
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Ceylan Airlines Company Database Management
System

Graduation Project
COM-400

Student: Yusuf Ceylan (20030732)

Supervisor: Assist.Prof.Dr.Adil AMIRJANOV

Nicosia - 2008

ACKNOWLEDGMENTS

Firstly, I would like to thank to my supervisor Dr.Adil AMIRJANOV, my advisor Dr.Kaan

UYAR, and Mr Elbrus IMANOV,for their great advice and recommendation on finishing my

project and guiding me in their lectures.

I am very grateful to my family for their endless support from the first day in my educational

life until today. I will never forget the things that my father Mr.Nevzat CEYLAN did for me

during my educational life, also I want to say thanks to my mother Mrs. Nurhan CEYLAN.

I thank all the staff of the faculty of engineering for giving facilities to practise, teaching

and solving problem in my complete undergraduation program

I thank my friends Murat EVEREKLI,Muhammet Emin TUTKUN, MehmetTAHTA,Mehmet

Akif GURSOY, Gokan CjL, Tahir CICEKLI, for their help, they get tired with me, and they

helped me and give morale evertime.

I thank them with all my heart.

ABSTRACT

The aim of this project is to design airlines database management system that contain

information forms including flight,passenger,employee and airport.The forms are reached via

logging into the database system. The program was prepared by using Delphi programming

and using database. This program is practical and useful in the airlines business.It can be

modified with the new developments and requirements of people in the technology in

future.The program must be clear and easy to learn for users,hence it can be acceptable

widely.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS

II

Ill

CHAPTERl
INTRODUCTION
1. BASIC CONCEPT OF DELPHI

1.1. Introduction to Delphi
1.2. What is Delphi?
1.3. A Tour Of The Environment

1.3.1. Running Delphi For The First Time
1.3.2. The Delphi IDE
1.3.3. The Menus & Toolbar
1.3.4. The Component Palette
1.3.5. The Code Editor
1.3.6. The Object Inspector
1.3.7. The Object Tree View
1.3.8. Class Completion
1.3.9. Debugging applications
1.3.10. Exploring databases
1.3.11. Templates and the Object Repository

1.4. Programming With Delphi
1.4.1. Starting a New Application

1.4.1.1. Setting Property Values
1.4.2. Adding objects to the form
1.4.3. Add a Table and a StatusBar to the form
1.4.4. Add all include Standard Component to the form
1.4.5. Connecting to a Database

1

2
2
3
3
3
4
5
6
7
8
9
10
11
11
13
13
14
15
15
17

22

CHAPTER2
2. DATA BASE SYSTEM

2.1. INTRODUCTION TO DAT ABASE
2.2. DAT ABASE MODELS

2.2.1. Relational model
2.2.1.1. Relational operations

2.3. SQL in DELPHI

25
26
27
28
29

Ill

CHAPTER3
3. CEYLAN AIRLINE COMPANY DATABASE MANAGEMENT

SYSTEM USERS MANUAL
3.1. LOGIN 32
3.2. USER 35
3.3. ADMIN 39

CONCLUSION 43
REFERENCES 44
APPENDIX 45

iv

------~--~

CHAPTER!

INTRODUCTION
This project is ceylan airlines company database management system,which

begins with the login page and lead the users to the necessary forms for applications.But

before all this progress,the users must be registered on the system to achieve what they

want to do.After registration,the user first meets the passenger information form,then

completes it and chooses the appropriate flight and departure for himself,makes the

payment by credit card and gets the report about the ticket eventually.If we log into the

system as admin,admin page automatically will be called.Each form is reachable

through admin page.so admin can change any information in the system.He can even

make a user an admin.And this program was prepared by using Borland Delphi 7 and

PARADOX.

The subjects are chapter by chapter so let us go through the overview. The chapters are

briefly:

In the first chapter Borland Delphi 7 programming language is described, its
properties, components and some examples, I used Borland Delphi 7 in my project,
because I find it easy and I liked its coding system.I think Borland Delphi 7 is easier
compared to the other programming languages for applications.

In the Second Chapter I described Database system, I used PARADOX data
base system in my program with Borland Delphi 7.

Third Chapter forms the main body of the project, it includes the total
applications about what we aim here.The relationship between the whole datas(user­
admin relation.the database connections between information forms) and what each
information form is used for is explained.

Finally, the last chapter is the explanation of the program followed by the
Appendixes.the codes forming the main program are recorded here.if we describe the
functions of the codes,they are used to combine everything and show the relationship
between any datas whatever they are. So by developing and moderating the technology
of our program,it can be updated. Also new properties could be added into the program
in the future.

1

I.BASIC CONCEPT OF DELPHI

1.1.Introduction to Delphi:

Although I am not the most experienced or knowledgeable person on the forums

I thought it was time to write a good introductory article for Delphi

1.2.What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 7. Delphi 7 provides all the tools

you need to develop, test and deploy Windows applications, including a large number of

so-called reusable components.
!

Borland Delphi, provides a cross platform solution when used with Borland Kylix -

Borland's RAD tool for the Linux platform.

2

1.3. A Tour Of The Environment:

This chapter explains how to start Delphi and gives you a quick tour of the main parts

and tools of the Integrated Development Environment(IDE)

1.3.1. Running Delphi For The First Time:
You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 71 Delphi 7 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHl)\Bin folder. Where $(DELPHI) if

a folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi7.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

1.3.2. The Delphi IDE:
As explained before, one of the ways to start Delphi is to choose Programs I Borland
Delphi 7 I Delphi 7 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on your

hardware performance) you are presented with the IDE: the user interface where you

can design, compile and debug your Delphi projects .

~
AJ.r •. °"""

.. 11-J'"'"
1.l -N~i k"lo:i<

Figure 1.8.IDE

3

Like most other development tools (and unlike other Windows applications), Delphi

IDE comprises a number of separate windows.

Some of the facilities that are included in the "Integrated Development Environment"

(IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.3.3. The Menus & Toolbar:
The main window, positioned on the top of the screen, contains the main menu, toolbar

and Component palette.

title bar

fak, ~' j,;i(c{~;h ~;,:'.~ f:fit;~ ~

D rii~~i'tf!l,l:4 ,.;$;,.Ji;. ·~
- Wi h ::"__,_

co~mponent palette speed bat-

Figure 1.9.Menu ,Title , Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll see in

some of the future chapters what exactly is a Delphi project). The menu bar includes a

dozen drop-down menus - we'll explain many of the options in these menus later

through this course. The toolbar provides a number of shortcuts to most frequently used

operations and commands - such as running a project, or adding a new form to a project.

To find out what particular button does, point your mouse "over" the button and wait for

the !ooltip. As you can see from the tooltip (for example, point to [Toggle Form/Unit]),

many toolbuttons have keyboard shortcuts ([F12]).

4

The menus and toolbars are freely customizable. I suggest you to leave the default

arrangement while working through the chapters of this course.

1.3.4. The Component Palette:

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components).Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

click to see Win32 controls click for more tabs onJeft/right

Figure 1.10.Component Palatte

Depending on the version of Delphi (assumed Delphi 7 Personal through this course),

you start with more than 85 components at your disposal - you can even add more

components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the function they

perform. Each page tab in the Component palette displays a group of icons representing

the components you can use to design your application interface. For example, the

Standard and Additional pages include controls such as an edit box, a button or a scroll

box.

To see all components on a particular page (for example on the Win32 page) you simply

click the tab name on the top of the palette. If a component palette lists more

5

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

1.3.5. The Code Editor :

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Form I. This form can be renamed, resized

and moved, it has a caption and the three standard minimize, maximize and close

buttons. As you can see a Delphi form is a regular Windows window

procedure TForml.FormCreate(Sender: TObject);
begin

end;

end.

<
31: 27 Modified Insert

Fig.1.11.Code Editor Window

If the Forml is the active window and you press [F12], the Code Editor window will be

placed on top. As you design user interface of your application, Delphi automatically

generates the underlying Object Pascal code. More lines will be added to this window as

you add your own code that drives your application. This window displays code for the

current form (Forml); the text is stored in a (so-called) unit - Unitl. You can open

multiple files in the Code Editor. Each file opens on a new page of the Code editor, and

each page is represented by a tab at the top of the window.

6

1.3.6. The Object Inspector:

Each component and each form, has a set of properties - such as color, size, position,

caption - that can be modified in the Delphi IDE or in your code, and a collection of

events - such as a mouse click, keypress, or component activation - for which you can

specify some additional behavior. The Object Inspector displays the properties and

events (note the two tabs) for the selected component and allows you to change the

property value or select the response to some event.

/l.ctiveControl
Align alN one

. l'>:lphaBlend False
AlphaBlendVall 255

1±1 Anchors :[ekl.eft.ek Top J
AutoScroll True
AutoSize False
BiDiMode bdleftT oRight

1±1 B orderl cons [biS y:stemM enu
BorderSt_yle bsSizeable
B orderWidth 0
Caption Login
ClientHeight 449
ClientWidth 862
Color OclBtnFace

1±1 Con:str aints [TS izeConstr ain
Ctl3D True
Cursor crDefault V

All shown

Figure 1.11.0bject Inspector

For example, each form has a Caption (the text that appears on it's title bar). To change

the caption of Forml first activate the form by clicking on it. In the Object Inspector

find the property Caption (in the left column), note that it has the 'Form I' value (in the

right column). To change the caption of the form simply type the new text value, like

'My Form' (without the single quotes). When you press [Enter] the caption of the form

will change to My Form.

Note that some properties can be changed more simply, the position of the form on the

screen can be set by entering the value for the Left and Top properties - or the form can

be simply dragged to the desired location.

7

1.3.7. The Object Tree View:

Above the Object Inspector you should see the Object Tree View window. For the

moment it's display is pretty simple. As you add components to the form, you'll see that

it displays a component's parent-child relationships in a tree diagram. One of the great

features of the Object Tree View is the ability to drag and drop components in order to

change a component container without losing connections with other components.

Form4
tel Button1
tel Date T imePicker1
tel DateTimePicker2
tel D8Combo8ox1
tel D8Combo8ox2
tel D8Combo8ox3
tel D8Combo8ox4
el D8Combo8ox5
tel D8Combo8ox6

+ tel D8Grid1
el D8Navigator1

+ (?c~ Default {Session}
G'.I Label1
G'.I Label10
G'.1 Label11
G'.I Label12
:;:J Label13
GJ Label2
r;J Label5
G'.J Label6
[;] Label9
el R adioG roup 1

Figure 1.12.0bject Tree View

The Object Tree View, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focussed in the Object TreeView.

8

1.3.8.Class Completion:

Class Completion generates skeleton code for classes. Place the cursor anywhere within

a class declaration; then press Ctrl+Shift+c, or right-click and select Complete Class

at Cursor. Delphi automatically adds private read and write specifiers to the

declarations for any properties that require them, then creates skeleton code for all the

class's methods. You can also use Class Completion to fill in class declarations for

methods you've already implemented.

To configure Class Completion, choose ToolsJEnvironment Options and click the

Explorer tab.

Type Lib1a1y J Envi,onment Vaiiables i Delphi Di,ect I lnte,net I
P,elerences I Designer I Object Inspector I Palelle j Library Explorer

Explorer options
~ b.~io~jiicj11£show}fpl~rei;
f.; Highlight incomplete class items
r Show gecla,abon syntax
Explore, sorting
/, AlphaQetical
C 2ou1ce

Class completion option
~ Einish incomplete properties

I nilial b1owse1 view

Explorer calegories

,,1 ; Protected
,,1; Public
,,1 ; Published
,,1 l Field
,,1 ; Properties
,,1 ; Methods

Classes
,,1 1 lnte,laces
,,1 ; P1ocedu1es
,,1 ; Types

I ,,1 l Variables/Constants
r. Classes r !,!nits r §lobals I" 1 Uses

B1owse1 scope
(,' Eroject symbols only
(A)I symbols

·, Virtuals
, ', Statics

l ,,1 1 Inherited
-. c: lnlioduced
'

OK

Fig.1.13.Class

9

1.3.9.Debugging applications:

The IDE includes an integrated debugger that helps you locate and fix errors in your

code. The debugger lets you control program execution, watch variables, and modify

data values while your application is running. You can step through your code line by

line, examining the state of the program at each breakpoint.

B_un

~ Run
fu ~ Attach to Process ...

Tft Parameters ...

F9

Choose any of the debugging
commands from the Run menu.

· Q"' Step Over

· 15 Tr ace Into ! ~~ Trace to Next Source Line
I]± Run to Cursor

F8
F7

Shift+F7

F4

Some commands are also
available on the toolbar.

I
(II ~ Evaluate/Modify ...

()::,:) Add Watch ...
. Add Breakpoint
l

Ctrl+F7

ctrl+FS

Figure I .14.Run

To use the debugger, you must compile your program with debug information. Choose

Projectjoptions, select the Compiler page, and check Debug Information. Then you can

begin a debugging session by running the program from the IDE. To set debugger

options, choose Tools'Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,

Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing

Viewll.iebug Windows. To learn how to combine debugging windows for more

convenient use, see "Docking tool windows".

10

1.3.10.Exploring databases:

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you work

directly with a remote database server during application development. For example,

you can create, delete, or restructure tables, and you can import constraints while you

are developing a database application.

,,-,_,,,,- .. ,---··· ,,,,,----'"'''' "

All Database Aliases

Databases] Configuration I
I:' ···~ Datab~ses
I

+ ~fl ceylan
,+ e dBASE Files

I + ~fl DBDEMOS
I + ~fl DelaultDD
' + i Excel Files

+ ~fl IBLocal
+ i MS Access Database
+ ~fl query
+ ~fl student
+ i Visual FoxPro Databas,
+ e Visual F oxPro Tables

Definition of ceylan

Definition l
r

Type
DEFAULT DRIVER
ENABLE BCD
PATH

STANDARD
PARADOX
FALSE
C:\Documents and Settings\ceylan yusul\Desktop\delphi proje\Database

< } ! i

Figure 1.15.SQL Explorer

1.3.11.Templates and the Object Repository:

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose FilelNew to

display the New Items dialog when you begin a project. Check the Repository to see if

it contains an object that resembles one you want to create.

11

Data Modules I BLisiness. I WebSnap I WebServices I Corba I
New ! Activ&: l Multitier: I Project1 j forms I Dialogs I Proje~ts I,

Batch File ClX Component Console
Application Application

Control Panel Control Panel Data Module DLL Wizard Form
Application Module

Frame Package Project Group Report Resource DLL
Wizard

OK tlelp Cancel

Figure 1.16.New Item

You can add your own objects to the Repository to facilitate reusing them and sharing

them with other developers. Reusing objects lets you build families of applications with

common user interfaces and functionality; building on an existing foundation also

reduces development time and improves quality. The Object Repository provides a

central location for tools that members of a development team can access over a

network.

12

1.4.Programming With Delphi:

The following section provide an overwiew of software development with Delphi.

1.4.1.Starting a New Application:
Before beginning a new application, create a folder to hold the source files.

1. Create a folder called Seniha in the Projects directory off the main Delphi

directory.

2. Open a new project.

Each application is represented by a project . When you start Delphi, it opens a blank

project by default. If another project is already open, choose FilelNew Application to

create a new project.

When you open a new project, Delphi automatically creates the following files.

• Projectl.DPR : a source-code file associated with the project. This is called a

project file.

• Unitl.PAS : a source-code file associated with the main project form. This is

called a unit file.

• Unitl .DFM : a resource file that stores information about the main project form.

This is called a form file.

Each form has its own unit and form files.

3. Choose Filelxave All to save your files to disk. When the Save dialog appears,

navigate to your Seniha folder and save each file using its default name.

Later on, you can save your work at any time by choosing Filejxave All.

When you save your project, Delphi creates additional files in your project directory.

You don't need to worry about them but don't delete them.

13

When you open a new project, Delphi displays the project's main form, named Forml

by default. You'll create the user interface and other parts of your application by placing

components on this form.

Figure 1.17.Form Screen

The default form has maximize , minimize buttons and a close button , and a control

menu

Next to the form, you'll see the Object Inspector, which you can use to set property

values for the form and components you place on it.

The drop-down list at the top of the Object Inspector shows the current selected

object.when an object is sellected the Object Inspector show its properties.

1.4.1.1. Setting Property Values:

When you use the Object Inspector to set properties, Delphi maintains your source code

for you. The values you set in the Object Inspector are called design-time settings.

For Example; Set the background color of Form I to Aqua.

Find the form's Color property in the Object Inspector and click the drop-down list

displayed to the right of the property. Choose clAqua from the list.

14

1.4.2. Adding objects to the form:

The Component palette represents components by icons grouped onto tabbed pages.

Add a component to a form by selecting the component on the palette, then clicking on

the form where you want to place it. You can also double-click a component to place it

in the middle of the form.

Components
Componont palette tabs

Figure 1.18.Standart Button

1.4.3.Add a Table and a StatusBar to the form:

Drop a Table component onto the form.

Click the BDE tab on the Component palette. To find the Table component, point at an

icon on the palette for a moment; Delphi displays a Help hint showing the name of the

component.

Standard l Additional I Win32 Sustern I Data Access! Data Controls I dbf xoress ! DataSnao BDE I
"- ~ [?_J 0--. §I 3•~ fu luJ ~
"S ~ SQL SQL[J IJl.IDl' J, •• -rn sO:L ~

Fig.1.19.BDE Component palette

When you find the Table component, click it once to select it, then click on the form to

place the component. The Table component is nonvisual, so it doesn't matter where you

put it. Delphi names the object Tablel by default. (When you point to the component on

the form, Delphi displays its name--Tablel--and the type of object it is--TTable.)

15

•• l!I·

•[ljJ-:
•··--•~--•·

Table!:TTablel: ·

Figure 1.20.Table In The Form

Each Delphi component is a class; placing a component on a form creates an instance of

that class. Once the component is on the form, Delphi generates the code necessary to

construct an instance object when your application is running.

Set the DatabaseName property of Tablel to ceylan. (ceylan is an alias to the sample

database that you're going to use.)

Select Tablel on the form, then choose the DatabaseName property in the Object

Inspector. Select ceylan from the drop-down list.

16

Properties I Events I
··-. ·-·-----r""-· ~ ···-· Active 1True Ai

· ······i·······'"·····''·.j:··_···:···:----·- ,'cc·,--·-,

AutoCalcFieldsi True ·i

~~~~~y;,!~~~i1f , ; Ii 
Constra:1nts · 1 fT·rL-.-,.,,;.....t .. r .....: •.... "' •.• - , c/ 

DatabaseNam 
DataSowce 1 

. ~:::~~d ... u.:: :;:J}:;:(i~ ::::,: 
Efl F1lt~(Dpt_,'?n,s .. •[t . 

Name Quer11 
0 bjectView False ... p~;:;;~c;i;.,;;;k " y;;_i.,;· 
Par:;;~~ ... "' {ffaram~l ... -. 
RequestliY'~ Tr1Je 
S essionN ame 
SQL ... )!.St!i':!f:J;~l . 

.... T"g··-· . ,JO cY,I 
··All shown 

Fig.1.21.Select DatabaseName 

Double-click the StatusBar component on the Win32 page of the Component palette. 

This adds a status bar to the bottom of the application. 

Set the AutoHint property of the status bar to True. The easiest way to do this is to 

double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to 

True allows Help hints to appear in the status bar at runtime.) 

1.4.4.Add all include Standard Component to the form: 

GUI stands for Graphical User Interface. It refers to the windows, buttons, dialogs, 
menus and everything visual in a modem application. A GUI component is one of 
these graphical building blocks. Delphi lets you build powerful applications using a 
rich variety of these components. 

These components are grouped under a long set of tabs in the top part of the Delphi 
screen, starting with Standard at the left. We'll look at this Standard tab here. It looks 
something like this (Delphi allows you to tinker with nearly everything in its interface, 
so it may look different on your system): 

Standard j Additional I Win32 j Svstem I Data Access j Data Controls I dbExoress l BOE I ADO I 

~ 

Each of the components is itemised below with a picture of a typical GUI object they 
can create: 

17 



~ PopupMenu 
Right click me-, -· "·-·-~~, 

GroupBox :i,,~ RadioGroup 

This 
is 
a 

· TGroupBo;.; 

·r)~tt?n1° 

[ :.Butto~ ~ ~ 

@AUOK? 

TR.~dioGroup 
()Monda_y 
0 Tuesday 
()Wednesda_y 

Thursdey K 
()Frida_y ~ 

popup 

A Label T Label 

j~bI Edit ~ ! 
[ill Button (,rButton J 
Ix CheckBox G2J TCheckBox 

(i RadioButton TR adioB utton 

3I.i.:] < · · ScrollBar .. 

~ ListBox ~ComboBox Panel ~ Memo 
·omi¥kMtt9,.. 
, Listitem2 
Listitem3 
Listitem4 
Listitem5 
Listitern6 

n~emo 
TPanel 

V 

Pl Frame : see text below Ji! ActionList : see text below 

IEJIFrame objects 
These were introduced in Delphi 5. They represent a powerful mechanism, albeit one 
that is a little advanced for a Delphi Basics site. However, it is worth describing their 
role if you want to research further. 

A frame is essentially a new object. It is defined using the FilelNew menu. Only then 
can you add the frame to your form using the Frame component. You can add the 
same frame to as many forms of your application as you want. This is because the 
frame is designed as a kind of template for a part of a form. It allows you to define the 
same look and feel for that part of each form. And more importantly, each instance of 
the frame inherits everything from the original frame. 

For further reading, Mastering Delphi by Cantu covers this topic with example code. 

18 



~ Menus 
After you add a TMenu component to your form, you can design the menu by double 
clicking it ( or using the right button popup menu for it). You are then shown a panel 
with an empty menu. As you type, you are creating the top left menu item. Press enter 
and you are positioned at the first sub item of this menu item. Click the new empty 
box to the right of the first menu item to create a new menu item. 

In this way, you can build the menu structure. 

To make each menu item do something, just double click it. Delphi will then insert 
code into your program to handle the menu item, and position your cursor in the form 
unit ready for you to write your code. 

Explore the popup menu for the menu editor to discover more options, such as sub­ 
menus. 

A menu can also be dynamically updated by your code. 

~ Popup menus 
A popup menu appears in many applications when you right click on something. For 
example, when you right click the Windows desktop. You create a popup menu by 
adding the popup menu component to your form and double clicking it. You then 
simply type in your menu item list. 

You attach the popup menu to an existing form object ( or the form itself) by selecting 
your new popup menu in the PopupMenu property of the object. 

To activate the popup menu items, double click each in tum. Delphi will add the 
appropriate code to your form unit. You can then type in the code that each menu item 
should perform. 

A popup menu can also be dynamically updated by your code. 

A Labels 
Labels are the simplest component. They are used to literally label things on a form, 
but the text, colours and so on can be changed by your code. For example, you can 
change the label colour when the mouse hovers over it, and can run code when the 
user clicks it. This makes the label like a web page link. Normally, they are just kept 
as plain, unchanging text. 

19 



jabI Edit boxes 

An edit box allows the user to type in a single line of text. For example, the name of 
the user. You set up the initial value with the Text property either at design time or 
when your code runs. 

Iii Memo boxes 
A memo box displays a single string as a multi line wrapped text display. You cannot 
apply any formatting. The displayed lines are set using the Lines property. This may 
be set at design time as well as at run time. 

i.iJLI Buttons 
A button is the simplest active item. When clicked by a user, it performs some action. 
You can change the button label by setting the Caption property. Double clicking the 
button when designing adds code to your form to run when the button is clicked at run 
time. 

fx Check boxes 
Check boxes are used to give a user a yes/no choice. For example, whether to wrap 
text or not. The label is set using the Caption property. You can preset the check box 
to ticked by setting the Checked property to true. 

(ii: Radio buttons 

Radio buttons are used to give a user multiple choices. For example, whether to left, 
centre or right align text. The label is set using the Caption property. You can preset a 
radio button to selecteded by setting the Checked property to true. 

You would normally use radio buttons in groups of two or more. The TRadioGroup 
component allows you to do this in a neat and dynamic way. 

20 



~List boxes 
List boxes provide selectable items. For example, a collection of fish names. If you set 
the MultiSelect property to true, you allow the user to select more than one. The 
items in the list are added using the Items.Add method, passing the string of each 
item as a parameter. 

You can act upon an item being selected by setting the OnClick event (by double 
clicking it) to a procedure in your form unit. 

The following example displays the selected list item in a dialog box: 

procedure TForml .ListBox 1 Click(Sender: TObject); 
var 
listBox : TListBox; 
index : Integer; 

begin 
II Cast the passed object to its correct type 
listBox := TListBox(Sender); 

II Get the index of the selected list item 
index := listBox.Itemlndex; 

II Display the selected list item value 
Show Message(listBox.Items[ index]); 

end; 

~ Combo boxes 
A combo box is like a list box, and is set up in the same way (see above). It just takes 
up less space on your form by collapsing to a single line when deselected, showing the 
chosen list item. It is not recommend to use one for multi line selection. 

•rfl'I Scroll bars 
Many components have built in scroll bars. For those that don't, you can use this to do 
your own scrolling. You link the scrollbar to your component by setting the OnScrolJ 
event. This gives you the details of the last scroll activity made by the user. 

-- 
Group boxes 

A group box is like a panel. It differs in that it gives a name to the collection of 
components that you add to it. This title is set with the Caption property. Use a group 
box to help the user see what controls affect one particular aspect of the application. 

21 



··-· '~-' ::::::; Radio group panels 
Radio buttons are used to give a user a multiple choices. For example, whether to left, 
centre or right align text. Unlike individual radio buttons, a group is only set up by 
your code. You define the buttons by calling the Items.Add method of the 
TRadioGroup object, passing the caption string of each radio button as a parameter. 
You can reference each button by using the Buttons indexed property. You might, for 
example, choose the third button to be checked. For example : 

II Set the third button to be pre-selected (index starts at 0) 
~'1qigQ_r9t1pLI3utt()11~[~L~ll~c:lceq.: == t1:"ll~;······· 

Empty panels 
When building your form, you might want to add many components. These may fall 
into logical groups. If so, you can add each group to a panel, and use the panel to 
position the whole group on the form. The panel name can be blanked out by setting 
the Caption property. 

You can even hide the panel by setting the Bevel Outer and Bevellnner properties to 
bvNone. 

~ Action lists 
Action lists are a large topic on their own. They allow you to define, for example, 
menus with sub-items that are also shown as buttons on your aplication. Only one 
action is defined, regardless of the number of references to it. 

1.4.5. Connecting to a Database: 
The next step is to add database controls and a DataSource to your form. 

1. From the Data Access page of the Component palette, drop a DataSource 

component onto the form. The DataSource component is nonvisual, so it doesn't 

matter where you put it on the form. Set its DataSet property to Table I. 

2. From the Data Controls page, choose the DBGrid component and drop it onto 

your form. Position it in the lower left comer of the form above the status bar, 

then expand it by dragging its upper right comer. 

If necessary, you can enlarge the form by dragging its lower right comer. Your form 

should now resemble the following figure : 

22 



The Data Control page on Component palette holds components that let you view 
database tables. 

Figure 1.22.DBGrid In The Form 

3. SetDBGrid properties to align the grid with the form. Double-click Anchors in 

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them 

all to True. 

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the 

DataSource component you just added to the form). 

Now you can finish setting up the Table] object you placed on the form earlier. 

5. Select the Tablel object on the form, then set its TableName property to 

BIOLIFE.DB. (Name is still Tablel .) Next, set the Active property to True. 

When you set Active to True, the grid fills with data from the BIOLIFE.DB database 

table. If the grid doesn't display data, make sure you've correctly set the properties of all 

the objects on the form, as explained in the instructions above. (Also verify that you 

copied the sample database files into your ... \Borland Shared\Data directory when you 

installed Delphi.) 

23 



~.I 
., .. .J. 

Common_,N ame 
~l 90020 Trig~erfish 

90030 , Snapper 
90050 Wrasse 

, .... ,,,=.····,·,x,·,,s .. w.,··,· 

90070 Angelfish 
_v,.·vv• ·vvvvv,vv••vv,"•:-•-vvv-.S"vv••v••••v•••, 

900SO·Cod 
90090 S'?9.rpi()nfish 
90100 Butterflyfish 
90110 Shark 

Clown T riggerfish 
Red Emperor 

I Giant Maori Wrasse 
"'""""'""''" "'"''''" I Blue Angelfish 

··nv~vvv·.•v •• v, .·v,·.•vvvvvnv, 

Figure 1.23.Show Table 

The DBGrid control displays data at design time, while you are working in the IDE. 

This allows you to verify that you've connected to the database correctly. You cannot, 

however, edit the data at design time; to edit the data in the table, you'll have to run the 

application. 

6. Press F9 to compile and run the project. (You can also run the project by 

clicking the Run button on the Debug toolbar, or by choosing Run from the Run 

menu.) 

7. In connecting our application to a database, we've used three components and 

several levels of indirection. A data-aware control (in this case, a DBGrid) 

points to a DataSource object, which in turn points to a dataset object (in this 

case, a Table). Finally, the dataset (Tablel) points to an actual database table 

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases 

are configured through the BDE Administrator.) 

dataset data-aware control ~ DataSource ~ (Table) 
(Grid) BDE ~ database 

This architecture may seem complicated at first, but in the long run it simplifies 

development and maintenance. For more information, see "Developing database 

applications" in the Developer's Guide or online Help. 



CHAPTER2 

2.DATABASE SYSTEM 
2.1 INTRODUCTION TO DATABASE: 

A database is an organized collection of data. The term originated within thecomputer 

industry, but it s meaning has been broadened by popular use to the extent that the 

European Database Directive includes non-electronic databases within its definition. 

This article is confined to a more technical use of the term; though even amongst 

computing professionals some attach a much wider meaning to the word than others. 

One possible definition is that a database is a collaction of records stored in a computer 

in a systematic way, so that a computer program can consult it to answer questions. For 

better retrieval and sorting , each record is usually organized as a set of data elements. 

The items retrieved in answer to queries become information that can be used to make 

decisions. The computer program used to manage and query a database is known as a 

database management system (DBMS). The properties and design of database system 

are included in the study of information science. 

The central concept of a database is that of a collection of records, or pieces of 

knowledge. Typically, for a given database, there is a structural description of the type 

of facts held in that database: this description is known as a schema. The schema 

describes the objects that are represented in the database, and the relationships among 

them. There are a number of different ways of organizing a schema, that is, of modeling 

the database structure: these are known as database models (or data models). The model 

in most common use today is the relational model, which in layman's terms represents 

all information in the form of multiple related tables each consisting of rows and 

columns (the true definition uses mathematical terminology). This model represents 

relationships by the use of values common to more than one table. Other models such as 

the hierarchical model and the network model use a more explicit representation of 

relationships. 

The term database refers to the collection of related records, and the software should be 

referred to as the database management system or DBMS. When the context is 

25 



unambiguous, however, many database administrators and programmers use the term 

database to cover both meanings. 

Many professionals would consider a collection of data to constitute a database only if it 

has certain properties: for example, if the data is managed to ensure its integrity and 

quality, if it allows shared access by a community of users, if it has a schema, or if it 

supports a query language. However, there is no agreed definition of these properties. 

Database management systems are usually categorized according to the data model that 

they support: relational, object-relational, network, and so on. The data model will tend 

to determine the query languages that are available to access the database. A great deal 

of the internal engineering of a DBMS, however, is independent of the data model, and 

is concerned with managing factors such as performance, concurrency, integrity, and 

recovery from hardware failures. In these areas there are large differences between 

products. 

2.2 DATABASE MODELS: 

Various techniques are used to model data structure. Most database systems are built 

around one particular data model, although it is increasingly common for products to 

offer support for more than one model. For any one logical model various physical 

implementations may be possible, and most products will off er the user some level of 

control in tuning the physical implementation, since the choices that are made have a 

significant effect on performance. An example of this is the relational model: all serious 

implementations of the relational model allow the creation of indexes which provide 

fast access to rows in a table if the values of certain columns are known. 

A data model is not just a way of structuring data: it also defines a set of operations that 

can be performed on the data. The relational model, for example, defines operations 

such as select, project, and join. Although these operations may not be explicit in a 

particular query language, they provide the foundation on which a query language is 

built. 

26 



2.2.1 Relational model: 

The relational model was introduced in an academic paper by E. F. Codd in 1970 as a 

way to make database management systems more independent of any particular 

application. It is a mathematical model defined in terms of predicate logic and set 

theory. 

The products that are generally referred to as relational databases in fact implement a 

model that is only an approximation to the mathematical model defined by Codd. The 

data structures in these products are tables, rather than relations: the main differences 

being that tables can contain duplicate rows, and that the rows (and columns) can be 

treated as being ordered. The same criticism applies to the SQL language which is the 

primary interface to these products. There has been considerable controversy, mainly 

due to Codd himself, as to whether it is correct to describe SQL implementations as 

"relational": but the fact is that the world does so, and the following description uses the 

term in its popular sense. 

A relational database contains multiple tables, each similar to the one in the "flat" 

database model. Relationships between tables are not defined explicitly; instead, keys 

are used to match up rows of data in different tables. A key is a collection of one or 

more columns in one table whose values match corresponding columns in other tables: 

for example, an Employee table may contain a column named Location which contains 

a value that matches the key of a Location table. Any column can be a key, or multiple 

columns can be grouped together into a single key. It is not necessary to define all the 

keys in advance; a column can be used as a key even if it was not originally intended to 

be one. 

A key that can be used to uniquely identify a row in a table is called a unique key. 

Typically one of the unique keys is the preferred way to refer to a row; this is defined as 

the table's primary key. 

A key that has an external, real-world meaning (such as a person's name, a book's ISBN, 

or a car's serial number) is sometimes called a "natural" key. If no natural key is suitable 

27 



(think of the many people named Brown), an arbitrary key can be assigned (such as by 

giving employees ID numbers). In practice, most databases have both generated and 

natural keys, because generated keys can be used internally to create links between rows 

that cannot break, while natural keys can be used, less reliably, for searches and for 

integration with other databases. (For example, records in two independently developed 

databases could be matched up by social security number, except when the social 

security numbers are incorrect, missing, or have changed.) 

2.2.1.1 Relational operations: 

Users (or programs) request data from a relational database by sending it a query that is 

written in a special language, usually a dialect of SQL. Although SQL was originally 

intended for end-users, it is much more common for SQL queries to be embedded into 

software that provides an easier user interface. Many web sites, perform SQL queries 

when generating pages. 

In response to a query, the database returns a result set, which is just a list of rows 

containing the answers. The simplest query is just to return all the rows from a table, but 

more often, the rows are filtered in some way to return just the answer wanted. 

Often, data from multiple tables are combined into one, by doing a join. Conceptually, 

this is done by taking all possible combinations of rows (the Cartesian product), and 

then filtering out everything except the answer. In practice, relational database 

management systems rewrite ("optimize") queries to perform faster, using a variety of 

techniques. 

There are a number of relational operations in addition to join. These include project 

(the process of eliminating some of the columns), restrict (the process of eliminating 

some of the rows), union (a way of combining two tables with similar structures), 

difference (which lists the rows in one table that are not found in the other), intersect 

(which lists the rows found in both tables), and product (mentioned above, which 

combines each row of one table with each row of the other). Depending on which other 

sources you consult, there are a number of other operators - many of which can be 

defined in terms of those listed above. These include semi-join, outer operators such as 

outer join and outer union, and various forms of division. Then there are operators to 



rename columns, and summarizing or aggregating operators, and if you permit relation 

values as attributes (RV A - relation-valued attribute), then operators such as group and 

ungroup. The SELECT statement in SQL serves to handle all of these except for the 

group and ungroup operators. 

The flexibility of relational databases allows programmers to write queries that were not 

anticipated by the database designers. As a result, relational databases can be used by 

multiple applications in ways the original designers did not foresee, which is especially 

important for databases that might be used for decades. This has made the idea and 

implementation of relational databases very popular with businesses. 

2.3 SQL IN DELPHI : 
Using Structured Query Language in Delphi: 

SQL: 
SOL (Structured Query Language) is a standardized language for defining and 

manipulating data in a relational database. In accordance with the relational model of 
data, the database is perceived as a set of tables, relationships are represented by values 
in tables, and data is retrieved by specifying a result table that can be derived from one 
or more base tables. 
Queries take the form of a command language that lets you select, insert, update, find 
out the location of data, and so forth. 

[?j In Delphi ... TQuery s&L 

If you are going to use SQL in your applications, you will become very familiar 
with the TQuery component. Delphi enables your applications to use SQL syntax 
directly though TQuery component to access data from: Paradox and dBase tables 
(using local SQL - subset of ANSI standard SQL), Databases on the Local InterBase 
Server, and Databases on remote database servers. 
Delphi also supports heterogeneous queries against more than one server or table type 
(for example, data from an Oracle table and a Paradox table). 

TQuery has a property called SQL, which is used to store the SQL statement. 
TQuery encapsulates one or more SQL statements, executes them and provides methods 
by which we can manipulate the results. Queries can be divided into two categories: 
those that produce result sets (such as a SELECT statement), and those that don't (such 
as an UPDATE or INSERT statement). Use TQuery.Open to execute a query that 
produces a result set; use TQuery.ExecSQL to execute queries that do not produce 
result sets. 

The SQL statements can be either static or dynamic, that is, they can be set at design 
time or include parameters (TQuery.Params) that vary at run time. Using parameterized 
queries is very flexible, because you can change a user's view of and access to data on 
the fly at run time. 

29 



All executable SQL statements must be prepared before they can be executed. The 
result of preparation is the executable or operational form of the statement. The method 
of preparing an SQL statement and the persistence of its operational form distinguish 
static SQL from dynamic SQL. At design time a query is prepared and executed 
automatically when you set the query component's Active property to True. At run time, 
a query is prepared with a call to Prepare, and executed when the application calls the 
component's Open or ExecSQL methods. 

A TQuery can return two kinds of result sets: "live" as with TTable component (users 
can edit data with data controls, and when a call to Post occurs changes are sent to 
database), "read only" for display purposes only. To request a live result set, set a query 
component's RequestLive property to True, and be aware that SQL statement must meet 
some specific requirements (no ORDER BY, SUM, AVG, etc.) 

· A query behaves in many ways very much like a table filter, and in some ways a query 
is even more powerful than a filter because it lets you access: 

• more than one table at a time ("join" in SQL), 
• a specified subset of rows and columns from its underlying table(s), rather than 

always returning all of them. 

Simple example: 
Now let's see some SQL in action. Although we could use the Database Form Wizard to 
create some SQL examples for this example we will do it manually, step by step: 

1. Place a TQuery, TDataSource, TDBGrid, TEdit, and a TButton component on the 
main form. 
2. Set TDataSource component's DataSet property to Query I. 
3. Set TDBGrid component's DataSource property to DataSourcel. 
4. Set TQuery component's DatabaseName property to query 
5. Double-click on SQL pr()pertyofaJQueryto assign the SQL statement to it. 

select * from employee 

.i:;ode Editor. .. QK .t!elp 

6. To make the grid display data at design time, change TQuery component's Active 
property to True. 

30 



Button1 

As you can see, the grid displays data from Employee.db table in three columns 
(FirstName, LastName, Salary) even if Emplyee.db has 7 fields, and the result set is 
restricted to those records where the FirstName begins with 'R'. 

7. Now assign the following code to the OnClick event of the Button 1. 

.procedure TForml .Buttonl Click(Sender: TObject); 
begin 
:Queryl .Close;{ close the query} 
//assign new SQL expression 
Queryl .SQL.Clear; 
IQueryl.SQL.Add ('Select EmpNo, FirstName, LastName'); 
.Queryl .SQL.Add ('FROM employee.db'); 
:Queryl .SQL.Add ('WHERE Salary> '+ Editl .Text); 
.Queryl .RequestLive := true; 
'Queryl .Open; { open query + display data} 
lend· 
' ' 

8. Run your application. When you click on the Button (as long as Edit 1 has a valid 
currency value in it), the grid will display the EmpNo, FirstName and LastName fields 
for all records where Salary is greater than the specified currency value. 

In this example we created simple static SQL statement with live result set (we haven 
changed any of displayed records) just for displaying purposes. 

31 



CHAPTER3 
3.CEYLAN AIRLINE COMPANY DATABASE MANAGEMENT 

SYSTEM USERS MANUAL 

3.1 LOGIN: 
We can divide the target user of the program in tree part such as: 

-User 
-Admin 

According to user name and password, users are redirected to the relevant pages from 
login page. If the user is not registered to the system yet s/he should be registered using 
the register button. When this button is clicked, the registration window comes up, user 
should fill the blanks with proper information. Registration pages looks like; 

32 



The user must complete this form for registration. The informations in the form must be 
true not to have a problem during the progress. 

Then fill all passenger information. If there is a free area on register, a warning will be 
shown: 

"REGISTER SUCCESSFUL" after completing the passenger information 
form.Afterwards,we return to the login page by clicking the "BACK" button.And we 
log into the system as a user. 

33 



When we return login form we try to Jog-in into the system with new username and 
password if we write user name or password wrong,seeing this warning on the form and 
to compare from database information to writing information with this code; 

procedure TForml .Button I Click(Sender: TObject); 
begin 
query I .Close; 
query I .SQL.Clear; 
query I .SQL.Add('select * from login where username='+#39+editl .Text+#39+' and 
Pass='+#39+edit2.Text+#39'and type='+#39+label7.Caption+#39 ); 
query I .Open; 
if query I .RecordCount=O then 
label 6. Visible:=true 
else begin 
form l .Hide; 
form3.show; 
end; 

34 



3.2USER: 

In this form, the user selects the departure and arrival airports by using the 
DBCombobox located at the top left of the form, then selects the flight dates using the 
datepicker application located at the upper part of the left page and the flexibility of 
flight days by clicking one of the radio buttons located at the lower part of middle of the 
page. Additionally, user should select the class (by default it is selected as 'Economy') 
and the number of passengers for each group by using the lists called adult, children and 
infant.The whole choices that we made above comes up at the lower part of the screen 
by using DBGrid application.And we can change these informations by using 
DBNavigator application. Then clicking the 'Continue' button, user can see the lists of 
the flights at the pre-determined dates. Page can be seen like: 

35 



C ERCAN-:AIJANA 

«· tERCAN-AOANA 
· (" ERCAN-ADANA . . .) . . 

r: ERCAN-ADt,NA 
,~ ERCAN-ADAl'1~ 

r ERCAN-ADANA 
r· ERCAN~ADANA 

At this page, user selects the most suitable actual date of any flight using radio group 
firstly if he selected round trip at the previous form(by default none). After selection, 
we automatically go the payment form clicking "Continue" button. 

36 



Before payment form.we have one more issue about the selection.If we selected one­ 
way trip from the flexibility of the flight dates in the flights form,our form would be 
such like above: 

37 



The payment method has to be declared and informations about the credit card have to 
be entered correctly here by adding the credit card owner's last name.And we go to the 
report form automatically by clicking the "Show report" button.If we click back 
button,we return to the flights form. 

CEYLAN AIRLINES 

ADANA ANTALYA 23.00.axe 01.07.axe 11:00 1 EDYTL 

ANTALYA ADAM 01.07.axe 23.00.axe 11:00 1 EDYTL 

V 

This is the final report revealing the whole flight informations ready to be printed. 

38 



3.3ADMIN: 

Admin can reach the related pages via the main page of the program seen below and s­ 
he uses the login part by entering his-her usemame and password. Afterwards, admin 
menu page will be displayed and look like: 

ahmet 63486876878 ah met kel ah met. kel@hotmail_ com !efkosa 90000 mr 0' 
emin 6743576345 ermn tutkun emin_tutkun@holmail.com bodrum 76576 mr O!-- 
murat 1234 murat eve,ek!i mur ateverek!i@hotmail.com ant a/ya 07000 mr 0' 
tahir cicek lahir cicekli tahir _ cicekli@hotmail.com malatya 44000 mr QI V 

< > 

In this form,we used main menu.The function of the main menu is to create the buttons 
which lead us from a form to another one.this page,admin can change the whole 
informations(ex:user can be made an admin by changing the type in the passenger 
information) and interact with the rest of the forms.The passenger informations in our 
database are listed by using DBGrid and are inserted or deleted by using 
DBNavigator.And all users in the database can be searched writing the codes below: 

procedure TForm3.Editl Change(Sender: TObject); 
begin 
queryl .Close; 
queryl .SQL.Clear; 
queryl .SQL.Add('select * from login 
like'+#39+( editl .Text)+'%'+#39); 
queryl .Open; 
end; 

where Usemame 

39 



We automatically reached this form clicking the flight information button on the admin 
page.The whole necessary informations about the flight are selected by the admin.After 
selection,the choices are listed via DBGrid and changed if desired via DBNavigator. 

The employee information comes up just like how we meet the flight information form 
above.Clicking the employee information form on the admin page leads us directly to 
this form.The same procedure is applied here as well as the other forms which we go 
through the admin page.The necessary information about the staff is listed,we can 
search any staff using the name with applications that we discussed 
above.(DBGrid,DBNavigator) 

40 



The employee information form you see above just figures how the staff information is 
listed by making a search.when we type the first letter of the name in the search box,all 
names beginning with that letter are going to appear on the list. 

Airport information is again one of the pages seen via admin page.The airport name,the 
city in which it takes place and the state(if there is)can be listed by using the same 
method above. 

41 



The departure and return information form includes the necessary stuff about flight,we 
can search and find the flights using same methods.We additionally used date and time 
picker to determine the date and time for the departure or return.We can search the 
flights as well.How the search is made as follows: 

The search is made according to the first letter of the flight where it departs as you see 
in the figure.When we type the first letter of departure city,the flights from that city is 
going to be listed. 

42 



CONCLUSION 

Airline Company Database Management System is a useful program for Airline 

Management. By using this program they can record and control register 

airline.passenger and customers. 

The program is easy in use, and everything is in detail, I used borland Delphi 7 

Programming Language in building it, also PARADOX Database for storing 

information's. The program records register operation. 

I used many forms in this Project. The program records everything, we can see 

who works in airlines registration,we can see about this. Also we can see all 

information about register airline company database management system ... 

43 



REFERENCES 

[1] Yuksel inan - Nihat Demirli Delphi 7 Leaming Book 

[2] Ihsan Karagi.ille Delphi 7 Edition Book 

[3] Memik Yamk Borland Delphi- Sistem Yaymcilik 

[4] http://www.google.com 

[5] http://www.wikipedia.org 

[6]Ezel Balkan Borland Delphi 

[7] http://www.lkeydata.com/sql 



APPENDIX 
Program Code 

unit Unitl; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, jpeg, ExtCtrls, DB, DBTables; 

type 
TForml = class(TForm) 
Imagel: Tlmage; 
Editl: TEdit; 
Edit2: TEdit; 
Buttonl: TButton; 
Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Button2: TButton; 
Label5: TLabel; 
DataSourcel: TDataSource; 
Label6: TLabel; 
Label7: TLabel; 
Queryl: TQuery; 
Label8: TLabel; 
procedure Button2Click(Sender: TObject); 
procedure Button I Click(Sender: TObject); 
procedure Edit2KeyPress(Sender: TObject; var Key: Char); 
procedure Imagel Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forml: TForml; 

implementation 

uses Unit2, Unit3, Unit4; 

{$R *.dfm} 

procedure TForm 1.B utton2Click( Sender: TObject); 
begin 

45 



form2.show; 
form I .Hide; 
end; 

procedure TForml .Button I Click(Sender: TObject); 
begin 
query I .Close; 
queryl .SQL.Clear; 
query I .SQL.Add('select * from login where username='+#39+editl .Text+#39+' and 
Pass='+#39+edit2.Text+#39'and type='+#39+label7.Caption+#39 ); 
query I .Open; 
if queryl .RecordCount=O then 
label 6. Visible:=true 
else begin 
form I .Hide; 
form3.show; 
end; 

queryl .Close; 
query I .SQL.Clear; 
queryl.SQL.Add('select * from login where username='+#39+editl.Text+#39+' and 
Pass='+#39+edit2.Text+#39'and type='+#39+label8.Caption+#39 ); 
query I .Open; 
if queryl .RecordCount=O then 
label 6. Visible:=true 
else begin 
form I .Hide; 
form4.Show; 
end; 
end; 

procedure TForml.Edit2KeyPress(Sender: TObject; var Key: Char); 
begin 
if(key=#l 3)then button I .SetFocus; 
end; 

procedure TForml.ImagelClick(Sender: TObject); 

begin 
Queryl.DatabaseName:='ceylan'; 
Query I .requestlive:=true; 
query I .SQL.Text:='select * from login'; 
query 1.Acti ve: =true; 

end; 

end. 

46 



unit Unit2; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, dblookup, StdCtrls, DB, DBTables, DBCtrls, Mask; 

type 
TForm2 = class(TForm) 
Buttonl: TButton; 
Button2: TButton; 
Labell: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Label5: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Label9: TLabel; 
LabellO: TLabel; 
Labell 1: TLabel; 
Label12: TLabel; 
Label 13: TLabel; 
DBEditl: TDBEdit; 
DBEdit2: TDBEdit; 
DBEdit3: TDBEdit; 
DBEdit4: TDBEdit; 
DBEdit5: TDBEdit; 
DBEdit6: TDBEdit; 
DBComboBoxl: TDBComboBox; 
DBEdit7: TDBEdit; 
DBEdit8: TDBEdit; 
DBEdit9: TDBEdit; 
DBEditlO: TDBEdit; 
DBComboBox2: TDBComboBox; 
Queryl: TQuery; 
DataSourcel: TDataSource; 
Label14: TLabel; 
DBEditl 1: TDBEdit; 
procedure Button2Click(Sender: TObject); 
procedure FormActivate(Sender: TObject); 
procedure ButtonlClick(Sender: TObject); 
procedure FormCreate(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

47 



var 
Form2: TForm2; 

implementation 

uses Unitl; 

{$R *.dfm} 

procedure TForm2.Button2Click(Sender: TObject); 
begin 
forml.show; 
form2.Hide; 
end; 

procedure TForm2.FormActivate(Sender: TObject); 
begin 
query} .Insert; 
dbeditl 1.Text:='u'; 
end; 

procedure TForm2.Buttonl Click(Sender: TObject); 
begin 
if dbeditl .Text=" then 
showmessage('Please enter your name') 
else 
if dbedit2.Text=" then 
showmessage('please enter your surname') 
else 
if dbedit3.Text=" then 
showmessage('Please enter your E-mail Address') 
else 
if dbedit4.Text=" then 
showmessage('Please enter UserName ') 
else 
if dbedit5.Text=" then 
showmessage('Please enter your Address') 
else 
if dbedit6.Text=" then 
showmessage('Please enter your PostalCode') 
else 
if dbedit7.Text=" then 
showmessage('Please enter your TelephoneNumber') 
else 
if dbedit8.Text=" then 
showmessage('Please enter your MobilePhone ') 
else 
if dbedit9.Text=" then 
showmessage('Please enter your Password') 

48 



else 
if dbeditlO.Text=" then 
showmessage('Please enter your City') 
else 
begin 
queryl .Post; 
dbeditl .Text:="; 
dbedit2.Text:="; 
dbedit3.Text:="; 
dbedit4.Text:="; 
dbedit5.Text:="; 
dbedit6.Text:="; 
dbedit7.Text:="; 
dbedit8.Text:="; 
dbedit9.Text:="; 
dbeditlO.Text:="; 
dbcomboboxl .Text:="; 
dbcombobox2.Text:="; 
label 14.Caption:='REG I STER SUCCESSFUL!'; 
label 14.Font.Size:=14; 
label 14.Font.Color:=clred; 
label 14. Visible:=true; 
end; 
end; 
procedure TForm2.FormCreate(Sender: TObject); 
begin 
Queryl .DatabaseName:='ceylan'; 
Queryl .requestlive:=true; 
queryl .SQL.Text:='select * from login'; 
queryl .Active:=true; 
end; 

end. 

unit Unit3; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, DB, DBTables, ExtCtrls, DBCtrls, Grids, DBGrids, StdCtrls, Mask, 
Menus, ComCtrls, ToolWin; 

type 
TForm3 = class(TForm) 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Label5: TLabel; 

49 



Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Label9: TLabel; 
LabellO: TLabel; 
Label 11 : TLabel; 
Label12: TLabel; 
Label 13: TLabel; 
DBEditl: TDBEdit; 
DBEdit2: TDBEdit; 
DBEdit3: TDBEdit; 
DBEdit4: TDBEdit; 
DBEdit5: TDBEdit; 
DBEdit6: TDBEdit; 
DBComboBoxl: TDBComboBox; 
DBEdit7: TDBEdit; 
DBEdit8: TDBEdit; 
DBEdit9: TDBEdit; 
DBEditlO: TDBEdit; 
DBComboBox2: TDBComboBox; 
DBGridl: TDBGrid; 
DBNavigatorl: TDBNavigator; 
Editl: TEdit; 
DBComboBox3: TDBComboBox; 
Label 1 : TLabel; 
Button2: TButton; 
MainMenul: TMainMenu; 
BOOKFLIGHTl: TMenultem; 
PERSONELINFORMATIONl: TMenultem; 
AIRPORT I: TMenultem; 
PLANE I: TMenultem; 
Label14: TLabel; 
Queryl: TQuery; 
DataSourcel: TDataSource; 
Label15: TLabel; 
procedure EditlKeyPress(Sender: TObject; var Key: Char); 
procedure Button2Click(Sender: TObject); 
procedure BOOKFLIGHTl Click(Sender: TObject); 
procedure PERSONELINFORMA TION 1 Click(Sender: TObject); 
procedure AIRPORT I Click(Sender: TObject); 
procedure EditlChange(Sender: TObject); 
procedure PLANElClick(Sender: TObject); 
procedure FormCreate(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 

50 



Forrn3: TForrn3; 

implementation 

uses Unitl, Unit6, Unit7, Unit8, Unitl 1; 

{$R *.dfm} 

procedure TForrn3.Edit1KeyPress(Sender: TObject; var Key: Char); 
begin 
dbeditl.Clear; 
dbedit2.Clear; 
dbedit3.Clear; 
dbedit4.Clear; 
dbedit5.Clear; 
dbedit6.Clear; 
dbedit7.Clear; 
dbedit8.Clear; 
dbedit9.Clear; 
dbeditlO.Clear; 
dbcomboboxl .Clear; 
dbcombobox2.Clear; 
end; 

procedure TForm3.Button2Click(Sender: TObject); 
begin 
forml.show; 
forrn3.Hide; 
end; 

procedure TForm3.B00KFLIGHT1Click(Sender: TObject); 
begin 
form6.show; 
form3 .Hide; 
end; 

procedure TForrn3.PERS0NELINFORMATION1Click(Sender: TObject); 
begin 
forrn7.show; 
forrn3.Hide; 
end; 

procedure TForrn3.AIRPORT1Click(Sender: TObject); 
begin 
forrn8.show; 
form3.Hide; 
end; 

51 



procedure TForm3.Edit1Change(Sender: TObject); 
begin 
queryl .Close; 
queryl.SQL.Clear; 
queryl .SQL.Add('select * from login where Username 
like'+#39+(editl .Text)+'%'+#39); 
queryl .Open; 
end; 

procedure TForm3.PLANE1Click(Sender: TObject); 
begin 
forml 1.show; 
form3 .Hide; 
end; 

procedure TForm3.FormCreate(Sender: TObject); 
begin 
Queryl .DatabaseName:='ceylan'; 
Queryl .requestlive:=true; 
queryl .SQL.Text:='select * from login'; 
queryl .Active.e-true; 
editl .Text:="; 

end; 

end. 

unit Unit4; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, DBCtrls, Mask, DB, DBTables, ComCtrls, ExtCtrls, 
Grids, DBGrids; 

type 
TForm4 = class(TForm) 
Buttonl: TButton; 
DBComboBoxl: TDBComboBox; 
DBComboBox2: TDBComboBox; 
DBComboBox3: TDBComboBox; 
DBComboBox4: TDBComboBox; 
DBComboBox5: TDBComboBox; 
DBC0mb0B0x6: TDBComboBox; 
Label5: TLabel; 
Label6: TLabel; 
Label9: TLabel; 
LabellO: TLabel; 

52 



Label 11 : TLabel; 
Label 12: TLabel; 
Label13: TLabel; 
Label 1 : TLabel; 
Label2: TLabel; 
DBGridl: TDBGrid; 
DataSourcel: TDataSource; 
Queryl: TQuery; 
DBNavigatorl: TDBNavigator; 
Query2: TQuery; 
RadioGroup 1: TRadioGroup; 
Query3: TQuery; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
Button2: TButton; 
procedure ButtonlClick(Sender: TObject); 
procedure DateTimePickerlChange(Sender: TObject); 
procedure DateTimePicker2Change(Sender: TObject); 
procedure Button2Click(Sender: TObject); 
procedure FormCreate(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form4: TForm4; 

implementation 

uses Unit5, Unit9, Unitl; 

{$R *.dfm} 

procedure TForm4.Button1Click(Sender: TObject); 

begin 
queryl .Edit; 
if radio group l .ItemlndexeO then begin 
db grid I .Fields[ 8] .AsString:='T'; 
dbgridl .Fields[9].AsString:='F'; 
db grid I .Fields[ 1 O] .AsString:='F'; 
end; 
if radiogroupl .Itemlndex=l then begin 
dbgridl .Fields[8].AsString:='F'; 
dbgridl .Fields[9] .AsString:='T'; 
dbgridl .Fields[ 1 O] .AsString:='F'; 
end; 

53 



if radio group 1.ltemlndex=2 then begin 
dbgridl .Fields[8].AsString:='F'; 
dbgridl .Fields[9].AsString:='F'; 
dbgridl .Fields[ 10).AsString:='T'; 
end; 

if radio group lItemlndexeO then begin 
query2.Close; 
query2.SQL.Clear; 
query2.SQL.Add('select * from details where From_ ='+#39+dbcomboboxl .Text+#39+' 
and To_ ='+#39+dbcombobox2.Text+#39); 
query2. Open; 
query2.First; 
form9.radiogroupl .Items.Clear; 
while not query2.Eof do begin 
form9 .RadioGroup I .Items.Add( query2.Fields[O] .AsString+'­ 
'+query2.Fields[ 1] .AsString+' '+query2.Fields[2] .AsString+' 
'+query2.Fields[3].AsString+' '+query2.Fields[4].AsString+' 
'+query2.Fields[ 5) .AsString); 
query2.Next; 
end; 
form9.RadioGroup2.Visible:=false; 
form5.SummaryBandl. Visible.efalse; 
end; 

if radiogroupl .Itemlndex= l then begin 
query2.Close; 
query2.SQL.Clear; 
query2.SQL.Add('select * from details where From_ ='+#39+dbcomboboxl.Text+#39+' 
and To_ ='+#39+dbcombobox2.Text+#39); 
query2.0pen; 
query2 .First; 
form9 .RadioGroup I .Items. Clear; 
while not query2.Eof do begin 
form9.RadioGroupl.Items.Add(query2.Fields[O].AsString+'­ 
'+query2.Fields[ 1] .AsString+' '+query2.Fields[2] .AsString+' 
'+query2.Fields[3] .AsString+' '+query2.Fields[ 4] .AsString+' 
'+query2.Fields[ 5) .AsString); 
query2.Next; 
end; 
query3.Close; 
query3.SQL.Clear; 
query3.SQL.Add('select * from details where From_ ='+#39+dbcombobox2.Text+#39+' 
and To_='+#39+dbcomboboxl .Text+#39 ); 
query3.0pen; 
query3 .First; 
form9 .RadioGroup2.Items. Clear; 
while not query3.Eof do begin 

54 



form9 .RadioGroup2 .Items.Add( query3 .Fields[O] .AsString+'­ 
'+query3 .Fields[ 1] .AsS tring+' '+query3.Fields[2].AsString+' 
'+query3.Fields[3] .AsString+' '+query2.Fields[ 4] .AsString+' 
'+query2.Fields[ 5] .AsString); 
query3.Next; 
end; 
end; 

form9.show; 
form4.Hide; 

end; 

procedure TForm4.DateTimePickerl Change(Sender: TObject); 
begin 
queryl .Edit; 
query 1.Fields[2] .AsString:=datetostr( datetimepickerl .Date); 
end; 

procedure TForm4.DateTimePicker2Change(Sender: TObject); 
begin 
queryl .Edit; 
query 1.Fields[3] .AsString:=datetostr( datetimepicker2.Date ); 
end; 

procedure TForm4.Button2Click(Sender: TObject); 
begin 
forml .show; 
form4.Hide; 
end; 

procedure TForm4.FormCreate(Sender: TObject); 
begin 
Queryl .DatabaseNarne.e'ceylan'; 
Query I .requestlive:=true; 
query I .SQL.Text:='select * from fligth'; 
query I .Active:=true; 

end; 

end. 

55 



unit UnitS; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, ExtCtrls, QuickRpt, QRCtrls, DB, DB Tables, jpeg; 

type 
TForm5 = class(TForm) 
Buttonl: TButton; 
Button2: TButton; 
QuickRepl: TQuickRep; 
Tablel: TTable; 
DataSourcel: TDataSource; 
ColumnHeaderBandl: TQRBand; 
DetailBandl: TQRBand; 
PageFooterBandl: TQRBand; 
PageHeaderBandl: TQRBand; 
QRLabell: TQRLabel; 
QRLabel2: TQRLabel; 
QRLabel3: TQRLabel; 
QRLabel4: TQRLabel; 
QRLabel5: TQRLabel; 
QRLabel6: TQRLabel; 
QRLabel7: TQRLabel; 
QRLabel8: TQRLabel; 
QRDBTextl: TQRDBText; 
QRDBText2: TQRDBText; 
QRDBText3: TQRDBText; 
QRDBText4: TQRDBText; 
QRDBText5: TQRDBText; 
QRDBText6: TQRDBText; 
QRDBText7: TQRDBText; 
QRDBText8: TQRDBText; 
QRLabel9: TQRLabel; 
QRDBText9: TQRDBText; 
QRLabellO: TQRLabel; 
SummaryBandl: TQRBand; 
QRDBTextlO: TQRDBText; 
QRDBTextl 1: TQRDBText; 
QRDBText12: TQRDBText; 
QRDBText13: TQRDBText; 
QRDBText14: TQRDBText; 
QRDBText15: TQRDBText; 
QRDBTextl 6: TQRDBText; 
QRDBTextl 7: TQRDBText; 
QRDBTextl 8: TQRDBText; 
procedure ButtonlClick(Sender: TObject); 
procedure Button2Click(Sender: TObject); 

56 



private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form5: TForm5; 

implementation 

uses Unit4; 

{$R *.dfm} 

procedure TForm5.Button1Click(Sender: TObject); 
begin 
form4.show; 
form5.Hide; 
end; 

procedure TForm5.Button2Click(Sender: TObject); 
begin 
quickrepl .Preview; 
if form4.RadioGroupl .Itemlndex-O then 
begin 
qrdbtext 10. V isible.efalse; 
end; 

end; 
end. 

unit Unit6; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ComCtrls, StdCtrls, DBCtrls, Mask, Grids, DBGrids, ExtCtrls, DB, 
DBTables; 

type 
TForm6 = class(TForm) 
Label 1 : TLabel; 
DataSourcel: TDataSource; 
DBNavigatorl: TDBNavigator; 
DBEditl: TDBEdit; 
DBEdit3: TDBEdit; 
DBEditS: TDBEdit; 

57 



DBEdit7: TDBEdit; 
DBComboBoxl: TDBComboBox; 
DBComboBox2: TDBComboBox; 
DBComboBox3: TDBComboBox; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Label5: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Label9: TLabel; 
Labell 0: TLabel; 
Label 11 : TLabel; 
Label12: TLabel; 
Buttonl: TButton; 
DateTimePickerl: TDateTimePicker; 
DateTimePicker2: TDateTimePicker; 
DateTimePicker3: TDateTimePicker; 
DateTimePicker4: TDateTimePicker; 
Queryl: TQuery; 
DBGridl: TDBGrid; 
Tablel: TTable; 
procedure ButtonlClick(Sender: TObject); 
procedure DateTimePickerl Change(Sender: TObject); 
procedure DateTimePicker2Change(Sender: TObject); 
procedure DateTimePicker3Change(Sender: TObject); 
procedure DateTimePicker4Change(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure DBNavigatorlClick(Sender: TObject; Button: TNavigateBtn); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form6: TForm6; 

implementation 

uses Unit3; 

{ $R *.dfm} 

procedure TForm6.Button1Click(Sender: TObject); 
begin 
form3.show; 
form6.Hide; 
end; 

58 



procedure TForm6.DateTimePickerIChange(Sender: TObject); 
begin 
table I .Edit; 
table I .Fields[3] .AsString:=datetostr( datetimepickerl .Date Time) 
end; 

procedure TForm6.DateTimePicker2Change(Sender: TObject); 
begin 
table I .Edit; 
table I .Fields[ 8] .AsString:=datetostr( datetimepicker2.Date) 
end; 

procedure TForm6.DateTimePicker3Change(Sender: TObject); 
begin 
table I .Edit; 
table I .Fields[ 5] .AsString:=datetostr( datetimepicker3 .Date) 
end; 

procedure TForm6.DateTimePicker4Change(Sender: TObject); 
begin 
table I .Edit; 
table I .Fields[ IO] .AsString:=datetostr( datetimepicker4.Date) 
end; 

procedure TForm6.FormCreate(Sender: TObject); 
begin 
Query I .DatabaseName:='ceylan'; 
Query I .reques tl i ve: =true; 
query I .SQL.Text:='select * from information'; 
query I .Active.etrue; 
end; 

procedure TForm6.DBNavigatorIClick(Sender: TObject; Button: TNavigateBtn); 
begin 
if dbcomboboxI .Text=" then 
showmessage('Please enter plane') 
else 
if dbcombobox2.Text=" then 
showmessage('please enter DepartAirport') 
else 
if dbeditI .Text=" then 
showmessage('Please enter DepartGate') 
else 
if dbedit3.Text=" then 
showmessage('Please enter SeatsA vailable ') 
else 
if dbcombobox3.Text=" then 
showmessage('Please enter ArriveAirport') 
else 

59 



if dbedit5.Text=" then 
showmessage('Please enter ArriveGate') 
else 
if dbedit7.Text=" then 
showmessage('Please enter SeatsBooked') 
end; 

end. 

unit Unit7; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids, StdCtrls, Mask, DB, DBTables; 

type 
TForm7 = class(TForm) 
Label 1 : TLabel; 
DataSourcel: TDataSource; 
DBEditl: TDBEdit; 
DBEdit2: TDBEdit; 
DBEdit3: TDBEdit; 
DBEdit4: TDBEdit; 
DBEditS: TDBEdit; 
DBEdit6: TDBEdit; 
DBEdit7: TDBEdit; 
Button I: TButton; 
DBGridl: TDBGrid; 
DBNavigatorl: TDBNavigator; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Labels: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
Label8: TLabel; 
Editl: TEdit; 
Label9: TLabel; 
Queryl: TQuery; 
DBEdit8: TDBEdit; 
LabellO: TLabel; 
procedure Button I Click(Sender: TObject); 
procedure Editl Change(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure DBNavigatorl Click(Sender: TObject; Button: TNavigateBtn); 

private 
{ Private declarations } 

public 

60 



{ Public declarations } 
end; 

var 
Form7: TForm7; 

implementation 

uses Unit3; 

{$R *.dfm} 

procedure TForm7.Button1Click(Sender: TObject); 
begin 
form3.show; 
form7 .Hide; 
end; 

procedure TForm7.Edit1Change(Sender: TObject); 
begin 
queryl .Close; 
queryl .SQL.Clear; 
queryl .SQL.Add('select * from employee where Name 
like'+#39+(editl .Text)+'%'+#39); 
queryl .Open; 
end; 

procedure TForm7.FormCreate(Sender: TObject); 
begin 
Queryl .DatabaseName:='ceylan'; 
Queryl .requestlive:=true; 
queryl .SQL.Text:='select * from employee'; 
queryl .Active:=true; 
editl .Text:="; 

end; 

procedure TForm7.DBNavigatorlClick(Sender: TObject; Button: TNavigateBtn); 
begin 
if dbeditl .Text=" then 
showmessage('Please enter Name') 
else 
if dbedit2.Text=" then 
showmessage('please enter Surname') 
else 
if dbedit3.Text=" then 
showmessage('Please enter Password') 
else 
if dbedit4.Text=" then 
showmessage('Please enter Address') 

61 



else 
if dbedit5.Text=" then 
showmessage('Please enter Postal Code') 
else 
if dbedit6.Text=" then 
showmessage('Please enter Salary') 
else 
if dbedit7.Text=" then 
showmessage('Please enter TelephoneNumber') 
else 
if dbedit8.Text=" then 
showmessage('Please enter Department ') 

end; 

end. 

unit Unit8; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, Grids, DBGrids, ExtCtrls, DBCtrls, StdCtrls, Mask, DB, DBTables; 

type 
TForm8 = class(TForm) 
DataSourcel: TDataSource; 
DBEditl: TDBEdit; 
DBEdit2: TDBEdit; 
DBEdit3: TDBEdit; 
Label I: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
DBNavigatorl: TDBNavigator; 
DBGridl: TDBGrid; 
Button I: TButton; 
Query I: TQuery; 
procedure ButtonlClick(Sender: TObject); 
procedure FormCreate(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form8: TForm8; 

62 



implementation 

uses Unit3; 

{$R *.dfm} 

procedure TForm8.Button1Click(Sender: TObject); 
begin 
form3.show; 
form8.Hide; 
end; 

procedure TForm8.FormCreate(Sender: TObject); 
begin 
Queryl.DatabaseName:='ceylan'; 
Queryl .requestlive.etrue; 
qiiery l .SQL.Text:='select * from airport'; 
queryl .Active:=true; 

end; 

end. 

unit Unit9; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, ExtCtrls, DBCtrls, DB, DBTables; 

type 
TForm9 = class(TForm) 
Labell: TLabel; 
Buttonl: TButton; 
Queryl: TQuery; 
DataSource 1: TDataSource; 
RadioGroupl: TRadioGroup; 
RadioGroup2: TRadioGroup; 
procedure ButtonlClick(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form9: TForm9; 

63 

----·-·--·-- 



implementation 

uses Unit4, Unit5, UnitlO; 

{$R *.dfm} 

procedure TForm9.Button1Click(Sender: TObject); 
begin 
form IO.show; 
form9 .Hide; 

end; 

end. 

unit UnitlO; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, DB, DBTables, ComCtrls, DBCtrls, Mask; 

type 
TFormlO = class(TForm) 
DBEditl: TDBEdit; 
DBEdit2: TDBEdit; 
DBComboBoxl: TDBComboBox; 
DateTimePickerl: TDateTimePicker; 
DataSourcel: TDataSource; 
Label 1 : TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Label5: TLabel; 
Button I: TButton; 
Button2: TButton; 
DBEdit3: TDBEdit; 
Label6: TLabel; 
Queryl: TQuery; 
procedure DateTimePickerl Change(Sender: TObject); 
procedure Button2Click(Sender: TObject); 
procedure ButtonlClick(Sender: TObject); 
procedure FormCreate(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

64 



end; 

var 
FormlO: TFormlO; 

implementation 

uses Unit5, Unit4; 

{$R *.dfm} 

procedure TFormlO.DateTimePickerlChange(Sender: TObject); 
begin 
queryl .Edit; 
queryl.Fields[3].AsString:=DateToStr(datetimepickerl.DateTime); 
end; 

procedure TForm10.Button2Click(Sender: TObject); 
begin 
form5.show; 
form IO.Hide; 
queryl .Close; 
close; 
end; 

procedure TForml O.Buttonl Click(Sender: TObject); 
begin 
form4.show; 
form IO.Hide; 
end; 

procedure TFormlO.FormCreate(Sender: TObject); 
begin 
Queryl .DatabaseName:='ceylan'; 
Queryl .requestlive:=true; 
queryl .SQL.Text:='select * from payment'; 
queryl .Active:=true; 

end; 

end. 

unit Unitll; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, ExtCtrls, DBCtrls, Grids, DBGrids, DB, DBTables, 

65 



ComCtrls; 

type 
TForml 1 = class(TForm) 
DBComboBoxl: TDBComboBox; 
DBComboBox2: TDBComboBox; 
DBComboBox3: TDBComboBox; 
DBComboBox4: TDBComboBox; 
Labell: TLabel; 
Label2: TLabel; 
DateTimePickerl: TDateTimePicker; 
Label3: TLabel; 
Label4: TLabel; 
Label5: TLabel; 
Label6: TLabel; 
Queryl: TQuery; 
DataSource 1: TDataSource; 
DBGridl: TDBGrid; 
DBNavigatorl: TDBNavigator; 
Label7: TLabel; 
Editl: TEdit; 
Buttonl: TButton; 
procedure EditlChange(Sender: TObject); 
procedure DateTimePickerl Change(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure Buttonl Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Forml 1: TForml 1; 

implementation 

uses Unit3; 

{$R *.dfm} 

procedure TForml l .EditlChange(Sender: TObject); 
begin 
queryl .Close; 
query I .SQL.Clear; 
queryl.SQL.Add('select * from details where Frorn_ like'+#39+(editl.Text)+'%'+#39); 
queryl .Open; 
end; 

procedure TForm 11.DateTimePicker 1 Change(Sender: TObject); 

66 



begin 
queryl .Edit; 
queryl .Fields[2] .AsString:=datetostr( datetimepickerl .Date); 
end; 

procedure TForml 1.FormCreate(Sender: TObject); 
begin 
Queryl.DatabaseName:='ceylan'; 
Queryl .requestlive.etrue; 
queryl.SQL.Text:='select * from details'; 
queryl .Active:=true; 
editl.Text:="; 
end; 

procedure TForml 1.Buttonl Click(Sender: TObject); 
begin 
fortn3.show; 
forml 1.Hide; 
end; 

end. 

67 


