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ABSTRACT 

In same technological processes are characterized by unpredictable and hand

formulized factors, uncertainty and fuzziness of information. In this situation

deterministic models is not enough adequately describe those processes and at the

results control on their base begin difficult. In these conditions it is advisable to use

fuzzy technology, which provide independency of the model to disturbance and

adequacy of the model.
The aim of this project is identification of fuzzy model of technological process

to solve this problem the state of application problem of fuzzy technology for

identification of technological process is considered the methods which are use for

identification problem are analyzed, the description of Least Squares Method and

recursive least squares method, and to finding parameter of unknown system are

described.
Also the description of Gradient Method its algorithm and application of TS

system are considered parameters ofupdating formulas are presented.

Applicationof ClusteringMethod to identificationproblem is given.

Using above described algorithm, the identification of standard fuzzy system,

TS fuzzy systems are given.
The application of fuzzy (LMS) method for modeling of fuzzy system ıs

perform.
The implemental analysis and obtain result demonstrate the efficiency of

application fuzzy technology for identificationof system.
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INTRODUCTION 

Fuzzy identification is an effective tool for the approximation of uncertain

nonlinear systems on the basis of measured data. Data-driven identification techniques

alone, however, sometimes yield unrealistic models in terms of steady-state

characteristics, local linear behavior or physically impossible parameter values. This is

typically due to insufficient information content of the identification data and due to

over-parameterization of the models.
The Takagi-Sugeno (TS) fuzzy model is often used to represent nonlinear

dynamic systems, by interpolating between local linear, time-invariant (LTI) ARX

models. The TS fuzzy model is over-parameterized and when data-driven identification

is used, the model can exhibit regimes, which are not found in the original system

(Babuska, 1998). It is demonstrated in this paper that this problem can be remedied by

incorporating prior knowledge into the identificationmethod.
Recently, combinations of a priori knowledge with black-box modeling

techniques have been gaining considerable interest. Two different approaches can be

distinguished: gray-box modeling and semi-mechanistic modeling. In gray-box

modeling, a priori information enters a black-box model, for instance, as constraints on

the model parameters or variables, smoothness of the system behavior, or open-loop

stability [18]. One can also start with deriving a model based on first principles and

include black-box elements as parts of the white-box model. This approach is usually

denoted as hybrid-modelingor semi-physicalmodeling [19].
In chapter [1] the state of application problems of fuzzy systems for

identificationof technological processes is considered.
In chapter [2] batch and recursive least squares methods for constructing a linear

system to match some input-output data. Following this, we explain how these methods

can be directly used for training fuzzy systems. We begin by discussing squares

methods, as they are simple to understand and have clear connections to conventional

estimation methods. We also present them first since they provide for the training of

only certain parameters of a fuzzy system (e.g., the output membership function

centers). Later, we will provide methods that can be used to tune al the fuzzy system's

parameters.
And in chapter [3] show how gradient methods can be used to train a standard a

Takagi-Sugeno fuzzy system. These methods are quite similarto the ones to train neural
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network (e.g., the "back propagation techniques"). We provide examples for standard a

Takagi-Sugeno fuzzy system. We highlight the fact that via either the recursive least

squares method for fuzzy systems or the gradient method we can perform on-line

parameter estimation.
And in chapter [4] two techniques for training fuzzy system based on clustering.

The first uses "c-means clustering" and least squares to train the premises and con­

sequents, respectively, of the Takagi-Sugeno fuzzy systems; while the second uses a

nearest neighborhood technique to train standard fuzzy systems.

And in chapter [5] the analysis of complex systems, identification models. The

TS type identification, fuzzy system modelings are described.

In conclusion the obtained important results and contribution is presented.
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CHAPTER ONE 

STATE OF APPLICATION PROBLEMS OF FUZZY 
TECHNOLOGY FOR IDENTIFICATION OF TECHOLOGICAL 

PROCESSES 

'The closer one looks at a "real" world problem, the fuzzier becomes its

solution. Stated informally, the essence of this principle is that, as the complexity of a

system increases, our ability to make precise and yet significant statements about its

behaviour diminishes until a threshold beyond which precision and significance

(relevance) become almost mutually exclusive characteristics.' (L. Zadeh)

This throws light on the place of fuzziness in the models we wish to construct.

The form of uncertainly handled by fuzzy models stems from the overall perception

process of the system, and is caused by the complexity and level of knowledge of the

system. In [16], the notation of the fuzzy system (model) is introduced, its motivation

being as above. As argued in [13] and [14], fuzzy models are appropriate where goals

and constraints, as well as the physical mechanisms present, are significant does not

require from the model-builder (who may not possess the strict mathematical formulas

of the process) a deep formal insight. But he usually has good intuition and a mature

experience of the system.
Fuzzy set theory was found to be a very effective mathematical tool for dealing

with the modeling and control aspects of complex industrial and not industrial processes

as an alternative to other much more sophisticated mathematical models. Further, the

latter circumstance led to the appearance at the beginning of the 1970's of fuzzy logic

computer controllers which became a powerfully tool for coping with the complexity

and uncertainty with which we are faced in many real-world problems of industrial

process control. The first investigations in this field had to answer the question: Is it

possible to realize a process controller which deals like a man with the involved

linguistic information? The results of these inquires led to the design of the first fuzzy

control systems which implemented in hardware and software a linguistic control

algorithm. A control engineer on the base of the interviews then formulated such a

control algorithm with human experts who currently work as process operators. The

most simple fuzzy feedback control systems contain a fuzzy logic controller (FLC) in

the form of a Table of linguistic rules, or fuzzy relation matrix and input-output

interfaces.
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Fuzzy logic has been successfully applied to many of industrial spheres, in

robotics, in complex decision-making and diagnostic system, for data compression, in

TV and others. Fuzzy sets can be used as a universal approximator, which is very

important for modeling unknown objects.

There are number of examples about application of fuzzy logic to the modeling

of different technological processes.
In [17] the development of a gray-box modeling approach for data-driven

identification of dynamic Takagi-Sugeno (TS) fuzzy models is considered. The main

idea is to constrain the candidate model parameters of the rules in the TS fuzzy model.

Knowledge about the process such stability, minimal or maximal gains, or the settling

time are translated into inequality constraints on the parameters. The fuzzy model then

can be identified from input-output data by quadratic programming.

The proposed approach is applied to a laboratory liquid level process. A fuzzy

model is first obtained from input-output measurements by using the proposed

identification technique. The model is then used in model-based predictive control.

Real-time control results show that when the gray-box identification algorithm is used,

not only physically justified model is obtained, but also the performance of the model­

based controller is improved with regard to the case where no prior knowledge is used.

In [20] a simplified incremental type of cause-effect models for additive MISO

type dynamical processes is proposed and analyzed in this book. Dynamics of the

process is expressed by three groups of parameters: gains, memory lengths and shapes

of the specially introduced cause-effect relations membership functions. These

functions represent in a fuzzy manner the degree of relationship between the past time

changes of the respective input and the current change of the process output. The total

model of the dynamical system in this book is identified from experimental data by

different modifications of the Least Mean Squares algorithm for each group of

parameters separately. The specially introduced indirect LMS algorithm is able to

reduce significantly the size of the problem by identifying one-dimensional fuzzy model

that represents indirectly the cause-effect relation for the dynamics. Several simulation

examples are given as illustration and a brief analysis of the merits of the proposed

algorithms for simulation and identification of real dynamical systems is made.

In [21] a study is described for several approaches to the identification of models

for the temperature within the melter portion of a glass furnace. The focus is on

developing models from the gas input to the throat (melter outlet) temperature.
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Conventional linear techniques for system identification proved too useful as base-line

comparisons for further studies involving nonlinear techniques from intelligent control

for model building. Various combinations of input and output variables in a variety of

model structure using fuzzy and neuro-fuzzy system modeling approaches are

developed, and comparisons are drawn. Approaches reported on here investigate

nonlinear Takagi-Sugeno (TS) fuzzy model formulations, where a linear-in-the­

parameter identification problem is formulated for various combinations of measured

variables and system delays. A fuzzy-neuro formulation is then discussed for parameter

selection in the TS model structure while simultaneously optimizing the membership

functions associated with the input of the TS fuzzy system. Simulation results for data

collected from an operating glass furnace process are presented.
In [22] two different methods of fuzzy identification of a class of nonlinear

systems are discussed in this book. This is applicable to systems with unknown and

partially known mathematical models. The classes of systems considered are nonlinear

in output but linear in input. In the first method, a gray box model is considered. The

nominal values of parameters of the nonlinear system are assumed to be known. The

unknown nonlinear function is identified off-line by choosing a suitable fuzzy relational

model and the parameters of the nonlinear system are updated on-line using recursive

least squares (RLS) algorithm. In the second method, a block box model is considered.

The nonlinear plant is identified on-line by choosing a suitable linear model using RLS

in stage-1 and the residual nonlinear part is identified in stage-2 using fuzzy

identification. The control input is then calculated based on the identified nonlinear

model using weighted one step a head control method.
In [23] the problem of identifyingthe parameters of the constituent local linear

models of Takagi-Sugeno fuzzy models is considered. In order to address the tradeoff

between global model accuracy and interpretability of the local models as linearizations

of a nonlinear system, two multi-objective identification algorithms are studied.

Particular attention is paid to the analysis of conflicts between objectives, and we show

that such information can be easily computed from the solution of the multi-objective

optimization.. This information is useful to diagnose the model and tune the

weighting/priorities of the multi-objective optimization. Moreover, the result of the

conflict analysis can be used as a constructive tool to modify the fuzzy model structure

(including membership functions) in order to meet the multiple objectives. The methods

are illustrated on an experimental lungs respiration application
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In [24] approach for system identification among many others is the fuzzy

identification approach. The advantage of this approach compared to the other

analytical approaches is, that it is not necessary to make an assumption for the model to

be used for the identification. In addition, the fuzzy approach can handle nonlinearities

easier than analytical approaches. The Fuzzy-ROSA method is a method for databased

generation of fuzzy rules. This is the first step of a two-step identification process. The

second step is the optimization of the remaining free parameters, i.e., the composition of

the rule base and the linguistic terms, to further improve the quality of the model and

obtain small interpretable rule bases. In this book, a new evolutionary strategy for the

optimization of the linguistic terms of the output variable is presented. The effectiveness

of the two-step fuzzy identification is demonstrated on the benchmark problem 'Kin

dataset' of the Delve dataset repository and the results are compared to analytical and

neural network approaches.
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CHAPTER TWO 

LEAST SQUARES METHODS (LMS) 

Many applications exist in the control and signal processing areas that may

utilize nonlinear function approximation. One such application is system identification,

which is the process of constructing a mathematical model of a dynamic system using

experimental data from that system. Let g denote the physical system that we wish to

identify. The training set G is defined by the experimental input-output data.

In linear system identification, a model is often used where
q p

y(k) = Iea;y(k-i) +ı/\u(k-i)
-

i=l i=l

and u(k) and y(k) are the system input and output at time k ~O. Notice that will need to

specify appropriate initial conditions. In this case f(x I B), which is not a fuzzy system,

is defined by

where
x(k) = [y(k-l),··,y(k-q),u(k),··,u(k- p)]T

Let N = q + p + 1 so that x(k) and B are N x 1 vectors. Linear system identification

amounts to adjusting B using information from G so that g(x) = f(x I B) + e(x) where

e(x) is small for all x EX.
Similar to conventional linear system identification, for fuzzy identification we

will utilize an appropriately defined "regression vector" x, and we will tune a fuzzy

system f(x \ B) so that e(x) is small. Our hope is that since the fuzzy system f(x \ B)

has more functional capabilities than the linear map, we will be able to achieve more

accurate identification for nonlinear systems by appropriate adjustment of its parameters

B of the fuzzy system.
Next, consider how to view the construction of a parameter (or state) estimator

as a function approximation problem. To do this, suppose for the sake of illustration that

we seek to construct an estimator for a single parameter in a system g. Suppose further

that we conduct a set of experiments with the system g in which we vary a parameter in

the system say a. For instance, suppose we know that the parameter a lies in the range
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[amin ,amax] but we do not know it lies and hence we would like to estimate it. Generate

a data set G with data pairs (xi, a i) E G where the a i are a range of values over the

interval [amin ,amax] and the xi corresponding to each a' is a set of input-output data

from the system g that results from using a, as the parameter value in g. Let a denote

the fuzzy system estimate of a. Now, if we construct a function a= f (x I B) from the

data in G, it will serves as an estimator for the parameter a. Each time a new x vectors is

encountered, the estimatorfwill interpolate between the know associations (xi ,ai) E G

to produce the estimate a . Clearly, if the data set G is "rich" enough, it will have

enough (xi ,ai) pairs so that when the estimator is presented with an x =t:- xi, it will

have a good idea of what a to specify because it will have many xi that are close to x

that it does know how to specify a for. We will study several applications of parameter

estimation.
To apply function approximation to the problem pf how to construct a predictor

for a parameter (or sate variable) in a system, we can proceed in a similar manner to

how we did for the parameter estimation case above. The only significant difference lies

in how to specify the data set G. In the case of prediction, suppose that we wish to

estimate a parameter a (k+D), D times steps into the future. In this case we will need to

have available training data pairs (xi .a' (k + D)) E G that associate known future

values of a with available data xi . A fuzzy system constructed from such data will

provide a predicated value a (k+D) = f(x I B) for given values ofx.

Overall, notice that in each case-identification, estimation, and prediction we

rely on the existence of the data set G from which to construct the fuzzy system.

2.1 Batch Least Squares 
We will introduce the batch least squares method to train fuzzy systems by first

discussing the solution of the linear system identification problem. Let g denote the

physical system that we wish to identify. The training set G is defined by the

experimental input-output data that is generated from this system. In linear system

identification, we can used model
-q p

y(k) = Iea;y(k-i) + Ieb;u(k-i)
i=l i=Ü

8



CHAPTER TWO 

LEAST SQUARES METHODS (LMS) 

2.1 Batch Least Squares 
We will introduce the batch least squares method to train fuzzy systems by first

discussing the solution of the linear system identification problem. Let g denote the

physical system that we wish to identify. The training set G is defined by the

experimental input-output data that is generated from this system. In linear system

identification,we can used model
- -
q p

y(k)= LBa;y(k-i)+ LBb;u(k-i)
i=l i=O

where u(k) and y(k) are the system input and output at time k. in this case f(x/B),

which is not a fuzzy system, is defined by

J(x/B) = BTx(k) (2.1)

where we recall that

x(k) = [y(k-1), ... , y(k- q),u(k), ... , u(k - p)f
and

B = [Ba , ... ,ea- ,eb , ...,eb--f
I q I p 

We have N = q + p + 1 so that x(k) and B are N x 1 vectors, and often x(k) is called the

"regression vectors".
Recall that system identification amounts to adjusting B using from G so that

f(x/B) ~ g(x) for all x EX. Often, to form G linear system identification we choose

x; = x(i), / = y(i), and let G = { (x', /) : i = 1,2,... , M}. To do this you will need

appropriate initialconditions.

2.1.1 Batch Least Squares Derivation 
In the batch least squares method we define

Y(M) = [/, y2 , ••• , YM f
to be an M x 1 vector of output data where the /, i = 1,2,... , M come from G(i.e.,/

such that (x', /) E G) . We let
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(xıf

<I>(M) = ı (x2)r

be an M x N matrix that consists of the xi data vectors stacked into a matrix (i.e., the

xi such that (x', /) E G) . Let

so that
E=Y-<l>B

Choose

to be a measure of how good the approximation is for all the data for a given B. We

want to pick B to minimize V(B). Notice that V(B) is convex in B so that a local

minimum is a global minimum.
Now, using basic ideas from calculus, if we take the partial ofV with respect to

"B and set it equal to zero, we get an equation for (), the best estimate (in the least

squares sense) of the unknown B. Another approach to deriving is to notice that

2V = Er E = yry _ yr <l>B-Br <l>rY + Br <l>r <l>B

Then, we "complete the square" by assuming that <I>r <I> is invertible and letting

2V = yry -Yr <l>B-Br <l>rY + Br <l>r <I>B

+ yr <I>( <I>r <I> )-1 <I>r y _ yr <I>( <I>r <I> )-1 <I>r y

(where we are simply adding and subtracting the same terms at the end of the equation).

Hence,

2V = yr (1- <I>(<I> T <I>)-ı <I>r )Y + (B _ (<I> r <I>)-ı <I>r Y) r <l>T <I>(B _ (<I>r <I> )-t <l>T Y)

The first term in this equation is independent of B , so we cannot reduce V via

this term, so it can be ignored. Hence, to get the smallest value of V, we choose B so

that the second term is zero. We will denote the value of B that achieves the

"minimization of V by (), and we notice that

ô = (<l>T<l>)-l<l>TY (2.2)

since the smallest we can make the last term in the above equation is zero. This is the
"

equation for batch least squares that shows we can directly compute the least estimate ()

8



from the "batch" of data that is loaded into <l> and Y. If we pick the inputs to the system

so that it is "sufficiently excited", then we will be guaranteed that <l>T <l> is invertible; if
-

the data come from a linear plant with known q and p , then for sufficientlylarge M we

will achieveperfect estimation of the plant parameters.

In "weighted" batch least squares we use

(2.3)

where, for example, W is an M x M diagonal matrix with its diagonal elements w; > O

for i = 1,2,... ,M and its off-diagonal elements equal to zero. These w; can be used to

weight the importance of certain elements of G more than others. For example, we may

choose to have it put less emphasis on older data by choosing w1 < w2 < ... < wM when

x2 is collected after x1 ,x3 is collected after x2, and so on. The resulting parameter

estimates can be shown to be given by
(2.4)

To show this, simply use Equation (2.3) and proceed with the derivation in the

same manner as above.

Example: Fitting a Line to Data 
As an example of how batch least squares can be used, suppose that we would

like to use this method to fit a line to a set of data. In this case our parameterized model

ıs
(2.5)

Notice that ifwe choose x2 = 1,yrepresents the equation for a line. Suppose that

the data that we would like to fit the line to is given by

Notice that to train the parameterized model in Equation (2.5) we have chosen

x; = I for i = 1,2,3 = M. We will use Equation (2.2) to compute the parameters for the

line that best fits the data (in the sense that it will minimize the sum of the squared

distances between the line and the data). To do this we let

9



and

Hence,

Ô - (\DT \D)-1\DTY-[[[: ~]Jl':J-[-\]
Hence, the line

1
y = Xı -3

best the first data in the least squares sense. We leave it to the reader to plot the data

points and this line on the same graph to see pictorially that it is indeed a good fit to the

data.
The same general approach works for larger data sets. The reader may want to

experiment with weighted batch least square to see how the weights w; affect the way

that the line will fit the data (making it more or less important that the data fit at certain

points).

2.2 Recursive Least Squares 
While the batch least squares approach has proven to be very successful for a

variety of applications, it is by its very nature a "batch" approach (i.e., all the data are

gathered, then processing is done). For small M we could clearly repeat the batch

calculation for increasingly more data as they are gathered, but the ..computations

became prohibitive due to the computation of the inverse of (l)r (!) and due to the fact

that the dimensions of <l> and Y depend on M. Next, we derive a recursive version of
~

the batch least squares method that will allow us to update our (} estimate each time we

get a new data pair, without using all the old data in the computation and without having

to compute the inverse of (l)r <l>.

10



Since we will be considering successively increasing the size of G, and we will

assume that we increase the size by one each time step, we let a time k=M and i be such

that O :o:; i :o:; k . Let the N x M matrix

(2.6)

and let Ô = (k -1) denote the least squares estimate based on k -1 data pairs( P(k) is

called the "covariance matrix"). Assume that <Dr <I> is nonsingular for all k. we have

p-1 (k) = <Dr <I>= L;=1x; (x;{ so we can pull the last term from the summation to get

k-1
p-ı(k)= Ix;(x;)r +xk(xk)T

i=I

and hence
r' (k) = P-1 (k-1) + xk (xk{

Now, using Equation (1.2) we have

(} = (<I>T <I>)-1 <I>TY

(2.7)

-P(k{t. 'y'J
(

k-1 )= P(k) frx; / + xk yk

(2.8)

Hence,
k-1

Ô(k-1) = P(k-l)Lx;i
i=l

and so
k-1

p-1ck-1)ô(k-1) = Ixii
i=I

Now, replacing r' (k -1) in this equation with the result in Equation (2.7), we get
k-1

(P-1(k)-x\xk)T)Ô(k-1) = Ix; i
i=I

Using the result from Equation (2.8), this gives us

Ô(k) = P(k)(P-1 (k)- xk (xk)T)Ô(k-1) + P(k)xk /

A k k TA k k= B(k -1)- P(k)x (x ) B(k -1) + P(k)x y

11



A k k kTA= ()(k -1 + P(k)x (y - (x ) O(k-1)). (2.9)

This provides a method to compute an estimate of the parameters Ô(k) at each

time step k from the past estimate Ô(k -1) and the latest data pair that we received,

(x", yk). Notice that (/ - (xk / Ô(k -1)) is the error in predicting yk using Ô(k -1).

,..
To update () in Equation (1.9) we need P(k), so we could use

P-1 (k) = r:' (k-1) + xk (xk/ (2.10)

But then we will have to compute an inverse of a matrix at each step (i.e., each

time we get another set of data). Clearly, this is not desirable for real-time

implementation, so we would like to avoid this. To do so, recall that the "matrix

inversion lemma" indicates that if A, C, and cc-I+ DA-I B) are nonsingular square

matrices, then A+BCD is invertibleA:
(A+ BCD)-1 =A-I-A-I B(C-1 + DA-I B)-1 DA-I

We will use this fact to remove the need to compute the inverse of P-1(k)that

comes from Equation (1.10) so that can be used in Equation (1.9) to update Ô. Notice

that
P(k) = c<1>T Ck)<1>Ck)r1

= (<l>T (k- l)<l>(k -1) + Xk (x" / rl
= (P-1(k -1) + x\xk )T rl

and that if we use the matrix inversion lemma with A= r ' (k-1),B = xk ,C =I, and

D = (xk / , we get

P(k) = P(k -1)- P(k - l)xk (I+ (xk )r P(k- l)xk r1 (xk / P(k-1) (2.11)

which together with
A A k k kTA
O(k) = O(k-1) + P(k)x (y - (x ) O(k-1)) (2.12)

(that was derived in Equation (1.9)) is called the "recursive least squares( RLS)

algorithm." Basically, the matrix inversion lemma turns a matrix inversion into the

inversionof a scalar (i.e., the term (I+ (xk/ P(k-l)xk)-1 is a scalar).
A

We need initialize the RLS algorithm (i.e., choose 0(0) and P(O)). One

approach
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to do this is to use 0(0) = O and P(O)= P0where P0 = a I for some large a > O . This is

the choice that is often used in practice. Other times, you may pick P(O)= P0but choose

B(O) to be the best guess that you have at what the parameter values are.

There is a ''weighted recursive least squares" (WRLS) algorithm also. Suppose

that the parameters of the physical system B vary slowly. In this case it may be

advantageous to choose

where O < l s 1 is called a "forgetting factor" since it gives the more recent data higher

weight in the organization (note that this performance index V could also be used to

derive weighted batch least squares). Using a similar approach to the above, you can

show that the equations for WRLS are given by
1 k k T k -I k TP(k) = -(1-P(k- l)x (Al+ (x ) P(k-l)x ) (x ) )P(k-1)
A,

~ ~ k k kT~
B(k) = B(k-1) + P(k)x (y -(x ) B(k-1))

(2.13)

(where when l = 1 we get standard RLS). This completes our description of the least

squares methods. Next, we will discuss how they can be used to train fuzzy system.

2.3 Example: Batch least Squares Training of Fuzzy Systems
As an example of how to train fuzzy systems with batch least squares, we will

consider how to tune the fuzzy system

; J2J
[

1 (X · -CJn _J -"'R bn. exp -- i
.i..Ji=I ı J=I 2 (}' j

f(x/0) = "'R rr exi-_!_(XJ ~ < J2 ı
.i...Ji=l J=I l 2 (}'J j

(however, other forms may be used equally effectively). Here, b, is the point in the

output space at which the output membership function for the th rule achieves a

maximum, c', is the point in the /h input universe of discourse where the membership

function for the ı" rule achieves a maximum, and <Y~ > O is the relative width of the

membership function for the i" input and the i'h rule. Clearly, we are using center-

13



average defuzzification and product for the premise and implication. Notice that the

outermost input membership functions do not saturate, as is the usual case in control.

G ={([~Jı}([!Js}([!],6)} (2.14)

We will tune f(x/0) to interpolate the data set G given in this Equation (2.14).

Choosing R=2 and noting that n=2, we have e = [bı,b2f and

X2
7 
6 
5 
4 
3
2
1 

J,I 

O 12345 57x, O 12345 67 
Figure 2.1 The training G generated from the function g.

~;(x)= n ( _!_(X1-<J2J
""'R n exp - ı
L.Ji~I 1~1 2 (}"j

(2.15)

Next, we must pick the input membership function parameters <, i=l,2, j=l,2.

One way to choose the input membership function parameters is to use the xi portions

of the first R data pairs in G. In particular, we could make the premise of the rule i have

unity certainty if xi ,(xi,/) E G, is input to the fuzzy system, i = 1,2, ... ,R, R ~ M.

For instance, if x1 =[0,2f =[x;,x;f and x2 =[2,4f =[x;,xif, we would

h I I QI 2 2 2 2 d2 2 4C oose c, = Xı = , Cı = , Cı = Xı = , an Cz = Xı = .

Another approach to picking the c', is simply to try to spread the membership

functions somewhat evenly over the input portion of the training data space. For

instance, consider the axes on the left of Figure 2.1 where the input portions of the

training data are shown in G. From inspection, a reasonable choice for the input

membership function centers could be c; = 1.5, c; = 3, c; = 3 , and ci = 5 since this will

14



place the peaks of the primes membership functions in between the input portions of the

training data pairs. In our examples, we will use this choice of the c', .

Next, we need to pick the spreads CY~. To do this we simply pick CY~ = 2 for

i = 1,2 , j= 1,2 as a guess that we hope will provide reasonable overlap between the

membership function. This completely specifies the ı;;(x) in Equation (2.15). Let

We have M=3 for G, so we find

0.1366]
0.4766
0.7827

and Y = [/ ,y2 ,y3f = [l,5,6f. We use the batch least squares formula in Equation

(2.2) to find iJ = [ 0.3646, 8.l 779f, and hence our fuzzy system is f (x/ Ô).

To test the fuzzy system,note-that at the training data

f(x1/(]) = 1.4320

ı ex 2 Iô) = 4 .0883

f (x ' /ô) = 6.4798

so that the trained fuzzy systems maps the training data reasonably (x3 = [3,6f). Next,

we test the fuzzy system at some points not in the training data set to see how it

interpolates. In particular, we find

ıcr1,2f Iô) = 1.8261

ın2.5,5f / ô) = 5.3981

/([4,7f /iJ) = 7.3673

These values seem like good interpolated values considering Figure (2.1), which

illustrates the data set G for this example.

2.4 Examples: Recursive Least Squares Training of Fuzzy Systems
Here, we illustrate the use of the RLS algorithm in Equation (2.13) for training a

fuzzy system to map the training data given in G in Equation (2.14). First, we replace

xk with ı;(xk) in Equation (2.13) to obtain
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P(k) = _!_(I - P(k- l)ı;(xk)(AI + (ı;(xk )f P(k - l)ı;(xk))-1 (ı;(xk))T P(k -1)
ıl

Ô(k) = Ô(k-1) + P(k)ı;(xk)(yk -(ı;(xk)/ Ô(k-1)) (2.15)

and we use this to compute the parameter vector of the fuzzy system. We will train the

same fuzzy system that we considered in the batch least squares example of the

previous section, and we pick the same c', and CY~, i = 1,2,j = 1,2 as we chose there so

that we have the same ı;(x) = [ı;ı,ı;2{.

For initializationof Equation (2.19),we choose

Ô(O) = [2,5.5f

as a guess of where the output membership function centers should be. Another guess

would be to choose Ô(O) = [O,Of. Next, using the guidelines for RLS initialization,we

choose
P(O) = aI

where a= 2000. We choose ıl = 1 since we do not want to discount old data, and hence

we use the standard (nonweighted) RLS.
Before using Equation (1.19) to find an estimate of the output membership

function centers, we need to decide in what order to have RLS process the training data

pairs (x', /) E G. For example, you could just take three steps with Equation (2.15),

one for each training don't air. Another approach would be to use each (x', /) E G N;

times (in some order) in Equation (2.19) then stop the algorithm. Still another approach

would be to cycle through all the data (i.e., (x1,y1)first, (x2,y2)second, up until

(xM, yM) then go back to (x", y1) and repeat), say, NRLS times. It is this last approach

that we will use and we will choose N RLS = 20.

After using Equation (2.19) to cycle through the data N RLS times, we get the last

estimate

[
0.3647]

Ô(N RLS.M) = 8.1778
(2.16)

and

[
0.0685 - 0.0429]

P(N RLS .M) = _ 0.0429 0.0851
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Notice that the values produced for the estimates in Equation (2.16) are very

close to the values we found with batch least squares-which we would expect since RLS

is derived from batch least squares. We can test the resulting fuzzy system in the same

way as we did for the one trained with batch least squares. Rather than showing the

results, we simply note that since ()(Ntus .M) produced by RLS is very similar to the

Ôproduced by batch least squares, the resulting fuzzy system is quite similar, so we get

very similarvalues for f (x/ Ô(Ntas .M)) as we did for the batch least squares case.
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CHAPTER THREE 

GRADIENT METHODS 

As in the previous sections, we seek to construct a fuzzy system f (x I (}) that can

appropriately interpolate to approximate the function g that is inherently in the training

data G. Here, how-ever, we use a gradient optimization method to try to pick the

parameters (} that perform the best approximation (i.e., make f (x I O) as close to g(x)

as possible). Unfortunately, while the gradient method tires to pick the best B, just as

for all the other method in this chapter, there are no guarantees that it will succeed in

achieving the best approximation. As compared to the least squares methods, it does,

however, provide a method to tune all the parameters of a fuzzy system. For instance, in

addition to tuning the output membership function centers, using this method we can

also tune the input membership function centers and spreads. Next, we derive the

gradient training algorithms for both standard fuzzy systems and Takagi-Sugeno fuzzy

systems that have only one output. In section 2.5 we extend this to the multi-input

multi-output case.

3.1 Training Standard Fuzzy Systems 
The fuzzy system used in this section utilizes singleton fuzzifıcation, Gaussian

input membership functions with centers c', and spreads CY~ , output membership

function centers b, , product for the premise and implication, and center-average

defuzzifıcation, and we take on the form

i )2J
[

1 (X · -CJn --=--J -""R bTI exp - - ;
L..i=J I j=J 2 (Y j

f(x/B) = "Ç""R rt exJ-_!_(XJ -/~ )2J
L..i=I J=I l 2 (YJ

(3.1)

Note that we use Gaussian-shaped input membership functions for the entire

input universe of discourse for all input and do not use ones that saturate at the

outermost endpoints as we often do in control .The procedure developed below works in

a similar fashion for other types of fuzzy system. Recall that c', denotes the center for

the i" rule on the j'h universe of discourse, b, denotes the center of the output
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membership function for the {h rule, and a', denotes the spread for the m" training data

pair (xm ,ym) E G. Let

1 [ ( m/ m 2em = - f X B) - y ]
2

In gradient methods, we seek to minimize em by choosing the parameters {} ,

which for our fuzzy system areb;,<, and rr~, i = 1,2,... ,R, j = 1,2, ... ,n (we will use

B(k) to denote these parameter's value at k). Another approach would be to minimizea

sum of such error values for a subset of the data in G or all the data in G; however, with

this approach computational requirements increase and algorithmperformance may not.

3.1.1 Output Membership Function Centers Update Law 
First, we consider how to adjust the b, to minimize em. We use an "update law"

(update formula).

where i = 1,2,... ,R and k ~ O is the index of the parameter update step. This is a

"gradient descent" approach to choosing the b, to minimize the quadratic function em

that quantifies the error between the current data pair (x", v") and the fuzzy system. If

em were quadratic in {} (which it is not), then this update method would move b, along

the negative gradient of the em error surface-that is, down the (we hope) bowl-shaped

error surface (think of the path you take skiing down a valley-the gradient descent

approach takes a route toward the bottom of the valley). The parameter ıl1 > O

characterizes the "step size".
It indicates how big a step to take down the em error surface. If ılı is chosen

small, then b, is adjusted very slowly. If ılı is chosen too big, convergence may come

faster but you risk it stepping over the minimum value of em (and possibly never

converging to a minimum). Some work has been done on adaptively picking the step

size. For example, if errors are decreasing rapidly, take big steps, but if errors are

decreasing slowly, take small steps. This approach attempts to speed convergence yet

avoid missinga minimum.
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Now, to simplify the b, update formula, notice that using the chain rule from

calculus

so

. )21m ın:exp(-t1 /'

8em = (f(xm /B)- ym) n ( 1 (x; -< )21
8b "R TI exp -- ,

ı L..Ji=I J=I 2 (J"J

For notational convenience let

µ;(xm ,k) = IT exp(-!_(x7 -<(k))2l
J=I 2 <J"~(k)

(3.2)

and let

Then we get

(3.3)

the update equation for the b., i = 1,2, ... , R, k ~ O .

The other parameters in B,<(k) and a~(k), will also be update with gradient

algorithm to try to minimize em , as we explain next.

3.1.2 Input Membership Function Centers Update Law 

To train the c', , we use

i ( ) i ( ) ôe;
CJ k+I =CJ k -Aı--;

ôc', lk

where J2 > O is the step size (see the comments above on how to choose this step size),

i = 1,2, ...,R,j = 1,2, ...,n, and k ~O. At time k using the chain rule,

aem =Em (k) 8f(xm /B(k)) 8µ;(xm ,k)
ôc', 8µ;(xm ,k) ôc',
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for i = l,2, ... ,R,j = 1,2,...,n, and k ~O. Now

Bf(xm /B(k)) _ t:1µ;(Xm ,k) ~;(k)-t;=1b;(k)µ;(xm ,k) ~1)

Bµ;(xm ,k) - t:ıµ;(xm ,k))

so that

Also,

Bµ;(xm,k)_ m (x7-<(k)J
B< -µ;(X ,k) (a-~(k))

so we have an update method for the <Ck) for all i = l,2, ... ,R,j = 1,2,...,n, and k ~O.

In particular, we have

for i = l,2, ... ,R,j = 1,2,... ,n, and k ~O.

3.1.3 Input Membership Function Spreads Update Law 

To update the a-/k) (spreads of the membership functions), we follow the same

procedure as above and use

i ( ) i Bern()} k + 1 = a-/k)-A-3--;
Ba-

1 lk

where 13 > O is the step size, i = l,2, ... ,R,j = 1,2,... .n , and k ~O. Using the chain rule,

we obtain

Be~ =Em (k) Bf(xm /~(k)) Bµ;(x~ ,k)
Ba-1 Bµ;(x ,k) Ba-1

We have

Bµ;(xm,k)_ m (x7-c~(k))2

B
; - µ;(x ,k) ( . )3

()} a-~(k)

so that
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o-j(k + I) - o-j(k)- .:t, Em (k) b, (k); f(x• //J(k)) µ,(x• ,k) {x7 -c; (k)}
Li;Jµ;(xm ,k) (a-~(k))

for i = 1,2,...,R,j = 1,2, ... ,n, and k ~O. This complete the definition of the gradient

(3.5)

training method for the standard fuzzy system, to summarize, the equation for updating

the parameters (} of the fuzzy system are Equation (3.3), (3.4), and (3.5).

Next, note that the gradient training method described above is for the case

where we have Gaussian-shaped input membership functions. The update formulas

would, of course, change if you were to choose other membership functions. For

instance, if you use triangular membership, the update formulas can be developed, but

in this case you will have to pay special attention to how to define the derivative at the

peak of the membershipfunction.
Finally, we would like to note that the gradient method could be used in either

an off-or on-line manner. In other words, it can be used off-line to train fuzzy system

identification, or it can be used on-line to train a fuzzy system to perform real-time

parameter estimation.

3.2 Implementation Issues and Example 
In this section we discuss several issues that you will encounter if you

implement a gradient approach to training fuzzy systems. Also, we provide an example

of how to train a standard fuzzy system.

3.2.1 Algorithm Design 
There are several issues to address in the design of the gradient algorithm for

training a fuzzy system. As always, the choice of the training data G is critical. Issues in

the choice of the training data, are relevant here. Next, note that you must pick the

number of inputs n to the fuzzy system to be trained and the number of rules R; the

method does not add rules, it just tunes existingones.

The choice of the initial estimate b;(O), c/0) , and a',(k) can be important.

ometimes picking the close to where they should be can help convergence. Notice, that

you should not pick bi = O for all i = 1,2, ... ,R or the algorithm for the bi will stay at

zero for all k ~ O. Your computer probably will not allow you to pick a', (O) = O since

you divide by this number in the algorithm. Also, you may need to make sure that in
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that in the algorithm a',(k) ~ a > O for some fixed scalar o so that the algorithm does

not tune the parameters of the fuzzy system so that the computer has to divide by zero

(to do this, just monitor the a',(k), and if there exists some k' where a', (k') < a ). Let

u~(k') = a ). Notice that for our choice of input membershipfunctions

R
LA(Xm ,k)-:/= Ü
i=l

so that we normallydo not have to worry about dividingby it in the algorithm.
Note that the above gradient algorithm is for one only data pair. That is, we

could run the gradient algorithm for along time (i.e., many values ofk) for only one data

pair to try to train the fuzzy system to match that data pair very well. Then we can go to

the next data pair in G, begin with the final computed values of b., c;, and a', from the

last data pair we considered as the initial values for this data pair, and run the gradient

algorithm for as many steps as we would like for that data pair- and so on.

Alternatively,we could cycle through the training data many times, taking one step with

the gradient algorithm for each data pair. It is difficult to know how many parameter

update steps should be made for each data pair and how to cycle through the data. It is

generally the case, however, that if you use some of the data much more frequently than

other data in G, then the trained fuzzy system will tend to be more accurate for that data

rather than the data that was not used as many times in training. Some like to cycle

through the data so that each data pair is visited the same number of times and use small

step sizes so that the updates will not be too large in any direction.

Clearly, you must be careful with the choices for the A;, i = 1,2,3 step sizes as

values for these that are too big can result in an unstable algorithm (i.e., B values can

oscillate or became unbounded), while values for these that are too small can result in

very slow convergence. The main problem, however, is that in the general case there are

no guarantees that the gradient algorithm will converge at all! Moreover, it can take a

signification amount of training data and long training times to achieve good result.

Generally, you can conduct some tests to see how well the fuzzy system is constructed

by comparing how it maps the data pairs to their actual values; however, even if this

comparison appears to indicate that the fuzzy system is mapping the data properly, there

are no guarantees that it will "generalize" (i.e., interpolate) for data not in the training

data set that it was trained with.
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To terminate the gradient algorithm, you could wait until all the parameters stop

moving or change very little over a series of update steps. This would indicate that the

parameters are not being updated so the gradients must be small so we must be at a

minimum of the em surface. Alternatively, we could wait-until the em or z; em does

not change over affixed number of steps. This would indicate that even if the parameter

values are changing, the values of em is not decreasing, so the algorithm has found a

minimum and it can be terminated.

Example 
As an example, consider the data set G in Equation (2.14): we will train the

parameters of the fuzzy system with R = 2 and n = 2. Choose 21 = 22 = 23 = 1. Choose

[c: (O)] = [OJ,[(]": (O)]= [o],b (O)= l
c~ (O) 2 a~ (O) O

1

and

[c12 (O)]= [2],[a; (O)] = [1],b O = Sc; (O) 4 a; (O) 1 2
( )

In this way the two rules will begin by perfectly mapping the first two data pairs

in G. The gradient algorithm has to tune the fuzzy system so that it will provide an

approximation to the third data pair in G, and in doing this it will tend to somewhat

degrade how well it represented the first two data pairs.

To train the fuzzy system, we- could repeatedly cycle through the data in G so

that the fuzzy system learns how to map the third data pair but does not forget how to

map the
first two. Here, for illustrative purpose, we will simply perform one iteration of the

algorithm for the bi parameters for the third data pair. That is, we use

m 3 [3] m 3 6X =X =
6

,y =y =

In this case we have

µ1 (x3 ,O)= 0.000003724

and

µ2 (x3 ,O) = 0.08208
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so that f(x3 /B(O))= 4.99977 and Em (O)= -1.000226. With this Equation (3.4), we

find that b1 (1) = 1.000045379and b2 (1) = 6.0022145. The calculations for the c',(1) and

a~(l) parameters, i=l,2, j=l,2, are made in a similar way, but using Equation (3.4) an

(3.5), respectively.

Even with only one computation step, we see that the output centers c', (1) ,

i=l,2, are moving to perform an interpolation that is more appropriate for the third data

point. To see the notice that b2 (1) = 6.0022145 where b2 (O)= 5.0 so that the output

center moved much closer to y3 = 6.

To further study how the gradient algorithm works, we recommend that you

write a computer program to implement the update formulas for this example. You may

need to tune the 1; and approach to cycling through the data. Then, using an

appropriate termination condition (see the discussion above), stop the algorithm and test

the quality of the interpolation by placing inputs into the fuzzy system and seeing if the

outputs are good interpolated values (e.g., compare them to Figure 2.1 ). In the next

section we will provide a more detailed example, but for the training of Takagi-Sugeno

fuzzy systems.

3.3 Training Takagi-Sugeno Fuzzy Systems
The Takagi-Sugeno fuzzy systemthat we train in this section takes an the form

f(x!B(k)) = L;=ıg~(x,k)µ;(x,k)
"Ii=lµ;(x,k)

where µ;(x,k) is defined in Equation (2.21) (of course, other definition are possible),

X = [xı,Xı,···,xnY' and

(note that we add the index k since we will update a;.J parameters).

3.3.1 Parameter Update Formulas
Following the same approach as in the previous section, we need to update the

a;_J parameters of the g;(x,k) functions and <and a~.Notice, however, that most of
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the work is done since ifin Equations (3.3) and (3-.4) we replace b;(k) with g;(xm ,k),

we get the update formulas for the c', and CJ'~ for the Takagi-Sugeno fuzzy system.

To update the a;_J we use

a (k + 1) = a (k) - 14 aem
I.} I.} ôa..

I.} lk

(3.6)

when 14 > O is the step size.Notice that

8em =Em (k) 8j(Xm /~(k)) 8g;(Xm ,k)
ôa., 8g;(X ,k) 8a;J

for all i = 1,2,... ,R, j = 1,2,... ,n (plusj = O) and

for all i = 1 ,2,... ,R. Also,

8g;(Xm,k) =l
aa;o(k)

and
8g;(x,k)

=X·
ôa (k) J

I.}

for allj = 1,2,... ,n and i = 1,2,.. ,R.
This gives the update formulas for all the parameters of the Takagi-Sugeno

fuzzy system. In the previous section we discussed issues in the choice of the step sizes

and initial parameter values, how to cycle through the training data in G, and some

convergence issues. All of this discussion is relevant to the training of Takagi-Sugeno

models. The training of more general functional fuzzy systems where the g; take on

more general forms proceeds in a similar manner. In fact, it is easy to develop the

update formulas for any functional fuzzy system such that

8g;(Xm ,k)
ôa (k)

I.}

can be determined analytically. Finally, we would note that Takagi-Sugeno or general

functional fuzzy systemscould be trained either off- or on-line.
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Example 
As an example, consider once again the data set Gin Equation (2.14). We will

train the Takagi-Sugeno fuzzy system with rules (R = 2) and n = 2 considered in

Equation (2.16). We will cycle through the data set G 40 times (similarto how we did in

the RLS example) to get the error between the fuzzy system output and the portions of

the training data to decrease to some smallvalue.

We use Equations (3.5), (3.3), and (3.4) to update the a;/k),<(k), and CY~(k)

values, respectively, for all i = 1,2,... ,R, j = 1,2,... ,n, and we choose CY from the

previous section to be O.Ol. For initializationwe pick 14 = 0.01,12 = 13 = l,a;.J(O) = 1,

and CY~ = 2 for all i and j, and c: (O) = 1 .5, c; (O) = 3, c{ (O) = 3 , and c; (O) = 5 . The step

sizes were tuned a bit to improve convergence, but could probably be further tuned to

improve it more. The a;_J (O) values are simply somewhat arbitrary guesses. The

CY;_J (O) values seem like reasonable spreads considering the training data. The

c',(O) values are the same ones used in the least squares example and seem like

reasonable guesses since they try to speared the premise membership function peaks

somewhat uniformlyover the input portions of the training data. It is possible that better

initial guess for the c', (O) and CY;.1 (O); in some ways this would make the guess for the

a;.J (O) more consistent with the other initialparameters.

By the time the algorithm terminates, the error between the fuzzy system output

and the output portions of the training data has reduced to less than 0.125 but is still

showing a decreasing oscillatory behavior. At algorithm termination (k = 119), the

consequent parameters are
a1,0(119) = 0.8740,a1,ı(l19) = 0.9998,a1•2(119) = 0.7309

a2,0(119) = 0.7642,a2,ı(l 19) = 0.3426,a2,2(119) = 0.7642

the input membershipfunction centers are

c: (119) = 2.1982,c{(119) = 2.6379

c; (119) = 4.2833,c; (119) = 4.7439

and their spreads are
(Yi (1 19) = o.7654,(Y; (119) = 2.6423

(Y; (119) = 1.2713,<:Yi (119) = 2.6636
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These parameters, which collectively we call (), specify that final Takagi­

Sugeno fuzzy system.
To test the Takagi-Sugeno fuzzy system, we use the training data and some

other cases. For the training data points we find

J(x1!B) = 1.4573

J(x2\B) = 4.8463

f(x3iB) = 6.0306

so that the trained fuzzy system maps the training data accurately. Next, we test the

fuzzy system at some points not in the training data set to see how it interpolates. In

particular, we find
/([1,2f IB) = 2.4339

/([2,5.5f IB) = 5.7117

J([4,7f IB) = 6.6997

These values seem like good interpolated values considering Figure 2.1, which

illustrates the data set G for this example.

3.4 Momentum Term and Step Size 
There is some evidence that convergence properties of the gradient method can

sometimes be improved via the addition of a "momentum term" to each of the update

laws in Equations (3.3), (3.4), and (3.5). For instance, we could modify Equation (3.3)

to

i = 1,2,... ,R where /J; is the gain on the momentum term. Similar changes can be made

to Equations (3.4) and (3.5). Generally,the momentumterm will help to keep

the updates moving in the right direction. It is a method that has found wide use in the

training of neural networks.
While for some applications a fixed step size 2 ; can be sufficient, there has

been some work done on adaptively picking the step size. For example, if errors are

decreasing rapidly, take big update steps, but if errors are decreasing slowly take small
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steps. Another option is to try adaptively picking the ,.ı ; step sizes so that they best

minimizethe error

For instance, for Equation (3.3) you could pick at time k the step size to be

~ such that

i[ı(x·ı{ıı(k): b,(k)-,ı; ~~ .} )- y• J ~ 
min _!__[f[xmı{(}(k) :b;(k)-A.1 aem })-ym]ı

-<, e[O)., I 2 ôbl k

(where A.1 > O is some scalar that is fixed a priori) so that the step size will optimize the

reduction of the error. Similar changes could be made to Equation (3.4) and (3.5). A

vector version of the statement of how to pick the optimal step size is given by

constraining all the components of B(k), not just the output centers as we do above.

The problem with this and batch is that it adds complexity to the update formulas since

at each step an optimizationproblem must be solved to find the step size.

3.5 Newton and Gauss-Newton Methods 
There are many gradient-type optimization techniques that can be used to pick

(} to minimize em. For instance, you could use Newton, quasi-Newton, Gauss-Newton,

or Levenberg-Marquardt methods. Each of these has certain advantages and

disadvantages and many deserve consideration for a particular application.
In this section we will develop vector rather than scalar parameter update laws

so we define B(k)=[B1(k),(}2(k), ... ,(}p(k)f to be a Pxl vector. Also, we provide this

development for n input, N output fuzzy system so that J(xmjB(k)) and ym are both

N x 1 vectors.
The basic form of the update using a gradient method to minimizethe function

(notice that we explicitly add the dependence of em(k)on B(k) by using this notation)

via the choice of B(k) is
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B(k + 1) = B(k) + }.,kd(k) (3.7)

where d(k) is the P x 1 descent direction, and }.,k is a (scalar) positive step size that can

depend on time k (not to be confused with the earlier notation for the step sizes). Here,

I 1
2 Tx = x x. For the descent function

(
aem (k/B(k)))2 d(k) < O

88(k)

and if
8em(k/B(k)) = O

88(k)

where "O" is a P x 1 vector of zeros, the method does not update 8(k) . Our update

formulas for the fuzzy system in Equations (3.3), (3.4), and (3.5) use

d(k) = - aem(k/B(k)) = - Ve (k/B(k))
8(}(k) m

(which is the gradient of em with respect O(k)) so they actually provide for a "steepest

descent" approach (of course, Equations (3.3), (3.4), and (3.5) are scalar update laws

each with its own step size, while Equation (3.7) is a vector update law with a single

step size). Unfortunately, this method can sometimes converge slowly, especially if it

gets on along, low slope surface.

Next, let

be the P x P "Hessian matrix", the elements ofwhich are the second partials of

em(k/B(k)) at O(k). In ''Newton's method" we choose

d(k) = -(V2em(k/B(k))-1Vem(k/B(k)) (3.8)

provided that V2em(k/O(k)) is appositive definite so that it is invertible. For a function

em (k/B(k)) that is quadratic in B(k), Newton's method provides

convergence in one step; for some other functions, it can converge very fast. The price

you pay for this convergence speed is computation of Equation (3.8) and the need to

verifythe existence of the inverse in that equation.
In "quasi-Newton methods" you try to avoid problems with existence and

computation of the inverse in Equation (3.8) by choosing

30



d(k) = -!!.(k)Vem(k/B(k))

where !!.(k) is a positive definite P x P matrix for all k ~ O and is sometimes chose to

approximate (v2em(k/B(k))t1 (e.g., in some cases by using only the diagonal elements

of ((v2em(k/B(k))t1 ). If fl(k) is chosen properly, for some applications much of the

convergence speed ofNewton's method that is used can be achieved.

Next, consider the Gauss-Newton method that is used to solve a least squares

problem such as finding B(k) to minimize

where

First, linearized Em (k/B(k)) around B(k) (i.e., use a truncated Taylor series

expansion) to get

~ m(B/B(k))=Em (k/B(k))+'vEm (k/B(k))T((}-(}(k))

Here,

V Em (k/B(k)) =['v Em, (k/B(k)), 'v Em2 (k/B(k)), ... , V EmN (kj(}(k))]

is a P x N matrix whose columns are gradient vectors

V Em, (k/B(k)) = av Em, (k/B(k))
BB(k)

i = 1,2, ... , N. Notice that

is the "Jacobian". Also note that the notation E m (B/B(k)) is used to emphasize the

dependence on both (}(k) and (} .

Next, minimize the norm of the linearized function Em (B/B(k)) by letting

1 ı- 2B(k + 1) = arg min- E m (B/B(k))I
(} 2

Hence, in the Gauss-Newton approach we updateB(k)to a value that will best

minimize a linear approximation to E m(B/B(k)). Notice that
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O(k + 1) = arg min_!_ [!Em (k/O(k))l2 + 2(()-(}(k))T (V Em (k/O(k)) Em (k/O(k))
8 2 

+((}-(}(k)fV Em (k/O(k))V Em (k/(}(k))T ((}-(}(k))]

= argmin_!_ [!Em (k/O(k))l2 + 2(0-0(k))T (V Em (k/O(k)) Em (k/O(k))
8 2 

+ (}TV Em (k/(}(k)) V Em (kj(}(k){ (}-2(}(kf V Em (k/O(k)) V Em (kj(}(k){ (}

+(}(kfV Em (kj(}(k))V Em (k/O(k){ (}(k)] (3.9)

perform this minimization, notice that we have a quadratic function so we find

ô[-] = V Em (kj(}(k)) V Em (kj(}(k)) + V Em (kj(}(k)) V Em (kj(}(k){ (}
ô(} 

-V Em (k/O(k))V Em (k/O(k){ (}(k) (3.10)

where [·] denotes the expression in Equation (3.9) in brackets multiplied by one hale.

Setting this equal to zero, we get the minimum achieved at o: where

V Em (k/O(k))V Em (k/O(k){ co· -O(k)) = -V Em (k/O(k){ V Em (k/O(k))

or, if V Em (k/B(k))V Em (k/O(k){ is a invertible,

o' -O(k) = -(V Em (k/B(k)) V Em (k/B(k){ )2 V Em (k/B(k)) Em (k/B(k))

Hence, the Gauss-Newton update formula is

(}(k + 1) = B(k)-(V Em (k/B(k)) V Em (k/O(k){ )2 V Em (k/B(k)) Em (k/B(k))

To avoid problems with computing the inverse, the method is often implemented

as

B(k + 1) = B(k)-2Jv Em (k/O(k)) V Em (k/O(k){ + r(k) tV Em (k/B(k)) Em (k/O(k))
where ılk is appositive step size that can change at each time k, and r(k) is a P x P

diagonal matrix such that

V Em (k/O(k))V Em (k/O(k){ +r(k)

is positive definite so that it is invertible. In the Levenberg-Marquardt method you

choose r(k) = al where a> O and I is the P x P identity matrix. Essentially, Gauss-

Newton iteration is an approximation to Newton iteration so it can provide for faster

convergence than, for instance, steepest descent, but not as fast as a pure Newton

method; however, computations are simplified. Note, however, that for each iteration of

the Gauss-Newton method (as it is started above) we must find the inverse of a P x P
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matrix; there are, however, methods in the optimization literature for copying with this

issues.

Using each of the above methods to train a fuzzy system is relatively

straightforward.

For instance, notice that many of the appropriate partial derivatives have already

been found when we developed the steepest descent approach to training.

33



CHAPTER FOUR 

CLUSTERING METHODS 

"Clustering" is the portioning of data into subset or groups based on similarities

between the data. Hence, we will introduce two methods to perform fuzzy clustering

where we seek to use fuzzy sets to define soft boundaries to separate data into groups.

The methods here are related to conventional ones that have been developed in the field

of pattern recognition. We begin with a fuzzy "c-means" technique coupled with least

squares to train Takagi-Sugeno fuzzy systems, and then we briefly study a nearest

neighborhood method for training standard fuzzy systems. In the c-means approach, we

continue in the spirit of the previous method in that we use optimization to pick the

clusters and, hence, the premise membership function parameters. The consequent

parameters are chosen using the weighted least squares approach developed earlier. The

nearest neighborhood approach also uses a type of optimization in the construction of

cluster centers and, hence, the fuzzy system.

4.1 Clustering with Optimal Output Predefuzzification 
In this section we will introduce the clustering with optimal output

predefuzzification approach to train Takagi-Sugeno fuzzy system. We do this via the

simpleexamplewe have used in previous sections.

4.1.1 Clustering for Specifying Rule Premises 
Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets or "

clusters" based- on similarities between the data and can be implemented using an

algorithm called fuzzy c-means. Fuzzy c-means is an iterative algorithm used to find

grades of membership AJ (scalars) and cluster centers }'.'.1 (vectors of dimension n x 1)

to minimizethe objective function
M R _ 2

J = I:~)µij)mlx'-il
i=I J=\

(4.1)

where m > 1 is a design parameter. Hence, Mis the number of input-output data pairs in

the training data set G, R is the number of clusters (number of rules) we wish to

calculate, x' for i = 1, ... ,M is the input portion of the input-output training data pairs,
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i = [v(, v~ ,···~ v: t for j = 1, ... ,R are the clusters centers, and Aı for i = 1, ... ,M and j

= l, ... ,R is the grade of membership of x' in the r cluster. Also, lxl = .Jxr x where x

is a vector. Intuitively, minimization of J results in cluster centers being· placed to

represent groups (clusters) of data.

Fuzzy clustering will be used to form the premise portion of the If-Then rules in

the fuzzy system we wish to construct. The process of "optimal output

predefuzzification " (least squares training for consequent parameters) is used to form

the consequent portion of the rules. We will combine fuzzy clustering and optimal

output predefuzzification to construct multi-input single-output systems. Repeating the

process for each of the outputs can do extension of our discussion to multi-input single­

output systems

In this section we utilize a Takagi-Sugeno fuzzy system in which the consequent

portion of the rule-base is a function of the crisp inputs such that

(4.2)

Where n is the number of inputs and H 1 is an input fuzzy set given by

H1 = {(x,µH;(x)): XE Xı X •••x Xn} (4.3)

where X; is the i" universe of discourse, and µHi (x) is the membership function

associated with H 1 that represents the premise certainty for rule j; and g/ x) = g._ ~x
where g._1 = [a1,0,a1,ı, ... ,a1,n{ and x = [I,xr{ where j = l, ... ,R. The resulting fuzzy

system is a weighted average of the output g/x) for j = 1, ... ,Rand is given by

where R is the number of the rules-base. Next, we will use the Takagi-Sugeno fuzzy

system model, fuzzy clustering, and optimal output defuzzification to determine the

parameters g._1 and µHİ (x), which define the fuzzy system. We will do this via a simple

example.

Suppose we use the example data set in Equation (2. 14) that has been used in the

previous section. We first specify a "fuzziness factor" m > 1, which is a parameter that

determines the amount of overlap of the clusters. If m > 1 is large, then points with less

membership in the j'h cluster have less influence on the determination of the new
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cluster centers. Next, we specify the number of clusters R we wish to calculate. The

number of clusters R equals the number of rules in the rule-base and must be than or

equal to the number of the data pairs in the training data set G (i.e., R ~ M ). We also

specify the error tolerance Ee> O, which is the amount of error allowed in calculating

the cluster centers. We initialize the cluster centers :!:'.~ via a random number generator

so that each component of :!:'.~ is no larger (smaller) than the largest (smallest)

corresponding component of the input portion of the training data. The selection of :!:'.~ ,

although somewhat arbitrary, may affect the final solution.
For our simple example, we chosen m = 2 and R = 2, and let Ee= 0.001. Our

initialcluster centers were randomly chosen to be

[1.89]
:!:'.~ = 3.76

and

[
2.47]

:!:'.~ = 4.76

so that each component lies in between x; and x; for i = 1,2,3 (see the definitionof G

in Equation (2.14)).
Next, we compute the new cluster centers i based on the previous cluster

centers so that the objective function in Equation (4.1) is minimized. The necessary

conditions for minimizingJ are given by
""M X; ( ~ew)m

j LJ;-ı µlj

!:'.new = ""M ( ~ew)m
LJi=I µIJ

(4.5)

where
-I

(4.6)

for each i = l , ... ,M and for eachj = 1,2,... ,R such that I~=] µzew = 1 (and \x\2 = XT X ).

In Equation (4.6) we see that it is possible that there exits an i = 1, ... ,M such that

Ix; -:!:'.;ıdl2 = O for some j = 1,2,... ,R. In this case the µzew is undefined. To fix this
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problem, let µiJ for all i be any nonnegative numbers such that I;=ı µiJ = 1 and µiJ = O

I . j 12if x' - !'.old * o .

Using Equation (4.6) for our example with j j
!'.old =!'.o' j = 1,2 , we find that

µ;;w = 0.6729, µ;t' = 0.3271, µ;~ = 00.9197, µ;;"' = 0.0803 , µ;~ = 0.2254, and

µ;'; = 0.7746. We use these µ;"w from Equation (4.6) to calculate the new cluster

centers

[
1.366 ]

!'.~ew = 3.4043

and

2 [2.5410]
!'.new = 5.3820

using Equation (1.34).

Next, we compare the distance between the current cluster centers j
!'.new and

previous cluster centers !'.~ıd (which for the first step is !'.~).If j!'.~ew -!'.~ıdj <Ee for allj =

1,2,... ,R then the cluster centers !'.~ew accurately represent the input data, the fuzzy

clustering algorithm is terminated, and we proceed on to optimal output defuzzification

algorithm (see below). Otherwise, we continue to iteratively use Equation (4.5) and

(4.6) until we find cluster centers !'.~ew that satisfy \!'.~ew -!'.~ıd\ <Ee for j = 1,2,... ,R. For

our example, !'.~id = !'.~, and we see that j!'.~ew - !'.~id j = 0.6328 for j = 1 and 0.6260 for

j = 2. Both of these values are greater than Ee, so we continue to update the cluster

centers.

Proceeding to the next iteration, let !'.~ıd = !'.~ew, j = 1,2,... ,R from the last

iteration, and apply Equation (4.5) and (4.6) to find µ;1ew = 0.8233 , µ;t' = 0.1767,

µ;~ = O.7445, µ;;"' = 0.2555, µ;~ = 0.0593, and µ;;"' = 0.9407using the cluster

centers calculated above, yielding the new cluster centers

I [0.9056]
!'.new = 2.9084

and
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[
2.8381]~!ew = 5.7397

computing the distances between these cluster centers and the previous ones, we find

that ı~~ew - ~~ıdl >E0 so the algorithm continues. It 14 iterations before the algorithm

terminates. (i.e., before we have ı~~ew - ~~ıdl ~Ee= 0.001 for all j = 1,2,... ,R). When it

does terminate, name the final membership grade value A; and cluster centers ~1 , i =

1, ... ,M, j = l, ... ,R.
For our example, after 14 iterations the algorithm finds µ11 = 0.9994,

µ12 = 0.0006' µ21 = 0.1875' µ22 = 0.8125' µ31 = 0.0345' µ32 = 0.9655'

VI = [0.0714]
- 2.0725

and

v2 = [2.5854]
- 5.1707

Notice that the clusters have converged so that ~1 is near x1 = [0,2f and i lies

in between x2 = [2.4{ and x3 = [3,6{ .

The final values of i , j = 1,2,... ,R, are used to specify the premise membership

functions for the (h rule. In particular, we specifythe premise membershipfunctions as
1

(I i }12 Jm-1R X -V

µH;(x)=jL \; -kl2
k=l X - ~

-I

(4.7)

j = 1,2,... ,R where i, j = 1,2,... ,Rare the cluster centers from the last iteration that

uses Equation (4.5) and (4.6). It is interesting to note that for large values of m we get

smoother (less distinctive) membership functions. This is the primary guideline to use in

selecting the value of m; however, often a good first choice is m = 2. Next, note that

µH;(x) is a premise membership function that is different from any that we have

considered. It is used to ensure certain convergence properties of the iterative fuzzy c­

means algorithm described above. With the premise of the rule defined, we next specify

the consequent portion.
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4.1.2 Least Squares for Specifying Rule Consequents 

We apply "optimal output predefuzzification" to the training data to calculate

the function g/x) = g_:·x, j = 1,2,... ,R for each rule (i.e., each cluster center), by

determiningthe parameters Q1. There are two methods you can use to find the Q1.

Approach 1: For each cluster center i, we wish to minimize the squared error

between the function g/x) and the output portion of the training data pairs. Let

.t = [1,(x;)rf where (x' ,/) E G. We wish to minimizethe cost function J1 given by

M

J1 = })µii/(/ -eti g_J2
i=l

(4.8)

for eachj = 1,2,... ,R where µii is the grade of membership of the input portion of the

i'h data pair for the j'h cluster that resulted from the clustering algorithm after it

converged, / is the output portion of the i'h data pair du) = (x", /) , and the

multiplicationof (xi land a, defines the output associated with the j'h rule for the ı"

training data point.
Looking at Equation (4.8), we see that the minimizationof J 1 via the choice of

the Q1 is a weighted least squares problem. From Chapter 2 and Equation (2.2), the

solution a1 for j = 1,2,... ,R to the weighted least squares problem is given by

(4.9)

where

~ -[l··· l JrX- I M
X ···X

y = [y1 , ... , YM r ,
DJ = (diag([µu , ... , µMJ]) )2

For our example the parameters that satisfy the linear function g/x) = g_~xi for

j = 1,2 such that J
1

in Equation (4.8) is minimizedwere found to be f!ı = [3,2.999,-lf

and g_2 = [3,3,-lf, which are very close to each other.
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Approach 2: As an alternative approach, rather than solving R least squares problems,

one for each rule, we can use the least squares methods discussed in Section 1 to specify

the consequent parameters of the Takagi-Sugeno fuzzy system. To do this, we simply

parameterize the Takagi-Sugeno fuzzy system in Equation (4.4) in a form so that it is

linear in the consequent parameters and of the form

J(x/0) = (}r ı;(x)

where (} holds all the a;,J parameters and ı; is specified in a similarmanner to how we

did in Section 2.3. Now, just as we did in Chapter 2.3, we can use batch or recursive

least squares methods to find (} . Unless, we indicate otherwise, we will always use

approach 1 in these chapters.

4.1.3 Testing the Approximator 
Suppose that we use approach 1 to specify the rule consequents. To test how

accurately the constructed fuzzy system represents the training data set G in Figure 2.1,

suppose that we choose the test point x' such that (x',y') ~ G. Specifically,we choose

, -[1]X - 2

We would expect from Figure 2.1 that the output of the fuzzy system would lie

somewhere between 1 and 5. The output is 3.9999, so we see that the trained Takagi-

Sugeno fuzzy system seems to interpolate adequately. Notice also that ifwe let x =xi, i

= 1,2,3 where (xi, yi) E G , we get values very close to the / , i = 1,2,3, respectively.

That is, for this example the fuzzy system nearly perfectly maps the training data pairs.

We also note that if the input to the fuzzy system is x = [2.5,5f, the output is 5.5, so the

fuzzy system seems to perform good interpolation near the training data points.

Finally,we note that the Ç£1 will clearly not always be as close to each other as for this

example. For instance, ifwe add the data pair ([4,5f ,5.5) to G (i.e., make M = 4), then

the cluster centers converge after 13 iterations (using the same parameters m and Ee as

we did earlier). Using approach 1 to find the consequent parameters, we get

f£ı = [-1.458,0.7307,l.2307f

and
f!_2 = [2.999,0.00004,0.5f
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for the resulting fuzzy system, ifwe let x = [l,2f in Equation (4.4), we get an output

value of 1.8378, so we see that it performs differentlythan the case for M = 3, but that it

does provide a reasonable interpolated value.

4.2 Nearest Neighborhood Clustering 
As with the other approaches, we want to construct a fuzzy estimation system

that approximates the function g that is inherently represented in the training data set G.

We use singleton fuzzification, Gaussian membership functions, product inference, and

center-average defuzzification,and the fuzzy systemthat we train is given by

l j J2J
(

X · -VJR Iln ,J__"°"' A . exp -L.i=I ı J=I 2CY

f (x I 8) = n l (x 1 -_~1_J2 J"R sn. exp - --
L.i=l , J=I 2CY

(4.10)

where R is the number of clusters (rule), n is the number of inputs,
j . . T

}:'. =[v{,v~, ... ,v~]

are the cluster centers, CY is a constant and is the width of the membership functions,

and A; and B; are the parameters whose values will be specifiedbelow (to train a multi­

output fuzzy system, simplyapply the procedure to the fuzzy systemthat generates each

output). From Equation (4.10), we see that the parameters vector e is givenby

e [ I I R R ]T= Aı,···,AR,Bı,···,BR,vl,... ,vn,···,vı , ....v, ,CY

and is characterized by the number of clusters (rules) Rand the number of the inputs n.

Next, we will explain, via a simple example, how to use the nearest neighborhood

clustering technique to construct a fuzzy systemby choosing the parameter vector e .
Suppose that n = 2, X c 9ı2 , and Y c 9ı , and that we use the training data set G in

Equation (2.14). We first specify the parameter CY, which defines the width of the

membership functions. A small CY provides narrow membership functions that may

yield a less smooth fuzzy system mapping, which may cause fuzzy system mapping not

to generalize well for the data points not in the training set. Increasing the parameter CY

will result in a smoother fuzzy system mapping. Next, we specify the quantity E J,

which characterizes the maximum distance allowed between each of the cluster centers.

The smaller EJ, the more accurate are the clusters that represent the function g. For our
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example, we chose CY= 0.3 and E 1= 3.0. Specifically, we set A1 = y1, B1 = 1, and

v~ = x~ for j = 1,2,... ,n.

Ifwe take our first data pair,

we get A1 = l, B1 = 1 , and

~' =[~]
which forms our first cluster (rule) for f(x I O). Next, we take the second data pair,

(x' ,y') = ([!}s]
and compute the distance between the input portion of the data pair and each of the R

existing cluster centers. And let the smallest distance be I xi -y_1 I (i.e., the nearest

cluster to xi is y_1) where I x I= M. If I x' -v' l<E 1 , then we do not add any clusters

(rules) to the existing system, but we update the existing parameters A1 and B1 for the

nearest cluster y_1 to account for the output portion / of the current input-output data

pair (x\/) in the training data set G. Specifically,we let

A ·-Aoıd + i
I.- I Y

and

These values are incremented to represent adding the effects of another data pair

to the existing cluster. For instance, A1 is incremented so that the sum in the numerator

of Equation (4.10) is modified to include the effects of the additional data pair without

adding another rule. The value of B1 is then incremented to represent that we have

added the effects of another data pair (it normalizes the sum in Equation (4.10)). Note

that we do not modify the cluster centers in this case, just the A1 and B1 values; hence

we do not modify the premises (that are parameterized via the cluster centers and CY),

just the consequents of the existingrule that the new data pair is closest to.
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We would expect the output value of the fuzzy system for this input to lie

somewhere between 1 and 5.

(x' ,y')-([!}6)

Suppose that Ix; -v' l<E 1. Then we add an additional cluster (rule) to represent

the (x2,y2) information about the function g by modifyingthe parameter vector (} and

letting R = 2 (i.e., we increase the number of clusters (rules)), v; = x] for j = 1,2,... ,n,

AR = y2, and BR = 1. These assignments of variables represent the explicit addition of

a rule to the fuzzy system. Hence, for our example

!' -[:],A, - 5,B2 - I

The nearest neighbor clustering technique is implemented by repeating the

above algorithmuntil all of the M data pairs in G are used.

Consider the third data pair,

We would compute the distance between the input portion of the current data

pair x3 and each of the R = 2 cluster centers and find the smallest distance I x3 -y_1 [.

For our example, what is the value of I x3 -y_' I and which cluster center is closet? To

test how accurately the fuzzy system f represents the training data set G, suppose that

we choose a test point x' such that (x',y') il G. Specifically,we choose

x' -[~]

43



CHAPTER FIVE

FUZZY IDENTIFICATION MODELS

5.1 Standard Fuzzy Systems
First, we consider a fuzzy system

(5.1)

where x = [Xı, x2, ... , xnf and A (x) as the certainty of the premise of the ;th rule (it is

specified via the membership functions on the input universe of discourse together with

the choice of the method to use in the triangular norm for representing the conjunction

in the premise). The b;,i = 1,2, ... ,R, values are the centers of the output membership

functions. Notice that

and that if we define

(5.2)

then

Hence, if we define

and

then

y = f(x/B) = eT ç(x) (5.3)

We see the form of the model to be tuned is in only a slightly different form

from the standard least squares case in Equation (2.1 ). In fact, if the A are given, then

ç(x) is given so that it is in exactly the right form for use by the standard least squares

methods since we can view ç(x) as a known regression vector. Basically, the training
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data xi are mapped into ç(xi) and the least squares algorithms produce an estimate of

the best centers for the output membership function centers bi .

This means that either batch or recursive least squares can be used to train

certain types of fuzzy systems (once that can be parameterized so that they are "linear in

the parameters," as in Equation (5.3)). All you have to do is replace xi with ç(xi )in

forming the <l> vector for batch least squares, and in Equation (2.13) for recursive least

squares. Hence, we can achieve either on-or off-line training of certain fuzzy systems

with least squares methods. If you have some heuristic ideas for the choice of the input

membership functions and hence ç(x), then this method can, at times, be quite effective

(of course any known function can be used to replace any of the çiin the ç(x)vector).

We have found that some of the standard choices for input membership functions (e.g.,

uniformly distributed ones) work very well for some applications.

5.2 Takagi-Sugeno Fuzzy Systems

It is interesting to note that Takagi-Sugeno Fuzzy Systems, can also be

parameterized so that they are linear in parameter, so that they can also be trained with

either batch or recursive least squares methods, in this case, if we can pick the

membership functions appropriately (e.g., uniformly distributed ones), then we can

achieve a nonlinear interpolation between the linear output functions that are

constructed with least squares.

In particular, a Takagi-Sugeno Fuzzy System is given by

Lı:ı gi (x)µ;(x)
y= R

Lıi=IA(X)

where

Hence, using the same approach as for standard fuzzy systems, we note that

Lı:ıai,oA(X) Lı;=Jai,IXIA(x) Lı;=Jai,nXnA(X)
y = R + R + ... + R

Lıi=ıu, (x) Lıi=ı µi (x) Lıi=ı A (x)

We see that the first term is the standard fuzzy system. Hence, use the ı;; (x)

defined in Equation (1.15) and reduce ç(x) and B to be
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ç(x) = [ç1 (x),ç2 (x), ... ,ı;R (x),x1ı;1 (x),x2ç2 (x), ... ,x1ı;R (x), ... ,xnçı (x),xnı;ı (x), ... ,xnı;R (x)f
and

so that
f(x/B) = or ı;(x)

represents the Takagi-Sugeno Fuzzy System, and we see that it too is linear in the

parameters. Just as for a standard fuzzy system, we can batch or recursive least squares

for training f (x/B). To do this, simply pick (a prior) the A (x) and hence the

ı;i (x)vector, process the training data xi where (xi ,Yi) E Gthrough ı;(x), and replace

xi with ı;(xi )in forming the <I> vector for batch least squares, or in Equation (2.13) for

recursive least squares.
Finally, note that the above approach to training will work for any nonlinear that

is linear in the parameters. For instance, if there are known nonlinearities in the system

of the quadratic form, you can use the same basic approach as the one descried above to

specify the parameters of consequent functions that are quadratic.
This paper addresses the identification of fuzzy models with the structure

proposed by Takagi and Sugeno (1985). This fuzzy model consists of a set of rules of

the following form:
.llq_,-·,tn: If zı is A1ı.;ı. and ... and .z.rı is .A,ı,t:n. then :Y = /ı;11 •••-1n(z11 .•• ,.zrı),

Where 1t is the number of inputs z = [z.,... ,zn]is a vector containing all the

inputs of the fuzzy model and AJ,i1 ( z 1) is the i1 th antecedent fuzzy set for the j th

input. The same symbol is used to denote a fuzzy set and its membership function. M 1 .

is the number of the fuzzy sets on the j th input domain.

J;, ... ,in(z)is a (crisp) consequent function. For a given input, z, the output of the
I

fuzzy model, y , is inferred by computing the weighted average:

'°'~fı. ••• °"~:ıı. R. , I. . (.zı .z )_ ..!..tı:ı=l LJııı.=l /e"l:l;•••rn-'•ı.•••;ı~ , • "" 1 n
11 - rı'ı tt'rı /Ji ~O • • • • I .•ı=l =l ı,... -

(5.4)

where the weight, Bi1 , ••• ,in >O, is the overall truth value of the İı,···,in th the rule

calculated as:
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rı~- · - JIA · · (z·),µ;l;••-ı1ıı - Jı'tj J •
j=l

Triangular membership functions are used in this article to define the antecedent

fuzzy sets as shown in Figure 5.1, where ai,ij denotes the cores of fuzzy sets defined by:

The cores of the adjacent fuzzy sets determine the support of a set:

z· -a·;c·-ıA ··("'·)- 1 'J".J .,,, .• ı<"'·<a··Jı'tj "'J - ... - . . ' 'WiJ,ı:J- - ""J '1.Pi. a1~'t.J aJ,"Cj-1

a·~·+ı -z·A . . ; ,., ·) - :lı 1 J Jf! • • < .... < .n •••'?,:,i\NJ - ' V.J.;r._ti _ «)' ..,.J-;;J_.ıı.,, .., a .. +1 - a . . .., J""Jri 'J,ıı.1

This ensures that the sum of the membership functions is equal to one.

Constraints such as this one help to obtain an interpretable grid-type partitioning rule­

bases. The consequent-estimation method presented in this paper is, however,

independent of the membership functions used.

ı

Fig.5.1 The membership functions used

As the product operator (3) is used for the 'and' connective, the overall truth

values of the rules fulfill:
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Therefore, (5.4) can be simplified to:

Mı .ı\f, [ ~ ) ]Y = ~ ···~ flAJ;..;j(z;) liJ.,•..,r...(.n,- .• ,zn) .
~ı=L ıı.n.=l . 1

5.3 Identification of Fuzzy Models

5.3.1 Fuzzy Models
For fuzzy models, we use fuzzy-relational equations and a state-space

methodology. Their generality is sufficient to allow us to analyze a variety system.

Let X, U and Y be the space of state, control and output, respectively. All of them are

assumed to be finite, says X = {x1,x2, .•• ,xn}, U= {uı,u2, •.• ,um}, Y = {Yı,Y2, .•• ,yJ.
Obviously, the results obtained can be extended to models with spaces consisting of an

infinite number of elements, but then we have to restrict ourselves to those t-norms for

which infinite distributivity is preserved.
Those relationships govern the behavior of the system modeled using a set of

fuzzy-relational equations:
(5.5)

where Uk denotes a fuzzy set of control (fuzzy control), Xk+p,Xk+p-ı,.. -,Xk refers to

fuzzy sets of state, and I:+P stands for a fuzzy set of output. The fiFst e.quatfon above is

state equation that relates the state at the (k + p)th time instant to those occurring at

previous moment. The second equation transforms X k+ P into the fuzzy set of output.

The fuzzy relations R and S deal with the dynamics and output of the fuzzy model.

They are defined in the Cartesian product of these spaces:

R: UxXx X xX -[0,1]
=p=times

S: XxY -[0,1]

IfX=Y and Sis an identity relation, S(x,y) = 1 if x = y and O otherwise, then the

second equation of the model is irrelevant and only the state equation is of the interest.

The model already is called a fuzzy model of the pth order and can be viewed as a

generalized version of a difference equation, not necessarily a linear one, of the pth

order. For p = 1, we arrive at a model of the first order:
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yk+I = xk+ı • S (5.6)

With an extra assumption with respect to the output equation (S being the identity

relation), this reduces to the single equation Xk+ı =Uk• Xk • R.

By propositions, we show how a model of the pth order can be transformed into

a model of the first order. This enables us to concentrate on the last form of the model,

i.e., that of the first order.

Proposition 5.1

The fuzzy model given by (5.5) can be reduced to a model of the first order:

(5.7)yk+I = xk+I. S

where R is defined in UxXxX, Sin XxY, and Xk+ı in X. To prove this, we define

a fuzzy relation R resulting from a composition of the fuzzy sets of state and R:

R = xk+l .xk+ı•····Xk+p-1. R

We write:

and S =S

Then, inserting all these into the original equations of the model, we obtain the reduced

from of (5.7).
The use of this proposition is clear. In every case, we can omit reference to the

method of reduction of fuzzy models of higher order. This also simplifies further

consideration; without lack of generality, we can restrict ourselves to a model of the

first order.
Now that we understand the structure of fuzzy models described by means of

fuzzy-relational equation, it is worthwhile examining how the fuzziness processed in

these models is handled. There are two sources of the fuzziness:

(i) First, in an intrinsic from of fuzziness, the ties between state and control variables are

fuzzily known; i.e., one has only a fuzzy relation instead of a Boolean relation or

function dependence. These models a part of the linguistic description of the system

analyzed pertaining to a statement of the form:

'the state variables at consecutive discrete time intervals, say k and (k+ 1 ), are more or

less equal if past control was quite high'

or
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'at discrete time intervals, the state variable at time instant (k) is grater than in the past'

In both statements, there are elements of the linguistic description of the process.

More precisely, there is a relation that is known only in an approximate way.

(ii) Secondly, an external form of fuzziness stems from the fact that we are dealing with

linguistic values attached to the state and control variables, whereas the ties existing

between them are known exactly. An example is the behavior of the pressure of an ideal

gas in a container when its temperature and volume are specified only linguistically.

Since we know the physical laws involved, the extension principle resolves the problem

of the system description.

To cope with these two sources of fuzziness, we specify these formulas:

If only the intrinsic from of is present, Uk as well as X, are degenerated fuzzy

sets, with the membership functions defined as singletons, thus:

Then Xk+ı is equal to:

x,u

xu

Thus the fuzziness' conveyed by the fuzzy relation of the model made the state

model Xk+ı fuzzy. Its membership function is equal to the membership function of the

fuzzy relation, with their arguments u = uk and x = xk already determined by the non­

fuzzy variables.

In the second case, where Uk and X k are fuzzy sets and R is a function, the

membership function is:

-{l , if y = f (u, x)R(u,x,y)- .
O , otherwıse

In other words, R(u,x,y) = ö(f(u,x),y). Performing formally the sup-t composition, we

get:

Xk+ı(Y) = sup[Uiu)tXk(x)tR(u,x,y)]= sup [Uk(u)tXk(x)]
u,x:y= f(u,x)

So we have the same result as we derived applying the extension principle to the

fuzzy sets Uk and Xk transformed via the model equation y = f(u,x). If Uk and Xk are

non-fuzzy, we have the well-known deterministic model of the system.
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To allow fuzzy models formulated in the language of fuzzy-relational equations

to be used effectively, we need to know how they are constructed and evaluated. To

make fuzzy models applicable, we must solve the problem of system identification.

Nowadays, identification in deterministic (or statistical) models is a separate

stream of engineering, with its own terminology and well-developed methodology.

When studying fuzzy models, we are in a different position. Since they are quite novel

concepts and too specific in comparison to the models studied (e.g., statistical models),

we need to develop some new tools of analysis while keeping to the previous

methodology. We develop this idea on system identification in the presence of fuzziness

in the following sections.

5.3.2 System Identification in the Presence of Fuzziness

The methodology of system identification in this environment is not well

established. Many fuzzy models are proposed, but they are given only ad-hoc

consideration against an intuitive, vague background, without details of estimation

procedures. What is worse, the parameters of the fuzzy models, which are treated as

fuzzy sets (or fuzzy numbers), are accepted from model-builder without verification. It

is assumed that the membership functions of the parameters in the model do not need to

be estimated. This is unreal: intuition can help in creating the structure of a model, but

one cannot expect to get the relevant membership functions of the model without

performing any identification. As a loose analogy, consider regression analysis in

constructing a model with one input and one output. Perhaps an assumption of liner

dependence between the output and input variables may take sense in some cases where

the model-builder has an intuitive view. Nevertheless, he cannot expect to get, even

approximately, the parameters of the model. Despite a board variety of models, their

identification procedures consist of these three clearly defined steps (1,2]:

1. determination of the structure of the model,
2. estimation of the parameters of the model from the data set provided for

identification,
3. validation of the model by testing its consistency with the data set.

These steps are treated broadly: thus the choice of the data set, which is not a

trivial task, should be part of the first step. We need to know not only the estimated

parameters of the model but also they're precision, fundamental to the relevance of the
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fuzzy model. For a deeper look at the identification problem, we examine the first step

in more detail:

Determination of the structure of the fuzzy model
This step is crucial to further investigation. As the fuzzy models refer to a

linguistic description for our process, we have conditional statements of this format:

if, in the past k.k-I, ... , k - £ time instants, the states of the system are given by fuzzy

labels X k» X k+ı, ... , X k-t and the control is equal to U r-t> the state of the process is

given by X k+ı .

The form of the fuzzy model directly implies this, with its order specified by the

'length' of these conditional statements. In fact, this length is not so large, since a

conceptual model of the process realized by a human being consists of statements

without a long condition part. Usually, a fuzzy model of low order is sufficient. In

contrast, statistical models use sophisticated tools to estimate the order of the model

equations and their type (i.e., linear or nonlinear). Working with fuzzy-relational

equations, we are mostly concerned with the order of an equation rather than its type.

The first notion is clear, while the second requires further optimization. The order of the

model equation has a straightforward impact on the form of the data set collected for the

estimation stage. Consider, for instance, a model governed by:

xk+ı =Uk.xk.xk+ı • R

with Uk a fuzzy set of control, and X k ı X k+1> X k+ı the fuzzy sets of state. The data set

for determining the fuzzy relation R of the model consists of ordered triples. Starting

with k = 1, we enumerate them thus:

Uı,Xı,X2,X3

UN,X N> X N+ı ,X N+2

From Proposition 5.1, a model of higher order can be reduced to a model of the first

order; therefore, we examine this equation:

xk+ı =Uk.xk.R

Now the relevant data set consists of triples:

o.ıx.,»,
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While considering estimation procedures, for notation simplicity we rewrite the model

equation: •','JJj 
\ -;)·

_./",(5.8)

which is equivalent to the previous one, since X k now replaces the fuzzy relation

This simplifies the format of the data set, which now converts into

pairs (X1, r; ), (X
2,

Y2 ), ••• , ( X N, YN) . Thus the estimation problem is the task of solving a

set of fuzzy relational equations Y1c = X 1c • R for R unknown.

Estimation of the fuzzy relation of the fuzzy model
In our first approach, we calculate the fuzzy relation of the model as an

intersection of the partial results of the (fl -compositions of X 1c andY1c :

N

R= n(Xı,(f)Y1c)
k=l

(5.9)

This procedure consists of a sequence of steps:

1. put R = 1 (i.e., all the elements ofR are set to 1.0),

2. putk= 1,
3. calculate Xk(f)Yk and intersect R, R = R rı (Xk(f)Yk); increase k, k = k+1,

4. if ks N, repeat (3); otherwise, stop.
Its output is the fuzzy relation of the fuzzy model. One remark should be made

here. The fuzzy relation of the model computed using (5.8) assumes that the set of

solutions of this family of equations is nonempty. The situation is made more difficult

by the fact that this assumption is impossible to verify before the fuzzy relation of the

model is calculated. This does not mean that this method of determining the relation

should be discarded as theoretical but not practical. It can be used circumspectly, not

overestimating the significance of its results and checking their validity carefully. Even

if they are not satisfactory, they may give a good starting-point for applying more

refined methods, to be clarified later. We call the method that utilizes the findings for

solving fuzzy-relational equations, without checking whether a solution exists, a brute-

force one.
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The model may also be constructed using fuzzy-relational equations of different

type, e.g. equations with inf-s composition, ad-joint equations or polynomial ones.

Unlike the order of the equation, which is closely tied to the length of the statement,

indicating linguistic labels, this method gives no general clues. In comparison to non­

fuzzy .models, the situation is more delicate, since no hypothesis (analogous to

supporting linearity of the model) having any physical or at least numerical background

can be formulated. It is simply a way of taking all the types of equation and verifying

the extant to which each of them fits the data set provided.

To complete this presentation, we recall the model equation, using the remaining

types of fuzzy-relational equation:

• for inf-s composition
(5.10)

• for ad-joint fuzzy-relational equations:

yk = Xk(f)R (5.11)

From the data set (Xk,Yk),k = 1,2, ... ,N, the unknown fuzzy relation of the model is

calculated:

(5.12)

N

R =LJ(Xk xYk)
k=I

(5.13)

It will be recalled that such fuzzy relations fulfill the corresponding equations

using some assumptions. Thus, the direct use of these formulas is in line with the brute­

force method.

Two algorithms show how a fuzzy relation can be estimated. The first refers to

the probabilistic set already mentioned in the design of fuzzy controllers. Here we focus

on the role of higher monitors in defining the precision of the derived model. The

second uses a probabilistic layer to determine the fuzzy relation of the model.
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5.3.3 Estimating the Fuzzy Relation of the Model by Probabilistic Sets

In many cases, the fuzzy sets creating the data set (X k:» Yk ), k = 1,2, ... , N, can be

combined in (e.g. 'c') groups. Each cluster is an empirical representation of the

probabilistic set, which thus reflects the structure of the data set. Their first two

significant monitors are estimated from the partition matrix:

LXk(x)
EX; (x) = --=ci__

and

LYk(y)
EY; (y) = _c, __

The vagueness function is:

I:[Xk(x)-EX;(x)]2
vxi (x) = --'C;'-------

L [Yıc (y) - EY; (y)y
VY; (y) = --'cı _

XEX

where the sum is taken over all the sets Xk, ~ belonging to the ith cluster; n; is the

number of elements in this cluster.

Instead of requiring equation (5.8) to be solvable, we seek to solve:

EX;•R =EY;

i = 1,2,... , c. Fuzzy relation R is estimated by the brute-force method:

(5. 14)

N

R = n(EX;rpEY;)
k=I

(5.15)

Calculating the fuzzy relation R for the partition matrix, for c varying between 2

an N-1, can choose the number of clusters 'c'. The number of clusters is adjusted to

minimize the index of quality of fit of the fuzzy model and the data set.

In a more general situation, the input-output data are probabilistic sets, given with their

membership and vagueness function. Thus:

, (VX;,VY;) , i = 1,2, ... ,c
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We may [3,7] regard any element of this data set, say a pair EX;,VX;, EY;,~ (for

brevity, we omit a subscript), as being distributed over intervals [a(x),b(x)] and

[a(y),b(y)], so that their bounds are defined:

a(x) = EX(x)[l-VX(x)]

b(x) = EX(x)[l-EX(x)]VX(x)

a(y) = EY(y)[l-VY(y)]

b(y) = EY(y)[l-VY(y)]VY(y)
To obtain the bounds of the estimated fuzzy relation of the model, we restrict ourselves

to sup-min composition in its equation. The upper bound ofR is an a-composition:

R'(x,y) = a(x)d b(y)
(5.16)

while the lower bound is:

R'(x,y) = a(x)a b(y) = {a(y) ' if b(x) ~ a(y) ~ ~~~ b(xo)
O , otherwise

(5.17)

This containment is satisfied:

R"(x,y) ~ R(x,y) ~ R"'(x,y)
(5.18)

where R is fuzzy relation of the model we are seeking. The closer R" and R' are, the

better the estimation. Thus, we define the vagueness of the estimation of the fuzzy

relation R, VR, as:
VR(x,y) = R' (x,y)- R" (x,y)

For any subset of the data set, we can estimate the fuzzy relation of the model and

express the vagueness of the estimate. This implies a procedure called the dynamic

estimation algorithm, which is realized by (i) calculating the fuzzy relations R" and R' ,

and (ii) obtaining the relevant measures of vagueness and testing whether they are small

enough to stop the algorithm. If the stopping criterion is not reached, the data set is

modified or extended.
From the estimation procedure, we obtain two bounds of the fuzzy relation

searched instead of just one as before, giving us much more information about the

precision of the model derived. In further use of the model, we can take both bounds,

leading us to an interval-valued fuzzy set.
Summarizing, in the probabilistic approach, the uncertainty is conveyed by the

data set or stems from the discrepancy of the model itself, and is seen in the bounds of

the computed estimates. One example where fuzzy sets are applied and we deal with

non-fuzzy data is examined below [6].
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The fuzzy-relational equation can be used effectively where we do not know

which class of model (e.g. linear, polynomial etc.) is suitable. The data set consists of

input-output pairs of non-fuzzy data, (1,1), (2,2), (3,1), (2,4), (4,1), (4,3), (4,4), (5,5).

Taking the spaces X and Yas discrete, X = Y = (1,2,3,4,5), the optimal fuzzy relation is

obtained by clustering the data (FUZZY ISODATA is used), yielding a relation with

these entries:

1.00 0.22 0.00 0.08 0.00

0.04 0.09 0.00 0.08 0.00

1.00 0.09 0.00 0.08 0.00

0.04 0.09 0.00 0.08 0.00

0.05 0.11 0.00 0.08 1.00

The performance index optimized by the clustering method is the sum of the squared

errors, namely
8

L(yi - .v;)2

i=I

with Y; obtained by the center-of-gravity method. We study the performance of this

method. When an input has a non-fuzzy value, the output is given by the appropriate

row of the fuzzy relation R (the relation is normalized for each row). Its row is called a

fuzzy profile of the model, denoted for a certain X; by Fp( X; ). It implies a fuzzy set

defined in Y. Thus, for each i, i = 1,2, ... , 5, one has a corresponding fuzzy profile. The

closer the fuzzy profile to any fuzzy set of output (or non-fuzzy value) in the data set,

the better the fuzzy model obtained. The model is perfect if, for each input, the fuzzy

profile is a singleton with a non-zero value of membership assigned to the output

recorded in the data set. The fuzzy profiles for the model already constructed are

displayed in Fig. 5 .2. Good agreement with the data set is achieved. A linear model does

not fit this data set.
We now show how knowledge of a probabilistic form of uncertainty can be

handled in the framework of fuzzy models. We call this class of models, structured

fuzzy models, since the original fuzzy models are constrained (structured) by the

probabilistic ties.
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5.3.4 Structured Fuzzy Models
We focus on the static fuzzy model with max-min composition:

Y=X•R (5.19)

For clarity, we assume that X and Y are finite spaces. Each pair of elements in the

Cartesian product Xx Y is characterized by the joint probability function

p(y1,xi),y1 EY, xi EX. Evidently,

~ p(y i, X;) = 1
i,j

1.0

y

x=l

o

1.0

y

x=2

o

1.0

x=4
yo

1.0

Fig. 5.2 Fuzzy profiles of the model

From this joint probability function, we obtain conditional probability functions
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(5.20)

expressing the strength of the transition (in the probabilistic sense) between the

elements in spaces X and Y. All the transitions from a fixed xi to u ı> j = 1,2,... ,

card(Y), give a sum of 1.0. This probabilistic layer is inserted into the model equation

(5.20), in such a way that the indicated max-min composition is realized with respect

only to those elements in X that have a sufficiently 'strong' probabilistic transition. The

remaining elements are irrelevant, since their probabilistic transitions are negligible. In

this light, we modify the model equation [5.15]:
(5.21)

'a' being a threshold level, aE [0,1], Its value allows us to eliminate the elements of X

that have insignificant ties with the elements of Y. More compactly, we write the

previous formula:

Y=X•Y
p

(5.22)

where the index 'p' indicate the probabilistic structure of the model equation. We can

derive another formulation equivalent to (5.21). We indicate a Boolean relation Ba:

XxY-{ O, 1} with these entries:

if p(y)za
otherwise

(5.23)

Then we get:

Y(yj) =mru(X(x;Y'Ba(X;,Y1Y'R(x;,Y1)l =(X •Ba •RXYı)
X;

To show the value of 'a', we use the notation ya. A family of fuzzy sets {Jı'a laE[o,ıı ıs

taken as a joint fuzzy-relational representation of the output of the model. Two facts are

evident:

• for a= O, the influence of the probabilistic structure (layer) is disregarded,

• a< b implies ya C Yb.

For some measure of uncertainty ascribed to Ya . We estimate the fuzzy relation by

using the fuzzy data (Xi)',),i = 1,2, ... ,N.
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The data set is used in two ways: first to estimate the conditional-probability function;

and second, in combination with the probabilistic characteristics, to calculate the fuzzy

relation.
This computation uses a probabilistic strategy to eliminate some pairs in the data

set that are biased and inconsistent with the probabilistic layer.

For estimating, we assume the above data set. Calculation of fuzzy relation R

proceeds thus:

l. Start wıtrıfuzzy reıaııon i\.nav·mga\\ en.\ne~e~\\~\\~\.<.\,R\~;,y i)= l.G.

2. Put k = 1.
3. Calculate the a-composition of the kth pair from the data set, e.g. Xk and Yk, and

check simultaneously whether inequality

Xk • X k a Yk) = Yk
p

is satisfied. If so, modify R, intersecting it with X k a. Yk thus:

Otherwise, leave fuzzy relation R unchanged.
4. Increase k, k = k+1; if k is not greater than N, repeat 3; otherwise stop.
The output of the algorithm is simply the fuzzy relation of the model.

Let us explain the choice of threshold level 'a'. It is adjusted to meet a certain

compromise. Too high an 'a' may cause only a few pairs of the data set to contribute to

the computation; hence the fuzzy relation may be approximate. On the other hand, too

low an 'a', e.g. about zero, may cause all the elements of the data set to contribute; thus

the benefits of the probabilistic layer may be lost. It is reasonable to choose 'a' so as to

minimize a performance index of the distance function between the fuzzy data and those

fuzzy sets from the fuzzy model. Or we right use measure of the representative power of

the identifying fuzzy sets (see in section 5.3.4).
We illustrate the above algorithm by an example of a Boolean data set with

these input-output pairs:
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5.3.5 Detecting the Structure of the Data Set

This section is devoted to algorithm for detecting the structure of the data set

compiled for identification. The set is very useful, since only a few elements corrupted

by noise strongly influence the estimation of the fuzzy relation. Our method compares

the 'similarity' (or degree of equality) of the input and output fuzzy sets that are the

elements of the data set. The degree of equality Xi and X j ıs:

(5.24)

where Xi c X j is the degree of containment of the fuzzy sets Xi and X j . So,

ifyij =Xi =Xj, l;ij =1'; =Yj, so that rij </;ij, weexpectthedatasetconsistingoftwo

pairs (Xi , Y;) and (X j, Yj) to be consistent. On the other hand, ifr ij > l;ij , we can

hardly solve the system of equations. We look at two situations:

First, rij = 1.0 and l;ij = O.O, which is the worst situation to solve, and, secondly, r ij =

O.O and l;ij = 1.0,where the solvability is high.

Thus, we introduce this index:

(5.25)

expressing the 'feasibility' of solving the equations. Xij is not equivalent in value to the

solvability index, but is intermediately related to it. A modified version of the above

equality index is of interest. We denote it by (xi = X j tax and define it:

(xi =X1) =ma~X;(x)tp X1.(x))[X1.(x)tp Xlx)] }
max xeX

(5.26)

The above index gives an optimistic measure of the equality of the two fuzzy sets.

So far, the feasibility xij has involved only a pair of data, Xi andXj. For a

global view of the data set en bloc, we refer to some common hierarchical clustering

algorithms. The objects grouped, i.e., the fuzzy sets, use the similarity of the pairs

(Xi,Y;) and(Xj,Y). The similarity matrix isx = [Xij], where:

Xii= 1.0

To N clusters formed by single pairs from the data set, we apply an agglomerative

procedure, so that the most similar clusters are merged. 1 reduces the number of

clusters, and the procedure repeated until one cluster is left. The distance between

clusters X and Y is:
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d(X,Y) = max(pif) (5.27)

where a maximum is taken over all pairs Xi , Y; and X j , Yj belonging to X and Y. pij

stands for the distance function between two objects, say the ith and jth ones, pif= 1-

Xij. Tne hierarchy generated by the distance specified above is known in clustering

techniques as the complete linkage method [1]. The distance pif has a straightforward

interpretation. When X;j specifies a degree of 'feasibility', the pair of fuzzy-relational

equations allows us to solve the equation. P;j Is the 'difficultly' in solving this pair of

equations? Hierarchical clustering methods help to represent the data set; the above

example allows us to study the data set, enabling us to compare these results with those

achieved in setting probabilistic sets.

Exam\)le 5.1
The data set consists of N = 6 pairs of fuzzy sets with membership functions:

xi
1 [1.0 0.6 0.8 0.5]

2 [0.7 1.0 0.5 0.2]

3 [0.8 0.9 1.0 0.6]

4 [1.0 0.5 0.2 O.O]

5 [O.O O.O O.O 1.0]

6 [0.4 0.8 1.0 O. 7]

[O.O O.O 0.3 0.6]

[1.0 0.5 0.4 0.3]

[0.2 0.3 0.5 1.0]

[0.6 1.0 0.3 O.O]

[0.3 0.6 1.0 1.0]

[1.Q 1.0 0.6 0.3]

The matrix of the model has these entries:

1.0 1.0 O.O O.O O.O O.O

1.0 0.2 O.O 1.0 1.0

1.0 O.O 1.0 0.2

1.0 O.O O.O

1.0 1.0

1.0
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From hierarchical clustering, we obtain the dendrogram in Fig. 5.3. At z (calculated as

a minimum of.xii' with i, j being the same objects in the same cluster) equal to 1.0, four

clusters are seen: one containing three pairs {2,5,6} and the other three consisting of

single pairs {3}, {l} and {4}.
As the number of clusters deceases, z tends to zero; i.e., solvability of the

system of equations (or its identification) is more difficult to achieve. The fuzzy

relation, being an intersection of partial results (relations):

" :I 1 4 X

I ' ?.. __ J ..... 1. - ... r.... 1.0
2 5o 

I " " - J - - " " r - • ' 0.2I . - ·OI

Fig. 5.3 Dendrogram from hierarchical clustering

" 6 "
R=nRi

i=I

yields a poor performance, visible even without a formal specification of the index of

solvability. We get this fuzzy relation:

O.O O.O 0.3 0.3

O.O O.O 0.3 0.3

O.O O.O 0.3 0.3

O.O O.O 0.3 0.3

Thus, the fuzzy set X; • R differs significantly from the originalF, : no one X; • R has

a membership function greater than 0.3. The results of max-min composition are shown

in Fig. 5.4. Taking the fuzzy relation equal to the intersection ofR.2, R.5, andR.6 , sayR.256 ,

based on the data forming one cluster in the previous dendrogram, we get:
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1.0 0.5 0.4 0.3

1.0 0.5 0.4 0.3

1.0 1.0 0.4 0.3

0.3 0.6 0.6 0.3

For comparison, the resulting fuzzy sets X; • Rı56 are also summarized in Fig. 5.4. The

solvability index of the fuzzy system equations is higher now, but does not exceed the

specified value of the indexz . Recalling the results of the probabilistic sets obtained by

iterative clustering (in [5.3.6], ISODATA was used), we get this fuzzy relation:

bı b2 h3 b4

hı b2 b3 b4

-x/
3

1 r
- I.. ,,

bı b2 b3 b4

1.0

hı b2 ea b4

/
/

hı b2 ea b4

hı b2 h3 b4

Fig. 5.4 Membership functions of the output of the model produced by various

fuzzy relations

0.53 0.50 0.33 0.30

0.53 0.50 0.33 0.30

0.60 0.65 0.33 0.30

0.30 0.60 0.55 1.00
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In this case, the data set contains three clusters, namely {1,2,4}, {5} and {3,6}. There

are no significant differences between the entries of this fuzzy relation and that

computed elsewhere, namely R..256 . Taking now X;j, defined by means

of (X; = Xİ) max cp(¥; = Y) , we obtain:

1.0 O.O O.O O.O O.O O.O 

1.0 0.2 O.O 1.0 0.4

1.0 o_o 0.2 0.2

1.0 O.O O.O 

1.0 0.3

1.0

Using hierarchical clustering for this similarity matrix, we see a difference from the first

dendrogram. Only two pairs, (X2,Yz) and(X5,Y5), give a system of equations that is

completely solvable, x = 0.1. We get:

1.0 0.5 0.4 0.3

1.0 0.5 0.4 0.3

1.0 1.0 0.4 0.3

0.3 0.6 1.0 1.0

~ ~
X 2 • R = Y2 , andX5 • R = Y5 .

We focus on the previous relation, R..256• The fuzzy setsY,, i = 1, 3, 4, are greater than the

original ones. This is not surprising, because fuzzy sets X 2 , X 5, X 6 do not 'cover' the

entire space X. Thus, fuzzy relation R..256 does not map the data set very well. However,

we add the next pair, e.g. (X3,Y3)(see the dendrogram), and fuzzy relation R..2563 gıves

a lowx(x = 0.2); the fuzzy relation is:
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0.2 0.3 0.4 0.3
0.2 0.3 0.4 0.3
0.2 0.3 0.4 0.3
0.2 0.3 0.4 0.3

In this analysis, we ask for the number of pairs of fuzzy data that come into the

computation of the fuzzy relation. In other words, what threshold level in the

dendrogram indicates the fuzzy sets that give the most reliable and consistent subset of

the entire data set? This choice is not a trivial task. On the one hand, too many

inconsistent fuzzy data in computing the fuzzy relation can give meaningless results,

such as a fuzzy relation with nearly all its entries set to zero. On the other hand, too few

fuzzy data prevent discovery of the entries relationship. It is vital to evaluate the

'representative' power of the fuzzy sets Xı, X 2, ••• , X N contributing to the fuzzy

relation. This problem is studied below.

5.3.6 Measuring the Representative Power of the Fuzzy Data
A concept enabling us to measure the representative power of a data set is based

on a simple statement. Consider the fuzzy-relational equation:

X•R=Y
with X,Y, R specified in the same spaces as before. From max-min composition, it is

evident that only those elements of the fuzzy set X for which X(x)?: Y(yk) holds

contribute to the determination of the fuzzy relation. In other cases, the corresponding

element of the fuzzy relation, namely (j,k), is equal to 1.0. We introduce an auxiliary

vector defined in space X:
(5.28)

where each entry is:

v1 =card{yk IX(x1)?:Y(yk)} , j = 1,2,... ,n

This gives the number of events where the membership function X at point x1 exceeds

or is equal to the membership function Y at pointyk • Replacing v by a probability

vector those results from simple normalization ofv gives:

P = [Pı Pı ··· Pn]

with
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(5.29)

If the sum of vis is zero, pi is zero as well. Vector p shows how well fuzzy relation R

is determined and its best-estimated rows. The higher P, is, the better the jth row ofR

is determined. IfX is given as follows: X(xj) = ôu0, the corresponding probability is:

[O.O . . . O.O 1.0 O.O . . . O.O]

with 1.0 set at the }0th position. The Jofh row ofR is well estimated. But, taking X so

that all vj s are zero (vector of probabilities p = O), we find that the fuzzy relation cannot

be estimated. In an intermediate situation where X is 'unknown' (i.e., its membership

function is 1. O over the whole universe of discourse), for all x j the value v j = m and, in

consequence, p = [1/n l/n . . . 1/n]. So all the rows of the fuzzy relation equal 1/n.

For a system of fuzzy-relational equations, we can assign to each pair of data a

vector of probability P; and perform a global evaluation:

N

r=v. P·i=l l

(5.30)

Notice that P; allows us to eliminate some data in the preliminary analysis: all the

fuzzy data whose vector of probability is O can be excluded. The highest p is attained

when the elements of the data set are carefully chosen. Here are some general hints:

• if fuzzy sets X;, i = 1,2, ... , n (i.e., satisfy the conditions:

(i) max X;(xj) = X;(x;) i = 1,2, ... n

and

(ii)_ v v v{yıx(x)~Y(y)}=)"'
ı=l,2, ...,n k=l,2,...,m J=t

then p = [I.O I.O . . . I.O]= 1.

Loosely speaking, fuzzy sets X; should be maximum at just one point of the

universe of discount (x.), and should be 'sharp' enough (condition (ii)). The value ofp

for our data set tells us how suitable the fuzzy are sets used to determine the fuzzy

relation. The closer p is to 1, the better the data set is for relation estimation; but only

potentially, since all the pairs are taken separately. The whole picture is seen when we
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combine this approach with the overall analysis given by the dendrogram. This

illuminates the data set from two different, competitive, points of view, namely:

• ability to solve the system of equations,

• ability to represent the fuzzy relation.

These are contradictory. Moving from the top of the dendrogram to the bottom, it is

more difficult to satisfy the first requirement. In the opposite direction, the same holds

for the second need. We return to our numerical example:

Pı = [0.27 0.27 0.26 0.20]

p2 = [0.33 0.44 0.23 0.00]

A =[0.23 0.23 0.31 0.23]

p4 = (0.67 0.33 0.00 0.00]

Ps = [0.00 0.00 0.00 1.00]

p6 = [0.11 0.22 0.44 0.23]

If we restrict ourselves to a compact cluster of the elements in the data set numbered 2,

5 and 6, for which x = 0.1, the overall vector p has these entries:

P = P: V Ps V P« = [0.33 0.44 0.44 1.00]

A.ddi.n.g, the 9air (Xy,Y~)resulting from the dendrogram does not change vector p. At

the same time x decreases drastically. The ability of the whole data set to estimate the

fuzzy relation is:
p' = [0.67 0.44 0.44 1.00]

This indicate that restricting the first subset of the data set to only three pairs does not

significantly decreases its ability to determine the fuzzy relation. A change in p'

compared to p is observed for only one element of space X. The method presented is

suitable for analyzing the structure of the fuzzy data collected to determine the fuzzy

relation. An index of the ability of a subset of data to estimate the fuzzy relation has

been introduced. Nevertheless, the choice of threshold level in the dendrogram is open,

and is up to the user. In every situation, some compromise is needed.
We discuss now a method of solving the system equations by introducing an

additional space.
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5.3. 7 Fuzzy Models with Additional Variables

The essence of this estimation algorithm is an additional space in which the

'decoupling' fuzzy sets are defined. A loose analogy is found in model building in a

random environment. An output variable, say y, is tied to the input variable x by a

function dependence, y = f(x). If f is a linear function (it is usually assumed as a

preliminary from of a model, if no clear indications are available), two parameters must

be estimated, 'a' and 'b', so that y = ax + b. This is realized, for example, by

minimizing the sum of the squared errors,
N

LCaxi +b- yJ
i=I

with pairs (x;, y;) forming a data set (corresponding to the pairs of fuzzy data Xi and

r; discussed here). Afterwards, the model is tested against the data set, using some

powerful statistical-inference methods (e.g. the F-test). If the model is statically

inconsistent, it may be inadequate. This is detected by a statistical test. In this situation,

it reasonable to try a more complex form of model, not simply linear, but incorporating

some terms of higher order. Thus, we are forced to introduce, for instance, a model of

the form y = cx2+ ax+ b. Now, a new variable w = x2 has to added. The model is

extended to one having two input variables, in which one is created in an artificial

manner. Then the model is tested against the data set consisting of

triples(wi,xi,yi) = (x/ ,xi,y;). If that an extended model is derived.

Along these lines, we reformulate the estimation of the fuzzy relation. To do

this, we write:

(X xC)•G=Yı ı ı (5.31)

where Cı,C2, ••• ,CN are fuzzy sets defined in the auxiliary space C, and fuzzy relation

G is expressed in X x C x Y . Fuzzy sets Ci are chosen so that the particular equations

are decoupled (to be clarified later). The most 'difficult' situation (in the sense of

satisfying the solvability of the system of equations) is:

(X; = X) > (r; = Yj)

We can Improve this by introducing normal fuzzy sets Ci and Cj and calling the

decoupling fuzzy sets, for which the inequality:

(Xi «c, =Xj xC)<(r; =Yj) (5.32)

is satisfied. More formally, we state:
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Proposition 5.2

For all fuzzy setsX;,Xj,C;,Cj, such thatC, rsC, =</>,we have:

To make the system of equations solvable (assuming that each equation of this set of

equations does have a solution), it is sufficient to add a new space. Hence, the purpose

of the extra fuzzy sets is permanent: thus, they can be found for any system of

equations. With this modification, any system of equations (assuming each equation

treated separately has a solution) is solvable. The only question is how to choose the

decoupling fuzzy sets for the given system of equations. The simplest and almost self­

evident way is to treat the space C = (cı,c2, ••• ,cN) and the fuzzy sets Cı,C2, ••• ,CN as

singletons:

i,j = 1,2, ... ,N (5.33)

But this choice is not unique. Now we offer a useful method of finding the biggest

decoupling fuzzy sets for a system of equations. They have an interesting property.

They express how strongly the membership functions in the extra space may overlap to

ensure that the system of equations is still solvable. If an original system of equations is

solvable, the biggest decoupling fuzzy sets have membership functions equal to 1.0 over

the entire space C. Consider some clusters of data detected by hierarchical clustering.

Each cluster contains several pairs (X; , r;) from the data set. We seek the decoupling

fuzzy sets Cı,C2, ••• ,CP: C ~ [0,1] withC = {cı,c2, ••• ,cN}. 'P' is the number of

clusters. Thus, the data of a format (X;1 , r;1 , ••• , X;p, f;p), P = card(X r) , r = 1, 2, ... , P,

coming from the rth cluster, are extended into triples, (Xn,Cr,f;1), ••• ,(X;p, Cp,f;p)­

The membership functions of the fuzzy sets Cr are computed:

Cr(cr) = I.O
Cp(cr) = A(l'; = Y)

(5.34)

where a minimum is taken for all the pairs so that:

We adopt here the notation

The results of this computation are shown in Fig. 5. 5. This is an
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x1 Cr(c1)

xp

Fig.5.5 Decoupling fuzzy sets

undirected graph with nodes formed by the clusters detected, and edges showing the

strength of the relations between the clusters. Returning to our examples and splitting

the data set into four clusters, X1 = {(Xı,}'ı)}, X2 = {(X2,Y2),(X5,Y5),(X6,Y6)},

X3 = {(X3,Y3)}, X4 = {(X4,Y4)}, we have membership functions of the decoupling

fuzzy sets equal to:

C1 =[1.0 O.O O.O o.o]
C2 =[O.O 1.0 0.2 o.o]
C3 =[O.O 0.2 1.0 o.o]
C4 =[O.O O.O O.O ı.o}

When every cluster consists of exactly one pair, Xi = {(Xi, Y;)}, the biggest decoupling

fuzzy sets are:

C1 =[I.O O.O O.O O.O O.O o.o]
C2=[0.0 1.0 0.2 O.O 1.0 0.4}
C3 =[O.O 0.2 1.0 O.O 0.2 0.2]
C4 =[O.O . O.O O.O 1.0 I.O o.o]
Cs =[O.O I.O 0.2 1.0 I.O 0.3]
C6 =[O.O 0.4 0.2 O.O 0.3 ı.o]

5.3.8 Evaluation of the Fuzzy Model

Is our fuzzy model suitable? We distinguish between two situa.tions, the fırst
referring to a general mode of model testing and the second concerning evaluation

- · - - ---- ---·---..- ..•.•,..,..,.0 .,.,u~uu,IV.l.l 

meıhed, fb.t:.. ~i..~l.~ '\..'\,'\,%"'v'\h.;.,.~"h"<>, "<>'b'\..".:ı. "l:ı.":> ""Q"i."'ciı~~.un. =b. comröı. ueueı:au~, evıi\.uaü.on..

is more synthetic, giving a yes-no response for the global model. If the special task of
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the model is solved, it is preferable for its evaluation to be point-wise. Thus, we can

judge whether the model fits the data set in each element of the universe of discourse Y.

One of the representatives of the first group is a sum of distance functions
,

between fuzzy sets Yi and Yi , where the second fuzzy set comes from the fuzzy model,

N ,

D = Ld(Y;,r;)
i=I

(5.35)

where d( ... ) is the distance function, e.g., Hamming, Education or, more generally,

Minkowski. The acceptance or rejection of the model is now straightforward:

accept the model ifD < D erit

where D erit is the critical value of the sum of the distance. Thus, if D is smaller, the

model is acceptable. Shortcomings referring to this approach also are evident:

• we cannot express how the model fits the data set,

• the choice of critical value (D erit) is open, with no reasonable underlying

selection criterion.

The second situation is illustrated below.

5.3.8.1 Model evaluation by the fuzzy-measure approach
First, all the output fuzzy sets and the corresponding fuzzy sets are point-wise

,
compared. Thus, for each r; andf;, we get a fuzzy set of their equality T, :Y-[0,1],

where

(5.36)

ı.e.,
, ,

ri(y) = [Y;(Y)<JJY; (y)]t[Y; (yj) = Y;(y)]

For a global evaluation of the equality set describing the model, an aggregation is

needed. It is not unique, however, and these forms of aggregation are of interest:

• pessimistic:
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• optimistic:
N

r=LJrj
i=l

• average:
N

ı:r;(yJ
r(y ) = ...:_i=-=--ı __

1 N

If r = 1 (all elements of this vector are equal to 1), we assume that our model

completely fits the data set. Conversely, if r tends to O, we say that the model is weak.

r = Av(r,)

The quality of the model using fuzzy set T is expressed by a fuzzy measure. For

clearly, we consider the output space Y and say that the fuzzy model evaluated in terms
of satisfaction of the property [4J is:

'the space Y well mapped (well represented) by thefuzzy

model under evaluation' (5.37)

Thus, for any input X, the output of the model, and the fuzzy set describing the output

of the system, are indistinguishable, or at least close to each other, especially for the

fuzzy data used in constructing the fuzzy model (X,,Y,). For two fuzzy models with

respective fuzzy sets r andr', we have two situations:

(i) r c T"; i.e. all the coordinates of I" are grater than or equal to the corresponding

coordinates of r . Here, the model with r works worse than that with r' (it is less

precise).
(ii) r and I" are not comparable.
Situation (ii) is more frequent than situation (i). This fact, as well as the point-wise

construction of'I", suggests a partial evaluation of the model for each coordinate, i.e. the

fulfillment of a 'local' property:

'the ith coordinate of Y is well mapped by the fuzzy model' (5.38)

On the Gestalt principle, the global property (5.37) cannot be deduced from a simple,

perhaps linear, aggregation of partial evaluations of the model using (5 .38). This leads

us to a fuzzy measure as a plausible tool for global evaluation of the fuzzy model. As
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we shall see, the structure of the fuzzy integral enables us to link the quality of the

model and the controllability and predictability of the system.

Fuzzy measure g.._ is a set function defined in the Borel field B as monotonic

with boundary g.._ (</J) = O andg, (Y) = 1. Fuzzy measure g.._ (.) 'measures' the quality

of the model for any subset of Y. If the known number of elements of Y with concrete

levels of property (5.38) increases, our ability to judge the model as a whole increases.

This is reflected by the monotonicity of the fuzzy measure. Without a point of Y, we

can make no judgment. If we know our model quality in only one point of Y, say y ı>

we know it from g .._ ({yi}), which is identical with our previous evaluation through f'J.

Here, we can make a partial judgment about the model, but it may be marginal.

Considering only a single elementy i , significant overestimation of the quality of the

model may occur if T(y i) = 1. Conversely, if'T(y i) = O, we underestimate its

performance.
From fuzzy set I", the ı.-fuzzy measure is determined numerically. From the A.-

rule, the fuzzy measure is:

{ IT.o+ AT(yi ))-1}
g.._ (Y') = ....:....Y_iEr __l_

2
A E (-1,oo)

5.3.8.2 Evaluation of the fuzzy model by using the introduced confidence levels
Now we give some analogies to compare the methods used to evaluate the

statistical (probabilistic) models. We discuss a model of first order:

X•R=Y 
assuming that the identifying fuzzy data (X; ,Y.) are available. The fuzzy relation of the

,
model (omitting its origin) yields a fuzzy set Y. for X; treated as the input of the

,
model. To summaries the membership functions of Y. and Y. for all i = 1, 2, ... , Nin a

fixed element of the universe of discourse, say y i , we construct an empirical

distribution function of the equality index:

75



Ft<w) = card~ I (YJyı) = }'.' (yı)) <w)
N

w E [0,l]

The interpretation of F1(w) is straightforward: it articulates the probability that the

equality index is larger than 'w'. In the extreme:
• if the model fits perfectly the data set at the specified element of the universe of

'discourse y 1 , all the values of the equality index Y; (y 1) = Y; (y 1) are set to 1.O,

and therefore:

if w <l
otherwise

so the distribution function has one jump of height at 1.0, located at w = 1.0,

• if the model gives results different from the data in the set, the distribution

function is 1.0 for all arguments, with precisely one step at w = O.O.

We can usually deal with intermediate situations, where the distribution function has a

step-like function, by steps of different heights scattered over the whole unit interval.

The better model has a distribution function with non-zero values moved towards higher

values of the argument.

The equality index r has this probability:

a= P~ I (Y;(y1) = Y;' (y)) ~ r}
(we skip index 'j' in the equality index 'Y, as well as a, assuming entire investigation is

performed for eachj, j = 1, 2, ... , card(Y)).
Probability a expresses the fraction of the grades of membership function for

which the equality index exceeds 'Y· From the obvious relationship:

p~ j (f;(y) = Y;1 CY1)) ~ r}= 1-P~ J (Y;(y) = Y;1 (Y1)) < r}= 1-Flr)

we get:

For each fixed a, we can determine the corresponding 'Y· More precisely, we take a

maximal r, denoting by r = {r j l - a = F1 (r)} the solutionr*, taken as

r, = max argy
yE[
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Conversely, from the equality index 'Y, we get tb~ ıorobıı'oÜlt\l. i)m~, W~ ~~~ 'a
function dependence between y and a, y = f(a), giving an interesting insight into the

probability of occurrence of the specified values of the equality index. Further analysis

of this expression allows us to discover some properties of the function 'Y = f(a). We

rewrite it as F1 (w) = 1- a. If a increases, 1- a decreases; since the distribution function

is a non-decreasing function, we get lower values of the equality index. This

phenomenon can be expected: if we want to achieve high probability, it occurs at lower

y. retransforming the grade of membership with the given 'Y, we get broader and broader

equality intervals. The equality index has its analogue in a confidence interval found in

statistics, especially in parameter estimation. For a higher value of confidence, say O.Ol,

as compared to a particular standard of O.OS, the intervals are quite wide.
Computing thus for all the elements of Y, we get the corresponding distribution

functions of the equality indices. From the membership function of the output fuzzy set,

we get the equality intervals for the prespecified 'Y or a.
We consider two extremes of behavior of the above fuzzy model. In the first, the

model fits completely the data set and the distribution function of the equality indices

possesses one jump of 1.0 at w = 1.0. This implies that, for all a E [1,0], 'Y = r(a) =

const = 1.0, and the corresponding equality interval decreases to a point. Thus, we get a

genuine fuzzy set, not an interval-valued one, which shows that the model is extremely

precıse.
In the second case, the fuzzy model produces a completely different fuzzy set.

Now, the distribution function has, as before, one jump of 1.0, but this jump is put at w

= O.O. By straightforward computation, we can verify 'Y = r(a) = const = O.O, which

gives an equality interval of [0,1]. Thus, the model is irrelevant and the resulting fuzzy

set conveys no useful information.
An example illustrates the use of the confidence intervals of the fuzzy model.

The data set has already been discussed. The model has the form Y = X• R Three ways

estimating the relation of the model have been used. The first (a) is a brute-force one;

the second (b) is based on probabilistic sets; the third (c) considers a subset of the data

set that has high consistency and is extracted by hierarchical clustering. The plots are

shown in Figs. 5.6(a), (b) and (c). The brute-force method produces
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Fig. 5.6(a) Confidence intervals for the fuzzy models versus a
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Figs. 5.6(b) and (c) Confidence intervals for the fuzzy models versus a

poor results, especially at the first and second elements of the universe of discourse Y

(the distribution functions at w = O.O are near to 1.0). The other two methods give better
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results, allowing lower distribution functions at the origins of the coordinates. To show

the equality of the model obtained by the second method, we compute its output when

the input is a singleton X = [1 O O O O] (Fig. 5.7).

1_0

1

LOo
1111o

•
1.0,

~2

1.0

3

Fig. 5.7 Confidence intervals for the fuzzy model obtained by method (b)

5.3.9 Numerical Studies if Identification Problems
These identification studies are illustrated by two numerical examples:

Example 5.2
A gas-furnace data set is a standard test for identification and estimation. In

fuzzy sets, Tong has used it. However, his approach, heuristic in nature, is completely

different from that presented here. The data set consists of n = 296 parts of input-output
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observations, where the input is the rate of gas flow into the furnace and the output is

the concentration of CO2 in the outlet gases. The sampling intervals are 9 s.

Since the data are non-fuzzy, and we intend to build a fuzzy model describing

the relations between the linguistic (fuzzy) labels, we start by looking for them. This

can be done conveniently by inspecting the available data set. Without extra knowledge

about the collected pairs of input and output, we are forced to use a clustering

technique. We use FUZZY C-:MEANS, a relative of ISODATA, which produces 'c'

clusters and detects their centroids (fuzzy means). The choice of number of clusters

depends on the user of the model. Formally. 'c' can vary between 2 and N-1. However,

the number of clusters should accord with the number of linguistic labels, reflecting

naturally the level of knowledge of the system under consideration, or the level of

generality in the user's description of the system. We may need a concise and east-to­

use description without too many details, or we may need a detailed description for

solving special types of task. If the number of clusters increases, a higher precision is

obtained, but there is no evidence of a useful correspondence between the formal fuzzy

description of the system and its linguistic representation. In the extreme, c = N, the

establishment and assignment of linguistic labels are meaningless. But too low a

number of categories (clusters) may cause low precision because the model obtained is

too general. Clusters obtained for the state space are shown in Fig. 5. 8 (putting five

clusters). We shall call the clusters (fuzzy

1.0
x, •...... ,. X5 ,.._

•.
! •

..•.
• ••..••.. •.• • ..

• .•• ••
• .... •

0.5 
- ...·-

• • . ..
\ .

•••.
•• •••

•.. •..
.•

• • " .. ".. .•. ...,.
"• • •

X

Fig. 5.8 Membership functions of the linguistic labels defined in the state space
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sets) reference fuzzy sets. Thus, for space X, we distinguish X1, X 2, ••• , X ax- , while the

fuzzy sets in the control space U are denoted byUı,U2, ••• ;Ucu. The form of the model

is given by this fuzzy-relational equation:

x k+ı = uk-T • x k • R

-r = O, 1, 2
The composition operator in the model equation is fixed as max-min or max-product.

Uk_T'Xk,Xk+ı are fuzzy sets defined in U and X, respectively. By U and X we mean a

family ofhe reference fuzzy sets:

All the elements of the data set are transformed into fuzzy sets by means of our

reference fuzzy sets. Based on the theory of fuzzy-relational equations, the fuzzy

relation of the model is computed. Our performance index is the sum of the squared

distances between the fuzzy sets obtained from the model, denoted by X~+ı , and those

from the data setX k+ı :

N-1 ex
Q= L I:<Xk+ı(i)-X~+ı)2

k=l+T i=l

The performance indices for different delay time's T and for the two composition

operators are shown in Fig.5.9. Hence, the max-product

200
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9- "O
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I

f
I

J

1 . ..q 6 Q 'I /
I I
\ I"I. I\

',;Jo..
-d 0-- -- - --o

100 r ?' max-product
I

r
r

'- ,q, p ' ' - bf 
501 I I

o 2 4 6
T

Fig. 5.9 Qversus T for max-min and max-product compositions
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composition operator is preferable with 't set to 2. Since there are five clusters in spaces

X and U, the fuzzy relation consists of 53 elements. We can give it a more compact

form. Each entry of R can be viewed as an implication statement with its own

possibility measure. From this relation, we derive this linguistic description of the

system:

if
the state of the systemat the kth time instant is X; and the control

applied is Ui

then
the state at the (k + 1 )th time instant is X1

The rules are given in decreasing order of the possibility measure, or they may be stored

in this matrix form:

Xı Xı X3 x4 Xs

ıı, -- -- XS x4 XS
0.92 0.76 0.98

Uı -- x3 X3 X4 XS
0.70 0.82 0.92 0.95

U3 X4 Xı X3 X4 Xs
0.49 0.89 0.99 0.98 0.99

u4 Xı Xı X3 X4 Xs
0.79 0.96 0.81 0.69 0.10

Us Xı Xı Xı
0.97 0.70 0.27

The sign - - in the above Table indicates that the corresponding state and control

produce no state with a possibility higher than 0.10. The fuzzy model can be used

numerically. We replace the generated fuzzy set by a single numerical quantity by

taking, for example, a weighted sum:
Cx

xk+ı = L xk+ı (i) * i
i=I

Where *i is given in the clustering procedure as the mean of the ith cluster. Measuring

the quality of the fuzzy model by the sum of the squared errors:
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N-1z«, -\+1)2
k=Tı,,p

(Where 'topt is the optimized delay) or an average of this index, say Qav = Q/(N-'topt -2),

we get, for 5,7 and 9 clusters in X and U:

Cx =o«> 5 Qav = 0.776

Qav = 0.478

Qav = 0.320

The model becomes more precise as the number of reference fuzzy sets increases.

Bearing in mind our remark above about the number of linguistic labels, we have a

contradiction, stressed in Zadeh' s principle of incompatibility. The results of the model

for five and nine reference fuzzy sets are shown in Fig. 5. 10.

so 

..•
"

Fig. 5.10 performance of the fuzzy model with no fuzzy representation

Example 5.3
Our second example is the identification of a system described by a difference

nonlinear equation:

xk+ı = 0.8xk-ı +O.Ixk-ı +0.3xk_ıuk-ı +0.8uk-ı +zk
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Where zk stands for the Gaussian disturbance with zero mean value and standard

deviationcr, = 0.05. The data set for identification is given in Fig. 5. I I and consists of

50 pairs of input (uk, x, ). The fuzzy

-0.4

-0.8

30 40 so

Fig. 5.11 Control and state variables of the identified process

Model is:

Xk+ı =Uk•Xk•R

with • treated as max-min and max-product compositions. Using the procedure of the

first example, we get a model described by a set of implication statements (there are

nine clusters):

If the control is U1 and the state is X1, then the state is X1 with

possibility 0.59,

If the control is U1 and the state is X 2, then the state is X 2 with

possibility O. 44,

If the control is U1 and the state is X3, then the state is X3 with

possibility O. 39,

If the control is U 9 and the state is X1, then the state is X 2 with

possibility O. 78,
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If the control is U9 and the state is X2, then the state is X2 with

possibility 0.97,

If the control is U9 and the state is X9, then the state is X9 with

possibility O. 67.

The non-fuzzy result of the model give us Qav = 0.103 (for max-min compositions) and

Qav = 0.036 (for max-product composition), shown in fig. 5.11.

5.3.10 Distributed modeling
The main trust of distributed modeling is to develop a fuzzy model that is highly

distributed and operates as ensemble of logical coupled processing units. Each of them

operates as an autonomous computing structure and is equipped with its own dynamics.

These units can be realizing in several ways; in our discussion we will concentrate on

the use of logic processor.
A high level of autonomy in this class of modeling is achieved by association

each processor with an individual variable of the system. The dynamic behavior if the

system results as a sequence of interactions between its variables (processor) that are

carried out in either a cooperative or a competitive manner. These interactions are

reflected by the excitatory or inhibitory connection set up for the logic processors. The

strength of an interaction is modeled by assigning different numerical value to the

corresponding connections of the processors.
The dynamics of each of the processor can be effortlessly modeled by realizing

different feedback loops between the variables of the processor.

The underlying schematic structure within which the paradigm of distributing

modeling is realized is portrayed in fig. 5.12. Note that in the addition to the internal

links between the processor, some of them can also be exposed to various inputs from

the environment.
The development of the distribute model is realized in a supervised mode. Each

scenario in the collection of training events consist of the current status of the state

variables (variables of the LPs) say Q1(k),Q2(k), ... ,Qc(k)and inputs

l1(k),12(k), ... ,IP(k) specified in the kth time instant, as well as the value of the state

variable in the successive
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Fig. 5.12 Overall architecture of a distributed model (the nodes presents

individual processes)

discrete time moment, say Q1(k+l),Q2(k+l), ... ,Qc(k+l). We will assume that all

Ls as well as Q1s take on numerical values situated in the unit interval. Using

abbreviated vector notation

To summarize the status of the model, the training set will then consist of triples

{I(k), Q(k), Q(k+ 1)}

k = I, 2, ..., N

Based on that, learning can be realized separately for each of the logic processors. For

this purpose the algorithm describes can be fully exploited.
Within the same vain of supervised learning two essentially distinct learning

situation can be distinguished, developing upon the character of the domain knowledge

that is available about the system. In the first case, one has the global description of the

system. This embraces all qualities dependences between the variable and the input

considered in the system. The knowledge provided a prior knowledge could be easily

uncorrected into the model by translating it in direct into the form of relevant

connection betweens the logical processor. Example architecture is shown in fig 5 .13.
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Fig 5.13 an example of distributed model with qualities links formed based on

the available initial qualities domain knowledge (dots are used it summarize inhibitory

connections)

This preliminary knowledge definitely eases and improves efficiency of

learning, i.e. its speed, since only those connections indicated need to be qualified

numerically.
On the other hand if the available knowledge about the structure is not given in

detail or becomes incomplete or unreliable, one should rather concentrate on a full~

connected architecture as a primary topology and carry out learning in this context.

Some of the weak connection can be eliminated afterwards through building the core or

Boolean approximations of the processors. As the learning is performed individually for

each of logic processor, these needs no be the same with regard to the details of their

internal architecture.

Example 5.4
This example illustrates how the design of the distributed model proceeds. We

will start with a collection of the training data summarized in tabular.
We will assume no initial knowledge about the structural relationships between

the variables so that the learning should be carried out in a fully connected topology.

The performance of learning will be expressed as a sum of squared errors:

Q1 = L~k -LP1(Q,I,connections)f , j = 1, 2
k=I
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I Qı(k) Qı(k) Qı(k+l) Q2(k+l)

0.70 0.32 0.87 0.45 .21

0.56 0.78 0.12 .34 0.18

0.21 0.98 O.OS 0.65 0.23

1.00 0.03 0.86 0.45 0.78

0.60 0.45 .12 0.76 0.23

0.98 .45 0.32 0.64 0.11

0.43 0.34 0.65 0.84 O.OS

4=·~~

;~ LP(~

o o~~ıuowo~~2~0~0==~~~-=====-~_J300 400 500
leamiııg epoclı

The value of Qi will be minimized separately for each of the processors. For both the

processors the number of AND neurons situated in the hidden layer is 6. The results of

learning are shown in Fig. 5.14.

'

Fig. 5.14 The values of QI, Q2 in the course of learning (a=0.1, t-norm:

product, s-norm: probabilistic sum)

The results of learning expressed in terms of the connections (weights) of the processors

are:
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Lpl

Output-hidden layer: 0.075 0.081 1.000 0.089 0.850 1.000

Input-hidden layer: 0.328 0.167 0.368 0.426 0.057 0.467

0.113 0.848 0.012 0.265 0.991 0.327

1.000 1.000 1.000 0.939 0.010 0.260

0.225 0.383 0.388 0.210 0.772 0.268

1.000 0.598 0.969 0.008 0.933 1.000

1.000 1.000 1.000 0.419 0.007 0.450

Lp2

Output-hidden layer: 0.000 0.000 0.085 0.000 .0000 0.065

Input-hidden layer: 0.318 0.160 0.371 0.424 0.081 0.474

0.055 0.845 0.044 .0321 0.909 0.378

0.000 0.994 0.001 0.995 0.000 0.995

0.185 0.287 0.507 0.209 0.839 0.207

0.513 0.000 0.945 0.157 0.840 0.856

0.477 0.502 0.999 0.000 0.809 0.000

They clearly indicate that some of the connections can be easily eliminated. The

approximation of the processors by their core versions produces small values of error

for the optimal threshold levels; the plots of the surfaces of the approximation error

displayed with respect to the threshold levels µand "A. support this finding.

90



l

80

60

O.O 1.0 A.

Fig. 5.15 approximation error produced by the core structure of the logic

processor for the inputs uniformly distributed over [O, 1]

The optimal Boolean approximation gives rise to the higher values of the approximation

error, see fig 5.16.
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Fig. 5.16 Approximation error produced by the Boolean structure of the logic

processor for the input uniformly distributed over [O, 1]

The resulting formulas read as
-------

QI (k + 1) = (Q1ANDQ2')0R(IANDQ1ANDQ2) = QIANDQ2

Qı(k + 1) = I AND Q2 AND QI

As stated, the primary aim of distributed modeling is to capture relationships between

the system variables formulated at the logical level. This implies that all of the

processors when combined together describe interactions, and subsequently the

dynamics, of the system as it has been manifested at the level of these labels.

Obviously, the linguistic labels with different levels of granularity could give rise to

quite diversified dynamical patterns of the model.
Depending on applications, different interfaces between the model and the

environment are worth considering. In particular, the one with the possibility-necessity

transformation is interesting as being capable of expressing imprecision about the input

numerical information. That the possibility measure Poss(XIA) characterizes an extent
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to which the input datum X and the linguistic label A overlap (coincide). The necessity

measurement Nec(AIX) expresses the degree to which Xis included in A.

For X being a simple numerical quantity X={ x0 } , x0 ER, these two measures

coincide,

Poss( { x0 } IA)= Nec(AI { x0 } )

Let us treat xi as the result of the possibility measure transformation realized for the

input datum X (usually xi constitutes one of the inputs of the logic processor).

Furthermore, we will introduce another input defined as the complement of the

necessity measure, Xi = 1 -Nec(AIX).

Bearing in mind this coincidence, for any numerical (point-wise) datum X the obvious

relationship is preserved:
-

xi +x; = 1

The equality, however, does not hold for X being less precise, see fig 5.17.

X

(a)

X
poss(XIA)
Ner(AIX)(b)

Fig. 5.17 Uncertainty in a numerical datum X conveyed by the possibility and

necessity measures; (a) point-wise datum X, (b) interval-valued datum X.

For the internal-valued information the above equality is violated,

yielding x, + X; > 1. This inequality results from a straightforward observation:

Poss(XIA) + (1-Nec(AIX) = 1 + Poss(XIA)-Nec(AIX) ~ 1
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Since Poss(XIA) z Nec(AIX). The higher the uncertainty level (broader interval X), the

more significant the departure from the original constraint. In the limit case, uncertain

information producesx, + X; = 2. This holds, for instance, when a normal fuzzy set A is

contained in the interval-valued X, Ac X. the value ç E [O, 1] resulting from the

expressıon

xi +xi= l+ç

can be viewed as an indicator of imprecision (uncertainty) of X with respect to A it

should be stressed that ç is a relative measure of uncertainty expressed in the context of

A
Bearing in mind that this factor of uncertainty could also occur in the training

data set we can describe a way in which it is transformed by the logic processor by

augmenting its basic one-output structure by an additional output node characterizing

y. Then the uncertainty level produced by the processor can be expressed numerically

through the values ofrı E [0,1],where

Yi+ Yi= 1 +rı
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CONCLUSION

We have provided an introduction to several techniques on how to construct

fuzzy systems. We used a simple example to illustrate how several of the methods

operate. The least squares method can be used to train linear systems and should be

considered as a conventional alternative to the other methods (since it can sometimesbe

easier to implement). Gradient methods are especially useful for training parameters

that enter in a nonlinear fashion. The clustering and optimal output predefuzzification

method combined the conventional least squares method with the c-means clustering

technique that provided for the specification of the input membership functions and

served to interpolate between the linear models that were specified via least squares.

Clustering based in nearest neighborhood methods helps to provide insight into fuzzy

system construction.
Upon completing these three chapters, we should understand the following:

• The function approximationproblem.
• How construction of models, estimators, predictors, and controllers can be

viewed as a special case of the function approximationproblem.

• The issues involved in choosing a training data set.

• How to incorporate linguistic information into a fuzzy system that you train with

data.
• The batch and recursive least squares methods.
• How to train standard or Takagi-Sugeno fuzzy systems with least squares

methods.
• The gradient algorithm method for training a standard or Takagi-Sugeno fuzzy

system.
• The clustering with optimal output predefuzzification method constructing

Takagi-Sugeno fuzzy system.
• The nearest neighborhood clustering method for training standard fuzzy

systems.
And we have studied in depth the problem of system identification in the presence of

fuzziness. After a look at where fuzzy models are useful, we have concentrated on

specific areas of fuzzy modeling. Techniques applying not only fuzzy sets but also

probabilistic forms of information have been discussed. Identification is viewed as an
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iterative, three-phase procedure comprising a sequence of stage: (i) determination of the

structure of the model, (ii) estimation of its parameters, and (iii) validation of the

constructed model. The scheme is of a general nature: however, fuzzy models need

several novel techniques if they are to work within its framework. This is especially

important in parameter estimation, where careful attention must be paid to the structure

of the data set (input-output fuzzy sets). The notion of identifiability of the data set

enables us to establish a rationale for finding the most readily estimated one. We have

examined the evaluation of the fuzzy model by the fuzzy measure and the fuzzy integral

and by confidence intervals. This strong tool for evaluation allows the user to decide

whether a consecutive iteration loop is required. The methods proposed for model

validation can be used to elicit its behavior in a different application, such as control or

predication. We have studied the basic principles of identification before moving up to

the relevant algorithms, thereby filling a gap in the literature.
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