FoxPro
Microsoft's Visual FoxPro has been a favorite for Web programmers, mostly

because of its long-time standing in the database community, as well as its third-party

support. FoxPro is an Xbase database systemthat is widely used for smaller business

28

and personal database applications. FoxPro is also available for most Windows

platforms.

Microsoft Access
Microsoft Access is a relational database management system that is part of the

Microsoft Office suite. Microsoft Access can be used to create HTML documents based

on the information stored in the Access database with the help ofMicrosoft's Internet

Assistant or with the use of Microsoft's Active Server Pages (ASP). Microsoft's Internet

Assistant is an add-on available free of charge for Access users. Using Microsoft's ASP

technology requires the use of MS Information Server with ASP installed. Microsoft

Access can also support ActiveX controls, which make Access even more powerful

when used with the Microsoft Internet Explorer.

Side-by-Side Comparison
Choosing a database to suit an organization's needs is difficult, and should be

carefully planned. It's quite difficult to tell which database would best suit the needs

without spending a bit of time with a company and seeing how that company operates.

Even so, Table 2.5 might help narrow down choices.

Table 2.5 A Comparison of Some of the Most Widely Used Databases on the Web

I D~t~b~seJ Platforms - s~~g~s;~ctUse .. . l

.I OracleJ UNIX, NT Large;;~;i~e;; ...
1

'(Sybase :r UNIX, NT Carge 6us@c-ss .. · t~~~J,J\ UNiX p~;sonal, smallb~sin~~~ · · ··

\ Illustra ll UNIX, NT Mediumto largebusiness !

fMSsQL r· . NT.. . Medi~;;,J~geb~;in~ss . ·c
Vostgi~~9s:I lJN!)(.. . ! Pers~~aland s;,;ai}t~ ;,;edi~;,;b~s;~;ssı

r . İngr~s. I -~ıx:Nf . Jl Smallto largebusiness ..I
\ .. Foxpro _ ·\~in~ov\'~~a~~~~~sh!_ Small to medium busi~~~~

.\~-~~-c~~-~sJ -~~~~~-~~ ~er~onal-~d s~a~~-~~-~e~i~m~~~~~~-~~\

29

2.4.2 Database Tools
Just as there are multiple databases available, there are also multiple methods of

integrating the database with the World Wide Web. What tools should be used depends

heavily on what platform the database resides, the knowledge of programming, and the

programming language skills. In the following section, a few of the most common tools

that make accessing databases easy for Web developers.

PHP/FI
PHP/FI was developed by Rasmus Lerdorf, who needed to create a script that

enable him to log visitors on to his page. The script replaced a few smaller ones that

were creating a load on Lerdorfs system. This script became PHP, which is an

initialization for Rasmus' Personal Home Page tools. Lerdorf later wrote a script that

enabled him to embed commands within an HTML document to access a SQL database.

This script acted as a forms interpreter (hence the name FI), which made it easier to

create forms using a database. These two scripts have since been combined into one

complete package called PHP/FI.
PHP/FI grew into a small language that enables developers to add commands within

their HTML pages instead of running multiple smaller scripts to do the same thing.

PHP/FI is actually a CGI program written in C that can be compiled to work on any

UNIX system. The embedded commands are parsed by the PHP/FI script, which then

prints the results through another HTML document. Unlike using JavaScript to access a

database, PHP/FI is browser-independent because the script is processed through the

PHP /FI executable on the server.
PHP/FI can be used to integrate mSQL, along with Postgres95, to create dynamic

" HTML documents. It's fairly easy to use and quite versatile.

•

Cold Fusion
Allaire created Cold Fusion as a system that enables you to write scripts within

an HTML. Cold Fusion, a database interface, processes the scripts and then returns

information within the HTML text in the script. Allaire wrote Cold Fusion to work

with just about every Web server available for Windows NT and integrates with just

about every SQL engine--including those database servers available on UNIX machines

30

WDB is a suite of Perl scripts that helps you create applications that allow you

to integrate SQL databases with the World Wide Web. WDB provides support for
. .Sybase, Inform.ix,and mSQL databases, but has been used with other database products

as well.
WDB uses what Bo Frese Rasmussen calls "form definition files," which describes how

the information retrieved from the database should be displayed on the visitor's web

browser. WDL automatically creates forms on-the-fly that allow the visitor to query the

database. This saves you a lot of the work preparing a script to query a database. The

(if a 32-bit ODBC driver exists). A version for Sun Solaris has also been recently

released.
Cold Fusion works by processing a form, created by you, that sends a request to the

Web server. The server starts Cold Fusion and sends the information the visitor entered

to Cold Fusion engine, which is used to call a template file. After reading the

information the visitor entered, Cold Fusion processes that information according to the

template's instructions. Next, it returns an automatically generated HTML document to

the visitor.

w3-mSQL
w3-mSQL was created by David Hughes, the creator of mSQL, to simplify

accessing an mSQL database from within your Web pages. w3-mSQL works as a CGI

script which is used to parse your Web pages. The script reads your HTML document,

performs any queries required, and sends the result to the server and then on to your

site's visitor. w3-mSQL is much like a smaller-scale PHP/FI; it makes it easy for you to

create Web documents that contain information based on what is in your database.

MsqlPerl
MsqlPerl is a Perl interface to the mSQL database server. Written by Andreas

Koenig, it utilizes the mSQL API and allows you to create CGI scripts in Perl, complete

with all the SQL commands available to mSQL.

MsqlJava
MsqlJava is an API that allows you to create applets that can access an mSQL

database server. The package has been compiled with the Java Developer's Kit version

1.0 and tested using Netscape 3.0.

WDB

31

user submits the query and WDB performs a set of conversions, or links, so the visitor

can perform additional queries by clicking one of the links.

Web/Genera
Web/Genera is a software toolset used to integrate Sybase databases with HTML

documents. Web/Genera can be used to retrofit a Web front end to an existing Sybase

database, or it can be used to create a new one. When using Web/Genera, you are

required to write a schema for the Sybase database indicating what fields are to be

displayed, what type of data they contain, what column they are stored in, and how you

want the output of a query formatted. Next, Web/Genera processes the specifications,

queries the database, and formats an HTML document. Web/Genera also supports form

based queries and whole-database formatting that turns into text and HTML.

Web/Genera's main component is a program called symfmt, which extracts objects from

Sybase databases based on your schema. After the schema is written, compile the

schema by using a program, called sch2sql, which creates the SQL procedures that

extract the objects from the database.

After you have compiled the schema, you can retrieve information from the database

using URLs. When you click a link, the object requested is dynamically loaded from the

Sybase database, formatted as HTML, and then displayed to the visitor.

Web/Genera was written by Stanley Letovsky and others for UNIX.

MORE
MORE is an acronym for Multimedia Oriented Repository Environment and

was developed by the Repository Based Software Engineering Program (RBSE).

MORE is a set of application programs that operate in conjunction with a Web server to

provide access to a relational 'database. It was designed to allow a visitor access to the

database using a set of CGI scripts written in C. It was also designed so that a consistent

user interface can be used to work with a large number of servers, allowing a query to

check information on multiple machines. This expands the query and gathers a large

amount of information.

DBI
DBI's founder, Tim Bunce, wanted to provide a consistent programming

interface to a wide variety of databases using Perl. Since the beginning, others have

joined in to help build DBI so that it can support a wide variety of databases through the

use of a Database Driver, or DBD. The DBD is simply the driver that works as a

32

•••••••••....... ------------~~
translator between the database server and DBL A programmer only has to deal with

one specification, and the drivers use the appropriate method to access any given

database.

DBGateway
DBGateway is a 32-bit Visual Basic WinCGI application that runs on a

Windows NT machine as a service that provides World Wide Web access to Microsoft

Access and FoxPro databases. It is being developed as part of the Flexible Computer

Integrated Manufacturing (FCIM) project. DBGateway is a gateway between your CGI

applications and the database servers. Because your CGI scripts only communicate with

the Database Gateway, you only need to be concerned with programming for the

gateway instead of each individual database server. This provides two advantages-

programming a query is much easier because the gateway handles the communication

with the database, and scripts can be easily ported to different database systems.
The gateway allows a visitor to the site to submit a form that is sent to the

server. The server hands the request to the gateway, which decodes the information and

builds a query forming the result based on a template, or it can send the query's result

raw.
Microsoft's Visual InterDev

Visual InterDev is a visual interface in which you can create web applications

that easily integrate with various databases. Visual InterDev is a graphical environment

that allows you to create Active Server Pages (ASP). It comes with a full set of tools to

add a whole range of HTML tags and attributes while allowing you to do so with

VBScript or Jscript.

•

33

Chapter 3
Active server page (ASP}

Active Server Pages (ASPs) is Microsoft's answer to CGI scripting. Using

Microsoft's ASP technology, you can create scripts using Visual Basic Script, Java,

Jscript, or even PerlScript without a need to compile your codebeforehand.
Active Server Pages is a very powerful and yet easy-to-learn server-side

scripting environment. Active Server Pages comes with Internet Information Server

(US) for Windows NT Server, and with Personal Web Server for Windows NT
Workstation and Windows 98. This environment enables you to create a Web site that is

dynamic, fast, and interactive without requiring you to worry about the capabilities of

your clients' browsers, which you must do if you rely on client-side scripting like client-

side JavaScript or client-side Visual Basic Script (VBScript).

Using Microsoft's Active Server Pages
When a Web browser contacts your server, the browser uses the HyperText

Transfer Protocol (HTTP) to request some resource by name. A typical request is

GET /index.html HTTP/1.0
This request tells the server that the browser wants the Web page stored in the server's

document root (/) whose name is index.html. The message also notifies the server that

the client is using version 1.0 ofHTTP.
In most cases the server's job is simple--it locates the requested page and sends it

back to the client. If the filename ends in a special suffix, however, the server may have

to perform additional processing. For example, the Webmaster may tum on server-side
••

includes; if the filename ends in SHTML the server examines the file for special

commands and then executes each command. The output of each command is inserted

intÔ the file; the finished file is then sent back to the client.
On the Microsoft Internet Information Server (US) and its smaller cousin, the

Personal Web Server, the server checks to see if the filename ends in ASP. If it does,

the server examines the file looking for scripts and then runs each script. The server

inserts the output of each script into the file and sends the finished file back to the

client.

34

CAUTION: Don't just change the extension of every file on your server

from HTM to ASP. Every time the server has to check a file for scripts,

it takes a bit of processing time. If you only use ASP when a file

contains a script, the load on the server is small. If you force the server

to check every page, the load adds up and can reduce the performance of

your server.

Because ASP runs on the server, this technology does not depend on the end

user's browser or platform. As long as the ASP scripts generate valid HTML, the

resulting page should work as well on a Macintosh running Navigator 4.0 as it does on a

Windows 95 machine running Microsoft Internet Explorer 3.02.

Getting Input from HTML Forms
Virtually all Web browsers support HTML forms, so ASP applications can use

HTML forms to communicate with almost anyone browsing your Web site. HTML

forms are used to transfer data entered by users to an ASP application.

There are primarily two ways in which HTML forms send data to the Web server:

• Using the GET method.
(This is specified in the <FORM METHOD="GET" ... HTML tag of the data entry

HTML form.)
• Using the POST method.

(This is specified in the <FORM MEfHOD="POST" ... HTML tag of the data entry

form.)

NOTE
Many Web designers prefer to use POST rather than GET to send form

data back to the server. The advantage of POST is that there is no limit

to the number of characters that can be sent back, while some

combinations of software truncate GET strings

35

Accessing a Database
One of the most useful things you can do with an ASP script is give the user

access to a database.
Along with ASP technology, Microsoft provides a component called the

ActiveX Database Object (ADO), which is based on Microsoft's Open Database

Connectivity (ODBC) standard. The ADO provides you with access to any OLE/DB or

ODBC-compatible data source for use within your scripts.
______ . ,, ._.•.•.. ··--····-·- .,..•..... -

--------· --·--- --·-------····-·-· ------- . -·-

ADO and FrontPage 2000
FrontPage 2000 now manages database connections through ADO

(Microsoft® ActiveX® Data Objects). There is no need to manage connections

through the ODBC control panel, it is all done through FrontPage 2000. The

implementation of a Global.asa file allows access to the database by setting up the

server object and accessing the data source all with in the web, using ASP. FrontPage

il 2000 is not reliant on system DSNs.
ADO is designed as an easy-to-use application level interface to Microsoft's

newest and most powerful data access paradigm, OLE DB. OLE DB provides high

performance access to any data source, including relational and non-relational

databases, e-mail and file systems, text and graphics, custom business objects, and

more. ADO is implemented with a small footprint, minimal network traffic in key

Internet scenarios, and a minimal number of layers between the front-end and data

source-all to provide a lightweight, high-performance interface. ADO is easy to use

because it is called using a familiar metaphor-the OLE Automation interface,

available from just about any tool and language on the market today. And since ADO
•..

was designed to combine the best features of and eventually replace RDO and DAO,

it uses similar conventions with simplified semantics to make it easy to learn for

today's developers.
What are the ActiveX Data Objects (ADO)'?

ActiveX Data Objects are a language-neutral object model, that exposes data ı
raised by an underlying OLE DB provider. The most commonly used OLE DB il
provider is the OLE DB provider for ODBC drivers, which exposes ODBC data

sources to ADO. FrontPage 2000 uses these data objects to access local and remote

data sources.

36

The ADO objects provide you with the fastest, easiest, and most productive

means for accessing all kinds of data sources. The ADO model strives to expose

everything that the underlying data provider can do, while still adding value by giving I
you shortcuts for common

NOTE
Microsoft recommends that users migrate to ADOs, but it will continue

to support other methods into the near future.

37

Chapter 4
Some Views From The Project

tA_Jldreş$'.j@} hUp://ziadlneulibı aıy/del aull htrn-.- "'

(])Near East University Librarv• 41

\Vlıat's New

fPıease Select
Fiıul

New Books

Libı'lll'Y Services
\ltlliliMiri\111

EmJ!loyment Oı!Pol'tunities

Librıırv Iııfonnatiım
fPlease. Select

Iı}tmıet stardı

Figure 4.1 The NEULibrary Hompage

As you carı see in Figure 4.1 I have designed the main page (Homepage)
to contain three main sections represented by three drop-down menus. Each
contains a number of links to its classified information. The drop-down menus
are classified as follows:

• Find Search the Library Catalog for a Book.
Browse the Online Books By Category.

• Library Services
Reserve a Book.

• Library Information
1 O things a new student should know.
Library Guides.
General Information.
Frequently-Asked Questions.
Borrowing at NEU Library.

Beside the three menus I have placed a links to (what's new) arıd
(internet search) for a specific reasons. When a user browses a website once a
day in average he/she usually doesn't warıt to spend time looking for what' new
so psychologically putting that links directly in front ofhim/her you will 1st save
his/her time, 2nd insure that he/she will check it. The (internet search) is for

38

breaking the discipline rule and it is also assumed to be frequently accessed page
by the students. Why, this discussed later in this chapter.

The Find drop-down menu

@J http:I /ziad/ııeulibıaıy/seaıch/seaıchbooks. htrn

(]Near East University Library

Using the form bellow you can fully search the database of NEU Library.

you can also browse the online books according to it's catagory.

NEU Libraıy Home Page

Figure 4.2 the Library catalog search page

Using the page shown in Figure 4.2 the user can search the database of the
library. Although it is not an ASP page but the search form is containing a script
that will pass the entered text as a parameter to the specified ASP page
according to option selected form the (search By) drop-down menu. The script
of the search form is shown in Figure 4.3.

<script language=l'JavaScript">
<!--

I I
II Script by Ziad Abdelhaınied for.the.graduatioa project
I I

function starfSearchf){
searchString ~ document.searchForm,searchText.value;
if(searchString != ""){
searchEngine = document.searchForm.whichEngine.selectedlndex + l;
fınalSearchString = "";

if(searchEngine == l){
fınalSearchString = "keyresult.asp?keyword=" + searchString;
} .

if(searchEngine == 2){
fırialSearchStrihg= "titleresult.asp?title=" + searchString ;
}
if(searchEngiııe== 3){
fınalSearchString = "isbnresult.asp?isbnnumber=" + searchString;

39

.•••••..--------~

<t.r>.· . ·<td bgcolor="#990000><font color="#FFFFFF" size="l" faces:"Verdana, .Arial,

sans-sei::if">Seaichfor:<td~bgcolor=#990000><font size=l face="Verdana. Arial, sans-serif"
coior==''#FFFFFF">SearchBy: ·
<td bgcolor=#990000>

<tr><td bgcolor=navajowhite><input style=="background: dddddd" name="searchText"

type="text">
<td bgcolor==navaj~white> .<select style="background: dddddd" name="whichEngine" size="l">

<option selected>Keyword ··
<option>Title
<optioiı>ISBN</select><td.bgColor=navajowhite><input type="button" value="search"

onClick="stirtSea.rch()">

location.bref = fınalSearchString;
}
}

II-->
</script>
<form name="searchForm">
<table 'width=320 border="l" cellpadding=3 cellspacing=2 bgcolor=444444>

</ta.ble>
</form>

Fiınıre 4.3 the code of the Librar
While the above script pass the query data to an ASP page Figure 4.4 show part
of the script in (keyresult.asp) one of the pages that access the database and
process the query request.

<%fp sQry=''.SELECT· * FROM Books WHERE (keyword LIKE '%::keyword::%')"
fp-:-sDefault="keyword=" .. ··.·
fp=sNo~et::ords="'':No boök is found wit~ this etiteria please go.· back and change

your query.
fp sDataConn="onlinebook''
fp-iMa.xRecorcts';,256 . iı;
fp-iCommanctT'ype=l
fp-iPageSi,ze=üO ~
fp~)TableFormat=False
fp~fMenuFormat~False
fp_sMenuChoice=;'"
fp sMenuValue=""
f~iDispliycoıs~ıı
fp_fCustomQuery~False
B0TID=0
fp_iRegion=BOTID
%>

Figure 4.4 part ofkeyresult.asQ

40

Library Services

Reserve a Book

If the user searched for a book and that book is not available online the user will
have an option link to the reservation form. After he click on the link the
reservation form will be displayed with the (Book Name) and the (ISBN) boxes
already fielded. That is simple done by passing the data to the reservation form
using the post method and placing a request for that data in the default value of
the boxes. Figure 4.5 shows the reservation form while Figure 4.6 shows how
the initial value request is assigned to the (Book Name) field.

Last Name:"
Agdıess \@J http:1/ziadlnelllibıary/loımslıeserve,asp

First Name:"

Title (student, staff):*

ID Numlıer: *

Email Address:"

Book Title:*

ISBN (IfKııowıı):

Sohmit'l""R~sei l
View the reservation terms and conditions.

NEU Libraıv Home Pase

Figure 4.5 the reservation page

••

r OK

Figure 4.6 the initial value for the book title filed

41

The Internet search page
.

This page is designed as a service to reduce the time spent jumping from one
search engine to another. It allow the user to search using more than one engine
by only one click. Figure 4.7 & 4.8 show the page code and its layout.

<HTML><HEAD><TITLE>Internet search</TITLE>
<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META content="Microsoft FrontPage 4.0" name=GENERATOR>
<META content="Chip Smith, Red Rose Int'l" name=creator>
<META content="Javascript Multiple Engine Internet Search Page"
name=description>
<META content="Internet Search, Multiple Search Engines, Javascript Search"

name=subject>
<META
content="Search, Multiple Engines, Multiple Search Engines, Javascript Search,

Internet Search"
name=keywords><NOSCRIPT>
<meta name="Microsoft Border" content="b">
</HEAD>
<BODY aLink=#BOOOOO bgColor=#FFFFFF link=#BOOOOO vLink=#BOOOOO>
<H2> </H2>
<H2>Please enable JavaScript in your browser preferences and
then Reload this page!!! </H2></NOSCRIPT>
<SCRIPT language=javascript>
<1--
//
II Script by Ziad Abdelhamied for the graduation project

II

function netsearch(formname)

var al
var a2
var bl
var b2
var cl
var c2
var dl
var d2
var el
var e2
var fl
var f2
var gl
var g2
var plus
var TEXT
var*noENGINE
var haveTEXT

TEXT=formname.~EXT.value;

noEngine=true;
haveTEXT=true;
plus=""

if (TEXT=="")
{
alert("Please type in some text!")

42

haveTEXT=false
}

else
{
for (var i=O; i < TEXT.length; i++)

{
if (TEXT.charAt(i)==" ")

{
plus+="%20"
)

else
{
plus+= TEXT.charAt(i)

}

TEXT=plus

/ /ALTAVISTA
al=formname.altavista.checked;

a2="http://www.altavista.digital.com/cgi
bin/query?pg=q&what=web&fmt=.&q="+TEXT;

if (al)
{
noEngine=false
if (haveTEXT)

{
newWindow=window.open(a2,

"av","toolbar,location,directories,status,menubar,scrollbars,resizable=l")

}

//EXCITE
bl=formname.excite.checked;
b2="http://www.excite.com/search.gw?trace=a&search="+TEXT;

if (bl)
{
noEngine=false
if (haveTEXT)

{
newWindow=window.open(b2,

"e","toolbar,location,directories,status,menubar,scrollbars,resizable=l")

)

//HOTBOT
cl=formname.hotbot.checked;

c2="http://www.search.hotbot.com/hResult.html?SM=MC&MT="+TEXT+"&DV=7&RG=.com&DC=l0
&DE=2&0Ps=MDRTP&_v=2&DU=days&SW=web&search.x=23&search.y=8";

if (cl)
{
noEngine=false
if (haveTEXT)

{
newWindow=window.open(c2,

"h","toolbar,location,directories,status,menubar,scrollbars,resizable=l")

)

I /INFOSEEK
dl=formname.infoseek.checked;

43

//LYCOS
el=formname.lycos.checked;

d2="http://www.infoseek.com/Titles?qt="+TEXT+"&col=WW&sv=IS&lk=noframes&nh=10";

if (dl)
{
noEngine=false
if (haveTEXT)

{
newWinddw=window.open(d2, "i",

"toolbar,location,directories,status,menubar,scrollbars,resizable=l")

}

e2="http://www.lycos.com/cgi
bin/pursuit?query="+TEXT+"&matchmode=and&cat=lycos&x=33&y=10";

if (el)
{
noEngine=false
if (haveTEXT)

{
newWindow=window.open(e2,

"l","toolbar,location,directories,status,menubar,scrollbars,resizable=l")

}

//WEBCRAWLER
fl=formname.webcrawler.checked;
f2="http://www.webcrawler.com/cgi-bin/WebQuery?searchText="+TEXT;

if (fl)
{
noEngine=false
if (haveTEXT)

{
newWindow=window.open(f2,

"w","toolbar,location,directories,status,menubar,scrollbars,resizable=l")

}

//YAHOO
gl=formname.yahoo.checked;
g2="http://search.yahoo.com/bin/search?p="+TEXT;

if (gl)
{
noEngine=false
if (haveTEXT)

{
newWindow=window.open(g2,

"y","toolbar,location,directories,status,menubar,scrollbars,resizable=l")
} ...

//noENGINE
if (noEngine)

{
alert("Please select a search engine!")

}

II END Netsearch

function getPath(url)

lastSlash = url.lastindexOf("/")

return url.substring(O, lastSlash + 1)

44

II-->

</SCRIPT>
<1--
<H2>
This search page requires ,JavaScriptto run. Please hit your
<i>BACK</i> button and follow the linK at the bottom of the page
to get the latest version of Internet Explorer.
 Thank you.

</fönt></H2>
--><table border="O" cellpadding="O" cellspacing="4" width="94%">

<tr>
<td valign="bottom">
<p align="center"><imgborder="O"

src="http://ziad/neulibrary/images/neu.gif" align="baseline" width="51"

height="5l">Near
East University Library</p>
<hr width="90%" size="4" color="#BOOOOO">

</td>
</tr>

</table>
<FORM name=engines onsubmit=netsearch(engines)>
<P>Internet
Search
l. Enter keyword(s)
2.
Select search engine(s) desired
 and click
Search.

<!-- // <input type="text" size=''25"
maxlength"'"200"name="TEXT" value="Enter Keywords Here"

onClick="form.TEXT.selec:t () ">

II-->
<SCRIPT language=javascript>
if (navigator.appName=="Netscape")

document.write("")

document.write("

 " + navigator.appName)
document.write("
");document.write("<input type='text' size='25' maxlength='200' name='TEXT'

value='Enter Keywords Here' onFocus='form.TEXT.se1ect(l'>")

document.write ("")

l
else {document.write(" " +

navigator.appName);
document.write ("
");document.write("<input type='text' size='25' maxlength='200' name='TEXT'

value='Enter Keywords Here' onClick.'form.TEXT.select()'> ");

</SCRIPT>
<INPUT name=altavista type=checkbox>Alta Vista
<INPUT name=excite
type=checkbox>Excite
<INPUT name=hotbot type=checkbox>HotBot
<INPUT
CHECKED name=infoseek type=checkbox>Infoseek
<INRUT name=lycos
type=checkbox>Lycos
<INPUT name=webcrawler type=checkbox>Webcrawler
<INPUT
name=yahoo type=checkbox>Yahoo

<INPUT type=submit value=Search> <INPUT
type=reset value=Reset>
</P></FORM>

<SCRIPT language=JavaScript>

<I--

function initArray()
this.length= initArray.arguments.length

for ,var i = O; i < this.length; i++)

45

"October","November","December")

this[i+l] initArray.arguments[i]

var DOWArray
new initArray("Sunday","Monday","Tuesday","Wednesday",

"Thursday","Friday","Saturday")

var MOYArray
new initArray("January","February","March","April",

"May", "June", "July", "August", "September",

var LastModDate = new Date(document.lastModified);

document.write("This page was last updated on");

document.write(DOWArray[(LastModDate.getDay()+l)l,", ");

document.write(LastModDate.getDate()," ");

document.write(MOYArray[(LastModDate.getMonth()+l)J,",

" (LastModDate.getYear()+1900));

document.write (". ");

II-->
</SCRIPT>
</BODY></HTML>

Figure 4.7 the code of the internet search page

Microsoft lntemet Explorer

Near East University Library

Internet Search
I. Enter keyworcl(s)
2. Select search engine(s) desired

and click Seaıı:h.

jEnter ı<eywords ·Here
r Alta Vista

r Excite

J HotBol
P lnfoseek

r lycos
ı Webcrawler

r Yahoo

Searchj Resel \

Thıs page was last updated on Monday, 5 June, 3900.

Figure 4.8 the internet search page

46

Doing this project I have learned a lot about the technologies that underlie the

Web and databases, as well as the technologies that begin to put them together. The

web-related technologies that I have studied ranged from HTML to web servers. I had

also looked at the structure and format of HTML documents with a quick reference to

its parent (SGML) and its future (XML). And also the processing capabilities of the

Web on both the client and server sides. The larger part of this project was the

technologies underlying databases. The majority of applications in the real world

currently use relational databases, so their architecture was covered with more concern.

Another essential database technology is Structured Query Language (SQL), the

more-or-less standard grammar for creating, manipulating, and populating relational

databases. I have learned the basic SELECT, UPDATE, INSERT, and DELETE

commands, as well as the highlights of the rest of the language. It's also extremely

important to remember that each database vendor has added proprietary (that is,

nonstandard) extensions to SQL that only work on that implementation. Nevertheless,

it's useful to have at least a pidgin version of a common database language.

The ODBC standard is another important database technology, especially on

Windows-based platforms. This is an abstraction layer that allows database clients and

database servers to talk to each other regardless of the intervening platform or vendor

issues. The vendor (or a third party) writes an ODBC driver, which translates requests

into SQL and then passes them to the server and performs the reverse process on the

way back to the client. The net result is that a client can access any OD BC-compliant

data source without regard to the native database format (and without even knowing the

native database format).
The most important section for me was the web application model. The Web is

becoming a common user interface for accessing applications a.s well as information,

particularly where databases are concerned. The technologies that can make web

applications work, including CGI, Java, JavaScript and ASP.

Finally although I still can't put a proper definitions for terms such as

Information superhighway, Cyberspace and The Virtual World but I defiantly

understand it more better after finishing this project.

Conclusion:

47

• Information about database and database tools
o Oracle http://www.oracle.com/products/tools/WDS/
o Sybase http://www.sybase.com/
o mSQL http://www.Hughes.com.au/
o Illustra http://www.informix.com/
o Microsoft SQL http://www.microsoft.com/sql/.
o Postgres95 http://s2k-ftp.CS.Bei-keley.EDU:8000/postgres/
o Ingres http://www.naiua.org/
o Cold Fusion http://www.allaire.com/
o w3-mSQL http://hughes.corn.au/software/w3-msql.htm •
o MsqlPerl ftp://Bond.edu.au/pub/Minerva/msql/Contrib/
o WDB http://arch-http.hg.eso.org/wdb/html/wdb.html
o DBI http://www.hermetica.com/technologia/DBI/
o DBGateway http://fciml.csdc.com/
o Microsoft's Visual InterDev http://www.microsoft.com/vinterdev/

References:

Books:
• SE USING HTML 4, 4TH EDITION

By: Jerry Honeycutt
• Sams Teach Yourself Active Server Pages in 24 Hours

By: Christoph Wille
• Running a Perfect Intranet

By: Rich Casselberry
• Sams Teach Yourself Active Server Pages 2.0 in 21 Days

By: Sanjaya Hettihewa
• Choosing a Database for Your Web Site

By: John Paul Ashenfelter

Internet:

• A comprehensive resource including papers, articles, books, partial books,
FAQs, tutorials and more for HTML, ASP, DHTML, web design, database
technologies and more

o http://msdn.microsoft.com
• more Java scripts & DHTML resources

o http://dynamicdrive.com
o http://wsabstract.com
o http://www.iavascripts.com

• CGI Resource Index
o http://cgi.resourceindex.com

• FrontPage 2000 Start Page
o http://www.microsoft.com/insider/frontpage2000/default.htm

48

