
NEAR EAST UNIVERSITY

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

COM 400
Electronic Shop

Mohammed Shaheen(20032539)

Supervisor: MS. BESiME ERIN

NICOSIA-2008

ACKNOWLEDGEMENT

First of all I would like to thank ALLAH for guiding me through my studying years.

I would like to thank all teachers in Computer Department who did teach me even a word

that might help me.

More over I feel proud to pay my special regards to my project adviser "Ms. BESIME

ERIN".

Also, I want to pay special regards to my family especially my father Nabel Shaheen and

my uncle Muneer Shaheen who are enduring these all expenses and supporting me in all

events.

They also encouraged me in crises; I shall never forget their sacrifices.

Many thanks to all my friends that I will never forget.

"'

,,~ı\~\,}!~1
NEU -'----

ABSTRACT

This project is a package program to store the company daily transaction concerning

purchasing and selling electronic sets.

The project uses Microsoft Visual Basic 6.0, Microsoft Access XP for creating Data

Base and some SQL Queries to manage database.

The aim of this project is to help the user to manage the data storage and use it when it

is needed.

Customers pass by in electronic shops to search for the best quality electronic sets and

prices, some customers pay in cash and some pay by using credit cards. So, the selling

operation must be managed and controlled daily. On the other hand the company must hire

employees with full information about them in which they can help the customers in

finding the electronic sets and writing full information about the product sells with the

customer information.

This program helps user to manage the whole information in general and save it in

database so they can use it later when it's needed.

ii

Table of Contents

ACKNOWLEDGEMENT

ABSTRACT

CONTENTS

INTRODUCTION

1. DATABASE

1.1 Overview

1.2 History

1.3 Database models

1.3 .1 Flat model

1.3.2 Hierarchical model

1.3.3 Network model

1.3.4 Relational model

1.3.4.1 Relational operations

1.3.5 Dimensional model

1.3 .6 Object database models

1.4 Database internals

1.4.1 Indexing

1.4.2 Transactions and concurrency

1.4.3 Replication

1.5 Applications of database

2. SQL ~

2.1 What is SQL

2.2 History

2.3 Standardization

2.4 Scope

2.5 Reasons For Lack Of Portability

2.6 SQL keywords

2.6.1 Data retrieval

ııı

il

iii

'Mi

2

2

3

5

5

6

6

7

8

9

10

11

11

11

12

12

14

14

14

15

16

17

18

18

2.6.2 Data manipulation

2.6.3 Data transaction

2.6.4 Data definition

2.6.5 Data control

2.7 Criticisms of SQL

2.8 Alternatives to SQL

3. MICROSOFT ACCESS

3 .1 Over View

3.2 History

3.3 Uses
-,

3 .4 Features

3.5 Development

4. VISUAL BASIC

4.1 Over View

4.2 Derivative languages

4.3 Language features

4.4 Controversy

4.4.1 Weaknesses

4.4.1.1 Performance

4.4.1.2 Error Handling

4.4.1.3 Simplicity

4.4.2 Strengths

4.4.2.1 Debugging ~

4.4.2.2 Simplicity

4.4.3 Programming constructs not present in Visual Basic

4.4.4 Characteristics present inVisual Basic

4.5 Evolution of Visual Basic

4.6 Timeline of Visual Basic (VB 1 to VB6)

5. DESCRIPTION OF THE SOFTWARE

5.1 Introduction

IV

20

21

21

22

24

26

29

29

30

30

31

32

35

35

35

37

39

39

39

40

40

40

40

41

42

43

44

44

48

48

5 .2 Description of the forms

CONCLUSION

REFERENCES

APPENDIX

V

53

67

68

69

INTRODUCTION

This project describes database system concepts and a simple Electronic shop program

which named Electronic shop. The application part uses Access and SQL quires. The

program is written by Microsoft Visual Basic 6.0, and Microsoft Access XP to create

database. Also it uses some SQL codes.

The project contains five chapters.

CHAPTER 1: describes information about the database in general, database models,

relational database operations and brands.

CHAPTER 2: describes basics of SQL. Its history, keywords and some of the

commands of it.

CHAPTER 3: describes Microsoft Access and its features.

CHAPTER 4: presents information about Visual Basic Language Features and the basic

concepts of Visual Basic.

CHAPTER 5: describes the program execution and basics about purchasing and selling

electronic sets and electronic company management.

Vl

DATABASE

1

••

CHAPTER ONE

DATABASE

1.1 Overview

_I The term database originated within the computer industry. Although its meaning

has been broadened by popular use, even to include non-electronic databases, this

article takes a more technical perspective. A possible definition is that a database is a

collection of records stored in a computer in a systematic way, so that a computer

program can consult it to answer questions. The items retrieved in answer to queries

become information that can be used to make decisions. The computer program used to

manage and query a database is known as a database management system (DBMS). The

properties and design of database systems are included in the study of information

scıence.

The central concept of a database is that of a collection of records, or pieces of

knowledge. Typically, for a given database, there is a structural description of the type

of facts held in that database: this description is known as a schema. The schema

describes the objects that are represented in the database, and the relationships among

them. There are a number of different ways of organizing a schema, that is, of modeling

the database structure: these are known as database models (or data models). The model

in most common use today is the relational model, which in layman's terms represents

all information in the form of multiple related tables each consisting of rows and
"columns (the true definition uses mathematical terminology). Tfıis model represents

relationships by the use of values common to more than one table. Other models such as~
the hierarchical model and the network model use a more explicit representation of

relationships.

Strictly speaking, the term database refers to the collection of related records, and

the software should be referred to as the database management system or DBMS. When

the context is unambiguous, however, many database administrators and programmers

use the term database to cover both meanings.

2

Many professionals would consider a collection of data to constitute a database only

if it has certain properties: for example, if the data is managed to ensure its integrity and

quality, if it allows shared access by a community of users, if it has a schema, or if it

supports a query language. However, there is no agreed definition of these properties.

Database management systems are usually categorized according to the data model

that they support: relational, object-relational, network, and so on. The data model will

tend to determine the query languages that are available to access the database. A great

deal of the internal engineering of a DBMS, however, is independent of the data model,

and is concerned with managing factors such as performance, concurrency, integrity,

and recovery from hardware failures. In these areas there are large differences between

products.

1.2 History

The earliest known use of the term 'data base' was in June 1963, when the System

Development Corporation sponsored a symposium under the title Development and

Management of a Computer-centered Data Base. Database as a single word became

common in Europe in the early 1970s and by the end of the decade it was being used in

major American newspapers. (Databank, a comparable term, had been used in the

Washington Post newspaper as early as 1966.).

The first database management systems were developed in the 1960s. A pioneer in

the field was Charles Bachman. Bachman's early papers show that his aim was to make

more effective use of the new direct access storage devices becoming available: until

then, data processing had been based on punched cards and magnetic tape, so that serial

processing was the dominant activity. Two key data models arose at this time:

CODASYL developed the network model based on Bachman's ideas, and (apparently

independently) the hierarchical model was used in a system developed by North

American Rockwell, later adopted by IBM as the cornerstone of their IMS product.

The relational model was proposed by E. F. Codd in 1970. He criticized existing

models for confusing the abstract description of information structure with descriptions

of physical access mechanisms. For a long while, however, the relational model

3

remained of academic interest only. While CODASYL systems and IMS were

conceived as practical engineering solutions taking account of the technology as it

existed at the time, the relational model took a much more theoretical perspective,

arguing (correctly) that hardware and software technology would catch up in time.

Among the first implementations were Michael Stonebraker's Ingres at Berkeley, and

the System R project at IBM. Both of these were research prototypes, announced during

1976. The first commercial products, Oracle and DB2, did not appear until around 1980.

The first successful database product for microcomputers was dBASE for the CP/Mand

PC-DOS/MS-DOS operating systems.

During the 1980s, research activity focused on distributed database systems and

database machines, but these developments had little effect on the market. Another

important theoretical idea was the Functional Data Model, but apart from some

specialized applications in genetics, molecular biology, and fraud investigation, the

world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some success

in fields where it was necessary to handle more complex data than relational systems

could easily cope with, such as spatial databases, engineering data (including software

engineering repositories), and multimedia data. Some of these ideas were adopted by

the relational vendors, who integrated new features into their products as a result.

In the 2000s, the fashionable area for innovation is the XML database. As with

object databases, this has spawned a new collection of startup companies, but at the

"same time the key ideas are being integrated into the established relational products.

XML databases aim to remove the traditional divide between documents and data,..
allowing all of an organization's information resources to be held in one place, whether

they are highly structured or not.

1.3 Database models

Various techniques are used to model data structure. Most database systems are built

around one particular data model, although it is increasingly common for products to

offer support for more than one model. For any one logical model various physical

4

implementations may be possible, and most products will offer the user some level of

control in tuning the physical implementation, since the choices that are made have a

significant effect on performance. An example of this is the relational model: all serious

implementations of the relational model allow the creation of indexes which provide

fast access to rows in a table if the values of certain columns are known.

A data model is not just a way of structuring data: it also defines a set of operations

that can be performed on the data. The relational models, for example, define operations

such as select, project, and join. Although these operations may not be explicit in a

particular query language, they provide the foundation on which a query language is

built.

1.3.1 Flat model

This may not strictly qualify as a data model, as defined above. The flat (or table)

model consists of a single, two-dimensional array of data elements, where all members

of a given column are assumed to be similar values, and all members of a row are

assumed to be related to one another. For instance, columns for name and password that

might be used as a part of a system security database. Each row would have the specific

password associated with an individual user. Columns of the table often have a type

associated with them; -defining them as· character data, date or time information,

integers, or floating point numbers. This model is, incidentally, a basis of the
spreadsheet.

1.3.2 Hierarchical model ~

In a hierarchical model, data is organized into a tree-like structure, implying a single

upward link in each record to describe the nesting, and a sort field to keep the records in

a particular order in each same-level list. Hierarchical structures were widely used in the

early mainframe database management systems, such as the Information Management

System (IMS) by IBM, and now describe the structure of XML documents. This

structure allows one 1: N relationship between two types of data. This structure is very

efficient to describe many relationships in the real world; recipes, table of contents,

ordering of paragraphs/verses, any nested and sorted information. However, the

5

hierarchical structure is inefficient for certain database operations when a full path (as

opposed to upward link and sort field) is not also included for each record.

1.3.3 Network model

The network model (defined by the CODASYL specification) organizes data using

two fundamental constructs, called records and sets. Records contain fields (which may

be organized hierarchically, as in the programming language COBOL). Sets (not to be

confused with mathematical sets) define one-to-many relationships between records:

one owner, many members. A record may be an owner in any number of sets, and a

member in any number of sets.

The operations of the network model are navigational in style: a program maintains

a current position, and navigates from one record to another by following the

relationships in which the record participates. Records can also be located by supplying

key values.

Although it is not an essential feature of the model, network databases generally

implement the set relationships by means of pointers that directly address the location of

a record on disk. This gives excellent retrieval performance, at the expense of

operations such as database loading and reorganization.

1.3.4 Relational model

The relational model was intrçduced in an academic paper by E. F. Codd in 1970 as

a way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

The products that are generally referred to as relational databases in fact implement

a model that is only an approximation to the mathematical model defined by Codd. The

data structures in these products are tables, rather than relations: the main differences

being that tables can contain duplicate rows, and that the rows (and columns) can be

treated as being ordered. The same criticism applies to the SQL language which is the

primary interface to these products. There has been considerable controversy, mainly

6

due to Codd himself, as to whether it is correct to describe SQL implementations as

"relational": but the fact is that the world does so, and the following description uses the

term in its popular sense.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. Relationships between tables are not defined explicitly; instead, keys

are used to match up rows of data in different tables. A key is a collection of one or

more columns in one table whose values match corresponding columns in other tables:

for example, an Employee table may contain a column named Location which contains

a value that matches the key of a Location table. Any column can be a key, or multiple

columns can be grouped together into a single key. It is not necessary to define all the

keys in advance; a column can be used as a key even if it was not originally intended to

be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to a row; this is defined as

the table's primary key.

A key that has an external, real-world meaning (such as a person's name, a book's

ISBN, or a car's serial number) is sometimes called a "natural" key. If no natural key is

suitable (think of the many people named Brown), an arbitrary key can be assigned

(such as by giving employees ID numbers). In practice, most databases have both

generated and natural keys, because generated keys can.be used internally to create links

between rows that cannot break, while natural keys can be used, less reliably, for

searches and for integration wTth other databases. (For example, records in two

independently developed databases could be matched up by social security number,
..•

except when the social security numbers are incorrect, missing, or have changed.)

1.3.4.1 Relational operations

Users (or programs) request data from a relational database by sending it a query

that is written in a special language, usually a dialect of SQL. Although SQL was

originally intended for end-users, it is much more common for SQL queries to be

7

embedded into software that provides an easier user interface. Many web sites, such as

Wikipedia, perform SQL queries when generating pages.

In response to a query, the database returns a result set, which is just a list of rows

containing the answers. The simplest query is just to return all the rows from a table, but

more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a Jorn.

Conceptually, this is done by taking all possible combinations of rows (the Cartesian

product), and then filtering out everything except the answer. In practice, relational

database management systems rewrite ("optimize") queries to perform faster, using a

variety of techniques.

There are a number ofrelational operations in addition to join. These include project

(the process of eliminating some of the columns), restrict (the process of eliminating

some of the rows), union (a way of combining two tables with similar structures),

difference (which lists the rows in one table that are not found in the other), intersect

(which lists the rows found in both tables), and product (mentioned above, which

combines each row of one table with each row of the other). Depending on which other

sources you consult, there are a number of other operators - many of which can be

defined in terms of those listed above. These include semi-join, outer operators such as

outer join and outer union, and various forms of division. Then there are operators to

rename columns, and summarizing or aggregating operators, and if you permit relation

values as attributes (RVA - relation-valued attribute), then operators such as group and
"' .ungroup. The SELECT statement ın SQL serves to handle all of these except for the

group and ungroup operators.

The flexibility of relational databases allows programmers to write queries that were

not anticipated by the database designers. As a result, relational databases can be used

by multiple applications in ways the original designers did not foresee, which is

especially important for databases that might be used for decades. This has made the

idea and implementation of relational databases very popular with businesses.

8

1.3.5 Dimensional model

The dimensional model is a specialized adaptation of the relational model used to

represent data in data warehouses in a way that data can be easily summarized using

OLAP queries. In the dimensional model, a database consists of a single large table of

facts that are described using dimensions and measures. A dimension provides the

context of a fact (such as who participated, when and where it happened, and its type)

and is used in queries to group related facts together. Dimensions tend to be discrete and

are often hierarchical; for example, the location might include the building, state, and

country. A measure is a quantity describing the fact, such as revenue. It's important that

measures can be meaningfully aggregated - for example, the revenue from different

locations can be added together.

In an OLAP query, dimensions are chosen and the facts are grouped and added

together to create a summary.

The dimensional model is often implemented on top of the relational model using a

star schema, consisting of one table containing the facts and surrounding tables

containing the dimensions. Particularly complicated dimensions might be represented

using multiple tables, resulting in a snowflake schema.

A data warehouse can contain multiple star schemas that share dimension tables,

allowing them to be used together. Coming up with a standard set of dimensions is an

important part of dimensional modeling.

1.3.6 Object database models

.
In recent years, the object-oriented paradigm has been applied to database

technology, creating a new programming model known as object databases. These

databases attempt to bring the database world and the application programming world

closer together, in particular by ensuring that the database uses the same type system as

the application program. This aims to avoid the overhead (sometimes referred to as the

impedance mismatch) of converting information between its representation in the

database (for example as rows in tables) and its representation in the application

program (typically as objects). At the same time object databases attempt to introduce

9

the key ideas of object programming, such as encapsulation and polymorphism, into the

world of databases.

A variety of these ways have been tried for storing objects in a database. Some

products have approached the problem from the application programming end, by

making the objects manipulated by the program persistent. This also typically requires

the addition of some kind of query language, since conventional programming

languages do not have the ability to find objects based on their information content.

Others have attacked the problem from the database end, by defining an object-oriented

data model for the database, and defining a database programming language that allows

full programming capabilities as well as traditional query facilities.

Object databases suffered because of a lack of standardization: although standards

were defined by ODMG, they were never implemented well enough to ensure

interoperability between products. Nevertheless, object databases have been used

successfully in many applications: usually specialized applications such as engineering

databases or molecular biology databases rather than mainstream commercial data

processing. However, object database ideas were picked up by the relational vendors

and influenced extensions made to these products and indeed to the SQL language.

1.4 Database internals

1.4.1 Indexing

All of these kinds of database can take advantage of indexing to increase their

speed, and this technology has advanced tremendously since its early uses in the 1960s

and 1970s. The most common kind of index is a sorted list of the ...contents of some

particular table column, with pointers to the row associated with the value. An index

allows a set of table rows matching some criterion to be located quickly. Various

methods of indexing are commonly used; B-trees, hashes, and linked lists are all

common indexing techniques.

Relational DBMSs have the advantage that indexes can be created or dropped

.without changing existing applications making use of it. The database chooses between

many different strategies based on which one it estimates will run the fastest.

10

Relational DBMSs utilize many different algorithms to compute the result of an

SQL statement. The RDBMS will produce a plan of how to execute the query, which is

generated by analyzing the run times of the different algorithms and selecting the

quickest. Some of the key algorithms that deal with joins are Nested Loops Join, Sort­

Merge Join and Hash Join

1.4.2 Transactions and concurrency

In addition to their data model, most practical databases ("transactional databases")

attempt to enforce a database transaction model that has desirable data integrity

properties. Ideally, the database software should enforce the ACID rules, summarized

here:

Atomicity: Either all the tasks in a transaction must be done, or none of them. The

transaction must be completed, or else it must be undone (rolled back).

Consistency: Every transaction must preserve the integrity constraints - the

declared consistency rules - of the database. It cannot place the data in a contradictory

state.

Isolation: Two simultaneous transactions cannot interfere with one another.

Intermediate results within a transaction are not visible to other transactions.

Durability: Completed transactions cannot be aborted later or their results discarded.

They must persist through (for instance) restarts of the DBMS after crashes

In practice, many DBMS's allow most of these rules to be selectively relaxed for

better performance.

Concurrency control is a method used to ensure that transactions are executed in a

safe manner and follow the ACID rules. The DBMS must be able to ensure that only

serializable, recoverable schedules are allowed, and that no actions of committed

transactions are lost while undoing aborted transactions.

11

1.4.3 Replication

Replication of databases is closely related to transactions. If a database can log its

individual actions, it is possible to create a duplicate of the data in real time. The

duplicate can be used to improve performance or availability of the whole database

system. Common replication concepts include:

Master/Slave Replication: All write requests are performed on the master and then

replicated to the slaves

Quorum: The result of Read and Write requests is calculated by queryıng a

"majority" ofreplicas.

Multimaster: Two or more replicas sync each other via a transaction identifier.

1.5 Applications of database

Databases are used in many applications, spanning virtually the entire range of

computer software. Databases are the preferred method of storage for large multiuser

applications, where coordination between many users is needed. Even individual users

find them convenient, though, and many electronic mail programs and personal

organizers are based on standard database technology. Software database drivers are

available for most database platforms so that application softwar can use a common

application programming interface (API) to retrieve the information stored in a

database. Two commonly used database APis are JDBC and ODBC. A database is also
@o

a place where you can store data and then arrange that data easily and efficiently.

12

Ch'iap"" . t€c··r ..J.;'• • • ' . • ~' -sÔ, '. 'I .·· '··'].

' '

il ' ~·is: ı:/' f'" !:~' ~: ~·. \ .. "' J
ru,'-lll....,~.·--'"""""' --·-~..;__~R--,~---11~,,wııı;.a,:~

SQL

13

CHAPTER TWO

SQL

2.1 What Is SQL

SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used

to communicate with a database. According to ANSI (American National Standards

Institute), it is the standard language for relational database management systems. SQL

statements are used to perform tasks such as update data on a database, or retrieve data

from a database. Some common relational database management systems that use SQL

are: Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Although most database

systems use SQL, most of them also have their own additional proprietary extensions

that are usually only used on their system. However, the standard SQL commands such

as "Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to

accomplish almost everything that one needs to do with a database. This tutorial will

provide you with the instruction on the basics of each of these commands as well as

allow you to put them to practice using the SQL Interpreter.

2.2 History

An influential paper, "A Relational Model of Data for Large Shared Data Banks",

by Dr. Edgar F. Codd, was published in June, 1970 in the Association for Computing

Machinery (ACM) journal, Communications of the ACM, although drafts of it were

circulated internally within IBM in 1969. Codd's model became widely accepted as the

definitive model for relational database management systems (RDBMS or RDMS).

During the 1970s, a group at IBM's San Jose research center developed a database

system "System R" based upon, but not strictly faithful to, Codd's model. Structured

English Query Language ("SEQUEL") was designed to manipulate and retrieve data

stored in System R. The acronym SEQUEL was later condensed to SQL because the

word 'SEQUEL' was held as a trademark by the Hawker-Siddeley aircraft company of

the UK. Although SQL was influenced by Codd's work, Donald D. Chamberlin and

14

Raymond F. Boyce at IBM were the authors of the SEQUEL language design.Their

concepts were published to increase interest in SQL.

The first non-commercial, relational, non-SQL database, Ingres, was developed in

1974 at U.C. Berkeley.

In 1978, methodical testing commenced at customer test sites. Demonstrating both

the usefulness and practicality of the system, this testing proved to be a success for

IBM. As a result, IBM began to develop commercial products based on their System R

prototype that implemented SQL, including the System/38 (announced in 1978 and

commercially available in August 1979), SQL/DS (introduced in 1981), and DB2 (in

1983).

At the same time Relational Software, Inc. (now Oracle Corporation) saw the

potential of the concepts described by Chamberlin and Boyce and developed their own

version of a RDBMS for the Navy, CIA and others. In the summer of 1979 Relational

Software, Inc. introduced Oracle V2 (Version2) for VAX computers as the first

commercially available implementation of SQL. Oracle is often incorrectly cited as

beating IBM to market by two years, when in fact they only beat IBM's release of the

System/38 by a few weeks. Considerable public interest then developed; soon many

other vendors developed versions, and Oracle's future was ensured.

2.3 Standardization

SQL was adopted as a standşrd by ANSI (American National Standards Institute) in

1986 and ISO (International Organization for Standardization) in 1987. ANSI has

declared that the official pronunciation for SQL is f Es kjuD 81/, although many English­

speaking database professionals still pronounce it as sequel.

15

The SQL standard has gone through a number ofrevisions:

Year Name Alias Comments

1986 SQL-86 SQL-87 First published by ANSI. Ratified by ISO in

1987.

1989 SQL-89 Minor revision.

1992 SQL-92 SQL2 Major revision (ISO 9075).

1999 SQL:1999 SQL3 Added regular expression matching, recursive

queries, triggers, non-scalar types and some

object-oriented features. (The last two are

somewhat controversial and not yet widely

supported.)

2003 SQL:2003 Introduced XML-related features, window

functions, standardized sequences and columns

with auto-generated values (including identity-

columns).

The SQL standard is not freely available. SQL: 2003 may be purchased from ISO or

ANSI. A late draft is available as a zip archive from Whitemarsh Information Systems

Corporation. The zip archive contains a number of PDF files that define the parts of the

SQL: 2003 specification.

2.4 Scope

SQL is defined by both ANSI and ISO. There are many extensions to and variations
'•

on the version of the language. Many of these extensions are of a proprietary nature,

such as Oracle Corporation's PL/SQL, IBM's SQL PL (SQL Procedural Language) and

Sybase I Microsoft's Transact-SQL. Commercial implementations commonly omit

support for basic features of the standard, such as the DATE or TIME data types,

preferring some variant of their own. SQL code can rarely be ported between database

systems without major modifications, in contrast to ANSI C or ANSI Fortran, which

can usually be ported from platform to platform without major structural changes.

16

SQL is designed for a specific, limited purpose - querying data contained in a

relational database. As such, it is a set-based, declarative computer language rather than

an imperative language such as C or BASIC which, being general-purpose, are designed

to solve a much broader set of problems. Language extensions such as PL/SQL bridge

this gap to some extent by adding procedural elements, such as flow-of-control

constructs. Another approach is to allow programming language code to be embedded

in and interact with the database. For example, Oracle and others include Java in the

database, while PostgreSQL allows functions to be written in a wide variety of

languages, including Perl, Tel, and C.

SQL contrasts with the more powerful database-oriented fourth-generation

programming languages such as Focus or SAS in its relative functional simplicity and

simpler command set. This greatly reduces the degree of difficulty involved in

maintaining SQL source code, but it also makes programming such questions as 'Who

had the top ten scores?' more difficult, leading to the development of procedural

extensions, discussed above. However, it also makes it possible for SQL source code to

be produced (and optimized) by software, leading to the development of a number of

natural language database query languages, as well as 'drag and drop' database

programming packages with 'object oriented' interfaces. Often these allow the resultant

SQL source code to be examined, for educational purposes, further enhancement, or to

be used in a different environment.

2.5 Reasons For Lack Of Portability

lit
There are several reasons for this lack of portability between database systems:

The complexity and size of the SQL standard means that most €latabasesdo not

implement the entire standard.

The standard does not specify database behavior in several important areas (e.g.

indexes), leaving it up to implementations of the standard to decide how to behave.

The SQL standard precisely specifies the syntax that a conforming database system

must implement. However, the standard's specification of the semantics of language

constructs is less well-defined, leading to areas of ambiguity.

17

Many database vendors have large existing customer bases; where the SQL standard

conflicts with the prior behavior of the vendor's database, the vendor may be unwilling

to break backward compatibility.

Some believe the lack of compatibility between database systems is intentional in

order to ensure vendor lock-in.

2.6 SQL keywords

SQL keywords fall into several groups.

2.6.1 Data retrieval

The most frequently used operation in transactional databases is the data retrieval

operation. When restricted to data retrieval commands, SQL acts as a declarative

language.

SELECT is used to retrieve zero or more rows from one or more tables in a database.

In most applications, SELECT is the most commonly used Data Manipulation Language

command. In specifying a SELECT query, the user specifies a description of the desired

result set, but they do not specify what physical operations must be executed to produce

that result set. Translating the query into an efficient query plan is left to the database

system, more specifically to the query optimizer.

Commonly available keywords related to SELECT include:
Ill

FROM is used to indicate from which tables the data is to be taken, as well as how the

tables JOIN to each other.

WHERE is used to identify which rows to be retrieved, or applied to GROUP BY. WHERE

is evaluated before the GROUP BY.

GROUP BY is used to combine rows with related values into elements of a smaller set

of rows.

18

HAVING is used to identify which of the "combined rows" (combined rows are

produced when the query has a GROUP BY keyword or when the SELECT part contains

aggregates), are to be retrieved. HAVING acts much like a WHERE, but it operates on the

results of the GROUPBY and hence can use aggregate functions.

ORDER BY is used to identify which columns are used to sort the resulting data.

Data retrieval is very often combined with data projection; usually it isn't the

verbatum data stored in primative data types that a user is looking for or a query is

written to serve. Often the data needs to be expressed differently from how it's stored.

SQL allows a wide variety of formulas included in the select list to project data. A

common example would be:

SELECT UnitCost * Quantity As TotalCost FROM Orders

Example 1:

SELECT * FROM books

WHERE price> 100.00 and price< 150.00

ORDER BY title

This is an example that could be used to get a list of expensive books. It retrieves

the records from the books table that have a price field which is greater than 100.00 and

less than 150.00. The result is sorted alphabetically by book title. The asterisk (*) means

to show all columns of the books table. Alternatively, specific columns could be named.

Example 2:

SELECT books.title, count(*) AS Authors

FROM books

JOIN book authors

ON books.book number= book authors.book number- -

19

GROUP BY books.title

Example 2 shows both the use of multiple tables in a joın, and aggregation

(grouping). This example shows how many authors there are per book. Example output

may resemble:

Title Authors

SQL Examples and Guide 3

The Joy of SQL 1

How to use Wikipedia 2

Pitfalls of SQL 1

How SQL Saved my Dog 1

2.6.2 Data manipulation

First there are the standard Data Manipulation Language (DML) elements. DML is

the subset of the language used to add, update and delete data.

INSERT is used to add zero or more rows (formally tuples) to an existing table.

UPDATE is used to modify the values of a set of existing table rows.
'

(!O

MERGE is used to combine the data of multiple tables. It is something of a

combination of the INSERT and UPDATE elements. It is defined in the SQL:2003
'I

'standard; prior to that, some databases provided similar functionality via different

syntax, sometimes called an "upsert".

TRUNCATE deletes all data from a table (non-standard, but common SQL command).

DELETE removes zero or more existing rows from a table.

Example:

20

INSERT INTO my_table (fieldl, field2, field3) VALUES ('test', 'N', NULL);

UPDATE my_table SET fieldl = 'updated value' WHERE field2 = 'N';

DELETE FROM my_table WHERE field2 = 'N';

2.6.3 Data transaction

Transaction, if available, can be used to wrap around the DML operations.

BEGIN WORK (or START TRANSACTION, depending on SQL dialect) can be used to

mark the start of a database transaction, which either completes completely or not at all.

COMMIT causes all data changes in a-transaction to be made permanent.

ROLLBACK causes all data changes since the last COMMIT or ROLLBACK to be

discarded, so that the state of the data is "rolled back" to the way it was prior to those

changes being requested.

COMMIT and ROLLBACK interact with areas such as transaction control and locking.

Strictly, both terminate any open transaction and release any locks held on data. In the

absence of a BEGIN WORK or similar statement, the semantics of SQL are

implementation-dependent.

Example:

BEGIN WORK;

UPDATE inventory SET quantity= quantity - 3 WHERE item= 'pants';

COMMIT;

2.6.4 Data definition

The second group of keywords is the Data Definition Language (DDL). DDL allows

the user to define new tables and associated elements. Most commercial SQL databases

21

have proprietary extensions in their DDL, which allow control over nonstandard

features of the database system.

The most basic items ofDDL are the CREATE and DROP commands.

CREATE causes an object (a table, for example) to be created within the database.

DROP causes an existing object within the database to be deleted, usually

irretrievably.

Some database systems also have an ALTER command, which permits the user to

modify an existing object in various ways for example, adding a column to an existing

table.

Example:

CREATE TABLE my_table (

my_fieldl INT,

my_field2 VARCHAR (50),

my_field3 DATE NOT NULL,

PRIMARY KEY (my_fieldl, my_field2))

All DDL statements are auto commit so while dropping a table need to have close

look at its future needs.

2.6.5 Data control

The third group of SQL keywords is the Data Control Language (DCL). DCL

handles the authorization aspects of data and permits the user to control who has access

to see or manipulate data within the database.

Its two main keywords are:

22

GRANT - authorizes one or more users to perform an operation or a set of operations

on an object.

REVOKE - removes or restricts the capability of a user to perform an operation or a

set of operations.

Example:

GRANT SELECT, UPDATE ON my_table TO some_user, another_user

Other

ANSI-standard SQL supports as a single line comment identifier (some extensions

also support curly brackets or C-style /* comments * I for multi-line comments).

Example:

SELECT * FROM inventory -- Retrieve everything from inventory table

Some SQL servers allow User Defined Functions

Database systems using SQL

Comparison of relational database management systems

Comparison of truly relatioJal database management systems

Comparison of object-relational database management systems

Comparison of SQL syntax

List of relational database management systems

List of object-relational database management systems

List of hierarchical database management systems

23

2. 7 Criticisms of SQL

Technically, SQL is a declarative computer language for use with "SQL databases".

Theorists and some practitioners note that many of the original SQL features were

inspired by, but in violation of, the relational model for database management and its

tuple calculus realization. Recent extensions to SQL achieved relational completeness,

but have worsened the violations, as documented in The Third Manifesto.

In addition, there are also some criticisms about the practical use of SQL:

Implementations are inconsistent and, usually, incompatible between vendors. In

particular date and time syntax, string concatenation, nulls, and comparison case

sensitivity often vary from vendor-to-vendor.

The language makes it too easy to do a Cartesian join, which results in "run-away"

result sets when WHERE clauses are mistyped. Cartesian joins are so rarely used in

practice that requiring an explicit CARTESIAN keyword may be warranted.

A similar and more common problem is that of Exploding joins; this is something

between what the user desired and a full-blown Cartesian join. What happens is that part

of the relationship or criteria has not been defined, and the database engine returns all

possible combinations of records that satisfy the ill-defined query criteria. Most often

this happens in systems which use compound keys that are not respected in the

offending query; for example maybe one out of three keys will be matched, resulting in

too much information, but still less than a Cartesian join would produce.

SQL's set theory techniques and operations us_ually cannot also apply to column
lists. Thus, column lists cannot be computed dynamically.

The difference between value-to-column assignment in UPDATE and INSERT can

result in confusion and added work for automated SQL code generation modules.

It does not provide a standard way, or at least a commonly-supported way, to split

large commands into multiple smaller ones that reference each other by name. This

tends to result in "run-on SQL sentences" and may force one into a deep hierarchical

24

nesting when a graph-like (reference-by-name) approach may be more appropriate and

better repetition-factoring. (Views, and stored procedures can help with this, but often

require special database privileges and are not really meant for single-query usage.)

Here is an illustration for a "duplication finder" query:

Sample Table "codeTable"

locat code descript

10 AA Foo Bar

20 AA Foo Baar

30 AA Foo Bar

1 O BB Glab Zab

20 BB Glab Zab

select*

from codeTable

where locat not in (30, 50)

and code not in

(

select code

from

(select code, descript --(gets unique code-and-descript combos)

from codeTable

where locat not in (30, 50)

25

group by code, descript)

group by code

having count(*)> 1)

order by code, locat

Here we have a table of codes in which we want to find and study typos in the

descriptions that are supposed to repeat for each location. (Perhaps the repetition is bad

normalization, but sometimes one has to deal with such data from clunky old systems.)

For example, the second row in the sample data has the typo "Baar".

In this case we want to ignore codes from location 30 and 50 because we know they

are not being used right now and thus we don't care to inspect them. To do it properly,

we have to apply the filter in two different places. I see this kind of thing in a good

many queries. There may be ways around such, but they are not obvious and not

general-purpose solutions to such.

2.8 Alternatives to SQL

A distinction should be made between alternatives to relational query languages and

alternatives to SQL. The lists below are proposed alternatives to SQL, but are still

(nominally) relational. See navigational database for alternatives to relational.

• IBM Business System"12(IBM BS12)

• Tutorial D

TQL - Luca Cardelli (May not be relational)

Top's Query Language - A draft language influenced by IBM BS12.Tentatively

renamed to SMEQL to avoid confusion with similar projects called TQL.

• Hibernate Query Language [2] (HQL) - A Java-based tool that uses modified

SQL

• Quel introduced in 1974 by the U.C. Berkeley Ingres project.

26

• Object Query Language - Object Data Management Group.

• Data log

• LINQ

"'

27

~- . .• J a

~h~~·ter·3

MICROSOFT
ACCESS

28

CHAPTER THREE

MICROSOFT ACCESS

3.1 Overview

I.I'ıt i

ıı !
I

Figure 3.1: MICROSOFT ACCESS

Microsoft Access (current full name Microsoft Office Access) is a relational

database management svstem from Microsoft, packaged with Microsoft Office

Professional which combines the relational Microsoft Jet Database Engine with a

graphical user interface.

Microsoft Access can use data stored in Access/Jet, Microsoft SOL Server, Oracle,

or any ODBC-compliant data container. Skilled software developers and data architects

use it to develop application software. Relatively unskilled programmers and non­

programmer "power users" can use it to build simple applications. -It supports some

object-oriented (00) techniques but falls short of being a fully 00 development tool.

Microsoft Access was also the name of a communications program from Microsoft,

meant to compete with ProComm and other programs. This Microsoft Access proved a

failure and was dropped. Years later Microsoft reused the name for its database

software.

29

3.2 History

Microsoft specified the minimum operating system for Version 1. 1 as Microsoft

Windows v3.0 with 4 MB of RAM. 6 MB RAM was recommended along with a

minimum of 8 MB of available hard disk space (14 MB hard disk space recommended).

The product was shipped on seven 1.44 MB diskettes. The manual shows a 1993

copyright date.

The software worked well with very large records sets but testing showed some

circumstances caused data corruption. For example, file sizes over 700 MB were

problematic. (Note that most hard disks were smaller than 700 MB at the time this was

in wide use). The Getting Started manual warns about a number of circumstances where

obsolete device drivers or incorrect configurations can cause data loss.

MS-Access's initial codename was Cirrus. This was developed before Visual Basic

and the forms engine was called Ruby. Bill Gates saw the prototypes and decided that

the Basic language component should be co-developed as a separate expandable

application. This project was called Thunder. The two projects were developed

separately as the underlying forms engines were incompatible with each other; however,

these were merged together again after VBA.

3.3 Uses

Access is used by small businesses, within departments of large corporations, and
~

hobby programmers to create ad hoc customized desktop systems for handling the

creation and manipulation of data. Access can also be used as the database for basic..•.
web based applications hosted on Microsoft's Internet Information Services and

utilizing Microsoft Active Server Pages ASP. More complex web applications may

require tools like PHP/MySQL or ASP/Microsoft SOL Server.

Some professional application developers use Access for rapid application

development, especially for the creation of prototypes and standalone applications that

serve as tools for on-the-road salesmen. Access does not scale well if data access is via

a network, so applications that are used by more than a handful of people tend to rely on

30

-

-

a Client-Server based solution such as Oracle, DB2, Microsoft SOL Server, Windows

Share Point Services, PostgreSQL, MySQL, Alpha Five, MaxDB, or FileMaker.

However, an Access "front end" (the forms, reports, queries and VB code) can be used

against a host of database back ends, including JET (file-based database engine, used in

Access by default), Microsoft SQL Server, Oracle, and any other ODBC-compliant

product.

Many developers who use Microsoft Access use the Leszynski naming convention,

though this is not universal; it is a programming convention, not a DBMS-enforced rule.

3.4 Features

One of the benefits of Access from a programmer's perspective is its relative

compatibility with SOL-queries may be viewed and edited as SQL statements, and

SQL statements can be used directly in Macros and VBA Modules to manipulate

Access tables.

Users may mix and use both VBA and "Macros" for programming forms and logic

and offers object-oriented possibilities.

MSDE (Microsoft SQL Server Desktop Engine) 2000, a mini-version of MS SQL

Server 2000, is included with the developer edition of Office XP and may be used with

Access as an alternative to the Jet Database Engine.

Unlike a complete RDBMS, the Jet Engine lacks database triggers and stored
"procedures. Starting in MS Access 2000 (Jet 4.0), there is a syntax that allows creating

queries with parameters, in a way that looks like creating stored procedures, but these..
procedures are limited to one statement per·procedure. Microsoft Access does allow

forms to contain code that is triggered as changes are made to the underlying table (as

long as the modifications are done only with that form), and it is common to use pass­

through queries and other techniques in Access to run stored procedures in RDBMSs

that support these.

In ADP files (supported in MS Access 2000 and later), the database-related features

are entirely different, because this type of file connects to a MSDE or Microsoft SQL

31

Server, instead of using the Jet Engine. Thus, it supports the creation of nearly all

objects in the underlying server (tables with constraints and triggers, views, stored

procedures and UDF-s). However, only forms, reports, macros and modules are stored

in the ADP file (the other objects are stored in the back-end database).

3.5 Development

Access allows relatively quick development because all database tables, queries,

forms, and reports are stored in the database. For query development, Access utilizes

the Query Design Grid, a graphical user interface that allows users to create queries

without knowledge of the SQL programming language. In the Query Design Grid, users

can "show" the source tables of the query and select the fields they want returned by

clicking and dragging them into the grid. Joins can be created by clicking and dragging

fields in tables to fields in other tables. Access allows users to view and manipulate the

SQL code if desired.

The programming language available in Access is, as in other products of the

Microsoft Office suite, Microsoft Visual Basic for Applications. Two database access

libraries of COM components are provided: the legacy Data Access Objects (DAO),

only available with Access, and the new ActiveX Data Objects (ADO).

Microsoft Access can be applied to small projects but scales poorly to larger

projects involving multiple concurrent users because it is a desktop application, not a

true client-server database. When a Microsoft Access database is shared by multiple

concurrent users, processing speed suffers. The effect is dramatic when there are more

than a few users or if the processing demands of any of the users are high. Access

includes an Upsizing Wizard that allows users to upsize their database to Microsoft

SOL Server if they want to move to a true client-server database.

Since all database queries, forms, and reports are stored in the database, and in

keeping with the ideals of the relational model, there is no possibility of making a

physically structured hierarchy with them.

One design technique is to divide an Access application between data and programs.

One database should contain only tables and relationships, while another would have all

32

programs, forms, reports and queries, and links to the first database tables.

Unfortunately, Access allows no relative paths when linking, so the development

environment should have the same path as the production environment (though it is

possible to write a "dynamic-linker" routine in VBA that can search out a certain back­

end file by searching through the directory tree, if it can't find it in the current path).

This technique also allows the developer to divide the application among different files,

so some structure is possible.

33

,,·c.l : e- ; 'h" I> ıa;, , ,; .' '_•, ,t'.' "'.,e-·, '. r . uzJ:'. !,i.>
.. '~ :F) ,, '. ;,Q··,.i ', :•,, ..

' ~ I . ' • , ,
, ~ ... , ıı,' • ··~·

,I·'" (>Ü ! , ~! " ,) ı . '\"1~1 - .. , . . , li'>'"ıLL.__....,,,...a.._ T f~-.. iacn,,fd-, .,.,.,~.A~~, .•~

VISUAL BASIC

34

CHAPTER FOUR

VISUAL BASIC

4.1 Overview

Visual Basic (VB) is an event driven programming language and associated

development environment from Microsoft. VB has been replaced by Visual Basic .NET.

The older version of VB was derived heavily from BASIC and enables the rapid

application development (RAD) of graphical user interface (GUI) applications, access

to databases using DAO, RDO, or ADO, and creation of ActiveX controls and objects.

A programmer can put together an application using the components provided with

Visual Basic itself. Programs written in Visual Basic can also use the Windows API, but

doing so requires external function declarations.

In business programming, Visual Basic has one of the largest user bases. According

to some sources, as of 2003, 52% of software developers used Visual Basic, making it

the most popular programming language at that time. Another point of view was

provided by the research done by Evans Data that found that 43% of Visual Basic

developers planned to move to other languages. Visual Basic currently competes with

PHP and C++ as the third most popular programming language behind Java and C.

4.2 Derivative languages

"'Microsoft has developed derivatives of Visual Basic for use in scripting. It is

derived heavily from BASIC and host applications, and has replaced tJıe original Visual
•

Basic language with a .NET platform version:

• Visual Basic for Applications (VBA) is included in many Microsoft

applications (Microsoft Office), and also in several third-party products like

WordPerfect Office 2002 and ESRI ArcGIS. There are small inconsistencies in the way

VBA is implemented in different applications, but it is largely the same language as

VB6.

• Here is an example of the language:

35

-

To find the area of a circle

Private Sub Commandl_Click ()

pi= 3. 14159265358979323846264

r = Val(Radius.Text)

a= pi* r *r

area.Text= Str$(a)

End Sub

Another Example to write the words "Hello world" on the form:

Private Sub Forml_Load()

Print "Hello World"

End Sub

• VBScript is the default language for Active Server Pages and can be used in

Windows scripting and client-side web page scripting. Although it resembles VB in

syntax, it is a separate language and it is executed by the Windows Script Host as

opposed to the VB runtime. These differences can affect the performance of an ASP

web site (namely inefficient string concatenation and absence of short-cut
~

evaluation). ASP and VBScript must not be confused with ASP.NET which uses

Visual Basic.Net or any other language that targets the .NET Common Language.•
Runtime.

• Visual Basic .NET is Microsoft's designated successor to Visual Basic 6.0, and is

part of Microsoft's .NET platform. The VB.NET programming language is a true

object-oriented language that compiles and runs on the .NET Framework. VB.NET

is a totally new tool from the ground up, not backwards compatible with VB6. For

this reason, it was suggested by Bill Vaughn, and wholeheartedly embraced by the

user community, that it ought to have been given an alternative name. Visual Fred

36

(or VFred for short) was the consensus choice. VB.NET ships with a rudimentary

utility to convert legacy VB6 code, although the inefficient nature of the resulting

code (due to major differences between the two languages) often leads programmers

to prefer manual conversion instead. Indeed, automated conversion is seen as a

fantasy.

Many users have found that automated conversion of anything more than trivial

VB6 programs is essentially impossible, with many TODO's marking incompatible

sections. A rewrite does take care of this, but a complete rewrite of a complex program
'

is often not practical for several reasons. First, a small company considering a rewrite

must usually choose between spending its budget on new features and maintenance, or

on conversion of a static program, which in itself adds no value. Second, a rewrite in a

new language means an extensive testing cycle, again an expense with no corresponding

market value. As a result, the migration path has not as often been from VB6 to

VB.NET, but rather to other languages and platforms such as Java, C# and Delphi.

4.3 Language features

Figure 4.1 A typical session in Microsoft Visual Basic 6

Visual Basic was designed to be easy to learn and use. The language not only allows

programmers to easily create simple GUI applications, but also has the flexibility to

develop fairly complex applications as well. Programming in VB is a combination of

visually arranging components or controls on a form, specifying attributes and actions

of those components, and writing additional lines of code for more functionality. Since

37

default attributes and actions are defined for the components, a simple program can be

created without the programmer having to write many lines of code. Performance

problems were experienced by earlier versions, but with faster computers and native

code compilation this has become less of an issue.

Although programs can be compiled into native code executables from version 5

onwards, they still require the presence of runtime libraries of approximately 2 MB in

size. This runtime is included by default in Windows 2000 and later, but for earlier

versions of Windows it must be distributed together with the executable.

Forms are created using drag and drop techniques. A tool is used to place controls

(e.g., text boxes, buttons, etc.) on the form (window). Controls have attributes and event

handlers associated with them. Default values are provided when the control is created,

but may be changed by the programmer. Many attribute values can be modified during

run time based on user actions or changes in the environment, providing a dynamic

application. For example, code can be inserted into the form resize event handler to

reposition a control so that it remains centered on the form, expands to fill up the form,

etc. By inserting code into the event handler for a keypress in a text box, the program

can automatically translate the case of the text being entered, or even prevent certain

characters from being inserted.

Visual Basic can create executables (EXE), ActiveX controls, DLL files, but is

primarily used to develop Windows applications and to interface web database systems.

Dialog boxes with less functionality (e.g., no maximize/minimize control) can be used

to provide pop-up capabilities. Controls provide the basic functionality of the

application, while programmers can insert additional logic within the appropriate event

handlers. For example, a drop-down combination box will automatically display its list

and allow the user to select any element. An event handler is called when an item is

selected, which can then execute additional code created by the programmer to perform

some action based on which element was selected, such as populating a related list.

Alternatively, a Visual Basic component can have no user interface, and instead

provide ActiveX objects to other programs via Component Object Model (COM). This

allows for server-side processing or an add-in module.

38

The language is garbage collected using reference counting, has a large library of

utility objects, and has basic object oriented support. Since the more common

components are included in the default project template, the programmer seldom needs

to specify additional libraries. Unlike many other programming languages, Visual Basic

is generally not case sensitive, although it will transform keywords into a standard case

configuration and force the case of variable names to conform to the case of the entry

within the symbol table entry. String comparisons are case sensitive by default, but can

be made case insensitive if so desired.

4.4 Controversy

Visual Basic is seen as a controversial language; many programmers have strong

feelings regarding the quality of Visual Basic and its ability to compete with newer

languages. It was designed to be a simple language. In the interest of convenience and

rapid development, some features like explicit variable declaration are turned off by

default, something that can be easily changed. This leads to some programmers praising

Visual Basic for how simple it is to use, but can also lead to frustration when

programmers encounter problems that the features would have detected. For instance, in

Visual Basic a common mistake is to incorrectly type the name of a variable, creating a

new variable with a slightly different name.

4.4.1 -Weaknesses

4.4.1.1 Performance

Early versions of Visual Basic were not competitive at performing computationally

intensive tasks because they were interpreted, and not compiled to machine code.

Although this roadblock was removed with VB5 (which compiles to the same

intermediate language and uses the same back end as Visual C++, some features of the

language design still introduce overhead which can be avoided in languages like Delphi

or C++. These are more likely to be encountered in code involving objects, methods,

and properties than in strictly numerical code.

39

4.4.1.2 Error Handling

Visual Basic does not have exception handling with the same capabilities of C++ or

Java, but the On Error facility does provide nonlocal error handling with features

similar to Windows Structured Exception Handling, including the ability to resume after

an error (a feature that is not provided by either of the other two languages, although of

dubious utility in production code).

4.4.1.3 Simplicity

Many critics of Visual Basic explain that the simple nature of Visual Basic is

harmful in the long run. Many people have learned VB on their own without learning

good programming practices. Even when VB is learned in a formal classroom, the

student may not be introduced to many fundamental programming techniques and

constructs, since much of the functionality is contained within the individual

components and not visible to the programmer. Since it is possible to learn how to use

VB without learning standard programming practices, this often leads to unintelligible

code and workarounds. Second, having many of the checks and warnings that a

compiler implements turned off by default may lead to difficulties in finding bugs.

Experienced programmers working in VB tend to turn such checks on.

Many of the criticisms fired at Visual Basic are in fact criticisms of its ancestor,

BASIC. A famous formulation by Edsger Dijkstra states, "It is practically impossible to

teach good programming to students that have had a prior exposure to BASIC: as

potential programmers they are mentally mutilated beyond hope of regeneration

(Dijkstra was no less scathing about FORTRAN, PL/I, COBOL and APL).

4.4.2 Strengths

4.4.2.1 Debugging

Visual Basic has a comprehensive set of debugging tools comparable to those

available in the Visual C++ products of the same time period. Features include

breakpoints, the ability to watch variables and modify watched variables while paused,

the ability to modify the point of execution, and the ability to make modifications to

40

ode while paused, often not requiring a program restart. Arbitrary code could be

executed in the "immediate window", an online interpreter, a very powerful feature. In

some cases, these features were more capable than their counterparts in Visual C++­

for instance, edit and continue in VC was inspired by the VB feature, and there has

never been a VC equivalent of the immediate window.

Furthermore, since VB5 it has been possible to generate debug symbols for a native

executable and step into VB code in external debuggers, like the Microsoft debugger or

the VC debugger, although the implementation of VB objects makes it difficult to

debug code that uses them heavily.

4.4.2.2 Simplicity

While some detractors argue that the simplicity of Visual Basic is a weakness, many

proponents of Visual Basic explain that the simple nature of Visual Basic is its main

strength, allowing very rapid application development to experienced Visual Basic

coders and a very slight learning curve for programmers coming from other languages.

Additionally, Visual Basic applications can easily be integrated with databases, a

common requirement. For example, by using controls that are bound to a database, it is

possible to write a VB application that maintains information within the database

without writing any lines of VB code.

Visual Basic is also a conglomerate of language features and syntax, with less

consistency, but more tolerance, than many modem programming languages. Many

language features like GoSub, Oh Error, and declaring the type of a variable by the last

character in the name (i.e. str$) are legacies from Visual Basie's BASIC roots, and are

included for backward-compatibility. The syntax ,of VB is different "from most other

languages, which can lead to confusion for new VB programmers. For example, the

statement "Dim a, b, c As Integer" declares "c" as integer, but "a" and "b" are declared

as Variant. Another source of confusion for new programmers is the different use of

parentheses for arguments of functions and subroutines. Other characteristics include

the entry of keyword, variable and subroutine names that are not case sensitive, and an

underscore "_" must be used for a statement to span multiple lines.

41

Some Visual Basic programmers perceive these as strengths needed to avoid case­

sensitive compiler errors, and accidentally omitting line-termination characters some

languages require (usually semicolons). For example, the ability to enter variable and

subroutine names in any case, coupled with the IDE's automatic correction to the case

used in the declaration, can be used to the programmer's advantage: by declaring all

names in mixed case, but entering them in lower case elsewhere, allows the programmer

to type faster and to detect typos when a token remains in lower case.

The language continues to attract much praise and criticism, and it continues to cater

to a large base of users and developers. The language is well suited for certain kinds of

GUI applications (e.g., front end to a database), but less suited for others (e.g., compute­

bound programs). Its simplicity and ease of use explain its popularity as a tool for

solving business problems - most business stakeholders do not care about technical

elegance and effectiveness, and concentrate instead on the cost effectiveness of Visual

Basic.

4.4.3 Programming constructs not present in Visual Basic.

Many of these features are implemented in Microsoft's replacement for Visual Basic

6 and prior, VB.NET.

• Inheritance. Visual Basic versions 5 and 6 are not quite object oriented languages as

they do not include implementation inheritance. VB5 and 6 do, however, include

specification of interfaces. That is, a single class can have as many distinct

interfaces as the programmôr desires. Visual Basic provides a specific syntax for

access to attributes called Property methods, and this is often implemented using

getters and setters in C++ or Java. Python has an equivalent notation to VB6's

property Let and Get.

• Threading support (can be done by using external Windows functions).

• C++ or Java exception handling. Error handling is controlled by an "on Error"

statement, which provides similar functionality to Windows Structured Exception

Handling.

• Typecasting. VB instead has conversion functions.

• Equivalents to C-style pointers are very limited.

42

• Visual Basic is limited to unsigned 8-bit integers and signed integers of 16 and 32

bits. Many other languages provide wider range of signed and unsigned integers.

• 32-bit Visual Basic is internally limited to UTF-16 strings, although it provides

conversion functions to other formats (16-bit Visual Basic is internally limited to

ASCII strings).

• Visual Basic doesn't allow constant variables to contain an array. Therefore extra

processing is required to emulate this.

While Visual Basic does not naturally support these features, programmers can

construct work-arounds to give their programs similar functionality if they desire.

4.4.4 Characteristics present in Visual Basic

Visual Basic has the following uncommon traits:

• Boolean constant True has numeric value -1. In most other languages, True ıs

mapped to numeric value 1. This is because the Boolean data type is stored as a 16-

bit signed integer. In this construct -1 evaluates to 16 binary 1 s (the Boolean value

True), and O as 16 Os (the Boolean value False). This is apparent when performing

a Not operation on a 16 bit signed integer value O which will return the integer value

-1, in other words True Not False. This inherent functionality becomes

especially useful when performing logical operations on the individual bits of an

integer such as And, Or, Xor and Not.

• Logical and bitwise operators are unified. This is unlike all the C-derived languages
Ill

(such as Java or Perl), which have separate logical and bitwise operators.

• Variable array base. Arrays are declared by specifying the upper l!;nd lower bounds

in a way similar to Pascal and Fortran. It is also possible to use the Option Base

statement to set the default lower bound. Use of the Option Base statement can lead

to confusion when reading Visual Basic code and is best avoided by always

explicitly specifying the lower bound of the array. This lower bound is not limited to

O or 1, because it can also be set by declaration. In this way, both the lower and

upper bounds are programmable. In more subscript-limited languages, the lower

bound of the array is not variable. This uncommon trait does not exist in Visual

Basic .NET and VBScript.

43

• Relatively strong integration with the Windows operating system and the

Component Object Model.

• Banker's rounding as the default behavior when converting real numbers to integers.

• Integers are automatically promoted to reals in expressions involving the normal

division operator (/) so that division of an odd integer by an even integer produces

the intuitively correct result. There is a specific integer divide operator (\) which

does truncate.

• By default, if a variable has not been declared or if no type declaration character is

specified, the variable is of type variant. However this can be changed with

Deftype statements such as Deflnt, DefBool, DefVar, De;EObj, DefStr. There are

12 Deftype statements in total offered by Visual Basic 6.0.

4.5 Evolution of Visual Basic

VB 1.0 was introduced in 1991. The approach for connecting the programming

language to the graphical user interface is derived from a prototype developed by Alan

Cooper called Tripod. Microsoft contracted with Cooper and his associates to develop

Tripod into a programmable shell for Windows 3.0, under the code name Ruby (no

relation to the Ruby programming language).

Tripod did not include a programming language at all, and Ruby contained only a

rudimentary command processor sufficient for its role as a Windows shell. Microsoft

decided to use the simple Program Manager shell for Windows 3.0 instead of Ruby, and

combine Ruby with the Basic lanıuage to create Visual Basic.

Ruby provided the "visual" part of Visual Basic-the form designer and editing..•
tools-along with the ability to load dynamic link libraries containing additional

controls (then called "gizmos"). Ruby's extensible gizmos later became the VBX

interface.

4.6 Timeline of Visual Basic (VBl to VB6)

• Project 'Thunder' was initiated.

44

• Visual Basic 1.0 (May 1991) was released for Windows at the Comdex/Windows

World trade show in Atlanta, Georgia.

Figure 4.2Visual Basic for MS-DOS

• Visual Basic 1 .O for DOS was released in September 1992. The language itself was

not quite compatible with Visual Basic for Windows, as it was actually the next

version of Microsoft's DOS-based BASIC compilers, OuickBASIC and BASIC

Professional Development System. The interface was textual, using extended ASCII

characters to simulate the appearance of a GUI.

• Visual Basic 2.0 was released in November 1992. The programming environment

was easier to use, and its speed was improved. Notably, forms became instantiable

objects, thus laying the foundational concepts of class modules as were later offered

in VB4.

• Visual Basic 3.0 was released in the summer of 1993 and came in Standard and

Professional versions. VB3 included version 1. 1 of the Microsoft Jet Database

Engine that could read and v.Jite Jet (or Access) 1.x databases.

• Visual Basic 4.0 (August 1995) was the first version that could create 32-bit as well

as 16-bit Windows programs. It also introduced the ability to write non-GUI classes

in Visual Basic.

• With version 5.0 (February 1997), Microsoft released Visual Basic exclusively for

32-bit versions of Windows. Programmers who preferred to write 16-bit programs

were able to import programs written in Visual Basic 4.0 to Visual Basic 5.0, and

Visual Basic 5.0 programs can easily be converted with Visual Basic 4.0. Visual

Basic 5.0 also introduced the ability to create custom user controls, as well as the

45

ability to compile to native Windows executable code, speeding up calculation­

intensive code execution.

• Visual Basic 6.0 (Mid 1998) improved in a number of areas, including the ability to

create web-based applications. VB6 is currently scheduled to enter Microsoft's

"non-supported phase" starting March 2008.

• Mainstream Support for Microsoft Visual Basic 6.0 ended on March 31, 2005.

Extended support will end in March 2008. In response, the Visual Basic user

community expressed its grave concern and lobbied users to sign a petition to keep

the product alive. Microsoft has so far refused to change their position on the matter.

Ironically, around this time, it was exposed that Microsoft's new anti-spyware

offering, Microsoft Antispyware, was coded in Visual Basic 6.0. Windows Defender

Beta 2 was rewritten as C++/CLI code, as mentioned in Paul Thurrott's review of

this product.

46

;c·· ;. . li' -~; .ı··~ ~ . t · '~'·§" :
·(·· .· . '· ..• , !!';;

l:·- ·. :a12 ~r~-·-·.
DESCRIPTION OF
THE SOFTWARE

47

CHAPTER FIVE

DESCRIPTION OF THE SOFTWARE

5.1 Introduction

Microsoft Visual Basic 6.0 has many special tools to create a project. After opening

the Visual Basic, a form is displayed to ask the user what kind of project is to be

selected. Click Standard Exe then (open) button.

~~
~

~ô
.~

. dr
@ffi®l~3¥ Ac:tiveX EXE ActiveX DLL~,\

~·
~.z,._

VB Wizard ActiveX Activex
Manager Document Dil Document Exe

,,.,... ~\ ,,.,... ~·, ,,.,... ~'

ActiveX
Control

~~·
Add in

~,~
,b.

VB Appıication
l:Vircırd

Data Project

~J

Jı_ Open

Canoe! J
Help ı

r Don, show this dialog .in the future

Figure 5.1 Starting a New Project

48

A fa5T
'"'' _J

j s -~ Projecn (Projectı)
· ·-- rı, Form ı (Form l)

t) g

D~
151 <,

~ 1!l

Figure 5.2 A new form will appear and by double clicking this form you can start

writing VB codes, and adding tools that needed to use in the project.

49

oaı.sReı,<>< ti (,MtaRı;;xın ı.osı) t.;l
OaU!K'::'pı:ı!t2(Pctaı:l~rt:.Osı')

O ©otiıR<portl, (t'"taReı,ort3.0,-r)
D DataR~orH(~Re«rt~.Or.r)ı;:,ı o,w,.,,,orts{!)ot•R"<"rts.o-..r)
El. Fo<'ml (F.,,,,,,l\m)

, El. fcı:rmm(F«rı\!O.ifmj
~- F-oım11("F.cnm1Lfrm)
E:l. Fomı 12 (fmni:2.fmı)
tl,. Forml3 tMOmltJ,frm)
~ Form1",'(f«n'i;!4.frm)
ti. Fom11s (r'«tfl!S.ftm)
tl. Fom116 (r«m11,frm)
"""· e- •. --,,_,_:<.,'.!' ..ff"~.,,-.~~-

I:rı•;e,!;~ Sub Fcınr1_Loo.d r.}

If U.:ıe:t'fypt '- "çue.::;t." Th~:.

Enc ır
::r-.ct Sur-

Eriv.a.te. Su;b For.ı:::._Q:u-e.z:ytJnload (Gnnccl -~ rncecer , ünl-o.:.tllıfode
If M~ı,:6.o:ı< (".Are ;;ou .=ure _ye~ ı;.ı.e.~t. ee ex.it.'?'~& ·.·b"i!::.SNo + '-

Figure 5.3 After finishing with writing the codes click the start button from the

Visual Basic menu or easily press F5 button from Keyboard. The Program will start

running unless there are errors on the code.

50

şdn ~ew troject FQrmat Qebug &un Q:y_ery neorem Iooi~ !\dd·Im; ~indow Jjel_p

tlewPrcje.ct
(i;. QpenProject.. ,

Ctrl+N
ceı-o

jı~mf1j
mMiiiwl;,ı,:@,,~i&:;;;#4@ii;iffij ~ ~ - - ---.- -1_'',.[;[J=o:j~=m======-====ec. . =nl ·O Dot5Repo,·t2 (PataReport2.Dsr) ~

-~ D?ıt~P.epo~t:3(DataReoort3.D;;r}

··O Daı,;Repoct4(DataReport4.Ds,) 1··.· .."~ Dat3.R.e:portS(Da~Q.eoort5,Dsr) :
tl- Forml {Forml.frm) - ,
~- F-ormıc, {Formn.frm) ~ !
tl. formll r~ornıll.frm) :

·t1- Form12 {Formı2.frm) · f
tl, Forml3 {Form 13. frm) --
tj, FormH {F-orml4.frm}
t'.l, Form15 {Form15.frm)
tl. Forml6 {Pcrml7.frm)

--~ Form17{Porml5.fnn)

""

gernove Project

Savg Project AS, ••

§.ave:F::ırrnı.frm

Sav'! .Fomü.frnı 6.~·
Rec czeıaet;

91'.rint..
l!JI MıtSe!yp ..

Mö!..e· Se.::tronic shoc.exe .. ;ı.s Boo Le an

eleevonc.vbc
I.:\.,. ebv she . ."fro;ec:t~le:tronic.vbp
, . , 'ebu ., , \froject\Computer Shop.vbp
...)3bu .. \ProJeı:t\Co!T'.puter Shop.vbp

cmct..?;.."bou:c Click ()
how vbHcdaı

<Jt+Q

cmd.Ex.ıc_Clıck(!
n_Que::sUr,.load.(O, 0)

,t._pp.Patrı: ~-

P::ivate Sub cmdl·ia.n.aı;_cı:.ck()
Fo::r::ı.2.Sh.ow ·-ıbHoda.l

cmaseLee_CU.ck ()
Fo::-I".t15.S'.::.;:.w vbModal

Sub Form_ Load ()

Figure 5.4 After testing the project if every thing works fine click the Visual Basic

Menu File and then Save Project button, all the changes will be saved.

51

t;!ew Project
· ~ Qpen Project ...

Aid Project ..
gemove :ProJect

. •"tfi)~-h;R;PQYti{Da·taRePöft2:.Dsr} ~­
D DataReoort.3 (DataRe:ıort3.Cısr}

'· .. 113 D~taReport4(D,:ıtaReport4,Dsr)
· - ..D D;,taReoortS (Da~Report.5,Dsr)

~- form 1 {Form l. frrri)
, · tı. Form10 {Fomı 10. fmı}

rı form11 {Formll.frm)
-ti. Form12(Form12.frm)

r"-tl, Form13 f"crml3. frm)
ti, Form14(Porml4.frm}

-ıh Formıs-{FonnlıS.frm}
r:ı. f.ormlô (Form17.frm)

-tl. Form17(Formıs.frm)

~ev~ Perrnt.fnn
Save Pormı.frm !,~ ...

ceı-s
f::-om emp erde::: by ernpcoue e ec"

~~- -
l1li Print Se;ıp... reger 4·
fill,:fi/jj~iüiiiii;:,£,,:;:·:,;::;c.;:::w:üa}~--ti~-':'!;.~~'-'-1!~~!3:~-ı!'_·:~:n!'_-3_t_l_·:i_r._Ç: _

cmd...ı.:-o~ut.-:C~ic-k{) J
hew voMo:.aı

Cul+?

j eectrcruc.vbo
ı_ I:\.., \ahu she..·•.prqject~iectronic.vbp
l \abu , . \Project\Comı:ıutersııcc. vbc
1 ~bu .. 'frojectlı(omputer Shop.vbp cmdEx.ıt._Click(}

m_Q"~e:::yVnloa:::i(O, C)

P::ivate. Sub c:md.Hane.ç_Click(.)
Fc::::m3.Show vDHcdal

cmd.Sales Click O
Fo:=-rn.1.5.Show •ıbModaı

svı-- vc~·m_r.cad ()

Figure 5.5 Saving a project and Making Executable file of the project is very easy.

By clicking File Menu of Visual Basic then select make EXE selection here.

52

5.2 Description of the forms

Figure 5.6 Security

In this form users should enter their users name and password to start the program, If

the user typed a wrong usemame or password a message will be displayed saying

invalid usemame or password, otherwise the user will enter the program successfully,

and there are three types of users admin, user, guest.

53

Managment Section Sales section

Figure 5.7 Main Menu

This is the main menu form, in this form there are 4 commands and each command

gives different information when you press any one of them.

For the management command it will lead you to a lot of forms, like attendance

command will lead you to add attendance and view the attendance, employee info will-lead you to employee form, daily report command will lead you to reports form, user

management command will lead you to user management form, and there are part..•
sources and stock entry, In sales section form it will lead me to buying entry and

account revenue, About command will lead you to about form, and the exit command

will lead you out of the program.

54

I

Attendance Bnp:loyees Info

Firnısinfo stock8my: ~J
(Jser Managnıen:t Daily Reports

Main Menu

Figure 5.8 Manage Section

This form leads me to the management operations in the program, as you see it lead me

to the attendance, employees' information, part sources, stock entry, user management,

and daily reports about all the operation we did though the program.

Add Attenqanre

V-ıew Attendanoe
"' I- ı

l
:.m ...,}~=ok,.. _,,.J]

l

Figure 5.9 Attendance

This form shows two commands, the first lead us to the attendance form, and the second

leads to view attendance form.

55

Attendance Information

Emp'loyee rtam.e:

Emp.loyee code:

Date: i m/26/2008 3
State:

I
I

~ncel

Figure 5.10 Attendance Information

In Attendance Information we can choose the employer name or his number and the

date and give information about his attendance daily, and write these information and

note it in a form and we can search and know these information to every employer in

specify date as we see in Figure 5.11 View Attendance

56

Employee Hame: ~ To: j 6 I l /2008 ..:.I IL ;Ş~~~~·"· .. .JDate: J ıf 3 /2008 2J
ID Em;:,loyee Name Date state
16
17
18

;s!aa
elae
elee

5/26/2008
5/30/2008
6/1/2008

Came To Work
Came To \ı\Jork
Came To \rıiork

Figure 5.11 View Attendance

57

.Seaırdıı :for fmployee: j Find J
Emı:ıdoy,ee,Ciode ; ~

Empl.oyee ~l.ame,: ,....-----------

Employee IP'ıho:ne,:

Em;pd oyee :EmıaJI Add: .. :

Employee Cify .:

f'ıu;ptoyee·Adct.ress,:.

Em:ppLo){EfeR,e,g, Date, :

EmpJ,oyee S;a;laı-y

New

! 9:56 PM
I

5/26/2008

for ı - -

Load Picture J
Save Update Delete MainMeı:ıu

Figure 5.12 Employee record

This is an Employee record which shows us all the information needed about an

employee. we might want to hire a new employee or we might want search, delete or

update information about him or her. So it's so useful and saves time. This employee

application form displays for us all the information we need to know about the person.

58

firms info

Search For Firm: Find

ifir.ın Code :

firm rıame :: (I
!firn1 Pilı,o:ne: ""'j O_[_

Firm Fax: fô'1
:Fırın Taxt:I'@: ..---------

FirınCfty:

iFır.111 -Adıd:ress :

Arın Reg Oa,te :

Save J Update JDelete Close

l 10:00 PM 5/26/2008

Figure 5.13 Firm info

This is a part sources form, here we can add different firm records. In this form we

can search, save, update and delete firms according to the firm code. Once a new firm is

added also their stocks are added in the database.

59

Firms info

search For Firm: Find

!firm, God:e:

Firm rıame : ~
ifiraı Pih:o.ne: ""lo_(_

firm Fax : [ör
!Firm Taıxt'l:oı: ..---------

lfirınüty:

Fir.ın Ad:dress :

Firm, Reg Ôate : I 5 /26/2008 :::]

Save Update Delete Close

ho:OO PM j 5/26/2008

Figure 5.13 Firm info

This is a part sources form, here we can add different firm records. In this form we

can search, save, update and delete firms according to the firm code. Once a new firm is

addedalso their stocks are added in the database.

59

Stock Records

Write Stock ffame:c j ı find

OrfindStockCode:

Stockfl!ame:

Arm. Codec:

Firm. f.ıame:

Stock BuyingOate :J 6 / 1 /2008
;&;.· ••• ---

-StockQuantity :

StockBuyPrice-.

Stock ProfPere :0/ııı

Stoe:kSe1l'Pr:ioe.:

f.1:in StockLev:.

Stock Min.levelSave Edit Clo.se

110:11 PM r6/1/2008

Figure 5.14 Stock record

This is a stock record. We can search, add, save, delete and edit stocks of computer
~

products. This form shows us the product of the stocks that are available.

60

"Usemame:·

····~·

Refresh

Figure 5.15 User management

This is an administration management form, in this form you can change the users

and those types like admin, user and guest and change those names and password; also

you can add a new users or search, update and delete them from the users form by the

database.

61

Select The 1Report:

Customer Report j
Employee Repo.rt }

Invoice Report J
Stoel~Repo.rt }

Mainf<IJenu

Figure 5.16 Daily Reports

This is a report form, which summaries the whole adding and selling events.

Here we have five reports, first the firm general report that show us a general

information about the firms and their stock, second we'll have the stock report which

shows us the stock code, name, quantity and the minimum level, third we'll have the

customer report which shows us the customer code, name, phone, address and the

registration date. Fourth we'll have the employee report which shows us the employee

code, name, phone and salary, at the end we'll have the invoice report which shows us

the invoice, customer and stock code, also the quantity price and the total invoice.
"

62

Buying Entry

Main Menu

Figure 5.17 sales section
This is a sales section form, and it has two commands, the first is buying entry and the

second is account revenue we can consider these as sales transaction in this program.

BUYING ENTRY

Find

Customer Cod,er r
CustomerJtanre : ~

Customer Phone : O[") · ·

Customer Tax,no.:

.CU$tornerC1ty :

Cı.:rstor:rıer Adtiress :

5/26/2008Cus Re.9Oate :

New Delete MainMenu

f 10:03 PM 15/26/2008

Figure 5.18 Buying Entry

63

This is a customer form which shows us the details of a customer who is willing to

buy a stock from the shop. Here we can add, search, delete and update the customer

information.

Also it leads us to the invoice form where the sales transaction happens.

Figure 5.19 Invoice

- The invoice form for selling stocks to the customers contains two types of

payments, Cash or credit. This invoice will give us information about stock unit, name,

amount, price and minimum level .At the end the sub total Include tax is calculated.-

64

CREDIT

Invoice No+ Credit Amount
Find

Customer No+ CreditAmount

LIST OF INVOICE BY CUSTOMER CODE
Invoice No I CustomerNo I invoice Date I E m~lo~ee Name I ı nvoice Amount

•• 14 12 j 5/14/2008 [Belel i 85
10 12 15/14/2008 I Atallah I 8 I
11 13 15/14/2008 ialaa
12 3 I 5/14/2008 lalaa I 100 I; Refresh jI
13 3 15/17/2008 Atallah I 25 i
15 l_1_ 15/20/2008 I Atallah I ı:-n.-.1

!

Figure 5.20 Account revenue

This credit form shows us all the list of credit payments.

This form shows us what the company owes, once the customer pays his or her

debits. The company will register the credit form in his or her invoice form.

65

:Stock Minimum level;s

StockCod:e Stock!liame 5tockllnit Stud:: Min.Level

Firm Menu L Main Menu

Figure 5.21 stock min levels

This form informs me how many stocks are available in the stock room.

When I run out of item, this message will appear on my screen to inform me that I

am running out of the minimum stock level.

66

CONCLUSION

Database management has evolved from a specialized computer application to a

central component of a modern computing environment. As such, knowledge about

database systems has become an essential part of an education in computer science. Our

purpose in this project is to present the fundamental concepts of database management.

These concepts include aspects of database design, and database-system
implementation.

The software described in the project is prepared by Visual Basic 6.0 and Microsoft

Access XP. Both of them are powerful tools to create and operate sophisticated data
organizations.

Visual Basic 6.0 has many tools to help programmer. However, there are new

editions of Visual Basic, the version 6.0 is preferred, to show that this version is also

sufficient to make good software.

This project contains many examples of using database (SQL) quires like deleting,
updating and inserting information's in the data.

67

REFERENCE

[1] http://sqlcourse.com/intro.html

[2] http://en.wikipedia.org/wiki/SQL

[3] http://www.unixspace.com/ context/ databases.html#EA V

[4] http://en.wikipedia.org/wiki/Visual_ Basic

[5) http://www.classicvb.org/

[6) http:// en.wiki pedia.org/wiki/Database

[7] Visual Basic 6 Black Book

"'

68

APPENDIX
SOURCE CODE LISTINGS

The user name form

Dim sqlstr As String
Dim database As ADODB.Connection
Dim rs As Recordset

Private Sub StartProgress()
Dim i As Integer
Frame3.Visible = True
X.Width = 1
For i = 1 To 6255
X.Width = X.Width + 1
DoEvents
Next
Frame3.Visible = False
End Sub

Private Sub Command1 _Click()
Commandl .Enabled= False
conn
sqlstr ="select* from users where usemame="' & Textl .Text & "' and password="' &
Text2.Text & ""'
Set rs= database.Execute(sqlstr)
StartProgress
If Not rs.EOF Then
Ifrs![UserName] = Textl.Text And rs![Password] = Text2.Text Then
On Error Resume Next
UserType = rs.Fields("rest")
Unload Me
Else ~
MsgBox "Error: Invalid Usemame or Password!'!", vbCritical
Command}.Enabled= True
Textl .SetFocus
End If
Else
MsgBox "Error: Invalid Usemame or Password!l!", vbCritical
Command}.Enabled= True
Textl .SetFocus
End If
End Sub

Private Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseServer

69

sqlstr = "provider=Microsoft.jet.oledb.3 .51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Private Sub Command2 _Click()
End
End Sub

-
Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
If Not UnloadMode = vbFormCode Then End
End Sub

Private Sub Textl_KeyDown(KeyCode As Integer, Shift As Integer)
If KeyCode = vbKeyReturn Then Text2.SetFocus
End Sub

Private Sub Text2_KeyDown(KeyCode As Integer, Shift As Integer)
IfKeyCode = vbKeyRetum Then Commandl.SetFocus
End Sub

The main menu form

Dim i As Integer
Dim My_ Name, My_ Str As String
Dim IsMoving As Boolean

Private Sub cmdAbout_ Click()
Formlü.Show vbModal
End Sub

Private Sub cmdExit_ Click()
Call Form_QueryUnload(O, O)
End Sub

Private Sub cmdManag_ Click()
Form3.Show vbModal
End Sub

Private Sub cmdSales _Click()
Form15.Show vbModal
End Sub

Private Sub Form_Load()
IfUserType = "guest" Then
End If
End Sub

70

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
IfMsgBox("Are you sure you want to exit?", vbYesNo + vbQuestion, "Exit")= vbYes
Then
End
Else
Cancel = True
End If
End Sub

Private Sub Form_ Resize()
With Imagel
. Width = Me. Width
.Height= Me.Height
End With
End Sub

Private Sub Timerl _Timer()
Dim sString As String
My_Name = Left(Labell.Caption, 1)
My_Str = Right(Labell.Caption, Len(Labell.Caption) - 1)
Labell.Caption = My_Str + My_Name
sString = " MOHAMMED SHAHEEN ... 20032539 ... Nicosia 2008
If Timerl.Tag = O Then
Me.Caption= sString
Timerl. Tag = 1

II

Elself Timerl.Tag < Len(sString) Then
Me.Caption= Right(sString, Len(sString) - Timerl.Tag)
Timerl.Tag = Timerl.Tag + 1
Elself Timerl.Tag = Len(sString) Then
Me.Caption= sString
Timerl .Tag= O
End If
End Sub

Firm info form

Option Explicit
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

Dim p As Panel
Private Sub cmdNewfrm_ Click()
Call clear
Call coun
cmdfrmSav.Enabled = True
cmdfrmUpd.Enabled = False

71

cmdfrmDel.Enabled = False
txtFrmName.SetFocus
End Sub

Private Sub cmdfrmSav _Click()
Dim sql, rslt, rsltl
rslt = MsgBox("Do You Want To Save That?", vbinformation + vbYesNo, "Save")

If rslt = vbYes Then
IftxtFrmName.Text <>""And txtFrmPhn.Text <> ""
And txtFrmFax.Text <>""And txtFrmTax.Text <> ""
And txtFrmCity.Text <> 1111 And txtFrmAdd.Text <>""Then
sql = "insert into fırms(fırmname, fırmcode, fırmphone, fırmfax, fırmtaxno, fırmcity,
fırmadres, fırmregdate) values("
sql = sql & 11111 & txtFrmName.Text & 111,"

sql = sql & "" & txtFrmCode.Text & ","
sql = sql & 11111 & txtFrmPhn.Text & 111,11

sql = sql & 11111 & txtFrmFax.Text & 111,11

sql = sql & 11111 & txtFrmTax.Text & 111,11

sql = sql & 11111 & txtFrmCity & 111,11

sql = sql & 11111 & txtFrmAdd & 111,11

sql = sql & 11111 & DtPckfrmRegDat.Value & 111)"

database.Execute (sql)
Dimi As Integer
StartProgress
rsltl = MsgBox("Firm Information Save Successful! ", , "Saved")
cmdfrmSav.Enabled = False
cmdfrmUpd.Enabled = True
cmdfrmDel.Enabled = True
cmdfrmFnd.Enabled = True
Else
rsltl = MsgBox("Please Fill The Other Texts!")
cmdfrmUpd.Enabled = False
cmdfrmDel.Enabled = False "
cmdfrmFnd.Enabled = True
txtFrmName.SetFocus
End If
End If
End Sub

Private Sub cmdfrmUpd_Click()
Dim rslt As String
IftxtFrmCode.Text <> 1111 And txtFrmName.Text <>""And txtFrmPhn.Text <> 1111

Then
rslt = MsgBox("Do You Want To Update Firm Information?", vbQuestion + vbYesNo,
"Update")
If rslt = vbYes Then
StartProgress

72

conn
sqlstr = "update firms set firmname='" & txtFrmName.Text & "', firmphone="' &
txtFrmPhn.Text & "', firmfax="' & txtFrmFax.Text & "', firmtaxno="' &
txtFrmTax.Text & "', firmcity="' & txtFrmCity.Text & "', firmadres="' &
txtFrmAdd.Text & "', firmregdate="' & DtPckfrmRegDat.Value & "' where firmcode="
& txtFrmCode.Text & " "
database.Execute (sqlstr)
MsgBox ("Firm Information Updated!")
End If
Else
MsgBox ("Please Find Any Firm!")
End If
End Sub

Private Sub cmdfrmDel_ Click()
Dim rslt
IftxtFrmCode.Text <>""Then
rslt = MsgBox("Do You Want To Delete This Firm Detail?", vbExclamation +
vbYesNo, "Delete")
If rslt = vbYes Then
StartProgress
conn
sqlstr ="delete* from firms where firmcode=" & txtFrmCode.Text & ""
database.Execute (sqlstr)
sqlstr ="delete* from stocks where firmcode=" & txtFrmCode.Text & ""
database.Execute (sqlstr)
MsgBox ("Firm Information Deleted!")
End If
Else
MsgBox ("Please Find Any Firm!")
End If
cmdfrmUpd.Enabled = False
cmdfrmDel.Enabled = False
clear
coun
End Sub

Private Sub close_ Click()
database.close
Unload Me
End Sub

Private Sub cmdfrmFnd _Click()
Dim find As String
conn
If Combol.Text =""Then
MsgBox "Error: Please select an employee first!", vbCritical
Exit Sub
End If

73

find= (Combol.Text)
sqlstr ="select* from firms where firmname=" & find & "111

Set rs= database.Execute(sqlstr)
If rs.EOF Then
MsgBox ("The Wanted Firm is Not Available!")

Else
Dim i As Integer
StartProgress
txtFrmCode.Text = rs![firmcode]
txtFrmName.Text = rs![firmname]
txtFrmPhn.Text = rs![firmphone]
txtFrmFax. Text = rs! [firmfax]
txtFrmTax.Text = rs![firmtaxno]
txtFrmCity.Text = rs'[firmcity]
txtF rmAdd. Text = rs! [firmadres]
DtPckfrmRegDat.Value = rs![firmregdate]
txtFrmName.SetFocus
cmdfrmSav.Enabled = False
cmdfrmUpd.Enabled = True
cmdfrmDel.Enabled = True
End If
rs.close
End Sub

Private Sub Form_Load()
conn
Set rs= New ADODB.Recordset
sqlstr = "select firmname from firms order by firmname asc"
Set rs= database.Execute(sqlstr)

While Not rs.EOF
Combo 1 .Addltem rs.Fields("firmname")
rs.MoveNext
DoEvents
Wend
coun
With StatusBarl .Panels
Set p = .Add(, , , sbrTime)
Set p = .Add(, , , sbrDate)
End With
DtPckfrmRegDat.Value = Date
End Sub

Private Sub clear()
txtFrmCode.Text = 1111

txtFrmName.Text = 1111

txtFrmCity.Text = 1111

txtFrmAdd.Text = 1111

74

txtFrmPhn.Mask = ""
txtFrmPhn.Text = ""
txtFrmPhn.Mask = "0(999)999-99-99"
txtFrmFax.Mask = ""
txtFrmFax.Text = '"'
txtFrmFax.Mask = "0(999)999-99-99"
txtFrmTax.Mask = ""
txtFrmTax.Text = ""
txtFrmTax.Mask = "999-999-999-999-999"
DtPckfrmRegDat.Value = Date
End Sub

Private Sub coun()
Dim Count, Countl
conn
Set rs = New ADODB.Recordset
Count= "select* from Firms"
Set rs= database.Execute(Count)
If rs.EOF Then
cmdfrmFnd.Enabled = False
txtFrmCode. Text = 1
Else
Countl = "select max(firmcode) as cis from firms"
Set rs= database.Execute(Countl)
txtFrmCode.Text = rs![cis] + 1
End If
rs.close
End Sub

Public Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseServer
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Private Sub StartProgress()
Dim i As Integer
Framel.Visible = True
X.Width = 1
Fori= 1 To 6255
X.Width = X.Width + 1
DoEvents
Next
Framel.Visible = False
End Sub

The stock record form

75

Option Explicit
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String
Dim p As Panel
Dim ah As Boolean
Dim a, b, d, e, g, h, f, 1 As Double
Dim m, n, decrip, sqll

Private Sub cmdStkMinlvl_ Click()
Form12.Show vbModal
End Sub

Private Sub Combo 1 _Click()
Dim find As Integer
sqlstr ="select* from stocks where stockcode=" + Combol.Text + ""
Set rs= database.Execute(sqlstr)
If Not rs.EOF Then
Dimi As Integer
StartProgress

Text 1. Text = rs! [firm code]
Text4.Text = rs![firmname]
Combol.Text = rs![stockcode]
Text3.Text = rs![stockname]
Text5. Text = rs! [stockunit]
Text6.Text = rs![stockbp]
Text8. Text = rs! [stockpperc]
Text9.Text = rsljstocksellp]
DTPicker 1. Value = rs! [stockbd]
Textl lText = rs![stockminl]
Command2.Enabled = False
Command3 .Enabled = True
Command4.Enabled = True ıı,

End If
rs.close
End Sub

Private Sub Commandl_ Click()
clear
coun
Command2.Enabled = True
Command3.Enabled = False
Command4.Enabled = False
Combol.Enabled = False
Text3.Enabled = True
Text5.Enabled = True
Text6.Enabled = True

76

Text8.Enabled = True
Textlü.Enabled = True
Textl 1 .Enabled= True
Textl .Enabled= True
On Error Resume Next
Text3.SetFocus
End Sub

Private Sub Command2 _Click()
If care Then Exit Sub
If ah = True Then
Dim sql, sqll, rslt, rsltl
rslt = MsgBox("Do You Want To Save That?", vbinformation + vbYesNo, "Save")
If rslt = vbYes Then
If Text4.Text <> 111' And Text5.Text <>""And Text6.Text <>""And Text8.Text <> ""
And Textlü.Text <>""And Textl 1.Text <>""And Text3.Text <>""And Textl.Text
<>""And Text4.Text <>""Then
sql = "insert into stocks(firmname, firmcode, stockcode, stockname, stockminl, stockbd,
stockunit, stockbp, stockpperc, stocksellp) values("
sql = sql & "111 & Text4.Text & "1,"

sql = sql & "" & Textl.Text & ","
sql = sql & "" & Combol.Text & ","
sql = sql & "111 & Text3.Text & "1,"

sql = sql & "" & Textl 1 & ","
sql = sql & "111 & DTPickerl.Value & "1,"

sql = sql & "" & a & ","
sql = sql & "" & b & ","
sql = sql & "" & h & ","
sql = sql & ""' & Text9 & 111)"

database.Execute (sql)
m = Text5.Text
1 = Text6.Text
n=m * 1
decrip = Combol +","+"no"+ "st"
sqll = "insert into accounuaccdqte, expense, revenue, description, expcode) values("
sqll = sqll & 11111 & DTPickerl.Value & 111,11

sqll = sqll & "" & n & ","
sqll = sqll & "" & O & ","
sqll = sqll & 11111 & decrip & 111,11

sqll = sqll & "" & Combol.Text & ")"
database.Execute (sql 1)
Dim i As Integer

StartProgress

rsltl = MsgBox("stock Information Save Successful! ",, "Saved")
Command2.Enabled = False
Command3 .Enabled = True
Command4.Enabled = True

77

Command6.Enabled = True
Combo 1 .Enabled= True
Else
rsltl = MsgBox("Please Fill The Other Texts!")
Command3.Enabled = False
Command4.Enabled = False
Text4.SetFocus
End If
End If
End If
Set rs= database.Execute("select stockcode from stocks")
Combo 1 .clear
While Not rs.EOF
Combo 1 .Addltem rs.Fields(O)
rs.MoveNext
Wend
End Sub

Private Sub Command3 _Click()
Framel.Visible = True
Command3.Enabled = False
Text3.Enabled = False
Text5.Enabled = False
Text6.Enabled = False
Text8.Enabled = False
Textl O.Enabled= False
Textl 1 .Enabled= False
Textl 7.Text = Text3.Text
Text12.Text = Text5.Text
Text13.Text = Text6.Text
Text14.Text = Text8.Text
Text15.Text = Textlü.Text
TextJ.6.Text = Textl 1.Text
Text2.Text = Text9.Text
Text18.Text = Combol.Text
End Sub

Private Sub Command4 _Click()
Dim rslt
If Combol.Text <>""Then
rslt = MsgBox("Do You Want To Delete This Stock Detail?", vbExclamation +
vbYesNo, "Delete")
If rslt = vbYes Then
conn
sqlstr ="delete* from stocks where stockcode=" & Combol.Text & '"'
database.Execute (sqlstr)
MsgBox ("Stock Information Deleted!")
End If
Else

78

MsgBox ("Please Find Any Stock!")
End If
Command3.Enabled = False
Command4.Enabled = False
clear
coun
End Sub
Private Sub Commandô , Click()
database.close
Unload Me
End Sub

Private Sub Command6 _Click()
Dim find As String
conn
If Text7.Text =""Then
MsgBox "Error: Please select an employee first!", vbCritical
Exit Sub
End If
find= (Text7.Text)
sqlstr ="select* from stocks where stockname="' & find & 11111

Set rs= database.Execute(sqlstr)
If rs.EOF Then
MsgBox ("The Wanted Stock is Not Available!")
Else
Dimi As Integer
StartProgress
Textl.Text = rs![firmcode]
Text4.Text = rs![firmname]
Combo 1.Text = rs! [stockcode]
Text3.Text = rs![stockname]
Texts. Text = rs! [stockunit]
Text6.Text = rs![stockbp]
Text8. Text = rs! [stockpperc]
Text9.Text = rs![stocksellp]
DTPickerl.Value = rs![stockbd]
Text 11.Text = rs! [stockminl]
Command2.Enabled = False
Command3 .Enabled = True
Command4.Enabled = True
End If
rs.close
End Sub

Private Sub Command8_Click()
Dim rslt As String
If Text12.Text <> 1111 And Text13.Text <> 1111 And Text14.Text <> 1111 And TextlS.Text
<>""And Text16.Text <>""And Textl 7.Text <>""And Text2.Text <>""Then

79

rslt = MsgBox("Do You Want To Update Stock Information?", vbQuestion + vbYesNo,
"Update")
If rslt = vbYes Then
conn
sqlstr = "update stocks set stockname="' & Textl 7.Text & "1, stockunit=" &
Textl2.Text & ", stockbp=" & Text13.Text & ", stockpperc=" & Text14.Text & ",
stocksellp=" & Text2.Text & "1, stockminl=" & Text16.Text & " where stockcode=" &
Combol.Text & ""
database.Execute (sqlstr)
m = Text12.Text
1 = Text13.Text
n= m * 1
decrip = Combol +","+"no"+ "st"
sqll = "insert into account(accdate, expense, revenue, description, expcode) values("
sqll = sqll & "111 & DTPickerl.Value & 111,"

sqll = sqll & "" & n & ","
sqll = sqll & "" & O & ","
sqll = sqll & 11111 & decrip & 111,11

sqll = sqll & 1111 & Combol.Text & ")"
database.Execute (sqll)

StartProgress

MsgBox ("Stock Information Updated!")
End If
Else
MsgBox ("Please Enter The New Stock Information!")
Command3.Enabled = False
End If
Text12.Text = 1111

Text13.Text = ""
Text14.Text = ""
Text15.Text = 1111

Text16.Text = ""
Text2.Text = 1111

Command3.Enabled = True
Command4.Enabled = False
Command6.Enabled = True
Framel.Visible = False
Text3.Enabled = True
Text5.Enabled = True
Text6.Enabled = True
Text8.Enabled = True
Textlü.Enabled = True
Textl 1.Enabled = True
Textl .Enabled= True
Set rs= database.Execute("select stockcode from stocks")
Combo1.clear
While Not rs.EOF

80

Combo 1 .Addltem rs.Fields(O)
rs.MoveNext
Wend
End Sub

Private Sub Command9 _Click()
Framel .Visible= False
Text12.Text = ""
Text13.Text = ""
Text14.Text = ""
Text15.Text = ""
Text16.Text = ""
Textl 7.Text = ""
Text2.Text = ""
clear
End Sub

Private Sub Form_Load()
coun
With StatusBarl .Panels
Set p = .Add(, , , sbrTime)
Set p = .Add(, , , sbrDate)
End With
DTPickerl.Value = Date
Set rs= database.Execute("select stockcode from stocks")
Combo 1 .clear
While Not rs.EOF
Combol.Addltem rs.Fields(O)
rs.MoveNext
Wend
End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload Me
End Sub

Private Sub TextlO_Change()
On Error Resume Next
a= Text5.Text
b = Text6.Text
h = Text8.Text
d = Val(a) * Val(b)
e = ((d * Val(h)) I 100) + d
f= e I a
g = ((f * Val(TextlO.Text)) I 100) + f
Text9.Text = g
End Sub
Private Sub coun()
Dim Count, Count 1

81

conn
Set rs= New ADODB.Recordset
Count= "select* from stocks"
Set rs= database.Execute(Count)
If rs.EOF Then
Command6.Enabled = False
Combol.Text = 1
Else
Countl = "select max(stockcode) as cis from stocks"
Set rs= database.Execute(Countl)
Combol.Text = rs![cis] + 1
End If
rs.close
End Sub
Public Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient
sqlstr = "provider=Microsoft.jet.oledb.3.S 1; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Private Sub clear()
Text3.Text = ""
TextS.Text = ""
Text6.Text = ""
Text8.Text = ""
Text9.Text = ""
Textlü.Text = ""
Textl 1 .Text= ""
Textl .Text=""
Text4.Text = ""
Set rs= database.Execute("select stockname from stocks")
End Sub
Private Sub TextlO_KeyPress(K&yAsciiAs Integer)
If KeyAscii = 13 Then
KeyAscii = O
SendKeys "{Tab}" .
ElselflnStr(("1234S67890" & vbBack & ""), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub Text12_LostFocus()
a= Val(Text12.Text)
b =a+ Val(TextS.Text)
Texts.Text= b
End Sub
Private Sub Text13 LostFocus()

82

a= Val(Text13.Text)
Text6.Text = a
End Sub

Private Sub Text14_LostFocus()
a= Val(Text14.Text)
Text8.Text = a
End Sub

Private Sub Text15_LostFocus()
a= Val(Text15.Text)
Textlü.Text = a
End Sub

Private Sub Text16_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
a= Val(Text14.Text)
Text8.Text =a
End If
End Sub

Private Sub Text16 LostFocus()
IfVal(Text5.Text) <= Val(Text16.Text) Then
MsgBox ("Please Enter Amount Smaller Than Unit!")
Textl 6.SetFocus
Else
a= Val(Text16.Text)
Textl I.Text= a
End If
End Sub

Private Sub Text2 _lostfocus()
a= Val(Text2.Text)
Text9.Text = a
End Sub

Private Sub Text5 _KeyPress(KeyAscii As Integer)
If Key Ase ii = 13 Then
KeyAscii = O
SendKeys "{Tab}"
ElseiflnStr(("1234567890" & vbBack & ""), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub Text6_KeyPress(KeyAscii As Integer)
If KeyAseii = 13 Then
KeyAscii = O
SendKeys "{Tab}"

83

ElseiflnStr(("1234567890" & vbBack & ""), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub Text8_KeyPress(KeyAscii As Integer)
If Key Ascii = 13 Then
KeyAscii = O
SendKeys "{Tab}"
ElseiflnStr(("1234567890" & vbBack & ""), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Function care() As Boolean
If Len(T ext3. Text) = O Then
MsgBox ("Please Fill The Texts!")
Text3. S etFocus
care= True
Else
If Val(Text5.Text) <= Val(Textl I.Text) Then
ah= False
MsgBox ("Please Enter Amount Smaller Than Unit!")
Textl 1 .SetFocus
care= True
Else
ah= True
End If
End If
End Function

Private Sub StartProgress()
Dim i As Integer
Frame2.Visible = True
X.Width = 1
For i = 1 To 6255
X.Width = X.Width + 1
'DoEvents
Next
Frame2.Visible = False
End Sub

Stock record Min level

Option Explicit
Dim RST As New ADODB.Recordset
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

84

Private Sub Commandl_Click()
Unload Me
If Not Form2.Visible Then Form2.Show vbModal
End Sub

Private Sub Command2 Click()
Unload Me
Unload Form2
If Not Forml.Visible Then Forml.Show
End Sub

Private Sub Form_Load()
com
End Sub

Private Sub com()
On Error Resume Next
conne
Set RST = database.Execute("Select stockcode, stockname,firmname,
stockunit,stockminl from stocks where stockminl >= stockunit")
Set DataGridl .DataSource = RST
DataGridl .Caption= "LIST OF MINIMUM LEVEL GREATER THAN AVAILABLE
STOCK UNIT BY STOCKCODE"
DataGridl.Columns(O).Caption = "StockCode"
DataGridl.Columns(l).Caption = "StockName"
DataGridl .Columns(2).Caption = "FirmName"
DataGridl .Columns(3).Caption = "Stock Unit"
DataGridl.Columns(4).Caption = "Stock Min.Level"
DataGridl.Columns(4).Alignment = dbgRight
Select Case RST.RecordCount
Case Is> 1
Labell.Caption = "Total
Quantity Record Exist"
Case Is= 1
Labell.Caption = "Total
Quantity Record Exist"
Case Is= O

" & Trim(Str(RST.RecordCount)) & "Min. Level>= Stock

" & Trim(Str(RST.RecordCount)) & "Min. Level>= Stock

Labell.Caption = "Record Not Exist"
End Select
End Sub
Private Sub conne()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub
Private Sub Form_Unload(Cancel As Integer)

85

Unload Me
End Sub

Employee record form

Option Explicit
Dim p As Panel
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

Private Sub cmdLdPic_Click()
On Error GoTo ErrH
With CDG
.CancelError = True
.DialogTitle = "Select Student Picture"
.Flags= cdlOFNFileMustExist
.Filter= "JPEG Files(*.jpg)/*.jpg;*.jpeg/BitmapImages(*.bmp)I*.bmp/GIF
Files(*.gif)]" .gif'All Files(*.*)I*.*"
.ShowOpen

IfNot .FileName = vbNullString Then
If CheckFile(.FileName) Then_
PicEmp.Picture = LoadPicture(.FileName)
PicEmp.Tag = .FileName
PicEmp.ToolTipText = "Picture Loaded:(" & .FileName & ")"
Else
MsgBox "Error: Picture Is Not Loaded!!!", vbCritical, "Error: Access Error"
End If
End With
Exit Sub

ErrH:
End Sub

Public Function CheckFile(FileName$) As Boolean
On Error GoTo FileNotFound
DimX&
X = FileLen(FileName)
If X >= O Then CheckFile = True: Exit Function
FileNotFound:
If Err.Number= 53 Then CheckFile = False: Exit Function
End Function

Private Sub Commandl_Click()
clear
coun
Command2.Enabled = True
Command3.Enabled = False

86

--

-
-

Command4.Enabled = False
Text2.SetFocus
End Sub
Private Sub Command2_Click()
Dim sql, rslt, rsltl
rslt = MsgBox("Do You Want To Save That?", vbinformation + vbYesNo, "Save")
If rslt = vbYes Then
If Text2.Text <>""And MaskEdBoxl.Text <> 1"1 And Text3.Text <>""And
Text7.Text <>""And Text3.Text <>""And Text4.Text <>""Then
lf PicEmp.Picture = O Then MsgBox "Employers Picture Cannot Be Empty!",
vbCritical: Exit Sub
sql = "insert into emp(empname, empcode, empphone, empsc, empcity,
empadres,empsal, emprd) values("
sql = sql & 1"" & Text2.Text & "1,11

sql = sql & "" & Textl.Text & ","
sql = sql & 11"1 & MaskEdBoxl.Text & 111,"

sql = sql & 11111 & Text7.Text & 111,"

sql = sql & ""' & Text3 & "1,"

sql = sql & 11"1 & Text4 & 111,"

sql = sql & "" & Text5.Text & ","
sql = sql & 11111 & DTPickerl.Value & 111)11

database.Execute (sql)

Call SaveEmpPicture(PicEmp, Textl.Text)
StartProgress

rsltl = MsgBox("Employee Information Save Successful! ",, "Saved")
Command2.Enabled = False
Command3 .Enabled = True
Command4.Enabled = True
Command6.Enabled = True
Else
rsltl = MsgBox("Please Fill The Other Texts!")
Command3.Enabled = False
Command4.Enabled = False
Command6.Enabled = True
Text2.SetFocus
End If
End If
End Sub

Private Sub SaveEmpPicture(ThePic As Image, EmpCode As String)
On Error GoTo SysErr
Dim PicPath As String
PicPath = App.Path & "\Employers\"
ChDir PicPath
ChDir "C:\
PicPath = App.Path & "\Employers\" & EmpCode & ".jpg"

87

Call SavePicture(ThePic.Picture, PicPath)
Exit Sub
SysErr:
MsgBox "Error: " & Hex(Err.Number) & vbCrLf & Err.Description, vbCritical, "Error:
" & Err.Number
Err.clear
Exit Sub
End Sub

Private Sub Command3_Click()
Dim rslt As String
If Textl.Text <>""And Text2.Text <>""And MaskEdBoxl.Text <>'"'Then
If PicEmp.Picture = O Then MsgBox "Employers Picture Cannot Be Empty!",
vbCritical: Exit Sub
rslt = MsgBox("Do You Want To Update Employee Information?", vbinformation +
vbYesNo, "Update")
StartProgress

If rslt = vbYes Then
conn
sqlstr = "update emp set empname="' & Text2.Text & "',empphone="' &
MaskEdBoxl.Text & "',empsc="' & Text7.Text & "',empcity="' & Text3.Text & "',
empadres="' & Text4.Text & "',empsal=" & Text5.Text & ",emprd="' &
DTPickerl.Value & "'where empcode=" & Textl.Text & ""
database.Execute (sqlstr)
Call SaveEmpPicture(PicEmp, Textl. Text)
MsgBox ("Employee Information Updated!")
End If
Else
MsgBox ("Please Find Any Employee!")
End If
Command3.Enabled = False
Command4.Enabled = False
End Sub

Private Sub Command4_Click()
Dim rslt
If Textl.Text <>""Then
rslt = MsgBox("Do You Want To Delete This Employee Detail?", vbExclamation +
vbYesNo, "Delete")
If rslt = vbYes Then
StartProgress
conn
sqlstr ="delete* from emp where empcode=" & Textl.Text & ""
database.Execute (sqlstr)
MsgBox ("Employee Information Deleted!")
End If
Else
MsgBox ("Please Find Any Employee!")

88

End If
Command3.Enabled = False
Command4.Enabled = False
clear
coun
End Sub

Private Sub Commands_ Click()
database.close
Unload Me
End Sub

Private Sub SetEmpPic(DoSet As Boolean, EmpNum As String, objPic As Image)
If DoSet Then
Dim EmpPicFile As String
EmpPicFile = App.Path & "\Employers\" & EmpNum & ".jpg"
If CheckFile(EmpPicFile) = True Then
Set objPic.Picture = LoadPicture(EmpPicFile)
Else
Set objPic.Picture = Nothing
MsgBox "Could Not Load Employers Picture!!!" & vbCrLf & "File Access Error",
vbCritical, "Error: File Error"
End If
Else
objPic.Picture = Nothing
End If
End Sub

Private Sub Command6 _Click()
Dim find As String
conn

IfCombol.Text= "" Then
MsgBox "Error: Please select an employee first!", vbCritical
Exit Sub "'
End If

find= (Combol.Text)
sqlstr ="select* from emp where empname="' & find & ""'
Set rs= database.Execute(sqlstr)
If rs.EOF Then
MsgBox ("The Wanted Employee is Not Available!")
Call SetEmpPic(False, Textl.Text, PicEmp)
Else
StartProgress

Textl.Text = rs![EmpCode]
Text2.Text = rs![empname]
Call SetEmpPic(True, Textl.Text, PicEmp)

89

MaskEdBox 1. Text = rs! [empphone]
Text7.Text = rs![empsc]
Text3.Text = rs![empcity]
Text4.Text = rsljempadres]
Text5.Text = rs![empsal]
DTPickerl.Value = rs![emprd]
Text2.SetFocus
Command2.Enabled = False
Command3 .Enabled = True
Command4.Enabled = True
End If
rs.close

-End Sub

Private Sub Form_Load()
coun
With StatusBar I .Panels
Set p = .Add(, , , sbrTime)
Set p = .Add(, , , sbrDate)
End With
DTPickerl.Value = Date
conn
Set rs= New ADODB.Recordset
sqlstr = "select empcode, empname from emp order by empname asc"
Set rs= database.Execute(sqlstr)
While Not rs.EOF
Combo l .Addltem rs.Fields("empname")
rs.MoveNext
DoEvents
Wend
End Sub

Private Sub clear()
Textl .Text= 1111

Text2.Text = ""
Text3.Text = ""
Text4.Text = 1111

Text5.Text = ""
MaskEdBox I .Mask = ""
MaskEdBoxl.Text = ""
MaskEdBoxl.Mask = "0(999)999-99-99"
Text7.Text = 1111

DTPickerl.Value = Date
End Sub

Private Sub coun()
Dim Count, Countl
conn
Set rs= New ADODB.Recordset

90

-

Count= "select* from emp"
Set rs= database.Execute(Count)
If rs.EOF Then
Command6.Enabled = False
Textl .Text= 1
Else
Countl = "select max(empcode) as cis from emp"
Set rs= database.Execute(Countl)
Textl.Text = rs![cis] + 1
End If
rs.close
End Sub

Public Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload Me
End Sub

Private Sub Text5_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
KeyAscii = O
SendKeys "{Tab}"
ElseiflnStr(("1234567890" & vbBack & ""),Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub StartProgress()

Dimi As Integer
Framel.Visible = True
X.Width= 1
For i = 1 To 6255
X.Width = X.Width + 1
DoEvents
Next
Framel.Visible = False
End Sub

Buying entry form

Option Explicit

91

Dim p As Panel
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

Private Sub Commandl_Click()
clear
coun
Command2.Enabled = True
Command3.Enabled = False
Command4.Enabled = False
Command7.Visible = False
Text2.SetFocus
End Sub

Private Sub Command2 _Click()
Dim sql, rslt, rsltl
rslt = MsgBox("Do You Want To Save That?", vblnformation + vbYesNo, "Save")
Ifrslt = vbYes Then
IfText2.Text <> 1111 And MaskEdBoxl.Text <>""And Text3.Text <> 1111 And
Text3.Text <>""And Text4.Text <>""Then
sql = "insert into cus(cusname, cuscode, cusphone, custaxno, cuscity, cusadres, cusrd)
values("
sql = sql & "111 & Text2.Text & 111,11

sql = sql & "" & Textl.Text & ","
sql = sql & 11111 & MaskEdBoxl.Text & 111,11

sql = sql & 11111 & Text5 & 111,"

sql = sql & "111 & Text3 & 111,"

sql = sql & "111 & Text4 & 111,"

sql = sql & "111 & DTPickerl .Value & "1)11

database.Execute (sql)
StartProgress

rsltl = MsgBox("Customer Information Save Successful! ",, "Saved")
Command2.Enabled = False ~
Command3 .Enabled = True
Command4.Enabled = True
Command7.Visible = True
Command6.Enabled = True
Else
rsltl = MsgBox("Please Fill The Other Texts!", vbCritical, "Customer")
Command6.Enabled = True
Command3.Enabled = False
Command4.Enabled = False
Text2.SetFocus
End If
End If
End Sub

92

Private Sub Command3 _Click()
Dim rslt As String
If Textl.Text <>""And Text2.Text <>'"'And MaskEdBoxl.Text <>'"'Then
rslt = MsgBox("Do You Want To Update Customer Information?", vbQuestion +
vbYesNo, "Update")
If rslt = vbYes Then
StartProgress
conn
sqlstr = "update cus set cusname="' & Text2.Text & "', cusphone='" &
MaskEdBoxl .Text & '", custaxno="' & Text5.Text & "', cuscity="' & Text3.Text & "',
cusadres="' & Text4.Text & "', cusrd="' & DTPickerl.Value & "' where cuscode=" &
Textl.Text & " "
database.Execute (sqlstr)
MsgBox ("Customer Information Updated!")
End If
Else
MsgBox ("Please Find Any Customer!")
End If
Command3.Enabled = False
Command4.Enabled = False
clear
End Sub

Private Sub Command4 _Click()
Dim rslt
If Textl.Text <>""Then
rslt = MsgBox("Do You Want To Delete This Customer Detail?", vbExclamation +
vbYesNo, "Delete")
If rslt = vbYes Then
StartProgress
conn
sqlstr ="delete* from cus where cusname=" & Text2.Text & ""
database.Execute (sqlstr)
MsgBox ("Customer Information Deleted!")
End If
Else
MsgBox ("Please Find Any Customer!")
End If
Command3.Enabled = False
Command4.Enabled = False
clear
coun
End Sub

Private Sub Commandô , Click()
Unload Me
End Sub

Private Sub Command6_Click()

93

Dim find As String
conn
If Combol.Text ='"'Then
MsgBox "Error: Please select an employee first!", vbCritical
Exit Sub
End If
find= (Combol.Text)
sqlstr ="select* from cus where cusname="' & find & ""'
Set rs= database.Execute(sqlstr)
If rs.EOF Then
MsgBox ("The Wanted Customer is Not Available!")
Else
StartProgress

Text1.Text = rs![cuscode]
Text2.Text = rs![cusname]
MaskEdBox1.Text = rs![cusphone]
Textô.Text = rs![custaxno]
Text3.Text = rs![cuscity]
Text4.Text = rs![cusadres]
DTPickerl.Value = rs![cusrd]
Text2.SetFocus
Command7.Visible = True
Command2.Enabled = False
Command3.Enabled = True
Command4.Enabled = True
End If
rs.close
End Sub

Private Sub Command7_Click()
DimX$
X = "select empname from emp"
Set rs = database.Execute(X)

If rs.EOF Then
MsgBox "Error: Employee table is empty," & vbNewLine & _
"Please add one employee at least before continuing.", vbCritical
Exit Sub
Else
Form7.Text4.Text = Textl .Text
Form7.Text5.Text = Text2.Text
Form7.Text7.Text = MaskEdBoxl.Text
Form7.Text6.Text = Text4.Text
Form7.Show vbModal
End If
End Sub

Private Sub Form_Load()

94

coun
With StatusBarl .Panels
Set p = .Add(, , , sbrTime)
Set p = .Add(, , , sbrDate)
End With
DTPickerl.Value = Date
conn
Set rs = New ADODB.Recordset
sqlstr = "select cusname from cus order by cusname asc"
Set rs= database.Execute(sqlstr)
While Not rs.EOF
Combo 1 .Addltem rs.Fields("cusname")
rs.MoveNext
DoEvents
Wend
End Sub

Private Sub clear()
Textl .Text=""
Text2.Text = ""
Text3.Text = ""
Text4.Text = ""
MaskEdBoxl.Mask = ""
MaskEdBoxl.Text = ""
MaskEdBoxl .Mask= "0(999)999-99-99"
Text5.Text = ""
DTPicker 1. Value = Date
End Sub

Private Sub coun()
Dim Count, Countl
conn
Set rs= New ADODB.Recordset
Count = "select * from cus"
Set rs = database.Execute(Count
If rs.EOF Then
Command6.Enabled = False
Textl.Text = 1
Else
Countl = "select max(cuscode) as cis from cus"
Set rs= database.Execute(Countl)
Textl.Text = rs![cis] + 1
End If
rs.close
End Sub

Public Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient

95

sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Private Sub StartProgress()

Dim i As Integer
Framel.Visible = True
X.Width= 1
For i = 1 To 6255
X.Width = X.Width + 1
DoEvents
Next
Framel.Visible = False
End Sub

The invoice form

Option Explicit
Private database As ADODB.Connection
Private rs, RSl, RS3 As ADODB.Recordset
Private sqlstr As String
Private sql, sqll, sql2, sql3 As String

Private Sub Combo2_Click()
Text8.Text = List2.List(Combo2.Listlndex)
Text8.SetFocus
'SendKeys " {enter}"
Text8_KeyPress vbKeyRetum
End Sub

Private Sub Commandl_Click()
On Error Resume Next
database.close
Unload Me
Unload Form5
End Sub

Private Sub Command2_Click()
database.close
Unload Me
End Sub

Private Sub Command3_Click()

96

Dim result, sec, i
Dim Index As Integer
sec= Listl(Index).Listlndex
If sec < O Then
result= MsgBox("Select the removed item", vbCritical, "Remove Item")
Else
result= MsgBox("Are you sure you want to remove this item from the list?", vbYesNo
+ vbQuestion, "Remove item")
If result = vbYes Then
For i = O To 4
List 1 (i).RemoveItem List 1 (i).Listindex
Next
Dimj, a, b
For j = O To Listl(S).ListCount
a= Val(List1(4).ListG))
b=b+a
Next
Text2.Text = b
End If
End If
End Sub
Private Sub coun()
Dim Count, Count1
conn
Set rs = New ADODB.Recordset
Count= "select incode from invoice2"
Set rs= database.Execute(Count)
If rs.EOF Then
Label9.Caption = 1
Else
Countl = "select max(incode) as com from invoice2"
Set rs= database.Execute(Countl)
Label9.Caption = rs'[corn] + 1
End If
Count= "select empnamefrom emp''
Set rs= database.Execute(Count)
Ifrs.EOF Then
MsgBox "Error: Employee table is empty," & vbNewLine & _
"Please add one employee at least before continuing.", vbCritical
Call Command1 Click
Exit Sub
Else
Countl = "select empname from emp"
Set rs= database.Execute(Countl)
While Not rs.EOF
Combo1 .Addltem rs.Fields! [empname]
rs.MoveNext
DoEvents
Wend

97

End If
rs.close
End Sub

Private Sub Command4_Click()
Dim k, i, rslt, toplam, stk, stk2, sq, sq1, sq2, decrip

If Combol.Text = "Select Employee" Then
rslt = MsgBox("Please select the employee name", vbinformation, "Invoice")
Elself Listl (O).ListCount= O Then
rslt = MsgBox("Please select one stock at least", vbinformation, "Invoice")
Else
rslt = MsgBox("Do You Want to Save The Invoice?", vbYesNo + vbQuestion, "Invoice
Saving")
If rslt = vbYes Then
conn
For i = O To Listl(O).ListCount - 1
stk = Val(Listl(O).List(i))
stk2 = Listl(l).List(i)
sq= Val(List1(2).List(i))
sql = Val(List1(3).List(i))
sq2 = Val(List1(4).List(i))

sql1 = "insert into invoice1 (incode, cuscode, stockcode, sname, quan, uprice, totp)
values("
sqll = sqll & "" & Label9 & ","
sqll = sqll & "" & Text4.Text & ","
sqll = sqll & "" & stk & ","
sqll = sqll & ""' & stk2 & "',"
sqll = sqll & "" & sq & ","
sqll = sqll & "" & sql & ","
sqll = sqll & "" & sq2 & ")"

database.Execute (sqll)
sql2 = "update stocks set stockunit=stockunit-" & sq & "where stockcode=" & stk & ""
database.Execute (sql2)
Next
If OptionI = True Then
toplam= O
decrip = Label9 +","+"no"+ "Invoice"
sql3 = "insert into account(accdate, expense, revenue, description, expcode) values("' &
Label12 & "'," & O & ", " & Text2.Text & ","' & decrip & "','.' & toplam & ")"
database.Execute (sql3)
Elself Option2 = True Then
toplam= Text2.Text
End If
sql2 = "insert into invoice2(incode, cuscode, subtot, invdate, empname) values (" &
Label9 & ", " & Text4 & ", " & toplam & ", "' & Label12 & '", "' & ComboI.Text & "')"
database.Execute (sql2)

98

rslt = MsgBox("Invoice was saved succesfully", vbinformation, "Invoice")
Command2 Click
End If
End If
End Sub

Private Sub Form_Activate()
On Error Resume Next
Dim MySql$
Text8.SetFocus
conn
MySql = "select stockname, stockcode from stocks"
Set RS3 = database.Execute(MySql)
Combo2.clear
Do While Not RS3.EOF
Combo2.Addltem RS3 ! [stockname]
List2.Addltem RS3 ! [stockcode]
DoEvents
RS3.MoveNext
DoEvents
Loop
End Sub

Private Sub Form_Load()
Optionl = True
Label12 = Date
coun
End Sub

Private Sub Listl _Click(Index As Integer)
Dim secind, topin, j
On Error Resume Next
secind = Listl(Index).Listindex
topin = Listl(Index).Topindex
Forj=OTo5
ListlG).Listindex = secind
Listl(i).Topindex = topin
Next
End Sub

Private Sub Textl l_KeyPress(KeyAscii As Integer)
Dim ans
If KeyAscii = 13 Then
KeyAscii = O
If Val(Textl 1.Text) > Val(Text9.Text) Then
ans= MsgBox("Stock not enough to sell this amount I Available stock is=" & Text9 &
" unit", vbCritical, "Invoice")
Else
If Val(Textl 1.Text) <= O Then

99

MsgBox "Error: Quantity Error, At least 1 item should be sold!l!", vbCritical
Exit Sub
End If
Listl(O).Addltem TextS.Text
Listl(l).Additem Combo2.Text
List1(2).Addltem Textl 1.Text
List1(3).Addltem TextlO.Text
List1(4).Additem (Val(TextlO.Text) * Val(Textl 1.Text))
List1(5).Addltem Textl.Text
Textl 1 .Enabled= False
Clear All
TextS.Text = ""
Texts. SetF OCUS

Dimi, a, b
For i = O To List1(5).ListCount
a= Val(List1(4).List(i))
b=b+a
Next
Text2.Text = b
End If
ElseiflnStr(("1234567S90" & vbBack & '"'), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub TextS_KeyPress(KeyAscii As Integer)
Dimi, a, b
Dim ans
If Key Ascii = 13 Then
If Len(TextS.Text) = O Then
ans= MsgBox("Please enter the stock code", vbCritical, "Invoice")
Else
KeyAscii = O
b = TextS.Text
For i = O To Listl(O).ListCount ıt

If (Listl (O).List(i)) = b Then
ans = MsgBox("Y ou entered this stock before please enter another stock I for Re-enter
remove stock= " & Texts & " from the list", vbCrjtical, "Invoice") ~
TextS.Text = ""
TextS. SetFocus
Exit Sub
End If
Next
conn
sql ="select* from stocks where stockcode=" + TextS.Text + ""
Set rs= database.Execute(sql)
If rs.EOF Then
ans= MsgBox("Stock Code Not Found", vbCritical, "Search")
Clear All

100

I
I

Text8.SetFocus
Else
Combo2.Text = rs![stockname]
Text9.Text = rs![stockunit]
Textlü.Text = rs![stocksellp]
Text3. Text = rs! [stockminl]
Textl.Text = rs![firmname]
rs.close
Textl 1 .Enabled =True
Textl 1 .Text= ""
Textl 1.SetFocus
End If
End If
ElselflnStr(("1234567890" & vbBack & ""), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub
Public Sub ClearAll()
Text8.Text = 1111

Combo2.Text = ""
Text9.Text = ""
Textlü.Text = ""
Textl I.Text=""
Text3.Text = ""
Textl .Text=""
End Sub

" The account revenue form

Option Explicit
Dim rs, RS 1, RS2, RS3 As New ADODB.Recordset
Private DB As ADODB.Connection
Private RST As ADODB.Recordset
Private ConnStr As String
Dim sqlstr, textq, a, decrip, b, c, rslt

Private Sub Commandl_ Click()
IfOptionl.Value = True Then
On Error Resume Next
If Textl.Text =""Then
MsgBox "Please Enter The Selected Criteria!", vbCritical, "Account"

101

Framel .Visible= False
Text 1 . SetFocus
Else
conne
sqlstr = "select incode, cuscode, invdate, empname, subtot from invoice2 where incode
=" & Textl.Text & "and subtot>O"
Set rs= DB.Execute(sqlstr)
Ifrs.EOF Then
MsgBox "Wanted Invoice Does Not Exist!", vbCritical, "Account"
Label2.Visible = False
Label3.Visible = False
Framel.Visible = False
Else
textq = "select sum(subtot) as com from invoice2 where incode=" & Textl.Text & ""
Set RS 1 = DB.Execute(textq)
a= rs![cuscode]
Set DG .DataSource = rs
Call SetGridData
Label3. Caption = RS 1 ! [com]
Label2.Visible = True
Label3.Visible = True
Framel.Visible = True
End If
End If
End If
If Option2 = True Then
On Error Resume Next
If Textl.Text =""Then
MsgBox "Please Enter The Selected Criteria!", vbCritical, "Account"
Framel.Visible = False
Textl.SetFocus
Else
conne
sqlstr = "select incode, cuscode, invdate, empname, subtot from invoice2 where cuscode
= " & Textl .Text & " and Subtor-O "
Set rs = DB.Execute(sqlstr)
If rs.EOF Then
MsgBox "Wanted Customer No Not Exist!", vbCritical, "Account"
Label2.Visible = False
Label3.Visible = False
Framel.Visible = False
Else
textq = "select sum(subtot) as com from invoice2 where cuscode=" & Textl.Text & ""
Set RS 1 = DB.Execute(textq)
a= rs![cuscode]
Call SetGridData
Label3. Caption = RS 1 ! [com]
Label2.Visible = True
Label3.Visible = True

102

I
I
I

I

Framel .Visible= True
End If
End If
End If
Textl.Text = ""
Textl .SetFocus
End Sub

Private Sub Command2_Click()
comtot
Textl .Text=""
Textl .SetFocus
Label2.Visible = False
Label3.Visible = False
Label4.Visible = False
Label5.Visible = False
Label6.Visible = True
Optionl = False
Option2 = False
Commandl .Enabled= False
End Sub

Private Sub Command3 Click()
lfText2.Text <>'"'And Text3.Text <>""Then
decrip = Text2 +","+"no"+ "Invoice"
b=O
c = Text3.Text
Set RS2 = DB.Execute("update invoice2 set subtot=subtot-" & c & "where incode=" &
Text2 & " and cuscode=" & a & " ")
conne
Set RS3 = DB.Execute("insert into account(revenue, accdate, description, expense)
values(" & Text3.Text & ", "' & Label12 & '", 111 & decrip & '"," & b & ")")
Framel.Visible = False
Textl .Text=""
Textl .SetFocus ~
MsgBox "Invoice Paid", vbinformation, "Account"
Text2.Text = '"'
Text3.Text = ""
Else
MsgBox "Please Insert The Invoice No I Amount!", vbCritical, "Account"
Text2.Text = ""
Text3.Text = ""
Text2.SetFocus
End If
End Sub

Private Sub Command4_Click()
Framel.Visible = False
Textl.Text = ""

103

Textl.SetFocus
End Sub

Private Sub Command5 _Click()
DB.close
Unload Me
End Sub

Private Sub Form_Load()
Label12.Caption = Date
comtot
Command I .Enabled= False
End Sub

Private Sub comtot()
On Error Resume Next
conne
Set rs= DB.Execute("Select incode, cuscode, invdate, empname, subtot from invoice2
where subtot >O")
Set DG.DataSource = rs
Call SetGridData
Select Case rs.RecordCount
Case Is> 1
Label8.Caption = "Total " & Trim(Str(rs.RecordCount)) & " Record Exist"
Case Is= 1
Label8.Caption = "Total " & Trim(Str(rs.RecordCount)) & " Record Exist"
Case Is= O
Labe18.Caption= "RecordNot Exist"
End Select
End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload Me
End Sub

~
Private Sub OptionI_Click()
Label4.Visible = True
Label5.Visible = False
Label6.Visible = False
Textl .SetFocus
CommandI .Enabled= True
End Sub

Private Sub Option2_Click()
Label5.Visible = True
Label6.Visible = False
Textl .SetFocus
CommandI .Enabled = True
End Sub

104

Private Sub conne()
Set DB == New ADODB.Connection
DB.CursorLocation = adUseClient
ConnStr = "provider=Microsoft.jet.oledb.3 .51; Data Source=" & App.Path &
"\System.mdb"
DB.Open ConnStr
End Sub

Private Sub Text3_KeyPress(KeyAscii As Integer)
If Key Ascii = 13 Then
KeyAscii = O
SendKeys "{Tab}"
ElseiflnStr((".1234567890" & vbBack & ""), Chr(KeyAscii)) = O Then
KeyAscii = O
End If
End Sub

Private Sub SetGridData()
Set DG.DataSource = rs
DG.Refresh
DG.Caption = "LIST OF INVOICE BY CUSTOMER CODE"
DG.Columns(O).Caption = "Invoice No"
DG;Columns(l).Caption = "Customer No"
DG.Columns(2).Caption = "Invoice Date"
DG.Columns(3).Caption = "Employee Name"
DG.Columns(4).Caption = "Invoice Amount"
DG.Columns(4).Alignment = dbgRight
End Sub

The user management form

Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

Private Sub Checkl_Click()
txtpass.PasswordChar = Ilf(Checkl .Value= vbChecked, "", "*")
E~S~ •

Private Sub cmdNewfrm_Click()
On Error Resume Next
Call DoClear
Call coun
cmdfrmSav .Enabled = True
cmdfrmUpd.Enabled = False
cmdfrmDel.Enabled = False
txtusm. SetFocus
End Sub

105

Private Sub cmdfrmSav Click()
Dim sql, rslt, rsltl
rslt = MsgBox("Do You Want To Save That?", vbinformation + vbYesNo, "Save")
If rslt = vbYes Then
If txtusrn.Text <>""And txtpass.Text <>""Then
sql = "insert into users(username, password, rest) values("' & txtusrn.Text & "', "' &
txtpass.Text & '", "' & Combol.List(Combol.Listlndex) & "')"
database.Execute (sql)
StartProgress

rsltl = MsgBox("User was saved successfully! ",, "Saved")
cmdfrmSav.Enabled = False
cmdfrmUpd.Enabled = True
cmdfrmDel.Enabled = True
cmdfrmFnd.Enabled = True

Else
rsltl = MsgBox("Please Fill All Texts!")

cmdfrmUpd.Enabled = False
cmdfrmDel.Enabled = False
cmdfrmFnd.Enabled = True
txtusrn. SetFocus
End If
Else
cmdfrmSav.Enabled = False
cmdfrmUpd.Enabled = True
cmdfrmDel.Enabled = True
cmdfrmFnd.Enabled = True
End If
Command 1 Click
End Sub

Private Sub cmdfrml.Ipd Clicktj,
Dim rslt As String
If txtusrn.Text <>""And txtpass.Text <>""Then
rslt = MsgBox("Do You Want To Update User Information?", vbQuestion + vbYesNo,
"Update") •
If rslt = vbYes Then
StartProgress
conn
sqlstr = "update users set username="' & txtusrn.Text & "', password=" & txtpass.Text
& "', rest="' & Combol.List(Combol.Listlndex) & "' where username="' & txtusrn.Text
&""'
database.Execute (sqlstr)
MsgBox "User Information Updated!", vbinformation
End If
Else

106

MsgBox "Please Find User First!", vbinformation
End If
cmdfrmUpd.Enabled = False
cmdfrmDel.Enabled = False
Command 1 Click
End Sub

Private Sub cmdfrmDel_ Click()
Dim rslt
Iftxtusm.Text <>""Then
rslt = MsgBox("Do You Want To Delete User Detail?", vbExclamation + vbYesNo,
"Delete")
If rslt = vbYes Then
StartProgress
conn
sqlstr ="delete* from users where usemame="' & txtusm.Text & "'"
database.Execute (sqlstr)
MsgBox ("User Information Deleted!")
End If
Else
MsgBox ("Please Find User First!")
End If
cmdfrmUpd.Enabled = False
cmdfrmDel.Enabled = False
Do Clear
coun
Command 1 Click
End Sub

Private Sub cmdfrmMain _Click()
database.close
Unload Me
End Sub

Private Sub cmdfrmFnd _Click() @I

On Error Resume Next
Dim find As String
conn
If Text7.Text =""Then
MsgBox "Error: Please select an employee first!", vbCritical
Exit Sub
End If
find= Text7.Text
sqlstr ="select* from users where usemame="' & find & ""'
Set rs= database.Execute(sqlstr)
If rs.EOF Then
MsgBox ("The Wanted User Was Not Found!")
Else
Dim i As Integer

107

StartProgress

txtusm.Text = rs![UserName]
txtpass.Text = rs![Password]
Dim h As Integer
For h = O To Combol.ListCount - 1
If Combol.List(h) = rs![rest] Then
Combo1.Listlndex = h
Exit For
End If
Next

txtusm.SetFocus
cmdfrmSav.Enabled = False
cmdfrmUpd.Enabled = True
cmdfrmDel.Enabled = True
End If
rs.close
End Sub

Private Sub Command1 _Click()
Listl .clear
sqlstr = "select usemame from users"
Set rs= database.Execute(sqlstr)
DoEvents
If Not rs.EOF Then
While Not rs.EOF
Listl.Addltem rs.Fields![UserName]
rs.MoveNext
DoEvents
Wend
End If
End Sub

Private Sub Form_Load()
coun
End Sub
Private Sub DoClear()
txtusm.Text = ""
txtpass.Text = ""
End Sub

Private Sub coun()
Dim Count, Count1
conn
Set rs = New ADODB.Recordset
Count= "select* from users"
Set rs= database.Execute(Count)
If rs.EOF Then

108

cmdfrmFnd.Enabled = False
Else

End If
rs.close
End Sub

Public Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseServer
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload Me
End Sub

Private Sub StartProgress()
Dim i As Integer
Frame2.Visible = True
X.Width = 1
For i = 1 To 6975
X.Width = X.Width + 1
DoEvents
Next
Frame2.Visible = False
End Sub

Private Sub Label2_Click()
Checkl.Value = Ilf(Checkl.Value = vbChecked, vbUnchecked, vbChecked)
End Sub

Private Sub Listl_Click() ı,.
Text7.Text = Listl.List(Listl.Listindex)
Call cmdfrınFnd Click
End Sub

The reports form

Option Explicit
Private Sub Commandl_Click(Index As Integer)
StartProgress
Select Case Index
Case Is= O: DataReportl .Show vbModal
Case Is= 1: DataReport2.Show vbModal
Case Is= 2: DataReport3.Show vbModal
Case Is= 3: DataReport4.Show vbModal

109

Case Is= 4: DataReport5.Show vbModal
End Select
End Sub

Private Sub Command2 _Click()
Unload Me
End Sub

Private Sub StartProgress()

Dimi As Integer
Frame I.Visible= True
X.Width = 1
For i = 1 To 6255
X.Width = X.Width + 1
DoEvents
Next
FrameI.Visible= False
DoEvents
End Sub

Private Sub Form_Load()
If UserType = "guest" Then
Commandl(O).Enabled = False
Commandl(l).Enabled = True
Command1(2).Enabled = True
Commandl (3).Enabled = False
Command1(4).Enabled = False
End If
End Sub

The about form

Option Explicit
Private Sub Form_KeyPress(KeyAscii As Integer)
Unload Me
End Sub

Private Sub Image1 _Click()
Unload Me
End Sub

Private Sub Timerl _Timer()
Imagel.Top = Imagel.Top - 10
Iflmagel.Top <= -12360 Then
Timerl .Enabled = False
End If
End Sub

110

Sales section form

Option Explicit
Private Sub cmdA_Click()
Form8.Show vbModal
End Sub

Private Sub cmdC_Click()
Form5.Show vbModal
End Sub

Private Sub cmdM_Click()
Unload Me
End Sub

Private Sub Form_Load()
If UserType = "guest" Then
cmdA.Enabled = False
cmdC.Enabled = False
End If
End Sub

Show the attendance form

Option Explicit
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

Private Sub Commandl_Click()
sqlstr = "select * from attendance where empname = "' &
Combol.List(Combol.Listlndex) & "' order by id asc"
Set rs= database.Execute(sqlstr)
LV.Listltems.clear
While Not rs.EOF
LV.Listltems.Add Text:=rs.Fields("ID")
LV.Listltems(LV.Listltems.Count).ListSubltems.Add
Text:=Combo 1 .List(Combo1 .Listlndex)
LV.Listltems(LV.Listltems.Count).ListSubltems.Add Text:=rs.Fields("ATT_DATE")
LV.Listltems(LV.Listltems.Count).ListSubltems.Add Text:=rs.Fields("STAT")
rs.MoveNext
DoEvents
Wend
End Sub

Private Sub Form_Load()
DTPicker2.Value = Date
conn
Set rs= New ADODB.Recordset

111

sqlstr = "select empcode, empname from emp order by empname asc"
Set rs= database.Execute(sqlstr)

While Not rs.EOF
Combo 1 .Addltem rs.Fields("empname")
rs.MoveNext
DoEvents
Wend
End Sub

Private Sub Commandl_Click()
' LV.Listltems.Add Text:="GAEGG"
' Me.Caption= LV.ColumnHeaders(l).Width & "I" & LV.ColumnHeaders(2).Width
& "I" & LV.ColumnHeaders(3).Width & "J " & LV.ColumnHeaders(4).Width
'End Sub

Private Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Add attendance form

Option Explicit
Private database As ADODB.Connection
Private rs As ADODB.Recordset
Private sqlstr As String

Private Sub Combo1 _Click()
Combo2.Listlndex = Combo1 .Listlndex
End Sub
Private Sub Combo2_Change() "
Combo 1 .Listlndex = Combo2.Listlndex
End Sub

Private Sub Command2_Click()
If Combo1 .Listlndex = - 1 Or Combo1 .Listlndex = - 1 Then MsgBox "Please Select AN
Employee!", vbCritical, "Error": Exit Sub

Dim NewAttID As Long

sqlstr = "select max(ID) from attendance"
Set rs= database.Execute(sqlstr)
If rs.EOF Then
NewAttID = 1
Else

112

NewAttID = rs.Fields(O) + 1
End If
sqlstr = "insert into attendance values(" & NewAttID & ", '" &
Combol.List(Combol.Listlndex) & "', "' & DTPickerl.Value & '", "' &
Combo3.List(Combo3.Listlndex) & "')"
database.Execute sqlstr
If MsgBox("Attendance Was Saved Successfully!, Add Another???", vbQuestion +
vbYesNo, "Success")= vbYes Then
Combol.Listlndex = -1
Combo2.Listlndex = -1
Combo3.Listlndex = -1
Else
Unload Me
End If
End Sub

Private Sub Command3_Click()
Unload Me
End Sub

Private Sub Form_Load()
DTPickerl.Value = Date
Combo2.Enabled = False
conn
Set rs= New ADODB.Recordset
sqlstr = "select empname, empcode from emp order by empcode asc"
Set rs= database.Execute(sqlstr)
While Not rs.EOF
Combo1 .Addltem rs.Fields("empname")
Combo2.Addltem rs.Fields("empcode")
rs.MoveNext
DoEvents
Wend
End Sub

Private Sub conn()
Set database= New ADODB.Connection
database.CursorLocation = adUseClient
sqlstr = "provider=Microsoft.jet.oledb.3.51; Data Source=" & App.Path &
"\system.mdb"
database.Open sqlstr
End Sub

Attendance form

Option Explicit

Private Sub cmdA_Click()

113

Forml6.Show vbModal
End Sub

Private Sub cmdC _Click()
Forml 7.Show vbModal
End Sub

Private Sub cmdM _Click()
Unload Me
End Sub

Management section form

Option Explicit
Private Sub cmdA Click()
Form18.Show vbModal
End Sub

Private Sub cmdD_Click()
Form9.Show vbModal
End Sub

Private Sub cmdE_Click()
Form6.Show vbModal
End Sub

Private Sub cmdM_Click()
Unload Me
End Sub

Private Sub cmdP_Click()
Form2.Show vbModal
End Sub

Private Sub cmdU_Click()
Form14.Show vbModal
End Sub

Private Sub Command1 _Click()
Form4.Show vbModal
End Sub

Private Sub Form_Load()
If UserType = "guest" Or UserType = "user" Then
cmdA.Enabled = False
cmdE.Enabled = False
cmdP.Enabled= False
cmdU.Enabled = False
End If

114

If UserType = "guest" Then Commandl.Enabled = False
End Sub

Loading form

Option Explicit
Private Sub Form_Load()
Me.BackColor = RGB(107, 143, 237)
End Sub

115
Ill J! 11!11 !~l]~J

NEU

