
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

STOPWATCHDESIGN

Graduation Project
COM-400

Student Mehmet Şükrü İncili(2003231O)

Supervisor Mehmet Kadir Ozakman

Nicosia-2008

ACKNOWLEDGEMENTS

"First, I would like to thank my supervisor Mehmet Kadir Özakmanfor his
Invaluable advice and belief in my work and myself over the course.of .

this Graduation Project ..

Second, I would like to Express my gratitude to Near East University
for the scholarship that made the work possible.

Third, I thank my family for their constant encouragement and
support during the preparation of this project.

Finally, I would also like to thank all my friends
for their advice and support. "

ABSTRACT

I will design stopwatch at this project.Stopwatch is an electronic desgin.We are

using it in different areas.

I will use XILINX iSE 9. li software for to create the stopwatch design.I selected

this program because is very useful for to do this electronic design.We can design many

things that we are using xilinx ise software.

I will explain briefly why XILINX iSE software is useful and suitable for us.

Assume that you have a company you are working IT(information technology)

sector.You are doing many specific solutions.In one day you need a 32 bit proccessor

for example.You are calling xilinx company and then you are saying 'we want a 32 bit

proccessor.'. Then they are sending a spesific FPGA (field programmable logic

gate)chip kit(virtex,spartan etc..) as special for your request.Then you are taking the kit

and connecting the internet at where you are.They are loading a 32 bit proccessor

software your kit using the internet.So you have a 32 bit proccessor.

It's very useful for the companies because if you want you can change your

proccessor to ram or rom etc.. You can convert so many things.At present you have a kit

you can create many things using this kit and XILINX software.

So I hope this technology will grow up and there will be so many vacany

therefore I want to learn this technology and I used this software.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

INTRODUCTION

CHAPTER ONE : DESIGN DESCRIPTION

1.1.INPUTS

1.2.0UTPUTS

i

ii

iii

iV

1

2

2

3

1.3.FUNCTIONAL BLOCKS 3

CHAPTER TWO : SOFTWARE AND HARDWARE REQUIREMENTS 5

2.1.SOFTWARE REQUIREMENTS

2.2.HARDWARE REQUIREMENTS

CHAPTER THREE : DESIGN STEPS AND DESIGN ENTRY

3.1.CREATING THE STOPWATCH.VHD USING

NEW PROJECT WIZARD 7

5

5

6

3.1.1.CODES IN stopwatch. vhd 12

3.1.2.CODES IN statmach. vhd 16

3.1.3.State Machine Diagram 19

3.2.CREATING A DCM MODULE 20

3.2.1.Using DCM Wizard 20

3.3.CREATING THE CORE GENERATOR MODULE 25

3.4.CREATING AN HOL-BASED MODULE 29

3.4.1.Using tht New Source Wizard and HDL Editor 30

3.5.CREATING THE CNT60 VHDL MODULE 36

3.5.1.CODES IN cnt60.vhd MODULE ' 39

3.6.CREATING HEX2LED SOURCE USING NEW SOURCE

WIZARD AND HDL EDITOR 41

3.6.1.CODES IN HEX2LED.VHD MODULE 43

iii

CHAPTER FOUR : ESTABLISHING THE TEST BENCH OF DESIGN 45

4. 1 .CODES IN TEST BENCH 46

CHAPTER FIVE : SYNTHESIS THE DESIGN 49

CHAPTER SIX: VIEW RTL SCHEMATIC 67

CHAPTER SEVEN : SIMULATION OF DESIGN 69

CHAPTER EIGHT : ABOUT DCM CLOCKING WIZARD 75

8.1.DCM PORTS 75

CHAPTER NINE : ABOUT BINARY COUNTER 84

9.1 .FEATURES 84

9.2.FUNCTIONAL DESCRIPTION 85

CHAPTER TEN : ABOUT VIRTEX FPGA CHIPS 86

10.1.BUILT FOR BANDWIDTH 86

10.2.LEGACY OF LEADERSHIP 88

10.3.PACKETS EVERYWHERE 89

10.4.TIME IS MONEY 91

CHAPTER ELEVEN : ABOUT XILINX SOFTWARE AND COMP ANY 93

11.1.HISTORY OF XILINX

11.2.EFFECTIVE PARTNERSHIPS

11.3.BUSINESS OF XILINX

11.4.SUCCESS OF XILINX

11.5.VALUES OF XILINX

CONCLUSION

REFERENCES

93

98

99

100

103

105

106

LIST OF ABBREVIATIONS

iSE Integrated Software Environment

FPGA Field Programmable Gate Array

VHDL Very high speed integrated circuit Hardware

Description Language

DCM Digital Clock Manager

RPM Relationally Placed Macro

DUT Design Under Test

UUT Unit Under Test

RTL Register Transfer Level

iV

INTRODUCTION

My project is stopwatch I will design stopwatch using virtex chip and xilinx 9.li

software.Now I will explain briefly chapter's in my design and we will see step by step

stopwatch design.

Chapter one ;

İt's design description ı defined inputs,outputs and functional blocks at this

chapter.

Chapter two ;

I explained which software and hardware ı used my project at this chapter.

Chapter three ;

İt's design steps ı defined design steps of my project at this chapter.

I am talking about the design entry and ı am explaining which codes ı used my

project at this chapter.

Chapter four;

I am talking about how ı established the vhdl test bench of my stopwatch

Design. I wrote the codes which ı need to test my design at this chapter.

Chapter five ;

I am talking about synthesis of my design it is also doing check syntax at the

same time and if ı did wrong something ı will see and ı will fix them at this part.

Chapter six ;

I am creating RTL(register transfer level) schematic at this part.

Chapter seven ; "

I am checking my design is it working correctly or not with simulation.

Chapter eight,nine,ten and eleven ;

This chapters includes information of about software and hardware which I

used in my design.

1

CHAPTER ONE

DESIGN DESCRIPTION

My design is STOPWATCH has three inputs and three outputs.

CLK ONES0UT(6:0) j

RESET TENS0UT(6:0)

STRTSTOP TENTHS0UT(9:0)

Figure I-block diagram

In the runner's stopwatch design, there are three external inputs and three external

output

buses. The system clock is an externally generated signal. The following list

summarizes the input and output signals of the design.

1.1.INPUTS

The following are input signals for the stopwatch design.

CLK 7 System clock for the Watch design.

STRTSTOP 7Starts and stops the stoopwatch. This is an active-low signal which acts

like the start/stop button on a runner's stop-watch.

RESET 7 Resets the stopwatch to 00.0 after it has been stopped.

2

1.2.0UTPUTS

The following are outputs signals for the stopwatch design.

TENSOUT[6:0] 7 7-bit bus which represents the Tens digit of the stopwatch

value.

This bus is in 7-segment display format to be viewable on the

7-segment LED display.

ONESOUT[6:0J 7 Similar to TENSOUT bus above, but represents the Ones digit

of the stopwatch value.

TENTHSOUT[9:0] 710-bit bus which represents the Tenths digit of the stopwatch

value. This bus is one-hot encoded.

1.3.FUNCTIONAL BLOCKS

figure 2-functional blocks

3

The completed design consists of the following functional blocks.

STOPWATCH

7 Top level HDL file.

STMACH_V

7 State Machine macro.

CNT60

7 VHDL module which counts from O to 59, decimal. This macro has two 4-bit

outputs,

which represent the 'ones' and 'tens' digits of the decimal values, respectively.

DCMJ

7 A single DCM clocking module created with Xilinx Architecture Wizard. DECODE

HDL based macro. This macro converts a binary input to a one-hot output.

TENTHS

7 A Coregen 10-bit, one-hot encoded counter. This macro outputs the 'tenths' digit of

the watch value as a l O-bit one-hot encoded value.

HEX2LED

7 HDL-based macro. This macro decodes the ones and tens digit values from

hexadecimal to 7-segment display format.

4

CHAPTER TWO

SOFTWARE AND HARDWARE REQUIREMENTS

2.1.SOFTW ARE REQUIREMENTS

I will use VHDL this assignment.

VHDL---Very high speed integrated circuit Hardware Description Language

I will use XİLİNX ISE 9. 1 i

iSE --- Integrated Software Environment

2.2.HARDW ARE REQUIREMENTS
I will use FGPA chip.

FGPA---Field Programmable Gate Array

We are using this Project VIRTEX2P FPGA family.

:::::'.fProject Properties

Property Name

Product Categor_ı,ı
Famil_ı,ı

· Device
Package
Speed

Value

All
Virtex2P
XC2\/P2
FG256
:-7

Ill

figure 3-properties of project

5

CHAPTER THREE

DESIGN STEPS AND DESIGN ENTRY

step one

step two

step three

step fqur

design entry

establish
test bench

synthesis
the design

simula t ion

6

DESIGN ENTRY

3.1.CREATING THE STOPWATCH.VHD USING

NEW PROJECT WIZARD

Now we are open the xilinx 9.1 i and we select.file and new project.

And we are writing as Project name 'stopwatch'.

And click next.

E nteı a Name and Location for the Project

Eroiect Name

'stopwatch

Projectl.ocatiorı

· C: '0<ilinx91i\xilinx\myproiects\stopwatch o
Select the Type oi Top-Level Source ior the Proiect

lop-Level Souıce Type:

HDL

Figure 4-create new project

7

More Info

Figure 5-device properties

And we are setting these values as above.

And click next.

Create a New Source

[New ~ource ... j
Source File Type

Creating a new source to add to the project is optional Only one new source can be created with the New Project Wizard.
Additional sources can be created and added to the project by using the "Project->New Source" command.

Existing sources can be added on the next page.

<];!ack I:!ext > .. J ı· CancelMore Info

Figure 6 Then click next

8

Adding existing sources is optional. Additional sources can be added after the project is created using the "Project->Add
Source" or "Project·>Add Cop)! of Source" commands.

[< ftack ! I !::J.ext > j [CancelMore Info

Figure 7-add existing source

Click add source

Then select these files this window

• Cnt60.vhd

• Statmach.vhd

• Stopwatch.vhd

""'~··

-A•'.~..._/"!'
Ağ Bağlantılarım Dos_ya adr ··cnt60. vhd'' ''statmach. vhd''

lsour~·;(".txt ".vhd'".vhdl".v ".abl "_abv ".xco ".s:=.::)

iiıı,
En Son

Kullandıklarım

MasaüstU

.;:_)·
Belgelerim

-c_·_:ı"'_·· ..·*····.'A•_·.·'~~
Bilgisayarım

Aç

Dosya ti...irU·
iptal

Figure 8 Click open

9

Adding existing sources is optional. Additional sources can be added after the projeci is created using the "Project·>Add
Source" or "Project·>Add Copy of Source" commands.

More Info

Figure 9

Select the boxes and click next.

Project Navigator will create a new project with the following specifications:

Package:
Speed:

fg256
-7

.. T;:ı
(J

I Ii ;

I

I

Project:
Project Name: stopwatch
Project Path: C:\Xilinx91i\xilinx\myprojects\stopwatch
Top Level Source Type: HDL

Device:
Device Family: Virtex2P
Device: xc~vp2

Synthesis Tool: XST (VHDL/Verilog)
Simulator: ISE Simulator (VHDL/Verilog)
Preferred Language: VHDL

Enhanced Design Summary: enabled
Hessage Filtering: disabled

Figure 10 Click finish

10

~ cnt60 inside

statmach. vhd

The following allows you to see the status of the source files being added lo the,
project, and allows you to specify the Design View association for soqrceswhich are
successfully added to the''project. · ···· ···

~[}~!,i?,~Jl!l!
ıQ cnt60.vhd

Figure 11

Click OK

- [~cı'b stopwatch · inside (stopwatch vhdJ
- MACHINE · STATMACH · BEHAVIOR [statmach vhdJ

- Design Overview
12:jSummary
O ,cıs F':cponıos
D Tım:ı-,:;_; C:C:nstr.-:-::;r)-;
O ;:,ınncı• c{r,,..:rt
I] Closf' Peç,o:t

Errors and Warnings
O \ı,.=:).he~i-; H?.t~.tıı]e'~

OT ;.:f·Llt:ıtıwn f".·16~~;Jqes

0 Hôf• \~e.;:-;,".!gt-:-:-
0 ~h, ... • .. nd "\.>.,:• f.: •. :
O T intr·,~1 t/ e-u-0gss
O E}it.g:~,n Hf,~!:-'.:ge~

0 All Current Messages
- Detailed Reports

o:-:;y,)he-;i-:.

O decoder · decode
- [SJ sixty · cnt60 · inside [cnt60 vhdJnlsbcount . srnallcntr

:?i msbcount · smallcntr
[J l;bİ~d · hex21ed
O msbled · hex21ed

f;j,l Snapshots ITtı Libraries
Project Properties

0 Enable Enhanced Design
D Enable Message Filtering
D Display Incremental Messsages

Enhanced Design Summary Contents
0 Show Partition Data
D Show Errors
D ShowWarnings
D Show Failing Constraints
D Show Clock Report

esses
Processes lor: lnst_dcm1 · dcm1

ü Add Existıng Source
·· ü Create New Source

1 Design Utilities

Figure 12-dcml

11

3.1.1.CODES IN stopwatch. vhd

library IEEE:

use IEEE.std logic 1164.all:

--synapsys translate_off

library UNISIM:

use unisim.vcampanents.all:

--synapsys translate_an

entity stopwatch is

part (CLK: in STD_LOGIC:

RESET: in STD_LOGIC:

STRTSTDP : in STD LOGIC:

TENTHSOUT: aut STD_LOGIC_VECTOR(S dawnta O):

ONESOUT: aut STD_LOGIC_VECTDR(6 dawnta O):

TENSOUT: aut STD_LOGIC_vECTDR(6 dawnta O)):

end stopwatch:

architecture inside af stopwatch is

component statmach

part (CLK: in STD_LOGIC:

RESET: in STD LOGIC:

STRTSTDP : in STD_LOGIC:

lacked : std logic:

CLKEN : aut STD LOGIC:

RST: aut STD_LOGIC):

end component;

COMPONENT demi

PORT(

RST_IN : IN std_logic:

12

CLKIN _IN : IN std _logic:

LOCKED OUT: OUT std logic:- -

CLKO_OUT: OUT std_logic:

CLKIN_IBUFG_OUT: OUT std_logic

):

END COMPONENT:

component tenths

port (

11: OUT std_logicJECTDR(3 downto O):

CLK: IN std_logic:

11 THRESHO: OUT std logic:- -

CE: IN std_logic:

AINIT: IN std logic):

end component;

-- FPGA Express Black Box declaration

attribute fpga_dont_touch: string:

attribute fpga_dont_touch of tenths: component is "true";

-- Synplicity black box declaration

attribute syn_black_box : boolean:

attribute syn_black_box of tenths: component is true;
"

component decode port (

binary: in std_logic_vector(3 downto O):

one_hot: out std_logic_vector(S downto O)):

end component;

component cnt60

port (CE : in STD LOGIC:

CLK: in STD LOGIC:

CLR : in STD_LOGIC:

13

LSBSEC : aut STD_ LOGIC_ VECTDR(3 dawnta O):

MSBSEC: aut STD_LOGICJECTDR(3 dawnta O)):

end campanent;

campanent hex21ed

part (HEX : in STD LOGIC VECTOR(3 dawnta O):- -
LED: aut STD_LOGICJECTOR(S dawnta O)):

end campanent:

signal strtstnpinv : STD _LOGIC:

signal clkenable : STD_LOGIC:

signal rstint : STD _LOGIC:
signal xcauntaut: STD_LOGIC_VECTDR(9 dawnta O):

signal xtermcnt : STD_LOGIC:

signal cnt60enable : STD_LOGIC:

signal lsbcnt: STD_LOGIC_VECTDR(3 dawnta O):

signal msbcnt: STD_LOGIC_VECTDR(3 dawnta O):

signal O: std_lagic_vectar(3 dawnta O):

signal elk_dem : std_lagic:

signal dem_lack : std_lagic:

begin

MACHINE:statmach port map(CLK=>clitdcm.

RESET=>RESET.

STRTSTDP=>strtstopinv.
locked => dem lock.

CLKEN=>clkenable.

RST=>rstint):

lnst_dcml: demi PORT MAP(

RST IN => reset.

CLKIN _IN => elk.

14

LDCKED_DUT => dcm_lack.

CLKD_DUT => clk_dcm.

CLKIN_IBUFG_DUT => open

):

XCOUNTER : tenths

part map (

O=> O.
CLK => CLK dem.

O THRESHO => xtermcnt.

CE => clkenable.

AINIT => rstint):

decoder: decade part map (

binary => O.

one_hot => xcountaut):

sixty: cnt60 part map(CE=>cnt60enable.

CLK=>clk dem.

CLR=>rstint.

LSBSEC=>lsbcnt.

" MSBSEC=>msbcnt):

lsbled:hex21ed part map(HEX=>lsbcnt.

LED=>DNESOUT);

msbled:hex21ed part map(HEX=>msbcnt.

LED=>TENS OUT):

cnt60enable <= xtermcnt and clkenable:

TENTHSDUT <= nat(xcauntout):

15

strtstopinv <= not(STRTSTDP):

end inside:

3.1.2.CODES IN statmach. vhd

-- D:\XILINX\ISEEXAMPLES\WATCH SC\STMACH V.vhd- -

-- VHDL code created by Visual Software Solution's StateCAD 5.02.x4

-- Thu Jun Dl 13:28:212000

-- This VHDL code (for use with Synopsys) was generated using:

-- binary encoded state assignment with structured code format.

-- Minimization is disabled. implied else is enabled.

-- and outputs are manually optimized.

LIBRARY ieee:

USE ieee.std_logic_1164.all:

ENTITY STATMACH IS

PORT (CLK.reset.strtstop.locked: IN std_logic:

clken.rst : OUT std_logic):

END:

ARCHITECTURE BEHAVIOR OF STATMACH IS
"

SIGNAL sreg : std_logic_vector (2 DOWNTD O):

SIGNAL next sreg : std logic vector (2 DOWNTD O):- - -

CONSTANT CLEAR: std_logic_vector (2 DOWNTD O) :="DOD":

CONSTANT counting: std_logic_vector (2 DOWNTD O) :="DOI":

CONSTANT start: std_logic_vector (2 DDWNTD O) :="DID":

CONSTANT stop: std_logic_vector (2 DOWNTD O) :="Dil":

CONSTANT stopped : std_logic_vector (2 DOWNTD O) :="IDD":

CONSTANT zero: std_logic_vector (2 DOWNTD O) :="iDi":

16

PROCESS (CLK. reset. next_sreg)

BEGIN

IF (rsset=T) THEN

sreg <= CLEAR:

ELSIF CLK='I' AND CLK'event THEN

sreg <= next_sreg;

END IF:

END PROCESS:

PROCESS (sreg.strtstop.locked)

BEGIN

clken <= 'O'; rst <= 'O';

next sreg<=CLEAR:

CASE sreg IS

WHEN CLEAR =>

clkan=U:

rst=T.

next_sreg<=zero;

WHEN counting =>

clken='!':

rst<='D'·
"' .
IF (strtstop='D' and locked= 'I') THEN

next_sreg<=counting;

else

next_sreg=stnp:

END IF:

WHEN start =>

clken='!',

rst=Il':

IF (strtstop=Il' and locked = 'I') THEN

17

n 8Xt_sreq < = c au nti n g:

8IS8

next sreq=stsrt:

END IF:

WHEN stnp=>

clkenc=Il';

rst<='D':

IF (strtstnp=Il') THEN

next sreq=stupped.

8IS8

next sreq=stop:

END IF:

WHEN stopped =>

clken=Il':

rst<='D':

IF (strtstnp=T and locked = 'I') THEN

next sreq=start:

8IS8

next sreq=sropped;

END IF:

WHEN zern =>

clken=fl':
rst=Il':

IF (strtstop=T and lucked = 'I') THEN

next sraq=start:

8IS8

next sraq=zero:

END IF:

WHEN OTHERS=>

next sr8g<=CLEAR:

END CASE:

END PROCESS:

END BEHAVIOR:

18

3.1.3.State Machine Diagram

o

o
Figure 13-state machine diagram

19

3.2.CREATING A DCM MODULE

The DCM Wizard, one part of the Xilinx Architecture Wizard.ıenables a userto

graphically select Digital Clock Manager (DCM) features that you wish 'to use. In this.

section, create a basic DCM module with CLKO feedback and duty-cycle correction.

3.2.1.Using DCM Wizard

To create the DCMl module:

1 7 In Project Navigator, select Project++ New Source.

2 7 In the New Source dialog box, select Architecture Wizard and type 'DCMl' for

the File Name.

3 7 Click Next, then Finish.

The Xilinx Architecture Wizard is launched.

4 7 In the Xilinx Architecture Wizard selection box, select DCM Wizard and click

OK.

The DCM Wizard is launched.

5 7 Deselect RST and LOCKED.

6 7 Type 50 for the Input Clock Frequency.

7 7 Verify the following settings:

+ CLKIN Source: External

+ Feedback Source: Internal

20

+ Feedback Value: lX

+ Phase Shift: None

+ Duty Cycle Correction: Yes

8 7 Select the Advanced button.

9 7 Change Wait for DCM lock before DONE signal

10 7 Select OK and Next.

An informational message displays the locked

11 7 Select OK and Finish.

DCM 1.xaw is added to the list of project source files

Note: The newly created DCMJ_arwz.ucf does not need constraints are passed into the

relevant source file(s).

21

lnput Clock [requency

'50.000 M!:iz O n1

Phase Shift

Tyı;ıe NONE

Val]de ıJ

, CLKIH Source

External jnternal

Feedback Soınce

O E~ternal ln\ernal None

Single

Qifferential

Divide By Feedback ValıJe

2 ıx

~ Use Dul.I! Cycle Correction

t!ext > I [Cancel

Figure 14

Click advanced

22

Figure 15 Select first one and click ok

Clock 80...ıfferSettingt·

(?) !J_se Glob.ol Buffers for alt selected clock outputs

(~) Cystomize buffers

Input 11 I IInput 10 I I Vie-/Edit Buffer

Ci.i--"J)

< .6.ock Cancel

Figure 16

Click next

23

Feature Summary:

; A single DCM configured

File Directory:
C: \Xilinx91 i\xilinx\myprojects\watchvhd

DCM1.xaw

Block Attributes:

Attributes for DCM, blkname = DCM_INST
CLKIN_PERIOD = 20000
STARTUP_WAIT = TRUE

i
!

I
\ı
ıııı

Show all modifiable attributes
"Show only the modifiable attributes whose values differ from the default

,![. : i:E~k: :JI [finish] [Cancel

Figure I 7 And click finish

24

3.3.CREATING THE CORE GENERATOR MODULE

CORE Generator is a graphical interactive design tool used to create high-level

modules such as counters, shift registers, RAM and multiplexers. You can customize

and preoptimize the modules to take advantage of the inherent architectural features of

the Xilinx FPGA architectures, such as Fast Carry Logic for arithmetic functions and

on-chip RAM for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a

4-bit binary encoded counter. The 4-bit number is decoded to count the tenths digit of

the

stopwatch's time value.

Create the CORE Generator module using the New Source Wizard in Project

Navigator.This invokes CORE Generator in which you can select and define the type of

module you want.

To create the module:

1 7 In Project Navigator, select Project -----T New Source.

2. 7 Select Coregen IP as the source type.

3 7 Enter 'tenths' in the File Name field.

4 7 Click Next and then Finish.

The Xilinx CORE Generator opens and displays a list of possible COREs available.

5 7 Double-click on Basic Elements - Counters.

6 7 Double-click on Binary Counter to open the Binary Counter dialog box.

25

This dialog box enables you to customize the counter to the design specifications.

7 ? Fill in the Binary Counter dialog with the following settings:

+ Component Name: tenths

Defines the name of the module.

+ Output Width: 4

Defines the width of the output bus.

+ Operation: Up

Defines how the counter will operate. This field is dependent on the type of module

you select.

+ Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

+ Count Restrictions: Enable and Count To Value A (HEX)

This dictates the maximum count value.

26

Coun1 Br V@lue:
P. Ae1t-1ı:t-ı::uunı

Generote Data GheeL. VttBİOf"! h(tı ... ı Dlspu·,-Cote ,oolpriot

Figure 18-binary counter

8 7 Select the Next button.

9 7 Continue to fill in the Binary Counter dialog with the following settings:

+ Threshold Options: Threshold O set to A

Signal goes high when the value specified has been reached.

+ Threshold Options: Registered

10 7 Click the Register Options button to open the Register Options dialog box.

11 7 In the Register Options dialog box, enter the following settings:

+ Clock Enable: Selected

27

+ Asynchronous Settings: Init with a value of 1

+ Synchronous Settings: None

12 7 Click OK.

13 7 Check that only the following pins are used (used pins will be highlighted on the

model
symbol to the left side of the CORE Generator window):

+ AINIT

+CE

+Q

+ Q_THRESHO

+CLK

14 7 Click Generate.

The module is created and automatically added to the project library.

ı.
A number of other files are added to the project directory. These files are:

+ tenths.sym

This is a schematic symbol file.

+ tenths.edn

This file is the netlist that is used during the Translate phase of implementation.

28

+ tenths. vho or tenths. veo

This is the instantiation template that is used to incorporate the CORE Generator

module in your source HDL.

+ tenths. vhd or tenths. v

These are simulation-only files.

+ tenths.xco

This file stores the configuration information for the Tenths module and is used as a

project source.

+ coregen.prj

This file stores the Coregen configuration for the project.

15 7 Click Cancel and close Core Generator.

3.4.CREATING AN HDL-BASED MODULE

Next, create a module from HDL code. With iSE, you can easily create modules from
I'

HDL code using the HDL Editor tool. The HDL code is then connected to your top-

level HDL design through instantiation and is compiled with the reşt of the design.

Now, you will author a new HDL module. This macro serves to convert the two 4-bit

outputs of the CNT60 module into a 1 O-segment LED display format.

29

3.4.1.Using the New Source Wizard and HDL Editor

In order to create the module, first create a file using the New Source Wizard

specifying the name and ports of the component. The resulting "skeleton" HOL file is·

then modified further in the HOL Editor.

To create the source file:

1 7 Select Project+» New Source.

A dialog box opens in which you specify the type of source you want to create.

2 7 Select VHDL Module.

3 7 In the File Name field, type 'decode'.

4 7 Click Next.

The decode component has a 4-bit input port named hex and a 1 O-bit output port

named led.

To enter these ports:

5 7 Click in the Port Name field and type binary.

6 7 Click in the Direction field and set the direction to in.

7 7 In the MSB field enter 3, and in the LSB field enter O.

8 7 Again click in the Port Name field and type one_hot.

9 7 Click in the Direction field and set the direction to out.

10 7 In the MSB field enter 9, and in the LSB field enter O.

30

11 7 Click Next to complete the Wizard session.

A description of the module displays.

12 7 Click Finish to open the empty HDL file in HDL Editor.

MSB LSB
3
9 o

<]iack Next> Cancel

Figure 19 Click next

Entity Name

Architecture Name

Port Name

ibinarıı

:one_ho~

More Info

Figure 20 Click next

31

II
I

< .e_ack I I, finish "J [Cancel] II

Figure 21

Click Finish

32

Now we are selecting decode.vhd in source tab.

We will see this figure

19 ---
2Ö library IEEE;
21 use IEEE.STD LOGIC 116'1.ALL;- -
22 use IEEE.STD LOGIC ARITH.ALL;
23 use IEEE.STD-LOGIC-UNSIGNED.ALL;
24
25 ---- Urıc omme rıt; the i'ollowin,; lıbraı:y declaration i:f in5tant.iat.ing
2f ---- any Xilinx primitives in thıs code.
27 ---library UNI,nM;
28 --ıJ.se ill.JISIM~V('.ı:)rnpcnents.all;
29
30 entity decode is
31 Port (binary : in STD_LOGIC_VECTOR (3 downto O);
32 one_hot : out STD_LOGIC_VECTOR (9 downto O));
33 end decode;
3 .q
35 e r c n ı t ec tur e Behavioral or decode ıs
36
37 begin
38
39
40 end Behavioral;
.q 1

Then we will write the following vhdl codes between begin and architecture.

with binary select

one hot <= "ODODOOOOOI" when "ODDI". --1

"OOOOOOOOID" when "OOID". --2

"OOOOOOOIOO" when "DOIi". --3

"OOOOOOIDOO" when "DIDO". --4

"OOOOOIOOOO" when "DIDI". --5

"OOOOIDOOOO" when "OIIO''. --6

"OOOIDOOOOO" when "DIii". -- 7...

"OOIDOOOOOO" when "IDOD". --8

"OIDOOOOOOO" when "IDOi". --8

"IDOOOOOOOO" when "IDID". --ID

"0000000001" when others: --1

I wrote this code to see the similar examples in LANGUAGE TEMPLATES.

33

To see the LANGUAGE TEMPLATES

• Click edit

• select LANGUAGE TEMPLATES

you will see the examples in LANGUAGE TEMPLATES

t:::.t.r·f+Z
(-:'.'tr!+'y'

Copy
F'-'-'-":.'\t\\.::~

Ctd-+-X

Ctd-+-C

Ctd+F

R (statmach. vhd)

CJ
CJ

d

-.-_,,.,_v~_cp . .0.,.A.Y~+--, -""'«-'-"' ,, '~* ,rt
Create Neı.N Source
Design Utilities
Check Syntax

c_·_-tr·l+·\<'

Find ...
r::ind Ne::.>:..:t 3

Replace ... Ctd-+-H

Comment
Uncomment
Indent
Conver-t

d.vhd)
led.vhd)

........
'ifil[~ Sc

·;;~~esJ--·--· --·-· ~
Proces~

Insert File.

Go To
Select
Message Filters ...

....
Ç) !:."J }f.'.': c: t. f> f - f.".' r·.ıt.'.'.' I' (.if.'.';

Pr-eferences ...
/~11:.·--!·-[:".ı··)l':\'.'-'f

Figure 22

34

ff ui]ABEL
@ ui]Tcl
Jj (;74·ill:JUCF
- f"=ıv ·1~ 1a erıog
cJ ~VHDL

1± Ulli Common Constructs
li@El Device Primitive Instantiation
(f) §ill Simulation Constructs
EH~ Synthesis Constructs

ffi ui]Assertions & Functions
(£ 82ıAttributes
I::-:§ Coding Examples

If ÜAccumulators
&: []Arithmetic
ct D Basic Gates
ff CJ Comparators
ff Dcounters
ff CJ Decoders
::- ey Encoders

~ ~·bit Regıstered Output
n;· ··,········.''"··.,.·,''·".·, "',"''"'·'"'·'·'·"•"
:ID 8-hK Reg~tered Outpqt
'· ... ,,,.•. ,».,.md,,,· - "'"''""'';,·,. "··;., •. ,.. ·.c~.. :.:-, ,.,, ...~.,,,,. .,_..,,,,. ., . .,.,-

1±, .~J Flip Flops
I± D Logical Shilters
It DMisc
ff [J Multiplexers
'+ rlRAM~~

process(<clock>)
begin

if (<clock>1event and <clock> =111) then
if (<reset>= 11') then

<output><=
else

case <input> is
when r =><output><=
when =><output><=
when
when
when
when
when
when

=> <output> <= ''OlOn;
=><output><=
=><output><=
=> <output> <=
=><output><=
=><output><= " ıı.

'
when others=> <output><=

end case;
end if;

end if;
end process;

Figure 23

LANGUAGE TEMPLATES

35

And after write this code then we will see this figure for the deocode.vhd.

1 library IEEE;
~ use IEEE.STD LOGIC 1164.ALL;- -
3 use IEEE.STD LOGIC ARITH.ALL;- -
4 use IEEE.STD LOGIC UNSIGNED.ALL;- -s
6
7
8

entity decode is
Port (binary

one hot
in std_logic_vector(3 downto O);

out std_logic_vectoı:(9 downto O))
9 end decode;

10
11 aı:chitecture behavioral oI decode is
12
13 begin
14
15 with binary select
16
17
18
19
20
21
22
23
24
25
26
27
2 B end behavioral;
29

one hot <= ~'C()UUUfJUUG ı n ı:ı:rhen PUUC) 1 "»
~~c}OCJ:)c:cıccı1c..1n when t~cc:ı1on,
t~cıJCECJCJOCJ lCJC! rr When «ooı 1 H,
"1:·.:-.iU:JOC)O lUUU rt when rte 1 GU rt,

~~coc:oc:1cocon when ,~C1()1.t~,
rıcn(.':()lC)C.iCJC!()H trh e rı 1.cırr,

--2
- -3
--4
--,5

10 --7when "'' i
--0
--9
--10
--1

1 library I

1.(J(J(JCiUU()fr trh e rı ~·:to:Jun,
1,:.:-ac/.:::J)c,oco~f when f•ıocı'ı-,

f? 1.0'~:cı,~=OC)O(.'.:Onwhen r• :1.Cı :toı--t,
rıc.1cıur.:.ı}JOC)fJ(.)1 rı when otheı::-s;

2 use IEEE.
3
4 entity en
S poı:t
6
7
8
9

10 end cnt60
11
12 architect

Figure 24

decode.vhd

3.5.CREATING THE GNT60 VHDL MODULE
Click the project and new source

z: Elle ~dit ~iew 2_ource !:recess ~indow jjelp

' D ,:'? lid! (ti

Sources

8.dd Source ...

Add Çopy of Source ..

for: Synth~
"'.~] stopwatch

Cleanup Project Files

Ioggle Paths

- () xc2vp2-7fg2!

- [';~r;~s:;~

Ç;.J ı nst_ Apply Project Properties
l~:)XCO Source-Control ..

lJdece ---·--·=---M---
- ~ ssety - cnt60 -iniide(cnt60.vhd)

--:;.11 .•.. h,-...-.,,••.•• <'n">::ı.ll ••••••.•••·

Arcb_ive..

Take 2,napshot.

Figure 25

36

IP [Coregen & Architecture Wizard)
MEM File

Implementation Constraints File
State Diagram
Test Bench WaveForm

~ e,dd to project

< J;:a:::k I Next> J f Cancel

Figure 26

We are writing 'cnt60' as file name and select the vhdl module.

And click next.

And write these inputs and outputs.

inputs

• CE

• CLK

• CLR

outputs

• LSBSEC

• MSBSEC

37

Port Naırie:l'ci ·· · "'"'
J
·?.

~CLK

LSBSEC

MSBSEC
3
3

More Info < 8 ack] [Next >

LSB

Figure 27

Then click next.

Project Navigator will create a new skeleton source with the following specifications:

Add to Project: Yes
Source D irectow C: \Xilinx91i\xilinx\myprojects\stopwatch
Source Type: VHDL Module
Source Name: cnt60.vhd

Entity Name: cnt60
Architecture.Name:Behavioral
Port Definitions:

CE Pin ın
CLK "'I Pin in
CLR Pin in
LSBEC Bus: 3:0 outs
MSBEC Bus: 3:0 in

< l2_ack

Figure 28

Click finish

38

3.5.1.CODES IN cnt60.vhd MODULE

We are writing these codes in cnt60 module

library IEEE:

use IEEE.std_logic_1164.all:

entity cnt60 is

port (CE : in STD_LOGIC:

CLK: in STD LOGIC:
CLR : in STD LOGIC:

LSBSEC: out STD_LOGICJECTOR(3 downto O):

MSB SEC: out STD_LOGICJECTDR(3 downto 0)):
end cnt60:

architecture inside of cnt60 is

component smallcntr

port (CE : in STD_LOGIC:

CLK: in STD LOGIC:

CLR : in STD LOGIC:

QOUT: out STD_LOGICJECTOR(3 downto 0)):
end component:

signal ls bout : STD_LOGICJECTDR(3 downto O);
1'signal msbnut : STD_LOGICJECTDR(3 downto O):

signal msbce : STD LOGIC:

signal lsbtc: STD_LOGIC:

signal msbclr: STD LOGIC:

signal msbtc : STD_LOGIC:

lsbcount: smallcntr port map(CE=>CE.CLK=>CLK.CLR=>CLR.DOUT =lsbout):

39

msbcaunt: smallcntr part map(CE=>msbce.CLK=>CLK.CLR=>msbclr.11DUT =>msbaut):

pracess(lsbaut)

begin

if(lsbaut="IDDI") then

else

end if:

end process:

pracess(msbout)

begin

if(msbout="DIIO") then

else

end if:

end process:

msbce <= CE and lsbtc:

msbclr <= CLR or rnsbtt:

LSBSEC <= lsbaut:

MSBSEC <= msbaut:

end inside:

lsbtc=l'.

lsbtc=Il':

msbtc=T:

mshtc=Il':

40

3.6.CREATING HEX2LED SOURCE USING NEW SOURCE

WIZARD AND HDL EDITOR

In order to create the module, first create a file using the New Source Wizard specifying

the name and ports of the component. The resulting "skeleton" HDL file is then

modified further in the HDL Editor.

To create the source file:

1 7 Select Project - New Source.

A dialog box opens in which you specify the type of source you want to create.

2 7 Select VHDL Module

3 7 In the File Name field, type 'hex2led'.

4 7 Click Next.

The hex2led component has a 4-bit input port named hex and a 7-bit output port named

led.

To enter these ports:

5 7 Click in the Port Name field and type HEX.

6 7 Click in the Direction field and set the direction to in.

7 7 In the MSB field enter 3, and in the LSB field enter O.

41

[< aack · ıt tie~t > j [Cancel

Figure 29 Click next

;Add to Project: Yes
· Source Directory: C:\Xilinx91 i\xilinx\myprojects\fdvlfv

Source Type: VHDL Module
Source Name: hex21ed.vhd

Project Navigator will create a new skeleton source with the following specifications:
··------·-,···---··~~-·-·-

Entity Name: hex21ed
! Architecture Name: Behavioral
'Port Definitions:

HEX Bus: 3:0
LED Bus: 6:0

I

ın
out

"····'
< a ack ·ı r Einish

Figure 30

Click finish

42

3.6.1.CODES IN HEX2LED.VHD MODULE

We are writing and completing these codes.

library IEEE:

use IEEE.STD_LDGIC_1164.ALL:

use IEEE.STD_LDGIC_ARITH.ALL:

use IEEE.STD _LOGIC_UNSIGNED.ALL:

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM:

-use UNISIM.VComponents.all;

entity hex21ed is

Port (HEX : in std_logic_vector(3 downto D):

LED: out std logic_vector(6 downto O));

end hex21ed:

architecture Behavioral of hex21ed is

begin

--HEX-to-seven-segment decoder

-- HEX: in STD LDGIC_VECTDR (3 downto Dl:

-- LEO: out STD LOGIC_vECTDR (6 downto D):

-- segment encoding

o

-- 51 11

43

-- --- <- 6

-- 41 12

-- 3

with HEX SELect
LED<= "IIIIDOI" when "ODDI". --1

"OIDDIDD" when "OOID". --2

"OIIDDDD" when "ODIi". --3

"OOIIDOI" when "DIDO". --4

"OOIDOID" when "DIDI". --5

"OOOOOID" when "OIIO''. --6

"IIIIDDD" when "Illll". --7

"0000000" when "IOOD". --8

"OOIDOOO" when "IDOi". --8

"OOOIDDD" when "IDID". --A

"OOOOOII" when "iDii". --b

"IODDIID" when "1100". --C

"OIDDDOI" when "IIOI". --d

"0000110" when "1110". --E

"OOOIIID" when "1111". --F

"IODOODO" when others: --0

end Behavioral:

44

CHAPTER FOUR

ESTABLISHING THE TEST BENCH OF DESIGN

To establish the test bench of design we are selecting Project and new source then

selecting the VHDL Test Bench module and typing stopwatch_tb.vhd as file name.

IP [Coregen & ArchitectureWizard)

;

MEM File
Schematic

. ImplementationConstraintsFile
'10\ State DiagramG Test BenchWaveForm
~ User Document
, V, Verilog Module
f-:7.:~vJ Verilog Test Fixture
""•ı VHDL Module

, , VHDL Library•-.:
~VHDL Package
~ VHDL Test Bench

file name,

Lo_gation,

· stopwatch_tb

[C: \Xilinx91i\xilinx\mı,ıprojects\watchvhd

G2:] e,dd to project

More Info

Figure 31 Click next

45

Figure 32 Select the stopwatch then click next.

Figure 33 Click finish

4.1.CODES IN TEST BENCH

LIBRARY IEEE:

USE IEEE.std _logic_llB4.all:

LIBRARY ieee:

USE IEEE.STD _LOGIC JEXTIO.ALL:

USE STD.TEXTIO.ALL:

ENTITY tb IS

END tb.

ARCHITECTURE testbench arch OF tb IS

46

COMPONENT stopwatch

PORT (
ONESOUT: aut STD_LOGICJECTDR (6 DOWNTO O):

TENSOUT: aut STD_LOGICJECTOR (6 DOWNTO O):

TENTHSOUT: aut STD_LOGICJECTDR (S DOWNTO O):

CLK: in STO_LOGIC:

RESET: in STD _LOGIC:

STRTSTOP: in STD_LOGIC):

END COMPONENT:

SIGNAL ONESOUT: STD_LOGICJECTOR (6 OOWNTD O):

SIGNAL TENSOUT: STD_LOGICJECTDR (6 DOWNTO O):

SIGNAL TENTHSOUT: STD_LOGICJECTOR (S DOWNTO D):

SIGNAL CLK: STD LOGIC:

SIGNAL RESET: STD_LOGIC:

SIGNAL STRTSTOP : STD LOGIC:

constant ClackPeriad : Time := ID ns:

BEGIN

UUT : stopwatch

PORT MAP (

CLK => CLK.

RESET=> RESET.

STRTSTOP => STRTSTDP.

TENTHSOUT => TENTHSDUT.

ONESOUT => ONESOUT.

TENSDUT => TENSOUT

);

generateclack: process

begin

47

clk-= 'I':

loop

wait for (ClockPeriod I 2):

CLK <= not CLK:

end loop;

end process;

stimulus: process

begin

--Initialize Inputs

reset <= 'I':

strtstop <= 'I':

--Wait until the Global Set/Reset deasserts

wait for IDD ns:

reset s= 'O':

--Wait long enough for the DCM to lock

wait for 600 ns:

strtstop <= 'O':

wait;

end process stimulus;

end testbench arch:

We wrote these code after created the test bench

şjim!llı,ı-ş_ = ı:n:.Q..StŞ._~
!uuıü::ı

,:~e-sş___t:_ < =- z:·
--:-- f':J;":_.q_/r unri/ rhe- O/oba/ Se-r/{i!_,€?.ser deaşşp,.-~r.s

_____ ::-:-- J.-1--a:/r /ong enough r.or- r.he DCM r.o /.ock
H-'.ş,/r rer .6'00n.ş:.,·

e~_.dtestbench_a.rch:

48

CHAPTER FIVE

SYNTHESIS THE DESIGN

We are clicking the stopwatch_tb.vhd module is source tab.

And then we are clicking the synthesize-XS'I' and view synthesis report

Release 9. li - xst J .30

Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to ./xst/projnav.tmp

CPU : 0.00 I 0.67 s I Elapsed : 0.00 I 1 .00 s

--> Parameter xsthdpdir set to ./xst

CPU : 0.00 I 0.67 s I Elapsed : 0.00 I 1 .00 s

--> Reading design: stopwatch.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis ~
6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

49

--

* Synthesis Options Summary *
--

---- Source Parameters

Input File Name

Input Format

: "stopwatch.prj"

: mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name

Output Format

Target Device

"stopwatch"

:NGC

: xc2vp2-7-fg256

---- Source Options

Top Module Name : stopwatch

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style

Decoder Extraction

: Auto

: YES

Priority Encoder Extraction : YES

Shift Register Extraction : YES

Logical Shifter Extraction : YES

XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES

Asynchronous To Synchronous : NO

50

Multiplier Style

Automatic Register Balancing : No

: auto

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 16

Register Duplication

Slice Packing

:YES

:YES

Optimize Instantiated Primitives : NO

Convert Tristates To Logic : Yes

Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto

Equivalent register Removal : YES

---- General Options

Optimization Goal

Optimization Effort

Library Search Order

Keep Hierarchy

RTL Output

Global Optimization

Read Cores

Write Timing Constraints

Cross Clock Analysis

Hierarchy Separator

Bus Delimiter

Case Specifier

Slice Utilization Ratio

BRAM Utilization Ratio

V erilog 2001

Auto BRAM Packing

: Speed

: 1

: stopwatch.lso

:NO

: Yes

: AllClockNets
••

:YES

:NO

:NO

: I

: <>
: maintain

: 100

: 100

:YES

:NO

51

- ~M:B7 ~ 0"'.::':~w· ·,,
..;ı:,~ 'ı\... '-.:,..

Slice Utilization Ratio Delta : 5 ((>- A'c:f '"': · •· n ;; ·.
Ii- i '!
\., ,, .l

\;,P .' /;,.. ı;,t. ,, ; ,;\;;,, ._y ,ı f'' I,

'.::,~:,,/

* HDL Compilation *

Compiling vhdl file "C:/Xilinx91 i/xilinx/myprojects/watchvhd/smallcntr. vhd" in

Library work.

Entity <smallcntr» compiled.

Entity <smallcntr> (Architecture -cinside») compiled.

Compiling vhdl file "C:/Xilinx91i/xilinx/myprojects/watchvhd/statmach.vhd" in Library

work.

Entity <ST ATMACH> compiled.

Entity <STATMACH> (Architecture <BEHAVIOR>) compiled.

Compiling vhdl file "C:/Xilinx91 i/xilinx/myprojects/watchvhd/DCM 1. vhd" in Library

work.

Entity <DCMl> compiled.

Entity <DCMl> (Architecture <BEHAVIORAL>) compiled.

Compiling vhdl file "C:/Xilinx91i/xilinx/myprojects/watchvhd/decode.vhd" in Library

work.

Entity <decode> compiled.

Entity <decode> (Architecture <behavioral») compiled.

Compiling vhdl file "C:/Xilinx9li/xilinx/myprojects/watchvhd/cnt60.vhd" in Library

work.

Entity <cnt60> compiled.

Entity <cnt60> (Architecture <inside>) compiled.

Compiling vhdl file "C:/Xilinx91 i/xilinx/myprojects/watchvhd/hex2led.vhd" in Library

work.

Entity <hexZled> compiled.

52

Entity <hexZled> (Architecture <Behavioral») compiled.

Compiling vhdl file "C:/Xilinx91i/xilinx/myprojects/watchvhd/stopwatch.vhd" in

Library work.

Entity <stopwatch> compiled.

Entity <stopwatch> (Architecture <inside») compiled.

* Design Hierarchy Analysis *

Analyzing hierarchy for entity <stopwatch> in library <work> (architecture -cinsidec-).

Analyzing hierarchy for entity <statmach> in library <work> (architecture

<BEHAVIOR>).

Analyzing hierarchy for entity <dcml> in library <work> (architecture

<BEHAVIORAL>).

Analyzing hierarchy for entity <decode> in library <work> (architecture -cbehavioral»).

Analyzing hierarchy for entity <cntôü> in library <work> (architecture <inside»).

Analyzing hierarchy for entity <hexZled> in library <work> (architecture

<Behavioral»),

Analyzing hierarchy for entity <smallcntr> in library <work> (architecture <inside»).

--

* HDL Analysis *

53

Analyzing Entity <stopwatch> in library <work> (Architecture -cinside»).

WARNING:Xst:753 - "C:/Xilinx.91 i/xilinx/myprojects/watchvhd/stopwatch.vhd" line

95: Unconnected output port 'CLKIN_IBUFG_OUT' of component 'dcml '.

WARNING:Xst:2211 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/stopwatch.vhd" line

104: Instantiating black box module <tenths>.

WARNING:Xst:37 - Unknown property "fpga_dont_touch".

Entity <stopwatch> analyzed. Unit <stopwatch> generated.

Analyzing Entity -cstatmach» in library <work> (Architecture <BEHAVIOR>).

Entity <statrnach> analyzed. Unit -cstatmach> generated.

Analyzing Entity <dcm l > in library <work> (Architecture <BEHAVIORAL>).

WARNING:Xst:2211 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1.vhd" line 92:

Instantiating black box module <IBUFG>.

WARNING:Xst:2211 - "C:/Xilinx91 i/xilinx/myprojects/watchvhd/DCM 1.vhd" line 96:

Instantiating black box module <BUFG>.

W ARNING:Xst:753 - "C:/Xilinx91 i/xilinx/myprojects/watchvhd/DCMl .vhd" line 100:

Unconnected output port 'CLK90' of component 'DCM'.

WARNING:Xst:7 53 - "C :/Xilinx.91 i/xilinx/myprojects/watchvhd/DCM 1. vhd" line 100:

Unconnected output port 'CLK180' of component 'DCM'.

WARNING:Xst:7 53 - "C :/Xilinx.91 i/xilinx/myprojects/watchvhd/DCM 1. vhd" line 100:

Unconnected output port 'CLK270' of component 'DCM'.

WARNING:Xst:753 - "C:/Xilinx91 i/xilinx/myprojects/watchvhd/DCM 1.vhd" line 100:

Unconnected output port 'CLKDV' of component 'DCM'.
!\

WARNING:Xst:753 - "C:/Xilinx9li/xilinx/myprojects/watchvhd/DCM1.vhd" line 100:

Unconnected output port 'CLK2X' of component 'DCM'.
'

WARNING:Xst:753 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1.vhd" line 100:

Unconnected output port 'CLK2X180' of component 'DCM'.

WARNING:Xst:7 53 - "C:/Xilinx91 i/xilinx/myprojects/watchvhd/DCM 1.vhd" line 100:

Unconnected output port 'CLKFX' of component 'DCM'.

WARNING:Xst:753 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1 .vhd" line 100:

Unconnected output port 'CLKFXl 80' of component 'DCM'.

WARNING:Xst:753 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1.vhd" line 100:

Unconnected output port 'STATUS' of component 'DCM'.

54

WARNING:Xst:753 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1.vhd" line 100:

Unconnected output port 'PSDONE' of component 'DCM'.

WARNING:Xst:2211 - "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1.vhd" line

100: Instantiating black box module <DCM>.

Set user-defined property "CLK_FEEDBACK = lX" for instance <DCM_INST> in

unit <dcm l >.

Set user-defined property "CLKDV _DIVIDE= 2.0000000000000000" for instance

<DCM_INST> in unit <dem I>.

Set user-defined property "CLKFX_DIVIDE = 1" for instance <DCM_INST> in unit

<dcm l >.

Set user-defined property "CLKFX_MULTIPLY = 4" for instance <DCM_INST> in

unit <dcm l »,

Set user-defined property "CLKIN_DIVIDE_BY _2 = FALSE" for instance

<DCM_INST> in unit <dcm l >.

Set user-defined property "CLKIN_PERIOD = 20.0000000000000000" for instance

<DCM_INST> in unit <dcm l >.

Set user-defined property "CLKOUT _PHASE_SHIFT = NONE" for instance

<DCM_INST> in unit <dcm l ».

Set user-defined property "DESKEW _ADJUST= SYSTEM_SYNCHRONOUS" for

instance <DCM_INST> in unit <demi>.

Set user-defined property "DFS_FREQUENCY _MODE= LOW" for instance

<DCM_INST> in unit <dcm l >.

Set user-defined property "DLL_FREQUENCY _MODE= LOW" for instance

<DCM_INST> in unit <dcm l >.

Set user-defined property "DSS_MODE = NONE" for instance <DCM_INST> in

unit <demi>.

Set user-defined property "DUTY _CYCLE_CORRECTION = TRUE" for instance

<DCM_INST> in unit <dcm l >.

Set user-defined property "FACTORY _JF = C080" for instance <DCM_INST> in

unit <demi>.

Set user-defined property "PHASE_SHIFT = O" for instance <DCM_INST> in unit

-cdcml ».
Set user-defined property "STARTUP_ WAIT= TRUE" for instance <DCM_INST>

in unit -cdcml ».

55

Entity <demle- analyzed. Unit <dcm l » generated.

Analyzing Entity <decode> in library <work> (Architecture <behavioral»),

Entity <decode> analyzed. Unit <decode> generated.

Analyzing Entity <cntôü» in library <work> (Architecture <inside»).

Entity <cnt60> analyzed. Unit <cntôü» generated.

Analyzing Entity <srnallcntr» in library <work> (Architecture <inside»),

Entity <smallcntr» analyzed. Unit <srnallcntr» generated.

Analyzing Entity <hexZled» in library <work> (Architecture <Behavioral»),

Entity <hex Zled» analyzed. Unit <hex Zled» generated.

----------------=============================
-------===-
* HDL Synthesis *
--

Performing bidirectional port resolution ...

Synthesizing Unit <statmach».
l<

Related source file is "C:/Xilinx91 i/xilinx/myprojects/watchvhd/statmach. vhd ".

Found finite state machine <FSM_O> for signal <sreg>.

- --

I States 16

I Transitions ı ıs
I Inputs 12 I
I Outputs 12 I
I Clock I CLK (rising_edge)

I Reset I reset (positive)

I Reset type I asynchronous

56

I Reset State I 000

I Encoding I automatic

I Implementation I LUT

Summary:

inferred 1 Finite State Machine(s).
Unit <statmach» synthesized.

Synthesizing Unit <decode>.

Related source file is 11C:/Xilinx91 i/xilinx/myprojects/watchvhd/decode.vhd".
Found 16xl0-bit ROM for signal <onejıot».

Summary:

inferred 1 ROM(s).

Unit <decode> synthesized.

Synthesizing Unit <hexZled».

Related source file is 11C:/Xilinx91 i/xilinx/myprojects/watchvhd/hex2led.vhd11•

Found 16x7-bit ROM for signal <LED>.
Summary:

inferred 1 ROM(s).

Unit <hexZled» synthesized.

Synthesizing Unit <smallcntr».

Related source file is 11C:/Xilinx91i/xilinx/myprojects/watchvhd/smallcntr.vhd 11•

Found 4-bit up counter for signal <qoutsig».
Summary:

inferred 1 Counter(s).

Unit <smallcntr> synthesized.

Synthesizing Unit <dcml ».

57

Related source file is "C:/Xilinx91i/xilinx/myprojects/watchvhd/DCM1.vhd".

Unit <demle- synthesized.

Synthesizing Unit <cnt60>.

Related source file is "C:/Xilinx91 i/xilinx/myprojects/watchvhd/cnt60. vhd".

Unit <cnt60> synthesized.

Synthesizing Unit <stopwatch>.

Related source file is "C:/Xilinx91i/xilinx/myprojects/watchvhd/stopwatch.vhd".

Unit <stopwatch> synthesized.

------ ---

HDL Synthesis Report

Macro Statistics

#ROMs

16x10-bit ROM

16x7-bit ROM

:3

: 1

:2

Counters

4-bit up counter

:2

:2

------------------------==========================-===========

--

* Advanced HDL Synthesis *
----- ---

58

Analyzing FSM <FSM_O> for best encoding.

Optimizing FSM <MACHINE/sreg> on signal <sreg[1 :3]> with sequential encoding.

State I Encoding

ooo I ooo
001 I oıo
oıo I ıoo
oıı I oıı
ıoo I 101

101 I 001

Loading device for application Rf_Device from file '2vp2.nph' in environment

C:\Xilinx91i.

Executing edif2ngd -noa "tenths.edn" "tenths.ngo"

Release 9.li - edif2ngd J.30

Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

INFO:NgdBuild - Release 9.li edif2ngd J.30

INFO:NgdBuild - Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

Writing module to "tenths.ngo" ...

Loading core <tenths> for timing and area information for instance <XCOUNTER>.

--------------------------------------========================
----------- ••
Advanced HDL Synthesis Report

Macro Statistics

#FSMs

#ROMs

16x IO-bit ROM

16x7-bit ROM

: 1

:3

: 1

:2

Counters

4-bit up counter

Registers

:2

:2

:3

59

Flip-Flops :3

--

--

* Low Level Synthesis *
--

Optimizing unit <stopwatch> ...

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block stopwatch, actual ratio is 2.

Final Macro Processing ...

--------------------------------------========================

Final Register Report

Macro Statistics

Registers

Flip-Flops
: 11

: 11

--------------------------------------========================

------ --

* Partition Report *

60

--

Partition Implementation Status

No Partitions were found in this design.

* Final Report *

Final Results

RTL Top Level Output File Name : stopwatch.ngr

Top Level Output File Name : stopwatch

Output Format

Optimization Goal

Keep Hierarchy

:NGC

: Speed

:NO

Design Statistics

#IOs : 27 ~

Cell Usage:

#BELS : 68

GND :2

INV :2

LUT3 :6

LUT4 : 47

MUXCY :3

MUXF5 :4

XOR CY :4

61

FlipFlops/Latches : 17

FDC :3

FDCE : 12

FDE : 1

FDPE : 1

Clock Buffers : 1

BUFG : 1

IO Buffers : 27

IBUF :2

IBUFG : 1

OBUF : 24

#DCMs : 1

DCM : 1

Device utilization summary:

Selected Device : 2vp2fg256-7

Number of Slices:

Number of Slice Flip Flops:

Number of 4 input LUTs:

31 out of 1408 2%

17 out of 2816 0%

55 out of 2816 1 %

Number of IOs: "' 27

NumberofbondedIOBs: 27 outof 140 19%

Number of GCLKs:

Number of DCMs:

1 out of 16 6%

1 out of 4 25%

Partition Resource Summary:

No Partitions were found in this design.

62

--

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE

REPORT

GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

------------------------------------+--------------------------+---------+-

Clock Signal I Clock buffer(FF name) I Load I

------------------------------------+--------------------------+---------+-

CLK I Inst_dcml/DCM_INST:CLKOI 17

------------------------------------+--------------------------+---------+-

Asynchronous Control Signals Information:

------------------------------------+---------------------------------+---------+-

Control Signal "'I Buffer(FF name) I Load I

- - - - - -- - - - - - - - - - - - - - - -- - ' - - ----- - --+-- -- - - - - - -- - --- - -- - - -- - - - - - - - -- --+--- - - - - --+-

rstint(MACHINE/sreg_OutOl :O) I NONE(sixty/lsbcount/qoutsig_l)l 9

13RESET IIBUF

sixty/msbclr(sixty/msbclr:O) I NONE(sixty/msbcount/qoutsig_l)14

------------------------------------+---------------------------------+---------+-

Timing Summary:

Speed Grade: -7

63

Minimum period: 3.509ns (Maximum Frequency: 285.006MHz)

Minimum input arrival time before clock: 2.228ns

Maximum output required time after clock: 4.226ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'CLK'

Clock period: 3.509ns (frequency: 285.006MHz)

Total number of paths I destination ports: 182 I 31

Delay: 3.509ns (Levels of Logic= 4)

Source: MACHINE/sreg_FFd3 (FF)

Destination: XCOUNTERIBU28 (FF)

Source Clock: CLK rising

Destination Clock: CLK rising

Data Path: MACHINE/sreg_FFd3 to XCOUNTER/BU28

Gate Net"

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

FDC:C->Q 7 0.370 0.601 MACHINE/sreg_FFd3

(MACHINE/sreg_FFd3)

LUT3:I0->0 4 0.275 0.511 MACHINE/sreg_Outl 1 (clkenable)

begin scope: 'XCOUNTER'

LUT4:Il->0 5 0.275 0.526 BU3 (N7)

LUT4:Il->0

FDPE:CE

4 0.275 0.413 BU20 (Nl 19)

0.263 BU28

64

Total 3.509ns (1.458ns logic, 2.05 lns route)

(41.6% logic, 58.4% route)

Timing constraint: Default OFFSET IN BEFORE for Clock 'CLK'

Total number of paths I destination ports: 5 I 3

Offset: 2.228ns (Levels of Logic= 3)

Source: STRTSTOP (PAD)

Destination: MACHINE/sreg_FFd3 (FF)

Destination Clock: CLK rising

Data Path: STRTSTOP to MACHINE/sreg_FFd3

Gate Net

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

IBUF:1->0 5 0.878 0.564 STRTSTOP _IBUF (STRTSTOP _IBUF)

LUT3:I0->0 1 0.275 0.000 MACHINE/sreg_FFd3-In_G (N89)

MUXFS:11->0 1 0.303 0.000 MACHINE/sreg_FFd3-In

(MACHINE/sreg_FFd3-In)

FDC:D 0.208 MACHINE/sreg_FFd3

Total 2.228ns (l.664ns logic, 0.564ns route)

(74.7% logic, 25.3% route)

--

Timing constraint: Default OFFSET OUT AFTER for Clock 'CLK'

Total number of paths I destination ports: 96 I 24

Offset: 4.226ns (Levels of Logic= 3)

Source: XCOUNTER/BU36 (FF)

Destination: TENTHSOUT<9> (PAD)

65

Source Clock: CLK rising

Data Path: XCOUNTER/BU36 to TENTHSOUT<9>

Gate Net

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

FDCE:C->Q 11 0.370 0.657 BU36 (Q<l>)

end scope: 'XCOUNTER'

LUT4:I0->0

OBUF:I->0

1 0.275 0.332 TENTHSOUT<9>1 (TENTHSOUT_9_0BUF)

2.592 TENTHSOUT_9_0BUF (TENTHSOUT<9>)

Total 4.226ns (3.237ns logic, 0.989ns route)

(76.6% logic, 23.4% route)

--

CPU: 10.74I11 .56 s I Elapsed: 11 .00 I 12.00 s

-->

Total memory usage is 169048 kilobytes

Number of errors : O (O filtered)

Number of warnings : 16 (O filtered)
Iii

Number of infos O (O filtered)

66

CHAPTER SIX

VIEW RTL SCHEMATIC

To view RTL schematic we are selecting as follows

Sources for: l Synthesis/Implementation
·.~··· ~~~t~hvhd ----·,----·-,--

i,. ~readme
'.;} Q xc2vp2-7fg256ısıi:itıtı stopwetch - inside (stopwatch,vhd,l. .•; ısı MACHINE - STATMACH - BEHAVIOR (statmach.vhd)

• · t{ lnst_dcm1 - OCM1 (OCM1.xaw)
qXCOUNTER - tenths (tenths.xco)ısı decoder - decode - behavioral (decode.vhd)
ısı sixty - cnt60 - inside (cnt60.vhd)ısı lsbcount - smallcntr - inside [smallcntr.vhd)

[S: msbcount - smallcntr - inside [smallcntr.vhd]
[S: lsbled - hex21ed - Behavioral [hex21ed.vhd]ısı msbled - hex21ed - Behavioral (hex21ed.vhd)

wrt Sources

Processes
Processes for: stopwatch - inside

@il u.:ı.t:ı ı_.uıı.:ı.uaıııl.:ı.

.;:;, 3l "\ i\Synthesize · XS T\. tiJ.-.J

Figure 34

Wiev rtl schematic

67

rnLg

Figure 35

Rt! schematic

68

CHAPTER SEVEN

SIMULATION OF DESIGN

1. Select behavioral simulation on source tab.

2. And select the stopwatch_tb.vhd source tab.

3. Select xilinx ıse Simulator on process tab.

4. And click simulate behavioral model.

Now:
1000 ns 200 400 600 800 1000

I I I I I I I
ı'h24 t TMO I n rn V r1ı14A . I I,,, /\ ı.

rMo r 7'MO

D t1 onesoul[6:0]

D ,~ lensout[6:0]

D I~ lenlhsoul[~:O] I 1... 10'l'ıJE

-t rq,f resel

~! slrtslo~ I o

!<. Figure 36 İt's continue

69

Now:
2000 ns I ~ 000 1200 1400 1600 1800

ti onesoul[6:0] I Th79
-!~ lensoul[6:0] I Th 79
-t1 lenlhsoul[9:0] I 1 ...
-
~)elk
-
·ı·ı I I ogıl: rese
-~! slrtslop I o

Figure 37-simulation

We are seeing reset is waiting 100 ns as 1 and after 100 ns is being O and strtstop stil

I .Then strtstop is waiting 600 ns as 1 then is being O at 700 ns so main program starting

working.

The tenths counter is counting up to A because it is binary counter then ones counter

starts count and it is counting up to nine then tens counter is starting then it is counting

up to six.

Program is working that I hope.

After the simulation ı did implement the design as follow.
Processes ! Number of Slic

i J;;i~ıN;.;;;i,,
! Number used

iN~;.,t:.~; ~~~d
r Number of bor
(""""~"~"""' ..
, Number of PP

Number of GC

e- Number of DC

N~mb~r~I GT
Number of GT

Processes for: stopwatch · inside
· c:J Add Existing Source
c:J Create New Source
ı;:; View Design Summery

Design Utilities

~ Enable Enhanced Design
D Enable Mes sage Filtering
D D ispley I neremental M essseçes

Enhanced Design Summary Contents
~ Show Partition Data
D Show Errors
D Show'warnings
D Show Failing Constraints
D Show Clock Report

I:' O esign S ummar_y

Process ''Generate Post-Place & Route Static Timing'' completed successfully

Figure38-implement the design

70

I; FPGA £.e:ign Su~mary
l':, D eıign Overview

0 Summary
@108 Properties

~ Timing Constraints
[d Pinout Report
0 Clock Report

8 Errors and Warnings
0 Synthesis Messages

G'.j Translation Messages
~ Map Messages

~ Place and Route Messages
[;ii Timing Messages
[İi Bilgen Messages

· 0 All Current Messages
8 Detailed R eporls

h0 Synthesis Report

ltJ Translation R~port

Project Properties
~ Enable Enhanced Design Summary!
D Enable Message Fillering i' ,. .
D Display Incremental Messsages

Enhanced Design Summary Contents
~ Show Partition Data
D Show Errors
D Show \ı,/arnings
D Show F ailıng Constr aınts
D Show Clock Report

Additional J TAG gate count lor IDB s 1,296

Figure39-device utilization summary

Processes

After implement the desgin I did generate the design as follow.

Enable Enhanced Design ı
Enable Message Filtering
Display Incremental Messs

Processes for: stopwatch · inside
2...1f:J Y IOYY vı:::~ıyı I .JUIIIIIIOIY

1±) Design Utilities
ı:+J User Constraints ıo

CJ .,h Synthesize · ><ST
C ~r!'.:) ImplementDesign
('~(:,Generate ProgrammingFile

~(:,Programming File Generation Report

It 01;·:'~iniı~te PIBÖ,¥\f ıtE ,. Pr J:ı:~G File
~ Configure Device (İMPACT)~1t rr~~~;~;·;· 1 ·········. ...

-~

Show Errors
Show \,ı/ arnings
Show Failin9.Constraints
Show Clock Report

Rerun

, ~t Rerun All

Open Without UpdatingProcess "Generate Programming Fi'. fully,t Properties."

Figure40-implement the design

71

Co.nf_ig_ure de'y'.iCes ·.

Configure devices using Boundary-Scan (JTAG)
oh'-••••• '"•h•• .,,m ~h. "" •· •.• ;;,,-,;""'';;;,;;,;..

t _ ~-~~.'?..l!l.~.t_\~.?..\1~ ... C?.'?..r::ı.~.~--?..~ ...~.?. ?.-?..?.~.ı_':: ...~.~9...!.9.~.~-~1.~..Y_,.~.'?..~~-9.~~~-~-?..~-~-~---'.?.~.~-~-r::ı.

Prepçlre <' PROM,File

Prepare a.SystemACE File.

Prepare a 8 oundar_y~_~_:c_arı,File

Figure4 J -select as figure and click finish

&j WARNING:iMPACT:923- Can not find cable, check cable setup!

Figure42-warning

We are seeing this warning because of we have no hardware and cable I clicked ok.

R.igt>.t. click to Add De-vice or In.itializ.e JT ~.:...Ochain

J,;;;, Design Summary B-ı}-j, Boundaııı,, Sca,n

Figure43-right click and add device

72

Right click to Add Device or Initialize JTAG chain

Add Non-Xilinx Device... Ctrl+K

Initialize Chain Ctrl+I

Cable Auto Connect
Cable Setup,, ,

Output File Type

Figure44-add xilinx device

File rıame: stopwatch.bit Qpen-
Cancel

,=, ,=

File ıı.,pe All Design Files ('jed x.bit "rbt "ise X

None

Enable Programmingof S Pl Flash Device Attached to this FPGA

Enable Programmingof BPI Flash Device Attached to this FPGA

Figure45-select stopwatch.bit then click open

TDI

xc2vp2
stopwatch.bit

Figure46-stopwatch. bit

73

TDI

xc2vp2
stopwatch .bit

Verify
Get Device ID
Get Device Signature/Usercode

Assign New Configuration File...

Figure47-program

I did not this part because of we have no devices.

74

CHAPTER EIGHT

ABOUT DCM CLOCKING WIZARD

General Setup

Use the General Setup dialog box to configure the Digital Clock Manager (DCM).

The primitive the Architecture Wizard will use to implement the DCM function

depends on the FPGA device into which your design will be programmed:

• For Virtex-11,Virtex-11Pro and Spartan-3/3L devices, a DCM primitive will be

used.

• For Spartan-3E/3A devices, a DCM_SP primitive will be used.

8.1.DCM PORTS

Each selectable pin has a corresponding checkbox to enable or disable the pin.

CLKIN

This pin is the clock input to the DCM. CLKIN is always enabled. CLKIN

provides the source clock to the DCM. The frequency is specified in the Input

Clock Frequency box. The source is specified in the CLKIN Source box.

CLKFB

This pin is the clock feedback input to the DCM. The selection in the Feedback

Source box determines"if CLKFB is enabled. A DCM requires a reference or

feedback signal to provide delay-compensated output.

RST

This pin is the reset input to the DCM. RST is enabled when the checkbox is

selected. If not enabled, RST will be tied to GND, and the DCM can only be reset

upon configuration. For details about what occurs when RST is enabled, refer to

75

the "Using Digital Clock Managers (DCM)" section in the "Design

Considerations" chapter of the relevant FPGA User Guide (links provided above).

PSEN

This pin is the phase shift enable input to the DCM. PSEN is enabled when Phase

Shift Type is set to Variable. When not enabled, PSEN is tied to GND.

To initiate variable phase shift operation, the PSEN input must be activated for

one period of PSCLK. The phase change becomes effective after up to 100

CLKIN pulse cycles plus three PSCLK cycles, and is indicated by a High pulse

on PSDONE. During the phase transition there are no sporadic changes or

glitches on any output.

PSINCDEC

This pin is the phase shift increment/decrement input to the DCM. PSINCDEC is

enabled when Phase Shift Type is set to Variable. When not enabled,

PSINCDEC is tied to GND.

The PSINCDEC signal is synchronous to PSCLK and is used to increment or

decrement the phase shift factor. To increment or decrement the phase shift, the

PSINCDEC signal must be High for increment, or Low for decrement.

For Virtex-Il, Virtex-Il Pro and Spartan-3/3L devices, each increment or

decrement will move the clock phase by 1/256 of clock period. For Spartan-3E

and Spartan-3A devices',each increment or decrement will correspond to

approximately 25 ps.

PSCLK

This pin is the phase shift clock input to the DCM. PSCLK is enabled when

Phase Shift Type is set to Variable. When not enabled, PSCLK is tied to GND.

The PSCLK input can be sourced by the CLKIN signal to the DCM, or it can be a

lower or higher frequency signal provided from any clock source (external or

76

internal). The frequency range of PSCLK is defined by PSCLK_FREQ_LF I

PSCLK_FREQ_HF. For more information, see the product Data Sheets.

CLKO I CLK90 I CLK180 I CLK270

These output DCM pins provide coarse phase shifting. Each of these outputs is

enabled when its checkbox is selected.

The CLKO,CLK90, CLK180, and CLK270 outputs are each phase shifted by 1/4

of the input clock period relative to each other.

Note CLK90 and CLK270 are not available in high-frequency mode.

CLKDV

This pin is the clock divide output of the DCM. CLKDV is enabled when the

checkbox is selected.

The CLKDV output provides divided output clocks and the options are available

in the Divide By Value list.

CLK2X I CLK2X180

The CLK2X and CLK2X180 output pins double the clock frequency. Each of

these outputs is enabled when its checkbox is selected. CLK2X180 is the opposite
"phase of CLK2X.

Note CLK2X and CLK2X180 are not available in high-frequency mode.

CLKFX I CLKFX180

The CLKFX and CLKFXI 80 output pins provide fully digital, dedicated

frequency synthesizer output to the DCM. Each of these outputs is enabled when

its checkbox is selected. CLKFX180 is the opposite phase of CLKFX.

77

The output frequency is a function of the input clock frequency described by M

and D, where Mis the multiplier (numerator), and Dis the divisor (denominator).

M and D can be specified in the Clock Frequency Synthesizer dialog box. The

Clock Frequency Synthesizer dialog box appears when CLKFX or CLKFX180 is

enabled.

STATUS

The STATUS pin is an 8-bit output bus from the DCM. STATUS is enabled

when the checkbox is selected.

Only bits O to 2 are defined. Bits 3 to 7 are connected to a floating signal; this

signal is optimized during synthesis.

STATUS [O] indicates the overflow of the phase shift numerator and that the

absolute delay range of the phase shift delay line is exceeded. STATUS[l]

indicates the loss of the input clock, CLKIN, to the DCM. STATUS[2] indicates

that CLKFX has stopped.

LOCKED

The LOCKED pin is an output to the DCM that activates after the DCM has

achieved lock. LOCKED is enabled when the checkbox is selected.

To achieve lock, the DCM may need to sample several thousand clock cycles.

After the DCM achieves lock, the LOCKED signal goes high. To guarantee that
•..

the system clock is established prior to the device waking up, the DCM can be set

to delay the completion of the device. The STARTUP_ WAIT attribute activates
...

this feature. Until the LOCKED signal activates, the DCM output clocks are not

valid and can exhibit glitches, spikes, or other spurious movement.

PSDONE

The PSDONE pin is the phase shift done output of the DCM. PSDONE is enabled

when Phase Shift Type is set to Variable.

78

The PSDONE signal is synchronous to PSCLK and it indicates, by pulsing high

for one period of PSCLK, that the requested phase shift was achieved. This signal

also indicates that a new change to the phase shift numerator can be made. This

output signal is not valid if the phase shift feature is not being used or is in

FIXED mode.

Input Clock Frequency

The input clock frequency determines the value of the DLL_FREQUENCY_MODE

and DFS_FREQUENCY_MODE attributes for the DCM. The Clocking Wizard accepts

values that fall within the ranges specified in the product Data Sheets. The default

selection is low frequency. When the DLL_FREQUENCY_MODE attribute is set to

HIGH, the only outputs available from the DCM are CLKO,CLK180, CLKDV and

LOCKED.

Note The Clocking Wizard checks that each output can operate in the valid range. To

check the valid range for each individual output, see the product Data Sheets.

Note The DLL_FREQUENCY_MODE and DFS_FREQUENCY_MODE attributes do

not apply to the Spartan-3E and Spartan-3A architectures. In these architectures, the

DCM function uses a DCM_SP primitive instead of a DCM primitive.

The input clock frequency affects the CLKIN_PERIOD attribute. This attribute is

always set by the Clocking Wizard, but is used by BitGen (the bitstream generation

program) only when the CLKFX I CLKFX180 output is used. This attribute does not

affect any timing constraints.

FREQUENCY IS DIVIDED BY 2

This text alerts you that the Divide Input Clock by 2 option is selected in the

Advanced dialog box (accessed by clicking the Advanced button below).

CLKIN Source

CLKIN provides the source clock to the DCM.

79

External

The Clocking Wizard connects a dedicated input buffer (IBUFG or IBUFGDS) to

the CLKIN input pin. The output of the IBUFG or IBUFGDS is also brought out

as a port. This is done to give you the ability to connect the output of the IBUFG

or IBUFGDS to other clock components. For example, when a DCM is used with

RocketIO, the output immediately after the IBUFGDS is required as the input for

the BREFCLK or BREFCLK2 pin of the RocketIO transceiver (when using the

BREFCLK pins to input the reference clock).

The default selection for CLKIN Source is External.

Single

An IBUFG is instantiated in the module generated by the Clocking Wizard.

This is the default selection when CLKIN Source is set to External.

Differential

An IBUFGDS is instantiated in the module generated by the Clocking

Wizard.

For more detailed information about these buffers, see the Libraries

Guides, available from the Software Manuals collection.

Internal

The Clocking Wizard cönnects the CLKIN input pin directly to the CLKIN pin on

the DCM. The only components that can drive the CLKIN on the DCM are

dedicated clock VO, regular VO, or clock buffers. When this DCM instantiation is

placed into a design, you must connect the CLKIN pin to one of those

components. Select Internal if you do not want an IBUFG to be inserted for

CLKIN.

Divide By Value

80

The value selected is the clock division factor associated with the CLKDV output pin.

This selection is available only when the CLKDV checkbox is selected.

Feedback Source

Specifies the feedback source to the CLKFB input of the DCM.

Note When either Internal or External is selected, a BUFG is connected to the DCM

clock output used as the feedback (CLKO).This information is displayed in the table

found in the Clock Buffers dialog box; click Next to access this dialog box. For any

other connection, select Customize buffers in the Clock Buffers dialog box. You can

also generate a board level clock by using a DDR register in the Clock

Forwarding/Board Deskew flow.

External

The Clocking Wizard instantiates a global clock input buffer and connects it to

CLKFB. The type of buffer is determined by the selection of Single or

Differential.

Single

An IBUFG is instantiated in the module generated by the Clocking Wizard.

This is the default selection when Feedback Source is set to External.

Differential

An IBUFGDS is .instantiated in the module generated by the Clocking
Wizard.

For more detailed information about these buffers, see the Libraries

Guides, available from the Software Manuals collection.

Internal

The Clocking Wizard instantiates a global buffer (BUFG) and connects it as

shown in the figure. The default selection for Feedback Source is Internal.

81

'CLKFB

DCM

None

This is valid only when CLKFX or CLKFX180 output pin is used.

Feedback Value

Specifies the feedback value for the DCM.

ıx

The CLKO output provides the feedback clock.This is the default selection.

2X

The CLK2X output provides the feedback clock. This output is not available in

high-frequency mode.

Note 2X is not available for Virtex-11 Pro devices.

Use Duty Cycle Correction

This setting enables the 50/50 duty cycle for the lX clock outputs CLKO, CLK90,

CLK180 and CLK270.

Phase Shift

This controls the fine phase shifting capabilities of the DCM.

Note For Spartan-3 devices, phase shift is only supported in Low Frequency mode. If

the Input Clock Frequency for a Spartan-3 device is set for High Frequency mode the

Phase Shift selections are disabled, the phase shift Type is set to NONE, and the phase

shift Value is set to O. This applies to Spartan-3 devices; it does not apply to Spartan-3E

and Spartan-3A devices.

82

Type

Determines whether fine phase shifting will be used and, if so, determines the type of

phase shift employed.

NONE

This selection disables the phase shift feature.

FIXED

This selection enables the fine fixed phase shifting.

VARIABLE

This selection enables the variable fine phase shifting. When selected,

PSEN, PSINCDEC, PSCLK, and PSDONE are enabled.

Value

This setting determines the amount of phase introduced by the DCM. The phase

shift value is the numerator in the following equations:

Phase Shift (ns) = (Phase Shift Value/256) * PERIODcıkin

Phase Shift (Degrees)= (Phase Shift Value/ 256) * 360

The full range of the phase shift value is always -255 to + 255, but its
~

practical range varies with CLKIN frequency, as constrained by the

FINE_SHIFT_RANGE attribute. For further details, see the product Data

Sheets

83

CHAPTER NINE

ABOUT BINARY COUNTER

9.1.FEATURES

• Drop-in module for Virtex™, Virtex-E, Virtex-II,Virtex-II Pro™, Spartan™-II,

Spartan-IIE and Spartan-3 FPGAs

• Generates Up, Down and Up/Down Counters

• Supports counts ranging from 2 to 256 bits wide

• Optional load capability

• Optional user programmable threshold outputs

• Optional clock enable and asynchronous and synchronous controls

• Counter increment value can be user defined or supplied externally

• User-programmable count limit

• Incorporates Xilinx Smart-IP™ technology for utmost parameterization and optimum

implementation

• Uses relationally placed macro (RPM) mapping and placement technology, for

maximum and predictable performance

• For use with v5.li and later of the Xilinx CORE Generator™ System

84

I
ASET SSET

---ıL[N:Oj

---LOAD

--wt 1\/[N:OJ

----fUP

---CE
- LK

THRESHO~

Q.-...T··.· HRE .. .S. ,.HOTHRESH1

Q THRESH, ·

QfN:()J

AClA SCLR AWIT $1NiT

I i
X.9080

Figure 1: Core Schematic Symbol

9.2.FUNCTIONAL DESCRIPTION
The binary counter is used to create up counters, down counters and up/down counters

with outputs of up to 256 bits wide. Support is provided for two threshold signals that

can be programmed to become active when the counter reaches a user defined count.

The upper limit of the count is user programmable, and the counter's increment value

can

be user defined or provided via an external port. Options are provided for Clock

Enable, Asynchronous Set, Clear, and Init, and Synchronous Set, Clear and Init. An

optional

Load capability is also provided which can load the value on the Load port directly into

the output register. The module can optionally be generated as a Relationally Placed

Macro

(RPM) or as unplaced logic. When an RPM is generated the logic is placed in a column.

When the counter reaches terminal count or the "count to value" the next count will be..•

zero.

85

CHAPTER TEN

ABOUT VIRTEX FPGA CHIPS
The Virtex-11 Pro I Virtex-11 Pro X

FPGA Family

The Next Logical Revolution

The Virtex-II Pro™Nirtex-II Pro X Platform FPGA solution is the most technically

sophisticated silicon and software product development in the history of the

programmable logic industry. The goal was to revolutionize system architecture "from

the ground up." To achieve that objective, the best circuit engineers and system

architects from IBM, Mindspeed, and Xilinx co-developed the world's most advanced

Platform FPGA silicon product. Leading teams from top embedded systems companies

worked together with Xilinx software teams to develop the systems software and IP

solutions that enabled this new system architecture paradigm. The result is the first

Platform FPGA solution capable of implementing high performance system-on-a-chip

designs previously the exclusive domain of custom ASICs, yet with the flexibility and

low development cost of programmable logic. The Virtex-11Pro/Virtex-Il Pro X family

marks the first paradigm change from programmable logic to programmable systems,

with profound implications for leading-edge system architectures in networking

applications, deeply embedded systems, and digital signal processing systems. It allows

custom user-defined system architectures to be synthesized, next-generation

connectivity standards to be seamlessly bridged, and complex hardware and software

systems to be co-developed rapidly with insystem debug at system speeds. Together,

these capabilities usher in the next programmable logic revolution.

10.1.BUILT FOR BANDWIDTH
The Virtex-11Pro/Virtex-11Pro X family consists of eleven members. The nine

Virtex-II Pro devices contain four to twenty RocketIO™ multi-gigabit transceivers

(MGTs), while the two Virtex-11Pro X devices contain eight or twenty RocketIO X

MGTs. Each Xilinx RocketIO/RocketIO X transceiver block contains a complete set of

user-configurable supporting circuitry that addresses real-life, system-level challenges.

These include standard 8B/10B encode/decode (plus 64B/66B encode/decode in the

RocketIO X), programmable signal integrity adjustments for varying PCB trace lengths

and materials, support for synchronization of multiple channels, and programmable

86

CHAPTER TEN

ABOUT VIRTEX FPGA CHIPS

The Virtex-II Pro I Virtex-II Pro X

FPGA Family

The Next Logical Revolution
The Virtex-II Pro™Nirtex-II Pro X Platform FPGA solution is the most technically

sophisticated silicon and software product development in the history of the

programmable logic industry. The goal was to revolutionize system architecture "from

the ground up." To achieve that objective, the best circuit engineers and system

architects from IBM, Mindspeed, and Xilinx co-developed the world's most advanced

Platform FPGA silicon product. Leading teams from top embedded systems companies

worked together with Xilinx software teams to develop the systems software and IP

solutions that enabled this new system architecture paradigm. The result is the first

Platform FPGA solution capable of implementing high performance system-on-a-chip

designs previously the exclusive domain of custom ASICs, yet with the flexibility and

low development cost of programmable logic. The Virtex-II Pro/Virtex-II Pro X family

marks the first paradigm change from programmable logic to programmable systems,

with profound implications for leading-edge system architectures in networking

applications, deeply embedded systems, and digital signal processing systems. It allows

custom user-defined system architectures to be synthesized, next-generation

connectivity standards to be seamlessly bridged, and complex hardware and software

systems to be co-developed rapidly with insystem debug at system speeds. Together,

these capabilities usher in the next programmable logic revolution.

lo

10.1.BUILT FOR BANDWIDTH
The Virtex-II Pro/Virtex-II Pro X family consists of eleven members. The nine

"
Virtex-II Pro devices contain four to twenty Rocketlü™ multi-gigabit transceivers

(MGTs), while the two Virtex-Il Pro X devices contain eight or twenty Rocketlü X

MGTs. Each Xilinx Rocketlü/Rocketlü X transceiver block contains a complete set of

user-configurable supporting circuitry that addresses real-life, system-level challenges.

These include standard 8B/10B encode/decode (plus 64B/66B encode/decode in the

Rocketlü X), programmable signal integrity adjustments for varying PCB trace lengths

and materials, support for synchronization of multiple channels, and programmable

86

support for channel control commands. In addition, the RocketIO and RocketIO X

blocks are the first FPGAembedded transceivers to reach baud rates of 3.125 Gbps and

10.3125 Gbps, respectively. Four RocketIO transceivers, employing sixteen PCB traces,

can be used to support a fullduplex 10 Gbps channel by way of the RocketIO channel

bonding feature-or, a single RocketIO X transceiver can implement the same speed

with just four PCB traces. This is equivalent to 256 traces of typical LVTTL buses, or

68 traces of a high-speed, sourcesynchronous parallel LVDS bus. It allows a PCB trace

reduction of up to 64X over conventional parallel buses, resulting in significant

reductions in PCB complexity and EMI system noise. The RocketIO/RocketIO X

technology fulfills higher bandwidth system requirements than currently possible, with

cost savings coming from faster time-tomarket, reduced printed circuit board (PCB)

complexity, and lower component count.

Each of the larger devices incorporates one or two small yet powerful IBM®

PowerPC™ 405 processor cores, each capable of more than 300 MHz clock frequency

and 420 Dhrystone MIPS. While the processor cores occupy a small area of the die,

they provide tremendous system flexibility where they are used. The PowerPC 405

cores are fully embedded within the FPGA fabric, where all processor nodes are

controlled by the FPGA routing resources.

This provides the utmost architectural capability, where complex applications may be

efficiently divided between high-speed logic implementation and high-flexibility

software implementations. For example, a packet processing application using only the

FPGA logic today for high-speed packet routing may be augmented to include a slave

high-performance processor forsexception handling or in-system statistics monitoring.

In contrast, using a separate processor externally requires hundreds of additional

interface pins, which degrades system performance and significantly increases FPGA

1/0 requirements and overall board costs.

The Virtex-Il Pro/Virtex-Il Pro X products are based on the most advanced FPGA

fabric available: the Virtex-11™ architecture with IP-Immersion™ technology, which

was developed to offer significant improvements in engineering productivity, silicon

efficiency, and system flexibility. Unique features common in the Virtex-Il Series

consisting of the Virtex-Il and Virtex-Il Pro families-include powerful SystemIO™

system connectivity solutions, digitally controlled impedance (DCI) technology,

87

comprehensive clocking solutions, high-speed Active Interconnect™ routing

architecture, and bitstream encryption. These features together constitute the most

complete Platform FPGA solution available, optimized for high performance system

level applications. The upward compatibility of the Virtex Series of products ensures

benefits in engineering productivity, performance, design longevity, and continuing cost

reduction.

10.2.LEGACY OF LEADERSHIP
Each of the Virtex families of FPGAs has been the most successful programmable

product family in its class, starting with the introduction of the original Virtex family in

1998. The Virtex and Virtex-E families were recognized by the industry as the highest

technology products available when they were first introduced. The Virtex-II family,

which again achieved technology leadership in density, performance, and features,

ushered in the era of Platform FPGAs-programmabledevices with the system-level

capability and performance to implement systems functionality. The Virtex-II Pro

family continues the tradition of technology leadership as the most sophisticated

Platform FPGA yet, again breaking the technology barrier for the benefit of leading-

edge system architects.
The Virtex-II Pro/Virtex-II Pro X family is the first FPGA family to incorporate both

serial transceiver technology and a hard processor core within a general-purpose FPGA

device.This is significant for new high-bandwidth embedded processing applications

such as packet processing, where both high device l/0 bandwidth and high performance

processor cores are needed together.
The Virtex-11Pro/Virtex-II Pro X devices are the industry's first FPGAs in a 0.13-

micron process. The nine-layef metal, all-copper, low-k process technology is among

the most advanced in the semiconductor industry. The combination of advanced Active

Interconnect™ architecture and advanced process technology makes'the Virtex-11

ProNirtex-II Pro X family the highest performance FPGA in the world.

The RocketIO/RocketIO X multi-gigabit MGTs are the highest performance, most

complete embedded serial transceivers available. They are user-configurable for up to

3.125 Gbps or 10.3125 Gbps baud rate per channel, which is many times the

performance of other embedded transceivers at 1.25 Gbps. Each RocketIO/RocketIO X

transceiver provides a complete set of common functionality available in standard

88

SerDes transceivers. In contrast, "programmable ASSP" products with clock/data

recovery (CDR) provide only the most basic transceiver capability.

The IBM PowerPC 405 processor core used in the Virtex-II ProNirtex-II Pro X

family is the highest performance embedded core available in FPGAs. The PowerPC

architecture is used in many markets including communications, industrial control, test

and measurement systems, and other performance-oriented markets. It is currently the

most popular processor architecture in embedded applications.

10.3.PACKETS EVERYWHERE
The Virtex-II Pro/Virtex-Il Pro X family provides a powerful new paradigm for

network processing where low latency is required, such as storage area networks,

wireless infrastructure, and voice-over-IP networks. The digital convergence
phenomenon drives the need for packet routing based on type and priority. For example,

live voice and video data packets require significantly lower latency than data file

packets. New data networking applications must now handle higher bandwidth traffic as

well as more complex types of prioritized packets. In many cases, Virtex-II Pro/Virtex

II Pro X devices can offer higher overall performance than other solutions, including

specialized network processors (NPs).
Using the Virtex-II Pro architecture, the most common packets may be quickly read

and routed using FPGA logic, without incurring the lengthy software runtime needed by

NPs. The FPGA logic interrupts the PowerPC processor core only when processor

instructions are needed for special packet types.
For example, packets may be stored into a 16 KB dual-port memory area accessible

by both the FPGA logic and the PowerPC 405 on-chip memory (OCM) port, allowing

rapid change of control and packet"disposition. By using the FPGA logic to process the

most common packet types while the processor core handles the more specialized ones

as a slave to the logic, the Virtex-II Pro architecture can provide higher overall

performance than NPs, as well as more sophisticated processing capabilities than FPGA

logic alone.

Bridge, Anyone?
Powerful protocol bridges for tying together disparate data stream formats are well-

suited for the Virtex-II Pro/Virtex-Il Pro X solution. New interface standards and

protocols include PCI Express™, Infiniband®, Gigabit Ethernet, XAUI/10 Gigabit

89

Ethernet, RapidIO™, and HyperTransport™. These must interface seamlessly to one

another, as well as to other standards such as PCI™, Fibre Channel, POS Phy Level 4,

Flexbus 4, and others.

This presents a significant challenge to system developers because of changing

standards, scarcity of off-the-shelf interface components, and the inflexibility of

available solutions. System designers have had to assemble their own blend of FPGAs,

discrete physical transceivers, and discrete communications processors to solve their

complex system challenges. Even newer "programmable ASSPs" (application-specific

standard products) with built-in serial transceivers fall short, because they frequently

require companion FPGAs to supplement their logic capacity. The Virtex-11 Pro

solution, using the powerful Xilinx SystemIO™ capability to fully integrate silicon,

software, and IP capabilities, provides the most flexible pre-engineered protocol bridge

solutions available for fast timeto-market and low development cost.

Simplifying Complexity
The Virtex-11Pro/Virtex-Il Pro X solution offers a powerful paradigm for complex

embedded systems found in signal processing, industrial control, image processing,

networking, communications, and aeronautic applications. For the first time, complex

embedded systems traditionally involving sophisticated hardware and software may be

developed concurrently, emulated in actual hardware at speed, debugged in-system, and

re-architected for performance within weeks, rather than months or years. In addition,

full systems can be remotely upgraded as easily as software-only upgrades are

performed today, using Compact Flash, CDROM, Internet, wireless transmission, or

other flexible means. Hardware design is simplified using powerful development

software and a large soft IP library to assemble logic- and processor-based platforms.
~

Software development may be started earlier using the actual device in preconfigured

sample platforms, without waiting for the new system board to be developed. In many
'

cases, higher density Virtex-II Pro components may be used for early system

development, whereby extra resources (including additional PowerPC processor cores)

may be used to easily emulate board-level components yet to be developed. This

flexibility, obviously unavailable in custom ASICs or ASSPs, allows systems to be

emulated at speed, rather than simulated using software simulators at 100 or 1000 times

slower. In-system debugging is further enhanced by the Xilinx ChipScope Pro tool,

which provides comprehensive logic analysis-from probing internal nodes to full bus

analysis with bus protocol adherence checks using an external logic analyzer via the

90

IEEE 1149.1 (JTAG) test access port. Using ChipScope Pro can result in orders of

magnitude of improvement in engineering productivity.

Complex systems can be optimally repartitioned between FPGA logic and processor

cores, allowing a continuum of possible trade-offs between the speed of logic and the

flexibilityof software code. For example, a first implementation of an echo cancellation

algorithm might be all-software in compiled C code running on a PowerPC core, in

order to allow the system software development to start. As the system is further

optimized, part of the DSP algorithm could be retargeted using Matlab Simulink into

FPGA logic to achieve a significantly faster but functionally identical system for

production release.

In another example, an encryption application might implement the Diffie-Hellman

key Exchange algorithm, whereby exponentiation and message management could be

optimally partitioned into FPGA logic and an embedded processor, respectively. In this

way, the programmable systems paradigm offers tremendous flexibility to allow system

designers and architects to optimize the trade-offs in development time, system

performance, and system costs.

It is significant that the embedded systems enabled by Virtex-II Pro solutions are "all

soft," in that both logic and software code are controlled by a soft data file. Because of

this, the low cost of design maintenance and degree of design reuse is greatly enhanced.

Whole system upgrades, including both hardware and software, can now be

accomplished with one unified soft file using System ACE™ configuration solutions,

offering the same low cost and ease of use as software-only upgrades.

10.4.TIME IS MONEY
The Virtex-II Series, comprising 'Doth the Virtex-II and Virtex-II Pro/Virtex-II Pro X

families, offers significantly faster time-to-market and lower development costs than

ASICs. Compared to a full-custom ASIC, the Virtex-H Pro solution eliminates the need

for exhaustive verification during development, and allows hardware-software debug at

system speeds rather than at slow software simulation speeds. In addition, the

Virtex-11 ProNirtex-II Pro X features of signal integrity, pre-engineered clocking

capabilities, and an abundance of soft IP cores, significantly reduce development time.

The Virtex-II Series offers significantly lower development costs than ASICs, due to

lower tool costs, lower third-party IP costs, and absence of NRE costs. The Virtex-II

91

Series also increases engineering productivity by accelerating hardware availability for

software development and increasing software debug speed. In addition, the availability

of powerful development tools enables straightforward retargeting of other embedded

processors into the PowerPC platform. Compared to other processor architectures, the

PowerPC 405 core in most cases allows higher performance and more powerful

capabilities, and thus can be used to accelerate preproduction of performance-sensitive

applications.
The flexibility inherent in the Virtex-Il Series allows system architects to fine-tune

theirarchitectural partitioning after the initial prototype is developed. That is, each

subsystem function can be freely implemented as hardware only, software only, or any

combination within the hardware-software continuum, depending on the trade-off

between performance and complexity. For example, a wireless infrastructure system

might initially implement a rake filter function in hardware, and then change to a

firmware implementation as more software control is necessary during later

development. This repartitioning would be impossible in custom ASICs without

significant time and cost penalties.

The Virtex-Il Series offers significantly more flexibility than fixed chip sets and

ASSPs, allowing end user product differentiation and future-proofing. For a design

requirement that can generally be met either by ASSPs or by Virtex-Il Platform FPGAs,

the initial design investment for an FPGA implementation may be higher. However, the

advantages for Platform FPGA implementations include customizing of functionality,

ease of design reuse, ability to fix design bugs, differentiation of user end products, and

ownership and control of the entire system. These are important advantages in highly

competitive markets where ASSPs have standing errata lists and unpredictable future
Ill

availability. In contrast, properly developed Platform FPGA designs are soft designs

that may be readily maintained and reused as needed. Therefore, FPGA methodologies

can provide system manufacturers with greater competitive advantage in the short term,

and greater ownership and control over their products in the long term.

Many high-bandwidth systems today use large FPGAs together with discrete SerDes

transceivers, discrete communications processors, or other discrete components. The

Virtex-Il Pro/Virtex-II Pro X family can eliminate the need for many of these external

components, enhancing time-to-market and performance, even providing system cost

92

benefits in many cases. Multi-chip solutions using FPGAs typically require over a

hundred I/O pins to interface to each discrete quad 3.125 Gbps SerDes transceiver or
discrete microprocessor.

The result is increased PCB complexity to accommodate the hundreds of traces,

reduced system performance due to on-chip/off-chip connections, and higher overall

system costs. In some cases, the increased FPGA pin-count requirement may force

a higher-density FPGA to be used, again increasing the overall cost. In these cases, the

Virtex-Il Pro/Virtex-II Pro X devices can integrate the discrete components to achieve

faster system development, higher system performance, and lower costs.

CHAPTER ELEVEN

ABOUT XILINX SOFTWARE AND COMP ANY

How, many ask, did Xilinx (pronounced "Zylinks") get its unusual name?

In 1984, when Xilinx was just forming, the new company tried to register several

"sensible" names, but they were all taken. This became an expensive proposition and

the founders, (being very frugal), decided to create an unusual name that wasn't taken.
Thus, two of the founders came up with "Xilinx."

Xilinx Fellow Bill Carter, who was at Xilinx from the start, explains. "The 'X's' at

each end represent programmable logic blocks. The "linx" represents programmable

links that connect the logic blocks together, a key innovation embodied in FPGAs."

While Xilinx doesn't follow all the branding and phonetically-correct rules for naming
••a company, a Xilinx by any other name would not be as sweet.

11.1.HISTORY OF XILINX

Timeline of Significant Events in Xilinx History

1984

Ross Freeman, Bernie Vonderschmitt, and Jim Barnett found Xilinx.

The company's business and management mission and philosophy are created, a new

kind of company is bom. The concept for a new type of product, the Field
Programmable Gate Array, takes shape.

93

1985

Xilinx introduces its first product, the XC2064™.

It's the first-ever FPGA, a radical new form of programmable logic.

1987

Sales office established in Weybridge, England.

This is the first sales office outside North America, targeted to serve the European

market.

1988

The company opens its first overseas office in Tokyo.

Xilinx K.K. is bom. Initial focus is to serve Seiko, our first wafer supplier/partner.

1989

Xilinx founder, Ross Freeman, passes away.

His dream for the team and the technology lives on.

1990

Xilinx goes public at $10 per share, after reaching several quarters of profitability.

Shares are $0.83 when adjusted for splits. This is a major milestone along the path to

realizing the company vision.

1991

The XC4000™ family of FPGAs is introduced.

This is the first broadly adopted FPGA and will become the primary Xilinx revenue

driver for the 90's.

1993

Xilinx Scotland is established in Edinburgh.

This team's focus on IP solutions core and software development brings Xilinx a

considerable competitive advantage.

1995

Xilinx Ireland officially opens in Dublin.

This is our first major site in Europe, establishing manufacturing and engineering

capability outside the U.S.

94

Xilinx Colorado is established in Boulder.

Boulder employees significantly increase software development capability in the

company. This is the first major North American site outside of Silicon Valley. It has
since moved to Longmont, Colorado.

1996

Wim Roelandts joins as CEO and President.

He brings 30 years of Hewlett-Packard experience to his new assignment.

1997

CREATIVE Values dialogue is created throughout the company.

All employees participate in a process to articulate the values of Xilinx. These are:

customer focus, respect, excellence, accountability, teamwork, integrity, very open

communications and enjoying our work. The first letter of each value forms the
acronym: CREATIVE.

1998

Virtex®™ FPGA family is introduced.

This is a major step in FPGA architecture and opens up new markets for the company.

The Virtex family becomes the primary revenue driver to date.

1999

Xilinx Albuquerque opens with acquisition of CoolRunner™ team and technology.

This product line offers new low power and lower cost CPLD products to customers.

2000

Xilinx revenue exceeds $1B.

The company reaches the billion-dollar milestone only 1 O years after going public.

Employees take out a full-page ad saying "Thanks a Billion for Your Leadership" as a

tribute to CEO Wim Roelandts at a pivotal point for the company.

2003

95

Spartan®™-3 family of products is introduced.

This very low-cost product is the world's first 90nm FPGA. The Spartan-3 technology

puts us considerably ahead of our competition and in the company of premier advanced

semiconductor manufacturers.

2003

Wim Roelandts becomes Chairman of the Board.

Bernie Vonderschmitt retires; the last company founder leaves an impressive

legacy.

2004

Xilinx celebrates its 20th anniversary.

The company observes its first 20 years of life by honoring employees, customers,

shareholders, partners, and local communities.

2008

How Xilinx Began

Moshe Gavrielov is named President and CEO.

Wim Roelandts remains Chairman of the Board.

New Technology

Two brilliant engineers and a marketing guru working in Silicon Valley in 1984 had a
0.1:eaTI\.. '\se-cn'\.e 'J cmc.er,,e,\\xn'\.\._, Ras,, ~1:eeTI\an, anıl Y\TI\ ~'ô.TI\e\.\. ö.1:e"ö.TI\e.Ö. 01. ,;ı,\..'ô.rt\.\\.'6 'ô.

different kind of company.

96

Bernie Vonderschmitt, Xilinx co

founder, pioneered the

revolutionary concept of a fabless

semiconductor.

They wanted to create a company that would develop and launch state-of-the-art

technology in an entirely new field. And they wanted to lead it in such a way that the

people who worked there loved their jobs, enjoyed working together, and were

fascinated with their work.

The technology that propelled Xilinx into being was considered an off-the-wall

concept in 1984. Invented by Xilinx co-founder Ross Freeman, the new semiconductor,

now known as the field programmable gate array, was a completely new form of

programmable logic. ı;

These chips could be personalized by customers to perform a variety of functions by...
programming them with the help of software. "The concept," says Xilinx Fellow Bill

Carter, who was the eighth employee to be hired in the new company in 1984, "required

lots of transistors and, at that time, transistors were considered extremely precious.

People thought that Ross's idea was pretty far out."

97

Ross Freeman, Xilinx co-founder,

invented the "field programmable

gate array" (FPGA), a new form of

programmable logic.

Ross postulated that transistors, because of Moore's Law (the doubling of transistor

density every 18 months) would be getting less expensive and, therefore, less precious

every year. In the years to come, a multi-billion dollar market for field programmable

gate arrays (FPGAs) emerged, creating the foundation for the successful enterprise that

Xilinx is today. Sadly, Ross Freeman passed away in 1989. The technology he invented

is thriving and continues to delight more and more customers in an ever-widening

breadth of industries.

11.2.EFFECTIVE PARTNERSHIPS

Bernie Vonderschmitt, an engineer and an MBA graduate, came up with a powerful

business model for the young company. When he was General Manager of the Solid

State Division of RCA, he became convinced, working at the time with three in-house

foundries making semiconductors, that semiconductor factories (or fabs) were

expensive and burdensome. "If I ever start a semiconductor company, it will be fabless,"

he vowed. "We'll find partners who can do our manufacturing for us."

And that is exactly what Xilinx did in 1984. Since then, the idea has become so

compelling and popular that today there are approximately 700 fabless semiconductor
companies around the world.

However, the three founders wanted to not only revolutionize technology but the way

companies are managed as well. Ross Freeman put it best. He hoped to start a company

that had solid, ethical values, invited employee loyalty, made a good and useful product,

helped make employees feel like owners, and encouraged people to enjoy their work.

The co-founders called this set of values and people objectives their "philosophy" and

looked for employees who felt comfortable in this environment. And their theory -

which has proven correct - was that if you created this kind of community atmosphere

for clever and inventive people, they would stay, keeping their innovation and expertise
in the company.

These original values regarding the treatment of employees and the way they interact

with each other provided the basis for how Xilinx operates today. They help make
Xilinx a great place to work.

98

And the technology that the three men introduced to the world is more popular than

ever. It has become pervasive and mainstream, thanks to the technology and cost

benefits that have come about because of Moore's Law.

The dream that Bernie, Ross, and Jim talked about in 1984 is a reality today, proving
that dreams do come true.

11.3.BUSINESS OF XILINX

There are three types of electronic devices: memory, processors, and logic. Memory

devices store random information (contents of a spreadsheet or database); processors

execute software instructions to perform a wide variety of tasks (running a data

processing program or video game); and logic provides specific functions

(communications between devices, and every other function a system must perform).

There are two categories of logic devices: fixed or custom, and programmable or
changeable. We are in the programmable logic business.

Xilinx leads the Programmable Logic Device (PLD) market - one of the fastest

growing segments of the semiconductor industry. This market features a revolutionary

technology called the field programmable gate array (FPGA) that our company
pioneered in 1984.

Xilinx is the world's leading supplier of programmable logic solutions. We supply

customers with "off-the-shelf" logic devices that customers can program to perform
specific functions using the development tools we provide.

~

This programmability provides a revolutionary alternative to fixed or custom logic
...

devices that typically require many months to design, test, and manufacture. Xilinx

customers enjoy the benefit of faster time-to-market and increased product design
flexibility as a result.

Our company's business is drawn from a variety of industry segments. In recent years,

a large portion of our revenues came from the communications marketplace. However,

we have become increasingly more diversified to include the consumer, industrial, and
automotive sectors.

99

You can find Xilinx chips in a wide variety of digital electronic applications ranging

from wireless base stations to HDTV to portable handsets.

Our extensive product line includes silicon solutions like the Virtex™ series FPGAs

(high performance FPGAs for networking, communications, and video/imaging

applications); Spartan™ FPGAs (ideal for high volume applications); and

CoolRunner™ CPLD families (Complex Programmable Logic Devices that offer ultra

low cost and low power). We also offer a powerful suite of high performance software

design tools.

Xilinx has over 21,000 customers around the globe, including Alcatel, Cisco Systems,

EMC, Ericsson, Fujitsu, Hewlett-Packard, IBM, Lucent Technologies, and Motorola.

Most of our sales are handled by outside partners: both large distributors and

independent sales representatives.

The company has a very flexible business model that has contributed to our success as

an employer and a competitor. We are a "fabless" supplier and do not manufacture our

logic devices. Instead, we have formed close strategic alliances with chip manufacturers

like UMC and Toshiba. This strategy, along with outsourcing most of sales, allows us to

focus more of our energies on R&D, marketing and technical support. The resulting

flexibility gives us the ability to rearrange business priorities quickly as we respond to

the cyclical nature of the semiconductor market. It also has made it easier for the

company to avoid layoffs in periods of downturn.

What essentially defines Xilinx is vision. Our long-term business goal is to put a PLD

in every piece of electronic equipment within the next 1 O years. Our long-term

management goal is to create a company that sets the standard for managing high

technology companies. While these are ambitious undertakings, at Xilinx, visions have

a way of turning into reality.

11.4.SUCCESS OF XILINX

While the rest of the industry continues the practices of layoffs and shaking-off

excessive inventory, Xilinx is busy innovating, collaborating, and introducing new

products to market. Unlike many of our counterparts, Xilinx views downturns as an

100 -

opportunity to focus on research and development, streamline operations, and deliver
new products that change the FPGA landscape.

For the past few years, Xilinx has asserted a considerable market leadership position.

We secured over 50% of the PLD market share: larger than all other public PLD

companies combined. By creatively avoiding layoffs and empowering employees, we

rose to become the fourth best company to work for in America (Forbes magazine).

Through the power of innovation and partnerships, Xilinx takes the FPGA-based

value chain to a new level. By teaming with technology leaders in silicon fabrication,

design automation, system level tools, IP, and design services, we deliver a complete

value chain and strengthen our position as a strategic partner for our customers.

Delivering this complete value chain enables the fastest innovation while reducing total

development and system costs for our customers. It also reduces time to market and

increases time in market for our customer's products.

In March 2002, through partnering with industry leaders IBM, WindRiver Systems,

and Conexant, Xilinx delivered the Virtex™-II Pro programmable system solution. The

solution was the first of its kind and is the most flexible tool ever invented for a

designer. The Virtex-II Pro FPGA includes programmable logic fabric with high-speed

embedded PowerPC processors and integrated 3 .125 gigabit RocketIO™ serial

transceivers supported by leading design tools. Recent additions to the family and lower

price points have now made the Virtex-II Pro solution the de-facto standard for all
programmable logic users.

The Virtex-Il Pro solution responds to the issues facing design teams and their
ll

corporations. By delivering both high-performance processing and high bandwidth

connectivity on a single device, many design challenges associated with integration,

high-speed interfacing, high performance processing, and new design methodologies are

effectively solved. The rapid rate of change in technology and standards demands a

solution that is completely flexible and reduces inventory risks and NRE costs - the
Virtex-II Pro solution delivers.

Xilinx is a company built on delivering maximum customer value and ongoing

innovation throughout all of our product lines. Xilinx recently revamped all of its

products from the new SpartanTM_IIEcost-optimized FPGA solution to the

101

CoolRunner™-II RealDigital CPLD solution, the Virtex-II Pro platform for

programmable systems, and the Virtex-Il EasyPath solution for cost management. We

also introduced the world's fastest and most productive software tool suite with our iSE

4.2i software release, numerous intellectual property cores, and the technical training

necessary to decrease time-to-knowledge for the rapid assimilation of this new

technology. We continue to focus on raising the bar by adding more value in every

category of the value chain.

Through the years, Xilinx has evolved into a solutions company rather than remaining

just a chip company. We can only be better tomorrow than we are today by working

closely with our customers and anticipating their needs. Xilinx's job is to continue to

expand our capabilities and our partnerships, so we can continue to be a strategic

partner for our client companies.

Xilinx is an innovation engine and our employees are the keys to our innovation. Such

innovation requires personnel policies that allow employees to make their own

decisions and take risks. Our company values and corporate culture promote teamwork

and very open communication. We know that keeping employees satisfied leads directly

to innovation, customer satisfaction, and ultimately, increased profits. Our employees

are inspired and know they make a real difference.

This unique work environment has resulted in breakthrough technology, marketing

and community achievements. For example, Xilinx continues to support local schools

through our Stock for Students program and made a $ 1 million donation to the

American Red Cross. Also, Xilinx wasıo.the first semiconductor company to simulcast

training in North America and Europe through industry events like Programmable

World 2002.

With a combination of innovative products, world-class partners, inspired employees

and the recognition of the balance between business and community, our clients have

taken Xilinx solutions, management, and employees to heart. This is a reminder that

good people ultimately do come in first when they are inspired and empowered to be

leaders

102

11.5.V ALUES OF XILINX

Our values have helped set the character of our company. They are more than a set of

lofty ideals put down on paper and left to yellow in conference rooms. Values are very

much alive and well in Xilinx. We don't just talk about them, we try and live them every
day.

Our values also provide the backdrop for the dialogue we have with colleagues. They

help us make business decisions. They provide the framework for interacting with each

other. What's especially impressive about our values is that they are accepted and

acceptable around the world. The practices may be different in different places, but the
values are relevant everywhere.

While a whirlwind of business change constantly surrounds us - and we accept change

as the reality of today's high-tech industry - it's important to know that the values we

depend upon are constant and unchanging. They are, in a very real sense, our permanent
anchors.

The set of values we believe in started with our company's founders. The three men

who followed their dream of starting a new enterprise were just as concerned about the

work environment as they were about the new, innovative technology they were

pioneering. Respect for the dignity of the individual was the cornerstone of the

philosophy upon which Xilinx was founded.

In 1996, our company started a grassroots process to articulate our values. We looked

very carefully at our business and made certain the values were connected with what

would move us forward and foster our growth in the marketplace. Most importantly, we

wanted to capture in words what we liked so much about working at Xilinx and the
ideals our founders had set in motion.

The result was a description of the the eight Xilinx CREATIVE values.

Customer Focused

Respect

103

Excellence

Accountability

Teamwork

Integrity

Very Open Communication

Enjoying Our Work

It was the creativity of the founders and their innovative ideas that launched a new

category of products for customers around the world. And it is the creativity of our
products and patents that has propelled us to market leadership.

At Xilinx, we believe that making decisions based on our values translates directly to

the bottom line, helps us be more successful in our business, and brings us closer to

realizing our company vision of setting a new standard for managing a high-tech

company. Customers are eager to do business with a company whose values are as
excellent as their products.

Another way the values are kept alive is through a variety of appreciation programs.

The most popular one is the Values Medallion award. Employees nominate someone

who has exhibited a teamwork value, and, each quarter, several winners are randomly

selected from the nominees. These individuals are awarded 10 shares of stock and
receive public recognition from Wim.

How do we "enforce" the values? We don't. We leave it up to each individual to act in
accordance with them. The values are there to direct our actions, to guide us

••professionally and personally, and to inspire us in the worst and the best of times.

104

CONCLUSION

We are seeing the stopwatch design is working correctly.

At the begining reset is 1 the program is waiting 100 ns and reset become

O.After that startstop waits 600 ns and becomes O then tenths counter which is binary

counter starting the count and when it is reached the ten sixty counter starts the count.

Sixty counter has lsb and msb counter.The lsb starting count and is count up to

nine then msb is increases one.Every time msb increases one when lsb is reached the
nıne.

105

REFERENCES

• http://www.members.shaw.ca/kadirm/VHDL Course notes.hım

• http://www.xilinx.com!products/silicon solutions!ÜJgas/virtexlvirtex ii pro fvg
as/capabilities/index.htm

• http://www.xilinx.com/company/index.htm

• Documents in xilinx9. l i

106

