
NEAR EAST UNIVERSITY
•

Faculty Of Engineering

Department Of Computer Engineering

DUAL PORT RAM

Graduating Project
COM 400

Student: Erdem Ye~il(20020166)

Supervisor : Mehmet Kadir Ozakman

Nicosia 2008

TABLE OF CONTENTS
•

CONTENTS
ACKNOWLEDGEMENTS
ABSTRACT
INTRODUCTION
CHAPTERl
I.INTRODUCTION TO HDL
1.2 Hardware Description Languages
1.3Advantages of Using HD Ls to Design FPGA Devices
1.3.1 Top-Down Approach for Large Projects
1.3.2 Functional Simulation Early in the Design Flow
1.3.3 Synthesis of HDL Code to Gates
1.3.4 Early Testing of Various Design Implementations
1.3.5 Reuse of RTL Code

1.4 Designing FPGA Devices with HDLs
1.4.1 Designing FPGA Devices with Verilog
1.4.2 Designing FPGA Devices with VHDL
1.4.3 Designing FPGA Devices with Synthesis Tools
1.4.4 Using FPGA System Features
1.4.5 Designing Hierarchy
1.4.6 Specifying Speed Requirements

CHAPTER2
2.INTEGRATED SOFTWARE ENVIRONMENT
2.1 ISE General Information
2.1.1 Xilinx ISE Overview
2.1.2 Design Entry
2.1.3 Synthesis
2.1.4 Implementation
2.1.5 verification
2.1.6 Device Configuration

2.2 The Project Navigator
2.2.1 Project Navigator Overview
2.2.2 Project Navigator Main Window
2.2.3 Using the Sources Window
2.2.4 Using the Processes Window
2.2.5 Process Types
2.2.6 Process Status
2.2.7 Running Processes
2.2.8 Setting Process Properties
2.2.9 Using the Workspace
2.2.10 Using the Transcript Window
2.2.11 Using the Toolbars

2.3 Creating a Project
2.3.1 to Create a Project
2.3.2 What to Expect

2.4 Working with projects source file
2.4. 1 Creating a Source File
2.4.2 Adding a Source File to a Project

111

IV

V

1
1
1
1
2
2
2
3
3
3
4
5
5
5
6
7
8
8
8
8
8
8
8
9
9
9
9
10
12
13
14
14
15
17
18
19
19
20
20
27
27
27
28

2.4.3 Adding a Copy of a Source File to a Project
2.4.4 Editing a Source File •
2.4.5 Removing Files from a Project
2.5 Running and Stopping Processes

CHAPTER3
3.My Project (dual port ram)
3 .1 Overview
3.2 Design process is shown below
3.2.1 Requirement
3.2.2 Specification
3.2.3 The inputs and outputs of dual port ram
3.2.4 The function of VHDL code
3.2.4.1 Process (clock write)
3.2.4.2 Process (clock read)

3.2.5 VHDL code
3.3 Creating My Project
3.3.1 How to Create my Project
3.3.2 Creating an HDL Source
3.3.2.1 Creating VHDL Source
3.3.2.2 Using Language Templates (VHDL)
3.3.2.3 Final Editing of VHDL Source

3.4 Synthesize
3.4.1 View synthesize report
3.4.2 View RTL Schematic
3.4.3 check syntax

3.5 Writing the test bech
3.5.1 Verifying Functionality using Behavioral Simulation
3.5.2 Final Editing of My VHDL Source
3.5.3 The simulation

3.6 Implementing the design
3.6.1 Mapping
3.6.2 Place and Route (PAR)
3.6.2 Post layout verification

CONCLUSION
REFERENCES

29
30
31
31
34
34
34
34
35
35
36
37
37
37
37
40
40
42
43
46
46
51
51
64
65
65
65
67
74
77
77
78
78
79
80

ii

•
ACKNOWLADGEMENTS

"Firstly, I would like to thank to my supervisor Mr Mehmet Kadir Ozakman for his great
advise and recomendation for finishing my project properly also, teaching and guiding

me in others lectures

I am greatly indepted to my family for their endless support from my starting day in my
educational life until today. I will never forget the things that my parents did for me

during my educational life.

Althougt, I encountered many problems in writing program. In that times, My best friend,
who helped me realising applied VHDL programming for completing my project is Mete

Mert 1~m. My sincere thanks to them and others my friends.

Finally, I promise to do my best in my life as a bachelor of engineer.

Ill

•
ABSTRACT

Today's technology uses high level behavioral languages such as VHDL to do

Hardware electronic design, I have selected my project in VHDL to learn the current

technology and the methods to do hardware design, my project is Dual Port Ram where I

can to write in a ram using address A and read from this ram from locations at the same

time using address A and address B, the contents of address A shows the output A and the

contents of address B shows the output B.

Today's technology we don't go and buy a Dual Port Ram as a device you just write

a VHDL for it, (there are other languages like, Verilog) and the synthesizer generates the

design and Implements the design in FPGA which stands for (Field programmable Gate

Array) as I shown in my design description.

As I can from this implementation I did not have to do the detail electronic design

all I did is to write a VHDL code to describe Dual Port Ram and the ISE tools did the rest.

IV

INTRODUCTION

What is VHDL and what is its connection with brain building?

VHDL stands for (Very High Speed Integrated Circuit) Hardware Description

Language.

Before we can answer why VHDL is thought to be highly relevant to the field of

brain building, we first need to have some idea of what VHDL is.

An HDL is a high level language (similar to C, Pascal, Fortran, etc) Used to specify

the design of electronic circuits.

With modem programmable hardware (i.e. configuring bit strings can be sent into a

programmable chip to tell the chip how to write itself up).

Modem hardware compilers can take a high level description of an electronic circuit

(e.g. written in an HDL such as VHDL, or Verilog, or ABEL, etc), and translate it into

configuring bit strings, which are then used to configure a programmable chip(e.g. Xilinx's

Virtex chip).

Thanks to Moore's Law, the number of programmable logic gates (e.g. AND gates,

NAND gates, etc) in today's chips are now in the millions.

With such electronic capacities on a single chip it is now possible to place whole

electronic systems on a chip. This has advantages and disadvantages. The advantage is that

electronics become more sophisticated and powerful and cheaper. The disadvantage is that

electronics becomes harder to design.

Earlier versions of HDLs operated more at the gate level of description (e.g.
-

"connect the output of gate A to the input of Gate B"). But, as chips increased in their logic

gate count, the above rather low Level of description became increasingly impractical due

to the huge number of gates on a single chip. To cope with this problem, HDLs are taking

an ever more behavioral level of description. Electronic designers nowadays give a

behavioral or functional description of what they want their circuit to perform, And the

HDL compiler does the rest.

E.g. instead of saying "connect this gate to that gate", one says "Multiply these two

numbers and store the result in this buffer".

V

The HDL compiler then translates the latter statement into the Corresponding

circuitry that performs the required function. Nowadays, it is almost as easy to program

hardware as to program software! This is not strictly true, since to able to use an HDL well,

one needs to understand the principles of digital electronic design (e.g. multiplexors, flip

flops, buffers, counters, etc). But, increasingly, hardware design is becoming more like

programming in a high level software language, like "C".

We will have a lot more to say about programming in a HDL. But we now know

enough about the basic idea of an HDL to answer the question of the relevance of HD Ls to

brain building.

If one wants to build artificial brains with hundreds/thousands and more of evolved

neural net circuit modules, then the speed of evolution of those modules and the speed of

the neural signaling of the interconnected brain comprised of those evolved modules, is

paramount.

It is well known that hardware speeds are typically hundreds to thousands of times

faster than software speeds on the same task.

As Moore's law creates chips with millions and later billions of logic gates on a

single chip, it will become increasingly possible to put artificial brain technology into them.

Today's programmable chips contains about ten millions gates. This is already

enough to start putting tens of modules together to build simple artificial brains in a single

chip. By placing dozens of chips on an electronic board (not cheap") then the size of the

brain scales linearly with the number of chips.

People who want to be trained in the principles of brain building technology

therefore needs to know how to put their brain designs into hardware, so that they can both

evolve their component modules and run them once they are interconnected.

VI

CHAPTER 1

1. INTRODUCTION TO HDL
1.1 Overview

This chapter provides a general overview of designing Field Programmable

Gate Arrays

(FPGA devices) with Hardware Description Languages (HDLs). This chapter includes

the following sections.

• Hardware Description Languages

• Advantages of Using HD Ls to Design FPGA Devices

• Designing FPGA Devices with HDLs

1.2 Hardware Description Languages

Designers use Hardware Description Languages (HDLs) to describe the

behavior and Structure of system and circuit designs. This chapter includes:

• A general overview of designing FPGA devices with HDLs

• System requirements and installation instructions for designs available from the

web

• A brief description of why FPGA devices are superior to ASIC devices for your

design needs

Understanding FPGA architecture allows you to create HDL code that

effectively uses FPGA system features. To learn more about designing FPGA devices

with HDL:

• Enroll in training classes offered by Xilinx® and by the vendors of synthesis

software.

• Review the sample HDL designs in the later chapters of this Guide.

• Download design examples from Xilinx Support.

• Take advantage of the many other resources offered by Xilinx, including

documentation, tutorials, Tech Tips, service packs, a telephone hotline, and an

answers database. See "Additional Resources" in the Preface of this Guide.

1.3 Advantages of Using HDLs to Design FPGA Devices

Using HDLs to design high-density FPGA devices has the following advantages:

• Top-Down Approach for Large Projects.

• Functional Simulation Early in the Design Flow.

• Synthesis of HDL Code to Gates.

• Early Testing of Various Design Implementations.

• Reuse of RTL Code.

1.3.1 Top-Down Approach for Large Projects

Designers use HDLs to create complex designs. The top-down approach to

system design supported by HDLs is advantageous for large projects that require many

designers working together. After they determine the overall design plan, designers can

work independently on separate sections of the code.

1.3.2 Functional Simulation Early in the Design Flow

You can verify the functionality of your design early in the design flow by

simulating the HDL description. Testing your design decisions before the design is

implemented at the RTL or gate level allows you to make any necessary changes early

in the design process.

1.3.3 Synthesis of HDL Code to Gates

You can synthesize your hardware description to target the FPGA implementation. This

step:

2

• Decreases design time by allowing a higher-level specification of the design

rather than specifying the design from the FPGJ\ base elements.

• Generally reduces the number of errors that can ocCur during a manual

translation of a hardware description to a schematic design.

• Allows you to apply the automation techniques used by the synthesis tool (such

as machine encoding styles and automatic va insertion) during the optimization

of your design to the original HDL code. This results in greater optimization

and efficiency.

1.3.4 Early Testing of Various Design Implementations

HD Ls allow you to test different implementations of your design early in the

design flow. Use the synthesis tool to perform the logic synthesis and optimization into

gates.

Additionally, Xilinx FPGA devices allow you to implement your design at your

computer, since the synthesis time is short; you have more time to explore different

ar -hitectural possibilities at the Register Transfer Level (RTL). You can reprogram

Xilinx FPGA devices to test several implementations of your design.

1.3.5 Reuse of RTL Code

You can retarget RTL code to new FPGA architectures with a minimum of recoding.

1.4 Designing FPGA Devices with HDLs

If you are used to schematic design entry, you may find it difficult at first to create HDL

designs. You must make the transition from graphical concepts, such as block diagrams,
;

state machines, flow diagrams, and truth tables, to abstract representations of design

components. Ease this transition by not losing sight of your overall design plan as you

code in HDL.

To effectively use an HDL, you must understand the:

•
• Syntax of the language

• Synthesis and simulator software

• Architecture of your target device

• Implementation tools

This section gives you some design hints to help you create FPGA devices with HDLs.

1.4.1 Designing FPGA Devices with Verilog

Verilog is popular for synthesis designs because:

• Verilog is less verbose than traditional VHDL.

• Verilog is standardized as IEEE-STD-1364-95 and IEEE-STD-1364-2001.

Since Verilog was not originally intended as an input to synthesis, many Verilog

constructs are not supported by synthesis software. The Verilog coding examples in this

Guide were tested and synthesized with current, commonly-used FPGA synthesis

software. The coding strategies presented in the remaining chapters of this Guide can

help you create HDL descriptions that can be synthesized.

System Verilog is a new emerging standard for both synthesis and simulation. It

is currently unknown if, or when, this standard will be adopted and supported by the

various design tools.

Whether or not you plan to use this new standard, Xilinx recommends that you:

• Review the standard to make sure that your current Verilog code can be readily

carried forward as the new standard evolves.

• Review any new keywords specified by the standard.

• A void using the new keywords in your current Verilog code.

4

1.4.2 Designing FPGA Devices with VHDL

•
VHSIC Hardware Description Language (VHDL) is a hardware description

language for designing Integrated Circuits (ICs). It was not originally intended as an

input to synthesis, and many VHDL constructs are not supported by synthesis software.

However, the high level of abstraction of VHDL makes it easy to describe the system

level components and test benches that are not synthesized. In addition, the various

synthesis tools use different subsets of the VHDL language. The examples in this Guide

work with most commonly used FPGA synthesis software. The codipg strategies

presented in the remaining chapters of this Guide can help you create HDL descriptions

that can be synthesized.

1.4.3 Designing FPGA Devices with Synthesis Tools

Most of the commonly-used FPGA synthesis tools have special optimization

algorithms for Xilinx FPGA devices. Constraints and compiling options perform

differently depending on the target device. Some commands and constraints in ASIC

synthesis tools do not apply to FPGA devices. If you use them, they may adversely

impact your results.

You should understand how your synthesis tool processes designs before you

create FPGA designs. Most FPGA synthesis vendors include information in their guides

specifically for Xilinx FPGA devices.

1.4.4 Using FPGA System Features

To improve device performance, area utilization, and power characteristics,

creates HDL code that uses such FPGA system features as DCM, multipliers, shift

registers, and memory. For a description of these and other features, see the FPGA data

sheet and userguide. The choice of the size (width and depth) and functional

characteristics need to be taken into account by understanding the target FPGA

5

resources and making the proper system choices to best target the underlying

architecture. •

1.4.5 Designing Hierarchy

HDLs give added! flexibility in describing the design. However, not all HDL code

is optimized the same. How and where the functionality is described can have dramatic

effects on end optimization. For example:

• Certain techniques may unnecessarily lllcrease the design Size and power while

decreasing performance .

• Other techniques can result in more optimal designs in terms of any or all of

those same metrics.

This Guide will help instruct you III techniques for optional FPGA design

methodologies.

Design hierarchy is important in both the implementation of an FPGA and during

interactive changes. Some synthesizers maintain the hierarchical boundaries unless you

group modules together. Modules should have registered outputs so their boundaries are

not an impediment to optimization. Otherwise, modules should be as large as possible

within the limitations of your synthesis tool.

The "5,000 gates per module" rule is no longer valid, and can interfere with

optimization. Check with your synthesis vendor for the preferred module size. As a last

resort, use the grouping commands of your synthesizer, if available.The size and content

of the modules influence synthesis results and design implementation.

This Guide describes how to create effective design hierarchy.

6

1.4.6 Specifying Speed Requirements

•
To meet timing requirements, you should understand how to set timing

constraints in both the synthesis tool and the placement and routing tool. If you specify

the desired timing at the beginning, the tools can maximize not only performance, but

also area, power, and tool runtime. This generally results in a design that better matches

the desired performance. It may also result in a design that is smaller, and which

consumes less power and requires less time processing in the tools .

CHAPTER2
•

2. INTEGRATED SOFTWARE ENVIRONMENT

2.1 ISE General Information

2.1.1 Xilinx ISE Overview

The Integrated Software Environment (ISETM) is the Xilinx® design software

suite that allows you to take your design from design entry through Xilinx device

programming. The ISE Project Navigator manages and processes your design through

the following steps in the ISE design flow.

2.1.2 Design Entry

Design entry is the first step in the ISE design flow. During design entry, you

create your source files based on your design objectives.

You can create your top-level design file using a Hardware Description

Language (HDL), such as VHDL, Verilog, or ABEL, or using a schematic. You can use

multiple formats for the lower-level source files in your design. If you are working with

a synthesized EDIF or NGC/NGO file, you can skip design entry and synthesis and start

with the implementation process.

2.1.3 Synthesis

After design entry and optional simulation, you run synthesis. During this step,

VHDL, Verilog, or mixed language designs become netlist files that are accepted as

input to the implementation step.

2.1.4 Implementation

After synthesis, you run design implementation, which converts the logical

design into a physical file format that can be downloaded to the selected target device.

From Project Navigator, you can run the implementation process in one step, or you can

run each of the implementation processes separately. Implementation processes vary

depending on whether you are targeting a Field Programmable Gate Array.

8

2.1.5 Verification
•

You can verify the functionality of your design at several points in the design

flow. You can use simulator software to verify the functionality and timing of your

design or a portion of your design.

The simulator interprets VHDL or Verilog code into circuit functionality and

displays logical results of the described HDL to determine correct circuit operation.

Simulation allows you to create and verify complex functions in a relatively small

amount of time. You can also run in-circuit verification after programming your device.

2.1.6 Device Configuration

After generating a programming file, you configure your device. During

configuration, you generate configuration files and download the programming files

from a host computer to a Xilinx device.

2.2 The Project Navigator

2.2.1 Project Navigator Overview

Project Navigator organizes your design files and runs processes to move the

design from design entry through implementation to programming the targeted Xilinx®

device. Project Navigator is the high-level manager for your Xilinx FPGA and CPLD

designs, which allows you to do the following:

• Add and create design source files, which appear in the Sources window

• Modify your source files in the Workspace

• Run processes on your source files in the Processes window

• View output from the processes in the Transcript window

Note optionally, you can run processes from a script you create or from a

command line prompt. However, it is recommended that you first become familiar with

the basic use of the Xilinx Integrated Software Environment (ISETM) software and

with project management, as described in the following sections.

9

2.2.2 Project Navigator Main Window
..

The following figure 2.1 shows the Project Navigator main window, which

allows you to manage your design starting with design entry through device

configuration.

l. Figure 2.2.2 project window
•

• Erro1

;.;:FPGADesignSummaiy

. Design flverview
'····0Summary
• 0108 Properties
; · 0 Timing Constraints

I···· 0 Pinout Report
' · 0 Clock Report
Errors and Warnings
0 Synthesis Messages
0 Tr ans!ation Messages
0 Map Messages

Place and Roule Messages
Timing Messages

Name:

Hierarchy

. ~ digvidenc
8 Q xc4vlx12-12s1363

:~;.. 5'.J«kctve_ccir_top (dve_ccir_top. v)
l~,·5'.J~DATAPATH dve_ccir_dph dve_ccir_dph.v)

(' 5'.J prescaler · dve_ccir_mlt8x9 [dve_ccir_mll8x9 v)
• .. f'ii'l nrnnMo mi . ""e I ic<"e r-r-ir Ii, "l~

Target
Device:

xc4vlx12·12sl363I , • W'a11

Product
Version:

ISE 8.2i • tlpd.

@ig SOU1ces I f",.;i Snapshots Libraiits

······oei1f J1:1it~ji!,:m• =········ ..•................•............... ,2!J

52! 10.944
Add Existing Source
Create New Source
View Design Summary

.'·· ~ Design Utilities
. + :~ User Eoostrents
L• eJC)Synlhesize XST
I + .. e .l()lmplemenl Design I ~ · (} Generate Programming File
! '····~ Update Bitstream wrth Processor Data

Project f---'ropert1es
~ Enable Enhanced Design Summary
D Enable Message Filtering
D Display Incremental Messsages

Enhanced Design Summaiy Contents
D Show Parlillon Dala
0 Show Errors
D Show Warnings
~ Show Failing Constraints
D Show Clock Reporl

93 5.472

Number ol Slices
containing only related
logic

Numbe, of Slices

93 939

1{ Processes

939 r1
~

Design Summa1y

~ Process ''Generate Post-Place & Route Static Timing'' completed successfully

Started "Launching ISE Text Editor to edit ctve ccir top.v".

T cl Console ;x, Find in Files

Figure 2.2.2 Project window

1 Toolbar

2 Sources window

3 Processes window

4 Workspace

5 Transcript window

11

2.2.3 Using the Sources Window
•

The first step in implementing your design for a Xilinx® FPGA or CPLD is to

assemble the design source files into a project. The Sources tab in the Sources window

shows the source files you create and add to your project, as shown in figure2.2.

For information on creating·projects and source files, see Creating a Project and

Creating a Source File.

0,fbdve_ccir_top (dve_c.
~ 0~~ DAT P.PA TH - dv ..

i· · [ZJ prescaler - dve_ ..
L [ZJ CHROMP._FIR -
L Q,, ,I~ .-1,,.-. ;

1.281
routing
inherit[routing)

rs~ Sources Snapshots Libraries

Figure 2.2 Sources Window

The Design View ("Source Window") drop-down list at the top of the Sources

tab allows you to view only those source files associated with the selected Design View

(for example, Synthesis/Implemetation).

For details, see Using the Design View. The "Number of' drop-down lists,

Resources column, and Preserve column are available for designs that use Partitions.

For details, -see Using Partitions.

The source tab shows the hierarchy of your design. You can collapse and expand

the levels by clicking the plus (+) or minus (-) icons. Each source file appears next to an

icon that shows its file type. The file you select determines the

12

