
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

ONLINE FINANCIAL SYSTEM FOR A
CONSTRUCTION COMPANY

Graduation Project
COM-400

Student: An1~ OZTEKiN (20030166)

Supervisor: Mr Umit SOYER

Nicosia-2008

ACKNOWLEDGMENT

I wish to thank my advisor, Mr -Omit SOYER for his great advice and

recommendation for my project.

I would like to thank to Dr -Omit iLHAN. Whenever I had questions, he was

always helpful.

During my education I learn lost of thing from my every teachers and I thanks to

them.

I thank my family for their support.

I thank my fiance for prodiving details about his company. I dedicate this work

to him.

ABSTRACT

The aim of this project was to online financial system for a construction

company that contains constructions and insulations details. The program was prepared

using HTML and ASP programming and Microsoft Access Database. This project

consist of many pages. The first page of program is consist three links to choose how

login the web page. Alternatives are admin, user and guesst. The admin and user page

of the program is designed for login which are login for user id and password. There is

necessary to enter the program user id and password for individual. The name of this

procedure is login. After admin and user login, the program may become to active. And

admin can make search, insert, update and delete the informations in the program. If

user login the program make search, insert and update the informations in the program.

The guesst just see the product. These are simply expressing how the program was

designed to use in proper and secure way.

11

TABLE OF CONTENS

ACKNOWLEDGMENT i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF ABBREVIATIONS vi
INTRODUCTION vii
CHAPTER ONE: HYPERTEXT MARKUP LANGUAGE 1

1.1 Introduction to HTML 1
1.2 What is HTML? 2
1.3 History Of HTML 2
1.4 Basic HTML Data Types 3

1.4.1 Case Information 3
1.4.2 SGML Basic Types 4
1.4.3 URis 5
1.4.4 Colors 5

1.4.4.1 Notes on using colors 6
1.4.5 Lengths 6

1.5 Elements in HTML Documents 7
1.6 HTML Document Structure 8
1.7 Naming Scheme for HTML Documents 8

1.7.1 MIME Types and File Data Formats 10
1.8 HTML Tables 11
1.9 Introduction to links and anchors 12

1.9.1 Visiting a linked resource 12
1.9.2 Other Link Relationships 13

1.10 Introduction to forms 14
1.11 Controls 14

1.11.1 Control types 15
1.12 The FORM element 17
1.13 The INPUT element 18

1.13.1 Control types created with INPUT 19
CHAPTER TWO: ACTIVE SERVER PAGES (ASP) 21

2.1 Introduction to ASP 21
2.2 What Is ASP? 21
2.3 History of Asp 22
2.4 What Do I Need? 22
2.5 How Does It Work? 24
2.6 Make Your First ASP Page 26
2.7 VBScript 27
2.8 ASP Some Basic VBScript statements 27

2.8.1 The DIM Statement 27
2.8.2 The IF .. THEN Statement 29
2.8.3 The CASE Statement 31
2.8.4 The For .. Next Loop 35
2.8.5 The Do .. Loop 38
2.8.6 All About Arrays 40

111

2.9 ASP Functional VBScript 42
2.9.1 Do the Math 42
2.9.2 Messing with Strings 43

2.10 ASP Sending a Response 4 7
2.10.1 Response.Write: Talking to the User 47
2.10.2 Response.Redirect: Moving the User Around 50

2.11 ASP Forming Up 51
2.11.1 Setting Up Your Forms 51
2.11.2 Request.Form: Getting the Info 56
2.11.3 Sending Out Some Emai 60
2.12 Connecting to a Database 63

CHAPTER THREE: DATABASE 64
3 .1 Database 64
3 .2 History of Database 64
3.3 Database Models 66

3.3.1 Hierarchical model 66
3.3.2 Network model 66
3.3.3 Relational model 66
3.3.4 Relational operations 67
3.3.5 Normal forms 68
3.3.6 Post-relational database models 68
3.3.7 Object database models 69

3 .4 Database internals 69
3.4.1 Storage and physical database design 69
3.4.2 Indexing 70
3.4.3 Transactions and concurrency 71
3.4.4 Replication 71
3.4.5 Security 72
3.4.6 Locking 72
3.4.7 Architecture 72

3.5 Applications of databases 73
3.6 Database as Cultural Form 74

CHAPTER FOUR: STRUCTURED QUERY LANGUAGE 75
4.1 SQL 75
4.2 History of SQL 76

4.2.1 Standardization 77
4.3 Scope and extensions 77

4.3.1 Procedural extensions 77
4.3.2 Additional extensions 78

4.4 Language elements 79
4.4.1 Queries 80
4.4.2 Data manipulation 81
4.4.3 Transaction controls 81
4.4.4 Data definition 82
4.4.5 Data control 82
4.4.6 Other 82

4.5 Criticisms of SQL 83
4.5.1 Reasons for lack of portability 84

IV

CHAPTER FIVE: Online Financial System For A Constuction
Company 85
CONCLUSION 138
REFERENCES 139
APPENDIX A: PROGRAM CODE 140
APPENDIX B: TABLE OF THE DATABASE 197

V

LIST OF ABBREVIATIONS

WWW World Wide Web

IIS Internet Information Service

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

ASP Active Server Page

SQL Structured Query Language

VI

INTRODUCTION

HTML (HyperText Markup Language) is the predominant markup language for

web pages. It provides a means to describe the structure of text-based information in a

document by denoting certain text as links, headings, paragraphs, lists, and so on. This

project financial system for a construction company. So using HTML with ASP to view

datas from the database.

ASP stands for Active Server Pages. ASP is a program that runs inside IIS. IIS

stands for Internet Information Services. In this project used Microsoft Access

Database. Steps are: Collecting to a database, adding data from database, and modifying

and deleting data from the database. During the ASP programming language writen can

make adding, modify and delete. The company when use this web page they work will

be more easy. They see all their work what they did. This program run like localhost.

Main page for enter the pages. we have chooses, if admin want to enter program, can

enter with password and if details same with datas in the database entered program and

admin also establish the company and enter program for search they did and what they

sell. If they build new house or develop workers about insulation admin can insert the

new builds and details. If some changes make for buildings or insulations admin can

update. If want to delete, admin can make. Admin also can control the user. User it

means workers in the company. Admin can enter (also can delete, search and update)

user details and can give password for user enter the pages for make search, insert and

update. And part of the balance about selling details. It is more useful for company to

keep details in to database and can see which house or insulation selled, who buy it and

how much money give it and what the balance, the program calculate and show. We

have links to details of company. Every guesst just can see these details and make

search, and can contact with the company. When the company use this web page they

will be more orderly and can keep every details about what they do. And web page is

the best way to advertisement and to be well known.

This document is organized as follows:

Chapter 1 describes HTML, and the history of HTML.

Chapter 2 describes ASP, and the history of ASP.

Chapter 3 describes database, and the history of database.

Chapter 4 describes SQL, and the history of SQL.

Chapter 5 description about project.
Vll

CHAPTER 1

HYPERTEXT MARKUP LANGUAGE (HTML)'/ - ','

1.1 Introduction to HTML

HTML, or HyperText Markup Language is designed to specify the logical

organisation of a document, with important hypertext extensions. It is not designed to be

the language of a WYSIWYG word processor such as Word or WordPerfect. This

choice was made because the same HTML document may be viewed by many different

"browsers", of very different abilities. Thus, for example, HTML allows you to mark

selections of text as titles or paragraphs, and then leaves the interpretation of these

marked elements up to the browser. For example one browser may indent the beginning

of a paragraph, while another may only leave a blank line.[1]

HTML instructions divide the text of a document into blocks called elements. These can

be divided into two broad categories -- those that define how the BODY of the

document is to be displayed by the browser, and those that define information 'about'

the document, such as the title or relationships to other documents. The vocabulary of

these elements and a description of the overall design of HTML documents is given in

the rest of Section 2. The Last part of the section also describes standard naming

schemes for HTML documents and related files.

The detailed rules for HTML (the names of the tags/elements, how they can be used)

are defined using another language known as the standard generalized markup

language, or SGML. SGML is wickedly difficult, and was designed for massive

document collections, such as repair manuals for F-16 fighters, or maintenance plans for

nuclear submarines. Fortunately, HTML is much simpler!

However, SGML has useful features that HTML lacks. For this reason, markup

language and software experts have developed a new language, called XML (the

eXtensible markup language) which has most of the most useful features of HTML and

SGML.

1

1.2 What is HTML?

To publish. information for global distribution, one 1 needs a .universallyo.:

understood language, a kind of publishing mother tongue that all -computers may

potentially understand. The publishing language used by the World Wide Webcis

HTML (from HyperText Markup Language).

HTML gives authors the means to:

• Publish online documents with headings, text, tables, lists, photos, etc.

• Retrieve online information via hypertext links, at the click of a button.

• Design forms for conducting transactions with remote services, for use m

searching for information, making reservations, ordering products, etc.

• Include spread-sheets, video clips, sound clips, and other applications directly in

their documents.

1.3 History of HTML

HTML was originally developed by Tim Berners-Lee while at CERN, and

popularized by the Mosaic browser developed at NCSA. During the course of the 1990s

it has blossomed with the explosive growth of the Web. During this time, HTML has

been extended in a number of ways. The Web depends on Web page authors and

vendors sharing the same conventions for HTML. This has motivated joint work on

specifications for HTML.

HTML 2.0 (November 1995) was developed under the aegis of the Internet Engineering

Task Force (IETF) to codify common practice in late 1994. HTML+ (1993) and HTML

3.0 (1995) proposed much richer versions of HTML. Despite never receiving consensus

in standards discussions, these drafts led to the adoption of a range of new features. The

efforts of the World Wide Web Consortium's HTML Working Group to codify common

practice in 1996 resulted in HTML 3.2 (January 1997).

Most people agree that HTML documents should work well across different browsers

and platforms. Achieving interoperability lowers costs to content providers since they

must develop only one version of a' document.

If the effort is not made, there is much greater risk that the Web will devolve into a

proprietary world of incompatible formats, ultimately reducing the Web's commercial

potential for all participants.

Each version of HTML has attempted to reflect greater consensus among industry

players so that the investment made by content providers will not be wasted and that

their documents will not become unreadable in a short period of time.

HTML has been developed with the vision that all manner of devices should be able to

use information on the Web: PCs with graphics displays of varying resolution and color

depths, cellular telephones, hand held devices, devices for speech for output and input,

computers with high or low bandwidth, and so on.

1.4 Basic HTML Data Types

1.4.1 Case Information

Each attribute definition includes information about the case-sensitivity of its

values. The case information is presented with the following keys:

CS The value is case-sensitive (i.e., user agents interpret "a" and "A" differently).

CI The value is case-insensitive (i.e., user agents interpret "a" and "A" as the same).

CN The value is not subject to case changes, e.g., because it is a number or a character

from the document character set.

CA The element or attribute definition itself gives case information.

CT Consult the type definition for details about case-sensitivity.

If an attribute value is a list, the keys apply to every value in the list, unless otherwise

indicated.

3

1.4.2 SGML Basic Types

The document type definition specifies the syntax of HTML element content and

attribute values using SGML tokens (e.g., PCDATA, CDATA, NAME, ID, etc.).

The following is a summary of key information:

• CDA TA is a sequence of characters from the document character set and may

include character entities. User agents should interpret attribute values as

follows:

o Replace character entities with characters,

o Ignore line feeds,

o Replace each carriage return or tab with a single space.

User agents may ignore leading and trailing white space in CDA TA attribute

values (e.g., 11 myval II may be interpreted as "myval 11). Authors should not

declare attribute values with leading or trailing white space.

For some HTML 4 attributes with CDATA attribute values, the specification

imposes further constraints on the set of legal values for the attribute that may

not be expressed by the DTD.

Although the STYLE and SCRIPT elements use CDA TA for their data model,

for these elements, CDA TA must be handled differently by user agents. Markup

and entities must be treated as raw text and passed to the application as is. The

first occurrence of the character sequence "</11 (end-tag open delimiter) is treated

as terminating the end of the element's content. In valid documents, this would

be the end tag for the element.

• ID and NAME tokens must begin with a letter ([A-Za-z]) and may be followed

by any number of letters, digits ((0-9]), hyphens (11-11), underscores (11_11), colons

(11:11), and periods (11•11).

• IDREF and IDREFS are references to ID tokens defined by other attributes.

ID REF is a single token and ID REFS is a space-separated list of tokens.

• NUMBER tokens must contain at least one digit ((0-9]).

4

1.4.3 URis

URis are represented in the DTD by the parameter entity %URI;.·

URis in general are case-sensitive. There may be URis, or parts of URis, where case

doesn't matter (e.g., machine names), but identifying these may not be easy. Users

should always consider that URis are case-sensitive (to be on the safe side).

Please consult the appendix for information about non-ASCII characters in URI

attribute values.

1.4.4 Colors
A color value may either be a hexadecimal number (prefixed by a hash mark) or

one of the following sixteen color names. The color names are case-insensitive.

Table 1.1, the color values "#800080" and "Purple" both refer to the color purple.

Color names and sRGB values

II Black= "#000000" 1111 Green= "#008000"

Silver= "#COCOCO" Ii ,"11 Lime = "#OOFFOO"

Gray= "#808080" Olive= "#808000" -
D White = "#FFFFFF" D Yellow= "#FFFFOO"
II Maroon= "#800000" II Navy= "#000080"
II Red= "#FFOOOO" II Blue = "#OOOOFF"

II Purple= "#800080" 1111 Teal = "#008080"

Fuchsia = "#FFOOFF" D Aqua = "#OOFFFF"

5

1.4.4.1 Notes on using colors

Although colors can add significant amounts of information to documents and make

them more readable, please consider the following guidelines when including color in

your documents:

• The use of HTML elements and attributes for specifying color is deprecated.

You are encouraged to use style sheets instead.

• Don't use color combinations that cause problems for people with color

blindness in its various forms.

• If you use a background image or set the background color, then be sure to set

the various text colors as well.

• Colors specified with the BODY and FONT elements and bgcolor on tables look

different on different platforms (e.g., workstations, Macs, Windows, and LCD

panels vs. CRTs), so you shouldn't rely entirely on a specific effect. In the

future, support for the [SRGB] color model together with ICC color profiles

should mitigate this problem.

• When practical, adopt common conventions to minimize user confusion.

1.4.5 Lengths

HTML specifies three types of length values for attributes:

1. Pixels: The value (%Pixels; in the DTD) is an integer that represents the number

of pixels of the canvas (screen, paper). Thus, the value "50" means fifty pixels.

For normative information about the definition of a pixel, please consult [CSS1].

2. Length: The value (%Length; in the DTD) may be either a %Pixel; or a

percentage of the available horizontal or vertical space. Thus, the value "50%"

means half of the available space.

3. MultiLength: The value (%MultiLength; in the DTD) may be a %Length; or a

relative length. A relative length has the form "i*", where "i" is an integer. When

allotting space among elements competing for that space, user agents allot pixel

and percentage lengths first, then divide up remaining available space among

relative lengths. Each relative length receives a portion of the available space

that is proportional to the integer preceding the "* ".

6

1.5 Elements in HTML Documents

The HTML instructions, along with the text to which the instructions apply, are

called HTML elements. The HTML instructions are themselves called tags, and look

like <element_name> -- that is, they are simply the element name surrounded by left

and right angle brackets.

Most elements mark blocks of the document for particular purpose or formatting: the

above <element_name> tag marks the beginning of such as section. The end of this

section is then marked by the ending tag </element_name> -- note the leading slash

character "/" that appears in front of the element name in an end tag. End, or stop tags

are always indicated by this leading slash character.

For example, the heading at the top of this page is an H2 element, (a level 2 heading)

which is written as:

<H2> 2.1 Elements in HTML <IH2>.

Empty Elements

Some elements are empty -- that is, they do not affect a block of the document in some

way. These elements do not require an ending tag. An example is the <HR> element,

which draws a horizontal line across the page. This element would simply be entered as

<HR>

Upper and Lower Case

Element names are case insensitive. Thus, the the horizontal rule element can be written

as any of <hr>, <Hr> or <HR>.

Elements can have Attributes

Many elements can have arguments that pass parameters to the interpreter handling this

element. These arguments are called attributes of the element. For example, consider the

element A, which marks a region of text as the beginning (or end) of a hypertext link.

This element can have several attributes. One of them, HREF, specifies the hypertext

document to which the marked piece of text is linked. To specify this in the tag for A

you write:

 marked text <la>.

where the attribute HREF is assigned the indicated value. Note that the A element is not

empty, and that it is closed by the tag <la>. Note also that end tags never take attributes

-- the attributes to an element are always placed in the start tag.

7

1.6 HTML Document Structure

HTML documents are structured into two parts, the HEAD, and the BODY.

Both of these are contained within the HTML element -- this element simply denotes

this as an HTML document.

The head contains information about the document that is not generally displayed with

the document, such as its TITLE. The BODY contains the body of the text, and is where

you place the document material to be displayed. Elements allowed inside the HEAD,

such as TITLE, are not allowed inside the BODY, and vice versa.

1.7 Naming Scheme for HTML Documents

When your HTML browser (Netscape Navigator, Internet Explorer, Opera, lynx

etc) retrieves a file, it must know what type of data it has received in order to know

what to do with it. Hypertext (that is, HTTP) servers explicitly tell the browser the type

of the data being sent. In other cases, such as when the browser is using Ff P to access a

remote file, or when the browser is reading a file from your local disk (such as when

you are editing pages prior to publishing them to a Web server), the browsers "guesses"

the data type from the filename extension -- that is the part after the dot in the filename.

For example, HTML files are identified by names such as name.html, where the .html

extension indicates an HTML document.

Four letter extensions are common. This is not a problem with UNIX computers or

Macintoshes, since these machines place no restriction on the filename. DOS and

Windows 3.1 machines are unfortunately restricted to a three letter extension. Generally

the extension is truncated to three letters (i.e .. html becomes .htm).

Here are some of the standard extensions, and their meanings:

.html (also .htm)

HTML document, containing text and HTML mark-up instructions .

. txt

A plain text file. The browser presents the file as a block of text and does not

process it for mark-up instructions. Browsers generally treat unknown types of

data as a text file .

. gif

A GIF format image file .

. xbm

An X-Bitmap (black&white) image file .

. xpm

An X-Pixmap (colour) image file .

. jpeg (also .jpg)

A jpeg-encoded image file .

. mpeg (also .mpg or .mpe)

An mpeg-encoded video file .

. qt

A (Macintosh) Quick'Time-format video file

.avi

A (Microsoft) A VI-format video file

.au

An aiff-encoded audio (sound) file .

. Z

A compressed file - compressed using the adaptive Lernpel-Ziv coding. This

compression/decompression program are commonly found on UNIX computers .

. gz

A compressed file - compressed using the GNU gzip program. This program is

common on UNIX computers and is available on PCs and Macintoshes.

9

1.7.1 MIME Types and File Data Formats

The World Wide Web actually uses MIME types (Multipurpose Internet Mail

Extension) to define the type of a particular piece of information being sent from a Web

server to a browser. A browser in tum determines, from the MIME type, how the data

should be treated. Each browser has a configuration (menu or file) that maps the types

of the data to particular functions. A browser can handle many types of data itself (e.g.

HTML documents, GIF images) while other types are passed to auxiliary programs,

such as image viewers, movie or sound players, plugins, and so on.

HTTP servers send MIME contents-types header messages ahead of every file they

deliver to a browser. This header explicitly tells the browser what type of data is being

sent. Thus a server must have a way of telling the type of data it is sending. Usually the

server has a configuration file that relates filename extensions to the appropriate MIME

type. For example, the MIME type for HTML documents is text/html. Thus, if a

browser reqests that a server send the file blobs.html, the server first looks up the MIME

type corresponding to the .html extension. The server then sends a message to the

browser saying that data of content-type text/html is being sent, after which the server

sends the actual data.

Other servers, such as FTP servers, do not send this MIME type information. In this

case, the browser "guesses" the MIME type, based on the filename extension. Thus each

browser must be configured with a list that relates typical extensions to the "most

likely" type of data. This is also how a browser determines the type of files accessed

locally of the computer.

10

1.8 HTML Tables

The HTML table model allows authors to arrange data -- text, preformatted text,

images, links, forms, form fields, other tables, etc. -- into rows and columns of cells.IZ]

Each table may have an associated caption (see the CAPTION element) that provides a

short description of the table's purpose. A longer description may also be provided (via

the summary attribute) for the benefit of people using speech or Braille-based user

agents. Table rows may be grouped into a head, foot, and body sections, (via the

THEAD, TFOOT and TBODY elements, respectively). Row groups convey additional

structural information and may be rendered by user agents in ways that emphasize this

structure. User agents may exploit the head/body/foot division to support scrolling of

body sections independently of the head and foot sections. When long tables are printed,

the head and foot information may be repeated on each page that contains table data.

Authors may also group columns to provide additional structural information that may

be exploited by user agents. Furthermore, authors may declare column properties at the

start of a table definition (via the COLGROUP and COL elements) in a way that

enables user agents to render the table incrementally rather than having to wait for all

the table data to arrive before rendering.

Table cells may either contain "header" information (see the TH element) or "data" (see

the TD element). Cells may span multiple rows and columns. The HTML 4 table model

allows authors to label each cell so that non-visual user agents may more easily

communicate heading information about the cell to the user. Not only do these

mechanisms greatly assist users with visual disabilities, they make it possible for multi

modal wireless browsers with limited display capabilities (e.g., Web-enabled pagers and

phones) to handle tables.

Tables should not be used purely as a means to layout document content as this may

present problems when rendering to non-visual media. Additionally, when used with

graphics, these tables may force users to scroll horizontally to view a table designed on

a system with a larger display. To minimize these problems, authors should use style

sheets to control layout rather than tables.

11

1.9 Links And Anchors

HTML offers many of the conventional publishing idioms for rich text and ·

structured documents, but what separates it from most other markup languages is its ..

features for hypertext and interactive documents. This section introduces the link (or

hyperlink, or Web link), the basic hypertext construct. A link is a connection from one

Web resource to another. Although a simple concept, the link has been one of the

primary forces driving the success of the Web.

A link has two ends -- called anchors -- and a direction. The link starts at the "source"

anchor and points to the "destination" anchor, which may be any Web resource (e.g., an

image, a video clip, a sound bite, a program, an HTML document, an element within an

HTML document, etc.).

1.9.1 Visiting a linked resource

The default behavior associated with a link is the retrieval of another Web

resource. This behavior is commonly and implicitly obtained by selecting the link (e.g.,

by clicking, through keyboard input, etc.).

The following HTML excerpt contains two links, one whose destination anchor is an

HTML document named "chapterl.html" and the other whose destination anchor is a

GIF image in the file "forest.gif":

<BODY>

... some text...

<Pc-You'll find a lot more in chapter one-c/A».

See also this map of the enchanted forest.c/A»

<!BODY>

By activating these links (by clicking with the mouse, through keyboard input, voice

commands, etc.), users may visit these resources. Note that the href attribute in each

source anchor specifies the address of the destination anchor with a URI.

The destination anchor of a link may be an element within an HTML document. The

destination anchor must be given an anchor name and any URI addressing this anchor

must include the name as its fragment identifier.

12

1.9.2 Other Link Relationships

By far the most common use of a link is to retrieve another Web resource, as

illustrated in the previous examples. However, authors may insert links in their

documents that express other relationships between resources than simply "activate this

link to visit that related resource". Links that express other types of relationships have

one or more link types specified in their source anchor.

The roles of a link defined by A or LINK are specified via the rel and rev attributes.

For instance, links defined by the LINK element may describe the position of a

document within a series of documents. In the following excerpt, links within the

document entitled "Chapter 2" point to the previous and next chapters:

<HEAD>

... other head information ...

<TITLE>Chapter 2</fITLE>

<LINK rel="prev" href=t'chapter l.html''>

<LINK rel= "next" hrefe" chapter3 .html">

<!HEAD>

The link type of the first link is "prev" and that of the second is "next" (two of several

recognized link types). Links specified by LINK are not rendered with the document's

contents, although user agents may render them in other ways (e.g., as navigation tools).

Even if they are not used for navigation, these links may be interpreted in interesting

ways. For example, a user agent that prints a series of HTML documents as a single

document may use this link information as the basis of forming a coherent linear

document. Further information is given below on using links for the benefit of search

engines.

13

1.10 Forms

An HTML form is a section of a document containing normal content, markup,

special elements called controls (checkboxes, radio buttons, menus, etc.), and labels on

those controls. Users generally "complete" a form by modifying its controls (entering

text, selecting menu items, etc.), before submitting the form to an agent for processing

(e.g., to a Web server, to a mail server, etc.)

Here's a simple form that includes labels, radio buttons, and push buttons (reset the form

or submit it):

<FORM action="http://somesite.com/prog/adduser" method="post">

<!FORM>

1.11 Controls

Users interact with forms through named controls.

A control's "control name" is given by its name attribute. The scope of the name

attribute for a control within a FORM element is the FORM element.Each control has

both an initial value and a current value, both of which are character strings. Please

consult the definition of each control for information about initial values and possible

constraints on values imposed by the control. In general, a control's "initial value" may

be specified with the control element's value attribute. However, the initial value of a

TEXT AREA element is given by its contents, and the initial value of an OBJECT

element in a form is determined by the object implementation (i.e., it lies outside the

scope of this specification). The control's "current value" is first set to the initial value.

Thereafter, the control's current value may be modified through user interaction and

scripts. A control's initial value does not change. Thus, when a form is reset, each

control's current value is reset to its initial value. If a control does not have an initial

value, the effect of a form reset on that control is undefined. When a form is submitted

for processing, some controls have their name paired with their current value and these

pairs are submitted with the form. Those controls for which name/value pairs are

submitted are called successful controls.

14

1.11.1 Control types

HTML defines the following control types:

buttons

Authors may create three types of buttons:

• submit buttons: When activated, a submit button submits a form. A form

may contain more than one submit button.

• reset buttons: When activated, a reset button resets all controls to their

initial values.

• push buttons: Push buttons have no default behavior. Each push button

may have client-side scripts associated with the element's event

attributes. When an event occurs (e.g., the user presses the button,

releases it, etc.), the associated script is triggered.

Authors should specify the scripting language of a push button script

through a default script declaration (with the MET A element).

Authors create buttons with the BUTTON element or the INPUT element.

Please consult the definitions of these elements for details about specifying

different button types.

check boxes

Checkboxes (and radio buttons) are on/off switches that may be toggled by the

user. A switch is "on" when the control element's checked attribute is set. When

a form is submitted, only "on" checkbox controls can become successful.

Several checkboxes in a form may share the same control name. Thus, for

example, checkboxes allow users to select several values for the same property.

The INPUT element is used to create a checkbox control.

15

radio buttons

Radio buttons are like checkboxes except that when several share. the same

control name, they are mutually exclusive: when one is switched "on", all others

with the same name are switched "off". The INPUT element is used to create a

radio button control.

If no radio button in a set sharing the same control name is initially "on", user

agent behavior for choosing which control is initially "on" is undefined. At all

times, exactly one of the radio buttons in a set is checked. If none of the

<INPUT> elements of a set of radio buttons specifies 'CHECKED', then the

user agent must check the first radio button of the set initially.Since user agent

behavior differs, authors should ensure that in each set of radio buttons that one

is initially "on".

menus
Menus offer users options from which to choose. The SELECT element creates

a menu, in combination with the OPTGROUP and OPTION elements.

text input

Authors may create two types of controls that allow users to input text. The

INPUT element creates a single-line input control and the TEXT AREA element

creates a multi-line input control. In both cases, the input text becomes the

control's current value.

file select

This control type allows the user to select files so that their contents may be

submitted with a form. The INPUT element is used to create a file select control.

hidden controls

Authors may create controls that are not rendered but whose values are

submitted with a form. Authors generally use this control type to store

information between client/server exchanges that would otherwise be lost due to

the stateless nature of HTIP. The INPUT element is used to create a hidden

control.

16

object controls

Authors may insert generic objects in forms such that associated values are submitted

along with other controls. Authors create object controls with the OBJECT element.

The elements used to create controls generally appear inside a FORM element, but may

also appear outside of a FORM element declaration when they are used to build user

interfaces. This is discussed in the section on intrinsic events. Note that controls outside

a form cannot be successful controls.

1.12 The FORM Element

Attribute definitions

action= uri [CT]

This attribute specifies a form processing agent. User agent behavior for a value

other than an HTTP URI is undefined.

method = get I post [Cl]
This attribute specifies which HTTP method will be used to submit the form

data set. Possible (case-insensitive) values are "get" (the default) and "post". See

the section on form submission for usage information.

enctype = content-type [Cl]

This attribute specifies the content type used to submit the form to the server

(when the value of method is "post"). The default value for this attribute is

"application/x-www-form-urlencoded". The value "multipart/form-data" should

be used in combination with the INPUT element, type="file".

accept-charset = charset list [Cl]

This attribute specifies the list of character encodings for input data that is

accepted by the server processing this form. The value is a space- and/or

comma-delimited list of charset values. The client must interpret this list as an

exclusive-or list, i.e., the server is able to accept any single character encoding

per entity received.

The default value for this attribute is the reserved string "UNKNOWN". User

agents may interpret this value as the character encoding that was used to

transmit the document containing this FORM element.

accept= content-type-list [Cl]

This attribute specifies a comma-separated list of content types that a server

processing this form will handle correctly. User agents may use this information

to filter out non-conforming files when prompting a user to select files to be sent

to the server (cf. the INPUT element when type="file").

name= cdata [Cl]

This attribute names the element so that it may be referred to from style sheets

or scripts. Note. This attribute has been included for backwards compatibility.

Applications should use the id attribute to identify elements.

1.13 The INPUT Element

Attribute definitions

type= textlpasswordlcheckboxlradiolsubmitlresetifilelhiddenlimagelbutton [Cl]

This attribute specifies the type of control to create. The default value for this

attribute is "text".

name= cdata [Cl]

This attribute assigns the control name.

value= cdata [CA]

This attribute specifies the initial value of the control. It is optional except when

the type attribute has the value "radio" or "checkbox",

size = cdata [CN]

This attribute tells the user agent the initial width of the control. The width is

given in pixels except when type attribute has the value "text" or "password". In

that case, its value refers to the (integer) number of characters.

18

maxlength = number [CN]

When the type attribute has the value "text" or "password", this attribute

specifies the maximum number of characters the user may enter. This number

may exceed the specified size, in which case the user agent should offer a

scrolling mechanism. The default value for this attribute is an unlimited number.

checked [Cl]

When the type attribute has the value "radio" or "checkbox", this boolean

attribute specifies that the button is on. User agents must ignore this attribute for

other control types.

src = uri [CT]
When the type attribute has the value "image", this attribute specifies the

location of the image to be used to decorate the graphical submit button.

1.13.1 Control types created with INPUT

The control type defined by the INPUT element depends on the value of the type

attribute:

text

Creates a single-line text input control.

password

Like "text", but the input text is rendered in such a way as to hide the characters

(e.g., a series of asterisks). This control type is often used for sensitive input

such as passwords. Note that the current value is the text entered by the user, not

the text rendered by the user agent.

check box

Creates a checkbox.

radio

Creates a radio button.

submit

Creates a submit button.

19

image

Creates a graphical submit button. The value of the src attribute specifies the

URI of the image that will decorate the button. For accessibility reasons, authors

should provide alternate text for the image via the alt attribute.

When a pointing device is used to click on the image, the form is submitted and

the click coordinates passed to the server. The x value is measured in pixels

from the left of the image, and the y value in pixels from the top of the image.

The submitted data includes name.x=x-value and name.y=y-value where "name"

is the value of the name attribute, and x-value and y-value are the x and y

coordinate values, respectively.

If the server takes different actions depending on the location clicked, users of

non-graphical browsers will be disadvantaged. For this reason, authors should

consider alternate approaches:

• Use multiple submit buttons (each with its own image) in place of a

single graphical submit button. Authors may use style sheets to control

the positioning of these buttons.

• Use a client-side image map together with scripting.

reset

Creates a reset button.

button

Creates a push button. User agents should use the value of the value attribute as

the button's label.

hidden

Creates a hidden control.

file

Creates a file select control. User agents may use the value of the value attribute

as the initial file name.

20

CHAPTER2

ACTIVE SERVER PAGES (ASP)

2.1 Introduction to ASP

ASP stands for Active Server Pages. It is a server side technology which is used

to display dynamic content on web pages. For example you could write code that would

give your visitors different information, different images or even a totally different page

depending on what browser version they are using.

ASP in itself isn't a language it is more a technology developed by Microsoft. ASP can

be used with various scripting languages such as Perl or JScript though we will use

VBscript as it is the default scripting language.

2.2 What Is ASP?

ASP is an acronym for Microsoft's Active Server Pages. Now, ASP may seem

like a bit of an odd name but, believe it or not, some real thought went into coming up

with the name.

The reason that Microsoft named the technology Active Server Pages is because it very

basically describes what the technology is all about:

1. The Active refers to the fact that the HTML is created dynamically by your ASP

pages.

2. The Server refers to the fact that this process is done on the server-side and not

the client-side. An example of a client-side technology would be JavaScript

which is a language that actually runs in the browser. Server-side technologies

like ASP run on the server and send out simple HTML to the browser.

3. Then there is Pages. I don't think this one needs any explaining.

ASP is referred to as a server technology. This means that it is technically not a

programming language, however, you will probably hear ASP referred to as a language

from time to time. When working in ASP you will actually write ASP in cooperation

with either JavaScript or VB Script, which are the actual programming languages that

are available to you.

2.3 History of ASP

ASP was one of the first web application development environments that

integrated web application execution directly into the web server. This was done in

order to achieve high performance compared to calling external executable programs or

CGI scripts which was the most popular method for writing web applications at the time

it was introduced. Today there are additional platforms for web application

development that are more common on other operating systems. Both JavaServer Pages

and PHP are more commonly found on webservers running non-Microsoft operating

systems, with PHP currently being the more common of the two[citation needed]. Also

of note is ColdFusion, a popular Java technology running on several platforms including

Microsoft servers as well as other platforms.

InstantASP and ChilisoftASP are technologies that run ASP on platforms other than the

Microsoft Windows Operating System. ChilisoftASP was purchased by Sun

Microsystems and later renamed "Sun ONE Active Server Pages", then later renamed to

"Sun Java System Active Server Pages". It appears that InstantASP is no longer

available. There are large open source communities on the internet, such as ASPNuke,

which produce ASP scripts, components and applications to be used free under certain

license terms.

2.4 What Do I Need?

As you learned in the ASP introduction primer, ASP is a server-side technology

which means that the server for your website is the sole controller of whether or not

ASP is available to you. ASP is also a product of Microsoft which means it will only

run on Microsoft operating systems, however, there is a third party package that will

help you get around this problem.

If you are using a hosting service or getting some free personal web space with your ISP

you will want to check with them to see if ASP is available to you. You can also write a

simple test page to verify whether ASP works on your server if you don't want to take

the time to contact your web host.

22

Here is a simple page for you to enter and test for ASP:

<%@ Language="VBScript" %>

<% Option Explicit %>

<!--- This page should display "ASP is working!"--->

<!--- if ASP is available to you. --->

<HTML>

<HEAD>

<TITLE>ASP Test Page<ffITLE>

<!HEAD>

<BODY>

<% Dim TestString %>

<% TestString = "ASP is Working!"%>

<Hl>

<% Response.Write TestString %>

<IHl>

<!BODY>

</HTML>

Don't worry about how the code works for now. We'll get to all of that soon enough. Be

sure to save the page with the .asp extension instead of the .html extension or you will

not get the desired result. The .asp extension simply let's the server know that the page

is an ASP page and it should be processed accordingly. If you forget and leave the

.html extension on the end then the server will just send the page on its merry way to

the browser and it will never get processed. Also, ASP pages are uploaded to your

websites the same way that your HTML pages are, nothing different.

23

Now, if you are running your own server at home or work then you will have some

configuring ahead of you. First of all, you will need to have IIS· up, and running. IIS is

available to you in various forms on any Microsoft operating system from Windows 95

on.

For those of you that are just wanting to learn and test ASP on your home computer you

can install and configure Personal Web Server (PWS) and run your ASP pages locally.

PWS comes with your Windows operating system. This will get you started finding the

right installation and set-up instructions for your particular operating system.

Unfortunately, I will have to let Microsoft walk you through the installation and set-up

of PWS because I simply wouldn't be able to cover all of the different operating systems
in these short articles.

If you don't use a Microsoft operating system but still want to learn how to use ASP,

there is a third party product out there called Chili!Soft ASP which allows you to run

ASP applications on some non-Microsoft operating systems.

2.5 How Does It Work?

Now that you have a platform for running your ASP pages, hopefully, I'll bet

you would like to know how the pages are actually processed. Well, it's pretty simple

actually.

Each time a request is made from a browser for an ASP page the server takes a look at

that ASP page to see what it (the server) needs to do. This process is referred to as

interpreting. In other words, the server reads each ASP page as it is requested, interprets

the code in the page and then spits out the desired result to the browser. Because of this

fact, you will be the only one that can see your code on your ASP pages since only the

HTML gets sent to the browser. No worries about someone "stealing" your ASP code.

While you might think that the whole process would result in a big pause while the

pages are processed it really doesn't. As long as you keep your ASP pages to a

reasonable length you will probably not notice any difference between an ASP page and

a simple HTML page.

24

So, what exactly gets sent to the browser? Nothing but simple HTML. Since the

browser is not a very worldly piece of software it generally only speaks a few

languages, HTML and JavaScript. Therefore, ASP sends. each page to the browser in

HTML.Does this mean I can't use JavaScript with ASP? No, not at all. As a matter of

fact you can even use JavaScript instead of VBScript to write your ASP pages. We'll

discuss that later, though.

Now, don't worry if this doesn't make perfect sense to you right now. As we move on

and you get a chance to create some ASP pages of your own the whole process will

become much more clear to you. [3]

Have a look at the diagrams below. They are pretty simplistic and self-explanatory.

How a Html pag,e is displayed
The Web Server

Your computer

4,YOut llfOW!>et
Interprets ll'te
html me anll
di.splays It.

1.'browset requests me ftoffl server

.2.

••••
:S,er·ver seatdies
for and Retrieves
FHe from Hard
Drl've 3 .Ser11er returns f!le to y,oot computer

Figure 1.1 How a Htlm page is displayed

How an Asp page is displayed
The Web Server

Your computer

4, YOut llfO'l>L!>et
Interprets ttwc.
Asp file and
displays It.

1.'btowser requests me from server

2,
:ser1rer searches
for and Retrieves
Fit.! ftom Hard
Drive. If the re is
Asp code then it
is preeessed.

••••
3 .Server returns file to yout computer
The Asp code nas been converted
int,ohtml.

Figure 1.2 How a Asp page is displayed

25

Static pages

Client

Figure 1.3 How static pages are processed

The client requests a static page like default.html and the server simply returns the page.

As you can see the client can easily copy the content and html code and do whatever he

wants with it. Furthermore nothing is processed and therefore a static page is returned.

Dynamic pages

H:5

Figure 1.4 how ASP pages are processed

Here the client requests a dynamic .asp page and the server sends the page for further

processing to the IIS. IIS stands for Internet Information Services. It is a web server,

which processes the asp page. IIS then generates a new page with the result and returns

it to the client. As you can see only the result is returned not the original asp page.

2.6 Make Your First ASP Page

Well, actually you already did. The test page code listed above is a fully

functional ASP page. So, let's take a closer look at it and see what it is doing.

The first thing you probably noticed were the goofy looking <% and %> tags. Those

little guys are ASP's way of telling the server that inside here is some code that needs to

be looked at and processed. Also, did you notice that the ASP tags are sprinkled in .

and amongst the standard HTML that you are already familiar with? You'll find that

most of your ASP pages will be a mixture of ASP and HTML.

26

You also probably noticed the <% Option Explicit %> at the top of the page.

Memorize this. As a matter of practice you should always put it at the top of every ASP ·.

page that you create. It forces you to declare all of the variables in. your application

(we'll talk about that in greater detail later). It will save you a great deal of headache

when you begin to debug you pages.

Next there is <%@ Language="VBScript" %>. This simply tells the server what

language you have chosen for your ASP pages. For the purposes of this series we will

be using VB Script but if you are more familiar with JavaScript please feel free to use

that instead.

2.7 VBScript

To build interactive web pages, scripting language like vbscript mostly used.

VBScript is an affspring of the popular visual basic language that runs on the web

server (a server side program) for each user through their browsers. Embedded scripts

(program lines) in html can't be interpreded like html tags by the browsers. Instead they

are transmitted to web server to be executed. The result of execution is sent back to the

user browsers.

2.8 ASP Some Basic VBScript statements

2.8.1 The DIM Statement

So, what the heck is a DIM ... and what DIM-wit came up with the name? Well,

DIM actually stands for dimension and is a hold over from the original BASIC

language.

What DIM does is let the computer know what variables you are going to use. The

computer needs to know what variables you will use in order to reserve some space for

DIM also has one other very important function. When DIM is used in cooperation

with OPTION EXPLICIT, it forces you to declare all variable that are used in your ASP

page. While that may not sound like anything important, forcing you todeclare all your

variables keeps you from making typos, which makes debugging your code so much

easier.

Here's how DIM works:

DIM strName, intNumber, decNumber

Pretty simple, eh? Now we have three variables declared: strName, intNumber, and

decNumber. The variables are now ready for use in you ASP page.

Now here are some details you need to be aware of with regard to how VBScipt handles

its variables. Unlike most other programming languages which require you to declare

the variable name and type, VBScript does not require the variable type.

A variable type, logically enough, refers to the type of data the variable will hold. In

our example above, we declared a variable called strName. strName is our variable we

will use to hold string data, in this case, a person's name.

If you are new to programming, you may want to take a look at the table below that

outlines some of the most basic data types. Most programming languages have many

more data types than are listed below. For the purposes of learning basic programming,

though, we will mainly concentrate on the data types listed.

String Holds a string of alphanumeric characters (numbers, letters, and symbols). An

example of this would be someone's name, address, or telephone number.

Integer Holds whole numbers. (e.g. 1, 2, 3, 4, etc.)

Decimal Holds numbers with a decimal point (e.g. 16.42, 6.92456, etc.)

So, why even talk about data types if VB Script doesn't require me to declare them?

Well, knowing the different data types will allow you to better understand how you can

manipulate the data. In VBScript there are many different built-in functions that will do

a lot of your programming work for you.

28

In order to use those functions you will need to know what kind of· data is in the

variable that you are performing the function on. For example, doing a square root

function on our variable strName won't get you a useful result It's kind of.hard to take

the square root of someone's name.

I'm sure that you noticed that each of the variables listed above has a prefix attached to

it. That is my own little system for keeping track of what the data type is for each

variable. I have found it to be very handy when debugging or adding to my code. The

prefix quickly tells me that strName holds a string, intNumber holds and integer and

decNumber holds a decimal. There is no set rule to this technique and you can use

whatever naming method you like, however, making it something intuitive is always a

good idea since you may not always be the person changing or updating the code.

2.8.2 The IF .. THEN Statement

And now on to bigger and better things, the IF .. THEN statement. This will

probably be one of the statements that you use the most in VB Script.

The IF .. THEN statement is what is known as a conditional statement. In other words,

when some condition is met (or not met for that matter) then something happens. Boiled

down to its simplest form, that is programming in a nutshell. It is simply a series of

events and responses to those events.

Let's take a look at how the IF .. THEN works:

IF strName = "NIA" THEN

strName = "Not Available"

END IF

In this case we are checking our string variable strName to see if it is set to "NIA". If it

is set to "NI A" then we change it to say "Not Available" instead. You'll also notice that

there is an END IF statement. That END IF tells the computer that you are done with

the IF .. THEN statement and it can continue executing any other code.

29

The computer knows to only execute the code between the THEN and the END IF if the

condition you set is met.

So, what kind of comparisons can I do?

There are quite a few comparisons that you can make. Here they are along with the data

types that they apply to:

Equal to. You can use this to compare any data type.

< Less than. You can use this to compare any numeric data type. (You can also use it

for string variable types as well but you will probably find that you never need to

except when comparing dates.)

<= Less than or equal to. You can use this to compare any numeric data type. (You

can also use it for string variable types as well but you will probably find that you

never need to except when comparing dates.)

> Greater than. You can use this to compare any numeric data type. (You can also

use it for string variable types as well but you will probably find that you never

need to except when comparing dates.)

>= Greater than or equal to. You can use this to compare any numeric data type.

(You can also use it for string variable types as well but you will probably find that

you never need to except when comparing dates.)

<> Not equal to. You can use this to compare any data type.

When using the comparison operators above always remember to put string

comparisons in quotes like in the example above. Numeric comparisons, like you will

see below, do not use quotes.

So, what if I wanted to make more than one comparison? Do I have to list one IF ..

THEN after another?

That's where ELSEIF comes in. ELSEIF allows you to string several comparisons

together.

30

With the short section of code above you can easily see that we are assigning a grade

based on someone's score. You can also see that ELSEIF works exactly like IF in that it

makes a comparison the exact same way with comparison operators.

There is one very key difference to keep in mind, though. This type of IF statement is

executed in sequence. In other words, if the first condition isn't met it moves on to the

second condition. If the second condition isn't met then it will move on to the third

condition. If the third condition is met it will execute the appropriate code which, in our

case, is strGrade = "C". Once the code has been executed the computer considers itself

done and doesn't even bother looking at the fourth condition. In our case that's exactly

what we want it to do since we only need to assign one grade based on the score.

But what if I wanted to make 4 comparisons and have each one be considered regardless

of the result of the comparison?

In that case you will have to create 4 separate IF .. THEN statements in order to be

assured that each condition will be checked.

Now there is one more piece of the puzzle. If you noticed above there was no "F" grade.

That's where ELSE comes in. ELSE is a sort of catch-all. It simply means that if none of

the conditions before it are met then it will execute its code.

2.8.3 The CASE Statement

Now that you have an idea of how conditional statements work we'll throw out

another one to you, the CASE statement. The CASE statement is very much akin to the

IF .. THEN.

For our example of the CASE statement we're going to give you a practical example.

Whenever possible we'll try to give at least one practical example with each segment of

our primer series. Here's your practical example for this segment:

Use the code below to create an ASP page called nav.asp:

<% OPTION EXPLICIT %>

<% ' This example creates a form with a drop-down %>

31

<% ' menu. The user selects a page from the list and %>

<% ' clicks GO! to move from page to page. Each time %>

<% ' the user clicks GO! they are sent to a page named %>

<% 'nav.asp where their selection is evaluated by a%>

<% ' CASE statement. The CASE statement then %>

<% ' redirects the user to the appropriate page. %>

<% SELECT CASE Request.Form("Category") %>

<% CASE "Home"%>

<% Response.Redirect "index.html" %>

<% CASE "About Me" %>

<% Response.Redirect "about_me.html" %>

<% CASE "About HTML" %>

<% Response.Redirect "about_html.html" %>

<% CASE "About ASP" %>

<% Response.Redirect "about_asp.html" %>

<% END SELECT %>

Create a new HTML page with the code below or just cut and paste the form portion of

the page into an existing HTML or ASP page:

<HTML>

<HEAD>

32

<TITLE>My Navigation Page<fflTLE>

<!HEAD>

<BODY>

<FORM METHOD="post" ACTION="my_page.asp">

<P>

Please select a page:<IFONT>

<SELECT NAME="Category" >

<OPTION SELECTED>Home<IOPTION>

<OPTION>About Me</OPTION>

<OPTION>About HTML</OPTION>

<OPTION>About ASP</OPTION>

</SELECT>

<INPUT TYPE="submit" VALUE="GO!"

NAME="Go">

<IP>

<!FORM>

<!BODY>

<!HTML>

Now here's how it all works. Once a user selects a page in the drop-down menu and

clicks the GO! button they are redirected to a page called nav.asp. That page evaluates

the user's request in a CASE statement and then forwards them on to the page that they

requested. This all happens so quickly that the user probably will never realize they

were sent to an intermediate page before arriving at the page that they requested.

33

Let's break down that CASE statement now. The first thing you see is SELECT CASE

followed by what is to be evaluated. In this case, we are evaluating the information that

is sent from the form on your HTML page. (Don't worry about the Request.Form or the

Response.Redirect for now. We will get to those concepts later on in this series.)

Next we list out each possible match using CASE. In our example above we have 4

items in the drop-down menu. Therefore, we need to evaluate for those 4 items in our

CASE statement. Beside each CASE is a possible match: "Home", "About Me", etc.

Then below each CASE we have the instructions for what we want the computer to do.

In this case we are telling our server to reroute the person to the page that they selected.

If the example above doesn't make sense to you consider this example using strGrade

instead:

<% SELECT CASE strGrade %>

<% CASE "A" %>

<Pc-Congratulations ! You got an A!! !<IP>

<% CASE "B II %>

<Pe-Good Job! You got an B!<IP>

<% CASE "C" %>

<P>Not Bad. You got a C.<IP>

<% CASE "D" %>

<Pe-Well, Duh. You could do better than a D.<IP>

<% END SELECT %>

The CASE statement above mixes VBScript and HTML on an ASP page. Depending on

what grade the student received, the appropriate message is displayed on the page using

standard HTML.

34

If the IF .. THEN and the CASE statement both get you the same result then why use

CASE at all?

Well, CASE has a couple of advantages. It is a much more concise code which means

less typing. It also is usually more intuitive than a very long series of IF .. THEN

statements.

Feel free to plug in and adapt the code above to your pages. Depending on the

circumstance, the example above can be a very handy solution for navigation problems.

2.8.4 The For .. Next Loop

For those of you that tend to be repetitive, you'll love this installment of the ASP

Primer. Using loops we can thumb through data, automatically generate a list of

numbers or dates, traverse an array or any number of other things.

Let's take a look at the FOR .. NEXT loop first. This particular loop is about as

straight-forward as it gets. Its job is to start at a certain number and count until it

reaches its designated stopping point.

In order to demonstrate how this works, let's take a look at our practical example for this

installment of the ASP Primer. Below we will use a FOR .. NEXT loop to populate a

drop-down list box on a form. We will be putting in the year, beginning with this year,

plus 7 more years for a total of 8. This is a handy little piece of code for populating a

credit card drop-down so that you will never have to go back and change the years listed

as time goes by. Here it is:

<% OPTION EXPLICIT %>

<HTML>

<HEAD>

<TITLE>Auto-generate Y ear<ITITLE>

</HEAD>

35

<BODY>

<FORM METHOD="POST" ACTION="thispage.asp">

<P>

<SELECT SIZE="l" NAME="year">

<OPTION>Please select a year ... </OPTION>

<% DIM intYearCounter, intCurrentYear %>

<% intCurrentYear = Year(Date) %>

<% FOR intYearCounter = intCurrentYear TO

(intCurrentYear + 7) %>

<% Response.Write "<OPTION>" &

CStr(intYearCounter) & "</OPTION>"%>

<%NEXT%>

</SELECT>

<IP>

</FORM>

<!BODY>

</HTML>

36

You'll notice we are using some of the elements from the last tutorial like the DIM

statement. Next you will notice we set our newly created variable, iniCurrentvear, to

Year(Date). This sets our variable to the current year. This is one of those nifty little

functions that is built into VBScript and ASP. We'll cover this function and more later

in this series.

Then we have our FOR statement. This is where we define where we will start our loop

and how long it will continue looping. First we give it the variable we created above,

intYearCounter, so that it can use that variable for storage as it counts. Next we define

where we want to begin counting. In our case we will begin counting with the current

year which is what is being stored in intCurrentYear. Now that the FOR statement

knows where we want to begin we need to tell it when to stop. In our case, we want it to

stop after it has run though the loop 8 times. So, we finish the FOR statement by using

TO (intCurrentYear + 7).

If you are wondering why we are doing (intCurrentYear + 7) instead of

(intCurrentYear + 8) imagine this: suppose our starting year is 2001. We want to

display a total of 8 years starting with 2001. Therefore, our last year listed should be

2008. The difference between 2008 and 2001 is 7 which is why we add 7 to

intCurrentYear.

The next line that you come to is Response.Write "<OPTION>" &

CStr(intYearCounter) & "<!OPTION>". What this actually does is take the current

number in intYearCounter and combine it with HTML to send to the browser when the

page is rendered. We'll get into the particulars of CStr and Response.Write later in this

series.

Then there is the NEXT statement. This simply tells the server that this is the end of our

FOR .. NEXT loop. The FOR .. NEXT loop only executes the code between the FOR

and the NEXT. So, when our loop runs it will only repeatedly execute the line starting

with Response.Write since it is the only line inside the loop. Even though we only have

one line inside our loop, you can have as many lines as you like.

37

2.8.5 The Do .. Loop

The DO .. LOOP is a combination of the IF .. THEN statement and the FOR;.

NEXT loop. It's a conditional loop. In other words, it loops repeatedly (like a FOR ..

NEXT loop) until some specific criteria is met (like an IF .. THEN statement).

Here is a basic example of the DO .. LOOP:

<% DIM intDice, intRollCounter %>

<% intRollCounter = 0 %>

<% Randomize %>

<% DO UNTIL intDice = 6 %>

<% intRollCounter = intRollCounter + 1 %>

<% intDice = Int(Rnd * 6) + 1 %>

<%LOOP%>

<% Response.Write "It took" & CStr(intDice)

& "tries to roll a 6!" %>

This example is a simple dice game. We will keep automatically rolling a single die

until we get a six and then output how many tries it took. Let's walk through the code.

The first new thing that you will encounter is the Randomize command. This command

simply sets a random number seed so that you can generate random numbers. We'll

cover both Randomize and Rnd in more detail later in this series.

After Randomize comes the DO statement. Like FOR, this simply tells the server that

we are beginning our loop here. Then comes UNTIL. UNTIL is the conditional part

and works just as you would expect it to. Each time through the loop it checks to see if

our criteria is met, i.e. intDice = 6. When it does equal 6 the loop stops executing.

38

Next you will see intRollCounter be incremented by one each time we go through the

loop. We are doing our incrementing by hand this time instead of using a FOR .. NEXT

loop because we don't know how many times the loop will execute before intDice

equals 6.

Then we generate a random number between 1 and 6. We'll talk about how this works

when we cover Randomize and Rnd later in this series.

The last part of our loop is designated by, you guessed it, LOOP. This tells the server

that we have reached the bottom of the loop and to try it again UNTIL we get it right.

Lastly, after our loop is done looping we simply write a line that says how many times

we had to loop through to get a 6.

There's also another way to approach this. We could use WHILE instead. WHILE is

the polar opposite of UNTIL. WHILE keeps going until a condition is not met. Let's

change the DO line to use WHILE instead:

<% DO WHILE intDice <> 6 %>

We are accomplishing the same task as before but we are just wording it a bit different.

Now we are saying keep looping as long as intDice does not equal 6.

Obviously, each situation will logically lend itself to either WHILE or UNTIL. You'll

have to determine for yourself which makes your code easier to read and more intuitive.

In our case UNTIL makes the most sense.

Now, there's one other little twist you will need to know. WHILE and UNTIL can be

used either at the top or the bottom of the loop. That means we could move the UNTIL

in our example down to the bottom of the loop like this:

<% LOOP UNTIL intDice = 6 %>

Now instead of doing our test at the top of the loop we are doing it at the bottom. I

know it doesn't sound like a big deal but it can be very important. If you place UNTIL

or WHILE at the bottom you are ensured that your loop will execute at least one time.

39

2.8.6 All About Arrays

And now for a new way to store information .. arrays. Arrays are a very handy

storage method. Think of arrays as variables on steroids.

Imagine you wanted to store 20 different people's last names in variables. It would be

quite a pain to create and keep track of strLastNamel, strLastName2, etc. Not very

efficient, right? That's where arrays come in. With an array you can create one variable

that will have 20 slots, one for each person's name. Here is how you would declare that

array:

<% DIM strLastNames(20) %>

Now you have a variable ready to receive your twenty names. Think of it as a table with

1 column and 20 rows. To refer to each slot in your array simply refer to its index

number like this:

<% strLastNames(l) ="Smith"%>

<% strLastNames(2) ="Hatfield"%>

For an example of how arrays can be used let's go back to our FOR .. NEXT example.

Change the DIM statement to this:

<% DIM intYearArray(8), intYearCounter,

intCurrentYear %>

Now you have an array to store the years that you will generate in the FOR .. NEXT

loop. Add this line inside the FOR .. NEXT loop:

<% intYearArray (intYearCounter - intCurrentYear + 1)

= intYearCounter %>

While that looks incredibly complicated, it's not. Since our loop doesn't count from 1 to

8 we have to reduce our year counter down to single index numbers 1 through 8. That's

what our little formula inside the parentheses does.

40

Now, if you want to get a bit more complicated you can use a two dimensional array.

Think of this as a table with x number of rows and y number of columns. Here is how

you would declare a two dimensional array:

<% DIM strMyArray(20,10) %>

Think of strMyArray as a "table" that is 20 rows by 10 columns. With a two

dimensional array it is a bit more complicated to keep track of your index numbers for

each item. However, if you imagine your data in a table and you remember that

strMyArray(l,l) is the top left comer then it shouldn't be too difficult. If you really

want to get complicated you could go for the three dimensional effect like this:

<% DIM strMyArray(S,5,5) %>

Now you more or less have a cube that is 5 blocks wide by 5 blocks tall by 5 blocks

deep.

So, what about getting stuff back out of an array? That's pretty easy actually. All you

need to do is refer to the index number of the item that you want to retrieve. If we

wanted to get an item out of our intYearArray we would just refer to an index number

like this:

intTheLastYear = intYearArray(8)

In a two dimensional array like this:

strData = strMyArray(7,2)

You get the idea. But if you wanted to get the data out of each element of your array

you could save yourself some time by using a specialized FOR .. NEXT loop like this:

<% DIM intEachYear %>

<% FOR EACH intEachYear IN intYearArray %>

<% Response.Write intEachYear %>

<%NEXT%>

41

You'll notice we defined our FOR very differently. Here we are telling the server to

loop through EACH element in intYearArray (from the example above). Each time

through the loop we want the current element to be temporarily placed in the variable

intEach Year. Then within the loop we will simply print out each element as it loops

through. What we will end up with is our series of years all printed on the same line.

2.9 ASP Functional VBScript

2.9.1 Do the Math

Even though you probably won't be doing much serious math in most of your

ASP applications, it's still a good idea to review some of the more common math

functions. Being that as it may, here are the more common VBScript mathematical

functions:

Mathematics:

ABS() This stands for AB Solute value. An absolute value, if you

remember from math class, is simply taking any number and

eliminating the sign so that any number returned here is

essentially a positive number.

INT() This function will probably get more use than any of the

other mathematical functions we list here with maybe the

exception of the randomizing functions below. What INT

does is simply tum any decimal number into an integer

(whole) number. It does this by whacking off everything after

the decimal point. That means there is no rounding going on

here, it simply throws away the fractional part of any number

that you give it. For example, if you give INT() the number

7.694, it will return then number 7.

42

2.9.2 Messing with Strings

Let's move on to some string functions. You will probably find yourself using

string functions infinitely more than the mathematical functions above. The reason is

that most of the data you interact with on the web is in the form of strings, i.e. people's

names, addresses, web URL's, e-mail addresses, etc.

Here are some of the most commonly used string functions. I have tried to give an easy

to understand example of each function. We'll discuss the practical applications of some

of the functions later. Here they are:

Changing Strings:

LCASE() This function does exactly what you might think. It takes any

string it gets and makes it all lower case.

Example: Doing LCASE("Hello World!") will give you

"hello world!" back.

UCASE() This function is, of course, the polar opposite of LCASE().

UCASE() changes any given string to all upper case.

Example: Taking the example above, doing UCASE("Hello

World!") will give you back "HELLO WORLD!".

LTRIM() This function gets rid of extra spaces on the left side of any

string by just chopping them off.

Example: If you give LTRIM() the string " There are 5

extra spaces to the left.", it will return a string like this

"There are 5 extra spaces to the left."

43

RTRIM () This function does the opposite of L TRIM(). It removes any

extra spaces from the right side of any string.

Example: The string "There are 5 spaces to the right of this

string. " will be returned as "There are 5 spaces to the right

of this string.".

TRIM() TRIM() then is a combination of the two above. It will chop

off any extra spaces before and after a given string.

Example: The string ti There are 5 spaces before and after

this string. ti will return a result of "There are 5 spaces

before and after this string. ti.

REPLACE() Learn this one well. REPLACE() allows you to replace any

given set of characters in a string with another set of

characters.

Example: This function is a bit more complicated than the

rest of the string functions above. It requires more

information before it can do its thing. So, with that said, here

is a some code to illustrate exactly how the function works:

strMySentence = "I like ice cream!"

strNewSentence = REPLACE(strMySentence, "like", "love")

The result of the code above would be that strNewSentence

would now equal to "I love ice cream!". REPLACE() first

wants to know what string it is to perform the replace on,

then what word or set of characters it is looking for, and

lastly what word or set of characters it is swapping in when it

44

finds a match. If there is more than one match within a string

it will replace all of the matches it finds.

All About the String:

LEN() This is one of the few string functions that doesn't actually

return a string. Instead it returns the length of any given

string as an integer. In other words, it counts the number of

characters, including spaces, and gives you the total.

Example: If you do LEN("Test String") you will get the

number 11 as the result.

LEFT() This function allows you to get a selected section of a string.

It is done by giving the function the string you want a piece

of and the length of that piece. It then counts from the left to

a specified length and returns that piece of the string.

Example: LEFT("I love ASP!",6) would return the string "I

love", which is 6 characters from the left including the space.

RIGHT() This function does the exact same process as LEFT() except

from the right.

Example: RIGHT("I love ASP!",4) would return the string

"ASP!", which is 4 characters from the right.

MID() As you might expect, MID() allows you to take a string out

of the middle of another string. For this particular function

you will need a starting point and the number of characters

that you want.

45

Example: MID("I love ASP!",3,4) will give you "love" as

the result. It starts at the third character "l" and snags it plus

the next 3 characters for a total of 4.

INSTR() This function allows you to search for a string within a

string. It works much like REPLACE() does in that you

give it a string to search and a string to search for. The result

it returns is the character number of the beginning of the

match, if it finds one. If it doesn't find a match it will return a

0.

Example: INSTR("I love ASP!","love") will return the

integer 3. If you try INSTR("I love ASP!","like") it will

return the integer 0.

Here's an extra little tip about INSTR(), INSTR("I love

ASP!","asp",1) will ignore case-sensitivity. In other words,

the number one at the end of the function tells it to find a

match ignoring case. The default is to find an exact match.

The result of the example above would be 8. The result of

this example,

INSTR("I love ASP!","asp") would be 0, no match found.

46

2.10 ASP Sending a Response

If you skipped ahead to here because you already know VBScript or want to use

JavaScript with ASP, then welcome! It's now time to get down to some real ASP stuff.

In this tutorial you will learn some of the most used items of the Response object,

Respone. Write, Response.Redirect.

2.10.1 Response.Write: Talking to the User

You will probably find yourself using Response.Write more than anything else

in ASP. It is used to send output to the browser for the user. You will also find that you

will use Response.Write frequently when debugging your pages and applications.

So, how does it work?

It's pretty simple really. Whatever you put in a Response.Write statement gets sent to

the web browser. It "writes" to the browser. Here is how it works:

<% Response.Write "Hello!"%>

The result would be the word "Hello!" displayed in the browser. It would appear in the

default style for your page.

Now, let's get a bit more creative. Let's make "Hello!" bold and blue. Add this to

Response. Write:

<% Response.Write

"<bo-cfont color="#OOOOFF">Hello!<lb>" %>

Now you have mixed standard HTML into what you are outputting to the browser.

Since the browser interprets the HTML that it receives, the result is "Hello!".

So, why would you ever want to use HTML with a Response.Write? Isn't that just an

extra unnecessary step? Imagine this, let's say you have a password protected page.

When a person logs into your page you want to display one of two messages;

"Congratulations!" or "Login Incorrect". You also decide that you want a successful

login to be displayed in blue while an unsuccessful login would be displayed in red.

47

By using Response.Write in and If .. Then statement you can easily make any changes

to text that you would like displayed. Here is a short excerpt of some code showing how

this might work:

<% Option Explicit %>

<% Dim strPassword %>

<% If strPassword = "valid" then %>

<% Response.Write

"Congratulations!" %>

<%Else%>

<% Response.Write

"Login Incorrect-c/font>" %>

<% End If%>

You can also use Response. Write to output variable values and other data. Let's say

you wanted to display the value of a variable. Here's how it works:

<% Option Explicit %>

<% Dim strWinner %>

<% strWinner = "Johnathan Smith" %>

<% Response.Write "Lottery winner: " & strWinner %>

You can use the ampersand to connect a phrase with a variable that you want to display.

The result of the code above would be:

Lottery winner: Johnathan Smith

48

You can also output the results of some of those built-in functions that we covered in

the last section. Here's an example of how to display today's date:

<% Response.Write "Today's date: " & Date()%>

Is that all there is to it?

Pretty much. Response.Write is about as straight-forward as it gets.

There is, however, one other very important use for Response.Write that I'd like to

cover - debugging. Unless you are both a master typist and master coder it is very

unlikely that you will ever write an ASP application that runs perfectly right out of the

gate. That's where debugging and Response.Write come into play.

Once you have cleaned up all of the typos that you may have made when writing your

code, there is still no guarantee that the code will run as planned. It may give you the

wrong results in a mathematical calculation or spit out other incorrect information.

When this happens, most ASP developers will drop several different Response.Write

statements in their code to narrow down the problem. Here are some different situations

where Response.Write might be effective:

Wrong results - Try putting a Response.Write after you change the value of any

variable that is connected with the wrong result. This way your application will

basically give you a play-by-play of what it is doing. Hopefully, by walking through the

calculations step-by-step you can pinpoint where things go awry.

Skipped code - Sometimes an If .. Then or other conditional statement may not react

like you expect. By placing a Response.Write in your conditional statements, you can

determine whether or not the code inside the conditional is executed. This will allow

you to trace the flow of your code and determine whether or not your conditional

statements are resolving as you had expected.

49

2.10.2 Response.Redirect: Moving the User Around

Response.Redirect is kind of like a call forwarding button. It sends the user on

to any location you designate.

The syntax is virtually the same as Response.Write. Instead of entering a word or

phrase that you want to be sent to the browser, you enter the URL of the destination that

you want the user to be redirected to. For example:

<% Response.Redirect

"http://www.HTMLGoodies.com" %>

The code above will send the user on to the HTMLGoodies web site. You can also

assign Response.Redirect a destination from a variable like this:

<% Option Explicit %>

<% Dim strDestination %>

<% strDestination = "http://www.HTMLGoodies.com" %>

<% Response.Redirect strDestination %>

So, why would I ever use this?

The most common usage for Response.Redirect is in processing user input. Let's say,

for example, you have built an ASP application that allows you and your friends to

exchange DVD's and keep track of them. One of your pages is a form that asks the user

whether they want to add a DVD to the list, delete a DVD from the list, borrow a DVD

or return a DVD. Once they have made a selection you can then send them off to the

appropriate page by using Response.Redirect in cooperation with a Case statement.

There are, of course, other valuable uses for Response.Redirect, but the type of

situation listed above is the most common.

50

,~:AR~,,;..
. Cb ~ -.,;..c'
(co v- z·

I 1) ;· \~ 1) <::
·...:, ti;

Now it's about to get real fun. From here on you'll be learning abou ~e ofThe 'r'-0.:t>
best parts of ASP. We'll be learning about forms and emails this week then · fl ~

2.11 ASP Forming Up

connecting to and manipulating data in a database which is the real power of ASP. But

first, forms ...

2.11.1 Setting Up Your Forms

This section is intended as a refresher course to make sure we are all on the

same page when we get into processing the forms in the next section.

If you are a forms master then, by all means, go ahead and skip on to the Request.Form:

Getting the Info section. If you have never worked with forms before in your life then I

would suggest reviewing the tutorial So, You Want a Form, Huh? before going on to the

next section.

For everyone else, here we go ...

There are several different basic form elements. We are just going to run through them

one by one. I'll give you the HTML to create them and then a brief explanation of the

code. That should be enough to jog your memory. Keep in mind, though, this is just a

basics refresher and there are more attributes to the form elements than we will cover

here.

The Text Box ...

Here's the code:

<INPUT TYPE="text" NAME="Tl" SIZE="20">

All of your form elements start with the word INPUT. This let's the browser know we

are wanting a Text Box.

51

Second is the TYPE attribute. This defines the type of Text Box form element we are

using which, in this case is "text" for plain text.

Next is the NAME attribute. This attribute gives each form element its own unique

name. It is very important that each element have a unique name otherwise you won't be

able to get the user's input back from the form. You will find this attribute a part of

every form element.

Lastly, we get to the SIZE attribute. This simply defines the length of the Text Box.

The Password Text Box ...

Here's the code:

<INPUT TYPE="password" NAME="Tl" SIZE="20">

You'll notice it's exactly the same as the Text Box above except TYPE is set to

"password" instead of "text". Using "password" tells the browser to mask anything

typed into the Text Box.

The Text Area ...

This is a Text Box on Steroids.

Here's the code:

<TEXT AREA ROWS="3" NAME="S 1" COLS="20">

This is a Text Box on Steroids.</TEXTAREA>

Here is your beefed up Text Box also known as Text Area. This is ideal for occasions

when you need a user to enter a lot of text. It has basically the same attributes as the

Text Box but with some notable additions/changes.

52

First is the ROWS attribute. I'm sure you had figured out that this defines the number of

lines displayed. You can type as much as you like, however, you will only see 3 lines of

text at a time.

Second, you'll notice the COLS attribute. This is exactly the same as SIZE in the Text

Box example above. Don't ask me why they chose to use two different names for

essentially the same attribute.

Lastly, you'll notice this element is defined as TEXT AREA with a begin and end tag.

Between the begin and end tag is where you can put any default value that you want to

appear in the Text Area.

Drop Down Lists ...

Choice 1

Here is the code:

<select name="Dl ">

-coptiorc-Choice 1 -c/option»

<options-Choice 2</option>

-c/select»

This is also known as the Drop Down Menu. This element is defined by SELECT.

You'll also notice there is an end SELECT tag as well. In between these two tags is

where you will define the different options that are available within the Drop Down

List. To define an option you use the OPTION tag. You can list as many options as you

like, just be sure each option is defined with both and begin and end OPTION tag.

Lastly, don't forget to end your SELECT element with an end select tag, </SELECT>.

53

The Radio Button ...

Here is the code:

<INPUT TYPE="radio" VALUE="Vl"

CHECKED NAME="Rl ">

You'll first notice that we are back to the INPUT element. In this case, our TYPE is

"radio" to define the Radio Button.

The new attribute here is the VALUE. This defines the value of your radio button. Each

Radio Button should have its own unique value (within the group name, that is) in

order to process your form later.

Next you will see CHECKED. This tells the browser that this element is the default

element. Use this on only one element in a group to define it as the default option. By

default, one button must be selected. If you don't designate a default button, the browser

will designate one for you.

And now we will revisit the NAME attribute. It serves a little bit different role with the

radio buttons. In this case, the name should not necessarily be a unique value. For the

purposes of a set of radio buttons, the NAME defines the group of buttons and the

VALUE defines the value attached to each individual button. So, if you wanted the user

to make a single choice from 3 different options you would give each Radio Button a

unique VALUE but they would all have the same NAME.

The Check Box ...

r

Here's the code: <INPUT TYPE="checkbox" NAME="C3"

V ALUE="ON" CHECKED>

54

And yet another INPUT. This time the TYPE is "checkbox" which defines it as a

Check Box. Unlike radio buttons, check boxes are not intended to be grouped. The idea

behind the Check Box is that you should be able to select as many as you like.

Therefore, the NAME should be a unique one.

Like the Radio Button, the Check Box does have a VALUE attribute. This can simply

store a value that tells you it was checked (we used "ON" in the example above) or it

could actually store a special value like an ID number.

Lastly, there is the CHECKED attribute. It marks any the Check Box as selected by

default.

The Submit Button ...

Sub nit

Here's the code:

<INPUT TYPE="submit" V ALUE="Submit" NAME="B 1 ">

This time our TYPE is "submit". This defines the element as a submit button. This

button will inherently trigger the form to process when pushed.

It also has a VALUE which serves a bit different purpose than on most other form

elements. On a button, the value indicates what will appear on the button.

2.11.2 Request.Form: Getting the Info

Now that you have had your refresher course on form elements, we'll jump into

the ASP way of processing those forms.

While we discussed the different form elements in the last section, we didn't discuss

how to define the form itself. To define a form on your page you will need to use the

<FORM> and </FORM> tags. Within the <FORM> tag you will want to be sure to

add these items:

<FORM METHOD="post" ACTION="myprocess.asp">

55

You will need the METHOD attribute set to "post". This sends the user's input back to

the server. You will also need to define the ACTION. The ACTION tells the server

what to do next once the user has hit the submit button. In the example above we will be

calling the page "myprocess.asp".

When setting the action you first need to determine how you want to handle processing

of the form. You can approach it in two ways. You can either call the same page that

has the form on it or call a new page. Here are some advantages and disadvantages to

each approach:

Same Page - Calling the same page will allow you to have all your code in one

centralized location. This method is often easier to read and debug because all of your

references are in the same location. It's biggest disadvantage is that it makes for a much

larger page and can cause a delay in response.

New Page - This method componentizes your processes. By separating your form page

from your processing page you will generally have a faster response. It also has the

added benefit of being able to use the same processing page for more than one form. It's

only drawback is that you might have to jump around between multiple pages to track

down bugs.

So, how do you get the user's information from the form?

That's where Request.Form comes in. It works very similarly to Request.QueryString.

To illustrate how it works I'll give you this week's practical example:

<% Option Explicit %>

<HTML>

<HEAD>

<TITLE>My Password Login Page</TITLE>

<!HEAD>

56

<BODY>

<FORM METHOD="post" ACTION="login.asp">

<P>

Please enter your password:

<INPUT TYPE="password" NAME="Pswd" SIZE="lO">

<INPUT TYPE="submit" VALUE="Go!" NAME="SubmitButton">

<IP>

<!FORM>

<!BODY>

<!HTML>

Now, what you have here is your basic everyday form with one text box named "Pswd".

You'll notice that we set the ACTION in the FORM tag to call the page "login.asp",

which will be what we call this page. Since this will be a very small amount of code, we

are going to combine our ASP and form on the same page.

If we were doing more complex or extensive coding, I would probably recommend

using two pages, one for the form and one for the code. The rest of the elements in the

example above are straight-forward HTML and should be familiar to you.

Now, here's our ASP code that will process the user's password:

Place this code between the <% Option Explicit %> and <HTML> above.

<% If Request.Form("pswd") = "password" then

Session("access") = "yes"

Response.Redirect "securedpage.asp"

End If%>

57

In the code above we are checking to see if the password the user entered is correct and

then sending them on to our secured section if it is. To achieve this we are using some

ASP and VBScript that you have already learned in cooperation with some new stuff.

I threw you a bit of a curve on this one. You'll notice that each line doesn't have a <%

and %> on it. It isn't necessary to use<% and%> on every line, so instead we use<%

to begin our block of code and %> to signify the end of our code block. I waited until

now to tell you about this so that you would have a chance to get used to using the ASP

special delimiters (<% and %>) first.

Next, you will see Request.Form. This is what you will use to get the user's input from

a form. You will notice that we are requesting the information in "pswd", which is the

name of our password text box in our form. We are then comparing what the user typed

in to our secret access password that we have created, "password". If the user entered

the correct password, we will set two other things in motion. (Unlike JavaScript, you

don't have to worry about people being able to view your ASP source and getting your

secret password. ASP code can never be seen by the end user.)

First, we will create and set a Session variable called "access" equal to "yes". This is

what we will use on our secured page(s) to see if a user is logged in or not. We'll get to

that in a minute.

Second, we will send the user on to a new page called "securedpage.asp". This page can

either be a single secured page or the welcome page to a whole secured section of

pages.

That's really all there is to it. However, there are a few things that you need to

understand about Request.Form. Request.Form will only return values on the page

that was specified in the ACTION. If the user has moved beyond your processing page,

their input on the form will be gone. In our example above, if you tried a

Request.Form("pswd") on your securedpage.asp, you would always get an empty

string returned("").

The other very important item that you should realize is that the form elements can be

very different in how they are handled. Here is a brief overview of how to handle each

of the elements that we talked about earlier:

58

Text Boxes - Whether it's a simple or masked text box, Request.Form will return the

user's input.

Text Areas - This works exactly the same as the Text Boxes. If you give

Request.Form the name of the Text Area, it will return what the user input. If you set a

default value for the Text Area and the user made no changes, you will get the default

value back.

Radio Buttons - These are a bit different. With Radio Buttons, you will need to use the

group name. When you give Request.Form the group name it will return the VALUE

of the button the user selected. The VALUE is what will tell you which button was

selected so that you can properly process the user's input.

Check Boxes - With Check Boxes, you will have to check each individual check box to

see whether it has been checked. Remember, Check Boxes each have a unique name, so

it can be quite cumbersome to check dozens of check boxes from a form.

Request.Form will return the VALUE that you set for each check box. You can use the

Check Box VALUE to store a simple indicator that lets you know it was checked, like

the word "ON", or place a VALUE that is a bit more useful like a special ID number.

Drop Down Lists - By default, a Drop Down List will only allow for one selection.

Request.Form will return the OPTION name that the user chose.

We will show you additional examples of these form elements in action as we progress

through this series.

Now, there is one more little item to take care of to finish off our practical example we

started above. For each page that you want to be secured, add this little bit of ASP to

the top of the page:

<% Option Explicit %>

<% If Session("access") <> "yes" then

Response.Redirect "login.asp"

End If%>

59

The code above will check the Session variable that you created to see if the user is

indeed logged in. If they are not, they are redirected back to your login page so that they

can enter the password.

2.11.3 Sending Out Some Email

There are literally billions of emails flying around the globe almost every day.

Because of this ever increasing reliance on email, ASP has the ability to generate email

on the fly. This is a very useful tool especially for automated responses to subscription

submissions, information requests and e-commerce applications.

Sending an email from your ASP pages is actually quite simple. There are several

different software manufacturers that sell server software to handle email, however. I

am going to show you how to use CDONTS, which is most commonly used with ASP.

Be sure to check and see what is installed on your particular server before using the

code below.

Most ASP email is handled pretty much the same way, it's just the syntax that changes.

Even if you don't have CDONTS available, this example should at least give you a

working understanding of how to create email from your ASP pages.

<% Option Explicit %>

<% Dim MyEmail

Set MyEmail =

Server.CreateObject("CDONTS.NewMail")

M yEmail.From = "name@yourdomain.com"

MyEmail.To = "name@theirdomain.com"

MyEmail.Subject = "ASP email Test"

MyEmail.Body = "This is my ASP email test!" My Email.Send

Set MyEmail = Nothing %>

60

Look pretty easy? Well, it is. At first glance, almost everything should look pretty

logical to you. Let's see how the process works line by line.

The first line will probably be the most confusing for you. What we are doing here is

basically just creating the shell for our new email. By setting MyEmail equal to

Server.CreateObject("CDONTS.NewMail") we are making an instance of the email

object that we are affectionately naming "MyEmail".

The next four lines should make perfect sense to you. Here we are defining all of the

basic elements of the email, i.e. the from address, the to address, the subject line and the

body itself. Be careful to always complete both the To and the From, otherwise you will

get an error when sending.

Once you have set the contents of your email, it's a simple process to send it on its way.

Just tell the object to send by using MyEmail.Send.

Lastly, we need to clear the email object when we are done with it. It is a good practice

to clear all objects when you are done with them so that you don't waste valuable

memory space on the server. To clear an object just set the object equal to Nothing.

Also, be sure to not use quotes around Nothing, otherwise you will get an error.

So, how do you insert a line break into the body of your email?

What I always use is vbcrlf. That stands for "Visual Basic Carriage Return Line Feed"

which pops the text to a new line. This only works if you are using VBScript, though. If

you are using JavaScript, you will have to add in the carriage return and line feed

characters. Here's an example using vbcrlf:

MyEmail.Body = "Hello!" & vbcrlf & vbcrlf & _

"This is my ASP email test!"

The example above will insert two returns after "Hello!" which will effectively insert a

blank line between "Hello!" and the rest of the body text.

61

2.12 Connecting to a Database

Part of ASP's great power is its ability to interact with databases. In the next

segment we will jump right in:

Connecting to a Database

Adding Data to Your Database

Modifying and Deleting Data in Your Database

One of the beauties of using VBScript and ASP for your Web database

connection is that you do not have to learn anything new at least, not if you have done

much database programming in Visual Basic. Any Microsoft Web server should have

ActiveX Data Objects, or ADO, installed. ADO is Microsoft's new database object

model, partially introduced with Visual Basic version 5 and now fully supported in

version 6. (See the VDM cover story for Nov/Dec 1998: "Much ADO About Database

Access" by Eric Harmon.) If you have worked with ADO at all, you know how much

easier it is to use than older database technologies such as RDO. All this power is

available to you in your Active Server Pages.

Well, perhaps not quite all. When creating a standalone Visual Basic database program,

the easiest way to use ADO is by means of the ADO Data Control, which you place on

a form and can easily program to serve as the link between your program and the data

source. Since many of Visual Basie's intrinsic controls can be bound to an ADO Data

Control, programming a functional database front end is a piece of cake. Unfortunately,

neither the ADO Data Control nor the data bound controls can be used on a Web page.

Still, even without these controls.ADO makes database access relatively easy. The

programming, however, is textual rather than purely visual. At the heart of the ADO

model are two objects: Connection and RecordSet. A Connection object represents

the link between your page and the data source; that is, the database file. A RecordSet

object represents a set of records returned from the data source in response to a query.

You have the option of using these objects directly in a regular Visual Basic program,

permitting you to use ADO to access a data source without using the ADO Data

Control. In an Active Server Page, this is the only way to go.

62

The first required step is to create a Connection object using the Server object's

CreateObject method. Since you are dealing with an object reference you must use the

Set keyword:

set con = server.createobjecu" adodb.connection")

Next, establish a link between the Connection object and your database. The easiest

way to do this is to create a connection string that specifies the type of database and the

specific database file. Here's a very simple connection string that specifies a Microsoft

Access database file named mydata.mdb:

constr = "Provider=Microsoft.Jet.OLEDB.3.51; Data Source=mydata.mdb;"

Connection strings can get a lot more complicated; see the sidebar "ADO Connection

Strings the Easy Way" for a time-saving tip. Once you have your connection string, you

establish the connection by passing the connection string to the Connection object's

Open method:

con.open constr

Once the connection is established, you next create a RecordSet that contains the

desired records from a table in the data source. This requires putting together a

Structured Query Language (SQL) query that selects the desired fields and records from

the table. This is not the time or place to go into the details of SQL, so please take my

word that the SQL query used here selects all fields and all records from a database

table named sales. Here's how you would create the RecordSet:

set rs= con.Execute("select * from sales")

You can see that the Connection object's Execute method returns a reference to a

RecordSet. After this script statement executes, the RecordSet contains the records from

the table and you can use the RecordSet object's methods and properties to access and

manipulate the data. Here, for example, is the VBScript code required to display all of

the data in the RecordSet. This script creates an HTML table with the field names

displayed in the first row and the data displayed, one record per row, in the remainder of

the table.

63

CHAPTER3

DATABASE

3.1 Database

A computer database is a structured collection of records or data that is stored in

a computer system. A database relies upon software to organize the storage of data. In

other words, the software models the database structure in what are known as database

models (or data models). The model in most common use today is the relational model.

Other models such as the hierarchical model and the network model use a more explicit

representation of relationships (see below for explanation of the various database

models).[5]

Database management systems are usually categorized according to the database model

that they support. The data model tends to determine the query languages that are

available to access the database. A great deal of the internal engineering of a DBMS,

however, is independent of the data model, and is concerned with managing factors

such as performance, concurrency, integrity, and recovery from hardware failures. In

these areas there are large differences between products.

3.2 History of Database

The earliest known use of the term data base was in November 1963, when the

System Development Corporation sponsored a symposium under the title Development

and Management of a Computer-centered Data Base[l]. Database as a single word

became common in Europe in the early 1970s and by the end of the decade it was being

used in major American newspapers. (The abbreviation DB, however, survives.)

The first database management systems were developed in the 1960s. A pioneer in the

field was Charles Bachman. Bachman's early papers show that his aim was to make

more effective use of the new direct access storage devices becoming available: until

then, data processing had been based on punched cards and magnetic tape, so that serial

processing was the dominant activity. Two key data models arose at this time:

CODASYL developed the network model based on Bachman's ideas, and (apparently

independently) the hierarchical model was used in a system developed by North

American Rockwell later adopted by IBM as the cornerstone of their IMS product.

64

While IMS along with the CODASYL IDMS were the big, high visibility databases

developed in the 1960s, several others were also born in that decade, some of which

have a significant installed base today.

Two worthy of mention are the PICK and MUMPS databases, with the former

developed originally as an operating system with an embedded database and the latter as

a programming language and database for the development of healthcare systems.

The relational model was proposed by E. F. Codd in 1970. He criticized existing models

for confusing the abstract description of information structure with descriptions of

physical access mechanisms. For a long while, however, the relational model remained

of academic interest only. While CODASYL products (IDMS) and network model

products (IMS) were conceived as practical engineering solutions taking account of the

technology as it existed at the time, the relational model took a much more theoretical

perspective, arguing (correctly) that hardware and software technology would catch up

in time. Among the first implementations were Michael Stonebraker's Ingres at

Berkeley, and the System R project at IBM. Both of these were research prototypes,

announced during 1976. The first commercial products, Oracle and DB2, did not appear

until around 1980. The first successful database product for microcomputers was

dBASE for the CP/M and PC-DOS/MS-DOS operating systems.

During the 1980s, research activity focused on distributed database systems and

database machines. Another important theoretical idea was the Functional Data Model,

but apart from some specialized applications in genetics, molecular biology, and fraud

investigation, the world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some success in

fields where it was necessary to handle more complex data than relational systems could

easily cope with, such as spatial databases, engineering data (including software

repositories), and multimedia data. Some of these ideas were adopted by the relational

vendors, who integrated new features into their products as a result. The 1990s also saw

the spread of Open Source databases, such as PostgreSQL and MySQL.

In the 2000s, the fashionable area for innovation is the XML database. As with object

databases, this has spawned a new collection of start-up companies, but at the same time

the key ideas are being integrated into the established relational products.

65

3.3 Database Models

Various techniques are used to model data structure. Most database systems are

built around one particular data model, although it is increasingly common for products

to offer support for more than one model. For any one logical model various physical

implementations may be possible, and most products will offer the user some level of

control in tuning the physical implementation, since the choices that are made have a

significant effect on performance. An example is the relational model: all serious

implementations of the relational model allow the creation of indexes which provide

fast access to rows in a table if the values of certain columns that are known

3.3.1 Hierarchical model

In a hierarchical model, data is organized into a tree-like structure, implying a

single upward link in each node to describe the nesting, and a sort field to keep the

records in a particular order in each same-level list.

3.3.2 Network model

The network model tends to store records with links to other records.

Associations are tracked via "pointers". These pointers can be node numbers or disk

addresses. Most network databases tend to also include some form of hierarchical

model.

Examples of database engines that have network model capabilities are RDM

Embedded and RDM Server.

3.3.3 Relational model

The basic data structure of the relational model can be thought of as a table,

where information about a particular entity (say, an employee) is represented in

columns and rows (also called tuples). Thus, the "relation" in "relational database"

refers to the various tables in the database; a relation is a set of tuples. The columns

enumerate the various attributes of the entity (the employee's name, address or phone

number, for example), and a row is an actual instance of the entity (a specific employee)

66

that is represented by the relation. As a result, each tuple of the employee table

represents various attributes of a single employee.

All relations (and, thus, tables) in a relational database have to adhere to some basic

rules to qualify as relations. First, the ordering of columns is immaterial in a table.

Second, there can't be identical tuples or rows in a table. And third, each tuple will

contain a single value for each of its attributes i.e. each tuple has an atomic value.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. One of the strengths of the relational model is that, in principle, any

value occurring in two different records (belonging to the same table or to different

tables), implies a relationship among those two records. Yet, in order to enforce explicit

integrity constraints, relationships between records in tables can also be defined

explicitly, by identifying or non-identifying parent-child relationships characterized by

assigning cardinality (1: 1, (0) 1:M, M:M). Tables can also have a designated single

attribute or a set of attributes that can act as a "key", which can be used to uniquely

identify each tuple in the table.

A key that can be used to uniquely identify a row in a table is called a primary key.

Keys are commonly used to join or combine data from two or more tables. For example,

an Employee table may contain a column named Location which contains a value that

matches the key of a Location table. Keys are also critical in the creation of indices,

which facilitate fast retrieval of data from large tables. Any suitable column can be a

key, or multiple columns can be grouped together into a compound key. It is not

necessary to define all the keys in advance; a column can be used as a key even if it was

not originally intended to be one.

3.3.4 Relational operations

Users (or programs) request data from a relational database by sending it a query

that is written in a special language, usually a dialect of SQL. Although SQL was

originally intended for end-users, it is much more common for SQL queries to be

embedded into software that provides an easier user interface.

67

In response to a query, the database returns a result set, which is the list of rows

constituting the answer. The simplest query is just to return all the rows from a table,

but more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a join. There are a

number of relational operations in addition to join.

3.3.5 Normal forms

Relations are classified based upon the types of anomalies to which they're

vulnerable. A database that's in the first normal form is vulnerable to all types of

anomalies, while a database that's in the domain/key normal form has no modification

anomalies. Normal forms are hierarchical in nature. That is, the lowest level is the first

normal form, and the database cannot meet the requirements for higher level normal

forms without first having met all the requirements of the lesser normal form.

3.3.6 Post-relational database models

Several products have been identified as post-relational because the data model

incorporates relations but is not constrained by the Information Principle, requiring that

all information is represented by data values in relations.

Date's information principle states:

The entire information content of the database is represented in one and only one way. Namely

as explicit values in column positions (attributes) and rows in relations (tuples) Ergo, there are
no explicit pointers between related tables.

Products using a post-relational data model typically employ a model that actually pre

dates the relational model. These might be identified as a directed graph with trees on
the nodes.

Examples of models that could be classified as post-relational are PICK aka
MultiValue, and MUMPS.

68

3.3.7 Object database models

In recent years, the object-oriented paradigm has been applied to database

technology, creating a new programming model known as object databases. These

databases attempt to bring the database world and the application programming world

closer together, in particular by ensuring that the database uses the same type system as

the application program. This aims to avoid the overhead (sometimes referred to as the

impedance mismatch) of converting information between its representation in the

database (for example as rows in tables) and its representation in the application

program (typically as objects). At the same time, object databases attempt to introduce

the key ideas of object programming, such as encapsulation and polymorphism, into the

world of databases.

A variety of these ways have been tried for storing objects in a database. Some products

have approached the problem from the application programming end, by making the

objects manipulated by the program persistent. This also typically requires the addition

of some kind of query language, since conventional programming languages do not

have the ability to find objects based on their information content. Others have attacked

the problem from the database end, by defining an object-oriented data model for the

database, and defining a database programming language that allows full programming

capabilities as well as traditional query facilities.

3.4 Database internals

3.4.1 Storage and physical database design

Database tables/indexes are typically stored in memory or on hard disk in one of

many forms, ordered/unordered flat files, ISAM, heaps, hash buckets or B+ trees. These

have various advantages and disadvantages discussed further in the main article on this

topic. The most commonly used are B+ trees and ISAM.

Other important design choices relate to the clustering of data by category (such as

grouping data by month, or location), creating pre-computed views known as

materialized views, partitioning data by range or hash. As well memory management

and storage topology can be important design choices for database designers.

69

Just as normalization is used to reduce storage requirements and improve the

extensibility of the database, conversely denormalization is often used to reduce join

complexity and reduce execution time for queries.

3.4.2 Indexing

All of these databases can take advantage of indexing to increase their speed,

and this technology has advanced tremendously since its early uses in the 1960s and

1970s. The most common kind of index is a sorted list of the contents of some particular

table column, with pointers to the row associated with the value. An index allows a set

of table rows matching some criterion to be located quickly. Typically, indexes are also

stored in the various forms of data-structure mentioned above (such as B-trees, hashes,

and linked lists). Usually, a specific technique is chosen by the database designer to

increase efficiency in the particular case of the type of index required.

Relational DBMSs have the advantage that indexes can be created or dropped without

changing existing applications making use of it. The database chooses between many

different strategies based on which one it estimates will run the fastest. In other words,

indexes are transparent to the application or end-user querying the database; while they

affect performance, any SQL command will run with or without indexes existing in the

database.

Relational DBMSs utilize many different algorithms to compute the result of an SQL

statement. The RDBMS will produce a plan of how to execute the query, which is

generated by analyzing the run times of the different algorithms and selecting the

quickest. Some of the key algorithms that deal with joins are nested loop join, sort

merge join and hash join. Which of these is chosen depends on whether an index exists,

what type it is, and its cardinality.

An index speeds up access to data, but it has disadvantages as well. First, every index

increases the amount of storage on the hard drive necessary for the database file, and

second, the index must be updated each time the data are altered, and this costs time.

(Thus an index saves time in the reading of data, but it costs time in entering and

altering data. It thus depends on the use to which the data are to be put whether an index

is on the whole a net plus or minus in the quest for efficiency.)

70

A special case of an index is a primary index, or primary key, which is distinguished in

that the primary index must ensure a unique reference to a record. Often, for this

purpose one simply uses a running index number (ID number). Primary indexes play a

significant role in relational databases, and they can speed up access to data

considerably.

3.4.3 Transactions and concurrency

In addition to their data model, most practical databases ("transactional databases")

attempt to enforce a database transaction . Ideally, the database software should enforce

the ACID rules, summarized here:

• Atomicity: Either all the tasks in a transaction must be done, or none of them.

The transaction must be completed, or else it must be undone (rolled back).

• Consistency: Every transaction must preserve the integrity constraints - the

declared consistency rules - of the database. It cannot place the data in a

contradictory state.

• Isolation: Two simultaneous transactions cannot interfere with one another.

Intermediate results within a transaction are not visible to other transactions.

Durability: Completed transactions cannot be aborted later or their results discarded.

They must persist through (for instance) restarts of the DBMS after crashes.

In practice, many DBMS's allow most of these rules to be selectively relaxed for better

performance.

Concurrency control is a method used to ensure that transactions are executed in a safe

manner and follow the ACID rules. The DBMS must be able to ensure that only

serializable, recoverable schedules are allowed, and that no actions of committed

transactions are lost while undoing aborted transactions .

71

3.4.4 Replication

Replication of databases is closely related to transactions. If a database can log its

individual actions, it is possible to create a duplicate of the data in real time. The

duplicate can be used to improve performance or availability of the whole database

system. Common replication concepts include:

• Master/Slave Replication: All write requests are performed on the master and

then replicated to the slaves

• Quorum: The result of Read and Write requests are calculated by querying a

"majority" of replicas.

• Multimaster: Two or more replicas sync each other via a transaction identifier.

3.4.5 Security

Database security denotes the system, processes, and procedures that protect a

database from unintended activity.

In the United Kingdom legislation protecting the public from unauthorized disclosure of

personal information held on databases falls under the Office of the Information

Commissioner. United Kingdom based organizations holding personal data in electronic

format (databases for example) are required to register with the Data Commissioner.

(reference: [1])

3.4.6 Locking

Locking is the act of putting a lock (access restriction) on an aspect of a database

which at a particular given instance is being modified. Such locks can be applied on a

row level, or on other levels such as an entire table. This helps maintain the integrity of

the data by ensuring that only one user at a time can modify the data. Databases can also

be locked for other reasons, like access restrictions for given levels of user.

Databases are also locked for routine database maintenance, which prevents changes

being made during the maintenance.

72

3.4.7 Architecture

Depending on the intended use, there are a number of database architectures in

use. Many databases use a combination of strategies. On-line Transaction Processing

systems (OLTP) often use a row-oriented datastore architecture, while data-warehouse

and other retrieval-focused applications like Google's BigTable, or bibliographic

database(library catalogue) systems may use a column-oriented datastore architecture.

Document-Oriented, XML, Knowledgebases, as well as frame databases and rdf-stores

(aka Triple-Stores), may also use a combination of these architectures in their

implementation.

Finally it should be noted that not all database have or need a database 'schema' (so

called schema-less databases).

3.5 Applications of databases

Databases are used in many applications, spanning virtually the entire range of

computer software. Databases are the preferred method of storage for large multiuser

applications, where coordination between many users is needed. Even individual users

find them convenient, and many electronic mail programs and personal organizers are

based on standard database technology. Software database drivers are available for most

database platforms so that application software can use a common Application

Programming Interface to retrieve the information stored in a database. Two commonly

used database APis are JDBC and ODBC.

For example suppliers database contains the data relating to suppliers such as;

• supplier name

• supplier code

• supplier address

73

3.6 Database as Cultural Form

Although originally a computer technology, the database, according to media

theorist Lev Manovich, is becoming a new cultural form in its own right and a genre of

new media. A cultural form is one of many ways that people represent the world-art

and literature, for example. As contemporary culture is gradually computerized,

Manovich argues, traditional cultural forms are being replaced with new ones that

derive from the computer. He calls this transcoding. The database is the computer age's

key form of cultural expression, as narrative was to the modem age via cinema. In this

analysis, he is using "database" metaphorically.

74

CHAPTER4

STRUCTURED QUERY LANGUAGE (SQL)

4.1 SQL

SQL (Structured Query Language) is a database computer language designed

for the retrieval and management of data in relational database management systems

(RDBMS), database schema creation and modification, and database object access

control management. [4]

SQL is a standard interactive and programming language for querying and modifying

data and managing databases. Although SQL is both an ANSI and an ISO standard,

many database products support SQL with proprietary extensions to the standard

language. The core of SQL is formed by a command language that allows the retrieval,

insertion, updating, and deletion of data, and performing management and

administrative functions. SQL also includes a Call Level Interface (SQL/CLI) for

accessing and managing data and databases remotely.

The first version of SQL was developed at IBM by Donald D. Chamberlin and

Raymond F. Boyce in the early 1970s. This version, initially called SEQUEL, was

designed to manipulate and retrieve data stored in IBM's original relational database

product, System R. The SQL language was later formally standardized by the American

National Standards Institute (ANSI) in 1986. Subsequent versions of the SQL standard

have been released as International Organization for Standardization (ISO) standards.

Originally designed as a declarative query and data manipulation language, variations of

SQL have been created by SQL database management system (DBMS) vendors that add

procedural constructs, control-of-flow statements, user-defined data types, and various

other language extensions. With the release of the SQL: 1999 standard, many such

extensions were formally adopted as part of the SQL language via the SQL Persistent

Stored Modules (SQL/PSM) portion of the standard.

75

4.2 History of SQL

During the 1970s, a group at IBM's San Jose research center developed the

System R relational database management system, based on the model introduced by

Edgar F. Codd in his influential paper, A Relational Model of Data for Large Shared

Data Banks. Donald D. Chamberlin and Raymond F. Boyce of IBM subsequently

created the Structured English Query Language (SEQUEL) to manipulate and

manage data stored in System R. The acronym SEQUEL was later changed to SQL

because "SEQUEL" was a trademark of the UK-based Hawker Siddeley aircraft

company.

The first non-commercial non-SQL RDBMS, Ingres, was developed in 1974 at the U.C.

Berkeley. Ingres implemented a query language known as QUEL, which was later

supplanted in the marketplace by SQL.

In the late 1970s, Relational Software, Inc. (now Oracle Corporation) saw the potential

of the concepts described by Codd, Chamberlin, and Boyce and developed their own

SQL-based RDBMS with aspirations of selling it to the U.S. Navy, CIA, and other

government agencies. In the summer of 1979, Relational Software, Inc. introduced the

first commercially available implementation of SQL, Oracle V2 (Version2) for VAX

computers. Oracle V2 beat IBM's release of the Systern/38 RDBMS to market by a few

weeks.

After testing SQL at customer test sites to determine the usefulness and practicality of

the system, IBM began developing commercial products based on their System R

prototype including Systern/38, SQL/DS, and DB2, which were commercially available

in 1979, 1981, and 1983, respectively.

76

4.2.1 Standardization

SQL was adopted as a standard by ANSI in 1986 and ISO in 1987. In the

original SQL standard, ANSI declared that the official pronunciation for SQL is "es

queue el". However, many English-speaking database professionals still use the

nonstandard pronunciation (like the word "sequel"). Until 1996, the National Institute

of Standards and Technology (NIST) data management standards program was tasked

with certifying SQL DBMS compliance with the SQL standard. In 1996, however, the

NIST data management standards program was dissolved, and vendors are now relied

upon to self-certify their products for compliance.

The SQL standard is not freely available. SQL:2003 and SQL:2006 may be purchased

from ISO or ANSI. A late draft of SQL:2003 is freely available as a zip archive,

however, from Whitemarsh Information Systems Corporation. The zip archive contains

a number of PDF files that define the parts of the SQL:2003 specification.

4.3 Scope and extensions

4.3.1 Procedural extensions

SQL is designed for a specific purpose: to query data contained in a relational

database. SQL is a set-based, declarative query language, not an imperative language

such as C or BASIC. However, there are extensions to Standard SQL which add

procedural programming language functionality, such as control-of-flow constructs. In

addition to the standard SQL/PSM extensions and proprietary SQL extensions,

procedural and object-oriented programmability is available on many SQL platforms

via DBMS integration with other languages. The SQL standard defines SQL/JRT

extensions (SQL Routines and Types for the Java Programming Language) to support

Java code in SQL databases. SQL Server 2005 uses the SQLCLR (SQL Server

Common Language Runtime) to host managed .NET assemblies in the database, while

prior versions of SQL Server were restricted to using unmanaged extended stored

procedures which were primarily written in C. Other database platforms, like MySQL

and Postgres, allow functions to be written in a wide variety of languages including

Perl, Python, Tel, and C.

77

4.3.2 Additional extensions

SQL:2003 also defines several additional extensions to the standard to increase

SQL functionality overall. These extensions include:

The SQL/CLI, or Call-Level Interface, extension is defined in ISO/IEC 9075-3:2003.

This extension defines common interfacing components (structures and procedures) that

can be used to execute SQL statements from applications written in other programming

languages. The SQL/CLI extension is defined in such a way that SQL statements and

SQL/CLI procedure calls are treated as separate from the calling application's source

code.

The SQL/MED, or Management of External Data, extension is defined by ISO/IEC

9075-9:2003. SQL/MED provides extensions to SQL that define foreign-data wrappers

and datalink types to allow SQL to manage external data. External data is data that is

accessible to, but not managed by, an SQL-based DBMS.

The SQL/OLB, or 'Object Language Bindings, extension is defined by ISO/IEC 9075-

10:2003. SQL/OLB defines the syntax and symantics of SQLJ, which is SQL embedded

in Java. The standard also describes mechanisms to ensure binary portability of SQLJ

applications, and specifies various Java packages and their contained classes.

The SQL/Schemata, or Information and Definition Schemas, extension is defined by

ISO/IEC 9075-11:2003. SQL/Schemata defines the Information Schema and Definition

Schema, providing a common set of tools to make SQL databases and objects self

describing. These tools include the SQL object identifier, structure and integrity

constraints, security and authorization specifications, features and packages of ISO/IEC

9075, support of features provided by SQL-based DBMS implementations, SQL-based

DBMS implementation information and sizing items, and the values supported by the

DBMS implementations.l'Y'

The SQL/JRT, or SQL Routines and Types for the Java Programming Language,

extension is defined by ISO/IEC 9075-13:2003. SQL/JRT specifies the ability to invoke

static Java methods as routines from within SQL applications. It also calls for the ability

to use Java classes as SQL structured user-defined types.

78

The SQUXML, or XML-Related Specifications, extension is defined by ISO/IEC

9075-14:2003. SQUXML specifies SQL-based extensions for using conjunction with

SQL.

The XML data type is introduced, as well as several routines, functions, and XML-to

SQL data type mappings to support manipulation and storage of XML in an SQL

database.

The SQUPSM, or Persistent Stored Modules, extension is defined by ISO/IEC 9075-

4:2003. SQL/PSM standardizes procedural extensions for SQL, including flow of

control, condition handling, statement condition signals and resignals, cursors and local

variables, and assignment of expressions to variables and parameters. In addition,

SQL/PSM formalizes declaration and maintenance of persistent database language

routines (e.g., "stored.procedures").

4.4 Language elements

This chart shows several of the SQL language elements that compose a single

statement.

The SQL language is sub-divided into several language elements, including:

• Statements which may have a persistent effect on schemas and data, or which

may control transactions, program flow, connections, sessions, or diagnostics.

• Queries which retrieve data based on specific criteria.

• Expressions which can produce either scalar values or tables consisting of

columns and rows of data.

• Predicates which specify conditions that can be evaluated to SQL three-valued

logic (3VL) Boolean truth values and which are used to limit the effects of

statements and queries, or to change program flow.

• Clauses which are (in some cases optional) constituent components of

statements and queries.

• Whitespace is generally ignored in SQL statements and queries, making it easier

to format SQL code for readability.

79

4.4.1 Queries

The most common operation in SQL databases is the query, which is performed

with the declarative SELECT keyword. SELECT retrieves data from a specified table, or

multiple related tables, in a database. While often grouped with Data Manipulation

Language (DML) statements, the standard SELECT query is considered separate from

SQL DML, as it has no persistent effects on the data stored in a database. Note that

there are some platform-specific variations of SELECT that can persist their effects in a

database, such as the SELECT INTO syntax that exists in some databases.

SQL queries allow the user to specify a description of the desired result set, but it is left

to the devices of the database management system (DBMS) to plan, optimize, and

perform the physical operations necessary to produce that result set in as efficient a

manner as possible. An SQL query includes a list of columns to be included in the final

result immediately following the SELECT keyword. An asterisk t">") can also be used as

a "wildcard" indicator to specify that all available columns of a table (or multiple tables)

are to be returned. SELECT is the most complex statement in SQL, with several optional

keywords and clauses, including:

• The FROM clause which indicates the source table or tables from which the data

is to be retrieved. The FROM clause can include optional JOIN clauses to join

related tables to one another based on user-specified criteria.

• The WHERE clause includes a comparison predicate, which is used to restrict the

number of rows returned by the query. The WHERE clause is applied before the

GROUP BY clause. The WHERE clause eliminates all rows from the result set

where the comparison predicate does not evaluate to True.

• The GROUP BY clause is used to combine, or group, rows with related values

into elements of a smaller set of rows. GROUP BY is often used in conjunction

with SQL aggregate functions or to eliminate duplicate rows from a result set.

• The HAVING clause includes a comparison predicate used to eliminate rows after

the GROUP BY clause is applied to the result set. Because it acts on the results of

the GROUP BY clause, aggregate functions can be used in the HA YING clause

predicate.

80

• The ORDER BY clause is used to identify which columns are used to sort the

resulting data, and in which order they should be sorted (options are ascending

or descending). The order of rows returned by an SQL query is never guaranteed

unless an ORDER BY clause is specified.

4.4.2 Data manipulation

First, there are the standard Data Manipulation Language (DML) elements. DML is

the subset of the language used to add, update and delete data.

• MERGE is used to combine the data of multiple tables. It is something of a

combination of the INSERT and UPDATE elements. It is defined in the SQL:2003

standard; prior to that, some databases provided similar functionality via

different syntax, sometimes called an "upsert".

4.4.3 Transaction controls

Transactions, if available, can be used to wrap around the DML operations:

• ST ART TRANSACTION (or BEGIN WORK, or BEGIN TRANSACTION, depending on

SQL dialect) can be used to mark the start of a database transaction, which either

completes completely or not at all.

• COMMIT causes all data changes in a transaction to be made permanent.

• ROLLBACK causes all data changes since the last COMMIT or ROLLBACK to be

discarded, so that the state of the data is "rolled back" to the way it was prior to

those changes being requested.

Once the COMMIT statement has been executed, the changes cannot be rolled back. In

other words, its meaningless to have ROLLBACK executed after COMMIT statement and

vice versa.COMMIT and ROLLBACK interact with areas such as transaction control

and locking. Strictly, both terminate any open transaction and release any locks held on

data. In the absence of a ST ART TRANSACTION or similar statement, the semantics

of SQL are implementation-dependent.

81

4.4.4 Data definition

The second group of keywords is the Data Definition Language (DDL). DDL allows

the user to define new tables and associated elements. Most commercial SQL databases

have proprietary extensions in their DDL, which allow control over nonstandard

features of the database system. The most basic items of DDL are the CREATE, ALTER,

RENAME, TRUNCATE and DROP statements:

• CREATE causes an object (a table, for example) to be created within the database.

• DROP causes an existing object within the database to be deleted, usually

irretrievably.

• TRUNCATE deletes all data from a table (non-standard, but common SQL

statement).

• ALTER statement permits the user to modify an existing object in various ways -

for example, adding a column to an existing table.

4.4.5 Data control

The third group of SQL keywords is the Data Control Language (DCL). DCL

handles the authorization aspects of data and permits the user to control who has access

to see or manipulate data within the database. Its two main keywords are:

• GRANT authorizes one or more users to perform an operation or a set of

operations on an object.

• REVOKE removes or restricts the capability of a user to perform an operation or a

set of operations.

4.4.6 Other

• ANSI-standard SQL supports double dash, --, as a single line comment identifier

(some extensions also support curly brackets or C style/* comments */ for multi

line comments).

82

4.5 Criticisms of SQL

Technically, SQL is a declarative computer language for use with "SQL

databases". Theorists and some practitioners note that many of the original SQL features

were inspired by, but in violation of, the relational model for database management and

its tuple calculus realization. Recent extensions to SQL achieved relational

completeness, but have worsened the violations, as documented in The Third Manifesto.

In addition, there are also some criticisms about the practical use of SQL:

• Implementations are inconsistent and, usually, incompatible between vendors. In

particular date and time syntax, string concatenation, nulls, and comparison case

sensitivity often vary from vendor to vendor.

• The language makes it too easy to do a Cartesian join (joining all possible

combinations), which results in "run-away" result sets when WHERE clauses are

mistyped. Cartesian joins are so rarely used in practice that requiring an explicit

CARTESIAN keyword may be warranted.

SQL 1992 introduced the CROSS JOIN keyword that allows the user to make clear

that a cartesian join is intended, but the shorthand "comma-join" with no

predicate is still acceptable syntax.

• It is also possible to misconstruct a WHERE on an update or delete, thereby

affecting more rows in a table than desired.

• The grammar of SQL is perhaps unnecessarily complex, borrowing a COBOL

like keyword approach, when a function-influenced syntax could result in more

re-use of fewer grammar and syntax rules. This is perhaps due to IBM's early

goal of making the language more English-like so that it is more approachable to

those without a mathematical or programming background. (Predecessors to

SQL were more mathematical.)

83

4.5.1 Reasons for lack of portability

Popular implementations of SQL commonly omit support for basic features of

Standard SQL, such as the DATE or TIME data types, preferring variations of their own.

As a result, SQL code can rarely be ported between database systems without

modifications.

There are several reasons for this lack of portability between database systems:

• The complexity and size of the SQL standard means that most databases do not

implement the entire standard.

• The standard does not specify database behavior in several important areas (e.g.

indexes, file storage ...), leaving it up to implementations of the database to

decide how to behave.

• The SQL standard precisely specifies the syntax that a conforming database

system must implement. However, the standard's specification of the semantics

of language constructs is less well-defined, leading to areas of ambiguity.

• Many database vendors have large existing customer bases; where the SQL

standard conflicts with the prior behavior of the vendor's database, the vendor

may be unwilling to break backward compatibility.

84

CHAPTERS
Online Financial System For A Constuction Company

Firstly, I want to determine how I create these programs. I write HTML and ASP

code in the notepad it also install all pc in automaticaly. And I install internet

information services for write asp program.I put windows xp cd's in my cd rom then,

go control panel, add or remove programs, add/remove windows components then

windows components wilzard open, then I click Internet Information Services icons

and install IIS. When I write HTML code in notepad I save my program like .html and

when I write ASP code in notepad I save my program like .asp. first page for the web

design it must be default.html then we open browser and we write

http://localhost/default.html only I see my project in this pc like local host because

every programs saved in my pc path of C:\Inetpub\wwwroot.

Default Page
The first page of the program is default page. It is include name of contruction and build

of business.Three links for enter program. First admin, second user and last guesst links.

If admin and user click you must enter program with password. But if click guesst enter

program directly. I divide into 3 links becouse of admin can make search, delete, insert

and update. User make search, insert, update. And guesst just search for see the product.

85

Enter The Program

This page is the login page. When the user clicks on the admin or user link, this screen

appears. For enter the program, admin or user must enter user id and password. If

details is true, can enter the mainpage. If details are invalid again this pages view. Until

your dateils true. If we want to tum back we have back link. This link to tum default

page.

86

Main Page

This page is mainpage of program. The page include title, name of construction, picture

of construction and six links. First four links to details about company. First

construction link, second insulation, third description about company and fourth link to

contact details about company. Control to user link for admin can control staff of

company and we have back link to tum default page.

87

s'!¥.
if;

User Control

When we click control to user's link this page is view. Admin can see this page.And

admin can make search, enter, delete and update so we have four links to make search,

enter, delete and update. And back link to back before of this page.

88

Searching Page

When clicked searching page we view this page. Admin can search with who working
in the company. We have two textfield for enter name and surname. And we fill theese
textfield to start search. When we fill textfields and click submit button we see below
page to this worker details like password, user id, status and salary etc .. We can see
theese details becouse of database. And back link to back before of this page.

\3 :am$ oztekin -ac [acac computer engineer

89

Entering Page For Workers

This page for enter the worker details in the textfield and insert database. This details
for give password and user id for every worker to login this web page like user. We
have descriptions and textfields to fill them. And we have submit button. we fill in
textfields then click submit button. we insert theese details in the database. And also we
have back link to tum before of this page. And if your details entered successfully you
see as below p<:1:ge.

Your details a entered successfully

BACK

90

1. Step To Deleting
This page first step to deleting. Admin can delete every thing about workers. Admin

write worker id in the texfield. Then view below page.

Deleting Page For Workers

This page for delete the worker details in the database. We have descriptions and fill
textfields. And we have submit button. When admin click submit button delete the
worker in the database. And also we have back link to tum before of this page. And if
your details deleted successfully you see page to your details deleted successfully.

91

1. Step To Updating
This page first step to updating. Admin can update every thing about workers. Admin
write house id in the texfield. Then view below page.

Updating Page For Workers

This page for update the worker details in the database. We have descriptions and fill
textfields. And we have submit button. When admin change in the textfield or textfields
then click submit button to update the worker details in the database. And also we have
back link to tum before of this page. And if your details updated successfully you see
page to your details updated successfully.

92

Construction page

This page for details of construction. When you click construction link you view this

page. And we have 3 links. And I divide construction into two links for every thing

about builds of construction and balance for cost of builds. Last link to back before this

page.

93

Construction to Construction

When we click construction to construction this page is view. Admin can see this page.

And admin can make search, enter, delete and update so we have four links to make

search, enter, delete and update. But if user enter the program user just see three links

without delete, becouse user can not make delete. And back link to back before of this

page.

94

Searhing Page

When clicked searching page we view three links. First two link about build. I divide

into two group for searching. And back link to back before of this page.

95

Searching to Searching Page

When admin or user or guess enter this page. They can search builds we have some

details about builds and we can choose how builds we search. we can write city name

and area in the textfiled, we choose which kind of build we want buy. If we have central

heatting system we select yes section. And we choose balcony number, length of garden

and m2 of house. And then we have submit button for see the build about we chooses.

And if we click clear button we reset all we chooses. And back link to back before of

this page

96

Back BUlLIHN6S OF CONSTRUCTlON

bathroom
number

Selected Kind of Build
We see house pictures and house details which kind of build we chose.

Back BUil INGS OF CONSTRUCTION

art
first sitting kitchen 'bathroom ibalcony cent~al - , badroom kitchen
flar room room = b badrcom b he attlng flreplace : b d b d
m2 'number ·number num er . num er system : :cup oar up oar

,ni cosi a g6nyeli duplexj210m2 120m2 90m2 1 no np Iernrnaot jlaminant

duplex 220m2 120m2 100m2 : 1 villa 4 yes no laminant laminant

ListAll Page
When click list all links we see evey house what company builded and house details and

pictures of build.

97

Entering Page For Builds

This page for enter the house details in the textfield and insert database this details. We
have descriptions and textfields to fill them. And we have submit button. we fill in
textfields and we have can attach picture when click browse open file chosee and we
can select build of picture then click submit button we insert theese details in the
database. And also we have back link to tum before of this page. And if your details
entered successfully you see as below page.

Your details a entered successfully

BACK

Local.rtrcnet

98

1. Step To Deleting
This page first step to deleting. Admin can delete every thing about builds. Admin write

house id in the texfield. Then view below page.

Deleting Page For Builds

This page for delete the house details in the database. We have descriptions and fill
textfields. And we have submit button. When admin click submit button delete the build
in the database. And also we have back link to tum before of this page. And if your
details deleted successfully you see page to your details deleted successfully.

99

1. Step To Updating
This page first step to updating. Admin or user can update every thing about builds.
Admin or user write house id in the texfield. Then view below page.

Updating Page For Builds

This page for update the house details in the database. We have descriptions and fill
textfields. And we have submit button. When admin or user change in the textfield or
textfields then click submit button to update the build details in the database. And also
we have back link to tum before of this page. And if your details updated successfully
you see page to your details updated successfully.

100

Construction to Balance

When we click on the construction link to balance this page is view. The Admin can see

this page.

And admin can make search, enter, delete and update so we have four links to make

search, enter, delete and update. But if user enter the program user just see three links

without delete, becouse user can not make delete. Back link to back before of this page.

101

Searching Page

When clicked searching page we view this page. We can search with who buy builds.
We have two textfield for enter name and surname. And we fill theese textfield to start
search. When we fill textfields and click submit button we see below page to this
customer which house buyed and what he/she paid and when and what the balance. We
can see theese details becouse of database. And back link to back before of this page.

BACR

:m iAJ1isoiis.AJ1i m.Bo11omiiPiioiir. Mlll1Wi&i~11A1L ···· DAR 1oosr.mHa'iiom»urr:.w.iia
2s.08.2oos iooo rioo 900

:m Ji'AllliSDIUIAIII. TI.L BO IIOBILI. .PIOBI. ltDDlil.SS I._IIAIL
·85 :ANID :6zn:Jilll

DAR ·1oosr. iriiilHR.j.AJ1om·Durr[BALABU.
... ·· .. . !4'.~8:!ClO~··· :1()() 10 9!1(1 'm B.AJ1ifsoiis.AJ11. TD.NO IIOBILI. NOB!: ADDRL'iS 1.~MAD. .. DATI. iioiisr.iriiilsr.R.'AJ101DITfllUITBAWU
S&'Aiiiii :ozfiiii:i t4.os:iooii 100 fio 1000
.m Ji'Alll.'SDIIJiAIII. TI.LBO IIOBILI. PIOBl. ltDDlil.SS I.JAIL DAR IOOSI. BDIIB1.1!.,.AJ10m[DDIT:1Ut1.A11U
'37 iANUJ 6Zn:Jilll !3.08.!008 800 fio I 870
rm11.AJ1i,so11B.AJ1iru.No·.11-r:RuiM>Dws·d,Ali.DAR ,ciusr'.IfOJlsr'.f.AJ1oiiri:»urr:11AWa
88 fANID ·ozn:Jilll as.os.eoes so :10 ,1940
.m JiA.111. :&DllliAllr. TI.L Bo 11omi.r. Piiur. ADDlil.SS I.JAIL
isfAiiiii · '6ifiiiii
:m B.AJ1isii11BA11i ru ici JIOBIL£ RON£ ADllWS i~llAIL .. viii ·.· IIOUHifDllHl!.:Alloiiri vurrfiiw.iiu
:40 ANID CIZnKIN .!4.08.!()(ffl '1000 ·10 89W
:m 'BA.Ill. SDll!iAIII. T1.L BO IIOBILI. PIOBI. ADD 1i1.SS I._IIAIL DAR IODSI. IfOJIBI.R. AIIOiiri :11urr IUtl.AIIU
~ I ANID Ozfiiiis' U .08.!008 fooo ']o 4 910

ID BA.Ill. jSOIIJiA.111. TI.L BO IIOBILI. PIOBI. ADDlil.SS I.JAIL DAR IOOSI. BDIIBI.R AIIOOliT DI.BIT BJU.ABU.
A! 'ANUI :6Zn:Jilll I !000 !00 · 16 710

DAR
:1000 !8.08.!008

102

Entering Page For Balance

This page for enter the balance details in the textfield and insert database this details.

We have descriptions and textfields to fill them. And we have submit button.we have

date description and automatic writen day date in the textfield. we fill in textfields then

click submit button we insert theese details in the database. And also we have back link

to tum before of this page. And if your details entered successfully you see detail page

to inset be successfully.

103

File Ecit v-.ew F<'lvorites Tools Help

Back BUILDINGS OF CONSTRUCTION
:io: city area,partkindofbuild m2. cost
:15 [magosa
, 1 ,iiicosia '60;;;;.1;
12 rn·ico·sfa · :yEiii.ike·nt
i3 · rn·;co·sya · !Ye·n·ike·nt

duplex . 21 Om2 \85000stg
ciurie,vi1ia 22oin2 'gsooosig

......• ·················:·········· 1
duplex villa 210m2 ;85000stg ,

:4 nicosia ya11ika11i duplex villa j5Qin2 iibcioocisig;
,s ·· \nicosia ve11ike11i ·dui,1e,;;iia iisOrri2 :?sooosrg
6 'riicosia ;;;e11ike11i dui,,.,,;;iia '266rrifsoooos1g

Builds Details Page
We have link in the inset page and when we click link we see this page to see builds

details and we see house id and we can fill textfield which house buyed.

1. Step To Deleting
This page first step to deleting. Admin can delete every thing about customers. Admin

write customer id in the texfield. Then view below page.

104

Deleting Page For Balance

This page for delete the customer details in the database. We have descriptions and fill

textfields. And we have submit button. When admin click submit button delete the

customer in the database. And also we have back link to tum before of this page. And if

your details deleted successfully you see page to your details deleted successfully.

105

1. Step To Updating
This page first step to updating. Admin or user can update every thing about customer.
Admin or user write customer id in the texfield. Then view below page.

Updating Page For Balance
This page for update the customer details in the database. We have descriptions and fill
textfields. And we have submit button. When admin or user change in the textfield or
textfields then click submit button update the customer details in the database. And also
we have back link to tum before of this page. And if your details updated successfully
you see page to your details updated successfully.

106

Insulation page
This page for details of insulation. When you click insulation link you view this page.
And we have three links. And I divide insulation into two links for every thing about
insulation and balance for cost of insulations. Last link to back before this
File Eoit View FoVOl'ites Tools Help

Kind Of Insulation
When clicked insulation link admin, user and guesst can see this page. We have three
kind of insulation. So we have three link to thermal insulation, corrubit panels and water
insulation. And also we have back link to tum before this page.

107

Thermal Insulation Page.
When admin, user and guesst click thermal insulation's link see this page. When admin
clicked this kind of insulation, view see product, searching page, entering page, deleting
page and updating page. If user click this link he/she see very links without delete
because user can not make delete. And if guesst click this link just see see product.

Thermal Insulation Polpan
If admin, user and guesst click see product view this page. We have link to defination
about polpan. Polpan is thermal insulation.

108

Defination Of Pol pan
When admin, user or guesst click polpan's link view this page. This page give
description about polpan and we have polpan picture and table about cost of insulation.
We view picture and table because of database.

Searching Page To Thermal Insulation
When admin, user and guesst click this page can search thermal insulation to see every
description about this kind of insulation. And see as below page.

109

Thermal Insulation Table.

This page result of search.admin, user and guesst see id number, kind of insulation,

product, amount of m2 and picture. View because of database.

110

Entering Page For Kind Of Insulations

This page for enter the insulation details in the textfield and insert database this details.
We have descriptions and textfields to fill them. And we have submit button. we fill in
textfields and we have can attach picture when click browse open file choose and we
can select insulation picture then click submit button we insert theese details in the
database. And also we have back link to tum before of this page. And if your details
entered successfully y()ll ~~~ as p~l()\\/page.

Your details re ntered successfully

BACK

111

1. Step To Deleting
This page first step to deleting. Admin can delete every thing about insulations. Admin
write insulation id in the texfield. Then view below page.

Deleting Page For Insulations

This page for delete the insulation details in the database. We have descriptions and fill
textfields. And we have submit button. When admin click submit button delete the
insualtion in the database. And also we have back link to tum before of this page. And if
your details deleted successfully you see page to your details deleted successfully.

112

1. Step To Updating
This page first step to updating. Admin or user can update every thing about insulations.
Admin or user write insualtion id in the texfield. Then view below page.

Updating Page For Insulations

This page for update the insulation details in the database. We have descriptions and fill
textfields. And we have submit button. When admin or user change in the textfield or
textfields then click submit button to update the insulation details in the database. And
also we have back link to tum before of this page. And if your details updated
successfully you see page to your details updated successfully.

113

Corrubit Panel Page
When admin, user and guess click currbit panel's link see this page. When admin
clicked this kind of insulation, view see product, searching page, entering page, deleting
page and updating page. If user click this link he/she see very links without delete
becouse user can not make delete. And if guesst click this link just see see product.

Cunubit Panel
If admin, user and guess click see product view this page. We have link to defination
about currubit panels.

114

Defination of Currubit Panel
When admin, user or guess click currubit panel's link view this page. This page give
description about currubit panel and we have currubit picture and table about cost of
insulation. We view picture and table becouse of database.

Searching Page To Thermal Insulation.
When admin, user and guesst click this page can search currubit panel to see every
description about this kind of insulation. And see as below page.

115

Back IRFAN INSULATION

.8 corrubit panel :corrubit panel 2(MI

Thermal Insulation Table

This page result of search.admin, user and guesst see id number, kind of insulation,

product, amount of m2 and picture. View becouse of database.

116

File Eoit View F.avoiites Tools Help

Entering Page For Kind of Insulations

This page for enter the insulation details in the textfield and insert database this details.
We have descriptions and textfields to fill them. And we have submit button. we fill in
textfields and we have can attach picture when click browse open file choose and we
can select insulation picture then click submit button we insert theese details in the
database. And also we have back link to tum before of this page. And if your details
entered successfully you see as below page.

Your details re ntered successfully

BACK

117

1. Step To Deleting
This page first step to deleting. Admin can delete every thing about insulations. Admin
write insulation id in the texfield. Then view below page.

File Eat View Favorites Tools Help

Deleting Page For Insulations

This page for delete the insulation details in the database. We have descriptions and fill
textfields. And we have submit button. When admin click submit button delete the
insualtion in the database. And also we have back link to turn before of this page. And if
your details deleted successfully you see page to your details deleted successfully.

118

1. Step To Updating
This page first step to updating. Admin or user can update every thing about insulations.
Admin or user write insualtion id in the texfield. Then view below page.

Updating Page For Insulations

This page for update the insulation details in the database. We have descriptions and fill
textfields. And we have submit button. When admin or user change in the textfield or
textfields then click submit button to update the insulation details in the database. And
also we have back link to tum before of this page. And if your details updated
successfully you see page to your details updated successfully.

119

File Ecit View F11vorites Tools Help

Water Insulation Page
When admin, user and guesst click water insulation's link see this page. When admin
clicked this kind of insulation, view see product, searching page, entering page, deleting
page and updating page. If user click this link he/she see very links without delete
becouse user can not make delete. And if zuesst click this link iust see see product.
File Edit View F11vorit:es tools Help

Part Of Water Insulation.
If admin, user and guesst click see product view this page. We have link to defination
about bitumen waterproofing membranes and shingle.

120

~Jsctg
file Edit View FaVOfites Tools Help

When admin, user and guesst click bitumen waterproofing membranes view this page.
This kind of insulation have five part so we have five links bitliself, polibit, plastobit.
Elastobit and underslating membranes. And back link to back before page.

Defination of Bitliself
When admin, user or guesst click polpan's link view this page. This page give
description about bitliself and we have bituself picture and table about cost of
insulation. We view picture and table becouse of database.

121

Ale Edit View Favorites Tools Help

Defination of polibit
When admin, user or guesst click polibit's link view this page. This page give
description about polibit and we have polibit picture and table about cost of insulation.
We view picture and table becouse of database.

Defination of Plastobit.
When admin, user or guesst click plastobit' s link view this page. This page give
description about plastobit and we have plastobit picture and table about cost of
insulation. We view picture and table becouse of database.

122

Defination of Elastobit
When admin, user or guess click elastobit's link view this page. This page give
description about elastobit and we have elastobit picture and table about cost of
insulation. We view picture and table because of database.

Defination Of Underslating Membranes
When admin, user or guesst click underslating membranes's link view this page. This
page give description about underslating membranes and we have underslating
membranes picture and table about cost of insulation. We view picture and table
becouse of database.

123

Defination of Shingle.
When admin, user or guesst click shingle's link view this page. This page give
description about shingle and we have shingle picture and table about cost of
insulation. We view picture and table becouse of database.

Searching Page To Water Insulation
When admin, user and guesst click this page can search water insulation to see every
description about this kind of insulation. And see as below page.

124

B"ck IRFAN INSULATION

polibit 20ytl

ID Kind of l~sulat10~ pr~ctuit ;Amount of m2

Water Insulation Table

This page result of search.admin, user and guesst see id number, kind of insulation,

product, amount of m2 and picture. View becouse of database.

125

Entering Page For Kind Of Insulations

This page for enter the insulation details in the textfield and insert database this details.
We have descriptions and textfields to fill them. And we have submit button. we fill in
textfields and we have can attach picture when click browse open file choose and we
can select insulation picture then click submit button we insert theese details in the
database. And also we have back link to tum before of this page. And if your details
entered successfully you see as below page.

Your details are entered successfully

BACK

126

1. Step To Deleting
This page first step to deleting. Admin can delete every thing about insulations. Admin
write insulation id in the texfield. Then view below page

Deleting Page For Insulations

This page for delete the insulation details in the database. We have descriptions and fill
textfields. And we have submit button. When admin click submit button delete the
insualtion in the database. And also we have back link to tum before of this page. And if
your details deleted successfully you see page to your details deleted successfully.

127

FIie Edi!:..,_ favorles Tools Help

1. Step To Updating
This page first step to updating. Admin or user can update every thing about insulations.
Admin or user write insualtion id in the texfield. Then view below page.

Updating Page For Insulations

This page for update the insulation details in the database. We have descriptions and fill
textfields. And we have submit button. When admin or user change in the textfield or
textfields then click submit button to update the insulation details in the database. And
also we have back link to tum before of this page. And if your details updated
successfully you see page to your details updated successfully.

128

Insulationtion to Balance

When we click insulation to balance this page is view. Admin can see this page.

And admin can make search, enter, delete and update so we have four links to make

search, enter, delete and update. But if user enter the program user just see three links

without delete, because user can not make delete. And back link to back before of this

page.

129

File Edit 1/iew Fovorites Tools Help

Searching Page

When clicked searching page we view this page. We can search with who buy
insulations. We have two textfield for enter name and surname. And we fill theese
textfield to start search. When we fill textfields and click submit button we see below
page to this customer which kind of insulation buyed and what he/she paid and when
and what the balance. We can see theese details becouse of database. And back link to
back before of this page.

BA.CK

ffri name :s·ui:-na·m·e· :tefno·:mo·b·ii"e··p·t,·one ·a·~idi:-e·ss e_maii[date
34 ams ,oztekln '2303.2008
io name·rsurname·:te·i·n·o :mob.ii! phone address e_mau: date insulation number amountdeblt balance i
35 ams ,oztekin 24.oi.2008 100 10 1080
10 name [sumamete! no 'mobtle phone "address e_mai'I: date lnsuletlon number 'arnountdeblt balance 1
36 an,i ·oziekin 24.03.2008 100 10 iifo
·10 name .surnarne tel no ·mobile phone address e_mail: date insulation number amountdebit balance
ii anii oztekin '2303.2008 800 10 1960
ffr);·.-~-~-~-~ .. i·;·~-/~-~-~-~ .. t~r-~-~---~-~-bfr~- .: ~·-h~·~;_.· .. ~-dd/~·;·-~:·.-~-:~·~·1rr---·.-.- ., ~Iat~ i-~·;-~1atI~n n·~~h~~·,;·~·;·~~t-fd~·b.i{b·~t~~-~;-,
138 ams oztekin '29 03.2008 80 f10 2030
(i"c{··~··~·~·;··(~·~/~-~-~~'.t-~{~·~.-:~-~-b\i~···p·h~·~-~---.~-~fd·;-~-~:~···.~-:~;"ff'(:::·· date Insulation number amount'.debit balance

/39 ams ozteun ;23 03.2008 1000 ·10 3020

insu1auon nuintier ·3inou'1t/Ct'eb·it ba·ian·ce··
iooo 10 sso

..... , , ...
j16 name iSUrname lei no mobile phone address e_mail date insulation number amount .debit balance
AO ams oztekin '24 03 2008 1000 ·10 4010
:10 name /surname 'tel no mobile phone address e_mail date insulation number amount'debit balance
A 1 ams '6ziekin 2~ 032008 1000 1 o sooo
ID name [surname 'tel no .mobile phone address e_mail idate ·insulation number 'amount debit balance
[42 an,j oztekin 12000 200 16800

130

Entering Page For Balance
This page for enter the balance details in the textfield and insert database this details.
We have descriptions and textfields to fill them. And we have submit button.we have
date description and automatic written day date in the textfield. And we have 2 links
next to amount for see insulation details for learn cost of insulation. The other link to
calculate amount. we fill in textfields then click submit button we insert theese details in
the database. And if your details entered successfully you see detail page to inset be
successfully.And also we have back link to tum before of this page.

131

:iD :Kind or insu1atto11 · Produci 'Amounioi ,;,2
7 ,thermai insuiation .. :pol pan ..)CJ:,11 :s !cciriuti;ii,ane1 ······ · carrubitpanei[2CJ:,11
ig···· :water··in·s·tiBii"Ori···· neu ············;1·2ytl
10

Description About Insulation.
When insulations details's link clicked admin or user see which insulation how much it
is.

Done

Calculation Of Amount
When calculate amount link clicked admin or user fill first amount of m2 and second fill
how many m2 the customer buying. Then click multiply button and then see result as
next page.

132

Showing result

1. Step To Deleting

This page first step to deleting. Admin can delete every thing about customers. Admin
write customer id in the texfield. Then view below page.

133

Deleting Page For Balance

This page for delete the customer details in the database. We have descriptions and fill

textfields. And we have submit button. When admin click submit button delete the

customer in the database. And also we have back link to turn before of this page. And if

your details deleted successfully you see page to your details deleted successfully.

134

1. Step To Updating
This page first step to updating. Admin or user can update every thing about insulations.
Admin or user write insualtion id in the texfield. Then view below page.

Updating Page For Balance
This page for update the customer details in the database. We have descriptions and fill
textfields. And we have submit button. When admin or user change in the textfield or
textfields then click submit button update the customer details in the database. And also
we have back link to turn before of this page. And if your details updated successfully
you see page to your details updated successfully.

135

About Company

This page for see details about company. We have two links. First for about company,

other link about workers details. And one link to back home page.

Company Details

When about company link clicked this page shown. This page for history of the

company, and what company do.

136

Workers on the construction

When worker on the construction's link clicked open this page for see details about

workers.

Contact to the company

When contact us' s link clicked open this page for see contact details of the company.

And can make contact with the company.

137

CONCLUSION

This program is a online financial system for a construction company. The

program was implemented by using HTML and ASP and the SQL and Access

Database. All of them are powerful software and help me very much. Html and asp are

very useful pragramming language to create web pages.

HTML, unlike other programming languages where commands and statements

are used with certain syntax rules.

HTML has tags. Tags are identifiers of lines of statements issued to translate document

contetnt into words, pictures, colours and other web items by the browsers.html has text

alignment on the browser, text can be aligned left, center, or right using align statement.

And html has links. Hyperlinks and mail links are very important on web page. They

provides connections to other web page/web sites and people. Table in the HTML

mainly used to tabulate information. Very often used to partition the page for design. A

form is collection of components used to accept and transmit data between the client

and the web server. Get usually accept a single item and initiated by the server. Post

accepts more than a sigle item to transmit and initiated by the user. Action sets the

address (url or web page) that will receive the client data. Form components are text,

password, radio, checkbox, scroll/dropdown list, submit, clear buttons.

ASP to build interactive web pages, scripting language like vbscript used this

project. Vbscript is an offspring of the popular Visual Basic language that runs on the

web server for each user through their browsers. Vbscript statements request statement

and it divide two parts through form components and request from hyperlinks. The

other vbscript statements is response statement. Creating interactive web pages often

require that data used in transactions carried out are registered to databases. Scripts used

in asp can connect to popular databases and user friendly interfaces are built for data

transmission and manipulation over the net.The databases applications on the net,

basically uses three steps for data communications; db connection, data manipulation

and abstraction, safely closing and disconnection of db. Database connection with ASP

used Microsoft Access Driver. SQL command used to manipulation of datas.

138

REFERENCES

[1] http:! /en. wikipedia.org/wiki/html

[2] http://www.w3.org/EN/html

[3] http://www.codefixer.com/tutorials/what_can_it_do.asp

[4] http://en.wikipedia.org/wiki/sql

[5] http://en.wikipedia.org/wiki/datadase

[6] David Buser, John Kauffman, "Active Server Pages 3.0". United States Of

America, Press(2003)

[7] Nick Vandome, "Creating web pages in easy steps". United Kingdom, Press(2004)

[8] Umit ilhan, Internet Programming Lecture Notes

139

APPENDIX A

PROGRAM CODE
A.1. default.html
<html>
<body bgcolor="#228B22">

<Hl align="center"> IRFAN GO<;EN
CONSTRUCTION LTD. </Hl>

<pre> <size="10"> ADMIN

 USER GUESS </pre>
<p align="center"> <img src = "C:\Documents and Settings\x\My
Documents\resimler\DSC02164.JPG" width=900 height=500>
</body>
</html>

A.2. admin.html
<html>
<body bgcolor="#228B22">
<Hl> <pre align="left"> BACK
 IRFAN GO<;EN CONSTRUCTION LTD. </pre>
</Hl>
<form method="post" action="user.asp">
<p align="center"> USER ID
type="text" name="user_id" size="8"> </p>
<p align="center"> PASSWORD <input
type="password" name="password" size="8" maxlength="4"> </p>
<p align="center"> <input type="submit" value="LOG IN"> </p>
</form>
<p align="center"> <img src = "C:\Documents and Settings\x\My
Documents\resimler\DSC02164.JPG" width=900 height=500>
</body>
</html>

<input

A.3. user.asp
<%@Language="VBScript"%>
<%u=Request. form ("user_id")
p=Request. form ("password")
set db=server.createobject("ADODB.Connection")
db.open"Driver={Microsoft Access Driver
(*. mdb) } ; DBQ= "&server. mappath ("person. mdb")
SQL="Select * from personn where USER_ID='"&u&"' and PASSWORD=' "&p&"'

set rec=db.Execute(SQL)
if rec.eof then
response.redirect "admin.html"
else
response.redirect "mainpagee.html"
end if%>

A.4. mainpagee.html
<HTML>
<Title> Welcome to my web page!!! </Title>
<Body>
<Hl> <pre align="left"> BACK
face="algerian" size="20" > IRFAN GO<;EN CONSTRUCTION LTD.

<font
<font

140

size="4"> CONTROL TO USER </pre>
</Hl>
<Table width="100%" Border=l cellspacing=2 cellpadding=3
bgcolor="228B22">
<Tr> <TD> <p align="center">
construction </TD> <TD> <p align="center"> <A Href =
"isolations.html"> isolation </TD>
<TD> <p align="center"> about us </TD>
<TD> <p align="center"> contact us
</TD>
</Table>
<p align="center"> <img src = "C:\Documents and Settings\x\My
Documents\resimler\DSC02164.JPG" width=llOO height=650>
</Body>
</HTML>

A.S. usercontrol.html
<html>
<body bgcolor="32CD32">

<Hl align="center"> IRFAN GOCEN
CONSTRUCTION LTD. </Hl>
<p align="center"> Searching user <Ip>
<p align="center"> Entering user <Ip>
<p align="center"> Deleting user </p>
<p align="center"> Updating user </p>
<p align="center"> Back </p>
</body>
</html>

A.6. searchuser.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GOCEN
CONSTRACTION LTD. </Hl>
<p align="right"> <u> SEARCING PAGE </u>
<IP>
<form method="post" action="suser.asp">
<p align="center"> <u> name
type="text" name="name" size="lO" > </u> </p>
<p align="center"> <u> surname
<input type="text" name="surname" size="10" > </u> <Ip>
<p align="center"> <input type="submit" value="submit"> </p>
<p align="center"> BACK
</form>
</body>
</html>

<input

A.7. suser.asp
<%@Language="VBScript"%>
<pre> BACK <font face="arial"
color="#228B22" size="20">
</pre>
<hr>
<%n=request. form("name")
s=request. form ("surname")

USER

141

set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("person.mdb")
sql="select * from personnn where name=' "&n&"' and surname=' "&s&"'"
set rec=db.execute(sql)
while not rec.eof%>
<table border>
<tr> <th> ID </th> <th> NAME </th> <th> SURNAME </th> <th> USER_ID
</th> <th> PASSWORD </th> <th> TEL </th> <th> ADDRESS </th> <th>
E_MAIL </th> <th> STARTWORKINGDATE </th> <th> STATUS </th> <th>
DEPARTMENT </th> <th> SALARY </th>
<tr> <td> <%=rec("ID1")%> </td>
<t.d> <%=rec ("NAME")%> </td>
<td> <%=rec("SURNAME")%> </td>
<t.d> <%=rec ("USER_ID") %> </td>
<td> <%=rec("PASSWORD")%> </td>
<td> <%=rec("TEL")%> </td>
<td> <%=rec ("ADDRESS")%> </td>
<td> <%=rec("E_MAIL")%> </td>
<td> <%=rec("STARTWORKINGDATE")%> </td>
<td> <%=rec("STATUS")%> </td>
<td> <%=rec("DEPARTMENT")%> </td>
<td> <%=rec("SALARY")%> </td>
</table>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>

A.8. enteruser.asp
<html>
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back <font
face="algerian" size="30" > IRFAN GOCEN
CONSTRUCTION LTD. </pre> </Hl>
<p align="right"> <u> ENTERING USER </u>
</P>
<form method="post" action="enteruser2.asp">
<p> <u> Name <input type="text"
name="tl" > </u> <lb> </p>

Surname <input type="text" name="t2" > </u> <lb> </p>
User Id <input type="text" name="t3" ></u> <lb> </p>
Password <input type="text" name="t4" > <lu> <lb> </p>
Phone <input type="text" name="t5" ></u> <lb> </p>
Address <input type="text" name="t6" ></u> <lb> </p>
E_mail <input type="text" name="t7" ></u> <lb> </p>
Start Working Date <input type="text" name="t8" ></u> <lb>

<p> <U>
<p> <u>
<p> <U>
<p> <u>
<p> <u>
<p> <u>
<p> <u>
</p>
<p> <u>
<P> <u>

Status <input type="text" name="t19" ></u> <lb> </p>
Department <input type="text" name="tlO" > </u> <lb> </p>

<p> <u> Salary <input type="text" name="tll" ></u> <lb> </p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>
</html>

142

A.9. enteruser2.asp
<%@Language="VBScript"%>
<%s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request. form ("t5")
s_t6=Request.form("t6")
s_t7=Request. form(" t7")
s_t8=Request. form ("t8")
s_t9=Request. form ("t9")
s_tlO=Request.form("tlO")
s_tlO=Request. form ("tll")
set db=Server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("person.mdb")
sql="Insert into personnn(NAME, SURNAME, USER_ID, PASSWORD, TEL,
ADDRESS, E_MAIL, STARTWORKINGDATE, STATUS, DEPARTMENT, SALARY)
values (' "&s_tl&"', '"&s_t2&"', '"&s_t3&"', '"&s_t4&"', '"&s_t5&"',
'"&s_t6&"', '"&s_t7&"', '"&s_t8&" ', '"&s_t9&"', '"&s_tlO&" ',
'"&s_tll&"') "
db. execute (sql)
db.close
set db=nothing%>
<p align="center"> Your
details are entered successfully </p>

<p align="center"> BACK <Ip>

A.lo. deleterecorduser.asp
<body bgcolor="32CD32">
<form method="post" action="deleteuser.asp">
<p align="center">
<input type="text"
<p align="center">
on searching page.

 <u> ID
name="t0"> </u> <Ip>
you can find ID number of what you want to delete
<Ip>

<p align="center">
value="delete"> </p>

<p align="center"> Back <Ip>
</form>
</body>

<input type="submit"

A.11. deleteuser.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back
 IRFAN GO<:;EN CONSTRUCTION LTD. </pre>
</Hl>
<p align="right"> <u> DELETING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ= "&server .mappath ("person .mdb")
SQL="select * from personnn where IDl="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec("ID1")
s_tl=rec ("NAME")

143

s_t2=rec ("SURNAME")
s_t3=rec ("USER_ID")
s_t4=rec ("PASSWORD")
s_t5=rec ("TEL")
s_t6=rec ("ADDRESS")
s_t7=rec ("E_MAIL")
s_t8=rec("STARTWORKINGDATE")
s_t9=rec ("STATUS")
s_tlO=rec ("DEPARTMENT")
s_tll=rec ("SALARY")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="deleteuser2.asp">
<p> <u> ID
name="t0" value=<%=s_t0%>> </u> </p>
<p> <u> Name <input type="text"
name="tl" value=<%=s_tl%>> </u> </p>
<p> <u> Surname <input type="text" name="t2" value=<%=s t2%>>
</u> </p>
<p> <u> User Id <input type="text" name="t3" value=<%=s_t3%>></u>
 </p>
<p> <u> Password <input type="text" name="t4" value=<%=s t4%>>
</u> </p>
<p> <u> Phone <input type="text" name="t5" value=<%=s_t5%>></u>
 </p>
<p> <u> Address <input type="text" name="t6" value=<%=s_t6%>></u>
 </p>
<p> <u> E_mail <input type="text" name="t7" value=<%=s_t7%>></u>
 </p>
<P> <u> Start Working Date <input type="text" name="t8"
value=<%=s_t8%>> </u> </p>
<p> <u> Status <input type="text" name="t9" value=<%=s_t9%>></u>
 </p>
<p> <u> Department <input type="text" name="tlO"
value=<%=s_t10%>></u> </p>

<input type="text"

<p> <u> Salary <input type="text" name="tll" value=<%=s_tll%>></u>
 </p>
<p> <input type="submit" value="delete"> </p>
</form>
</body>

A.12. deleteuser2.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
s_t5=Request.form("t5")
s_t6=Request. form ("t6")
s_t7=Request.form("t7")
s_t8=Request. form ("t8")
s_t9=Request.form("t9")
s_tlO=Request.form("tlO")
s_tll=Request. form ("tll")
set db=Server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("person.mdb")

144

sql= "delete from personnn where IDl="&s tO&""
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>

<p align="center"> Back </p>

A.13. updaterecorduser.asp
<body bgcolor="32CD32">
<form method="post" action="updateuser.asp">
<p align="center"> <u> ID <input
type="text" name="t0"> </u> <lb> </p>
<p align="center"> You can find ID number what you want to update on
searching page. </p>
<p align="center"> <input type="submit" value="update"> </p>
<p align="center"> Back </p>
</form>
</body>

A.14. updateuser.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back
 IRFAN GOC:EN CONSTRUCTION LTD.</pre>
</Hl>
<p align="right"> <u> UPDATING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("person.mdb")
SQL="select * from personnn where IDl="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec("ID1")
s_tl=rec ("NAME")
s_t2=rec ("SURNAME")
s_t3=rec ("USER_ID")
s_t4=rec("PASSWORD")
s_t5=rec ("TEL")
s_t6=rec ("ADDRESS")
s_t7=rec ("E_MAIL")
s_t8=rec("STARTWORKINGDATE")
s_t9=rec ("STATUS")
s_tlO=rec ("DEPARTMENT")
s_tll=rec ("SALARY")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="updateuser2.asp">
<p> <u> ID <input type="text"
name="t0" value=<%=s_t0%>> </u> <lb> </p>
<p> <u> Name <input type="text"
name="tl" value=<%=s_tl%>> </u> <lb> </p>
<p> <u> Surname <input type="text" name="t2" value=<%=s t2%>>
</u> <lb> </p>
<p> <u> User Id <input type="text" name="t3" value=<%=s t3%>></u>
<lb> </p>

i45

<p> <u> Password <input type="text" name="t4" value=<%=s t4%>>
</u> <lb> </p>
<p> <u> Phone <input type="text" name="t5" value=<%=s_t5%>></u>
<lb> </p>
<p> <u> Address <input type="text" name="t6" value=<%=s_t6%>></u>
<lb> <Ip>
<p> <u> E_mail <input type="text" name="t7" value=<%=s_t7%>></u>
<lb> </p>
<P> <u> Start Working Date <input type="text" name="t8"
value=<%=s_t8%>> </u> <lb> </p>
<p> <u> Status <input type="text" name="t9" value=<%=s_t9%>></u>
<lb> </p>
<p> <u> Department <input type="text" name="tlO"
value=<%=s_t10%>></u> </p>
<p> <u> Salary <input type="text" name="tll" value=<%=s_tll%>></u>
<lb> </p>
<p> <input type="submit" value="update"> </p>
</form>
</body>

A.15. updateuser2.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request.form("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request.form("t5")
s_t6=Request.form("t6")
s_t7=Request.form("t7")
s_t8=Request.form("t8")
s_t9=Request.form("t9")
s_tlO=Request. form ("tlO")
s_tll=Request.form("tll")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("person.mdb")
sql= "UPDATE personnn set NAME='"&s_tl&"', SURNAME='"&s_t2&"',
USER_ID=' "&s_t3&"', PASSWORD='" &s_t4&" ', TEL='" &s_t5&" ',
ADDRESS=' "&s_t6&"', E_MAIL=' "&s_t7&"', STARTWORKINGDATE=' "&s_t8&"',
STATUS=' "&s_t9&"', DEPARTMENT=' "&s_tlO&"', SALARY=' "&s tll&"' where
IDl="&s_tO&""
db.execute(sql)

db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>

<p align="center"> Back </p>

A.16. construction.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GO<;:EN
CONSTRUCTION LTD. </Hl>
<p align="center">
Construction </p>

146

<p align="center"> Balance <Ip>
<p align="center"> Back <la> <Ip>
</body>
</html>

A.17. cents.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GO<;:EN
CONSTRUCTION LTD. </Hl>
<p align="center"> Searching page <la> <Ip>
<p align="center">
Entering page </p>
<p align="center"> Deleting page <Ip>
<p align="center"> Updating page <Ip>
<p align="center"> Back <la> <Ip>
</body>
</html>

A.18. searchpage.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GO<;:EN
CONSTRUCTION LTD. </Hl>
<p align="center">
Searching page <Ip>
<p align="center"> List All </p>
<p align="center"> Back </p>
</body>
</html>

A.19. cont.html
<html>
<body bgcolor="32CD32">
<Hl> <pre align="left"> Back <font face="algerian"
size="30" > IRFAN GO<;:EN CONSTRACTION LTD.</pre> </Hl>
<p align="right"> <u> SEARCING PAGE </u>
<IP>
<form method="post" action="build.asp">
<pre align="left"> <u> CITY<input
type="text" name="city" size="lO"> </u>

 <u> BALCONY NUMBER </u>

<select name="mylist" size="2">

<option value="c2"> 3

<option value="c3"> 4

</select>

147

 <u> AREA <input type="text" name="area" size="lO"> </u>
 <u> GARDEN LENGTH </u>

<select name="mylists" size="4">

<option value="c4"> 45m2

<option value="c5"> 5 5m2

<option value="c6"> 60m2

<option value="c7"> 7 Om2

</select>

 <u> KIND OF BUILD </u>

 <I> Duplex Villa <input type="radio" name="R" value="dv"> </I>

 <I> Flat <input type="radio" name="R" value="dv2"> </I>

 <u> M2 </u>

<select name="mylistss" size="4">

<option value="c8"> 180m2

<option value="c9"> 200m2

<option value="clO"> 210m2

<option value="cll"> 220m2

<option value="cl2"> 250m2

</select>
 <u> Central Heatting System </u>

<input type="submit" value="submit"> <input type="reset"
value="clear">

 <I> Yes <input type="radio" name="Rl" value="yes"> </I>

 <I> No <input type="radio" name="Rl" value="no"> </I>

</pre>
</form>
</body>
</html>

A.20. build.asp
<%@Language="VBScript"%>
<hr> <pre align="center"> Back

 BUILDINGS OF
CONSTRUCTION </pre> </hr>
<hr>
<%TC=Request. form ("city")

148

if TC="nicosia" then
qc="nicosia"
end if

if TC="kayrenia" then
qc="kayrenia"
end if
if TC="famagusto" then

qc="famagusto"
end if
if TC="g-Uzelyurt" then
qc="g-Uzelyurt"
end if
TR=Request. form ("area")
if TR="gonyeli" then
qsub="gonyeli "
end if
if TR="yenikent" then
qsub="yenikent"
end if
if TR="alsancak" then
qsub="alsancak"
end if

TD=Request.form("R")
if TD="dv" then
qd="duplex villa"
end if
if TD="dv2" then
qd="flat"
end if
TH=Request.form("Rl")
if TH="yes" then
q="yes"
end if
if TH="no" then
q="no"
end if
TS=Request. form("mylist")
if TS="c2" then
qs="3"
end if
if TS="c3" then
qs="4"
end if
TT=Request. form ("mylists")
if TT="c4" then
qrs="45m2"
end if

if TT="c5" then
qrs="55m2"
end if
if TT="c6" then

qrs="60m2"
end if
if TT="c7" then
qrs="70m2"
end if
TZ=Request. form ("mylistss")
if TZ="c8" then
qz="180m2"
end if

149

if TZ="c9" then
qz="200m2"
end if
if TZ="clO" then

qz="210m2"
end if
if TZ="cll" then
qz="220m2"
end if
if TZ="cl2" then
qz="250m2"
end if
set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ= "&server. mappath ("cons. mdb")
SQL="select * from const where city='"&qc&"' or area='"&qsub&"' or
kind_of_build='"&qd&"' or central_heatting_system='"&q&"' or
balcony_number='"&qs&"' or garden_length=' "&qrs&"' or
set rec=db.execute(SQL)%>
<%while not rec.eof%>
<p align="center">
<table border=2 cellspacing=5 cellpadding=7>
<tr> <th> city </th> <th> area </th> <th> part </th> <th> kind of

build </th> <th> m2 </th> <th> ground floor m2 </th> <th> first floor
m2 </th> <th> sitting room number </th> <th> kitchen room number </th>
<th> bathroom number </th> <th> badroom </th> <th> balcony number
</th> <th> central heatting system </th> <th> fireplace </th> <th>
badroom cupboard </th> <th> kitchen cupboard </th> <th> ground floor
base </th> <th> first floor base </th> <th> kind of windows </th> <th>
kind of door </th> <th> garden length </th> <th> swimming pool </th>

m2=' "&qz&" '"

<th> cost </th>
<tr> <td> <%=rec("city")%> </td>
<td> <%=rec("area")%> </td>
<td> <%=rec("part")%> </td>
<td> <%=rec("kind_of_build")%> </td>
<td> <%=rec("m2")%> </td>
<td> <%=rec("ground_floor_m2")%> </td>
<td> <%=rec("first_floor_m2")%> </td>
<td> <%=rec("sitting_room_number")%> </td>
<td> <%=rec("kitchen_room_number")%> </td>
<td> <%=rec("bathroom_number")%> </td>
<td> <%=rec("badroom_number")%> </td>
<td> <%=rec("balcony_number")%> </td>
<td> <%=rec("central_heatting_system")%> </td>
<td> <%=rec("fireplace")%> </td>
<td> <%=rec("badroom_cupboard")%> </td>
<td> <%=rec("kitchen_cupboard")%> </td>
<td> <%=rec("ground_floor_base")%> </td>
<td> <%=rec("first_floor_base")%> </td>
<td> <%=rec("kind_of_windows")%> </td>
<td> <%=rec("kind_of_doors")%> </td>
<td> <%=rec("garden_length")%> </td>
<td> <%=rec("swimming_pool")%> </td>
<td> <%=rec("cost")%> </td></p>
<img src= "<%=rec ("picture")%>" height="200" width="300">
<img src="<%=rec ("pictur")%>" height="200" width="300">
<img src= "<%=rec ("pictu")%>" height="200" width="300">
<img src="<%=rec ("pict")%>" height="200" width="300">
<img src= "<%=rec ("pie")%>" height="200" width="300">
<%rec.movenext
wend

150

rec.close
set rec=nothing
db.close
set db=nothing%>
</table>

A.21. listall.asp
<%@Language="vbscript"%>
<body>
<pre align="left"> Back

 BUILDINGS OF
CONSTRUCTION </Pre>
<hr>
<table align="center" border>
<tr> <th> ID </th> <th> city </th> <th> area </th> <th> part </th>
<th> kind of build </th> <th> m2 </th> <th> ground floor m2 </th> <th>
first floor m2 </th> <th> sitting room number </th> <th> kitchen room
number </th> <th> bathroom number </th> <th> badroom </th> <th>
balcony number </th> <th> central heatting system </th> <th> fireplace
</th> <th> badroom cupboard </th> <th> kitchen cupboard </th> <th>
ground floor base </th> <th> first floor base </th> <th> kind of
windows </th> <th> kind of door </th> <th> garden length </th> <th>
swimming pool </th> <th> cost </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
SQL="select * from canst"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec("city")%> </td>
<td> <%=rec("area")%> </td>
<td> <%=rec("part")%> </td>
<td> <%=rec("kind_of_build")%> </td>
<td> <%=rec("m2")%> </td>
<td> <%=rec("ground_floor_m2")%> </td>
<td> <%=rec("first_floor_m2")%> </td>
<td> <%=rec("sitting_room_number")%> </td>
<td> <%=rec("kitchen_room_number")%> </td>
<td> <%=rec("bathroom_number")%> </td>
<td> <%=rec("badroom_number")%> </td>
<td> <%=rec("balcony_number")%> </td>
<td> <%=rec("central_heatting_system")%> </td>
<td> <%=rec("fireplace")%> </td>
<td> <%=rec("badroom_cupboard")%> </td>
<td> <%=rec("kitchen_cupboard")%> </td>
<td> <%=rec("ground_floor_base")%> </td>
<td> <%=rec("first_floor_base")%> </td>
<td> <%=rec("kind_of_windows")%> </td>
<td> <%=rec("kind_of_doors")%> </td>
<td> <%=rec("garden_length")%> </td>
<td> <%=rec("swimming_pool")%> </td>
<td> <%=rec("cost")%> </td> </p>
<td> <img src= "<%=rec ("picture")%>" height="200" width="300"> </td>
<td> <img src="<%=rec ("pictur")%>" height="200" width="300"> </td>
<td> <img src= "<%=rec ("pictu")%>" height="200" width="300"> </td>

151

<t.d> <img src="<%=rec ("pict") %>" height="200" width="300"> </td>
<td> <img src= "<%=rec ("pie")%>" height="200" width="300"> <ltd>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
</body>

A.22. enter.asp
<html>
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back <font
face="algerian" size="30" > IRFAN GO(:EN CONSTRUCTION LTD. </pre> </Hl>
<p align="right"> <u> ENTERING PAGE </u>
</P>
<form method="post" action="enter2.asp">
<p> <u> City
name="tl" > </u> </p>

<input type="text"

<p> <u> Area <input type="text" name="t2" > </u> </p>
<p> <u> Part <input type="text" name="t3" ></u> </p>
<p> <u> Kind of build <input type="text" name="t4" > </u>
</p>
<p> <u> M2 <input type="text" name="t5" ></u> </p>
<p> <u> Ground Floor m2 <input type="text" name="t6" ></u>
<Ip>
<p> <u> First Floor m2 <input type="text" name="t7" ></u>
<Ip>
<p> <u> Sitting Room Number <input type="text" name="t8" ></u>
 </p>
<P> <u> Kitchen Room Number<input type="text" name="t9" > </u>
 </p>
<p> <u> Bathroom Number <input type="text" name="tlO" ></u>
</p>
<p> <u> Badroom Number <input type="text" name="tll" ></u>
</p>
<p> <u> Balcony Number <input type="text" name="tl2" ></u>
</p>
<p> <u> Central Heatting System <input type="text" name="tl3"
></u> </p>
<p> <u> Fireplace <input type="text" name="tl4" ></u> </p>
<p> <u> Kind of badroom cupboard <input type="text" name="tl5"
></u> </p>
<p> <u> Kind of kitchen cupboard <input type="text" name="t16"
></u> </p>
<p> <u> Ground Floor Base <input type="text" name="tl7" ></u>
</p>
<p> <u> First Floor Base <input type="text" name="tl8" ></u>
</p>
<p> <u> Kind of windows <input type="text" name="tl9" ></u>
<Ip>
<p> <u> Kind of doors <input type="text" name="t20" ></u>
<Ip>
<p> <u> Garden Length <input type="text" name="t21" ></u>
</p>

152

<p> <u> Swimming Pool <input type="text" name="t22" ></u>
</p>
<p> <u> Picture </u> <Ip>
<p> Attach Picture <input type="file" name="t23"
accept="appliction/pdf" /> <Ip>
<p> <u> Picture </u> </p>
<p>Attach Picture <input type="file" name="t24"
accept="appliction/pdf" /> <Ip>
<p> <u> Picture </u> </p>
<p> Attach Picture <input type="file" name="t25"
accept="appliction/pdf" /> </p>
<p> <u> Picture </u> </p>
<p>Attach Picture <input type="file" name="t26"
accept="appliction/pdf" /> </p>
<p> <u> Picture </u> </p>
<p>Attach Picture <input type="file" name="t27"
accept="appliction/pdf" /> </p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>
</html>

A.23. enter2.asp
<%@Language="VBScript"%>
<%s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
s_t5=Request. form ("t5")
s_t6=Request. form ("t6")
s_t7=Request.form("t7")
s_t8=Request.form("t8")
s_t9=Request. form ("t9")
s_tlO=Request.form("tlO")
s_tll=Request.form("tll")
s_t12=Request.form("t12")
s_t13=Request. form ("t13")
s_t14=Request.form("tl4")
s_t15=Request.form("t15")
s_t16=Request.form("tl6")
s_t17=Request.form("t17")
s_t18=Request.form("tl8")
s_t19=Request.form("t19")
s_t20=Request.form("t20")
s_t21=Request.form("t21")
s_t22=Request.form("t22")
s_t23=Request.form("t23")
s_t24=Request. form ("t24")
s_t25=Request.form("t25")
s_t2 6=Request. form ("t2 6")
s_t27=Request.form("t27")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ=" &server. mappa th ("cons. mdb")
sql="Insert into const(city, area, part, kind_of_build, m2,
ground_floor_m2, first_floor_m2, sitting_room_number,
kitchen_room_number, bathroom_number, badroom_number, balcony_number,
central_heatting_system, fireplace, badroom_cupboard,
kitchen_cupboard, ground_floor_base, first_floor_base,

153

kind_of_windows, kind_of_doors, garden_length, swirruning_pool, picture,
pictur, pictu, pict, pie) values (' "&s_tl&" ', '"&s_t2&"', '"&s_t3&"'
'"&s_t4&" ', '"&s_t5&" ', '"&s_t6&"', '"&s_t7&"', '"&s_t8&"',
'"&s_t9&" ', '"&s_tlO&"'
'"&s tll&"' '"&s_t12&"' '"&s_t13&" ', '"&s_t14&"', '"&s_t15&" ', '"&s_t16&"
', '"&s_t17&"', '"&s_t18&" ', '"&s_t19&"', '"&s_t20&"', '"&s_t21&"', '"&s_t22
&"', '"&s_t23&"', '"&s_t24&"', '"&s_t25&"', '"&s_t26&"', '"&s_t27&" ')"
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are entered successfully </p>

<p align="center"> BACK </p>

A.24. deleterecord.asp
<body bgcolor="32CD32">
<form method="post" action="delete.asp">
<p align="center"> <u> ID
<input type="text" name="tO"> </u> </p>
<p align="center"> you can find ID number of what you want to delete
on searching page/List All </p>
<p align="center">
value="delete"> </p>

<p align="center">
Back <la> </p>

<input type="submit"

</form>
</body>

A.25. delete.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back <font
face="algerian" size="30" > IRFAN GOC::EN CONSTRUCTION LTD. </pre> </Hl>
<p align="right"> <u> DELETING PAGE </u>
<IP>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ= "&server . map pa th ("cons . mdb")
SQL="select * from canst where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("city")
s_t2=rec ("area")
s_t3=rec ("part")
s_t4=rec ("kind_of_build")
s_t5=rec ("m2")
s_t6=rec ("ground_floor_m2")

154

s_t7=rec("first_floor_m2")
s_t8=rec ("sitting_room_number")
s_t9=rec ("kitchen_room_nurnber")
s_tlO=rec ("bathroom_number")
s_tll=rec ("badroom_number")
s_t12=rec ("balcony_number")
s_t13=rec ("central_heatting_system")
s_t14=rec("fireplace")
s_t15=rec ("badroom_cupboard")
s_t16=rec("kitchen_cupboard")
s_tl 7=rec ("ground_floor_base")
s_t18=rec("first_floor_base")
s_t19=rec ("kind_of_windows")
s_t2 O=rec ("kind_of_doors")
s_t21=rec("garden_length")
s_t22=rec("swimming_pool")
s_t23=rec("picture")
s_t24=rec("pictur")
s_t25=rec ("pictu")
s_t26=rec("pict")
s_t27=rec ("pie")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="delete2.asp">
<p> <u> ID <input type="text"
name="t0" value=<%=s_t0%>> </u> </p>
<p> <u> City <input type="text"
name="tl" value=<%=s_t1%>> </u> </p>
<p> <u> Area <input type="text" name="t2" value=<%=s_t2%>> </u>
 </p>
<p> <u> Part <input type="text" name="t3" value=<%=s_t3%>></u>
 </p>
<p> <u> Kind of build <input type="text" name="t4"
value=<%=s_t4%>> </u> </p>
<p> <u> m2 <input type="text" name="t5" value=<%=s_t5%>></u>
</p>
<p> <u> Ground Floor m2 <input type="text" name="t6"
value=<%=s_t6%>></u> </p>
<p> <u> First Floor m2 <input type="text" name="t7"
value=<%=s_t7%>></u> </p>
<P> <u> Sitting Room Number<input type="text" name="t8"
value=<%=s_t8%>> </u> </p>
<p> <u> Kitchen Room Number <input type="text" name="t9"
value=<%=s_t9%>></u> </p>
<p> <u> Bathroom Number <input type="text" name="tlO"
value=<%=s_t10%>></u> </p>
<p> <u> Badroom Number <input type="text" name="tll"
value=<%=s t11%>></u> </p>
<p> <u> Balcony Number <input type="text" name="t12"
value=<%=s_t12%>></u> </p>
<p> <u> Central Heatting System <input type="text" name="t13"
value=<%=s_t13%>></u> </p>
<p> <u> Fireplace <input type="text" name="t14"
value=<%=s_t14%>></u> </p>
<p> <u> Kind of Badroom Cupboard <input type="text" name="tl5"
value=<%=s_t15%>></u> </p>
<p> <u> Kind od Kitchen cupboard <input type="text" name="t16"
value=<%=s t16%>></u> </p>

155

<p> <u> Ground Floor Base <input type="text" name="t17"
value=<%=s_t17%>></u> </p>
<p> <u> First Flar Flar <input type="text" name="tl8"
value=<%=s_t18%>></u> </p>
<p> <u> Kind of Windows <input type="text" name="t19"
value=<%=s_t19%>></u> </p>
<p> <u> Kind of Doors <input type="text" name="t20"
value=<%=s_t20%>></u> </p>
<p> <u> Garden Length <input type="text" name="t21"
value=<%=s_t21%>></u> </p>
<p> <u> Swimming Pool <input type="text" name="t22"
value=<%=s_t22%>></u> </p>
<p> <u> Picture <input type="text" name=" t23" value=<%=s t23%>>
</u> </p>
<p> <u> Picture <input type="text" name=" t24" value=<%=s t24%>>
</u> </p>
<p> <u> Picture <input type="text" name=" t25" value=<%=s t25%>>
</u> </p>
<p> <u> Picture <input type="text" name=" t26" value=<%=s t26%>>
</u> </p>
<p> <u> Picture <input type="text" name=" t27" value=<%=s t27%>>
</u> </p>
<p> <input type="submit" value="delete"> </p>
</form>
</body>

A.26. delete2.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request.form("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request.form("t5")
s_t6=Request. form ("t6")
s_t 7=Request. form ("t7")
s_t8=Request. form ("t8")
s_t9=Request. form ("t9")
s_tlO=Request. form ("tlO")
s_tll=Request. form ("tll")
s_t12=Request. form ("t12")
s_t13=Request.form("tl3")
s_t14=Request.form("tl4")
s_t15=Request. form ("t15")
s_t16=Request.form("tl6")
s_t17=Request.form("t17")
s_t18=Request.form("tl8")
s_t19=Request. form ("t19")
s_t2 O=Request. form ("t2 0")
s_t21=Request.form("t21")
s_t22=Request. form ("t22")
s_t23=Request.form("t23")
s_t2 4=Request. form ("t24")
s_t25=Request.form("t25")

156

s_t2 6=Request. form ("t2 6")
s_t27=Request. form ("t27")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ= "&server .mappath ("cons .mdb")
sql= "delete from const where ID="&s tO&""
db. execute (sql)
db.close
set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>

<p align="center"> Back </p>

A.27. updaterecord.asp
<body bgcolor="32CD32">
<form method="post" action="update.asp">
<p align="center"> <u> ID
type="text" name="tO"> </u> </p>
<p align="center"> You can find ID number what you want to update on
searching page/List All </p>
<p align="center"> <input type="submit" value="update"> </p>
<p align="center"> Back </p>
</form>
</body>

<input

A.28. update.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back <font
face="algerian" size="30" > IRFAN GOC:EN CONSTRUCTION LTD.</pre> </Hl>
<p align="right"> <u> UPDATING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server .mappath ("cons .mdb")
SQL="select * from const where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("city")
s_t2=rec ("area")
s_t3=rec ("part")
s_t4=rec ("kind_of_build")
s_t5=rec ("m2")
s_t6=rec("ground_floor_m2")
s_t7=rec("first_floor_m2")
s_tB=rec("sitting_room_number")
s_t9=rec ("kitchen_room_number")

157

s_tlO=rec ("bathroom_number")
s_tll=rec ("badroom_number")
s_t12=rec ("balcony_number")
s_t13=rec ("central_heatting_system")
s_t14=rec("fireplace")
s_t15=rec ("badroom_cupboard")
s_t16=rec("kitchen_cupboard")
s_tl 'l=x ec ("ground_floor_base")
s_t18=rec("first_floor_base")
s_t19=rec ("kind_of_windows")
s_t20=rec ("kind_of_doors")
s_t21=rec ("garden_length")
s_t22=rec ("swimming_pool")
s_t23=rec("picture")
s_t24=rec("pictur")
s_t25=rec("pictu")
s_t26=rec("pict")
s_t27=rec ("pie")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="update2.asp">
<p> <u> ID <input type="text"
name="t0" value=<%=s_t0%>> <lu> <lb> <Ip>
<p> <u> City <input type="text"
name="tl" value=<%=s_t1%>> <lu> <lb> <Ip>
<p> <u> Area <input type="text" name="t2" value=<%=s_t2%>> <lu>
<lb> <Ip>
<p> <u> Part <input type="text" name="t3" value=<%=s t3%>><lu>
<lb> <Ip>
<p> <u> Kind of build <input type="text" name="t4"
value=<%=s t4%>> <lu> <lb> <Ip>
<p> <u> m2 <input type="text" name="t5" value=<%=s_t5%>><lu> <lb>
<Ip>
<p> <u> Ground Floor m2 <input type="text" name="t6"
value=<%=s_t6%>><lu> <lb> <Ip>
<p> <u> First Floor m2 <input type="text" name="t7"
value=<%=s_t7%>><lu> <lb> <Ip>
<P> <u> Sitting Room Number<input type="text" name="t8"
value=<%=s_t8%>> <lu> <lb> <Ip>
<p> <u> Kitchen Room Number <input type="text" name="t9"
value=<%=s_t9%>><lu> <lb> <Ip>
<p> <u> Bathroom Number <input type="text" name="tlO"
value=<%=s_t10%>><lu> <lb> <Ip>
<p> <u> Badroom Number <input type="text" name="tll"
value=<%=s t11%>><lu> <lb> <Ip>
<p> <u> Balcony Number <input type="text" name="t12"
value=<%=s_t12%>><lu> <lb> <Ip>
<p> <u> Central Heatting System <input type="text" name="t13"
value=<%=s_tl3%>><lu> <lb> <Ip>
<p> <u> Fireplace <input type="text" name="tl4"
value=<%=s_tl4%>><lu> <lb> <Ip>
<p> <u> Kind of Badroom Cupboard <input type="text" name="t15"
value=<%=s_tl5%>><lu> <lb> <Ip>
<p> <u> Kind od Kitchen cupboard <input type="text" name="tl6"
value=<%=s_t16%>><lu> <lb> <Ip>
<p> <u> Ground Floor Base <input type="text" name="tl7"
value=<%=s_t17%>><lu> <lb> <Ip>
<p> <u> First Floor Base <input type="text" name="tl8"
value=<%=s t18%>><lu> <lb> <Ip>

158

<p> <u> Kind of Windows <input type="text" narne="t19"
value=<%=s_t19%>></u> </p>
<p> <u> Kind of Doors <input type="text" narne="t20"
value=<%=s_t20%>></u> </p>
<p> <u> Garden Length <input type="text" narne="t21"
value=<%=s_t21%>></u> </p>
<p> <u> Swirruning Pool <input type="text" narne="t22"
value=<%=s_t22%>></u> </p>
<p> <u> Picture <input type="text" narne="t23" value=<%=s t23%>>
</u> </p>

<p> <u> Picture <input type="text" narne="t24" value=<%=s t24%>>
</u> </p>

<p> <u> Picture <input type="text" narne="t25" value=<%=s t25%>>
</u> </p>

<p> <u> Picture <input type="text" narne="t26" value=<%=s t26%>>
</u> </p>

<p> <u> Picture <input type="text" narne="t27" value=<%=s t27%>>
</u> </p>

<p> <input type="submit" value="update"> </p>
</form>
</body>

A.29. update2.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request.form("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request. form ("t5")
s_t6=Request.form("t6")
s_t7=Request.form("t7")
s_t8=Request. form ("t8")
s_t9=Request.form("t9")
s_tlO=Request. form ("tlO")
s_tll=Request.form("tll")
s_t12=Request.form("tl2")
s_t13=Request. form ("t13")
s_t14=Request. form ("t14")
s_t15=Request.form("t15")
s_t16=Request. form ("t16")
s_t17=Request.form("t17")
s_t18=Request. form("t18")
s_t19=Request.form("tl9")
s_t20=Request.form("t20")
s_t21=Request. form ("t21")
s_t22=Request.form("t22")
s_t23=Request. form ("t23")
s_t24=Request.form("t24")
s_t25=Request. form("t25")
s_t2 6=Request. form ("t2 6")
s_t27=Request.form("t27")

159

set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server .mappath ("cons .mdb")
sql= "UPDATE const set city=' "&s_tl&"', area=' "&s_t2&" ',
part=' "&s_t3&"', kind_of_build=' "&s_t4&" ', m2=' "&s_t5&" ',
ground_floor_m2=' "&s_t6&" ', first_floor_m2=' "&s_t7&"',
sitting_room_number='"&s_t8&"', kitchen_room_number='"&s_t9&"',
bathroom_number=' "&s_tlO&"', badroom_number=' "&s_tll&"',
balcony_number=' "&s_tl2&"', central_heatting_system=' "&s_t13&"',
fireplace=' "&s_tl4&" ', badroom_cupboard=' "&s_tl5&" ',
kitchen_cupboard=' "&s_tl6&"', ground_floor_base=' "&s_tl 7&"',
first_floor_base='"&s_t18&"', kind_of_windows=' "&s_t19&"',
kind_of_doors=' "&s_t20&" ', garden_length=' "&s_t21&" ',
swimming_pool==' "&s_t22&"', picture=' "&s_t23&"', pictur=' "&s_t24&"',
pictu='"&s_t25&"', pict='"&s_t26&"', pie=' "&s_t27&"' where
ID=" &s_tO&" "
db.execute(sql)

db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>

<p align="center"> Back </p>

A.30. balance.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GOC::EN
CONSTRUCTION LTD. </Hl>
<p align="center">
Searching page </p>
<p align="center"> Entering page </p>
<p align="center"> Deleting page </p>
<p align="center">
Updating page </p>
<p align="center"> Back </p>
</body>
</html>

A.31. Sb.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GOC::EN
CONSTRACTION LTD. </Hl>
<p align="right"> <u> SEARCING PAGE </u>
<IP>
<form method="post" action="sb.asp">
<p align="center"> <u> name
type="text" name="name" size="lO" > </u> </p>
<p align="center"> <u> surname
<input type="text" name="surname" size="lO" > </u> </p>
<p align="center"> <input type="submit" value="submit"> </p>
<p align="center"> BACK
</form>
</body>
</html>

<input

160

A.32. sb.asp
<%@Language="VBScript"%>
<pre> BACK <font face="algerian"
color="#228B22" size="20"> BALANCE </pre>
<hr>
<%n=request. form ("name")
s=request. form ("surname")
set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server. mappa th ("cons. rndb ")
sql="select * from balan where name=' "&n&"' and surname='"&s&"'"
set rec=db.execute(sql)
tot=O
while not rec.eof%>
<table border>
<tr> <th> ID </th> <th> name </th> <th> surname </th> <th> tel no
</th> <th> mobile phone </th> <th> address </th> <th> e_mail </th>
<th> date </th> <th> house number </th> <th> amount </th> <th> debit
</th> <th> balance </th>
<tr> <td> <%=rec("ID")%> </td>
<t.d> <%=rec ("name")%> <ltd>
<td> <%=rec("surname")%> </td>
<td> <%=rec("tel_no")%> </td>
<td> <%=rec("mobile__phone")%> </td>
<td> <%=rec("address")%> </td>
<td> <%=rec("e_mail")%> <ltd>
<td> <%=rec("u_date")%> </td>
<td> <%=rec("house_nurnber")%> </td>
<td> <%=rec("amount")%> </td>
<td> <%=rec("debit")%> </td>
<%tot=tot+rec ("amount") -rec ("debit")%>
<td> <%=tot%> <ltd>
</table>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
balancee.asp
<html>
<body bgcolor="32CD32">
<pre> BACK <font face="algerian"
size="30" > IRFAN GO<;:EN CONSTRUCTION LTD. </pre>
<p align="right"> <u> BALANCE </u> <IP>
<form method="post" action="balanceinsert.asp">

<p> <u> Name <input type="text" name="tl" > </u> </p>

Surname <input type="text" name="t2" > </u> </p>
Tel NO <input type="text" name="t3" ></u> <lb> </p>
Mobile Phone <input type="text" name="t4" > </u>

<p> <u>
<p> <u>
<p> <U>
</p>
<p> <u>
<P> <u>
<p> <u>
 </p>

Address <input type="text" name="t5" ></u> </p>
E_mail <input type="text" name="t6" > </u> </p>
Date <input type="text" name="t7" value=<%=date%> ></u>

161

<pre><u>Amount <input type="text"
name="t8" > </u> click to see houses
details </pre>
<p> <u> Debit <input type="text" name="t9" > </u> </p>
<p> <u> House Number <input type="text" name="tlO" > </u>
</p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>
</html>

A.33. detail.asp
<%@Language="vbscript"%>
<body>
<pre align="left"> Back <font
face="arial" size="15" font color="#228B22"> BUILDINGS OF CONSTRUCTION
</Pre>
<hr>
<table align="center" border>
<tr> <th> ID </th> <th> city </th> <th> area </th> <th> part </th>
<th> kind of build </th> <th> m2 </th> <th> cost </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from const"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec("city")%> </td>
<td> <%=rec("area")%> </td>
<td> <%=rec("part")%> </td>
<td> <%=rec("kind_of_build")%> </td>
<td> <%=rec("m2")%> </td>
<td> <%=rec("cost")%> </td> </p>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
</body>

A.34. balanceinsert.asp
<%@Language="VBScript"%>
<%s_tl=Request.form("tl")
s_t2=Request. form ("t2")
s_t3=Request.form("t3")
s_t4=Request. form ("t4")
s_t5=Request. form ("t5")
s_t6=Request. form ("t6")
s_t7=Request. form ("t7")
s_t8=csng(Request.form("t8"))
s_t9=csng(Request.form("t9"))
s_tlO=Request.form("tlO")
set db=Server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")

162

sql="insert into balan(name, surname, tel_no, mobile__phone, address,
e_mail, u_date, amount, debit, house_nurnber) values ('"&s_tl&"',
'"&s_t2&"', '"&s_t3&"', '"&s_t4&"', '"&s_t5&"', '"&s_t6&"',
'"&s_t7&"', "&s_t8&", "&s_t9&", '"&s_tlO&" ')"
db.execute(sql)%>
<%db.close
set db=nothing%>
<p align="center"> YOUR
DETAILS ARE ENTERED SUCCESSFULLY </p>
<p align="center"> BACK

A.35. baldel.html
<body bgcolor="32CD32">
<form method="post" action="baldel.asp">
<p align="center"> <u> ID
type="text" name="tO"> </u> </p>
<p align="center"> <input type="submit" value="enter"> </p>
<p align="center"> you can find ID number what you want to delete on
searching page </p>
<p align="center"> BACK </p>
</form>
</body>

<input

A.36. baldel.asp
<body bgcolor="32CD32">
<pre> BACK <font face="algerian" size="30"
> IRFAN GOCEN CONSTRUCTION LTD. </pre>
<p align="right"> <u> BALANCE PAGE </u>
<IP>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from balan where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("name")
s_t2 =rec ("surname")
s_t3=rec ("tel_no")
s_t4=rec ("mobile__phone")
s_t5=rec("address")
s_t6=rec ("e_mail")
s_t7=rec("u_date")
s_t8=rec ("amount")
s_t9=rec("debit")
s_tlO=rec ("house_nurnber")
rec.close
set rec=nothing

163

db.close
set db=nothing%>
<form method="post" action="balandel.asp">
<p> <u> ID <input type="text"
name="tO" value=<%=s_t0%>> </u> </p>
<p> <u> name <input type="text"
name="tl" value=<%=s_tl%>> </u> </p>
<p> <u> surname <input type="text" name="t2" value=<%=s_t2%>>
</U> </p>
<p> <u> tel no <input type="text" name="t3" value=<%=s_t3%>></u>
 </p>
<p> <u> mobile phone <input type="text" name="t4"
value=<%=s t4%>> </u> </p>
<p> <u> address <input type="text" name="t5" value=<%=s_t5%>></u>
 </p>
<p> <u> e_mail <input type="text" name="t6" value=<%=s_t6%>></u>
 </p>
<P> <u> date <input type="text" name="t7" value=<%=s_t7%>> </u>
 </p>
<p> <u> amount <input type="text" name="t8" value=<%=s_t8%>></u>
 </p>
<p> <u> debit <input type="text" name="t9" value=<%=s_t9%>></u>
 </p>
<p> <u> House Number <input type="text" name="tlO"
value=<%=s_tl0%>></u> </p>
<p> <input type="submit" value="delete"> </p>
</form>
</body>

A.37. balandel.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request. form ("t5")
s_t6=Request.form("t6")
s_t7=Request.form("t7")
s_t8=Request. form ("t8")
s_t9=Request.form("t9")
s_tlO=Request. form ("tlO")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
sql= "delete from balan where ID="&s tO&""
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>
<p align="center"> BACK </p>

164

A.38. bal.html
<body bgcolor="32CD32">
<form method="post" action="bal.asp">
<p align="center"> <u> ID
type="text" name="t0"> </u> </p>
<p align="center"> <input type="submit" value="enter"> </p>
<p align="center"> you can find ID number what you want to update on
searching page </p>
<p align="center"> BACK </p>
</form>
</body>

<input

A.39. bal.asp
<body bgcolor="32CD32">
<pre> BACK

IRFAN GOCEN CONSTRUCTION LTD. </pre>
<p align="right"> <u> BALANCE PAGE </u>
<IP>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from balan where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("name")
s_t2=rec ("surname")
s_t3=rec("tel_no")
s_t4=rec ("mobile_phone")
s_t5=rec("address")
s_t6=rec ("e_mail")
s_t7=rec("u_date")
s_t8=rec ("amount")
s_t9=rec("debit")
s_tlO=rec ("house_number")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="balan.asp">
<p> <u> ID
name="tO" value=<%=s_t0%>> </u> </p>
<p> <u> name
name="tl" value=<%=s t1%>> </u> </p>

<input type="text"

<input type="text"

<p> <u> surname <input type="text" name="t2" value=<%=s_t2%>>
</u> </p>
<p> <u> tel no <input type="text" name="t3" value=<%=s_t3%>></u>
 </p>
<p> <u> mobile phone <input type="text" name="t4"
value=<%=s t4%>> </u> </p>
<p> <u> address <input type="text" name="t5" value=<%=s_t5%>></u>
 </p>
<p> <u> e_mail <input type="text" name="t6" value=<%=s_t6%>></u>
 </p>
<P> <u> date <input type="text" name="t7" value=<%=s t7%>> </u>
 </p>

165

<p> <u> amount <input type="text" name="t8" value=<%=s_t8%>></u>
 </p>
<p> <u> debit <input type="text" name="t9" value=<%=s_t9%>></u>
 </p>
<p> <u> House Number <input type="text" name="tlO"
value=<%=s_t10%>></u> </p>
<p> <input type="submit" value="update"> </p>
</form>
</body>

A.40. balan.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng (Request. form ("tO"))
s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request.form("t3")
s_t4=Request.form("t4")
s_t5=Request.form("t5")
s_t6=Request. form ("t6")
s_t7=Request. form ("t7")
s_t8=Request.form("t8")
s_t9=Request.form("t9")
s_tlO=Request. form ("tlO")
set db=Server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ=" &server. mappath ("cons. mdb")
sql= "UPDATE balan set name=' "&s_tl&"', surname=' "&s_t2&"',
tel_no=' "&s_t3&"', mobile__phone=' "&s_t4&"', address=' "&s_t5&" ',
e_mail='"&s_t6&"', u_date='"&s_t7&"', amount="&s_t8&", debit="&s_t9&",
house_nurnber='"&s_tlO&"' where ID="&s_tO&"" db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>
<p align="center"> BACK </p>

A.41. isolations.html
<html>
<body background="C:\Documents and Settings\x\My
Documents\aceng\V1LLALAR\DSC_0055.JPG">
<Hl align="center"> <img src="C:\Documents and Settings\x\My
Documents\resimler\DSC021599.JPG" width="1250" height="200"> </Hl>
<p align="center"> Insulation </p>
<p align="center"> Balance </p>
<p align="center"> Back </p>
</body>
</html>

166

A.42. isolation.html
<html>
<title> insulation!!! </title>
<Body background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
[THERMAL INSULATION] [CORRUBIT
PANELS] [WATER INSULATION]

 </pre>

 BACK

A.43. izol.html
<html>
<title> insulation!!! </title>
<Body background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
 [THERMAL INSULATION]
SEE PRODUCT SEARCHING PAGE

 ENTERING PAGE

 DELETING PAGE

 UPDATING PAGE

[CORRUBIT PANELS]

 [WATER INSULATION]
 BACK
</pre>
</html>

A.44. izoll.html
<html>
<title> insulation!!! </title>
<Body background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
[THERMAL INSULATION] Exstruded
Polystyrenee Thermal Insulation Panels
 </pre>

 POLPAN

A.45. izo12.asp
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> POLPAN </p>

167

<p> Polpan thermal insulation panels are
produced in skinned surfaced models for roofs and floors, and in
plaster type models for exterior and/or interior application of
thermal insulation on walls. </p>
<table align="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ= "&server. mappa th ("cons. mdb")
SQL="select * from izo3 where ID=7"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<img src= "<%=rec ("picture")%>" height="250" width="350">
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK <Ip>
</body>

A.46. size.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GOC:EN
CONSTRACTION LTD. </Hl>
<p align="right"> <u> SEARCING PAGE </u>
</P>
<form method="post" action="sizo.asp">
<p align="center"> <u> Kind of
Insulation <input type="text" name="ti" size="30" value="thermal
insulation"> </u> <lb> <Ip>
<p align="center"> <input type="submit" value="submit"> </p>
<p align="center"> BACK
</form>
</body>
</html>

A.47. size.asp
<%@Language="vbscript"%>
<body>
<pre align="left"> Back

 IRFAN
INSULATION </Pre>
<hr>
<%t=request.form("ti")
set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server. mappath ("cons. mdb")
SQL="select * from izo3 where kind_of insulation=' "&t&"'"
set rec=db.execute(SQL)
while not rec.eof%>
<table align="center" border>
<tr> <th> ID </th> <th> Kind of Insulation </th> <th> product </th>
<th> Amount of m2 </th> <th> Picture </th>

168

<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<td> <img src= "<%=rec ("picture")%>" height="300" width="300"> </td>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
</body>

A.48. eizo.asp
<html>
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> ENTERING PAGE </u>
</P>
<form method="post" action="enterizo2.asp">
<p> <u> Kind of Insulation <input
type="text" name="tl" > </u> </p>
<p> <u> Product <input type="text" name="t2" > </u> </p>
<p> <u> Amount of m2 <input type="text" name="t3" ></u> </p>
<p> <u> Picture </u> <lb> </p>
<p> Attach Picture <input type="file" name="t4"
accept="appliction/pdf" /> </p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>
</html>

A.49. enterizo2.asp
<%@Language="VBScript"%>
<%s_tl=Request.form("tl")
s_t2=Request.form("t2")
s_t3=Request.form("t3")
s_t4=Request.form("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
sql="Insert into izo3(kind_of_insulation, product, amount_of_m2,
picture) values (' "&s_tl&"', '"&s_t2&"', '"&s_t3&"', '"&s_t4&" ')"
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are entered successfully </p>

<p align="center"> BACK </p>

169

A.SO. dizo.asp
<body bgcolor="32CD32">
<form method="post" action="deleteizo.asp">
<p align="center"> <u> ID <input
type="text" narne="t0"> </u> </p>
<p align="center"> You can find ID number what you want to delete on
searching page</p>
<p align="center"> <input type="submit" value="delete"> </p>
<p align="center"> Back </p>
</form>
</body>

A.51. deleteizo.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> DELETING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server. mappath ("cons. mdb")
SQL="select * from izo3 where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("kind_of_insulation")
s_t2=rec("product")
s_t3=rec ("arnount_of_m2")
s_t4=rec("picture")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="delete2izo.asp">
<p> <u> ID <input type="text"
narne="tO" value=<%=s_t0%>> </u> <Ip>
<p> <u> Kind of Insulation <input
type="text" narne="tl" value=<%=s_tl%>> </u> </p>
<p> <u> Product <input type="text" narne="t2" value=<%=s t2%>>
</u> </p>
<p> <u> Amount of m2 <input type="text" narne="t3" value=<%=s_t3%>>
</u> </p>
<p> <u> Picture <input type="text" narne="t4" value=<%=s t4%>>
</u> </p>
<p> <input type="submit" value="delete"> </p>
</form>
</body>

170

A.52. delete2izo.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ=" &server. mappa th ("cons. mdb")
sql= "delete from izo3 where ID="&s tO&""
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>

<p align="center"> Back </p>

A.53. uizo.asp
<body bgcolor="32CD32">
<form method="post" action="updateizo.asp">
<p align="center"> <u> ID <input
type="text" name="t0"> </u> </p>
<p align="center"> You can find ID number what you want to update on
searching page </p>
<p align="center"> <input type="submit" value="update"> </p>
<p align="center"> Back </p>
</form>
</body>
updateizo.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> UPDATING PAGE </u>
<IP>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("kind_of_insulation")
s_t2=rec("product")
s_t3=rec ("amount_of_m2")
s_t4=rec("picture")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="update2izo.asp">
<p> <u> ID
name="tO" value=<%=s t0%>> </u> </p>

<input type="text"

<p> <u> Kind of insulation
type="text" name="tl" value=<%=s tl%>> </u> </p>

<input

171

<p> <u> Product <input type="text" name="t2" value=<%=s_t2%>>
</u> </p>
<p> <u> Amount of m2 <input type="text" name="t3"
value=<%=s_t3%>></u> </p>
<p> <u> Picture <input type="text" name="t4" value=<%=s t4%>> </u>
 </p>
<p> <input type="submit" value="update"> </p>
</form>
</body>

A.54. update2izo.asp
<%@Language="VBScript"%>
<%dim s_to
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
sql= "UPDATE izo3 set kind_of_insulation=' "&s_tl&"',
product='" &s_t2&" ', amount_of_m2=' "&s_t3&"', picture='" &s_t4&"' where
ID="&s tO&""

db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>

<p align="center"> Back </p>

A.55. izo2.html
<html>
<title> insulation!!! </title>
<Body background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
 [THERMAL INSULATION]

 [CORRUBIT PANELS]
 SEE PRODUCT SEARCHING PAGE

 ENTERING PAGE

 DELETING PAGE

 UPDATING PAGE

172

 [WATER INSULATION]
 BACK
</pre>
</html>

A.56. izo21.html
<html>
<title> insulation!!! </title>
<Body background=="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
[CORRUBIT PANELS]
Corrubit Panels </pre>

A.57. izo21.asp
<%@Language=="vbscript"%>
<body bgcolor=="#228B22">
<p align=="center"> CORRUBIT PANEL
</p>
<p> Corrubit, bituminous corrugated
sheets, may easily be used extensively on a wide range of buildings,
on steel or wooden substructures or concrete slabs. Corrubit,
lightweight and waterproofing sheets, resist most chemical, UV and
frost. Lightweight sheets minimizing roofing load, creates a practical
and economical solution on new structures and re-roofing. Corrubit's
protective cover means it resists in all kind climates and conditions.
Sheets are produced 0,93 m width and 2,00 m long on three different
attractive colors, red, green and brown. </p>
<table align=="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db==server.createobject("ADODB.Connection")
db.open "Driver=={Microsoft Access Driver (*.mdb) };
DBQ== "&server .mappath ("cons .mdb")
SQL=="select * from izo3 where ID==B"
set rec==db.execute(SQL)
while not rec.eof%>
<tr> <td> <%==rec("kind_of_insulation")%> </td>
<td> <%==rec("product")%> </td>
<td> <%==rec("amount_of_m2")%> </td>
<img src== "<%==rec ("picture")%>" height=="250" width=="350">
<%rec.movenext
wend
rec.close
set rec==nothing

173

db.close
set db=nothing%>
</table>
<p align="center"> BACK </p>
</body>

A.58. sizo2.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GOCEN
CONSTRACTION LTD. </Hl>
<p align="right"> <u> SEARCING PAGE </u>
<IP>
<form method="post" action="sizo2.asp">
<p align="center"> <u> Kind of
Insulation <input type="text" name="cp" size="30" value="corrubit
panel"> </u> </p>
<p align="center"> <input type="submit" value="submit"> </p>
<p align="center"> BACK
</form>
</body>
</html>

A.59. sizo2.asp
<%@Language="vbscript"%>
<body>
<pre align="left"> Back

 IRFAN
INSULATION </Pre>
<hr>
<%c=request. form ("cp")
set db=server. createobject ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where kind_of insulation='"&c&" '"
set rec=db.execute(SQL)
while not rec.eof%>
<table align="center" border>
<tr> <th> ID </th> <th> Kind of Insulation </th> <th> product </th>
<th> Amount of m2 </th> <th> Picture </th>
<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<td> <img src= "<%=rec ("picture")%>" height="300" width="300"> </td>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
</body>

174

A.60. eizo2.asp
<html>
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> ENTERING PAGE </u>
<IP>
<form method="post" action="enterizo22.asp">
<p> <u> Kind of Insulation <input
type="text" name="tl" > </u> </p>
<p> <u> Product <input type="text" name="t2" > </u> </p>
<p> <u> Amount of m2 <input type="text" name="t3" ></u> </p>
<p> <u> Picture </u> </p>
<p> Attach Picture <input type="file" name="t4"
accept="appliction/pdf" /> </p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>
</html>

A.61. enterizo22.asp
<%@Language="VBScript"%>
<%s_tl=Request.form("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ= "&server. mappath ("cons. mdb")
sql="Insert into izo3(kind_of_insulation, product, amount_of_m2,
picture) values (' "&s_tl&"', '"&s_t2&"', '"&s_t3&"', '"&s_t4&" ')"
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are entered successfully </p>

<p align="center"> BACK <Ip>

A.62. dizo2.asp
<body bgcolor="32CD32">
<form method="post" action="deleteizo2.asp">
<p align="center"> <u> ID <input
type="text" name="t0"> </u> </p>
<p align="center"> You can find ID number what you want to delete on
searching page</p>
<p align="center"> <input type="submit" value="delete"> </p>
<p align="center"> Back </p>
</form>
</body>

175

A.63. deleteizo2.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> DELETING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server .mappath ("cons .mdb")
SQL="select * from izo3 where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("kind_of_insulation")
s_t2=rec("product")
s_t3=rec ("amount_of_m2")
s_t4=rec("picture")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="delete2izo2.asp">
<p> <u> ID <input type="text"
name="tO" value=<%=s t0%>> </u> </p>
<p> <u> Kind of Insulation
type="text" name="tl" value=<%=s_tl%>> </u> </p>
<p> <u> Product <input type="text" name="t2" value=<%=s __ t2%>>
</u> </p>
<p> <u> Amount of m2 <input type="text" name="t3" value=<%=s_t3%>>
</u> </p>
<p> <u> Picture <input type="text" name="t4" value=<%=s_t4%>>
</u> </p>

<input

<p> <input type="submit" value="delete"> </p>
</form>
</body>

A.64. delete2izo2.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request.form("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
set db=Server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ=" &server .mappath ("cons .mdb")
sql= "delete from izo3 where ID="&s tO&""
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>

<p align="center"> Back </p>

176

A.65. uizo2.asp
<body bgcblor="32CD32">
<form method="post" action="updateizo2.asp">
<p align="center"> <u> ID <input
type="text" name="t0"> </u> </p>
<p align="center"> You can find ID number what you want to update on
searching page </p>
<p align="center"> <input type="submit" value="update"> </p>
<p align="center"> Back </p>
</form>
</body>

A.66. updateizo2.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> UPDATING PAGE </u>
<IP>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"}}%>
<%set db=server.createobject("ADODB.Connection"}
db.open "Driver={Microsoft Access Driver (*.mdb} };
DBQ="&server.mappath("cons.mdb"}
SQL="select * from izo3 where ID="&del&""
set rec=db.execute(SQL}%>
<%s_t0=rec ("ID"}
s_tl=rec("kind_of_insulation")
s_t2=rec("product"}
s_t3=rec ("amount_of_m2"}
s_t4=rec("picture"}
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="update2izo2.asp">
<p> <u> ID <input type="text"
name="t0" value=<%=s_t0%>> </u> </p>
<p> <u> Kind of insulation <input
type="text" name="tl" value=<%=s_tl%>> </u> </p>
<p> <u> Product <input type="text" name="t2" value=<%=s t2%>>
</u> </p>
<p> <u> Amount of m2 <input type="text" name="t3"
value=<%=s_t3%>></u> </p>
<p> <u> Picture <input type="text" name="t4" value=<%=s t4%>> </u>
 </p>
<p> <input type="submit" value="update"> </p>
</form>
</body>

177

A.67. update2izo2.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CL~g (Request. form ("tO"))
s_tl=Request. form ("tl")
s_t2 =Request. form ("t2")
s_t3 =Request. form ("t3")
s_t4=Request. form ("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server .mappath ("cons .mdb")
sql= "UPDATE izo3 set kind_of_insulation=' "&s_tl&"',
product=' "&s_t2&"', amount_of_m2=' "&s_t3&"', picture=' "&s_t4&"' where
ID=" &s_tO&""
db.execute(sql)

db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>

<p align="center"> Back </p>

A.68. izo3.html
<html>
<title> insulation!!! </title>
<Body background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
 [THERMAL INSULATION]

 [CORRUBIT PANELS]

 [WATER INSULATION]
SEE PRODUCT SEARCHING PAGE

 ENTERING PAGE

 DELETING PAGE

 UPDATING PAGE

 BACK
</pre>
</html>

178

A.69. izo31.html
<html>
<title> insulation!!! </title>
<Body'background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<pre>
[WATER INSULATION]
*Bitumen Waterproofing Membranes

 *Shingle
</pre>

</html>

A.70. izo32.html
<html>
<title> insulation!!! </title>
<Body bgcolor="#228B22">
<pre>
[BITUMEN WATERPROOFING MEMBRANES] ABitliselfA

 BACK
 APolibitA
 APlastobitA
 AElastobitA
 AUnderslating MembranesA </pre>

<p align="center"> <img src = "C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG" width="1200" height="450">
</html>

A.71. izo33.asp
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> BITUSELF </p>
<pre> Waterproofing and sealing tapes
that are self adhering and have their upper surface coated
with orange effect embossed aluminum foil can easily be used at any
kind of maintenance or waterproofing detail.
Since it is cold applied and is composed of tapes of various width, it
can easily be used by everyone.

Bituself with complete water and vapour impermeability maintains its
stickiness
and water impermeability on wet surroundings as well. It can be used
quite easily on every kind of surface
whether it be smooth or inclined and adapts easily on the surface to
which it is applied. </pre>
<table align="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where ID=l"

179

set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("arnount_of_m2")%> </td>
<img src= "<%=rec("picture")%>" height="200" width="320">
<%rec.movenext
wend
rec,close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK </p>
</body>

A.72. izo34.asp
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> POLIBIT </p>
<pre> Polibit series, bitumen
waterproofing membranes modified plastomer bitumen (APP) , is an
economical line
which can be applied at all waterprofing details of construction.
</pre>
<table align="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ=" &server. mappa th ("cons. mdb")
SQL="select * from izo3 where ID=2"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("arnount_of_m2")%> </td>
<img src= "<%=rec ("picture")%>" height="448" width="115">
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK </p>
</body>

A.73. izo35.asp
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> PLASTOBIT </p>
<pre> Plastomer polymer bitumen
PLASTOBIT waterproofing membranes can be used safely at almost every
climatic
conditions except on highlands and freezing areas as a consequence of
its high quality POLIMER bitumen modified

180

with APP and other thermoplastics and admits the technique of high
adherence at torch on application. </pre>
<table align="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server .mappath ("cons .mdb")
SQL="select * from izo3 where ID=3"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("arnount_of_m2")%> </td>
<img src= "<%=rec ("picture")%>" height="448" width="113">
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK </p>
</body>
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> ELASTOBIT </p>
<pre> Elastomer modifie~ bitumen (SBS)
waterproofing membrane, the Elastobit series, with
its perfect cold climate performance is also indispensable for
waterproofing of expanding/contracting structures
like light weight metal roofs. </pre>
<table align="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ= "&server .mappath ("cons .mdb")
SQL="select * from izo3 where ID=4"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<img src= "<%=rec ("picture")%>" height="448" width="118">
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK </p>
</body>

181

A.74. izo37.asp
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> UNDERSLATING
MEMBRANES </p>
<pre> producer of polymeric and oxidized
bitumen waterproofing membranes, brings solutions with its new
underslating
membrane to leakages frequently encountered on tile roofs or roofs
with a low pitch. Water leaking through tile gaps
due to showers, stormy and rainy weather and snow accumulation or
leakages caused by tiles will no longer be a
problem. </pre>
<table align="center" border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where ID=5"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<img src= "<%=rec ("picture")%>" height="250" width="350">
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK <Ip>
</body>

A.75. izo4.asp
<%@Language="vbscript"%>
<body bgcolor="#228B22">
<p align="center"> SHINGLE </p>
<pre> For pitched roofs and facades, its
oxidized bitumen body and glass tissue reinforcement offers
alternative
solutions with attractive colors.
On pitched roofs and fronts, its oxidized bitumen body and glass
tissue reinforcement offers alternative solutions
at attractive colors with its reflective mineral coated surface.
</pre>
<table align="center• border>
<tr> <th> Kind of Insulation </th> <th> Product </th> <th> Amount of
m2 </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where ID=6"
set rec=db.execute(SQL)

182

while not rec.eof%>
<tr> <td> <%=rec("kind_of_insulation")%> </td>
<t d> <%=rec ("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<img src= "<%=rec ("picture")%>" height="250" width="350">

<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
<p align="center"> BACK </p>
</body>

A.76. sizo3.html
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN GO<;:EN
CONSTRACTION LTD. </Hl>
<p align="right"> <u> SEARCING PAGE </u>
<IP>
<form method="post" action="sizo3.asp">
<p align="center"> <u> Kind of
Insulation <input type="text" name="wi" size="30" value="water
insulation"> </u> </p>
<p align="center"> <input type="submit" value="submit"> </p>
<p align="center"> BACK
</form>
</body>
</html>

A.77. sizo3.asp
<%@Language="vbscript"%>
<body>
<pre align="left"> Back

 IRFAN
INSULATION </Pre>
<hr>
<%w=request.form("wi")
set db=server.createobject ("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where kind_of_insulation=' "&w&"'"
set rec=db.execute(SQL)
while not rec.eof%>
<table align="center" border>
<tr> <th> ID </th> <th> Kind of Insulation </th> <th> product </th>
<th> Amount of m2 </th> <th> Picture </th>
<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<td> <img src= "<%=rec ("picture")%>" height="300" width="300"> </td>
<%rec.movenext
wend
rec.close
set rec=nothing

db.close
set db=nothing%>
</table>
</body>

A.78. eizo3.asp
<html>
<body bgcolor="32CD32">
<%@Language="VBScript"%>
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align=11right"> <u> ENTERING PAGE </u>
<IP>
<form method="post" action="enterizo23.asp">
<p> <u> Kind of Insulation <input
type="text" name="tl" > </u> <lb> </p>
<p> <u> Product <input type="text" name="t2" > </u> </p>
<p> <u> Amount of m2 <input type="text" name="t3" ></u> <lb> </p>
<p> <u> Picture </u> <lb> </p>
<p> Attach Picture <input type="file" name="t4"
accept="appliction/pdf" /> </p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>
</html>

A.79. enterizo23.asp
<%@Language="VBScript"%>
<%s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form (11 t4 11)

set db=Server. createobj ect ("ADODB. Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
sql="Insert into izo3(kind_of_insulation, product, amount_of_m2,
picture) values (' "&s_tl&" ', '" &s_t2&"', '11 &s_t3&"', '11 &s_t4&" ')"
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are entered successfully </p>

<p align="center"> BACK </p>

A.SO. dizo3.asp
<body bgcolor="32CD32">
<form method="post" action=11deleteizo3.asp11>
<p align=11center"> <u> ID <input
type="text11 name="tO"> </u> <lb> </p>
<p align="center"> You can find ID number what you want to delete on
searching page</p>

<p align="center"> <input type="submit" value="delete"> </p>
<p align="center"> Back </p>
</form>
</body>

A.Bl. deleteizo3.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> DELETING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec ("ID")
s_tl=rec ("kind_of_insulation")
s_t2=rec("product")
s_t3=rec ("amount_of_m2")
s_t4=rec("picture")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="delete2izo3.asp">
<p> <u> ID <input type="text"
name="t0" value=<%=s_t0%>> </u> </p>
<p> <u> Kind of Insulation <input
type="text" name="tl" value=<%=s_tl%>> </u> </p>
<p> <u> Product <input type="text" name="t2" value=<%=s t2%>>
</u> </p>
<p> <u> Amount of m2 <input type="text" name="t3" value=<%=s_t3%>>
</u> </p>
<p> <u> Picture <input type="text" name="t4" value=<%=s t4%>>
</u> <lb> </p>
<p> <input type="submit" value="delete"> </p>
</form>
</body>

A.82. delete2izo3.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
sql= "delete from izo3 where ID="&s tO&""
db.execute(sql)
db.close

185

set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>

<p align="center"> Back </p>

A. 83. uizo3 .asp
<body bgcolor="32CD32">
<form method="post" action="updateizo3.asp">
<p align="center"> <u> ID <input
type="text" name="t0"> </u> <Ip>
<p align="center"> You can find ID number what you want to update on
searching page </p>
<p align="center"> <input type="submit" value="update"> </p>
<p align="center"> Back </p>
</form>
</body>

A.84. updateizo3.asp
<body bgcolor="32CD32">
<Hl> <pre align="center"> Back

 IRFAN INSULATION </pre> </Hl>
<p align="right"> <u> UPDATING PAGE </u>
</P>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ="&server.mappath("cons.mdb")
SQL="select * from izo3 where ID="&del&""
set rec=db.execute(SQL)%>
<%s_t0=rec("ID")
s_tl=rec ("kind_of_insulation")
s_t2=rec("product")
s_t3=rec ("amount_of_m2")
s_t4=rec("picture")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="update2izo3.asp">
<p> <u> ID <input type="text"
name="t0" value=<%=s_t0%>> </u> <lb> <Ip>
<p> <u> Kind of insulation <input
type="text" name="tl" value=<%=s_t1%>> </u> <lb> <Ip>
<p> <u> Product <input type="text" name="t2" value=<%=s t2%>>
</u> <Ip>
<p> <u> Amount of m2 <input type="text" name="t3"
value=<%=s_t3%>></u> </p>
<p> <u> Picture <input type="text" name="t4" value=<%=s t4%>> </u>
<lb> </p>
<p> <input type="submit" value="update"> </p>
</form>
</body>

186

A.BS. update2izo3.asp
<%@Language="VBScript"%>
<%dim s_to
s_tO=CLng(Request.form("tO"))
s_tl=Request. form ("tl")
s_t2=Request. form(" t2")
s_t3=Request.form("t3")
s_t4=Request. form ("t4")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver {*.mdb) };
DBQ= "&server .mappath ("cons .mdb")
sql= "UPDATE izo3 set kind_of_insulation='"&s_tl&"',
product=' "&s_t2&" ' , amount_of_m2=' "&s_t3&" ' , picture=' "&s_t4&" ' where
ID="&s_tO&""
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>

<p align="center"> Back </p>

A.86. balizo.htrnl
<html>
<body background="C:\Documents and Settings\x\My
Documents\aceng\VILLALAR\DSC_0055.JPG">
<Hl align="center"> <img src="C:\Documents and Settings\x\My
Documents\resimler\DSC021599.JPG" width="1250" height="150"> </Hl>
<p align="center">
Searching page </p>
<p align="center"> Entering page </p>
<p align="center"> Deleting page </p>
<p align="center"> Updating page </p>
<p align="center"> Back </p>
</body>
</html>

A.87. sbizo.htrnl
<html>
<body bgcolor="32CD32">
<Hl align="center"> IRFAN INSULATION
</Hl>
<p align="right"> <u> SEARCING PAGE </u>
<IP>
<form method="post" action="sbizo.asp">
<p align="center"> <u> name
type="text" name="name" size="10" > </u> <lb> <Ip>

<input

<p align="center"> <u> surname
<input type="text" name="surname" size="10" > </u> </p>
<p align="center"> <input type="submit" value="submit"> </p>
<p align="center"> BACK
</form>
</body>
</html>

A.88. sbizo.asp
<%@Language="VBScript"%>
<pre> BACK <font face="algerian"
color="#228B22" size="20"> BALANCE DETAILS
</pre>
<hr>
<%n=request. form("name")
s=request. form ("surname")
set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server. mappath ("cons. mdb")
sql="select * from balanizo where name='"&n&"' and surname=' "&s&"'"
set rec=db.execute(sql)
tot=O
while not rec.eof%>

<table border>
<tr> <th> ID </th> <th> name </th> <th> surname </th> <th> tel no
</th> <th> mobile phone </th> <th> address </th> <th> e_mail </th>
<th> date </th> <th> insulation number </th> <th> amount </th> <th>
debit </th> <th> balance </th>
<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec ("name")%> </td>
<td> <%=rec("surname")%> </td>
<td> <%=rec("tel_no")%> </td>
<td> <%=rec("mobile_phone")%> </td>
<td> <%=rec("address")%> </td>
<td> <%=rec("e_mail")%> </td>
<td> <%=rec("u_date")%> </td>
<td> <%=rec("insulation_number")%> </td>
<td> <%=rec("amount")%> </td>
<td> <%=rec("debit")%> </td>
<%tot=tot+rec ("amount") -rec ("debit")%>
<td> <%=tot%> </td>
</table>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>

188

A.89. balanceeizo.asp
<%@language="vbscript"%>
<body bgcolor="32CD32">
<pre> BACK <font face="algerian" size="30"
> IRFAN INSULATION </pre>
<p align="right"> <u> BALANCE </u> </P>
<form method="post" action="balanceinsertizo.asp">

<p> <u> Name <input type="text" name="tl" > </u> <lb> </p>
<p> <u> Surname <input type="text" name="t2" > </u> <lb> </p>
<p> <u> Tel NO <input type="text" name="t3" ></u> <lb> </p>
<p> <u> Mobile Phone <input type="text" name="t4" > </u> <lb>
</p>
<p> <u> Address <input type="text" name="t5" ></u> <lb> </p>
<P> <u> E_mail <input type="text" name="t6" > </u> </p>
<p> <u> Date <input type="text" name="t7" value=<%=date%> ></u>
 </p>
<pre><u><font
name="t8" > <a
details

face="arial" size="3">Amount <input type="text"
href="detailizo.asp"> Click to see insulations
 Click to Calculate Amount

 </u> <lb> </pre>
<p> <u> Debit <input type="text" name="t9" > </u> <lb> </p>

<p> <u> Insulation Number <input type="text" name="tlO" > </u>
 </p>
<p> <input type="submit" value="enter"> </p>
</form>
</body>

A.90. balanceinsertizo.asp
<%@Language="VBScript"%>
<%s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request. form ("t5")
s_t6=Request. form ("t6")
s_t7=Request. form ("t7")
s_t8=Cint(Request.form("t8"))
s_t9=Cint(Request.form("t9"))
s_tlO=Request.form("tlO")
set db=Server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ=" &server .mappath ("cons .mdb")
sql="insert into balanizo(name, surname, tel_no, mobile_phone,
address, e_mail, u_date, amount, debit, insulation_number) values
(' "&s_tl&"', '"&s_t2&"', '"&s_t3&"', '"&s_t4&"', '"&s_t5&"',
'"&s_t6&"', '"&s_t7&" ', "&s_t8&", "&s_t9&", '"&s_tlO&" ')"
db.execute(sql)%>
<%db.close
set db=nothing%>
<p align="center"> YOUR
DETAILS ARE ENTERED SUCCESSFULLY </p>
<p align="center"> BACK

A.91. detailizo.asp
<%@Language="vbscript"%>
<body>
<pre align="left"> Back

BALANCE </Pre>

<hr>
<table align="center" border>
<tr> <th> ID </th> <th> Kind of Insulation </th> <th> Product </th>
<th> Amount of m2 </th>
<%set db=server.createobject("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb) };
DBQ=" &server. mappath ("cons. mdb")
SQL="select * from izo3"
set rec=db.execute(SQL)
while not rec.eof%>
<tr> <td> <%=rec("ID")%> </td>
<td> <%=rec("kind_of_insulation")%> </td>
<td> <%=rec("product")%> </td>
<td> <%=rec("amount_of_m2")%> </td>
<%rec.movenext
wend
rec.close
set rec=nothing
db.close
set db=nothing%>
</table>
</body>

A.92. calculate.asp
<%@Language="vbscript"%>
<form method="post" action="mulcal.asp">
<p> Amount of m2 <input type="text" name="tl"> </p>
<p> m2 <input type="text" name="t2"> </p>
<p> <input type="submit" value="multiply"> </p>
</form>
<p> BACK </p>

A.93. mulcal.asp
<%@Language="vbscript"%>
<%A=Cint(Request.form("tl"))
B=Cint(Request.form("t2"))%>
<p> Result is: <%Response.write(A*B)%>
<Ip>
 BACK

190

A.94. balde.li
<body >
<form me~::x:.=·::;:c;;::.• ac.:ion="baldelizo.asp">
<p aligc=•::::==.::.==-·> <:J> <u> ID <input
type="tex::.• ~=·::.::•> </u> <lb> </p>
<p alig:::i.=•:::.:::::.==-"'> <::..:::iput type="submit" value="enter"> </p>
<p alig::=·====-==-·> you can find ID number what you want to delete on
searc~'-:;; ::;:=.;;-= < ::;::>
<p alig::=•:::.:::::.==-·> BACK </p>
</for:n>
</body>

A.95. ba1de1izo.asp
<body bgco::..o::::-=·32CJ32">
<pre> <a ~2::=·~::..oelizo.html"> BACK <font face="algerian"
size=·Jo• > IRFAN INSULATION </pre>
<p alig::::=•::::-::.;;-::::.•> <u> BALANCE PAGE </u>
</P>
<%@Lang-.1a:;;2=·'."3Scr::.pt" %>
<%del=c"-::. ::::-eq.1est. form ("tO")) %>
<%set ob=se.::-.-e:-. createobj ect ("ADODB. Connection")
db. open "J::::-:.-.·e::-= C1icrosoft Access Driver (*. mdb) } ;
DBQ= "&se_:-:e::-. ::;;.appath ("cons. mdb")
SQL="se::..ec::. • ::rom balanizo where ID="&del&""
set rec=ci:>.execuce(SQL)%>
<%s_t0=rec '·=J·)
s_tl=rec (•::a.=e•)
s_t2=rec,•sc.:.__---:1ame")
s_t3=rec,•ce::.._no")
s_t4=rec(•:::;:iobi::..e__phone")
s_t5=rec (•address")
s_t6=rec (•e_:nail")
s_t7=rec (•u_date")
s_t8=rec (•a:aount")
s_t9=rec ("debit")
s_tlO=rec(•::.nsulation_number")
rec.close
set rec=nothing
db.close
set db=nothing%>
<form method="post" action="balandelizo.asp">
<p> <u> ID <input type="text"
narne="t0" value=<%=s_t0%>> </u> <lb> </p>
<p> <u> name <input type="text"
narne="tl" value=<%=s_tl%>> </u> <lb> </p>
<p> <u> surname <input type="text" name="t2" value=<%=s_t2%>>
</u> <lb> </p>
<p> <u> tel no <input type="text" name="t3" value=<%=s_t3%>></u>
<lb> </p>
<p> <u> mobile phone <input type="text" name="t4"
value=<%=s t4%>> </u> <lb> </p>
<p> <u> address <input type="text" name="t5" value=<%=s_t5%>></u>
<lb> </p>
<p> <u> e_mail <input type="text" name="t6" value=<%=s_t6%>></u>
<lb> </p>
<P> <u> date <input type="text" name="t7" value=<%=s t7%>> </u>
<lb> </p>

191

<p> <u> amount <input type="text" name="t8" value=<%=s_t8%>></u>
 </p>
<p> <u> debit <input type="text" name="t9" value=<%=s_t9%>></u>
 <Ip>
<p> <u> insulation number <input type="text" name="tlO"
value=<%=s_tl0%>></u> <Ip>
<p> <input type="submit" value="delete"> </p>
</form>

</body>

A.96. balandelizo.asp
<%@Language="VBScript"%>
<%dim s_tO
s_tO=CLng(Request.form("tO"))
s_tl=Request.form("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request.form("t4")
s_t5=Request.form("t5")
s_t6=Request. form ("t6")
s_t7=Request.form("t7")
s_t8=Request.form("t8")
s_t9=Request. form ("t9")
s_tlO=Request. form ("tlO")
set db=Server.createobject ("ADODB.Connection")
db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
sql= "delete from balanizo where ID="&s_tO&""
db.execute(sql)
db.close
set db=nothing%>
<p align="center"> Your
details are deleted successfully </p>
<p align="center"> BACK <Ip>

A.97. balizou.htrnl
<body bgcolor="32CD32">
<form method="post" action="balizo.asp">
<p align="center"> <u> ID
type="text" name="tO"> </u> </p>
<p align="center"> <input type="submit" value="enter"> </p>
<p align="center"> you can find ID number what you want to update on
searching page </p>
<p align="center"> BACK </p>
</form>
</body>

<input

A.98. balizo.asp
<body bgcolor="32CD32">
<pre> BACK <font face="algerian"
size="30" > IRFAN INSULATION </pre>
<p align="right"> <u> BALANCE PAGE </u>
<IP>
<%@Language="VBScript"%>
<%del=cint(request.form("t0"))%>
<%set db=server.createobject("ADODB.Connection")

192

::.=:;~ ~=-::-:..·.-e:::-={Microsoft Access Driver (* .mdb)};
:J3.::_=· ~===-=- .~ppath ("cons .rndb v)

SC:.=·==:::.=-=:. • =rom balanizo where ID="&del&""
se::. =-===:::=.::xecute(SQL)%>
<%s_====~= ·=~·)
s_::.:::.=:::-::-::. ·-=-,e•)
s_::.==:::-=-= • .::...:.:::--.-a:ne")
s_::.3==-== ·==:::._~o")
s_::.~=:::-== ·=c:::::..:::.e_phone")
s_::.::i=:::-== • ~ess")
s ::.5=:::-2::. ·,=_:=a=.l")
s_::.-=:::-== ·~_::a::.e")
s ::.S===-= • =-,r:~~t II)
s_;:9=:::-== ·::.~~=·)
s_t: 0=:::-2::. • :..:::..s...:la t ion_number")
rec.c_===
sec :::-c::.==.::.::.:::...:..::g
db.C_C3=
set ~=.:.::.:::...:..::g%>
<fo:::-:::: ::::..::::.:::.::.,::.=•post" action="balanizo.asp">
<p> <:)> -c-_> <=ont face="arial" size="3"> ID <input type="text"
na._t1e=•:.:::,• ·:::L._c1.e=<%=s_tO%>> </u> </p>
<p> <:)> -c-..::.> <:ont face="arial" size="3"> name <input type="text"
name=·=~· 7a:::.ue=<%=s_tl%>> </u> </p>
<p> <:)><:!>surname <input type="text" name="t2" value=<%=s_t2%>>
<Iv..> <Fix» < p>
<p> <:)><':!>;:el no <input type="text" name="t3" value=<%=s_t3%>></u>
<lo></-;:,>
<p> <:J> <'..l> :nobile phone <input type="text" name="t4"
va:::....:e=<~=s_::.4%>> </u> </p>
<p> <:J> <'..!> address <input type="text" name="t5" value=<%=s_t5%>></u>
<lb> < ·:;:>
<p> <:J> <i:> e_mail <input type="text" name="t6" value=<%=s_t6%>></u>
<lb> < :;J>
<?> <;:J> <'...:.> date <input type="text" name="t7" value=<%=s_t7%>> </u>
<FD> < :;,>
<p> <;:J> <u> amount <input type="text" name="t8" value=<%=s_t8%>></u>
<ID>< p>
<p> <;:J> <u> debit <input type="text" name="t9" value=<%=s t9%>></u>
<ID>< 'p>
<p> <;:J> <u> insulation Number <input type="text" name="tlO"
valce=<%=s_t10%>></u> </p>
<p> <::nput. type="submit" value="update"> </p>

</fo::::::rr>
</body>

A.99. balanizo.asp
<%@Language="VBScript"%>
<%dim s_t.O
s_tO=CLng(Request.form("tO"))
s_tl=Request. form ("tl")
s_t2=Request. form ("t2")
s_t3=Request. form ("t3")
s_t4=Request. form ("t4")
s_t5=Request. form ("t5")
s_t6=Request. form ("t6")
s_t7=Request. form ("t7")
s_t8=Request. form ("t8")
s_t9=Request. form ("t9")
s_tlO=Request. form ("tlO")
set db=Server. createobj ect ("ADODB. Connection")

193

db.open "Driver={Microsoft Access Driver (*.mdb)};
DBQ="&server.mappath("cons.mdb")
sql= "UPDATE balanizo set name=' "&s_tl&"', surname=' "&s_t2&"',
tel_no=' "&s_t3&"', mobile_phone=' "&s_t4&"', address=' "&s_t5&"',
e_mail=' "&s_t6&"', u_date='"&s_t7&"', amount="&s_t8&", debit="&s_t9&",
insulation_number='"&s tlO&"' where ID="&s tO&""
db.execute (sql)
db.close
set db=nothing%>
<p align="center"> Your
details are updated successfully </p>
<p align="center"> BACK </p>

A.100. About us.html
<html>
<body bgcolor="32CD32">
<p align="center"> <img src = "C:\Documents and Settings\x\My
Documents\resimler\DSC02169.JPG" width=600 height=300>
 <p align="center"> ABOUT COMPANY </p>
 <p align="center"> WORKERS ON THE CONSTRUCTION </p>

<p align="center"> Back to Home Page </p>
</body>
</html>

A.101. History.html
<html>
<Body bgcolor="#228B22">
<p align="center"> <marquee
behavior="alternate"> ~ ABOUT COMPANY ~ </marquee>
</p>
<pre> Our company establish
by Ahmet Gocen. He is director for this company.

The company to established in 20m2 small and rent place
for make and sell plate and glass

on Dr. Fazil Klicuk main street on Gonyeli/Glizelyurt
main road in 1995 .

Atfirst the company name is Irfan Ticaret. After that we
develop our works with ironmongery.

The company place moved in 280m2 show room place and add
insulation/construction works

to job at the same street in 2000.
In these years our company build twins ans single duplex

villas and sell them.
Our buildings has been constructed by first

eartquake system calculation.
And use quality materials and best workmanship when the

buildings has been constructed.

Our company do not compensate about quality and
confidence.

In our buildings all of the steps have been taken
photos.

Our aim is do not make huge amount of work,our aim
is to

;)Uild safety and quality buildings and sell

Ou~ advise who wants to buy home come and visit our

~·ie can build buildings about your
spec~r- .~sh. </pre>
<p a~~:;;==•ce:::cer"> Back </p>

</bociy>
</ht::;L>

A.102. workers.html
<html>
<body bgco~o~=·#32CD32">
< table -.-=..c.::.2= • 15 0" border=" 1" >
<Tr> <-::-::J> <:'ont face="Broadway" size="l0"> Director </TD>

</table>
<pre><"-£ s~c="C:\Documents and Settings\x\My Documents\DSC00228.JPG"
width=·:::::• 2eight="l00"> His name is
Ahmet C-o~e.:::. 3e is -director on the company. He was established this
compa.2.y.

<table -..-~c.::~="380" border="l" >
<Tr><'=)> <::ont face="Broadway" size="lO"> Civil Engineer </TD>

</tao2-e>
<pre> <_:_:;;g src="C:\Documents and Settings\x\My Documents\DSC00425.JPG"
width=·:ao• height="l00"> His
name ~s Canit Go~en. He graduated from DAU in 2008. He is already
share.~o::._oer on the company.

He has been worken this company since he graduated.
E_rna~::._:ca::iitgocen@gmail.com </pre>

<tao2-e -,.-idth=" 52 0" border=" l" >
<Tr><':'=>> Computer Engineer </TD>

</tao::._e>
<pre> <i:ug src="C:\Documents and Settings\x\My Documents\DSC02139.JPG"
width="l00" height="lOO"> Her
name is Anl$ Oztekin. She graduate from Near East University in 2008.

She design this web city for the company.
E_mail:anisoztekin@gmail.com

<table width="520" border="l" >
<Tr> <TD> Electrical Engineer </TD>

</table>
<pre>
 His name is Dogan
IZDIGIL. His graduated from Gazi University in 2001

He has been worken this company since 2003.
E_mail:doganizzigil@mynet.com

<table width="200" border="l" >
<Tr> <TD> Architect </TD>

</table>
<pre>
 His name is
Mehmet PEHLIVAN. His graduated from Gazi University in 1988.

195

He has been worken this company since 2000.

</pre>
<p align="center"> Back </p>
</body>
</html>

A.103. contactus.html
<HTML>
<Head> </Head>
<Body background="C:\Documents and Settings\x\My
Documents\resimler\DSC021588.JPG">
<p align="center"> <marquee
behavior="alternate"> ~ CONTACT INFORMATION ~ </marquee>
 </p>

<pre><Table width="58%" height="50%" align="center" Border=4
cellspacing=12 cellpadding=12 bgcolor="FFFFFF"> </pre>
<Tr> <TD> Phone </TD> <TD> +903922234634 </TD>
<Tr> <TD> Mobile phone </TD> <TD> +905428526339 </TD>
<Tr> <TD> Fax </TD> <TD> +903922234634 </TD>
<Tr> <TD> E_mail </TD> <TD>
Click to send e_mail </TD>
<Tr> <TD> Address </TD> <TD> Gtinaydin Sok. No:l Yenikent- Gonyeli I
Lefko9a </TD>
</Table>
<p align="center"> Back to Home Page <Ip>
</Body>
</HTML>

APPENDIXB
Table of The Database

USER ID
•. I PASSWORD ext V

- =~'· •,•.~ • • ,_.,,,~m=mm ,W.·m·.··.•.·•-··-u--~~·;, •,•

Figurel. Personn Data Table

person.mdb for .

password da

It has include the id (primary key), name, surname, tel, user id,

dmin entering the program, needed this database table. We have

is table.We use this table for admin can login the web page.

{nsert '[OOISM ;)HindOW ttelp'

Dete Type
JE,.ut.otJurnber.
!Text
j Text
.JText
lText
}Text

jText
· Text
Text
'Text
iText
Text

,-.,- .. ~-

Figure 2. Personnn Data Table

person.mdb for user. It has include the id (primary key), name, surname, user id,

password, tel, address, e_mail, start working date, status, department, salary datas. For

user entering the web page, needed this database table. We have user details in this

table. We use this table for user can login the web page. Admin take personnel to

worker company and admin give acknowledge the workers to enter web page like user

for make search, insert and update. So in this table include user id and password for

each workers get special user id and password to enter web page. And necessary details

about workers to admin know workers in the company.

197

,area ,_,,,,,,Text
P?!'L , , Text
!<md_of _build . Text
m2 Text
gr::ouncl_floor ~m;C,_,,... Text
first_floor _m2 -·,. Text
sitting_room_number Text
b,tchen_room_number Text
bathroom_number Text
badroom_number Text
balcony _number Text
central_heatting_system Text
fireplace Text
badroom_cupboard Text
kitchen cuoboard Text

Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text

Figure 3. Construction Data Table

Cons.mdb for description every thing about builds. It has include the id (primary key)

city. area, part, kind of build, m2, ground flar m2, first flar m2, sitting room number,

bathroom number, badroom number, balcony number, central heatting system,

fireplace, badroom cupboard, kitchen cupboard, ground flar flar, first flar flar, kind of

indows, kind of doors, garden length, swimming pool, cost and 5 picture datas.

Text ... · l

L~{~=-·-··· ···=t· ·
,TexL .•... -. -···-·+

Figure 4. Insulation Data T e

cription every thing about insulations. Ir

sulation, product, amount of m2 and picture
lude the id (primary

surname Text
tel_no Text
mobile _phone Text
address Text
e_mail Text
u_date Text
amount Number
debit Number

---·=~ll~·-•·-·-·-·.·.•hw.·.v.w.-.•.·.·.·•.•,•.w house_numlJer Text

Figure 5. Balance of constraction Data Table

Cons.mdb for details about who buy build. It has include the id (primary key), name,

surname, tel no, mobile phone, address, e mail, date, amount, debit and house number
datas.

motJile_phoi:ie
acldfess
email
u_date
amount
debit
insulation_number

Number
Number
Text

Figure 6. Balance of insulation Data Table

Cons.mdb for details about who buy insulation. It has include the id (primary key),

name, surname, tel no, mobile phone, address, e mail, date, amount, debit and insulation
number datas.

200

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGMENT

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENS
	ACKNOWLEDGMENT i
	ABSTRACT ii
	TABLE OF CONTENTS iii
	LIST OF ABBREVIATIONS vi
	INTRODUCTION vii
	CHAPTER ONE: HYPERTEXT MARKUP LANGUAGE 1
	CHAPTER TWO: ACTIVE SERVER PAGES (ASP) 21

	Images
	Image 1

	Page 5
	Titles
	CHAPTER THREE: DATABASE 64
	CHAPTER FOUR: STRUCTURED QUERY LANGUAGE 75

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	LIST OF ABBREVIATIONS

	Images
	Image 1

	Tables
	Table 1

	Page 8
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 9
	Titles
	CHAPTER 1
	HYPERTEXT MARKUP LANGUAGE (HTML)'/ - ','
	1.1 Introduction to HTML

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	1.2 What is HTML?
	1.3 History of HTML

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 11
	Titles
	1.4 Basic HTML Data Types
	1.4.1 Case Information

	Images
	Image 1
	Image 2

	Page 12
	Titles
	1.4.2 SGML Basic Types

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 13
	Titles
	1.4.3 URis
	1.4.4 Colors

	Images
	Image 1

	Tables
	Table 1

	Page 14
	Titles
	1.4.4.1 Notes on using colors
	1.4.5 Lengths

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	1.5 Elements in HTML Documents

	Images
	Image 1

	Page 16
	Titles
	1.6 HTML Document Structure
	1.7 Naming Scheme for HTML Documents

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Titles
	1.7.1 MIME Types and File Data Formats

	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Titles
	1.8 HTML Tables

	Images
	Image 1

	Page 20
	Titles
	1.9 Links And Anchors
	1.9.1 Visiting a linked resource

	Images
	Image 1

	Page 21
	Titles
	1.9.2 Other Link Relationships

	Images
	Image 1

	Page 22
	Titles
	1.10 Forms
	1.11 Controls

	Images
	Image 1
	Image 2

	Page 23
	Titles
	1.11.1 Control types

	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1

	Page 25
	Titles
	1.12 The FORM Element

	Images
	Image 1
	Image 2

	Page 26
	Titles
	1.13 The INPUT Element

	Images
	Image 1

	Page 27
	Titles
	1.13.1 Control types created with INPUT

	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Titles
	CHAPTER2
	ACTIVE SERVER PAGES (ASP)
	2.1 Introduction to ASP
	2.2 What Is ASP?

	Images
	Image 1

	Page 30
	Titles
	2.3 History of ASP
	2.4 What Do I Need?

	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Titles
	2.5 How Does It Work?

	Images
	Image 1

	Page 33
	Titles
	ŁŁŁŁ
	ŁŁŁŁ

	Images
	Image 1

	Page 34
	Titles
	2.6 Make Your First ASP Page

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 35
	Titles
	2.7 VBScript
	2.8 ASP Some Basic VBScript statements
	2.8.1 The DIM Statement

	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Titles
	2.8.2 The IF .. THEN Statement

	Images
	Image 1

	Page 38
	Images
	Image 1
	Image 2

	Page 1
	Titles
	2.8.3 The CASE Statement

	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	2.8.4 The For .. Next Loop

	Images
	Image 1
	Image 2

	Page 6
	Titles
	<IP>

	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	2.8.5 The Do .. Loop

	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1

	Page 10
	Titles
	2.8.6 All About Arrays

	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	2.9.1 Do the Math
	2.9 ASP Functional VBScript

	Images
	Image 1
	Image 2

	Page 13
	Titles
	2.9.2 Messing with Strings

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1

	Page 17
	Titles
	2.10 ASP Sending a Response
	2.10.1 Response.Write: Talking to the User

	Images
	Image 1

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1

	Page 20
	Titles
	2.10.2 Response.Redirect: Moving the User Around

	Images
	Image 1

	Page 21
	Titles
	2.11 ASP Forming Up
	,~:AR~,,;..
	. Cb ~ -.,;..c'
	\~ 1) <::
	2.11.1 Setting Up Your Forms

	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1

	Page 24
	Titles
	r

	Images
	Image 1

	Page 25
	Titles
	2.11.2 Request.Form: Getting the Info

	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
	2.11.3 Sending Out Some Email

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	2.12 Connecting to a Database

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	CHAPTER3
	3.1 Database
	3.2 History of Database

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	3.3 Database Models
	3.3.1 Hierarchical model
	3.3.2 Network model
	3.3.3 Relational model

	Images
	Image 1

	Page 7
	Titles
	3.3.4 Relational operations

	Images
	Image 1

	Page 8
	Titles
	3.3.5 Normal forms
	3.3.6 Post-relational database models

	Images
	Image 1

	Page 9
	Titles
	3.3.7 Object database models
	3.4 Database internals
	3.4.1 Storage and physical database design

	Images
	Image 1

	Page 10
	Titles
	3.4.2 Indexing

	Images
	Image 1

	Page 11
	Titles
	3.4.3 Transactions and concurrency

	Images
	Image 1

	Page 12
	Titles
	3.4.4 Replication
	3.4.5 Security
	3.4.6 Locking

	Images
	Image 1

	Page 13
	Titles
	3.4.7 Architecture
	3.5 Applications of databases

	Images
	Image 1

	Page 14
	Titles
	3.6 Database as Cultural Form

	Images
	Image 1

	Page 15
	Titles
	CHAPTER4
	STRUCTURED QUERY LANGUAGE (SQL)
	4.1 SQL

	Images
	Image 1

	Page 16
	Titles
	4.2 History of SQL

	Images
	Image 1

	Page 17
	Titles
	4.2.1 Standardization
	4.3 Scope and extensions
	4.3.1 Procedural extensions

	Images
	Image 1

	Page 18
	Titles
	4.3.2 Additional extensions

	Images
	Image 1

	Page 19
	Titles
	4.4 Language elements

	Images
	Image 1

	Page 20
	Titles
	4.4.1 Queries

	Images
	Image 1
	Image 2

	Page 21
	Titles
	4.4.2 Data manipulation
	4.4.3 Transaction controls

	Images
	Image 1

	Page 22
	Titles
	4.4.4 Data definition
	4.4.5 Data control
	4.4.6 Other

	Images
	Image 1

	Page 23
	Titles
	4.5 Criticisms of SQL

	Images
	Image 1

	Page 24
	Titles
	4.5.1 Reasons for lack of portability

	Images
	Image 1

	Page 25
	Titles
	CHAPTERS
	Online Financial System For A Constuction Company

	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1

	Page 30
	Titles
	entered successfully
	BACK
	Your details a

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Titles
	INGS OF CONSTRUCTION
	BUil
	BUlLIHN6S OF CONSTRUCTlON

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Page 38
	Titles
	entered successfully
	BACK
	Your details a

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	102

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1

	Page 4
	Titles
	BUILDINGS OF CONSTRUCTION

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	Your details re ntered successfully
	BACK

	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	IRFAN INSULATION

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 17
	Titles
	Your details re ntered successfully
	BACK

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Titles
	IRFAN INSULATION

	Images
	Image 1

	Page 26
	Titles
	Your details are entered successfully
	BACK

	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1

	Page 30
	Titles
	iooo 10 sso
	A 1 ams '6ziekin 2~ 032008 1000 1 o sooo
	ffr);·.-~-~-~-~ .. i·;·~-/~-~-~-~ .. t~r-~-~---~-~-bfr~- .: ~·-h~·~;_.· .. ~-dd/~·;·-~:·.-~-:~·~·1rr---·.-.- ., ~Iat~ i-~·;-~1atI~n n·~~h~~·,;·~·;·~~t-fd~·b.i{b·~t~~-~;-,
	(i"c{··~··~·~·;··(~·~/~-~-~~'.t-~{~·~.-:~-~-b\i~···p·h~·~-~---.~-~fd·;-~-~:~···.~-:~;"ff'(:::·· date Insulation number amount'.debit balance

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Titles
	CONCLUSION

	Images
	Image 1

	Page 9
	Titles
	REFERENCES

	Images
	Image 1

	Page 10
	Titles
	APPENDIX A
	PROGRAM CODE
	A.1. default.html
	140

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 11
	Titles
	141

	Images
	Image 1

	Page 12
	Titles
	142

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 13
	Titles
	143

	Images
	Image 1

	Page 14
	Titles
	144

	Images
	Image 1

	Page 15
	Titles
	i45

	Images
	Image 1

	Page 16
	Titles
	146

	Images
	Image 1

	Page 17
	Titles
	147

	Images
	Image 1

	Page 18
	Titles
	148

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 19
	Titles
	149

	Images
	Image 1

	Page 20
	Titles
	150

	Images
	Image 1

	Page 21
	Titles
	151

	Images
	Image 1

	Page 22
	Titles
	152

	Images
	Image 1

	Page 23
	Titles
	153

	Images
	Image 1

	Page 24
	Titles
	154

	Images
	Image 1

	Page 25
	Titles
	155

	Images
	Image 1

	Page 26
	Titles
	156

	Images
	Image 1

	Tables
	Table 1

	Page 27
	Titles
	157

	Images
	Image 1
	Image 2

	Page 28
	Titles
	158

	Images
	Image 1
	Image 2

	Page 29
	Titles
	159

	Images
	Image 1
	Image 2

	Page 30
	Titles
	160

	Images
	Image 1

	Page 1
	Titles
	161

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 2
	Titles
	162

	Images
	Image 1
	Image 2

	Page 3
	Titles
	163

	Images
	Image 1

	Page 4
	Titles
	164

	Images
	Image 1

	Page 5
	Titles
	165

	Images
	Image 1

	Page 6
	Titles
	166

	Images
	Image 1

	Page 7
	Titles
	167

	Images
	Image 1

	Tables
	Table 1

	Page 8
	Titles
	168

	Images
	Image 1

	Page 9
	Titles
	169

	Images
	Image 1

	Page 10
	Titles
	170

	Images
	Image 1

	Page 11
	Titles
	171

	Images
	Image 1

	Page 12
	Titles
	172

	Images
	Image 1

	Page 13
	Titles
	173

	Images
	Image 1
	Image 2

	Page 14
	Titles
	174

	Images
	Image 1
	Image 2

	Page 15
	Titles
	175

	Images
	Image 1

	Page 16
	Titles
	176

	Images
	Image 1

	Page 17
	Titles
	177

	Images
	Image 1

	Page 18
	Titles
	178

	Images
	Image 1

	Page 19
	Titles
	179

	Images
	Image 1

	Page 20
	Titles
	180

	Images
	Image 1

	Page 1
	Titles
	181

	Images
	Image 1
	Image 2

	Page 2
	Titles
	182

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	185

	Images
	Image 1

	Page 6
	Titles
	186

	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	188

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	190

	Images
	Image 1

	Page 11
	Titles
	191

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	192

	Images
	Image 1
	Image 2

	Page 13
	Titles
	<%s_====~= ·=~·)
	193

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Titles
	195

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	APPENDIXB

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 19
	Titles
	L~{~=-·-··· ···=t· ·

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1

	Page 20
	Images
	Image 1
	Image 2

