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ABSTRACT 

In same technological processes are characterized by unpredictable and hand

formulized factors, uncertainty and fuzziness of information. In this situation

deterministic models is not enough adequately describe those processes and at the

results control on their base begin difficult. In these conditions it is advisable to use

fuzzy technology, which provide independency of the model to disturbance and

adequacy of the model.
The aim of this project is identification of fuzzy model of technological process

to solve this problem the state of application problem of fuzzy technology for

identification of technological process is considered the methods which are use for

identification problem are analyzed, the description of Least Squares Method and

recursive least squares method, and to finding parameter of unknown system are

described.
Also the description of Gradient Method its algorithm and application of TS

system are considered parameters ofupdating formulas are presented.

Applicationof ClusteringMethod to identificationproblem is given.

Using above described algorithm, the identification of standard fuzzy system,

TS fuzzy systems are given.
The application of fuzzy (LMS) method for modeling of fuzzy system ıs

perform.
The implemental analysis and obtain result demonstrate the efficiency of

application fuzzy technology for identificationof system.
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INTRODUCTION 

Fuzzy identification is an effective tool for the approximation of uncertain

nonlinear systems on the basis of measured data. Data-driven identification techniques

alone, however, sometimes yield unrealistic models in terms of steady-state

characteristics, local linear behavior or physically impossible parameter values. This is

typically due to insufficient information content of the identification data and due to

over-parameterization of the models.
The Takagi-Sugeno (TS) fuzzy model is often used to represent nonlinear

dynamic systems, by interpolating between local linear, time-invariant (LTI) ARX

models. The TS fuzzy model is over-parameterized and when data-driven identification

is used, the model can exhibit regimes, which are not found in the original system

(Babuska, 1998). It is demonstrated in this paper that this problem can be remedied by

incorporating prior knowledge into the identificationmethod.
Recently, combinations of a priori knowledge with black-box modeling

techniques have been gaining considerable interest. Two different approaches can be

distinguished: gray-box modeling and semi-mechanistic modeling. In gray-box

modeling, a priori information enters a black-box model, for instance, as constraints on

the model parameters or variables, smoothness of the system behavior, or open-loop

stability [18]. One can also start with deriving a model based on first principles and

include black-box elements as parts of the white-box model. This approach is usually

denoted as hybrid-modelingor semi-physicalmodeling [19].
In chapter [1] the state of application problems of fuzzy systems for

identificationof technological processes is considered.
In chapter [2] batch and recursive least squares methods for constructing a linear

system to match some input-output data. Following this, we explain how these methods

can be directly used for training fuzzy systems. We begin by discussing squares

methods, as they are simple to understand and have clear connections to conventional

estimation methods. We also present them first since they provide for the training of

only certain parameters of a fuzzy system (e.g., the output membership function

centers). Later, we will provide methods that can be used to tune al the fuzzy system's

parameters.
And in chapter [3] show how gradient methods can be used to train a standard a

Takagi-Sugeno fuzzy system. These methods are quite similarto the ones to train neural
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network (e.g., the "back propagation techniques"). We provide examples for standard a

Takagi-Sugeno fuzzy system. We highlight the fact that via either the recursive least

squares method for fuzzy systems or the gradient method we can perform on-line

parameter estimation.
And in chapter [4] two techniques for training fuzzy system based on clustering.

The first uses "c-means clustering" and least squares to train the premises and con

sequents, respectively, of the Takagi-Sugeno fuzzy systems; while the second uses a

nearest neighborhood technique to train standard fuzzy systems.

And in chapter [5] the analysis of complex systems, identification models. The

TS type identification, fuzzy system modelings are described.

In conclusion the obtained important results and contribution is presented.
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CHAPTER ONE 

STATE OF APPLICATION PROBLEMS OF FUZZY 
TECHNOLOGY FOR IDENTIFICATION OF TECHOLOGICAL 

PROCESSES 

'The closer one looks at a "real" world problem, the fuzzier becomes its

solution. Stated informally, the essence of this principle is that, as the complexity of a

system increases, our ability to make precise and yet significant statements about its

behaviour diminishes until a threshold beyond which precision and significance

(relevance) become almost mutually exclusive characteristics.' (L. Zadeh)

This throws light on the place of fuzziness in the models we wish to construct.

The form of uncertainly handled by fuzzy models stems from the overall perception

process of the system, and is caused by the complexity and level of knowledge of the

system. In [16], the notation of the fuzzy system (model) is introduced, its motivation

being as above. As argued in [13] and [14], fuzzy models are appropriate where goals

and constraints, as well as the physical mechanisms present, are significant does not

require from the model-builder (who may not possess the strict mathematical formulas

of the process) a deep formal insight. But he usually has good intuition and a mature

experience of the system.
Fuzzy set theory was found to be a very effective mathematical tool for dealing

with the modeling and control aspects of complex industrial and not industrial processes

as an alternative to other much more sophisticated mathematical models. Further, the

latter circumstance led to the appearance at the beginning of the 1970's of fuzzy logic

computer controllers which became a powerfully tool for coping with the complexity

and uncertainty with which we are faced in many real-world problems of industrial

process control. The first investigations in this field had to answer the question: Is it

possible to realize a process controller which deals like a man with the involved

linguistic information? The results of these inquires led to the design of the first fuzzy

control systems which implemented in hardware and software a linguistic control

algorithm. A control engineer on the base of the interviews then formulated such a

control algorithm with human experts who currently work as process operators. The

most simple fuzzy feedback control systems contain a fuzzy logic controller (FLC) in

the form of a Table of linguistic rules, or fuzzy relation matrix and input-output

interfaces.
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Fuzzy logic has been successfully applied to many of industrial spheres, in

robotics, in complex decision-making and diagnostic system, for data compression, in

TV and others. Fuzzy sets can be used as a universal approximator, which is very

important for modeling unknown objects.

There are number of examples about application of fuzzy logic to the modeling

of different technological processes.
In [17] the development of a gray-box modeling approach for data-driven

identification of dynamic Takagi-Sugeno (TS) fuzzy models is considered. The main

idea is to constrain the candidate model parameters of the rules in the TS fuzzy model.

Knowledge about the process such stability, minimal or maximal gains, or the settling

time are translated into inequality constraints on the parameters. The fuzzy model then

can be identified from input-output data by quadratic programming.

The proposed approach is applied to a laboratory liquid level process. A fuzzy

model is first obtained from input-output measurements by using the proposed

identification technique. The model is then used in model-based predictive control.

Real-time control results show that when the gray-box identification algorithm is used,

not only physically justified model is obtained, but also the performance of the model

based controller is improved with regard to the case where no prior knowledge is used.

In [20] a simplified incremental type of cause-effect models for additive MISO

type dynamical processes is proposed and analyzed in this book. Dynamics of the

process is expressed by three groups of parameters: gains, memory lengths and shapes

of the specially introduced cause-effect relations membership functions. These

functions represent in a fuzzy manner the degree of relationship between the past time

changes of the respective input and the current change of the process output. The total

model of the dynamical system in this book is identified from experimental data by

different modifications of the Least Mean Squares algorithm for each group of

parameters separately. The specially introduced indirect LMS algorithm is able to

reduce significantly the size of the problem by identifying one-dimensional fuzzy model

that represents indirectly the cause-effect relation for the dynamics. Several simulation

examples are given as illustration and a brief analysis of the merits of the proposed

algorithms for simulation and identification of real dynamical systems is made.

In [21] a study is described for several approaches to the identification of models

for the temperature within the melter portion of a glass furnace. The focus is on

developing models from the gas input to the throat (melter outlet) temperature.
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Conventional linear techniques for system identification proved too useful as base-line

comparisons for further studies involving nonlinear techniques from intelligent control

for model building. Various combinations of input and output variables in a variety of

model structure using fuzzy and neuro-fuzzy system modeling approaches are

developed, and comparisons are drawn. Approaches reported on here investigate

nonlinear Takagi-Sugeno (TS) fuzzy model formulations, where a linear-in-the

parameter identification problem is formulated for various combinations of measured

variables and system delays. A fuzzy-neuro formulation is then discussed for parameter

selection in the TS model structure while simultaneously optimizing the membership

functions associated with the input of the TS fuzzy system. Simulation results for data

collected from an operating glass furnace process are presented.
In [22] two different methods of fuzzy identification of a class of nonlinear

systems are discussed in this book. This is applicable to systems with unknown and

partially known mathematical models. The classes of systems considered are nonlinear

in output but linear in input. In the first method, a gray box model is considered. The

nominal values of parameters of the nonlinear system are assumed to be known. The

unknown nonlinear function is identified off-line by choosing a suitable fuzzy relational

model and the parameters of the nonlinear system are updated on-line using recursive

least squares (RLS) algorithm. In the second method, a block box model is considered.

The nonlinear plant is identified on-line by choosing a suitable linear model using RLS

in stage-1 and the residual nonlinear part is identified in stage-2 using fuzzy

identification. The control input is then calculated based on the identified nonlinear

model using weighted one step a head control method.
In [23] the problem of identifyingthe parameters of the constituent local linear

models of Takagi-Sugeno fuzzy models is considered. In order to address the tradeoff

between global model accuracy and interpretability of the local models as linearizations

of a nonlinear system, two multi-objective identification algorithms are studied.

Particular attention is paid to the analysis of conflicts between objectives, and we show

that such information can be easily computed from the solution of the multi-objective

optimization.. This information is useful to diagnose the model and tune the

weighting/priorities of the multi-objective optimization. Moreover, the result of the

conflict analysis can be used as a constructive tool to modify the fuzzy model structure

(including membership functions) in order to meet the multiple objectives. The methods

are illustrated on an experimental lungs respiration application
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In [24] approach for system identification among many others is the fuzzy

identification approach. The advantage of this approach compared to the other

analytical approaches is, that it is not necessary to make an assumption for the model to

be used for the identification. In addition, the fuzzy approach can handle nonlinearities

easier than analytical approaches. The Fuzzy-ROSA method is a method for databased

generation of fuzzy rules. This is the first step of a two-step identification process. The

second step is the optimization of the remaining free parameters, i.e., the composition of

the rule base and the linguistic terms, to further improve the quality of the model and

obtain small interpretable rule bases. In this book, a new evolutionary strategy for the

optimization of the linguistic terms of the output variable is presented. The effectiveness

of the two-step fuzzy identification is demonstrated on the benchmark problem 'Kin

dataset' of the Delve dataset repository and the results are compared to analytical and

neural network approaches.
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CHAPTER TWO 

LEAST SQUARES METHODS (LMS) 

Many applications exist in the control and signal processing areas that may

utilize nonlinear function approximation. One such application is system identification,

which is the process of constructing a mathematical model of a dynamic system using

experimental data from that system. Let g denote the physical system that we wish to

identify. The training set G is defined by the experimental input-output data.

In linear system identification, a model is often used where
q p

y(k) = Iea;y(k-i) +ı/\u(k-i)
-

i=l i=l

and u(k) and y(k) are the system input and output at time k ~O. Notice that will need to

specify appropriate initial conditions. In this case f(x I B), which is not a fuzzy system,

is defined by

where
x(k) = [y(k-l),··,y(k-q),u(k),··,u(k- p)]T

Let N = q + p + 1 so that x(k) and B are N x 1 vectors. Linear system identification

amounts to adjusting B using information from G so that g(x) = f(x I B) + e(x) where

e(x) is small for all x EX.
Similar to conventional linear system identification, for fuzzy identification we

will utilize an appropriately defined "regression vector" x, and we will tune a fuzzy

system f(x \ B) so that e(x) is small. Our hope is that since the fuzzy system f(x \ B)

has more functional capabilities than the linear map, we will be able to achieve more

accurate identification for nonlinear systems by appropriate adjustment of its parameters

B of the fuzzy system.
Next, consider how to view the construction of a parameter (or state) estimator

as a function approximation problem. To do this, suppose for the sake of illustration that

we seek to construct an estimator for a single parameter in a system g. Suppose further

that we conduct a set of experiments with the system g in which we vary a parameter in

the system say a. For instance, suppose we know that the parameter a lies in the range
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[amin ,amax] but we do not know it lies and hence we would like to estimate it. Generate

a data set G with data pairs (xi, a i) E G where the a i are a range of values over the

interval [amin ,amax] and the xi corresponding to each a' is a set of input-output data

from the system g that results from using a, as the parameter value in g. Let a denote

the fuzzy system estimate of a. Now, if we construct a function a= f (x I B) from the

data in G, it will serves as an estimator for the parameter a. Each time a new x vectors is

encountered, the estimatorfwill interpolate between the know associations (xi ,ai) E G

to produce the estimate a . Clearly, if the data set G is "rich" enough, it will have

enough (xi ,ai) pairs so that when the estimator is presented with an x =t:- xi, it will

have a good idea of what a to specify because it will have many xi that are close to x

that it does know how to specify a for. We will study several applications of parameter

estimation.
To apply function approximation to the problem pf how to construct a predictor

for a parameter (or sate variable) in a system, we can proceed in a similar manner to

how we did for the parameter estimation case above. The only significant difference lies

in how to specify the data set G. In the case of prediction, suppose that we wish to

estimate a parameter a (k+D), D times steps into the future. In this case we will need to

have available training data pairs (xi .a' (k + D)) E G that associate known future

values of a with available data xi . A fuzzy system constructed from such data will

provide a predicated value a (k+D) = f(x I B) for given values ofx.

Overall, notice that in each case-identification, estimation, and prediction we

rely on the existence of the data set G from which to construct the fuzzy system.

2.1 Batch Least Squares 
We will introduce the batch least squares method to train fuzzy systems by first

discussing the solution of the linear system identification problem. Let g denote the

physical system that we wish to identify. The training set G is defined by the

experimental input-output data that is generated from this system. In linear system

identification, we can used model
-q p

y(k) = Iea;y(k-i) + Ieb;u(k-i)
i=l i=Ü
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CHAPTER TWO 

LEAST SQUARES METHODS (LMS) 

2.1 Batch Least Squares 
We will introduce the batch least squares method to train fuzzy systems by first

discussing the solution of the linear system identification problem. Let g denote the

physical system that we wish to identify. The training set G is defined by the

experimental input-output data that is generated from this system. In linear system

identification,we can used model
- -
q p

y(k)= LBa;y(k-i)+ LBb;u(k-i)
i=l i=O

where u(k) and y(k) are the system input and output at time k. in this case f(x/B),

which is not a fuzzy system, is defined by

J(x/B) = BTx(k) (2.1)

where we recall that

x(k) = [y(k-1), ... , y(k- q),u(k), ... , u(k - p)f
and

B = [Ba , ... ,ea- ,eb , ...,eb--f
I q I p 

We have N = q + p + 1 so that x(k) and B are N x 1 vectors, and often x(k) is called the

"regression vectors".
Recall that system identification amounts to adjusting B using from G so that

f(x/B) ~ g(x) for all x EX. Often, to form G linear system identification we choose

x; = x(i), / = y(i), and let G = { (x', /) : i = 1,2,... , M}. To do this you will need

appropriate initialconditions.

2.1.1 Batch Least Squares Derivation 
In the batch least squares method we define

Y(M) = [/, y2 , ••• , YM f
to be an M x 1 vector of output data where the /, i = 1,2,... , M come from G(i.e.,/

such that (x', /) E G) . We let
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<I>(M) = ı (x2)r

be an M x N matrix that consists of the xi data vectors stacked into a matrix (i.e., the

xi such that (x', /) E G) . Let

so that
E=Y-<l>B

Choose

to be a measure of how good the approximation is for all the data for a given B. We

want to pick B to minimize V(B). Notice that V(B) is convex in B so that a local

minimum is a global minimum.
Now, using basic ideas from calculus, if we take the partial ofV with respect to

"B and set it equal to zero, we get an equation for (), the best estimate (in the least

squares sense) of the unknown B. Another approach to deriving is to notice that

2V = Er E = yry _ yr <l>B-Br <l>rY + Br <l>r <l>B

Then, we "complete the square" by assuming that <I>r <I> is invertible and letting

2V = yry -Yr <l>B-Br <l>rY + Br <l>r <I>B

+ yr <I>( <I>r <I> )-1 <I>r y _ yr <I>( <I>r <I> )-1 <I>r y

(where we are simply adding and subtracting the same terms at the end of the equation).

Hence,

2V = yr (1- <I>(<I> T <I>)-ı <I>r )Y + (B _ (<I> r <I>)-ı <I>r Y) r <l>T <I>(B _ (<I>r <I> )-t <l>T Y)

The first term in this equation is independent of B , so we cannot reduce V via

this term, so it can be ignored. Hence, to get the smallest value of V, we choose B so

that the second term is zero. We will denote the value of B that achieves the

"minimization of V by (), and we notice that

ô = (<l>T<l>)-l<l>TY (2.2)

since the smallest we can make the last term in the above equation is zero. This is the
"

equation for batch least squares that shows we can directly compute the least estimate ()
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