
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer EngJneering

CLIENT SERVER MODELLING OF OISTRIBUTIVE
SYST~MS

GRADUATION PROJECT
COM-400

Student$: GURCAN BIROL KARAGOZ
C-ETIN TAHIR IZANC,I

Supervisor: Assoc. Prof. or. RAHIB ABIYEV

NfCOSIA-2002

..

ACI\NOWLEDGl':Mt:NT

"First, We; would like to thank our supervisor Asst. Prof br. Rahib Abiyev for his
advice and belief in out work.

Second, We would like to express my Graduate project to Near East University for the
scholarship that made the work possible.

third) W~ want to thank all our friends for their advice and support during project.

And finally, We want to thank our families for their power arid support during the
preparation of this project.

Thank you all!l

AUSTRACt

Increasing the complexity of th~ Internet and the LAN(Local Area Network) proceses,
the people need mote reliable, safe and fast systems, The effective way of achieving this
problem is to use Client Server modeling systems.

The graduation project is developed by the information of Client Server modelling of
Distributed Database systems, For this reason the applications for creating Distributed
Database systems are described.

The aim of this project is the development of Client/Server technologies and by the
aim of thi~ idea, this project is developed. The structure of distributed systerµs are described
and the de$ign of distributed systems are given.

The main problem of client server system is, the speed of transaction in operating
systems and by the time the amount of data will be bigger a~d bigger.so that the speed will
decrease and the problems will occur. To overcome this problem, the database server must be
fast, reliable and safety.

The obtained results show us the [mportance of creating client server software to save
time in life and this project is developed by the aim of this idea.

)

•

INTRODUCtlON

Distributed database technology is one of the most important developments of the
past decades. The maturation of data base management systems, - DBMS ,. technology has
coincided with significant developments in distributed computing and parallel processing
technologies and the result is the emergence of distributed OBMSs and parallel DBMSs.
These systems have started to become the dominant data management tools for highly
intensive applications. The basic motivations for distributing databases are improved
performance, increased availability.shareability, expandibility, and access flexibility.
Although, there have been many researchstudies in these areas, some commercial systems can
provide the whole functionality for distributed transaction processing. Important issues
concerned in studies are database placement in the distributed environment, distributed query
processing, distributed concurrency control algorithms, reliability and availability protocols
and replication strategies.

, As the subject is broad in a sense that the recent studies are all theoretical and most of
the work being done in the past, only an overview of distributed database management could
be made and presented in t~s report. Starting from the, definition of a distributed databases,
advantages.disadvantages, the main concern of promises and related transparency constraints
are given. The main issues dealt in a distribution of data and applications are briefly
discussed. The current trends and developments according to the researchers are summarized
in the conclusion along with the self ideas. ,

T)le objective of this project is to investigate the development of Client Server
modelling pf Distributive Database systems. The project consists of introduction.six chapters
and conclusion. ,

Chapter one describes Distributed Data processing.advantages and disadvantages of
distributed systems,

Chapter two presents Distributed systems and software usage in Distributed
sytems. the operations and the principles while developing these software.

Chapter three presents a brief explanation of MySql arid connectivity.localization of
MySgl server.

Chapter four presents using MySql. Connecting and disconnecting from
server.Creating database.tables and making queries.Mysql language and how to declare
strings.integers.long integers and null values.

Chapter five presents how to connet the server and the usage of the software by the
help of figures.

Conclusion presents the obtained the important results and contribution in the project.

•

TABLE OF CONTENTS

ACKNOWLA.DGEMENT i

ABSTRACT U

INtRODtICTION 1

CHAPTE~ ·ONE:D~TRIBUTED OA r A PROCESSING 2

1.1 Distributed Database System 3
t.2 AdvaQtages and Disadvantages of DDBS's 6

CHAPTERTWO:DlS1RIBUTED SYSTEMS AND DISTRlQUTEl>
SOFTWA}U: 10

2.1 Characteristic of Uistributed $ystems 10
Zi Parallel or Concurrent Programs 10
2.3 Networked Comnuters 12
l.4 Communication Software ~ystems 16
2.5 C-0mbin'ltion of Network CoQ\puti-1g and Cpoperative Computing 23

CHAPTER THREE:WHAT IS MYSQt 24

3.1 Why Use MySQL 24
3.2 The Main Features of MySQL 24

CHAPTER FOlJR:USING MYSQL 27

4.1 Connecfing to and Dis~onnecting from the Server 27
4.2 Entering Quertes l8
4.3 Creating an<I Using a Database 31
4.4 Creating and Selecting a Database 32
4.5 Creating a T•w, 32
4.6 Loading l)ai, i'1,io a Table ~4
4. 7 Retrieving Information from a T•ble ,s
4.8 Selecting 411 D•ta 35
4.9 Date CaJtulations 40
4.10 Working with NULL Values 43
4.11 Using More Than one Tabl~ 43
4.12 Getting information About Databases and Tabl~ . .

•

4.11 Usiltg AUTO INCREMENT
4.14 MySql Langqage Structure

CHAPTER FIVE:CL{ENT SERVER MODELLlNG Sl

5.1 SJ,ructure or System
5.l Us,r Interface

51 ss
CONCLUSION

REFERENCES

•

CHAPTER 1: DISTRIBUTED DATA PROCESSING

The term distributed processing (or distributed computing) has been used to refer
to such diverse systems as multiprocessor systems, distributed data processing, and
computer networks. Here are some of the other terms that have been used
synonymously with distributed processing: distributed function, distributed computers
or computing, networks, multiprocessors I multi computers, satellite processing/satellite
computers, backend processing, dedicated/special-purpose computers, time-shared
systems, and functionally modular systems.

Some degree of distributed processing goes on in any computer system, even on
single-processor computers. Starting with the second-generation computers, the central
processing unit (CPU) and input/output (l/O) functions have been separated and
overlapped. This separation and overlap can be considered as one form of distributed
processing. However, it should be quite cleat that what we would like to refer to as
distributed processing, or distributed computing, has nothing to do with this form of
distribution of functions in a single-processor computer system.

Distributed computing system states is a number of autonomous processing
elements (not necessarily homogeneous) that are interconnected by a computer network
and that cooperate in performing their assigned tasks. The "processing element" referred
to in this definition is a computing device that can execute a program on its own.

One fundamental question that needs to be asked is: What is being distributed?
One of the things that might be distributed is the processing logic. In fact, the .definition
of a distributed computing system given above implicitly assumes that the processing
logic or processing elements are distributed. Another possible distribution is, according
to function. Various functions of a computer system could be delegated to various
pieces of hardware or software. A third possible mode of distribution is according to
data. Data used by a number of applications may be distributed to a number of
processing sites. Finally, control can be distributed. The control of the execution of
various tasks might be distributed instead of being performed by one computer system.
From the viewpoint of distributed database systems, these modes of distribution are all
necessary and important. In the following sections we talk about these in more detail.

Distributed computing systems can be classified with respect to a number of
criteria. Bochmann lists some of these criteria as follows: degree of coupling,
interconnection structure, interdependence of components, and synchronization between
components [Bochmann, 1983]. Degree of coupling refers to a measure that determines
how closely the processing elements are connected together. This can be measured as
the ratio of the amount of data exchanged to the amount of local processing performed
in executing a task. If the communication is done over a computer network, there exists
weak coupling among the processing elements. However, if components are shared, we
talk about strong coupling. Shared components can be either primary memory or
secondary storage devices. As for the interconnection structure, one can talk about those
cases that have a point-to-point interconnection between processing elements, as
opposed to those, which use a common interconnection channel. We discuss various
interconnect-ion structures. The processing elements might depend on each other quite
strongly in the execution of a task, or this interdependence might be as minimal as
passing messages at the beginning of execution and reporting results at the end.

2

..

Synchronization between processing elements might be maintained by synchronous or
by asynchronous means. Note that .some of these criteria .are not entirely independent.
For example, if the synchronization between processing elements is, synchronous, one
would expect the processing elements to be strongly interdependent, and possibly to
work in a strongly coupled fashion.

The distributed processing better corresponds to the organizational structure of
today's widely distributed enterprises, and that such a system is more reliable and more
responsive, Data can be entered and stored where it is generated, without any need for
physical (manual) movement. Furthermore, building a distributed system might make
economic sense since the costs of memory and processing elements are decreasing
continuously

The fundamental reason behind distributed processing is to be better able to
solve the big and complicated problems, by using a variation of the well-known divide
and-conquer rule. If the necessary software support for distributed processing can be
developed, it might be possible to solve these complicated problems simply by dividing
them into smaller pieces and assigning them to different software groups, which work
on different computers and produce a system that runs 011 multiple processing elements
but can work efficiently toward the execution of a comtnon task.

This approach has two fundamental advantages from an economics standpoint.
First, we are fast approaching the limits of computation speed for a single processing
element. The only available route to more computing power, therefore, is to employ
multiple processing elements optimally. This requites research in distributed processing
as denned earlier, as well as in parallel processing, which is outside the scope, The
second economic reason is that by attacking these problems in smaller groups working
more or less autonomously, it might be possible to discipline the cost of software
development. Indeed, it is well known that the cost of software has been increasing in
opposition to the cost trends of hardware,

Distributed database systems should also be viewed within this framework and
treated as tools that could make distributed processing easier and more efficient. It is
reasonable to draw an analogy between what distributed databases might off er to the
data processing world and what the database technology has already provided, There is
no doubt that the development of general-purpose, adaptable, efficient distributed
database systems will aid greatly in the task of developing distributed software.

1.1 Distributed database system

We can define a distributed database as a collection of multiple, logically
interrelated databases distributed over a computer network. A distributed database
management system (distributed DBMS) is then defined as the software system that
permits the management of the DDBS and makes the distribution transparent to the
users. The two important terms in these definitions are "logically interrelated" and
"distributed over a computer network." They help eliminate certain cases that have
sometimes been accepted to represent a DDllS.

First, a DDBS is not a "collection of files" that can be individually stored at each
node of a computer network. To form a DDBS, files should not only be logically

•

related, but there should be structure among the files, and access should be via a
common interface. It has sometimes been assumed that the physical distribution of data
is not the most significant issue. The proponents of this view would therefore feel
comfortable in labeling as a distributed database two (related) databases that reside in
the same computer system. However, the physical distribution of data is very important.
It creates problems that are not encountered when the databases reside in the same
computer. Note that physical distribution does not necessarily imply that the computer
systems be geographically far apart; they could actually be in the same room. It simply
implies that the communication between them is done over a network instead of through
shared memory, with the network as the only shared resource.

The definition above also rules out multiprocessor systems as DDBSs. A
multiprocessor system is generally considered to be a system where two or more
processors share some form of memory, either primary memory, in which case the
multiprocessor is called tightly coupled, or secondary memory, when it is called loosely
coupled. Sharing memory enables the processors to communicate without exchanging
messages. With the improvements in microprocessor and VLSI technologies, other
forms of multiprocessors have emerged with a number of microprocessors connected by
a switch.

· Pr«>&$a,.r
~Uoit

F'rOCst.tiOI''
.... I.Jtlit

Praoassar · · unit. ·.·

Figure 1.1 Tightly-Coupled Multiprocessor

Another distinction that is commonly made in this context is between shared
everything and shared-nothing architectures. The former architectural model permits

4

•

Computer System

CPU

I Memory

Sh-a red
~condary
Stota:ge

Figure 1.2 Loosely-Coupled Multiprocessor

Computer System 1' Computer Sv,tem

SwUch

Compute.r System 1 Computer Sy.stem •

CPU

Memory

Figure 1.3 Switch-Based Multiprocessor System

each processor to access everything (primary and secondary memories, and peripherals)
in the system and covers the three models that we described above. The shared nothing
architecture is one where each processor has its own primary and secondary memories
as well as peripherals, and communicates with other processors over a very high speed
bus. In this sense the shared-nothing multiprocessors are quite similar to the distributed
environment that we consider in this book. However, there are differences between the
interactions in multiprocessor architectures and the rather loose interaction that is
common in distributed computing environments. The fundamental difference is the
mode of operation. A multiprocessor system design is rather symmetrical consisting of a
number of identical processor and memory components, controlled by one or more
copies of the same operating system, which is responsible for a strict control of the task

5

•

assignment to each processor. This is not true in distributed computing systems, where
heterogeneity of the operating system as well as the hardware is quite common.

In addition, a DDBS is not a system where, despite the existence of a network,
the database resides at only one node of the network. In this case, the problems of
database management are no different from the problems encountered in a centralized
database environment. The database is centrally managed by one computer system and
all the requests are routed to that site. The only additional consideration has to do with
transmission delays. It is obvious that the existence of a computer network or a
collection of "files" is not sufficient to form a distributed database system.

Oommumcation
Netwotk

Figure 1.4 Central Database on a Network

At this point it might be helpful to look at an example of distributed database
application that we can also use to clarify our subsequent discussions.

1.2 Advantages and Disadvantages of DDBSs

The distribution of data and applications has promising potential advantages.
Note that these are potential advantages which the individual DDBSs aim to achieve. As
such, they may also be considered as the objectives ofDDBSs.

1.2.1 Advantages:
Local Autonomy. Since data is distributed, a group of users that commonly

share such data can have it placed at the site where they work, and thus have local
control. This permits setting and enforcing local policies regarding the use of the data.
There are studies [D'Oliviera, 1977] indicating that the ability to partition the author ity
and responsibility of information management is the major reason many business
organizations consider distributed information systems. This is probably the most
important sociological development that we have witnessed in recent years with respect
to the use of computers.

Of course, the local autonomy issue is more important in those organizations that
are inherently decentralized. For such organizations, implementing the information
system in a decentralized manner might also be more suitable. On the other hand, for

6

•

.those .organizations with quite a centralized .structure .and management style,
decentralization might not be an overwhelming social or managerial issue .

In distributed .system, the validity of focal .autonomy is obvious. .It would be
quite absurd to have an environment where all the record keeping is done locally, as it
would he .if information were .shared .among .different .sites in a manual fashion (either
by exchanging hard copies of reports, or by exchanging magnetic tapes, disks, floppies,
etc.).

Improved Performance: Again, because the regularly used data is proximate to
.the users, .and .given.the parallelism .inherent.in distributed systems, it may he .possible to
improve the performance of database accesses. On the one hand, since each site handles
.only .a .portion of the database, contention .for CPU .and J/0 .services is not .as .severe .as

· for centralized databases. On the other hand, data retrieved by a transaction may be
stored at .a number .of .sites, making it possible .to execute the transaction in parallel.

Let us assume that in our example the record keeping is done centrally at the
world .headquarters, with .remete .access provided .to the other .sites, This would require
'the transmission to New York of each request generated in Phoenix inquiring about the
.inventory level .of .an item. lt would probably he impossible to withstand the low
performance of such an operation.

Improved Reliability/ Availability: If data is replicated so that it exists at more
.than one site, .a crash of .one of the ..sites, _or the failure of a .communication link making
some of these sites inaccessible, does not necessarily make the data impossible to reach.
Furthermore, .system crashes or link .failures do .not cause .total .system .inopecahility.
Even though some of the data may be inaccessible, the DDBS can still provide limited
service.

Obviously, if the inventory information at both warehouses is replicated at both
.sites, .the failur.e .at one .of the .sites would not make theinformation.inaccessible to the
rest of the organization. If proper facilities are set up, it might even be possible to give
users .at the failed .site .access.tothe remote information.

Economics: It is possible to view this from two perspectives. The first is in
.terms of communication costs, lf .databases .are geographically .dispersed .and the
applications running against them exhibit strong interaction of dispersed data, it may be
.much .more economical to partition the application .and rlo .the .processing.locally .at each
site. Here the trade-off is between telecommunication costs and data communication
costs. The second viewpoint .. is .. that it normally costs much Jess to put together .a .system
of smaller computers with the equivalent power of a single big machine. In the l 96Qs
.and early 197.0sj it was commonly believed that it would he possible .to purchase .a
fourfold, powerful computer if one spent twice as much. This was known as-Grosh's law.
With . the .advent or .minicomputets, .and especially microcomputers, .this law is
considered invalid.

The case about lower communication costs can easily be demonstrated in the
.example we .have .been considering. .It is .. no .doubt .much ..cheaper in .the long .run to
maintain a computer system at a site and keep data locally stored instead of having to
incur .heavy telecommunication costs for each .request. The level of use when this

7

••

becomes true can obviously change depending on the traffic patterns among sites, but it
is quite reasonable to expect this to occur.

Expandability: In a distributed environment, it is much easier to accommodate
increasing database sizes. Major system overhauls are seldom necessary; expansion can
usually be handled by adding processing and star-age power to the network. Obviously,
it may not be possible to obtain a linear increase in "power," since this also depends on
the overhead of distribution. However, significant improvements are still possible.

Share ability: Organizations that have geographically distributed operations
normally store data in a distributed fashion as welL However, if the information system
is not distributed, it is usually impossible to share these data and resources. A
distributed database system therefore makes this sharing feasible.

1.2.2 Disadvantages
However, these advantages are offset by several problems ansmg from the

distribution of-the database.

Lack of Experience: General-purpose distributed database systems are not yet
commonly used. What wehave are either .prototype systems or systems .that are tailored
'to one application (e.g., airline reservations). This has serious consequences because the
.solutions that .have been proposed .for various prohlems .have not been tested .in actual
operating environments.

Complexity: DDBS problems are inherently more complex than centralized
.database .management.ones, as .they include not only the .prohlems found in a .centralized
environment, but also a new set of unresolved problems. We discuss these new issues
shortly.

Cost: Distributed systems require additional hardware (communication
.mechanisms, etc.), thus .have Increased .hardware .costs. However, the trend .toward
decreasing hardware costs does not make this a significant factor. A more important
.fraction .of the .cost lies in .the .fact .that additional and .more .eomplex .software and
communication may be necessary to solve some of the technical problems. The
.development ..of .software engineering techniques (distributed .debuggers and the like)
should help in this respect.

Distribution of Control: This point was stated previously as an advantage of
DDJ3Ss. Unfortunately, distribution .creates .problems .of .synchronization and
coordination (the reasons for this added complexity are studied in the next section).
Distributed control can therefore .easily become .a liability jf .care .is .not taken to .adopt
adequate policies to deal with these issues .

.Securiry: One.of the.major benefits of .centralized databases has been.the control
it provides over the access to data. Security can easily be controlled in one central
location, with the D.BMS enforcing the .rules. However, .in .a .distributed .datahase
system, a network is involved which is a medium that has its own security requirements.
lt is well known that there are .serious problems .in maintaining adequate security over
computer networks. Thus the security problems in distributed database systems are by
nature.more complicated than in centralized ones.

8

•

Difficulty of Change: Most businesses have already invested heavily in their
database systems, which are not distributed. Currently, no tools or methodologies exist
to help these users convert their centralized databases intb a DDBS. Research in
heterogeneous databases and database integration is expected to overcome these
difficulties.

9

•

CHAPTER 2: DISTRIBUTED SYSTEMS AND DISTRIBUTED
SOFTWARE

2.1 Characteristic of distributed systems
Distributed computer environments are based on distributed computer systems

which consist of a set of processing components connected by a communication
network. The software systems running on the various processing components exchange
data through the communication network. This type of system is also called loosely
coupled distributed system.

Processing nodes can be composed of several processors which share memory.
This shared memory is used to exchange information by the software executed on such
a node. This type of system is called a tightly coupled distributed system. Some
advantages of distributed systems are below shown:

• Increased Performance
Performance is generally defined in terms of average response time and through put. If
processing capability can be located where it is required the response time can be highly
reduced. Data can be processed locally before it is sent to other nodes for further
processing. This increases throughput.

• Increased reliability
Normally nodes in a distributed system cart take over the tasks of other nodes which are
currently out of order. This means. that a distributed system continues its work with
reduced performance but with little or no reduction of functionality

, Increased flexibility
Additional functionality can be added to a distributed system or the number of users can
be permanently increased. A distributed system allows this system growth by simply
adding more processing nodes.

2.2 Parallel or Concurrent Programs
Parallel or concurrent programs are characterized by a set of statements

interrelated by multiple control threads. Each sequence of statements executed by one or
more control threads is called a process object (The term 'process' shall be used instead
of'process object' when it is clear from the context that we mean a process object).

The relationship between processes or threads and process objects is shown in
the following figure.

10

•

prui.~Ns Of lliaeW nec111h\g . the
·s•~w of tbw piWN;, o~t

S~QC®C;Cf
p:rogir.nt
·stab meta~
d~•s•
Ji,oc~ss
nbJ,ei

•••
Figure 2.1: Process/Threads and Process Objects

The statements (operations) of the individual processes are executed overlapped
or interleaved or both. If a single processor is multiplexed among several concurrent
processes, the machine instructions of these processes can only be interleaved in time.
For a certain time slice, the processor is assigned to a process in order to execute the
statements of a process object. Assigning a processor to another process is called
context switching. This type of concurrency is also called multitasking. The following
figure shows an example of how a processor is shared between several processes.

~,t.r11 or: t1uuili oucQiil:l.g t•
swemalltt ,of tlie proceu ~j®t.

Figure 2.2: Multitasking

Machine instructions of processes running on different processors can be
overlapped at each node at which a processor is available. These are distributed
programs.

11

•

Concurrent or parallel programs are either interleaved, distributed, or both. For a
programmer it is not necessary to know whether multitasking or a distributed system is
used to run his program.

Normally the processes of a concurrent program share the resources such as
processor, memory, disk, and databases, and if they cooperate in order to reach a
common goal they exchange information and synchronize their activities.

Their are two reasons to structure a program in parallel executable process
objects:

1. Fine grain parallelism is mainly used to accelerate large numerical computations.
This type of parallism is often achieved by using vector processors and the pipelining of
operations. It is mainly implemented by hardware.

2. Structural parallelism is used if the structure of the task to be performed is
fundamentally parallel. The process objects are a very important concept for structuring
programs in certain application areas, e.g. operating systems, real time systems, and
communication systems. Especially in real time systems which must react to external
events, processes (objects) are used to achieve separation of the tasks /FAPA88/. Each
process handles a related set of events and cooperates with other processes to achieve a
common purpose. In order to cooperate, processes exchange information either via
shared data or via messages.

2.3 Networked Computing

2.3.1. Network Structure and the Remote Procedure Call Concept
Network computing is characterized by several sequences of jobs, which arrive

independently at various nodes. The jobs are designed and implemented more or less
independently of each other and are only loosely coupled. The distributed system serves
primarily as a resource-sharing network.

A very common example of resource sharing is the file server. All files are
located on a dedicated node in a distributed system. Software components running on
other nodes send their file access requests to the file server software. The file server
executes these requests and returns the results (to the clients).

In addition to file servers many other kinds of servers such as print servers,
compute servers, data base servers, and mail servers have been implemented As with
the file server, clients send their requests to the appropriate server and receive the
results for further processing. Servers process the requests from the various clients more
or less independently of each other. The programs running on the clients can be viewed
as being designed and developed independently of each other.

The following figure shows the concept of client/server systems,

12

•

Figure 2.3: The Concept of Client/Server System

In client server systems, the clients represent the users of a distributed system
and servers represent different operating system functions or a commonly used
application.

The following figure shows a simple example of a client server system.

Woll,!'
._ - •••••o.n

•••• ••

Figure 2.4: A Small Client/Server System

This system has a print server, a file server, and the clients (users) which run on
workstations (WS) and personal computers (PC). The server software and the client
software can run on the same type of computer. The different nodes are connected by a
local area network.

From a user's point of view a client/server system can hardly be distinguished
from a central system, e.g. a user cannot see whether a file is located on his local system
or on a remote file server node. For the user the client/server system appears to be a
very convenient and flexible central computing system. Mostly the user does not know
whether a file is stored on his PC or on a file server. To the user, the storage capacity of
the server appears to be a part of the PC storage capacity. Client/server systems are also
very flexible. For a new application a specialized new server can be added e.g. data base

13

•

systems run on specialized data base servers, which have short access times. Database
applications are primarily controlled by the local client; all the data is stored at the data
base server and special computations are executed by a compute server. The application
program running on the client, calls the required functions provided by the servers. This
is done mainly by way of remote procedure calls (RPC). An RPC resembles a procedure
call except that it is used in distributed systems. The following is a description of how
the RPC works. The program running on the client looks like a normal sequential
program. The services of a particular server are invoked via a remote procedure call.
The caller of a remote procedure is stopped until the invoked remote procedure is
finished and the server has provided the results to the calling client in the same way that
parameters are returned by a procedure. The servers are used in the same way that
library procedures are used. This means that remote procedure calls hide the distribution
of the functions of the system even at the program level. The programmer does not need
to concern himself with the system distribution.

The figure below shows the basic structure of a client/server system .

• Application • • • • • Applieacion

N~twort

Server Server .. •· ..
Figure 2.5: Remote Procedure Call Concept

2.3.2.Distributed Computing Environment (DCE)
The Distributed Computing Environment is a comprehensive integrated set of

tools which supports network computing in a heterogeneous computing environment.
This set of technologies has been selected by the Open Systems Foundation (OSF) to
support the development of distributed applications for heterogeneous computer
networks. The following figure shows the OSF DCE architecture.

14

•

Figure 2.6: Architecture ofOSFDCE

In the DCE client and server programs are executed by threads i.e. processes.
Threads use an RPC in order to communicate with each other and binary semaphores
and conditional variables for synchronization. In the DCE remote procedure calls are
supported by directory services (DCE Call Directory Service) and security services
(DCE Security Service). Directory services map logical names to physical addresses. If
a client calls a particular service provided by a server, the directory service is used to
find the appropriate server. The DCE security service provides features for secure
communication and controlled access to resources. Distribute Time Service provides
precise clock synchronization in a distributed system. This is required for event logging,
error recovery, etc. The distributed file service allows the sharing of files across the
whole system. Finally the diskless support service allows workstations to use
background disk files on file servers as if they were local disks /SCHILL93/, /OSF92/.

2.3.3.Cooperative Computing
In cooperative computing a set of processes runs on several processing nodes.

These processes cooperate to reach a common goal and together they form a distributed
program. This is different from the client/server systems described above. In
cooperative systems the processes, which comprise the distributed program are coupled
very closely. This means that the closely coupled processes are executed on a loosely
coupled system.

In cooperative systems, the distribution of computing capability is not hidden
behind programming concepts. The different program sections running on different
computers comprise a single program; but it can be seen at the programming level that
the program sections are executed concurrently. These different program sections are
also processes. Processes form a very important concept for central systems, client
server systems and cooperative systems. If processes have to work together to perform
their task, they must exchange data and synchronize their execution. Programming
systems for concurrent systems contain communication and synchronization concepts.
Cooperative programming resembles a human organization which works together to
achieve a common goal. Its members must communicate with each other and must
synchronize their activities. The following figure shows the basic structure of
cooperative systems.

15

•

, 1 I ~~!~~' .. !1!'L~:~~~ll S~1ttnJ
•••••••

Figure 2.7: Structure of Cooperative Systems

Cooperative systems are mainly used for the automation of technical processes
and the implementation of communication software; etc. Technical processes in the
mostly part consist of several parallel activities, for example checking the level. of a tank
has to be done in parallel with controlling the rate of flow of a pump. Therefore the
structure of technical process control software is very similar to the structure of the
technical process to be controlled. For the automation of technical processes such as
manufacturing control systems, the environment of the program, the technical process,
is considered as a set of processes which interact with software processes. This means
that several processes which can be implemented in different ways work together to
perform their task.

2.4 Cemmunicatien Software Systems
A communication system consists of a communication network and the

communication software, which runs on the various processing nodes (referred to as
host systems). The communication software provides a more or less convenient
communication service for the application software. The application software on each
node uses the communication service to exchange messages with the application
software running on other nodes. The communication service is based on the underlying
network (A network is usually made up of lines and several switching nodes although
most local area networks do not contain switching nodes).

Mo•t $:,,1,m r ,
.Applicatlo.n
S9ttwa:tt

1Ho11 s·1•1"1n Hoit s,,,..,,
! Applloatkm Appllc.atl®

Softw.t,r,& I •• • So.Uware

- ~

Figure 2.8: Structure of Communication Systems

16

•

In order to provide a convenient communication service the communication
software systems also exchange messages. This message exchange is based on the
simpler communication mechanism provided directly by the network For example the
network provides a communication service, which only allows the transfer of a single
byte. The comrnunicetion service provided by the communication software allows byte
strings of a fixed or even an unlimited length to be sent Qr received. This can be
implemented iri the following way:

The applicarion software of a bo$t system A wants to send a seq_µence of bytes to
the application software of a host system B. The sequence of bytes is given to the
communication system by the application system. The communication system on host
system A sends a byte with the length qr the byte string (tile number of bytes) to the
communication system on host system B. The communication system on host system B
sends back art acknowledgement. This is a byte with a certain value. After the
communication software on host system A has received the acknowledgement it starts
to transfer the bytes of the byte string. When system B has received the number of bytes
indicated in the first byte it ~in sends an acknowledgement. ,AJter sending tl).e
acknowledgement, the communication software on host system j3. gives the received
byte string to the application software.

This communicatlon sequence which implements the transfer of a byte string is
just 1.t simplistic illustration of what communication software can do.

As the example above shows, the communication between the communication
software systems follows well-defined rules. These rules are called protocols. The need
td provide convenient communication services for the application software 'leads to
software communication protocols, which can be extremely complex and must be
organized in layers. Each layer off ers an improved communication service to the layer
above. The widely used reference model for Open Systems Interconnection (OSl)
defined by the International Standard Organization (ISO) proposes seven protocol
tayers /IS07498/. Each layer provides a certain service to the layer abQye. The service
provided ,by a layer is implemented by the protocol sp~cific to f ts layer and by the
services of the l~yer below. In a host system the services specific to the layer are
realized by protocol entities. The layer protocol is defined between protocol entities of
the .same layer. These exchange information by using the service of the layer below, In
each host system there must be at least one entity per layer. The se~ of entities of
different layers 10 a host system is called a protocol stack. thp implementation of these
protocol stacks is called communication software. Communication software bas the
following execution propertiesJOROl386/:

• interleaved execution of several entities on the same system

• distributed execution or entities of the same layer on different systems.

Interleaved and distributed computations are usually modeled as systems of
parallel . processes. Processes executing in parallel normally have to exchange
information if they are to cooperate in solving a common task. One pr more processes
model entities, Using or providing a service means exchanging information with
processes representing entities of the layer below or above. The figure above shows

17

Prolocot

Prq!2cot

ProtooQt

~:: . ..;.:·
0 ·."' !J

··~··.

Figure 2.9: Structure of Communication Software

the structure of communication software systems based on the ISO/OSI reference
model. Protocol stacks in the different host systems are implemented independently of
each other and are embedded in the communication systems. This means that the
implementation of a communication system to support communication in a distributed
program is itself a distributed program.

2.4 .2 Technical Process Control Software Systems
Another important example of cooperative computing is a distributed technical

process control system.

18

•

The basic structure of technical systems controlled by computer systems is
shown in the following figure /NEHM84/.

Uae.r

•••

Proo•• 1/0 Devices •••

Figure 2.10: Structure of Process Control Systems

The communication between computer systems and technical systems must meet
hard real time requirements, whereas the communication with the user is more or less
dialogue-oriented with less emphasis on time conditions (except in the case emergency
signals such as fire alarms). For the sake of simplicity, we will focus on the relationship
between technical systems and real-time computer systems.

A technical system consists of several mutually independent functional units
which communicate via appropriate interfaces with the computer system. Therefore the
real time program must react to several simultanous inputs. This implies the structuring
of a process control software system that takes into account a number of processes.
Each process handles a certain group of signals.

The basic requirement for a process control software system is the capability to
follow the changes of the technical system as fast as possible. The information in the
process control software must be as close as possible to the state of the technical
system. The easiest way to achieve this is to design a process for each interface element.
This leads to the software system structure shown in the following figure /NEHM84/.

19

"

Figure 2.11: Structure of Process Control Software

Software system processes can run on a single centralized system or can be
distributed over several computer systems. In the latter case it is possible to locate the
computers close to. the device or the plant being controlled. The main advantages of
distributed solutions are:

• reduction of wiring costs

• faster response

• easier development and maintenance

• a higher degree of fault tolerance

2.4 .3 Electronic Data Interchange (EDI)
Electronic Data Interchange (EDI) is the computer-to-computer exchange of

inter and intra company technical and business data, based on the use of standards
/DIGIT90/ (see figure below of the EDI business model).

20

•

Otiher
Divisfoiu

+ +

Figure 2.12: EDI Business Model

These data can be structured or unstructured. Exchanging unstructured data
follows specific communication standards although the data content is not in a
structured format. More important is the exchange of structured data. Examples of
structured data exchange are:

- Trade Data Interchange
This type of EDI document exchange is mainly used to automate business
processes. Examples of trade data interchanges include a request for quotation
(RfQ). purchase orders, purchase order acknowledgements, etc. Each company
and industry has its own requirements for the structure and contents of these
documents. A number of specific industry and national bodies have been formed
with the intention of standardizing the format and content of messages. For the
chemical industry CEFIC is the EDI standard and for the auto industry the
related EDI standard is called ODETTE. The standard defined by CCITT is
called EDIF ACT. In order to exchange EDlF ACT documents very often the
CCITT E-Mail standard X.400 is recommended /HILL90/.

- Electronic Funds Transfer
Payment against invoices, electronic point of sale (EPOS) and clearing systems
are examples of electronic funds transfer.

- Technical Data Interchange
Improvement in technical communication can play a key role in determining the
success of a project. There is a growing demand from traders for communication
between their CAD (computer aided design) workstation and the workstations of
important vendors.

21

r:

•

The following example shows how the different types of EDI interactions are
used to handle a business process.

JhtJH

. Aee·ou:nts
R.eceivtble

SeUe.,

Purehuing Order
Processing

M1nui·ach1ri11
Requiremenm

M.anuf actudn.g
·sche,chde.

Aecou~ts
Pay,tble

Incoming
Inspection

._ • QuaUty

..._,._ -•.,.·. Sb.ipping ••• •

Figure 2.13: EDI in a Business Process

2.4.4 Groupware
In organizations people work together to reach a common goal. The formal

interaction between members of an organization is described by structures and
procedures. Additionally there exist informal interactions which are very important.
Both types of interactions can and should be supported by computers. Computer
Supported Cooperative Work (CSCW) deals with the study and development of
computer systems called groupware, which purpose it is to facilitate these formal and
informal interactions . CSCW projects can be classified into four types namely:

1. Groups which are not geographically distributed and require common access in real
time Examples: presentation software, group decision systems

2. Groups which are geographically distributed and require common access in
real time Examples: video conferencing, screen sharing

3. Asynchronous collaboration among people who are geographically distributed.
Examples: notes conferences, joint editing

22

..

4. Asynchronous collaboration among people who are not geographically distributed
Examples: project management, personal time schedule management

Groupware requires computers connected by a network. Thus groupware
systems are distributed systems. Members of a group share data and exchange
messages. Therefore groupware software systems are combinations of network and
cooperative computing.

2.5 Cembination ot Network Computing and Cooperative Computing
Cooperative computing can be combined with client server systems. Processes in

a distributed system can have access to servers. From the standpoint of a client server
system the processes of a cooperative system can be considered as client processes. In a
technical process control software system a process can collect data from the technical
process. This data is stored in a file located on a file server node. The following figure
shows an example of a combination of a cooperative and a client/server system. Process
A, Process a and Process C form a cooperative software system. Process B and Process
C use the file server. This means that process B and process C are clients of the file
server.

Figure 2.14: Combination of Cooperative and Client Server System

23

•

CHAPTER 3: WHAT IS MySQL?

A database is a structured collection of data. It may be anything from a simple
shopping list to a picture gallery or the vast amounts of information in a corporate
network. To add, access, and process data stored in a computer database, you need a
database management system such as MySQL. Since computers are very good at
handling large amounts of data, database management plays a central role in computing,
as stand-alone utilities, or as parts of other applications.

MySQL is a relational database management system. A relational database
stotes data in separate tables rather than putting all the data in one big store room. This
adds speed and flexibility. The tables are linked by defined relations making it possible
to combine data from several tables on request. The SQL part of MySQL stands for
"Structured Query Language" the most common standardised language used to access
databases.

MySQL is Open Source Software. Open Source means that it is possible for
anyone to use and modify. Anybody can download MySQL from the Internet and use it
without paying anything. Anybody so inclined can study the source code and change it
to fit their needs. MySQL uses the GPL (GNU General Public License).

3.1 Why Use MySQL

MySQL is very fast, reliable, and easy to use. If that is what you are looking
for, you should give it a try. MySQL also has a practical set of features developed in
close cooperation with our users. You can find a performance comparison ofMySQL to
some other database managers on our benchmark page. MySQL was originally
developed to handle large databases much faster than existing solutions and has been
successfully used in highly demanding production environments for several years.
Though under constant development, MySQL today offers a rich and useful set of
functions. The connectivity, speed, and security make MySQL highly suited for
accessing databases on the Internet,

MySQL is a client/server system that consists of a multi-threaded SQL server
that supports different backends, several different client programs and libraries,
administrativetools, and several programming interfaces. We also provide MySQL as a
multi-threaded library which you can link into your application to get a smaller, faster,
easier to manage product. MySQL has a lot of contributed software available. It is very
likely that you will find that your favorite application or language already supports
MySQL.

3.2 The Ma~n Features of MySQL

The following list describes some of the important characteristics of MySQL.
Internals and Portability

• Written in C and C++. Tested with a broad range of different compilers.
• No memory leaks. MySQL has been tested with Purify, a commercial

memory leakage detector.

24

•

• Works on many different platforms.
• Uses GNU Antomake, Autoconf, and Libtool for portability.
• Fully multi-threaded using kernel threads. This means it can easily use

multiple CPUs if available.
• Very fast B-tree disk tables with index compression.
• A very fast thread-based memory allocation system.
• Very fast joins using an optimised one-sweep multi-join.
• In-memory hash tables which are used as temporary tables.
• SQL functions are implemented through a highly optimised class library and

should be as fast as possible! Usually there isn't any memory allocation at all
after query initialisation.

3 .2.1 Column Types

• Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long,
FLOAT, DOUBLE, CHAR, VAR.CHAR, TEXT, BLOB, DATE, TIME,
DATETIME, TIMEST AMP, YEAR, SET, and ENUM types.

• Fixed-length and variable-length records.
• All columns have default values. You can use INSERT to insert a subset

of a table's columns; those columns that are not explicitly given values
are set to their default valµes.

3.2.2 Commands and Functions

• Full operator and function support in the SELECT and WHERE parts of
queries. For example:

mysql> SELECT CONCAT(firstname , " ", last_name) FROM
table name WHERE income/dependents> 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for
group functions (COUNTO, COUNT(DISTINCT ...), AVG(), STD(),
SUMO, MAX() and MIN()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with ~SI
SQL and ODBC syntax.

• Aliases on tables and columns are allowed as in the SQL92 standard.
• DELEiE, INSERT, REPLACE, and UPDATE return the number of rows

that were changed (affected). It is possible to return the number of rows
matched instead by setting a ag when connecting to the server.

• The MySQL-spycific SBOW command can be used to retrieve information
about databases, tables, and indexes. The EXPLAIN command can be used
to determine how the optimiser resolves a query.

• Function names do not clash with table or column names. For example, ABS
is a valid column name: The only restriction is that for a function call, no
spaces are allowed between the function name and the'(' that follows it.

• You can mix tables from different databases in the same query Security.
• A privilege and password system that is very flexible and secure, and allows

host-based verification. Passwords are secure because all password traffic is
encrypted when you connect to a server.

25

•

3.2.3 Scalability and Limits

• Handles large databases. We are using MySQL with some databases that
contain 50,000,000 records and we know of users. that uses MySQL with
60,000 tables and about 5,000,000,000 rows.

• tJp to 32 indexes per table are allowed. Each index may consist of 1 to 16
columns or parts of columns. The maximum index width is 500 bytes (this
may be changed when compiling MySQL). Ah index may use a prefix of a
CHAR or V A.RCHAR field.

3 .2.4 Connectivity

• Clients may connect to the MySQL server using TCP/IP Sockets, Unix
Sockets (Unix), or Named Pipes (NT).

3.2.5 Localization

• The server can provide error messages to clients in many languages.
• Full support for several different character sets.
• All data is saved in the chosen character set. All comparisons for normal

string columns are case insensitive.
• Sorting is done according to the chosen character set (the Swedish way by

default). It is possible to change this when the MySQL server is started up.
MySQL supports many different character sets that can be specified at
compile and run time.

3.2.6 Clients and Tools

• All MySQL programs can be invoked with the --help or - ? options to obtain
online assistance.

26

•

CHAPTER 4: USING MYSQL

Mysql (sometimes referred to as the "terminal monitor" or just "monitor") is an
interactive program that allows you to connect to a MySQL server, run queries, and
view the results. mysql may also be used in batch mode: you place your queries in a file
beforehand, then tell mysql to execute the contents of the file. To see a list of options
provided by mysql, invoke it with the =help option:

shell> mysql-help

4.1 Connecting to and Disconnecting from the Server

To connect to the server, you'll usually need to provide a MySQL user name
when you invoke mysql and, most likely, a password. If the server runs on a machine
other than the one where you log in, you'll also need to specify a hostname. Once you
know the proper parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

The******** represents your password; enter it when mysql displays the Enter
password Prompt. If that works, you should see some introductory information followed
bya

Mysq1 > prompt;
Shell> mysql -h host -Ll user -p Enter password:********

Welcome to the MySQL monitor. Commands end with; or \g. Your MySQL
connection id is 459 to server version: 3.22.20a-log.

Type 'help' for help.

mysql>

The prompt tells you that mysql is ready for you to enter commands. Some
MySQL installations allow users to connect as the anonymous (unnamed) user to the

server running on the local host. If this is the case on your machine, you should
be able to connect to that server by invoking mysql without any-options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing
QUIT at the

mysql> prompt:

mysql> QUIT

Bye

You can also disconnect by pressing Control-D.

27

..

4.2 Entering Queries

At this point, it's more important to find out a little about how to issue queries
than to jump right in creating tables, loading data into them, and retrieving data from
them. This section describes the basic principles of entering commands, using several
queries you can try out to familiarize yourself with how mysql works.

Here's a simple-command that asks the server to tell you its version number and
the current date. Type it in as shown below following the mysql> prompt and press
Enter:

mysql> SELECT VERSIONQ, CURRENT_ DATE;
-\--------vvrvvrv-\- v -------•----------+
I version() l CURRENT _DATE I
-+---------------+--------. ·----------+
j 3.22.20a-log j 1999-03-19
-t------------~-1--------------~----t

1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

A command normally consists of a SQL statement followed by a semicolon.
(There are some exceptions where a semicoloh is not needed. QUIT, mentioned earlier,
is one of them. We'll get to others later.When you issue a command, mysql sends it to
the server for execution and displays the results, then prints another mysql to indicate
that it is ready for another command.

Mysql displays query output as a table (rows and columns). The first row
contains labels for the columns. The rows following are the query results. Normally,
column labels are the names of the columns you fetch from database tables. If you're
retrieving the value of an expression rather than a table column (as in the example just
shown), mysql labels the column using the expression itself. Mysql shows how many
rows were returned and how long the query took to execute, which gives you a rough
idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as
server load and network latency.

Keywords may be entered in any lettercase. The following queries are
equivalent:

mysql> SEL~CT VERSION(), CURRENT_ DATE;

mysql> select versiont), currentdate;

mysql> SeLeCt vErSiOn(), current _DATE;

28

•

Here's another query. It demonstrates that you can use mysql as a simple
calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+ ------------+-----------+
I SIN(PIQ/4) I (4+ 1)*5 I
+-------------+-----------+
I 0.10110112s
+------ ------+------- - -+

The commands shown thus far have been relatively short, single-line
statements. You can even enter multiple statements on a single line. J1,1st end each one
with a semicolon:

The commands shown thus far have been relatively short, single-line
statements. You can even enter multiple statements on a single line. Just end each one
with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+----------------------·--+
I version()
+-------------- +
j 3.22.20a-log
+--------- --------------+
+--- ------------. ·-----. -+
INOWO
+-.----------------------+
I 1999-0J-19 00:15:33 I
+ .-·---- ' ---------· -----+

A command need not be given all on a single line, so lengthy commands that
require several lines are not a problem. mysql determines where your statement ends by
looking for the terminating semicolon, not by looking for the end of the input line. (In
other words, mysql accepts free-format input: it collects input lines but does not execute
them until it sees the sernicolon.)

Here's a simple multiple .. line statement:

mysql> SELECT
->USER()
-> ' -> CURRENT DATE;
+-----. ---v------- --+ ----------------+
IUSER()ICURRENT_DAT,E
+--------·-----------+--. ----·--- -----+
I joesmith@localhost I 1999-03-18 I
+------------------·,-+------------------+

29

•

In this example, notice how the prompt changes from mysql> to -> after you
enter the first line of a multiple-line query. This is how mysql indicates that it hasn't
seen a complete statement and is waiting for the rest. The prompt is your friend, because
it provides valuable feedback. If you use that feedback, you will always be aware of
what mysql is waiting for. If you decide you don't want to execute a command that you
are in the process of entering, cancel it by typing \c:

mysql> SELECT
->USERO
-> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c,
providing feedback to indicate that mysql is ready for a new command.

The following table shows. each of the prompts you may see and
summarizes what they mean about the state that mysql is in:

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.
'> Waiting for next line, collecting a string that begins with a single quote (' ").
"> Waiting for next line, collecting a string that begins with a double quote C'").

Multiple-line statements commonly occur by accident when you intend
to· issue a command on a single line, but forget the terminating semicolon. In this case,
mysql waits for more input:

mysql> SELECT USER()

If this happens to you (you think you've entered a statement but the only

response is a
prompt, most likely mysql is waiting for the semicolon. If you don't notice what

the
prompt is telling you, you might sit there for a while before realizing what you

need to do. Enter a semicolon to complete the statement, and mysql will execute it:

mysql> SELECT USERO
->.
'

-+-------------.------------1-
1 USERO
-+--------- ---- ----·----!-
' joesmith@localhost I
-+------------------ --· ---+-

The '> and 11> prompts occur during string collection. In MySQL, you can write ' ,
strings surrounded by either '" or '111 characters (for example, 'hello' or "goodbye"), and
mysql lets you enter strings that span multiple lines. When you see a '> or "> prompt, it

30

•

means that you've- entered a line containing a string that begins with a '11 or '"' quote
character, but have not yet entered the matching quote that terminates the string. That's
fine if you really are entering a multiple-line string, but how likely is that? Not very.
More often, the '> and "> prompts indicate that you've inadvertantly left out a quote
character. For example:

mysql> SELECT * FROM my _table WHERE name= "Smith AND age< 30;">

If you enter this SELECT statement, then press Enter and wait for the result,
nothing will happen. Instead of wondering why this query takes so long, notice the clue
provided by the "> prompt. It tells you that mysql expects to see the rest of an
unterminated string. (Do you see the error in the statement? The string "Smith is
missing the second quote.)At this point, what do you do? The simplest thing is to cancel
the command. However,you cannot just type \c in this case, because, mysql interprets it
as part of the string that it is collecting! Instead, enter the closing quote character (so
mysql knows you've finished the string), then type \c:

mysql> SELECT* FROM my_table WHERE name= "Smith AND age< 30;">
"\c

mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new
command.It's important to know what the '> and "> prompts signify, because if you
mistakenly enter an unterminated string, any further lines you type will appear to be
ignored by mysql including a line containing QUITl This can be quite confusing,
especially if you don't know that you need to supply the terminating quote before you
can cancel the current command.

4.3 Creating and Using a Database

Suppose you have several pets in your home (your menagerie) and you'd like
to keep track of various types of information about them. You can do so by creating
tables to hold your data and loading them with the desired information. Then you can
answer different sorts of questions about your animals by retrieving data from the
tables.

Create a database
Create a table
Load data into the table
Retrieve data from the table in various ways
Use multiple tables

The menagerie database will be simple (deliberately), but it is not difficult to
think of real world situations in which a similar type of database might be used. For
example, a database like this could be used by a farmer to keep track of livestock, or by
a veterinarian to keep track of patient records.

Use the SHOW statement to find out what databases currently exist on the
server:

mysql> SHOW DATABASES;

31

•

The mysql database is required because it describes user access privileges.
The test database is often provided as a workspace for users to try things out. If the test
database exists, try to access it:

mysql> USE test

Database changed

Note that USE, like QUit, does not require a semicolon. (You can terminate
such statements with a semicolon if you like; it does no harm.) The USE statement is
special in another way too : it must be given on a single Jin.e. You can use the test
database (if you have access to it) for the examples that follow, but anything you create
in that database can be removed by anyone else with access to it. For this reason, you
should probably ask your MySQL administrator for permission to use a database of
your own. Suppose you want to call yours menagerie. The administrator needs to
execute a command like this:

mysql> GRANT ALL ON menagerie.* TO your_ mysql_ name;
where your_ mysql _ name is the MySQL user name assigned to you.

4.4 Creating and Selecting a Database

If the administrator creates your database for you when setting up your
permissions, you can begin using it. Otherwise, you need to create it yourself:

mysql> CREATE DAT ABASE menagerie;

Creating a database does not select it for use; you must do that explicitly. To
make menagerie the current database, use this command:

mysql> USE menagerie

Database changed

Your database needs to be created only once, but you must select it for use each
time you begin a mysql session. You can do this by issuing a USE statement as shown
above. Alternatively, you can select the database on the command line when you invoke
mysql, Just specify its name after any connection parameters that you might need to
provide. For example:

shell> mysql -h host -u- user -p menagerie
Enter password: ********
Note that menagerie is not your password on the command just shown. If you

want to supply your password on the command line after the -p option, you must do so
with no intervening space (for example, as -pmypassword, not as -p mypassword).
However, putting your password on the command line is not recommended, because
doing so exposes it to snooping by other users logged in on your machine.

4.5 Creating a Table

32

•

Creating the database is the easy part, but at this point it's empty, as SHOW
TABLES will tel1 you:

mysql> SHOW TABLES~
Empty set (0. 00 sec)

The harder part is deciding what the structure of your database should be: what
tables you will need and what columns will be in each of them.

You'll want a table that contains a record for each of your pets. This can be
called the pet table, and it should contain, as a bare minimum, each animal's name.
Because the name by itself is not very interesting, the table should contain other
information. For example, if more than one person in your family keeps pets, you might
want to list each animal's owner. You might also want to record some basic descriptive
information such as species and sex. How about age? That might be of interest, but it's
not a good thing to store in a database. Age changes as time passes, which means you'd
have to update your records often. Instead; it's better to store a fixed value such as date
of birth. Then, whenever you need age, you can calculate it as the difference between
the current date and the birth date. MySQL provides functions for doing date arithmetic,
so this is not difficult. Storing birth date rather than age has other advantages, too:

You can use the database for tasks such as generating reminders for upcoming
pet birthdays. (If you think this type of query is somewhat silly, note that it is the same
question you might ask in the context of a business database to identify clients to whom
you'll soon need to send out birthday greetings, for that computer-assisted personal
touch). You can calculate age in relation to dates other than the current date. For
example, if you store death date in the database, you can easily calculate how old a pet
was when it died. You can probably think of other types of information that would be
useful in the pet table, but the ones identified so far are sufficient for now: name, owner,
species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:
mysql> CREATE TABLE pet (name V ARCHAR(20), owner V ARCHAR(20),
-> species V ARCHAR(20), sex CHAR(l), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because
the column values will vary in length. The lengths of those columns need not all be the
same, and need not he 20. You can pick any length from 1 to 255, whatever seems most
reasonable to you. (If you make a poor choice and it turns out later that you need a
longer field, MySQL provides an ALTER TABLE statement). Animal sex can be
represented in a variety of ways, for example, "m" and "£'', or perhaps "male" and
"female". lt's simplest to use the single characters "m" and "f". The use of the DATE
data type for the birth and death columns is a fairly obvious choice.

Now that you have created a table, SHOW TABLES should produce some
output:

To verify that your table was created the way you expected, use a DESCRIBE
statement:

33

•

mysql> DJ;SCRIBE pet;

I Field I Type I Null ! l<ey I Default l Extra
+--·--.,.....-~+ .• ,,...••..... ,,. ..• ~-+.1.ir- •+----+----~.,....+~~-· ..• -+
I name I varchar(20} ! YES 11 NULL I l
I owner I varchar(20) I YES 11 NULL I I
I species I varchar(ZO) I YES l l NULL l I
I sex I char(I) I YES 11 NULL I I
I birth l date I YES 11 NULL I I
I death I date I YES 11 NULL I I

You cap. use DESCRlBE any time, for example, if you forget the names of die
columns in your table or what type$ they are.

4.6 Loading Data into a Table

After creating your table, you need to populate it. The L,OAD DATA and
INSERT statements are useful for this. Suppose your pet records can be described as
shown below, (Observe that MySQL expects dates in yyyY-MM-DD format; this may
be different than what you are used to.) ,

name owner species sex birth death
Fluffy Harold cat f 1993.oz.04
Claws Gwen cat 111 1994-03-;l 7
Buffy Harold dog f I 9a9-05-13
Fang Benny dog m 1990-08-27
Bowser [)iane dog m 1998-0tf,31 l 995-07 ·29
Chirpy Gwen bird f 1998 ... 09 .. 1 l
Whistler Gwen bird 1997-12-09
Slim Benny snake Ill l 996-04-29

Because you ate beginning with an empty table, an easy way to populate it is
to create a text file containing a fQW for each of your animals; than load the contents at
the tllq into the table with a single statement.

You could create a text file 'pet.txt' containing one record per line, with
values separated by tabs. and given in the order in which the columns were listed in the
CREATE TABLE statement, For missing values (such as unknown sexes or death dates
for animals that are still living), 'you can use NVLi values, To represent these in your
text file, use N. For example, the record for Whistler the bird w0Ql9 look like this
(where the whitespace between values is a single tab character):

Whistl~r Gwen bird \N 1997--12-09 \N
To load the text _le 'pet.txt' into the pet table, use tpis command:
mysql> LOAD-DAT A LOCAL INFILE "pet.txt" INtO T ABftE pet;

34

•

You can ~pecify the column value separator and end of line marker explicitly in
the LOAD DATA statement if you wish, but the defaults ire tab and linefeed. These are
sufficient for the statement to read the file 'pet.txt' properly.

When you want to add new records one ~t a time, the INS~Rt statement is
useful. In its simplest form, you supply valves for each column, in the order in which
the columns were listed in the CREATE TABLE statement. Suppose Diane gets a new
hamster named Puffball. ·

You could add a new record using an INSERT statement like this:
mysql> INSERT INT() pet
.. >VALVES (Puffball', 'Diane','hamster','f1, '1999.-03-30',NULL);
Note that string an~ date values are specified as quoted strings here. Also, with

INSERT, you can insert NULL directly to represent a missing value. You do not use \N
like you do with LOAD DAT A.

From this example, you should be able to see that there would be a lot more
typing involved to load your, records initially using several INSERT statements rather
than a single LOAD DATA statement.

4. 7 Retrieving lnf ermatien from a Table

The SELECT statement is used to pull information from a table. The general
form of'the statement is:

SELECT what jo .•.. select
FROM which table
WHERE conditfon&_to...,.satisfy

what .•.. to_select indicates what you want to see. this can be a list of columns, or
* to

indicate *all columns." which table indicates the table from which you want to
retrieve ...,

data. The WHERE clause is optional. If it's present, conditiorts_to"-satisfy
specifies

conditions that rows must satisfy to qualify for retrieval.

4.8 Selecting AH Data

The simplest form of SELECT retrieves everything from a table:
rnysql> SEtECT * FROM pet;

C

I name I owner I species I sex I birth I death
~---~.,.·--·+- .. ,..~ +.- - ,I,.,+------+- ---------.-+~-~.,. _+
1 Fluffy I Harold I cat I fl 1993-02-'04 I NULL I
I Claws I Gwen I cat I m 11994.03 .. 17 I NULL I
I But'fy I Harold I dog If 11989 .• 0S-13 I NULL I
I Fang I Benny I dog Im I 1990 .. os-211 NULL I

' '

"

I Bowser! Diane l dog Im j 1998-08--31 I 1995-07-29
I Chirpy I Gwen I bird I f I 1998-09-11 ,I NULL

l \V_hi'stler I Gwen I bird l NULL I l997-12-09 .1 NULL
Slim I Benny I snake I' m I 1996 .•. 04-29 I NULL

I Puffbal! I Diane I hamster I f I. 1999-03-30 I NULL
+"" .•••.•........••• + .. -- + _ • .,,,...._+-~,.+ .• ~ .i.~----.-+.--'"'1-·"'---- +

Thjs form of SELECT is useful if you want to review your entire table, for
instance, after you've just loaded it with your initial dataset. As it happens, the output
just shown reveals an error in your data file: Bowser appears to have been born aftet he
died! Consulting your original pedigree papers, you find that th¢ correct birth year is
1989, not 1998.

There are least a couple of ways to fix this:
_ Edit the file 'pet.txt' to correct the error, then empty the table and reload it

using
DELETE and toxn QAT A:
mysql> SET AutOCOMMIT= 1; # Used for quick re-create of the table
mysql> PELETJ,3: FROM pet;
mysql> LOAD DATA LOCAL ~ILE "pet.txt" INTO T AaLE pet;

However, if you do this, you must also re-enter the record for Puflbal1.
Fix only the erroneous record with an UPDATE statement:
mysql> UPDA'tE pet SET birth= "1989 •. QS-3 l II WHERE name = "Bowser";
As shown above, it is easy to retrieve an entire table. But typically yeu don't

want tCT do that, particularly when the table beep mes large. Instead, you're usually more
interested in answering a particular question, in which case you specify some
constraints on the information you want. Let's look at some selection queries in terms of
questions about your pets that they answer.

4,8.1 Selecting Particular Rows
You cap select only particular rows from yout table. For example, if yeu want

to verify the change that you made to Bowser's birth date, select Bowser's record like
this:

mysql> SELE(;T * FROM pet WHERE name ;:: "Bowser";
+---- ... --+-------+---'- .. --+-i.---+---------- .. +---.--------+
I name I owner I species I sex I birth I death I
+ -- .. ---~--------+------_,+ .. ,.. •• ~-+- ..•.. - ---+ .. - ~---'-\ +
I Bowser I Diane I dog Im I I989-Q8-31 j 1995 .. 07 •. 29 I
+- ... ••,•--r+- ~--·"1-i.,..--"'l'_.,.+- .•.... .,. •. + ••...... _._..,_~,.+---.J-.,..,;, •.• -•+

The output confirms that the year is correctly recorded now as 1989, not
1998.String comparisons are normally case insensitive, so you can specify the name as
"bowser",

"BOWSER", etc. The query result will ~ the same.

36

•

You can specify conditions on any column, ~ot just name. For example, if you
want to know which animals were born after I 998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= 111998:-1.-1 \

I name I owner I species I sex I birth I death I
+--,. • .,._ •. __ + .t....,+i.. •..• _ •.••• ,.._+-----+.-- ••.• ~ .. --- •.. -+ •••...•.•.•. +
I Chirpy ,1 Gwen I bird I f I I 998-09-11 I NULL I
U~ MySQL Technical Reference for Version 4.0.1-alpha
I Puffball I Diane I hamster I fl 1999-0J .• JO I NULL I

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * :rROM pet WHERE species = "dog" AND sex ~ "f";

t name I owner I species I sex I birth I deL\th I
+-------+..,,. •.... --+- .•..•...•..•• +-----+------.- +..--,-..,!4o-+
I Buffy I Harold t dog I fl 1989-05·13 I NULL!

The, preceding query uses the AND logical operator. there is also an OR
operator:

mysql> SELECT* FROM pet WHERE species= "snake" OR species= "bird";

l name I owner I species I sex I birth I death I
+-"-·----••+-,-,-·r..,•+•-~---~,-.+-.,....._..ri---..--,..--•+----·••+
I Chirpy I Gwen I bird I f I l 99S-o9-11 I NULL I
I Whistler I Gwen I bird I NULL l I 997-12-09 I NULL l
I Stirn I Benny I spake l m I 1996-04-29 I NULL l
+-•------+.,. •. ""! .••••• + •• --.--+-----+----t·-----...,.+----,..-+
ANO and OR may be intermixed, If you do that, it's a good idea to use

parentheses to indicate how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = "cat'' AND sex := "m")
-> OR (species = "dog" AND sex == "f");
+ ...••.•..••.. +---·----·+·----·..--+ .. ~ ... --+--- .. -·-~-·--'+----,.+
I name I owner I species I sex I birth I death I

I Claws I Gwen I cat Im 11994 .. 03-17 ! NULt I
I Buffy l Harold I dog I fl 1989·05-13 j NULL J

4.8.2 Selecting Particular Columns
If you don"'lt want to see entire tows from your table, just name the columns in

which you're interested, separated by commas. For example, if you want to know when
your animals were born, $tlcct the name and birth columns:

Mysql> SELiiCt name, birth FROM pet;

37

I name ! birth I . +--------+ ,..1.•...•. - .•....••... +
I Fluffy J 19~3 .. 02..04 I
1 Claws f 1994 .• 03-17 I
I Buffy ! 1989..05.- l 3 I
I fang I I 99Q-os ... 21 I
I Bowser 11 g89-08-31 I
I Chirpy I l 998-09-11 I
I Whistler I 1997-12-09 I
[Slim l 1996 .•. 04-29 I
j Puffball j 1999-03-30 t

I I • I I
I

To find out who owns pets, use this query:
mysql> SELECT owner FROM pet;

+ ... - .••.••..•.• +
I owner I
+ ...•... ,. •..• ,.+
!~WI
t~I
l~WI
l&~I
1rn~1 ,~~,
l~l
l&~I
rm~1

However, notice that the query simply retrieves the owner field from each
record, and some of them appear more than once. To minimize the output, retrieve each
unique output record just once by adding the keyword DlSTINCT:

mysql> SELECT D1STINCT owner FRQM pet;
+--- .•.. --+
l owner I

I Benny I
I Diane I
[Gwen]
I Harol~ I
+ .•...• ._ ••.• +

You can use a WHltRE clause to combine row selection with column selection.
For example, to get birth dates for dogs and cats only, use this query:

mysql> SELEtT name, species, birth FROM pet

38

-> WHERE species ::i;i "dog" OR species = "cat";

I name l species I birth I

I Fluffy I cat I 1993-02-04 I
I Claws I cat j 1994..03-17 I
I Buffy I dog l 1989-05-1:l I
I Fang I dog j 1990-08-27 I
I Bowser I dog I 1989-08-31 I
+ •..... _.,._ + •• - _ _.. __ .,..+--------- ••. -+

4.8.3 Sorting Rows
You mar have noticed in the preceding examples that the result rows are

displayed in no particular order. However, it's often easier to examine query output
when the rows are sorted in some meaningful way. To sort a result, use an 01.U)ER BY
clause. Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;

I name I birth !

I Buffy 11989 .• 05"113 I
I BPW$ef j l 989.Q8-3 l I
I Fang I 1990 .. 08-271
I Fluffy I 1993 ,,02-04 I
I Claws I 1994 .• 03.17 I
l S,Hm I 1996-04-29 I
I Whistler I 1997-12-091
I 'Chirpy I 1998.:09-11 l
I Puftball I 1999-03 .. 30 I

To sort inreverse order, add the DESC (descending) keyword to the name of'the
column you are sorting by:

mysql> SEJ.,ECT name, birth FROM pet OJtDER BY birth DESC;

I name I birth I
J Puffball j 1999 .. 03.,30 I
I Chirpy ! l 998 •. Q9. I l I
I Whistler I 1997-12-09 l
I Slim j 1996 ..• 04-29 I
I Claws I I 994-0J •. l 7 I
I Fluffy I 1993-02-041
I Fang I 1990-08-27 I
I Bowser I, 1989-0$-31 I
I Buffy I 1989..05- I 3 I

39

•

Y ou can sort on multiple columns. For example, to ~~ by type of animal,
then by Mrt4 date within animal type with youngest animals first, use the following
query:

mysql> SELECT name, species, birth FROM pet ORDER BY species, birth
DESC;

I name I species I birth I,
+ .. -~T"'·-~-+ --• ;f,- .••..•...•.•.•.•. ,...._.+
I Chirpy I bird 1 19-98-09· l l I
I Whistler] bird 11997 •. 12 .. 091
I Claws ·j cat l 1994.0l-17 I
I Fluffy I cat I 1993.:02.,.04 I
l Fang I dog I 1990-08-27 I
I Bowser I dog I l 98?-08-31 l
Chapter 3: Introduction to My~QL: A MySQL Tutorial 141
I Buffy I dog I 1989-05-13 I
l Puffball I hamster I 1999-03-30 I
I Slim I snake i I,99(? .• 04-29 I
+-"·------+-+---•.- .. + •.......•....•. ,,..,. •.. +

4.9 Date C,akulatiops

MySQL provides several functions that you can use to perform calculations on
dates, for example, to calculate ages or extract parts of dates, To determine how many
years old. each of your pets is, compute the difference in the year part of the current date
and the birth date, then subtract one if the· current date occurs earlier in t,he calendar year
than the birth date. The following query shows, for each pei, the birth date, the current
date, and the age in years.

mysql> SELECT name, birth, ClJRRENT _OATE,
-> (YEM(CURRENT~D,<\TE}· YeAR(birth))
-> •. (RIGllt(CURRENT_DATE;S)<RIGH!(birth,5))
-> AS age
•. >FROM pet;

I name I birth I CURRE;NT~DATE I age I
+-- ·----~+--..,. .. ------ + , !9'."'l"~•-"t+ ••.•..•. --.,.. .• if+

l Fluffy I 1993 .• 02-04 I 2001-08-29 I s I
I Claws l 1994-03,..171 ~001-08-29 I 71
I Buffy j 1989"'05,13 I 2001-08-29 I 12 .I
1 Fang 11990-08-2712001-08-29 I 11 I
I Bowser I 1989-0S-3 I I zoor-cs-zs 1111

40

•

! Chirpy! 1998-09-1 lj 2001-CJS.,29 12 I
l Whistlet l 1997-12-09 I 2001-os-z~ I 3 I
I Slim I 199()-04--29 I 2001 ~os-291 5 I
I Puffball I 1999-03-30 l ioo1,.os.;z91, 21
+-----·-- + ...•.. .,.----..,,~-+-----~---_,- .. +ff--•+

Here, YEAR() pulls out the year part of a date and lUGHTO pulls of the
rightmost characters that represent the Ml\,1-DD (calendar year} part of the date. The
part of the, expression ~hat compares the MM .• DD values evaluates to 1 or O, which
adjusts the year difference down a year if cUR.RENT_DATE occurs earlier in the year
than birth, the full expression is somewhat ungainly, so an alias (age) is used to make
the output column label more meaningful. '

The query works, but the result could be scanned more easily if the rows were
presented in some order. This can be done by adding an ORDER BY name clause to
sort the output by name:

mysql> SELECT name, birth, ClfRRENT_,_DATE,
-> (YEAR(CURRF:NT _DATE)· YEAR(birth))
-> - (RiGHT(CURRENT ...• DATE,5)<RIGHT(birth,5))
-::> AS age

-> FROM pet ORDER BY name;

l name I birth I CQRRENT_ t>ATE I age I
+-.i-,-~---+•.....•........ , .. +,..- •........ .,-.... --+-----+
I Bowser I 1989-08-31 I 200h08-79 I ll l
~Buffy I 1989.,d5-l3 j 200l-08·29 j 12 I
I Chirpy l 1998 .• 09-11 ,j 200I-b8-29 I 2 l
I ttaws I 1994·03- I 7 I 2001 •. os-29 I 1 I
I Fang l 1990-03 .. 21 I 2001-0S-49 J I 1 I
I Fluffy I 1993-01-04 j 2001-08-29 I 8 l
I Puffball I l999 •. Mr301 iool-OS,.191 i I
I Slim I l 99(>.,04,.29 I aoo l ~08-29 l s I
I Whistler I 1997-12-09 I' 2001-oS-29 l 3 I

41

"

To sort the output by age rather than name, just use a differerlt ORDER J3Y
clause;

mysql> SELECT name, birth, CURRENT~DATE;,
-> (YEM(C~ _DATE)- YEAR(birth))
-> .. (RIGHT(Cl)RRENT)JATE,S)<RIGHT(birth,5))
-> AS age
,..> FROM pet OilDER .av age;

I name I birth I C~NT..,.DATE I age I
+---•-•.f•••* ... ~·-.·""~"'·••-1+~•.•. _._..,. __ .,. +----'r"'I+
j Chirpy I 1998-09-11 I 2001-08-29 I 2 !
I Puffball I l 999-oi .. 30 I 2001-08-29 I 2 I
I Wbi$tler l 1997-t2-09 I 200t-08-29 I 3 I
I Slim l 1996-04-29 ! 2001·08-29 I 5 I
I Claws I 1994-03-17 I 200 t-08-29 l 1 I
[Fiuffy] 1993-02-04 j 2001"08-29 j 8 j
I Fang I l 990-08 •. 27 I 2001-08.-29 I I} 1
I Bowser I 1989..08-3 I I 2001-08-29 I ll I
I Buffy I 1989 •• 05-13 12001-08-29112 I

A similar query cart be used to determine age ~t death for animals that have died.
You determine which animals these are by checking whether or not the death value is
NULL. Then, for those with pon-NULt values, compute the difference between the
death and birth values: ·

mysql> $ELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(bitth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

+--,..~- -+.---.~--··--+ .., - -+-~- ,.+
I name I birth I death I a~e I

l Bowser j 1989-08-31 j 1995 .. 07-29 ! 51

The query uses death IS NOT NULL rather than death l= NULL because
NULL is a special value.

What if you want to know which animals 'have birthdays next month? For this
type of calculation, year and day are irrelevant; you simply want to extract the month
part of the birth column. MySQL provides several date-part extraction functions, such
as YEA.RO, MONTE'(); and DA YOFMONTH(). MONTH() is the appropriate function
here. To see how it works, run a simple query tha:t displays the value of both birth and
MONTH(bitth)

mysql> SELijCT name, birth, MONTH(birth) FllOM pet;

42

•

I name I birth I MONTH(birth) I

I Fluffy I 1993..02:-04 l 2 I
I Claws I 1994-03-17 ,[J I
I Buffy J 1989..05 .. n ! 5 I
I Fang I 1990-08-2718 I
I Bowser l 1989-08-3 l I S l
I Chirpy I 1998-09-1 I I 9 I
I Whistler I 1997,:.12-09 r 111
I Slim I 1996-04-29 I 4 I
I Puffball I 1999 .. 03 .. 30 I) I +----- .. ---+-'--: - ~- -+ .. -- •. -- ,; _+

Finding animals with birthdays in the upcoming month is easy, too. Suppose the
current month is Apnl. Then the month value is 4 and you look for animals born 'in May
(month 5) like this:

mysql> SELECT name, birth FROM pet WHERe MONTH(birth) = 5;

I name ~ birth I
+------+,. •.•. ,_ !'+
I Buffy l 1989-0S-13 I
+ .••...•••... + •........ _. +

There is a small complication if the current month is December, of course,
Yo1;1 don't just add one-to the month number (12) and look for animals born in moath 13,
because there is no such month. Instead, you look for animals born in January (month
1). You can even write the query so that it works no matter what the current month is.
That way you don't have to use a particular month number in the query. DATE_ADPO
allows you to add a time interval to a given date. If yoti add a month to the value of
NOW(), then extract the month part with MONTH(), the result produces the month in
which to look for birthdays:

mysql> SELECT name, birth FROM pet
-.> WHERE MQN1f{(birth) = I\i!ONni(DATE_ADD(NOW(), INTERVAL l

MONTH)); .
A different way to accomplish tbe same task is to add I to get the next month

after the current one (after using the modulo function (MOD) to wrap around the month
value to O if it is currently 12):

mysql> SEU!CT name, birth FROM pet
-> WHE~ MONTH(birth) ;:; MOD(MONTH(NOW()), 12) + 1;
Note that MONT}f returns a number between 1 and 12. And

MOD(som~thing, 12) returns a i)um:ber between O and 11. So the addition has to be after
the MOD(), otherwise we, Would go from November {11) to January (I).

43

•

4.10 Worl,dag with NVLL Values

The NULL value can be surprising until you get used to it, Conceptually, NULL
means missing value or unknown value and it is treated semewhat ditferently than other
values. To test for NULL, you cannot use the arithmetic comparison operators such as
=,<,or!=. To

In MySQL, O or NULL means false and anything else means true. The default
truth value from a boolean operation is 1. This special treatment of NULL is why, in the
previous section, it was necessary to determine which animals are no tonier alive using
<ieath IS, NOT NULL instead of death != NULL.

4.11 V$ing More Tb;a:'1 one Table

The pet table keeps track of which pets you have. If yd\1 want to record other
information about them, such as events in their lives like visits to the vet or when litters
are born, you need another table. What should this table look like1 It needs:

To contain the p~i Mmes" you know which animal each event pertains to.
A date se you know when the event occurred.
A field to describe the, event.
An event type field, if you want to be able to categorize events.
Given these considerations, the CREA TE TABLE statement for the event table

might look like this:

mysql> CREATE tASLE event (name V ARCHAR(20), date DAtE,
-> type V ARCHAR(l5), remark VAR.CHAJ:l(255));

As with the pet table, it's easiest to load the initial records by creating a tab •.
delimited text file containing the information:

Fluffy 19-95-0.S-15 littet4 kittens, 3 female, l m(tle
ijuffy 1993-06-23 litter 5 puppies, 2 female, 3 male
Buffy 1994-06-19 litter .3 puppies, 3 female
Chirpy 1999-03-21 vet needed beak straightened
Slim 1997-08-'03 vet broken rib
Bowser 1991-10-12 kennel
fang 1991-10 •. ii kennel
Fang 1998-08-28 birthday Gave him a new chew toy
Claws 19gg-0~- l 1 birthday Gave him a new ea collar
Whistler 199$- J 2 .. 09 birthday Fir~ birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFil-E "event.txt" INTO TABLE event;

Based on what you've learned from the queries you've run on the pet table,
you should be able to perform retrievals on the records in the event table; the principles
are the same.

44

•

But when is the event table by itself insufficient to answer questions you migp.t
ask?

Suppose you want to find wt the ages. of each pet when they had their litters.
The event

table indicates when this occurred, but to calculate the age of the mother, you
need her

birth date. Because that is stored in the pet table, you, need both tables for the
query:

mysql> SELECT pet.name, (TO.,.J>AYS(date) - TO_DAYS(birth))/365 AS a2e,
remark

-'> FROM pet, event
-> WHER.1$ pet.name = event.name AND type = "litter";

I name I age I remark I
+,,. •...• ,._--+-----+--.,. ... - -~ .. ---·--!""'~-..-,- -+
I Fluffy l 2.27 J 4 kittens, 3 female, 1 male I
I Buffy 14.12 j 5 puppies, 4 female, 1 male I
I Buffy l 5 .1 O I 3 puppies, .3 female I
+•..•...•• +-.,.,..,. •.. ,... .• + - ..•...... ~.'!'JI·'- ••.. _ ••. .,.__.,.,... •• .,.+

There are several things to note about tbi$ query:
The FROM clause fists two tables because the query needs to pull information

from both of them. ·
When combining (joining) information from multiple tables, you need to spe~ify

how records in one table can be matched to records in the other. This is easy because
they both have a name column. The query uses WHERE clause to match up records in
the two tables based on the name values. ·

Because the name column occ,urs in both tables, you must be S.pecific about
which table you mean when referring to the column, this is done by prepending the
table name to the column name. You need not have two different tables to perform. a
join. Sometimes it is useful to join a table ,to itself, if you want to compare records in a
table to other records in that same table. For example, to. find breeding pairs among your
pets, you can join the pet table with itself t9 pair u'p males and females of like species:

mysql> SELECT p l.name, p l.sex, p2.name, pz.sex, plspecies
.• > FROM pet AS p 1, pet ,AS p2
.• > WHER,E pl.species= p2.species AND pl.sex= "f" AND p2.se,x= "m";

I name I sex I name I sex I species I
+--.-----+-.,'f'V"'·-+----i-..,,.+-...- ...••. +-• ~--.:...-+
I Fluffy If l Claws Im I cat l
I Buffy If I Fang Im I doij I
I Buffy I f I Bowser I m I dog I
+- •. -- ••.. -·+--..1--+------- .. +-.,. ... - .•.•. +.,... •••.•.•• "'+

45

•

In this query, we sp~cify aliases for the table name in order to refer to the
columns and keep straight which instance of the table each column reference is.
associated with.

4.12 Getting Infonnation About D~tabases and Tables

What if you forget the name of a database or table, or what the structure of a
given table is (for example, what its columns are called)? MySQL addresses this
problem through several ~tatements that provide information about the databases and
tables it supports.

mysql> SELECT DATABASEQ;
+--------.,+
l OATABASE()]
.,j,,.T~-~----•f,

I menagerie l·

To find out what tables the currem database contains (fot example, when you're
not sure about the name of a table), use this command: ·

mysql> SHOW TABLES;
+--·--•-,.----------+
I 'tables in menagerie I
+--,--_.J-.~-""-·--- .. -+
I event I
I pet l
If you want to find out about the structure of a table, the DESCRIBE command

is useful; it displays information about each of a table's columns:

mysqj> DESCRIBE pet;

1 Field I Type I Null I K~y l Default I Extra I

I name I varch~20) I YE$ 11 NULL 11
l owner l varchar(20) 1 YES 11 NULL ! I
I species I varchar(io) l YES 11 NULL 11
I sex I char(l) I YES 11 NULL 11
I birth l date l YES 11 NULL 11
I death I date I YES I l NULL 11

Field indicates the column name, Type is the data type for the column, Nuh
indicates whether or not the column can contain NOLL values, Key indicates whether or
not the column ts indexed, and Default specifies the column's default value. If you have

46

•

indexes on a table, SHOW INDEX FROM table name produces information about
them.

4.13 Usip~ AJJTO INCREMENT

The AUTO_ INCREMENT attribute can be used to generate a unique identity
.for new rows:

CREATE TABLE animals (id mediumint not null auto jncrement,
name char(~O) not null,
primary key (id));
INSERT INTO animals (name)

("dog"),("cat")1("P,enguin"),(11lax;")\(''whale"); ·
_SELE~T * FR9M animals;

Which returns;

I id I name l

111 dog I
lilcatl
I 3 I penguin I
14 [lax I
J 51 whale I

For MyISAM and BDl3 tables you can specify AUTO _INCREMENT on
secondary column in a multi-column key. In this case the generated value for the
autoincrement column is calculated as MAX(auto Jncrement..,. columnj+ I) WHERE

. prefix=given-prefix. This is useful when you want to put data into ordered groups.

CREATE TABLE animals (grp enum ('fish','mammal','~ird') not null,
id mediumint not null auto _increment,
name char(30) not null,
primary key (grp,i~));

INSER.t INTQ animals (grp.name)
valuesCmammal", "dog")l"mammal'',11cat"),("bird11,''penguin11),

("SELECT • FROM animals or-derby grp.id;

Wb:ic.h returns:

47

••

+ ••••........• +---+ ...•.. - ••.. +
I grp -I id I name I

I fish I I I lax l
I mammal J 1 i dog I
I mammal I 2 I cat I
I mammal l 3 I whale j
I bird I 1 I pengµin I
Note that in this case, the auto increment value will be reused if you delete the

row with the bi~gest auto increment value in any group. \'01,1 can get the used
AUTO_INCREME.NT key with the LAST_INSERT_IDQ SQL function or the
mysqljnsertJdO API function.

4.14 MyS9l Lan_gua_ge Structure

MySQL has a very complex, but intuitive and easy to learn SQL interface,
This chapter describes the various commands, types, and functions you· will need to
know in order ~Q use MySQL efficiently and effectively. This chapter also serves as a
reference to all functionality included- in .MySQL ..

4.14.1 Strings
A string is a sequence of characters, surrounded by either single quote f '') or

double quote C ''') characters (only the single quote if you run in ANSl mode}.
Examples: 'a string' "another string" ·

Within a string, certain sequences have special meaning. Each of these
sequences begins with a backslash C\'), known as the escape character. MySQL
recognizes the following escape sequences:

\0 An ASCII O (NtJL) character.
\' A single quote I'") character.
\" A double quote f '") character.
\b A backspace character.
\n Anewlinecharacter.
\r A carriage return character.
\t A tab_ character.
\z ASCU(26) (Control-Z). This character can be encoded to ~How you to go
around the problem that ASCII(26) stands for END-OF-FlLE on Windows.
(ASCP:(76) will cause problems if-you try to use mysql database c filename.)
\\ A backslash ('\') character.

\%A'%' character. This is used to search for literal instances of'%' in contexts
where'%' would otherwise be interpreted as a wild-card character.

48

•

_A'~' character. This is used to search for literal instances of',..,...' in contexts
where '_' would otherwise be interpreted as a wild-card character.
Note that jf -you use '\%' or'_' in some string contexts, these will retem the

strings'\%'
and'_' and not'%' and'-'·
There are several way~ to mclude.quetes within a string:
A '" . ·d· . ed . h 'Ii b 'tt '"' ms, ea stnngquot - wit -may- ewn en as .
A~"' inside a string quoted with '·11' may be written as \11111•
You cap precede the quote character with an escape character('\').
A '" inside a string quoted with ' "' needs no special treatment and need not be

doubted · · ·
or escaped. In the same way, '111 inside a string quoted with 'ir needs no special

treatment
The SELRCt statements shown below demonstrate how quoting and escaping

work:

mysql> SELECT 'hello', "hello'", "il'hellq.'rn', 'hel"l,o', '\'hello';

I hello j "hello" I "nhello'"' I hel'lo I 'hello I
+---· •. ..,..-..,+--~------+--~ ..•.... ., ..• -.i_ •. + .. -. .•.. ,...~ •... +--·----+
mysql> SELECT "hello", "'h~Ho"\ m'hetlo'"'., "hel""lo", ''\"hello°;
+•--r-••+•-..._ ... -~ ... +-""'-- .. ----+-_,.,.--+--~---+
I hello l 'h~llo' I "hello" I hel"1o I ":qelfo l
+--- --+ •...• ,... ..• "I- ... +~---- ..• ·+--.,-- .• ~·-+------·+
mysql> SELECT "This\nis\nFour\nlines!I;

! This
ls
Four
lines I
+----4.-....-~--~t·-~---+-

If you want to insert binary data into a BLOB columrt, the following
characters must ~e represented by escape sequences:

NOL ASCII 0. You ~hould represent this by '\O' (a backslash and an ASCII 'O'
character).
\ ASCII 92, backslash. Represent this by'\\'.
'AS'Ctt 39, singlequote, Represent this by V'.
'' ASCII 34, double quote. Represent this by ",",
If you write C code, you can use the C APl function mysql_ escape _stringO to

escape
- ~h~ra9t¢rs.fur.the INSERT statemen;

4.14.2 Numbers
Integers ate represented as a sequence of digits. Floats use '.' as a decimal

separator. Either type of number may be preceded by '~· to indicate a negative value.

49

•

An integer may be used in floating-point context; it is interpreted as the
equivalent

. floating-point number.

4. lA.3 Hexadecimal Values
, MySQL supports hexadecimal values. In number contest these act like an
integer (64-bit_precision). In string context these act like a binary string where each pair
of hex digits is converted to a character:

mysql> SELECT x'FF'
-> 255
mysql> SELECT Oxa+O;
_j 10
mysql> select Ox5061756c;
-> Paul

4114.4 NlJLL Values

Th~ NULl., value means \no data" and is dif(erent frpm values such -~ 0 for
numeric types Of the etnj)ty string for stniig, types,

NULL may be represented by \N when using the text file import or export
forniits ·

(LOAO DNfA INFILE, SELEC't , .. INTO OUTFILE).

50

•

CHAPTER 5: CLIENT SERVER MODELLING

5.1 Structure of System

The project is designed for transferring and receiving customer and account
information from server in a Local Area Network or in Internet. The sytem works with the
logic of TCP/IP protocol.In server part of the program,Mysql server is running.The databases
are created in server by the program administrator and the connection to the server are made
by the help ofDelphi6 components.The Client computer port is listening the 3306. port of the
server.All transferrings are occured by the help of this single port.While constructing the
program,the server must have a constant ip address like 127.0.0.1 and the client must take an
ip address from the server.

As shown in Figure 5.1,to test the connnection the client is pinging to the server and
the connection is ready to run but the user never see this ping statement,this will be done
automaticly by the program.

Figure 5 .1 Command Prompt

With the logic of distributed systems, There can be more than one server or also clients
may have their own databases,the aim is to reduce the clients work. All heavy information
will be stored in the server and it can be called by the client in any part ofthe program.

51

•

As shown in figure 5.2,WinMySql Admin is running with the windows and all
databases.server connections.ip configuration can be seen easily in this part.

Figure 5 .2 WinMySql Admin

52

•

If WinMySql Admin works.The database administrator is ready to run MySql
Manager.In this part the administrator can create Databases.Tables.Queries easily,shown in
figure 5.3

Figure 5.3 MySql Manager

53

•
~ c-;-8861" ~

Now the .program is running,but it is the Local .Area Network 7 .o¥t~n of}h.e';\
program.If the client wants to connect to the server from internet, The logiq 'l's agam ~Jlle,tt),j
has to known the ip adress of the Stirve.r as shown in figure 5.4.The IP Ad ,[~s of"'b~er is;i
212.108.131.31, so the program can run on internet, ~ ~ c:;}

' {!~H:JA\ "'¥.f
~~

Figure 5. 4 Internet Connection

In our program, We have three different Tables;Customer,Account,Personel.Using this
system,all transaction occurs easily,fastly,reliably. The Client can transfer the tables which are
allowed by the program administrator.

MySql was not found in the standard package of Delphi 5,but in Delphi 6 The Borland
company starts using Mysql in their programs.

54

•

5.2 User Interface

FigureS.5 shows the screen when the program runs. As you see there are some menus.
These are customer, accounts, search, money operations, personel, about and exit. At the
begining of the program these menus, a digital clock and a calender which shows whole
month when clicked, are appeared on screen ..

Figure 5.5 Main Form.

55

•

Figure 5.7 shows the screen when user clicks on the customer details. To monitor
details of a customer you have to enter id of customer and then press search button. Program
will connect to remote database and search for that id. if search will be successful(if id found
in database) details of customer comes to screen both to dbgrid and dbedit.

Figure 5.7 Customer Details.

51

•

Figure 5.8 shows the screen when user clicks on new customer. User enters the
information to necessary fields. Customer _id comes automaticly. Inorder to prevent
customers having same id number, while we were creating our database we used an sql code
that gives id automaticly and one after another. if the last customer we entered has id=4 the
next customer will have id=5 automaticly, After user finishes entering information, post
button, which appears as check sign, must be clicked to save it into database.

Figure 5.8 New Customer.

58

•

Figure 5. 9 shows screen when user clicks on edit customer. You have to enter id of
customer and then press search button. Program will connect to remote database and search
for that id. if search will be successful(if id found in database) details of customer comes to
screen. User makes necessary changes and then click post button which appears as a check
sign. After post button is pressed changes are done and sent back to database with
new(changed) information.

Figure 5.9 Edit Customer.

59

•

Figure 5 .10 shows screen when user clicks on delete customer. You have to enter id of
customer and then press search button. Program will connect to remote database and search
for that id. if search will be successful(if id found in database) details of customer comes to
screen. if the details belong to customer that you are going to delete write customer id to box
which is next to update button and then press update button customer(details) and customer's
accounts are going to be erased. if a customer doesn't exist, how an account that belongs to
him/her exists?

Figure 5.10 Delete Customer.

60

\

..

Figure 5.11 shows the screen when user clicks on customer list. Program connects to
computer which has the database and takes information from the database and lists customers
and details of the customers.

Figure 5 .11 Customer list.

61

Figure 5.12 shows the screen when user clicks on the accounts. User can perform
some operations on accounts. These operations are, monitoring details of a specific account
from database, adding a new account to database, editting(changing) details of a specific
account which exists in database, deleting an account from the database, listing details of
accounts that exists in our database. We will examine these operations in the following
figures.

Figure 5.12 Accounts Menu.

62

•

Figure 5 .13 shows the screen when user clicks on the account detail. To monitor
details of an account you have to enter account number of an account and then press search
button. Program will connect to remote database and search for that number. if search will be
successful(if number found in database) details of account comes to screen both to dbgrid and
dbedit.

Figure 5.13 Account Details.

63

•

Figure 5.14 shows the screen when user clicks on new account. User enters the
information to necessary fields. After user finishes entering information, post button, which
appears as check sign, must be clicked to save it into database on remote computer.

Figure 5.14 New Account.

64

•

Figure 5 .15 shows screen when user clicks on edit account. You have to enter number
of an account and then press search button. Program will connect to remote database and
search for that number. if search will be successful{if number found in database) details of
account comes to screen. User makes necessary changes and then click post button which
appears as a check sign. After post button is pressed changes are done and sent back to
database with new{ changed) information.

Figure 5 .15 Edit Account.

65

•

Figure 5.16 shows screen when user clicks on delete account. You have to enter id of
customer and then press search button. Program will connect to remote database and search
for that id. if search will be successful(if id found in database) account details of customer
comes to screen. if the details belong to account that you are going to delete just click delete
button, which appears as minus sign below the details of account.

Figure 5 .16 Delete Account.

66

•

Figure 5.17 shows the screen when user clicks on account list. Program connects to
computer which has the database and takes information from the database and lists accounts
and details of the accounts.

· Figure 5 .17 Account List.

67

•

Figure 5.18 shows screen when user clicks search. There are 2 ways of searching. This
figure shows the one that is done by using name or surname or address. You click one of the
search property that you want to perform search operation. Write the key
informationmame.surname or address) to the box that will come to screen then click search
button. Program will connect to remote database and search for that information. if search
will be successful(if information found in database) details of customer comes to screen.

Figure 5 .18 Search Menu.

68

•

Figure 5 .19 shows the screen when user clicks on the customer id that pereforms a
search by using customer id. To search a customer you have to enter id of customer and then
press search button. Program will connect to remote database and search for that id. if search
will be successful(if id found in database) details of customer comes to screen to dbgrid.

Figure 5.19 Search With customer_id.

69

..

Figure 5.20 shows the screen when user clicks on the money operations. User can
perform some operations on customers' accounts. These operations are, drawing money,
depositing money and money order that means transfering money. We will examine these
operations in the following figures.

Figure 5 .20 Money Operations.

70

..

Figure 5.21 shows the screen when user clicks on draw money. To draw money to an
account of a customer you must perform a search first. You have to enter id of customer and
then press search button. Program will connect to remote database and search for that id. if
search will be successful(if id found in database) details of customer account comes to screen
both to dbgrid and dbedit. if details belong to customer that is going to draw money, amount
to be drawed is written to box at right side oflabel 'deposit amount' and then submit button is
clicked. if refresh button is clicked, change in amount can be seen while program is running ...

Figure 5 .21 Draw Money.

71

•

Figure 5.22 shows the screen when user clicks on deposit money. To deposit money to
an account of a customer you must perform a search first. You have to enter id of customer
and then press search button. Program will connect to remote database and search for that id.
if search will be successful(if id found in database) details of customer account comes to
screen both to dbgrid and dbedit. if details belong to customer that is going to deposit money,
amount to be deposited is written to box at right side of label 'deposit amount' and then
submit button is clicked. if refresh button is clicked, change in amount can be seen while
program is running ...

Figure 5.22 Deposit Money.

72

•

Figure 5.23 shows the screen when money order is clicked. Two seperate searches are
performed to see accounts's details to transfer and receive money. You have to enter id of
customer and then press search button. Program will connect to remote database and search
for that id. if search will be successfukif i(l found in database) details of customer account
comes to screen both to dbgrid and dbedit. Details at left belongs to sender of the money and
details at right belongs to receiver of the money. if correct accounts are found, user writes
amount to be transferred and presses submit button. if monetary units are same transfer will
occur and amount will be subtracted from sender and will be added to receiver. After refresh
buttons are pressed changes will be seen in list while program is running. if monetary units
are not same transfer will not occur ..

Figure 5.23 Money Transfer.

73

••

Figure 5.24 shows screen when user clicks about project. Language we used to write this
project(delphi), symbols of delphi and MySQL and name of instructor that we are going to
submit project come on screen.

Figure 5 .24 About.

74

•

CONCLUSION

The most important question fat the database programmers "How can tables carry
large amount of data and How fast the transaction occurs?". Nowadays by the fast
development of technologies, the data amount becomes larger and inversely proportional the
transaction becomes slower, To overcome this problem programmers develop new and fast
database servers; Nowadays one ef the fastest database program is MySql server.

We develop our project by usingMysq! so that it is very fast that it can transfer data
one megabyte per second from server to client and can hold large amount of data up to eight
million terabytes, it is very reliable and can operate in any operating system such as Linux,
Solaris, Windows.

The project is developed in Borland Delphi 6 and components are used to link
database to the Delphi. The program can run on two pc's up to sixteen pc's reliably and fastly
over Internet, Local Area Network(LAN) and Wide Area Network(W AN).

•

REFERENCES

I.Marco CantutMastering Delphi 6",Sybex 2001.

2. Mark Maslakowski, "Sam's Teach YourselfMySQL in 21 Days",

3. Steve Teixeira and Xavier Pacheco," Delphi™- 6 Developer's Guide, Copyright® 2002 by
Sams Publishing ·

4.MySHl Reference Manual.Copyright 1997-2001.

5. T,Ozsu', P.Va1dud~, "Distributed and Parallel Database Systems", ACM Computing
Surveys, vo1.2S, no. l, pp 125-128, March 1996.

6. T,Ozsu, P.V~Iduriez, "Distributed Data Management: Unsolved Problems and. New
Issues'i.Readings in Distributed Computing Systems, IEEE Computer Society Press, pp 512-
544,1994.

7. A.Silberschat~ S.Zdo~ik, et.al., "Strategic Directions in Database Systems - Breaking Out
of'the Box", ACM Computing Surveys, vol.28, no.4, pp.764-778, Dee. 1996.

8. V.Kumar, M.Hsu, Recovery Mechanisms in Database Systems, Prentice ~11 PTR,
Prentice-Hall, Inc. ~998.

9. M. Stonebraker, "Future Trends in Database Systems", inMulttdatabase Systems, IEEE
Computer Society Press, pp)'.39-350, 1994.

lO. T,Ozsu, P.Val'duriez, Principles of Distributed Database Systems, Prentice-Hall,
Bnglewod Cliffs, N.J., 1'991.

I I .Kevin Hough, Sql Server Database Design Study Guide, Microsoft Certified Professional
Approved Study Guide. I 997.

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	..
	ACI\NOWLEDGl':Mt:NT

	Images
	Image 1

	Page 3
	Titles
	AUSTRACt

	Images
	Image 1

	Page 4
	Titles
	INTRODUCtlON

	Images
	Image 1

	Page 5
	Titles
	TABLE OF CONTENTS
	SOFTWA}U: 10

	Images
	Image 1

	Page 6
	Titles
	Sl

	Images
	Image 1

	Page 7
	Titles
	�
	CHAPTER 1: DISTRIBUTED DATA PROCESSING

	Images
	Image 1

	Page 8
	Titles
	..

	Images
	Image 1

	Page 9
	Titles
	· Pr«>&$a,.r
	Praoassar
	4

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 10
	Titles
	Computer System
	1' Computer Sv,tem

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	7

	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	CHAPTER 2: DISTRIBUTED SYSTEMS AND DISTRIBUTED

	Images
	Image 1

	Page 16
	Titles
	���

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Titles
	����

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 19
	Titles
	� � � � �
	.. �· ..
	N~twort
	14

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	�

	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	�������
	, 1 I ~~!~~' .. !1!'L~:~~~ll S~1ttnJ
	Mo�t $:,,1,m
	1Ho11 s·1�1"1n Hoit s,,,..,,
	Softw.t,r,& I �� � So.Uware
	- ~
	16

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Titles
	Prolocot
	Prq!2cot
	ProtooQt
	!J
	··~··.

	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	���
	���

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 25
	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Titles
	�
	+

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 27
	Titles
	��� �

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 28
	Titles
	..

	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Titles
	�
	CHAPTER 3: WHAT IS MySQL?

	Images
	Image 1
	Image 2

	Page 30
	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Titles
	CHAPTER 4: USING MYSQL
	27

	Images
	Image 1
	Image 2
	Image 3

	Page 33
	Titles
	..
	-t------------~-1--------------~----t

	Images
	Image 1

	Page 34
	Titles
	+ ------------+-----------+
	+----------------------·--+
	+-------------- +
	+-.----------------------+
	+ .-·---- ' ---------· -----+
	->
	'
	+-----. ---v------- --+ ----------------+

	Images
	Image 1

	Page 35
	Titles
	-> \c
	'
	' ,

	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Titles
	�

	Images
	Image 1

	Page 39
	Titles
	+--·--.,.....-~+ .� ,,...��..... ,,. ..� ~-+.1.ir- �+----+----~.,....+~~-· ..� -+

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 40
	Titles
	~---~.,.·--·+- .. ,..~ +.- - ,I,.,+------+- ---------.-+~-~.,. _+

	Images
	Image 1
	Image 2
	Image 3

	Page 41
	Titles
	+---- ... --+-------+---'- .. --+-i.---+---------- .. +---.--------+
	+ -- .. ---~--------+------_,+ .. ,.. �� ~-+- ..�.. - ---+ .. - ~---'-\ +
	+- ... ��,�--r+- ~--·"1-i.,..--"'l'_.,.+- .�.... .,. �. + ��...... _._..,_~,.+---.J-.,..,;, �.� -�+

	Images
	Image 1
	Image 2

	Page 42
	Titles
	+-"-·----��+-,-,-·r..,�+�-~---~,-.+-.,....._..ri---..--,..--�+----·��+
	+-�------+.,. �. ""! .����� + �� --.--+-----+----t·-----...,.+----,..-+
	+-------+..,,. �.... --+- .�..�...�..�� +-----+------.- +..--,-..,!4o-+
	+ ...��.�..��.. +---·----·+·----·..--+ .. ~ ... --+--- .. -·-~-·--'+----,.+
	+--,. � .,._ �. __ + .t....,+i.. �..� _ �.��� ,.._+-----+.-- ��.� ~ .. --- �.. -+ ���...�.�.�. +

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 43
	Titles
	I I � I I
	+ ...�... ,. �..� ,.+
	+--- .�.. --+
	+ .�...� ._ ��.� +

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 44
	Titles
	I name l species I birth I
	+ �..... _.,._ + �� - _ _.. __ .,..+--------- ��. -+

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 45
	Titles
	I name I species I birth I,
	+-"·------+-+---�.- .. + �.......�....�. ,,..,. �.. +
	4.9 Date C,akulatiops
	I Bowser I 1989-0S-3 I I zoor-cs-zs 1111

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 46
	Titles
	+-----·-- + ...�.. .,.----..,,~-+-----~---_,- .. +ff--�+
	+-.i-,-~---+�.....�........ , .. +,..- �........ .,-.... --+-----+

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 47
	Titles
	To sort the output by age rather than name, just use a differerlt ORDER J3Y
	-> AS age
	,..> FROM pet OilDER .av age;
	+---�-�.f���* ... ~·-.·""~"'·��-1+~�.�. _._..,. __ .,. +----'r"'I+
	A similar query cart be used to determine age ~t death for animals that have died.
	death and birth values: ·
	-> AS age
	+--,..~- -+.---.~--··--+ .., - -+-~- ,.+
	The query uses death IS NOT NULL rather than death l= NULL because
	mysql> SELijCT name, birth, MONTH(birth) FllOM pet;

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 48
	Titles
	+----- .. ---+-'--: - ~- -+ .. -- �. -- ,; _+
	+------+,. �.�. ,_ !'+
	+ .��...���... + �........ _. +

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 49
	Titles
	fang 1991-10 �. ii kennel

	Images
	Image 1
	Image 2
	Image 3

	Page 50
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 51
	Titles
	+--------.,+
	+--·--�-,.----------+
	+--,--_.J-.~-""-·--- .. -+
	46

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 52
	Titles
	111 dog I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 53
	Titles
	+ ����........� +---+ ...�.. - ��.. +
	I fish I I I lax l

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 54
	Titles
	+---· �. ..,..-..,+--~------+--~ ..�.... ., ..� -.i_ �. + .. -. .�.. ,...~ �... +--·----+
	+�--r-��+�-..._ ... -~ ... +-""'-- .. ----+-_,.,.--+--~---+
	characters must ~e represented by escape sequences:

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 55
	Titles
	forniits ·

	Images
	Image 1
	Image 2

	Page 56
	Images
	Image 1
	Image 2

	Page 57
	Titles
	�

	Images
	Image 1
	Image 2
	Image 3

	Page 58
	Images
	Image 1
	Image 2

	Page 59
	Titles
	~ c-;-8861" ~
	' {!~H:JA\ "'¥.f

	Images
	Image 1
	Image 2

	Page 60
	Images
	Image 1
	Image 2

	Page 61
	Images
	Image 1
	Image 2
	Image 3

	Page 62
	Images
	Image 1
	Image 2

	Page 63
	Images
	Image 1
	Image 2
	Image 3

	Page 64
	Titles
	\

	Images
	Image 1
	Image 2
	Image 3

	Page 65
	Titles
	..

	Images
	Image 1
	Image 2

	Page 66
	Images
	Image 1
	Image 2
	Image 3

	Page 67
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 68
	Images
	Image 1
	Image 2
	Image 3

	Page 69
	Images
	Image 1
	Image 2

	Page 70
	Images
	Image 1
	Image 2

	Page 71
	Images
	Image 1
	Image 2

	Page 72
	Images
	Image 1
	Image 2

	Page 73
	Images
	Image 1
	Image 2

	Page 74
	Titles
	..

	Images
	Image 1
	Image 2

	Page 75
	Titles
	..

	Images
	Image 1
	Image 2

	Page 76
	Titles
	�

	Images
	Image 1
	Image 2

	Page 77
	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1
	Image 2

	Page 79
	Titles
	�
	CONCLUSION

	Images
	Image 1

	Page 80
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

