
\\Ill !!II mll !!l lJ! II~)
NEU

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

HOTEL RESERVATION SYSTEM
USING WEB SITE DESIGN

Graduation Project
COM-400

Student: AI-Shalabi Mohammed (20021839)

Supervisor: Assoc. Prof. Dr. Rahib Abiyev

Nicosia - 2006

Dedicated to my mother, father,

Brothers and my sisters

ACKNOWLEDGEMENTS

This project is done under the supervision of Assoc. Prof. Dr. Rahib Abiyev,

I am very grateful to him who gave his technical and emotional support for the

creation of this graduation project.

And my Thanks go to whom my love will never end, my father and my mother,

to my brothers and my sisters, that help me a lot and their encouragement in my studies,

so that I could be successful in my life.

I will also like to thanks my all friends in Cyprus who gave their ever devotion

and helped me for their all valuable information to complete this project.

ABSTRACT

The aim of the Project were to design a hotel reservation form online and letting the users by

visiting my hotel website to reserve to themselves.

This project presents the development of hotel reservation system by using PHP, AP ACHE,

and MYSQL. The characteristic of these languages are given.

The following techniques are used in the project, HTML (Hyper Text Markup Language) it

the basic language to design a website , PHP (is a scripting language for writing web

applications that execute on server-side. Scripting language itself is much alike C, however it

still contains many differences) it is used also to active the pages you can say to do a

connection between the pages or between the pages and database and MySQL it used to do

some operation in the database tables as deleting, inserting, updating and selecting.

11

CONTENTS

ACKNO\VLEDGEMENTS

AHSTRACT

CONTENTS

Chapter l. INTERNET

l .1 Introduction

l .2 The Nature of the Internet

l .3 The Internet - a brief History

I .4 The Origins of the Internet

1.5 The Growth of the Internet

1.6 Internet Architecture

1. 7 Internet Architecture

1.8 How the Internet is Built- The Client-Server Architecture

l. 9 The Internet and What you can do with it

1.10 Worid Wide Web

1. l 0.1 The Internet and the WWW

1.10.2 A "Typical" Web Page

1.10.2.1 Components of the Web Page

1.10.2.2 The World Wide Web

Chapter 2 INTROD11JCTION TO THE APACHE SERVER

2.1 Overview

2.2 Introduction

2.2.1 The WWW

2.2.2 The Apache Server

2.2.3 Apache's Architecture

2.2.4 The Future of Apache

ii

iv

1

1

1

2

2

3

3

4

5

6

7

7

8

9

10

14

14

14

15

15

16

16

iv

2.2.5 Obtaining and Installing Apache 16

2.2.6 Compiling and Installing 17

2.2.6.1 TheSimpleWay 17

2.2.6 .2 Advanced Installation 18

2.2.6.3 Editing the Configuration Scripts 18

2.2.6.4 Dynamic Shared Objects (DSO's) 20

2.3 Configuring 21

2.3 .1 Configuration Files 22

2.:l.2 Comanche 23

2.4 Starting, Stopping, Restarting 24

2.4.1 Apachectl 24

2.4.2 Starting your Apache Server on System Restart 26

2.5 Integrating Apache with the Rest of Your Business 26

Chapter 3 PHP 28

3.1 Introduction 28

3.2 Adding MySQL Support to PHP 29

3.2.1 Checking MySQL Support Availability 29

3.2:.2 fa1abling MySQL API Support for POSIX-Compatible OS 30

3.2:.3 EJnabling MySQL API Support for Microsoft Windows 30

3.3 Using MySQL API in PHP 31

3 .J .1 Database Connections 31

3 .3 .2 Establishing Connection 32

3.3.3 Selecting Database 32

3.3.4 Closing Connection 33

3.4 Obtaining Information by Connection Handle 34

3.4.1 3.23.32 34

3.4.2 3.23.37 35

J.5 Executing Queries 35

3.5.1 Executing Raw SQL 35

3 . .5.2 Formatting Data for Queries 36

V

3.5.3 Working with Rowsets

3.5.4 Buffered Queries

3.5.5 Unbuffered Queries

3.5.6 Fetching Rows from Rowsets

3.5.7 Querying Information about Columns in Table

3.5.8 Freeing Rowsets

3.6 En-or Handling

3.7 PEAR

3.7.1 Getting PEAR to Work

3.7.2 PEAR's Database Abstraction Interfaces

36

37

38

38

39

40

41

41

42

42

Chapter 4 MYSQL 45

4.1 Introduction 45

4.2 What ls the Enterprise? 47

4.3 What ls a Relational Database? 49

4.4 The Client/Server Paradigm 50

4.5 Features of MySQL 52

Chapter 5 (CREATING DATABASE

5.1 Overview

5.2 The CREATE and DROP Commands

5.2.1 The CREATE Command

5.2.2 The DROP Command

5.3 Adding Users

5 .4 Creating the Meet_ A_ Geek Database

54

54

54

54

57

59

61

Chapter 6 ADDING TABLES, COLUMNS, AND INDEXES TO YOUR 63

DATABASE

6.1 Overview

6.2 Creating Tables

6.3 Altering Existing Tables

63

63

69

VI

6.4 Changing a Column Name

6.5 Changing a Column Type

6.6 Renaming a Table

6.7 Deleting/Adding Columns and Tables

6.7.1 Dropping Tables and Columns

6.7.2 Adding Columns

6.8 Using Indexes

6.8.1 Deciding Which Columns to Include in the Index

6.8.2 Creating an Index

6.8.3 Deleting Indexes

69

70

70

70

71

72

72

73

74

74

Chapter 7 MAKING YOUR DAT A NORMAL

7 .1 Introduction

7.2 What Is Normalization?

7 .2.1 Degrees of Normalization

7.2:.2 First Normal Form

7.2:.3 Second Normal Form

7.2:.4 Third Normal Form

7.3 Jf--Iow Far to Take Normalization

Chapter 8 REFERENCES

76

76

76

78

78

80

82

83

85

Vil

Internet

I.INTERNET

1.1 Introduction
The internet is a vast world-wide collection of computers all linked together in such a

way that messages can be passed between them independently of their architecture or

their geographical location.

Many different computer architectures and platforms and operating systems are in use

around the world - for example, PC's running Windows or Linux, Macintoshes, handheld

palmtops with internet access via wireless.

The achievement of the Internet has been the development of a set of common protocols

by which these computers can communicate, and a set of common languages by which

meaningful information can be transmitted between and displayed on these different

platforms.

Links are via the same communication mechanisms that are used for telephone

communications:

· Satellite links

· Telephone Cables - e.g. fibre-optics

· Microwave links

1.2 The Nature of the Internet
The Internet is an extraordinary global communication system whose origins lie in a

combination of government, academia, the military and the work of individuals.

Although global communication systems have existed for many years, none has given the

opportunities for global communication that the Internet has.

The Internet is a co-operative enterprise which depends on the voluntary support of its

users. Without this co-operation the Internet as we know it would cease to exist.

The Internet and the World Wide Web are often confused. We must be careful to

maintain a distinction between the Internet, which is the collection of networked

Internet

computers, and the World Wide Web which is the collection of hyperlinked documents

which are stored on the hard drives of those networked computers.

1.3 The Internet - a brief History

The internet as it exists today grew out of a number of different networks of networks.

Traditionally local area networks (LANs) and time share systems (such as Unix) are used

within organization to share resources such as printers, common files and so forth. Within

these organizations there is a degree of common purpose and trust. There is

administrative support for assigning system resources, setting up passwords and

discouraging anti-social behavior.

Connecting two different networks together is traditionally cumbersome for technical and

social reasons. Incompatibilities between different manufacturers' systems provides one

part of the problem - the other concerns issues such as "who is in charge?": Systems

administrators from different organizations must co-operate and share responsibility and

power. The achievement of the Internet has been to establish a common set of protocols

and languages by which computers of different architectures and on separate networks

can communicate data in a wide variety of different formats with each other and to solve

the problems of administration

1.4 The Origins of the Internet

The impetus for a network capable of linking computers and networks of different

architectures originally came from the US military:

· A system capable of supporting (text-based) communication between dissimilar

computers and networks

· Minimal central administration to make the system robust

· Flexible in allowing the addition or removal of nodes to or from the network

The network should be decentralized and therefore not vulnerable to the loss of any

individual computer site. A project was funded by the US Advanced Research Project

Agency in the early 1970's and this led to the appearance of ArpaNet. Arpanet provided

the essential more primitive facilities which we have come to expect of the Internet:

email, ftp (File Transfer Protocol) and Telnet (remote login). How Arpanet became the

2

Internet

Internet. The US government encouraged the use of the Arpanet by Universities and other

educational institutions as well as the military. The Arpanet thus became the backbone of

an enlarged network that became known as the Internet. The Arpanet acted as a sort of

backbone out of which the Internet as we now know it evolved by the addition and

attachment of an ever-increasing number of computers (hosts) and networks.

1.5 The Growth of the Internet

The Internet has grown exponentially as more and more hosts became attached to the

Backbone as shown in table 1.1.

Table 1.1 Internet Growth.

First appearance (early 1980's) 213 registered hosts
Feb 1986 2308 registered hosts
1995 > 5,000,000 hosts worldwide
1999 75,000,000 hosts worldwide
Jan 2002 142,000,000 hosts worldwide

1.6 Internet Architecture

The "backbone" of the internet is a distributed network of hosts each of which can act

both as a client and as a server. In general there is no single path for communication

between any two hosts as shown in figure 1.1.

3

Internet

Figure 1.1 Communication Path Between any two Hosts.

1. 7 Internet Architecture

It's said that the distributed client-server architecture that comprises the Internet was

devised by the US military so that it would be relatively invulnerable to enemy action. In

general, computers shown like this in the figure 1.2 will be hosts running software to

send information to the clients:

Figure 1.2 Host.

PC's on the network shown like this will generally be clients, running software such as

Internet browsers as shown in figure 1.3:

4

Internet

!.L
Figure 1.3 Clients

In your workplace or University, the server is likely to be a powerful centrally managed

omputer, while the client is the PC on your desk. However, this isn't a hard and fast

distinction - you can install software on your PC which will enable it to act as a server as

well.

1.8 How the Internet is Built- The Client-Server Architecture

The internet is a massive exploitation of one of the principal mechanisms by which

computers exchange information: the Client Server Architecture is shown in figure 1.4.

The Client-side computers
send request for information to
the server-side.

I .•... ',
information. In response to
the request from a client, it
sends information back to
the client

The Client side requires
software which is able to send a
request to the server and to
interpret the information

The server side must be able
to interpret requests from
clients and respond by
sending the required

The client-side computers
send requests for information
to the server-side.

Which the server sends back

Figure 1.4 Client Server Architecture

5

Internet

Client and server software is shown in table 1.2.

Table 1.2 Client, and Software.
Client Software Server Software

Internet Browsers: Web Servers:
Internet Explorer Apache
Mozilla Firefox Xitami
Netscape Microsoft US
Opera

Mail Clients: Mai I Servers:
Outlook Express Exchange Server
Outlook
Evolution
Eudora

Web page Editors Server-side programming
Dream weaver Languages:
Front Page PHP, ASP
Quanta
Mozilla Editor

Scripting Languages:
JavaScript
VBScript

Other software might be equally useful on both server and
client sides: for example. Java. Perl

1.9 The Internet and What you can do with it

We can think of four basic classes of operation that the Internet provides, and each of

these has a generic type of tool associated with it:

1. Communication

• electronic message interchange by email

• bulletin boards such as Usenet

2. File and Document transfer

• moving electronic documents around using File Transfer Protocols (FTP)

3. Remote Access

• Logging into remote computers by Telnet and accessing the databases and

archives stored there

4. Interactive Browsing

• The World Wide Web: a hypertext based graphical and multimedia browser for

documents stored on the servers of the Internet.

6

Internet

1.10 World Wide Web

The World Wide Web is by far the most recent of these applications of the Internet - the

other three have been associated with the Internet since its earliest days. We'll spend

some time with the WWW now since it's the most popular application and also the one

that gives us most scope for Internet Programming. Many people tend to think that the

WWW is virtually synonymous with the Internet, but in fact it is not.

Figure 1.5 World Wide Web

1.10.1 The Internet and the WWW

The Internet is the distributed network of computers linked by electronic and optical

communication media. The '1'..'WW is the set of documents including text, images, and

sounds and so on, which is stored on the servers that are linked to form the Internet. Since

these documents are themselves linked by means of hyperlinks they form a network or

web in their own right. However, this is a web of documents rather than hardware shown

in table 1.3:

7

Internet

Table 1.3 Internet and the WWW
-----------~·

Consists of Linked by
WWW Documents, Images, Hypertext transfer

Sound clips. protocols HTTP
nternet PCs, Workstations, Internet transport

Client Computers, protocols TCP/IP
Servers

--------,·-
ocument Layer 1 'i.

--------,--
dware Layer I I

1.10.2 A "Typical" Web Page

Here's a fairly typical web page shown in figure 1.6 (http://v.'.}_:>y_~'.:.§:wards(c1)hotel.11~!):

Figure 1.6 Web Page

s you can see it consists of a mixture of text, images, tables and hyperlinks to other

documents. ln this example, the screen in divided into 2 frames: a sidebar containing

links and a main screen with information.

8

Internet

1.10.2.1 Components of the Web Page

Even this relatively simple web page contains a number of components which are stored

eparately and assembled in the browser as shown in figure 1. 7:

G) text including tables

,) images

• two separate frames

There are also hyperlinks that point to other documents. In fact the components that make

up the web page might have been stored on separate servers which are geographically

widely separated. Images might be loaded in from a remote server. Clicking on a

hyperlink might take you to another part of the same document, or to a completely

different document stored on the other side of the world.

-. -.

The document is assembled
from components which can

' come from several separate
11
servers as long as they are

, connected to the internet.
1 The document can also be
' hyperlinked to documents on
other servers.

Documents and images stored
on the servers themselves
inked by hyper I inks

The Internet of networked
computers

Figure 1.7 How Web Document is Assembled.

9

Internet

.10.2.2 The World Wide Web

oo many people, the World Wide Web is the Internet, and using the Internet means

ing a Web browser to "surf' the information stored in the World Wide Web. In fact, the

,WW is a relative newcomer- the other facilities have been available via the Internet

·· m its earliest time.

• The WWW became possible with the increasing performance of computers

• The development of the World Wide Web is particularly associated with the name

of (now Sir) Tim Berners-Lee of CERN in Switzerland

• The hypertext component of the Web allows you to go directly from one Internet

document to another without deliberately keying in URL addresses.

Clicking on a link takes you directly to another document.

Distinction between the Internet and the WWW

• Sometimes the name World Wide Web is used as if it were synonymous with the

Internet but this is wrong:

• The Internet is the network of interconnected computers and workstations

connected and communicating by means of TCP/Internet.

• The World Wide Web is the network of documents, images, sound-files &c which

are maintained on computers linked to the Internet and which are themselves

linked into a vast network by the hyperlinks by which they are associated.

Who Administers the Internet and WWW?

It's important to realize that although very closely related, the Internet and the WWW are

subject to quite different management

The Internet

• Administering the Internet is concerned with the protocols by which the

computers that make up the Internet are able to connect with each others.

• Internet administration is heavily concerned with the Internet communication

protocols - TCP/IP and others.

10

lnternet

The World-Wide Web

• The administration of the Worldwide web is concerned with maintaining the

common standards that ensure that web documents adhere to common languages

that can be understood by all the web browsers.

• WWW administration looks after languages such as HTML and XML.

The Social Organization of the Internet

• Any internet user may be called upon to pass on data for others (obviously this

only applies to users with more than one connection).

• This requires co-operation and trust between all users.

• In its early years, the Internet was a means of communication between

universities and libraries and similar organizations whose primary aims were

information exchange rather than commerce. The organization was largely self­
policing.

• However, as the Internet has matured and become a medium for business, the

laws and restrictions applicable to other media of communication have been

increasingly applied to the Internet.

Internet Administration

• The Internet is not "owned" by any one organization, individual or state.

However, some central agreement is required to maintain compatibility.

• Until recently, the backbone of the Internet in the USA was administered by the

National Science Foundation (NSF); now, however, it is commercially run.

• Other regions of the Internet have their own funding and administration.

• Standards for connection are maintained by an Internet Advisory Board and

networks wishing to join the Internet must adhere to the standards laid out by the
IAB.

• Reports by the IAB are made public in the form of RFC's - Requests for

Comment.

11

Internet

Client-Server Architecture and the Web Browser

• A web browser is the software that runs on the client. The browser obtains data

from the server and presents it to the user.

• The web server responds to requests from clients (usually web browsers). A

typical client server "conversation" will go as follows:

Client
Server

Request document/ directory/ file.html
Sends some "header" information including the size of document
followed by a blank line followed by the document.
Closes the connection
Starts to display the text. Opens a new connection and requests the
picture/ directory/pic.gif which is embedded in the page.
Returns the picture, closes connection again.
Displays the full page including the picture.

Server
Client

Server
Client

Where does the Internet Programming come in?

• Web pages are created using a so-called markup language HTML which is itself a

form of programming language for displaying text and graphics in a way that is

independent of the platform.

• Extensions to Web pages (e.g. to allow user input into forms) is provided by

extensions such as CGI (Common Gateway Interface).

• We may want to write programs that can be run and viewed in Internet pages. The

programming language Java has been specifically developed with the aim of

facilitating the construction of small programs called applets which can be run

from Web pages.

• Another application for Internet programming is the construction of software

agents which are programs intended to carry out functions - such as the search for

information on the Internet -autonomously on behalf of a user The creation of

programs and documents which are published worldwide and are able to

downloaded onto remote systems inevitably raises questions of security and

legality. There is also the matter of etiquette.

12

Internet

Protocols for transfer of Information on the Internet

TCP/IP supports a number of protocols for transferring information across the Internet as

shown in figure 1.8.

• We are most concerned with HTTP which is associated with the transfer of

information via the World Wide Web

• The different media formats supported by HTTP - such as audio, text/html, video

and pictures - are referred to as MIME types, where MIME is an acronym for

Multipurpose Internet Mail Extension

MIME File r Remote

1
Old

Text/htm Transfer Logins form of
I Audio internet
Video search
Picture

Protocols for Transfer of Information on the Internet

TCP I IP

Figure 1.8 Protocols for transfer of Information on the Internet

13

Introduction to the APACHE Server

2. INTRODUCTION TO THE APACHE SERVER

2.1 Overview

Learn how to acquire, compile, install, and configure the Apache Web server. A great

place to start if you are completely new to Apache, and trying to figure out where to start.

2.2 Introduction

The Apache web server project is more than just a piece of software. The Apache web

server is the best, and most preferred, HTTP server software in use on the Internet today,

and it was written entirely as a volunteer project, by volunteer programmers, in their spare

time. That, in itself, is astonishing. That is, it is to people that are not familiar with the

Open Source methodology, and Open Source projects like Linux, Perl, Sendmail, and a

variety of others. The interesting thing about these volunteer-written, free software

packages is that most of us, and our businesses, rely heavily on them, whether we are

aware of it or not.

Before diving directly into talking about what Apache is, it is useful to talk about where

Apache came from, and how it came to be.

14

introduction to the APACHE Server

2.2.1 The WWW

The Internet has been around for a long time. More than 30 years now. But for most of

that time, it was entirely the domain of geeks and hobbyists. The main reason for this was

that it was hard to use.

In 1991, Tim Bemers-Lee developed something that he called the World Wide Web, while

working at CERN. His purpose was to give quick and easy access to documents for

geographically distributed people collaborating on projects. Along with a lot of help from

the standards community (and, notably, Roy Fielding), they defined HTTP, HTML, URLs,

and the other necessary components of making the Web a reality. He then went off, and

with the help of colleagues around the world, communicating via email, developed the

CERN web server, and a simple Web client, which he dubbed a "browser." The name

came about because there was very little of real value on the Web at that time, and all you

ever really did was browse. Ironic that the name stuck!

2.2.2 The Apache Server

When Rob left the project, it left a problem. There were still a lot of people using his code,

and actively making patches to the code, but there was no longer anyone collecting those

patches.

In 1995, Brian Behlendorf and a small group of other developers started collecting these

patches in a central repository. Brian got some space donated on a server, and set up a

CVS tree so that developers could check in patches. And in April of 1995, they released

the first official release (Version 0.6.2), which was given the name Apache, because it was

"a patchy server".

The Apache Group, as they were known at that time, had no formal organizational

structure, never met, communicated only over email, and worked entirely in their free

15

Introduction to the APACHE Server

time, on a volunteer basis. Early the next year, Apache passed NCSA as the most widely

d server on the Internet, and is now used on more than 60% of all web servers on the

Internet.

2.2.3 Apache's Architecture

ince the 1.0 release of Apache (December 1, 1995) Apache has has a modular design.

The core of the server is very light-weight, and all other functions are implemented as

modules that plug in to the core. This means that you can keep the size of the executable

down by leaving out functionality that you don't need. It also means that if there is some

functionality missing that you do need, you can write your own custom module to plug

into the core.

2.2.4 The Future of Apache

At Apache-Con in Orlando, back in March, Apache 2.0 was released. This is largely a

rewrite from earlier versions, and uses a threading model that will increase performance

substantially on most platforms. As of this writing, version Alpha 6 of the 2.0 server has

been released.

The Apache Group, as mentioned above, has become the Apache Software Foundation,

and continues to take on new projects that seem to fit the larger vision that the ASF has for

the future. Open Source, and open standards, produce better software. In the end, this

makes life better for all of us, and we should support the ASF in all its endeavors, if only

for purely selfish reasons.

2.2.5 Obtaining and Installing Apache

Apache is available as source code, and is probably available as a binary installation for

your operating system, unless you are running something truly arcane and rare. And, of

course, if you are, you can still get the source code, and compile it yourself.

16

Introduction to the APACHE Server

2.2.6 Compiling and Installing

Most of the settings for your server, governing how it will operate, are done at the

configuration stage, when you modify the configuration files that the server loads when it

starts up. However, due to the modular architecture of Apache, a lot also depends on what

modules you enable when you compile the server. The available configuration directives

depend on the modules that are loaded.

You can either compile your server the quick, easy way, and get a default installation with

the most common functionality, or you can get in there anad pick and choose what you

actually want.

2.2.6.1 The Simple Way

The installation process for Apache is really simple for most folks. If you are just wanting

to set up a simple web site to do the normal things like serve web pages, and maybe do

some CGI, the installation process looks like this:

tar -zxf apache_l.3.12.tar.gz

cd apache_l.3.12

.I configure --prefix=/usr/local/ apache

make

make install

/usr/local/apache/bin/apachectl start

Assuming you have a reasonably fast machine, this entire process does not take much

more than 10 or 15 minutes, and you have a functioning web site. The configure process

figures out reasonable settings for your system, and so the configuration files will have

reasonable things in them so that you can immediately start serving web pages from your

server. The --prefix setting tells the configure process where you want to install the server.

17

Introduction to the APACHE Server

'local/apache is the normal place to do this, but if you want to put it somewhere else,

specify that on the command line:

.I configure --prefix=/home/rbowen/ devserver

chectl is a handy tool that Apache installs to make it simple to start, stop, and restart

server, as well as some other handy functionality .

.2.6.2 Advanced Installation

If you're like me, you are not satisfied with the default installation. It does not have all the

modules that I want, it has some stuff that I'd just as soon leave out, and there are some

things I just do differently because I do them differently. I'm strange that way.

There are two ways to handle this that I'm going to talk about. First, you can actually edit

the configuration file, and specifically choose what you want to compile into the server.

Or, you can just throw everything in, but do it in such a way that you can go back and add

and remove stuff at your leisure. I tend to go with the latter approach, but the former

approach gets more coverage in the docs, and so is used more frequently.

You are advised to use the simple method above the first few times you install Apache.

Also, in version 2.0, there will only be one installation method, and it will look more like

the quick easy method above, than like these methods here.

2.2.6.3 Editing the Configuration Scripts

In our previous example, we ran a script called configure C "smail-c configure") in the

main Apache directory. In this method, we're going to go down into the src/ directory and

actually look at the configuration files. After all, the motto of Linux is "do it yourself."

18

Introduction to the APACHE Server

The process starts out the same:

tar -zxf apache_ l. 3 .12. tar. gz

But rather than just going into the apache_l.3.12 directory, you need to go down into the

src directory:

cd apache_l.3.12/src

Then, using your favorite editor, edit the file Configuration ("big-C Configuration") and

comment, or uncomment, the lines that refer to options that you are interested in.

If you don't see a file called Configuration, copy the file Configuration.tmpl to

Configuration, and use that as your template.

Once you have gone through and made sure that you have everything that you want in

there, save the file, and run the following:

./Configure

make

make install

The simple method, which we talked about first, is doing all of this for you behind the

scenes. If you run "small-c'' configuration, you will have a file called Configuration.apaci

created for you, which will then get used in this configuration step.

19

Introduction to the APACHE Server

A Dynamic Shared Objects (DSO's)

tired of rebuilding and reinstalling my web server every time I want to add in a new

ule, or when I decide to take one out, because I never really use it. This is where

d objects are handy. A shared object is something that gets loaded dynamically by a

ess when it needs it. This saves you from having to compile that code into the

gram executable, which, in tum, makes the executable smaller, and load up faster. By

.ing your Apache modules into shared objects, you can build everything into your

·er, but only actually use the parts that you want at any one time, and leave out

erything else that you're not using.

Windows, these are things called "dynamic link libraries", or DLLs. On Linux, they

called shared objects, or .so files.

In order to enable shared objects, you have to compile a module called mod_so, which, in

turn, loads all the modules that you have compiled as shared objects. mod_so itself cannot

be shared object, of course, because there would be no way to load it. Chicken, egg.

o, to build your Apache server to use shared objects, run the following commands:

./configure --prefix=/path/to/apache \

--enable-module=most \

--enable-shared=max

(You can either literally type those I characters, or just put this command all on one line

and omit the I's)

What does this command do? Well, it compiles all of the modules that ship with Apache,

except those that are considered experimental or unstable, and enables them all as DSO's.

20

Introduction to the APACHE Server

This means that Apache will be loading up a bunch of modules that you don't really want,

so you need to edit the configuration file and comment out those modules that you're not

really going to use.

But it also means that if you want to add in a particular module, you can do so by putting

it in the configuration file, rather than having to recompile your server from source. This is

particularly handy if you change your server configuration a lot, or when you are testing

out different configurations to see what it is that you want.

A server that is loading all the modules dynamically, rather than having those modules

compiled in, takes a little longer to start up, but this penalty is paid only at server start, and

after that the servers run at the same speed. That is, a server running modules as DSO's

does not run any slower.

2.3 Configuring

Once you've compiled and installed your server, you need to configure it for your

particular environment. Many of the configuration directives got set when you ran

configure (or Configure), and so the server should work correctly immediately. However,

you will probably want to change some things, since the default installation is very

generic, and not precisely suited to your needs.

Apache, unlike most of its competitors in the web server market, lets you configure

everything, down to the smallest detail. And if there's really something that you want to

configure that you can't, you have the source code, so you can change it if you are so

inclined.

21

Introduction to the APACHE Server

2.3.1 Configuration Files

The configuration for your Apache server is located in a file called httpd.conf, which is

usually located at /usr/local/apache/conf/httpd.conf.

Note that if you installed Apache with a RPM (don't do that!) then the files will be in

bizarre places that have no relation to logic. Uninstall the RPM, and install from source.

It's a simple process, and reduces your pain in the long run.

Note: I made a comment like the above in one of my articles on ApacheToday.com, and

got thoroughly chastized for it by some Red Hat fanatics that read the article. While I

found their comments, and their reasons for their comments, to be rather amusing, I should

emphasize that this is just my opinion, and should not be taken as some sort of

transcendent truth. If you really want to spread your files all over your file system, go

right ahead. You might notice, however, that a default installation of Apache puts

everthing in /usr/local/apache, so it's a safe bet that the Apache developers agree with me

on this one.

The format of httpd.conf is very simple.

There are comments, which consist of a hash sign(#) at the beginning of a line:

Based upon the NCSA server configuration files originally by Rob McCool.

There are directives, which look like a name, followed by a value:

ServerAdmin webmaster@rcbowen.com

There are sections, or containers, which look rather like HTML tags:

<Directory /usr/local/apache/ cgi-bin>

AllowOverride None </Directory>

22

Introduction to the APACHE Server

ections can contain directives, and those directives apply to the the resources defined by

the container definition. In the above example, the AllowOverride directive will apply to

les located in the specified directory.

You can edit these configuration files with your favorite text editor. You need to restart

the server when you are done editing the configuration files in order for the new

configuration to take effect.

You can use the apachectl script to test your configuration file to make sure that you did

not make any errors.

/usr/local/apache/bin/apachectl configtest

More about this below.

2.3.2 Comanche

One of the battles that *nix continually has to fight is the notion that it's hard to use. Much

of this notion comes from the fact that everything you want to use on *nix has a

configuration file, and every configuration file has a different format. Learning all these

different formats is a pain, and it's so easy to get it wrong. Sendmail is one of the worst

offenders in this arena, but even something as simple as Apache gets difficult to configure.

Its modular architecture means that it can be extended forever, and every extension has its

own configuration directives. This can be a little overwhelming.

Daniel Lopez took on this problem as his Master's thesis, and developed Comanche - the

Configuration Manager for Apache. Comanche is a graphical configuration tool, written in

Tel, which lets you configure Apache in a more intuitive interface. It tells you what each

directive means, and asks you questions that make sense. Your answers are put back into

the configuration files in a format that Apache can understand.

23

Introduction to the APACHE Server

Comanche can also be used to configure other applications, such as Samba, which have

text configuration flies. There is not yet a plug-in for configuring Sendmail, but this is

something that Daniel is frequently asked for, so perhaps there will be some day. And you

can write your own extensions to Comanche to configure anything that has a text

configuration file.

Daniel now works at Covalent Technologies. Daniel is a member of the ASF, and you

should attend his talks here at ApacheCon, if you have not already done so.

2.4 Starting, Stopping, Restarting

There are a variety of ways to control your Apache server. We'll focus on a script that

ships with Apache, called apachectl, which does a few other things in addition to just

starting, stopping, and restaning.

2.4.1 Apachectl

apachectl, which presumably stands for "Apache control", is located in the bin directory

of your Apache installation. It is a shell script which does many of the things that you'll

want to do in controlling your Apache server. It can be run with any of the following

arguments:

start

Starts the server.

stop

Stops the server.

24

Introduction to the APACHE Server

tart

Restarts the server, if running, by sending a SIGHUP. If the server is not running,

starts it.

fullstatus

Displays the full status of the server. Requires that mod_ status is enabled, and that

lynx is installed.

tatus

Displays a brief status report for the server. Requires that mod_ status is enables,

and that lynx is installed.

graceful

Does a graceful restart by sending a SIGUSRl, if the server is running. If the

server is not running, it will start it. A graceful restart has the advantage over a

simple restart in that child processes that are currently serving content will be

permitted to complete their current connection before they are killed.

configtest

Reads the configuration file and parses it for syntax errors.

help

Displays usage information about the apachectl script.

25

Introduction to the APACHE Server

2.4.2 Starting your Apache Server on System Restart

Linux has a process for starting processes on system startup. This consists of a directory

/etc/rc.d containing scripts for each of the processes that you want to start.

If you place a file in /etc/rc.d, called rd.httpd, it will be run on server startup. rc.httpd

should contain the following command:

/usr/local/ apache/bin/ apachectl start

If you're running Red Hat, or Mandrake, or one of the other Linuxes that looke like them,

you'll find that there are a number of subdirectories of /etc/rc.d that look like rc2.d, rc3.d,

and so on, which contain the startup scripts for all your various services. Actually,

symlinks to them. On these systems you should create a file at /etc/rc.d/init.d/httpd,

containing the command above. You should then create links to it from the directories

rc3 .d and rc5 .d. Each of those directories corresponds to a runlevel. You'll usually be in

either runlevel 3 or 5, so that's when you want to start Apache.

2.5 Integrating Apache with the Rest of Your Business

The common wisdom is that every company needs a web site, because every company

needs a web site. And so lots of companies have web sites which are nothing more than a

electronic sales brochure.

With more and more people online every day, many users will expect to get just as good

service from your web site as they would in person, or over the phone. In fact, the

expectation is often higher. After all, this is a computer. They should be able to get direct

access to the answers that they need, and it should be instantaneous.

26

Introduction to the AP ACHE Server

Fortunately, I'm a technical guy, not a marketing guy, so I can only advise you on the

tecnical aspects, not on business practices. However, I can say from experience, that if a

company's web site does not provide me with the answers I need, I'm very likely to just go

somewnere else for solutions. I don't have the time or patience to try to figure out bad web

ite.

27

PHP

3. PHP

1 Introduction

- is a scripting language for writing web applications that execute on server-side.

ipting language itself is much alike C, however it still contains many differences. Here
some basic ones:

While C program needs to be compiled before execution, PHP script is interpreted at
runtime;

Variables do not need to be declared in PHP;

PHP operates more gently with string variables (e.g. "5" + "6" = 11);
C is function-oriented language, while in PHP for execution code can be written
straightforward;

All variables in PHP should have "$" prefix, otherwise identifiers are treated as
string constants;

PHP doesn't make use of standard header files and libraries - all functions are built­

in, file inclusion is mostly used for user extensions and text blocks;

PHP supports hash arrays as native type;

PHP code should be embedded to some different file (like MS-ASP scripting, or

JavaScript) and is extracted by PHP engine before execution, while C requires a
complete source file;

PHP should not execute any user query or delayed request functions; PHP normally

cannot display application windows, buttons or other widgets. Its purpose is to

generate content (e.g., generation of text files, images, data files, etc);

Loop statements, conditionals and comments are identical to C syntax, with exception

that each variable should be prepended with dollar sign "$". PHP outputs data with
"echo" command.

The essential PHP concept is to embed scripting code to HTML, using unique delimiting

tags to separate raw HTML from script code. PHP scripts are executed on server side

(like Perl/CG! or Java servlets), and the final user gets pure HTML in a browser.

28

PHP

ovided that PHP code is surrounded with < ?php ... ?> tags, web server is able to filter

ch sections and puts the execution result instead .

. 2 Adding MySQL Support to PHP

This section will describe how to check and enable MySQL API support for PHP. If you

100% sure that PHP is properly installed on your web server with MySQL support,

JOU can safely skip all installation instructions .

.2.1 Checking MySQL Support Availability

Before trying to run any MySQL-dependent PHP script, it is necessary to ensure that

PHP on web server has such API installed.

ave this single line to phpinfo.php file within web server space, and load it through your

rowser. Note, that simply loading this file from local disk will not work - you'll have to

pipe it through web server. In other words, you should make it work by loading some

URL, which starts with "http://". The sample URL may look like:

http://localhost/phpinfo.php

If using correct URL you've got an empty page, or the page shows up unmodified

example code, PHP is not installed to your web server, and PHP module requires

installation itself.

If the information page appeared correctly, seek for "mysql" on the page. There should be

a separate section called "mysql" and it will look like table 3 .1:

Table 3.1 MYSQL

mysql

Active Links

Client API version

29

PHP

h looking part is shown on the information page, then mysql module is enabled and

ing correctly, so you can skip "Enabling ... " sections of this guide.

information page appeared, but no "mysql" section found, then MySQL API

rt needs to be installed to PHP and enabled.

Enabling MySQL API Support for POSIX-Compatible OS

using POSIX-compatible OS (e.g., Linux, FreeBSD, Solaris, etc), then MySQL­

ling option should be applied while compiling PHP from distribution.

Note, that if precompiled PHP4 is included to your OS installation package, MySQL

support is possibly included there by default.

. ou've got to compile PHP yourself, specify --with-mysql option to configure script.

er proper compiling and installation, MySQL support should be enabled. You can

kit again by usingphpinfo function sample (above in this guide) .

.3 Enabling MySQL API Support for Microsoft Windows
,ben running Microsoft Windows, you may run into several issues with PHP itself and

ySQL. While C compiler is an essential part of most POSIX-compatible operating

• stems, Windows system typically doesn't contain any compiler installed. Anyway,

mpiling PHP under Windows is pain, if you never did this before; so consider

wnloading Win32-precompiled version from PHP site.

The Win32-precompiled version is available for download from official PHP site, and

ntains MySQL support integrated.

30

PHP

3.3 Using MySQL API in PHP

PHP provides a set of functions to use for accessing and manipulating data on MySQL

server. The following sections will provide a step-by-step description of how to create

and manage MySQL connections, work with MySQL tables, insert and remove data, etc .

.3.1 Database Connections

Before any operations are to be made on the data, database connection should be

established. Two general types of connection exist - normal connections and persistent

onnections.

There is no commonly used term for mentioning normal (non-persistent) connections.

Thus, when connection is mentioned to be "normal", or simply not mentioned to be

persistent, then it is likely non-persistent connection.

ithin simple PHP scripts, single-time MySQL connections are created, and closed once

ript execution is completed. This is good for rare connections, when PHP page isn't

requested too frequently.

The basic idea of persistent connections is to keep connection open for some particular

time, and if the page loads multiple times, PHP code will reclaim the same connection.

For high traffic web sites, it would be reasonable to use persistent connections. However,

-~ web site suffers from a very high traffic (million visits per day), for used PHP and

MySQL versions the practice showed that performance degrades.

For such web sites, I would not recommend to use persistent connections. PHP

velopers reported, that under really heavy load, persistent connections reclaim too

much of web server resources, and thus performance degrades, as the result of continuous

memory swapping. However, if you are not planning to run such heavy traffic sites (e.g.,

·· e world immigration center, or Microsoft), persistent connection will act with

ticeable performance boost, comparing to normal non-persistent connections.

31

PHP

As for scripting, persistent connection doesn't differ from usual connection, except that

different function is used for connection establishment. Trying to close persistent

onnection will do no effect, however it's often useful to keep closing function calls in

PHP code (e.g., for compatibility purposes).

3.3.2 Establishing Connection

To establish simple connection, function mysql_connect should be used.

$handle= mysql_connect (host[, usemame[, password]])

Working with persistent connection differs with only one feature - connection function

name is mysql _pconnect. The function has the same parameter meanings and is used

exactly in same way.

$handle= mysql_pconnect (host[, usemame[, password]])

All three parameters are of type string, and connection handle is returned once function is

executed. For example, if connection to server "cassy" is desired, the line from PHP

script may look like this:

$link= mysql_connect ("cassy", "george", "greatpasswordl 105");

In the upper example, user name is "george " and the password is "greatpasswordl 105 ".

If name and password are not specified, the PHP process owner's user ID is taken, and

empty password is assumed. If host name is not specified, "localhost" will apply.

You will not be able to specify user name, if sq I.safe_ mode option is set in php. ini file. In

this case, default user will be used instead.

3.3.3 Selecting Database

After connection is established, the default database should be selected to use for SQL

queries, which don't specify database name explicitly. The function mysql _select_ db is

used for such purposes.

mysql_select_ db(database_ name [, connection_ handle])

32

PHP

The very first parameter specifies name of database to select within connected server

space; connection_ handle - is the variable, resulted earlier from mysq l _ connect function.

PHP manual describes, that connection_ handle can be omitted, if last opened handle is to

used, however this can lead to confusion, when multiple connections are used in the

ript. So I recommend to specify connection handle explicitly, when more than one

onnection is planned (e.g., if you are writing some kind of abstraction layer or PHP

database engine).

Function mysql _select_ db returns either TRUE on successful database selection, or

FALSE on error (e.g., database not found, connection handle is bad, lightning hit to the

server, etc).

3.3.4 Closing Connection

Finally, after connection is not needed anymore, mysql _close call should be used to close

connection, as you probably guessed yourself from the example in previous section.

mysql_close (connection_handle)

Nothing wrong happens when trying to close persistent connections - the function will

simply perform no operation, however to preserve compatibility, even for persistent

connections I would recommend keeping mysql_close call anyway (what if in the future

it would be desired to change to simple connections?).

PHP documentation mentions, that it is not necessary to use mysql_close at all, however

the practice showed, that opposite to manual, unclosed orphan connections are kept in

memory, and are closed only in some time (after timeout expires). This is, of course, a

resource black hole for web sites under heavy load.

33

PHP

3.4 Obtaining Information by Connection Handle

Starting with PHP version 4.0.5, few mysql_get_xxxx_info functions were introduced.

These functions will help to obtain some basic information about MySQL API and

connection handles:

$text= mysql_get_client_info

$text= mysql_get_server_info

$text= mysql_get_host_info

$val = mysql_get_proto _info

()

(connection_ handle)

(connection_ handle)

(connection_ handle)

Function mysql_get_client_info will return a string, containing current PHP-MySQL

client library version. Note, that this version number is not related to MySQL version

installed on server.

Either internal PHP-MySQL API library, or MySQL-provided library can be used during

PHP compilation. If path to MySQL libraries is not specified during PHP compilation,

PHP uses built-in MySQL client library, which typically is older than it could be

otherwise. The value of mysql .s«: client _info will look like this:

3.4.1 3.23.32

Function mysql _get _server _info needs connection_ handle parameter; it queries MySQL

server version, using the server connected via connection_ handle. The return value will

be formatted exactly in the same way, as in mysql_get_client_info function, however

these two values are not related to each other, and mysql _get _server _info will typically

return different value. For example, on my machine it indicates:

34

PHP

3.4.2 3.23.37

Functions mysql_get_host_info and mysql_get_proto_info are used to get more

information on currently connected host and protocol.

The example below demonstrates usage of rnysql_get_xxxx_info functions:

<html><pre>

<?

$hd = mysql_connect('' 192.168.1.2","root","")

or die("Can not connect");

3.5 Executing Queries
To fetch or alter data, SQL queries are to be executed. "SELECT" queries will obviously

have result, and the description of how to deal with rowsets is provided later in this guide.

Less obvious is, that "DELETE", "INSERT" and "UPDATE" queries will have result as

well, however the result will contain no rowset, but different miscellaneous information,

such as number of rows affected, etc. This section will explain how to execute queries

and how to reclaim those "unobvious" results.

3.5.1 Executing Raw SQL

MySQL API for PHP contains function named rnysql_query, which takes query string

and connection handle as parameters. This function either returns rowset handle,

miscellaneous info, or zero value (in case of errors). PHP itself doesn't differ rowset

handles from miscellaneous info handles, and in terms of PHP returned value is called

"resource handle"; however, different functions are used to fetch data from rowsets, than

to get number of affected rows from miscellaneous handle, etc.

$res= mysql_query(SQL_query_string [, connection_handle])

If connection_ handle parameter is omitted, then the last connection is used. If you plan to

run queries on multiple connections (e.g., copying data from one database server to

another, or synchronizing two database servers), omitting connection_ handle parameter

can lead to confusion, so if you plan to handle two connections in the same PHP script,

specify connection_ handle parameters explicitly.

35

PHP

The SQL _query _string parameter specifies SQL query string to execute. Note, that no

micolon should be put to the end of string.

~ySQL API for PHP contains function mysql affected rows, used to obtain number of - -

rows affected by the query operation. Note, that this one doesn't work for SELECT

statement queries - it works for data-modifying queries only; there's a different function

o obtain number of rows attached to rowset handles (described later in this guide).

$mows= mysql_affected_rows (result_handle)

This function receives result_handle, returned by mysql_query function; $nrows - is an

integer variable assigned to affected rows count.

ote, that when used with UPDATE statement queries, mysql_ajfected_rows can actually

return different number of rows - those records, which already contained desired values

would not be counted.

3.5.2 Formatting Data for Queries

In previous section, we went through description for raw SQL query execution. This

would be enough, when all darn for query is constant, pre-formatted and already prepared

for execution. However, dynamically generated query strings may cause problems, if

formatted incorrectly.

3.5.3 Working with Rowsets

It was mentioned earlier in this guide, that SELECT statement query returns some special

kind of result - rowset handle. In this section, I will describe the common ways to pull

actual data from rowset handles and how to deal with such rowset handles in some other

aspects.

36

PHP

CT statement queries are executed like all other queries - with mysql _query

on:
mysql_query("SELECT xxxx FROM yyyy WHERE zzz:z",

such command execution, $res variable will contain rowset handle, to which

ered rowset is attached. By function mysql _query, the complete rowset is received

SQL server and stored in memory.

rmally, rows are extracted in sequential order, as further rows may not be ready, like

case of unbuffered queries (described in next section). Function mysql _query full

ers received data, so rows can be accessed in random order. You can seek to some

· cular row by using mysq I _data _seek function:

mysql_data_seek (rowset_handle, row_number)
first parameter is actually the result (e.g., $res variable) returned by mysql _query

ction. The second parameter means the destination row number, starting with 0.

unction returns logical value. TRUE will be returned, if row was successfully found and

itioned, FALSE otherwise. All mysqlJetch_xxxx functions will start fetching from

sitioned row, or by default (if row pointer wasn't changed) from the beginning of

Total number of rows in rowset can be obtained by mysql_num_rows function:

nrows = mysql_num_rows (rowset_handle)
mysql _query buffers all data received from MySQL, total number of rows can be

meried simply by specifying rowset_handle, returned from earlier call to mysql_query.

Function mysql_num_jields queries number of fields per row:

$nfields = mysql_num_fields (rowset_handle)

37

PHP

Function mysq l _ num _fields can be useful while retrieving information about table

lumns.

Those two functions query the dimensions of rowset, so by multiplying $njields by

nrows, we get the total number of fields in rowset. This can be used in data size

estimation for tables of equally-typed columns.

3.5.5 Un-buffered Queries

While mysql _query waits for the query to complete and buffers the result,

mysql _ unbuffered _query function returns as soon as query is passed to SQL server.

Sometimes, database size does not allow storing all queried results in memory (e.g.,

database is about 14GB), thus in these cases, for performance issues it's preferable to use

mysql _ unbuffered _query function instead of mysql _query.

$res= mysql_unbuffered_query (query_string [,

connection_ handle])

Un-buffered queries are especially useful when not each queried value is needed (like

search engines).

3.5.6 Fetching Rows from Row sets

The essential way to extract data row, is to use mysqlJetch_row function:

$array= mysql_fetch_row(rowset_handle)

After such execution, $array will contain data row, which can be accessed by numeric

index, starting with 0. E.g., if table contains eight fields: customer _id, title, fname, lname,

addressline, town, zipcode, phone exactly in this order, $array[OJ is assigned to value of

field customer _id, Sarray[l J correspondingly to fname value, and so on.

38

PHP

.7 Querying Information about Columns in Table

some cases, it's necessary to execute queries on unknown tables (e.g., user-entered

ueries). For example, storing property values of complex structures sometimes will

quire different tables to be used with the same code. Thus it would be necessary to

query information about table columns before actual data fetching. Earlier in this guide I

escribed how to get number of rows in row set and how to seek pointer to a particular

row. Different PHP function is used to operate with column pointer:

mysql_field_seek (rowset_handle, column_offset)

The second parameter column_ojfset specifies default offset for column pointer. Field

info fetching function can explicitly specify different field offset, but if not specified, the

default pointer value will be used.

To fetch information of sequential column in a rowset, function mysql Jetch _field is used.

$object= mysql_fetch_field(rowset_handle [, field_offset])

The object value is returned. You can obtain the following object properties:

$object ?name the column/field name

$object ?table name of table, to which row set belongs

$object?max_length maximum value length

$object?def default field value

$object?not_null -1 if column is forced to be not NULL, 0 otherwise

$object ?primary_ key -1 if column is primary key for the table, 0
otherwise

$object ?Unique_ key 1 if column is unique key for the table, 0
otherwise

$object?multiple_key l if column is non-unique key, 0 otherwise

$object?numeric -1 if field is numeric, 0 otherwise

$object?blob -1 if field type is BLOB, 0 otherwise

$object ?type the type of column/field

$object ?Unsigned -1 if value stored in unsigned format, 0 otherwise

Sobject=rzerofill -1 if column is zero-filled, 0 otherwise

39

PHP

course, mysql fetch field function can't get any particular field value - it operates on

lumn basis, not referring any particular row. This function affects neither row pointer,

r rowset data, but only gets basic information about table used in SELECT query, not

nding on its contents.

For convenience, there are some PHP functions to obtain single property of a field:

$tablename = mysql_field_table (rowset_handle, field_offset)

$type string = mysql _field_ type (rowset_ handle, field_ offset)

$fieldlength = mysql_field _len (rowset_ handle, field_ offset)

$sqlflags = mysql_field_flags (rowset_handle, field_offset)

All four functions receive rows et_ handle and field_ offset in parameters.

Note, that purpose of passing jield_~ojfset to mysql field table function is not obvious.

Normally, all fields in a row set belong to the same table, however for some complex

merged rowsets it's possible that single row will contain fields, which belong to different

tables. Of course this is up to a particular PHP application, and if you don't ever plan to

use merged rowsets, you can safely pass Oas the second parameter for mysql field table.

3.5.8 Freeing Rowsets

All rowsets are automatically freed upon script execution completes. However, if PHP

script is intended to receive some huge data arrays, and when especially doing this in

cycle, memory space will be taken and not returned back until script completion.

Normally, if script contains only one call to query, freeing rowset is not necessary,

however this should be done, if query resulting rowset is not necessary anymore before

another query is about to start:

mysql_free_result (rowset_handle)

40

I

PHP

· e, that first parameter is a rowset handle, not result handle. This function should be

to free rowsets, obtained by SELECT statement queries, and should NOT be used

Error Handling

provides two general functions for getting status information on the last MySQL

I function execution. You can either get error number with mysql _errno function, or

full message text with mysql_error.

rrNr = mysql_errno()

errtext = mysql_ error()

unction mysqierrnot) provides numerical status code of the last executed MySQL

ration. If operation was successful, then zero value is returned; otherwise function

rill return error code, generated by MySQL.

function mysql _ errors) returns error message string. If actual meaning of error is not

important for script functionality (e.g. script simply quits on any error occurrence), while

you still want to show the error message up to user, mysql_error function will be useful.

3.7 PEAR
PHP community made an attempt to create open source code repository (like CP AN is for

Perl). As the result, PEAR appeared.

PEAR stands for PHP Extension and Application Repository, and represents a large

collection of object oriented open source PHP classes.

For now, PEAR isn't documented well. Instead, some of information can be found on

PHP official web site, and the other part - as comments in PEAR source code.

To use PEAR, you must have some knowledge of object oriented programming m

relation to PHP. PHP object oriented programming techniques are described here:

41

PHP

http://www.php.net/manual/ en/language. oop. php

·ext sections will briefly describe how to perform database connections using PEAR,

w to execute queries, fetch results and handle erroneous situations .

. 7.1 Getting PEAR to Work

Currently, PEAR is a part of PHP distribution. PEAR sources can be found under the

irectory pear, relative to PHP installation.

To enable PEAR functionality, PHP include path variable should be adjusted to include

PEAR directory as well. For this, open php. ini file in any text editor and seek for

"include _path" variable. Normally on fresh installations this variable will contain no

value, so you just simply have to put full path to PEAR there. Otherwise, if some paths

are already used, you can add PEAR's directory to the end of list. Place a colon to

separate multiple path entries from each other.

In some cases you will need current directory to present in path (for including local files),

so add ".' as additional path entry - this will allow inclusion of files from current script
directory.

3.7.2 PEAR's Database Abstraction Interfaces

PEAR's DB abstraction class allows easy manipulation with databases, not depending on

server type. No matter whether it would be MySQL or PostgreSQL - to port code from

one database to another generally less lines of code will be changed, as opposed to full

database-manipulation code reimplementation, when using traditional approach.

PEAR interface also adds convenient features to work with multiple results and advanced

error handling, by providing corresponding classes and objects. In basic concept, PEAR's

DB abstraction idea is much similar to Perl's DBI module.

42

PHP

e code flexibility is gained at a cost of performance. Typically software developer's

irne is more expensive than machine time, however some software solutions may require

ttcr performance, than PEAR can provide. And if application is planned to use

lySQL-server databases only, it could be reasonable to use standard MySQL API, which

provides generally better performance and is typically easier to use in simple projects.

43

PHP

The "Error Handling" section supplied basics of error handling and reporting.

equential guide part was dedicated to PEAR Database Abstraction interface. While

PEAR is not widely used yet, some users may find it to be useful for portable database

projects, such as web engines, etc.

Finally, this chapter ended with "Summary" part, which described in briefly, that in this

chapter, the complete information this is possibly what you have read already.

44

MySQL

4. MY SQL

.1 Introduction

ince before the dawn of the computer age, people have been using databases. Before

ornputers, a database may have been a Rolodex containing phone numbers of the

important people you knew, or it was a filing cabinet that contained all the personnel

records for the company. Today, databases are computer-based and are found virtually

everywhere. From desktop databases of your record collection to Web-enabled databases

that run large corporations. If MySQL is so good, why hasn't it already caught the

attention of the industry? The answer is that until 1999, Linux and the Open Source

movement were practically unknown. MySQL runs primarily on UNIX-based systems­

though there are ports for almost every platform on the market. Until the Open Source

movement and the availability of UNIX-based operating systems at affordable prices, no

one really looked at MySQL as a contender.

Because of the recent success of Linux, MySQL has grown in popularity. Unfortunately,

there is not much out there in the form of documentation.

MySQL, pronounced "my Ess Que El," is an open source, Enterprise-level, multi­

threaded, relational database management system. That sounds like a lot of sales or

marketing hype, but it truly defines MySQL.

You may not be familiar with some of these terms but, by the end of today, you will be.

MySQL was developed by a consulting firm in Sweden called TeX. They were in need of

a database system that was extremely fast and flexible. Unfortunately (or fortunately,

depending on your point of view), they could not find anything on the market that could

do what they wanted. So, they created MySQL, which is loosely based on another

database management system called mSQL. The product they created is fast, reliable, and

extremely flexible. It is used in many places throughout the world. Universities, Internet

service providers and nonprofit organizations are the main users of MySQL, mainly

because of its price (it is mostly free). Lately, however, it has begun to permeate the

business world as a reliable and fast database system.

45

MySQL

reason for the growth of MySQL's popularity is the advent of the Open Source

ement in the computer industry. The Open Source Movement, in case you haven't

about it, is the result of several computer software vendors providing not only a

ct but the source code as well. This allows consumers to see how their program

res and modify it where they see fit. This, and the popularity of Linux, has given

the use of open source products 'in the business world. Because of Linux's

keting popularity, users are looking for products that will run on this platform.

QL is one of those products. MySQL is often confused with SQL, the structured

_· language developed by IBM. It is not a form of this language but a database system

uses SQL to manipulate, create, and show data. MySQL is a program that manages

ases, much like Microsoft's Excel manages spreadsheets. SQL is a programming

ge that is used by MySQL to accomplish tasks within a database, just as Excel uses

(Visual Basic for Applications) to handle tasks with spreadsheets and workbooks.

programs that manage databases include Microsoft's SQL Server, Sybase Adaptive

rer, and DB2. Now that you know where MySQL came from, look at what it is. To

· with, start with the term database. What is a database? You have probably used one

your lifetime. If you've ever bought anything over the Internet or have a driver's

e, you can be assured that you have used one. A database is a series of structured

on a computer that are organized in a highly efficient manner.

files can store tons of information that can be manipulated and called on when

ed. A database is organized in the following hierarchical manner, from the top down.

start with a database that contains a number of tables. Each table is made up of a

ies of columns. Data is stored in rows, and the place where each row intersects a

~uum is known as a field. Figure 1.1 depicts this breakdown. For example, at your

orite online book store there is a database. This database is made up of many tables.

h table contains specific, common data. These tables are made up of named columns

tell what data is contained in them. When a record is inserted into a table, a row of

has been created. Where a row and a column intersect, a field is created. This how

46

MySQL

Database

Table Table Table

Column I Column

I Column j Column

Figure 1.1 The anatomy of a database.

L is more than just a database. It is a system that manages databases. It controls

can use them and how they are manipulated. It logs actions and runs continuously in

ckground, This is different from what you may be used to. Most people think about

soft Access or Lotus Approach when they think about databases. These are

es, but they are not management systems. A DBMS can contain many databases.

connect to the database server and issue requests. The database server queries its

es and returns the requests to the issuers. Databases, such as Approach and

s, are a step down from this type of system. They share their files with multiple

. but there is no interface controlling the connections or answering requests.

are many uses for a DBMS such as MySQL. Uses can range from help desk

s to Web site applications. The important thing to remember is that MySQL is

enough and quick enough to function in almost any situation. Where it finds itself

comfortable is the Enterprise.

What Is the Enterprise?
Enterprise I'm referring to is not a starship or a space shuttle. The Enterprise is the

in the business world where many large systems interact with one another to

mplish a common goal. Some applications that are at this level of business include

. Microsoft SQL Server, Oracle Si, and Sybase Adaptive Server.

47

MySQL

The computer applications that exist at this level of business tend to have certain

haracteristics. They are usually multiuser in nature-many people can use the same

application at the same time. Another characteristic is that they provide some sort of

security mechanism. The final characteristic is that applications at this level have to be

very flexible. The first characteristic of an Enterprise-level application is that it can be

ed by more than one person at a time. This is a requirement at this level of business.

More than one person may need to have access to business information at a given time.

This is critical for the business to function successfully.

~ySQL meets this requirement. It can have up to 101 simultaneous connections. This

doesn't mean that only 101 people can use this application. It means it can have 101

connections going on at the same time-which is a little different. A connection is the

time it takes for a user to receive the data that he or she has requested. In the case of

MySQL, this is hardly any time at all. Most database systems in the same class as

MySQL allow fewer simultaneous connections. Currently, the only DBMS to offer more

connections is Microsoft SQL Server.

The next characteristic that an Enterprise-level application must have is security. When

dealing with mission-critical information, only people with the need to know should be

allowed to view it. Security keeps malicious people at bay; without it, disasters can

happen. MySQL meets this requirement. The security in MySQL is unparalleled. Access

to a MySQL database can be determined from the remote machine that can control which

user can view a table. The database can be locked down even further by having the

operating system play a role in security as well. Very few databases in the same class as

MySQL can compare to the level of security that MySQL provides.

One other characteristic of an Enterprise-level application is flexibility. How flexible is

the application? Can it change to meet the ever-changing needs of business? How deep

can you make those changes? How hard is it to change? MySQL answers these questions

very well. It is extremely flexible and easy to use. MySQL can run on almost any

platform. If a new CIO wants to change from Windows NT to Linux, fine-MySQL can

adapt. MySQL also comes with the source code. If there are any deep-level changes that

you need to make, you can edit the source and make these changes yourself. If MySQL is

missing a feature that you can't live without, just add it yourself. No other database on the

48

MySQL

market can offer you that kind of flexibility. MySQL also has several application-level

terfaces in a variety of languages. If yours is mainly a Microsoft shop, you can use

ODBC to interact with MySQL. If your company is a UNIX shop, you can use C, Perl, or

JDBC. There is no end to the flexibility that MySQL has to offer. In addition to the

eviously discussed characteristics, databases at the Enterprise level must be able to

·ork together. Data warehousing is a technique that combines all the data in a business.

Because of the flexibility and speed that MySQL has to offer, it can work well in any

ituation,

The Internet has also become a piece of the Enterprise pie. No large corporation is

without an Internet presence. These corporations need databases to sell and compete at

this level of business. MySQL works well as an Internet-based database server. It has

been proven in this arena and is the preferred database of many Internet service

providers. Because of its speed and multiple application interfaces, MySQL is an ideal

choice.

Enterprise applications are the crucial component to a business's decision-making power.

Information must be timely and accurate for a business to perform effectively. To do this,

applications must work quickly. An application is much like a car. It can look pretty on

the outside, but the engine is what gives it its power. The same applies to an application;

If its database engine is weak, so is the application. MySQL is clearly the choice for the

Enterprise.

4.3 What Is a Relational Database?
A relational database, simply defined, is a database that is made up of tables and

columns that relate to one another. These relationships are based on a key value that is

contained in a column. For example, you could have a table called Orders that contains

all the information that is required to process an order, such as the order number, date the

item was ordered, and the date the item was shipped. You could also have a table called

Customers that contains all the data that pertains to customers, such as a name and

address. These two tables could be related to each other.

The relational database model was developed by E.F. Codd back in the early 1970s. He

proposed that a database should consist of data stored in columns and tables that could be

49

MySQL

fated to each other. This kind of thinking was very different from the hierarchical file

.,-stem that was used at the time. His thinking truly revolutionized the way databases are

ated and used.

relational database is very intuitive. It mimics the way people think. People tend to

oup similar objects together and break down complex objects into simpler ones.

elational databases are true to this nature. Because they mimic the way you think, they

e easy to use and learn. In later days, you will discover how easy a relational database

to design and learn.

ost modem databases use a relational model to accomplish their tasks. MySQL is no

different. It truly conforms to the relational model. This further adds to the ease of use of

ySQL.

4.4 The Client/Server Paradigm

The client/server paradigm or model has been around a lot longer than most people think.

If you look back to the early days of programming, you remember or have heard or read

about the large mainframe computer with many smaller "dumb" terminals. These

terminals were called dumb for a reason. No logic or processing was done at the

terminals. They were just receptacles for the output of the mainframe. This was the dawn

of the client/server age, but the term client/server wasn't the buzzword it is today.

As the personal computer became more prevalent, giving rise to the local area network

(LAN), the client/server model evolved. Now processing could be done at the client.

Clients started sharing data.

This data was stored in sharable computers called file servers. Now, instead of all the

processing being done at the server, it was all being done at the client. The server or

centralized computer was just a large storage device. It did little or no processing-a

complete reversal of earlier thinking.

After a couple of years, desktop applications became more powerful. People needed to

share more information more quickly. This gave rise to the more powerful server

machines. These machines answered requests from clients and processed them. These

servers are what you know today as database servers, Web servers, and file servers. This

is when people started calling it client/server computing. It is basically a two-tier design;

50

MySQL

client issues requests, and a server answers them. All the business logic is at the

plication level on the client. Two-tier design is still very prevalent today. This is also

own as a fat client because all the application processing is done at the client level.

After a couple of years, servers became the powerhouses of business organizations

cause of their duties. They were usually top-of-the-line systems with the best hardware

and were tweaked for speed.

o, it was just a matter of time before someone came up with the idea of moving the guts

of their programs to the server. The client would just be a graphical user interface (GUI)

and the main application or business logic would be processed on the server. The server

would then make the necessary calls to other servers, such as database servers or file

servers, as needed. This gave birth to the three-tier or thin client design. In this design, all

processing of the business logic is done at the server level. This allows the more powerful

machine to handle the logic and the slower machines to display the output. Does this

sound familiar? It should-we've come full circle. The heavy processing is again done on

the more powerful, centralized machines, while all the client machines do is display the

output.
The Internet is a prime example of thin client architecture. A very thin client-the

browser-sends requests to a Web server, which sends a response back to the browser.

The browser then displays the requested information-completely full circle.

Again, we are on the verge of a new era in computing. Applications are becoming more

balanced across the network. Because of a decline in computer prices, very good

machines are showing up on the desktop as clients. This allows applications to pick up

the slack and perform some processing.

Server applications are becoming more advanced as well. You can now run functions

remotely and accomplish distributed computing fairly easily. These advancements allow

your applications to be more robust in nature and more useful to your business.

Distributed computing allows client programs to interact with multiple server processes,

which, in tum, can interact with other servers. The server components can be spread

across the resources of the network.

MySQL fits in very well in all these architectures. It performs extremely well in two-tier

or three-tier architecture. It can also perform very well on its own.

51

---·--------- ----

MySQL

.5 Features of MySQL

~ySQL is a full-featured relational database management system. It is very stable and

has proven itself over time. MySQL has been in production for over 10 years. MySQL is

a multithreaded server. Multithreaded means that every time someone establishes a

connection with the server, the server program creates a thread or process to handle that

client's requests. This makes for an extremely fast server. In effect, every client who

connects to a MySQL server gets his or her own thread.

MySQL is also fully ANSI SQL92-compliant. It adheres to all the standards set forth by

the American National Standards Institute. The developers at TeX take these standards

seriously and have carefully adhered to them.

ANSI SQL92 is a set of standards for the Structured Query Language that was agreed on

in 1992 by the American National Standards Institute.

Another valuable feature of MySQL is its online help system. All commands for MySQL

are given at a command prompt. To see which arguments the commands take or what the

utility or command does, all you have to do is type the command and include the -help or

switch. This will display a slew of information about the command.

Yet another feature of MySQL is its portability-it has been ported to almost every

platform. This means that you don't have to change your main platform to take advantage

of MySQL. And if you do want to switch, there is probably a MySQL port for your new

platform.

MySQL also has many different application programming interfaces (APis). They

include APis for Perl, TCL, Python, CIC++, Java (JDBC), and ODBC. So no matter what

your company's expertise is, MySQL has a way for you to access it.

MySQL is also very cheap. For an unlicensed, full version of MySQL, the cost is

nothing. To license your copy will currently cost you $200. This is an incredible deal,

considering what you are getting for your money. Database systems that provide half the

features that MySQL has can cost tens of thousands of dollars. MySQL can do what they

do better and for less.

52

Creating your First Database

5. CREATING DATABASE

5.1 Overview
Creating a database is probably one of the most important, yet least used, of all the

MySQL functions. There are many ways to accomplish this task in MySQL. This chapter

explains the following:

The CREA TE and DROP commands

Using the mysqladmin utility

Adding users to your database

Creating the Meet-A-Geek database

5.2 The CREATE and DROP Commands

When you think of the CREATE and DROP commands, you should envision

earthmoving equipment, dump trucks, and cranes, because these are the tools you use to

create your database. These commands, though seldom used, are the most important.

Hopefully, a lot of thought has gone into the decision making process before either of

these commands is issued.

5.2.1 The CREATE Command
There are many different ways to create databases in MySQL. When you create a

database, you usually will have the entire layout ready. Normally, you would add the

tables immediately after creating the database, but, because this book is a training guide,

you will take it one step at a time.

The first way to create a database in MySQL is to enter the SQL (Structured Query

Language) command CREA TE DAT ABASE>databasename in the MySQL monitor,

where databasename is the name of the database you are creating. Perform the following

steps to create this sample database: The process of creating a database is the same for

most operating systems. When something cannot be done in a particular operating

system, I will make note of that fact. You should have changed your root password for

the MySQL database system. To use the mysqladmin command and to start the mysql

54

Creating your First Database

monitor, you will need to enter this password. For the sake of brevity, I have left that

argument (-p) off my commands.

I. Open a terminal.

2. Change the directory to the mysql directory. If you created a symbolic link, you can

enter

3. cd mysql If you did not create a symbolic link, you will have to enter the full path, as

shown in the following:

cd /usr/local/mysql (assuming MySQL was installed to this default directory).

Note Symbolic links are generally used as shortcuts. They can take a long path name and

condense it into one word, making it convenient for the user to use.

4. Ensure the mysqld daemon is running. To do this, enter the following:

5. bin/mysqladmin ping

6. After you are sure the monitor is running, start the mysql monitor by entering the

following from the command line:

6. bin/mysql

8. At the monitor prompt, type the following:

9. CREATE DATABASE sample_db;

Be sure to type it exactly as it appears. Remember that it is necessary to end the line with

a semicolon or a \g.

Your results should be similar to those in Figure 5 .1.

Figure 5.1 Results of a Successful Database Creation.

55

Creating your First Database

The mysql monitor is not case sensitive when it comes to SQL commands. Thus. tee

following commands are all the same:

Create Database sample_ db;

CrEaTe DaTaBaSe sample_db;

create database sample_ db;
These commands will all create the same database named sample_ db. It is a pop

convention to capitalize all SQL commands-this book will follow that convention. :''"'

important point to remember is that capitalization does matter when it comes to obj

within your database. For example, sample_db is not the same as Sample_DB.

After your database has been successfully created, you can begin to use it. "\\

MySQL?," the command to do this is USE. To use the sample_db, type the folio

from the MySQL monitor prompt: USE sample_ db;

The results of your command should resemble Figure 5.2.

Figure 5.2 Using the New Database.

An important point to remember is that MySQL does not automatically make

database you just created the active database. You must implicitly state which database to

activate with a USE statement.

56

Creating your First Database

.2 The DROP Command

The DROP command is similar to the CREA TE command. Where the latter creates a

tabase, the former deletes one. A word of caution, the SQL DROP command is very

orgiving. There are no confirmation boxes asking if you are sure. The DROP

mmand just deletes the database and all the data contained in it.

This shows some of the power of SQL commands. Once a command has been committed,

there is no going back. (This is not entirely true-you can get your data back from a log

file.) Use extreme caution when using the DROP command.

To use the DROP command, complete the following steps:

1. Make sure that the mysqld daemon is running and that you are in the mysql directory.

-· From the command prompt, type

3. bin/mysql

This will start the MySQL monitor.

4. From the monitor prompt, enter the following:

5. DROP DATABASE sample_db;

This will delete the sample_ db database and ALL the data within it.

The output from the previous steps should look similar to Figure 6.3.

Figure 5.3 Dropping a Database.

57

--------·- --~-~

Creating your First Database

mysqladmin

Like many things in the computer world, there is more than one way to accomplish a task

in MySQL. MySQL offers a powerful utility that can help with the creating and dropping

of a database-mysqladmin. This utility also provides many other useful functions; you

will learn about some of those functions in later lessons. For now, you will create and

drop a database using this utility. Creating a database with mysqladmin is very simple. To

create the sample database do the following:
1. Make sure the mysqld daemon is running and that you are in the mysql directory.

2. Type the following command to create the sample database:

3. bin/mysqladmin -p CREA TE sample_ db

Your output should look like Figure 5 .4.

Figure 5.4 Creating a Database using mysqladmin.

Dropping a database is just as easy. To delete the sample database, do the following:

1. Again, make sure the mysqld daemon is running and that you are in the mysql

directory.
2. Enter the following command to DROP the database:

3. bin/mysqladmin -p DROP sample_db

58

Creating your First Database

Your output should resemble that shown in Figure 5.5.

Figure 5.5 Dropping a Database using mysqladmin.

ou may have noticed that when using mysqladmin, you are prompted before deleting

database. This is very helpful for the beginning database administrator, as well as the

oned veteran. It allows one last moment of reflection before all your data is lost.

,e CREATE and DROP arguments of the mysqladmin utility are not case sensitive, but

name of the database is case sensitive. Another notable point is that you must have

authority to use CREATE and DROP. As root, you have this authority, but if you are

t an administrator, you will not be able to use these commands.

Adding Users
w that you have your database up and running, you should give other users the ability

use the database. Today, you will learn how to add users; To allow a user from your

machine-referred to hereafter as localhost-to gain access to your database, the

must exist in several places. The MySQL RDBMS contains a database named

_;sql. This database holds all the permissions for all MySQL databases. This database

ists of the following tables: User The table that holds all the names, passwords,

, and privileges of all the users of this MySQL RDBMS db. The table that contains

the users, databases, and hostnames for this MySQL RDBMS. host The table that

tains all hostnames, databases, and privileges they hold for this MySQL RDBMS For

59

Creating your First Database

a person to use your database, the hostname of the machine from which he or she will be

connecting must exist in the host table. The user must exist in the user table, and the

database must exist in the db table. Complete the following steps to give another user the

ability to use your database from the local machine.

I. First, make sure the daemon is running and that you are currently in the mysql

directory.

2. Add the hostname and database to the host table. To do this, you must use the MySQL

monitor.

3. bin/mysql -p

4. Next, you must make the mysql database the active database. To do this, type the

following:

5. USE mysql;

Note Remember, commands are not case sensitive, but the database objects are.

6. To add the hostname/database combination to this MySQL RDBMS, you must use an

SQL INSERT command. Type the following from the command line:

6. INSERT INTO mysql VALUES('localhost','sample_db',

8 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y')· . ' ' ' ' ' ' ' ' ' '
Remember that if you do not type a \g, the MySQL monitor will continue your statement

on the following line. This is helpful because it allows for easily readable commands,

and, if you make a mistake, you can use the history key to bring it back. Your output

should look like that in Figure 5.6.

Figure 5.6 Adding a Host to the Host Table.

60

Creating your First Database

The next step is to make sure you have users to add to your database. You will add a user

now.

INSERT INTO user VALUES('localhost','TestUser',

PASSWORD('pass123') 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y') ' ' ' ' ' ' ' ' ' ' ' ' ' '
The PASSWORD function is an intrinsic function, that is, a function that can be called

from within MySQL. The password function takes a string as an argument and encrypts

it. This encrypted word is stored in the database. This prevents prying eyes from easily

discovering the passwords of all your users with a simple query to the mysql database.

It's best to get in the habit of adding users in this manner. You are now ready to add your

database and users to the mysql database. To do this, enter the following:

INSERT INTO db VALUES('localhost','sample_db',

'TestUser' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y') ' ' ' ' ' ' ' ' ' '
Let's review what you have done. To allow a person to use the sample_db database from

the local machine, several things must be in place. You will need the hostname of the

computer the user will be using to connect to your database. In the example, you are

going to use the same machine that has the MySQL RDBMS installed. Your machine

may have a really cool name, but MySQL only requires the name 'localhost' to describe a

local machine. If you were connecting to another mysql database from your machine,

your machine's name would have to be in that database. The second thing that needs to be

in place is a user. You can add users at any time. Because I'm assuming that you have a

fresh installation, I went through the process of adding a user. After the user is added,

you could go ahead and give this user permission to use your database. You did this by

adding the user to the db table.

5.4 Creating the Meet_A_Geek Database

You will create the Meet_ A_ Geek database using the mysqladmin utility. (You will add

users in a later lesson.) You will use this database as an example throughout the book,

building upon it in each lesson. To create the database, do the following:

1. Make sure the daemon is active and that you are in the mysql directory.

2. To create the database, enter the following:

3. bin/mysqladmin -p CREATE Meet_ A_ Geek

61

Adding Tables, Columns, and Indexes to Your Database

6. ADDING TABLES, COLUMNS, AND INDEXES TO YOUR

DATABASE

6.1 Overview
Aside from creating the database, adding columns, tables, and indexes are the most

important steps in the database creation process. Tables and their columns are what

define a database. This chapter presents the following:

• How to create tables and columns

• How to edit existing columns

• What an index is and how it is used

6.2 Creating Tables
Creating in MySQL is a relatively easy task. Like so many other things, there is more

than one way to perform this task. This chapter will cover two ways to add the tables you

came up with in your design session. First, you will use the MySQL monitor. The

monitor is the primary tool to use when interacting with your database. To create your

first table, perform the following steps:

1. Ensure that the mysqld daemon is running (using mysqladmin ping) and that you are in

the mysql directory. (pwd should return /usr/local/mysql, assuming you installed mysql in

the default directory.)

2. Start the MySQL monitor by typing the following:

3. bin/mysql -u root -p Meet_ A_ Geek

You should be prompted for a password. After you enter your password, you will enter

the MySQL monitor with the Meet_A_ Geek database as the active database (see Figure

6.1).

63

Adding Tables, Columns, and Indexes to Your Database

Figure 6.1 Starting MySQL with an Active Database.

You will create the Customers table. To do this, enter the following commands exactly as

they appear. Remember that pressing the Enter key does not execute the command unless

the command ends with a semicolon or a \g.

CREATE TABLE Customers (Customer _ID INT NOT NULL

PRIMARY KEY AUTO_INCREMENT, First_Name VARCHAR(20)

NOT NULL, Last_Name V ARCHAR(30) NOT NULL,

Address V ARCHAR(50), City V ARCHAR(20),

State V ARCHAR(2), Zip V ARCHAR(20),

E_Mail VARCHAR(20), Age INT, Race VARCHAR(20),

Gender ENUM('M', 'F') DEFAULT 'F',

Eye_ Color V ARCHAR(l 0), Hair_ Color V ARCHAR(l 0),

Favorite_Activity ENUM('Programming', 'Eating',

'Biking', 'Running', 'None') DEFAULT 'None',

Favorite_ Movie V ARCHAR(50),0ccupation V ARCHAR(30)

, Smoker CHAR(O));

Your output should like Figure 6.2.

64

Adding Tables, Columns, and Indexes to Your Database

Figure 6.2 Creating a New Table for the Meet_A_ Geek Database.

1. To verify your actions, type the following:

2. SHOW TABLES FROM Meet_A_GEEK; You should see a list of tables available in

the Meet_ A_ Geek database. If you've been following along in the project, there should

only be the Customers table.

3. To see a description of the table, you can type in either of the following:

4. SHOW COLUMNS FROM Customers; or DESCRIBE Customers;

Tip I prefer to use the second command only because there is less to type. Both of the

commands return the same information. After you have verified your data, you can

continue to add tables to the database. MySQL also enables you to create temporary

tables. Temporary tables exist only for the current session and disappear when the

connection is dropped. Temporary tables can only be seen by the connection that created

them. So if I start up MySQL locally and create a temporary table, Joe, on a remote

location, will not see or interact with this table in any way. Temporary tables are useful

tools for storing data temporarily, or when you need to store the results of one query and

compare them to the results of another. To create a temporary table, issue the following

command:

CREATE TEMPORARY TABLE tablename(columnsname data type);

65

Adding Tables, Columns, and Indexes to Your Database

As you can see, creating a temporary table is almost like creating a true table, the only

difference being the word TEMPORARY.

Another useful function that was recently introduced into MySQL is the ability to create a

table based on the results of a query. This is a really nice feature because it allows you to

create a table without typing in all the column data. It also allows you to easily create a

copy of an existing permanent table. If you wanted to create a temporary copy of the

Customers table, you would type the following statement:

CREATE TEMPORARY TABLE SELECT* FROM Customers;

If you wanted to create permanent copy of the Customers table, you could omit the word

TEMPORARY and insert the new tablename after the word TABLE. The following is the

syntax for this action: CREATE TABLE tablename SELECT * FROM Customers;

Another feature worth mentioning is the IF NOT EXISTS parameter. This statement can

be used to check if a table exists before you actually create it. This is extremely helpful

when you need to create a table, but don't know if it exists already. The syntax would

look like the following:

CREATE TABLE IF NOT EXISTS tablename (columnname data type);

Remember that the conditional will only create the table if it doesn't exist. Otherwise it

will do nothing.

Note Naming conventions are a necessary evil. They can help the entire project and bring

new people up to speed faster.

A word needs to be mentioned about naming conventions. Naming conventions are a

good thing. They enable you to have a standardized way of naming objects that you or

others may use. By naming things in a certain way, new people can become familiar with

a database schema quickly and easily. For example, if you named the table that holds all

your customer data Customers and the table that holds all your product data Products, it is

much easier for the new guy or girl to learn than if you named the same tables Table_ O 1

and Table_ 02. The decision is up to you, the database designer. You can name the tables

whatever you choose. I prefer to use the following conventions:

66

Adding Tables, Columns, and Indexes to Your Database

• Tables are plural and field names are singular. The table that holds all my

customer data is Customers, not Customer. It just makes sense to me. My

Customers table, or any table for that matter, holds many different types of the

same object. A table is not just a repository for one of my customers but a

repository for all my customers. It just makes sense to make tables plural.

• The first letter of a name is always capitalized. This just follows grammar rules.

It also looks neater, in my opinion.

• Compound names are separated by an underscore, and the first letter of each

name is capitalized (for example, Meet_A_ Geek). It may be a pain to type, but it

makes things easier to read. Also, spaces and dashes are not allowed in any
database object name.

• Use descriptive names and be consistent. When you create a whole bunch of

tables, it's nice to know that Last_Name will always be Last_Name, no matter in

which table it exists. This is especially helpful when developing programs and

queries that access a lot of tables repeatedly.

I will use this convention set throughout this book. Feel free to use whatever makes you

comfortable.

The rules have been tried and tested over many databases and have proven time and again

that naming conventions are nice-----even if it means a few extra key strokes.

Entering the commands from the MySQL Monitor prompt is one way to create the

schema of a database. Another way to create your schema is with a script. Scripts are text

files that contain all the SQL commands required to build your database. This is probably

the best way to create your database, because you have the ability to recreate your

database (minus the data) at any given time. It also allows for code reuse-because,

generally, computer people are a lazy bunch and the less work you have to do, the better.

To start this process, open your favorite text editor. In the text editor, type the following

statements:

CREATE DATABASE Temp;

USE DATABASE Temp;

CREATE TABLE Test Table

(Test_ID INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

67

68

Adding Tables, Columns, and Indexes to Your Database

Test_Name VARCHAR(30),

Test_Date DATETIME,

Test_ Giver V ARCHAR(30));

INSERT INTO Test Table

(Test_ID, Test_Name, Test_Date, Test_ Giver)

VALUES

(NULL, 'Test' ,'2000-01-01 ', 'Glen');

It is common practice to format your SQL statements in this way. I'm not saying that it is

bad or good. I like it because of the readability. It takes some getting used to, but it is

really clear to see. Of course, you can enter your commands in any way that you like, as

long as they are in the same order and end with a semicolon.

In this script, you create a database named Temp. You then make this the active database.

After that, you create a table called Test_Table. Add four columns to your table. Then

add one row of data. If you were to type this into a monitor session, it would take some

time. And, when you end your session, all your statements would be gone. Save this file

1s Temp.sql. You could use any name here, I chose this name because it is easy to
identify what the script does.

Before you can use this script, there are a few things you must do. First, make sure the

nysqld daemon is running. Second, ensure that you are in the mysql directory. Finally, to

rrocess the script, type the following from the command line:

iin/mysql -p </complete path/Temp.sql

{ ou will be prompted for a password. Use the root password. You must have CREATE

ruthority to run this script. After your file is processed, start up the monitor using Temp

LS the active database. Execute a SHOW TABLE command. You should see the

['est_Table table. Now type in the following command:

,ELECT* FROM Test_Table;

Adding Tables, Columns, and Indexes to Your Database

6.3 Altering Existing Tables

Now that you have created your table, what if you need to go in and change something
you have done?

Changing tables is just as easy as creating them, you just have to know what you want to

change. The column name is very different from the table's name. Changing the column's

type is different from changing a column's name. Check out the following examples to

see how to alter a column's name, type, and the table's name.

6.4 Changing a Column Name

Sometimes you may need to change the name of one of your columns. Maybe you

misspelled it when you created it and didn't notice until a colleague pointed it out. Or

maybe your boss has a naming convention that you need to follow. Either way, changing
a column name is pretty painless.

If you need to change the name of a column, do the following:

1. Make sure the mysqld daemon is running and that you are in the mysql directory.

2. Start up the MySQL monitor as you did before, using-the Meet_A_Geek database as
the active database. '

3. To change the name of the First_Name column to FirstName in the Customers table,
enter the following from the command line:

4. ALTER TABLE Customers

5. CHANGE First_Name FirstName VARCHAR(20);

6. DESCRIBE Customers;

You must specify the data type again, or you will get an error. I used the DESCRIBE

command to verify the changes. It is not necessary to use that command after you change
the table structure-I do it out of habit.

69

Adding Tables, Columns, and1ndexes to Your Database

6.5 Changing a Column Type

Changing a column's type is similar to changing a column's name. You are going to

change the Last Name from a VARCHAR(30) to a VARCHAR(50). Follow steps 1 and 2

of the previous example (changing a column name). Then, instead of typing what is in
step 3, type the following:

ALTER TABLE Customers

CHANGE Last_Name Last Name VARCHAR(50);
DESCRIBE Customers;

Notice that you must use the column name twice. The reason behind this is that MySQL

creates a temporary table to hold your changes. This allows users to continue using the
database as you make changes.

6.6 Renaming a Table

Io change a table's name, make sure the mysqld daemon is running and that you are in

:he mysql directory. After you are sure that everything is up and running, start the
\1ySQL monitor. From the monitor's command line, type the following:

'\LTER TABLE Customers RENAME Customer_Table; SHOW TABLES FROM
v1eet_ A_ Geek;

\ltering an existing table or column is pretty straightforward. A few syntactical gotchas

ire out there, but it is generally an easy process. The hardest part is in the design. Keep

hat in mind when you are planning or estimating the length of a job.

;.7 Deleting/Adding Columns and Tables

.s you can see, when a table or column is created, it is not written in stone and can be

hanged easily. This even applies to adding columns to an existing table or deleting

nwanted columns or tables. The process, again, is pretty straightforward.

70

Adding Tables, Columns, and Indexes to Your Database

6.7.1 Dropping Tables and Columns

To drop or delete tables or columns, make sure the mysqld process is running and that

your current directory is the mysql directory. Start up the MySQL monitor with the

database you need to make changes to as the active database. After you are up and

running, enter the following commands:

To delete an existing table, type

DROP tablename;

Where tablename is the name of the table you want to delete. For example, to delete the

Customers table from the Meet A Geek database, you would type the following

command:

DROP Customers;

This will delete the entire table and all the data inside the table. Use caution when

executing this command. Remember there are no warnings from the monitor. After you

drop something, the only way to get it back is through a backup log.

If you need to delete a column from a table, enter the following command:

ALTER TABLE tablename DROP columnname;

Where tablename is the table that holds the column you want to delete, and columnname

is the column you want to delete.

If you wanted to delete the Last_Name column of the Customers table, you would enter

the following statement:

ALTER TABLE Customers DROP Last_Name;

This will delete the column and all the information that the column stored. Again,

exercise caution when using this command.

71

Adding Tables, Columns, and Indexes to Your Database

6.7.2 Adding Columns

We have already covered adding tables to a database. You can only create and drop a

table. To add a column, you have to use a variation of the ALTER TABLE command.

For example, to add a column to an existing schema, execute the following statement:

ALTER TABLE tablename ADD columnname data type;

Where tablename is the table you need to add the column to, and columnname is the

name of the column to be added. If you wanted to add the Last Name column back to the

Customer table, you would issue the following statement:

ALTER TABLE Customer ADD Last Name VARCHAR(30);

This will add a column to your table. An important point to remember is that the column

you add must have a default value. It cannot be a NOT NULL column. It must contain

NULL or some other default value. The reason for this is fairly simple. If you add a

column that is NOT NULL, how will MySQL know what value to store? It won't, so you

must tell it what to store.

6.8 Using Indexes
An index is a structured file that facilitates data access. What this means to you as the

database designer is this: An index on the correct column will increase a query's speed

considerably. An index works much like alphabetic separator folders in a file cabinet. It

allows you to skip to the part of the alphabet you're looking for. For example, suppose

you needed Glen Brazil's record. You could go directly to the B section without going

through every single record before you get to Mr. Brazil's. This makes your searches

much easier to accomplish, and you're don't waste time looking at records that are not

even close to what you need.

Indexes are wonderful things, but they do have some drawbacks. Too many indexes can

have an adverse effect. In the example, you went directly to the B section. What if instead

of just having letter separators you separated every name. There would be a ton of

separators-almost as many as the number of people you were tracking. This would slow

things down instead of speeding them up. So it is best not to have too many indexes.

72

Adding Tables, Columns, and Indexes to Your Database

Another adverse effect is that adding a row to an indexed table can be a little slower than

adding it to a non-indexed table. Using the example, it takes a little time to put a record in

the correct place. You have to go through the separators and then place it in the right

order within the file drawer. This is much slower than throwing the record anywhere in

the drawer. Retrieval from indexed columns is much quicker. It is up to you to decide if
the good outweighs the bad.

Note Indexes speed up data access for SELECT queries, but they slow it down for

INSERT, UPDATE, and DELETE queries.

6.8.1 Deciding Which Columns to Include in the Index

After you have decided to use indexes, you have to choose the column or columns you

want to index. This can be a little tricky. You want to place an index on the column(s)

that you will use most often as a filter in your queries. These are the columns mentioned

after the WHERE clause. For example, in the SQL statement SELECT LAST_NAME

FROM Customers WHERE Customer _ID < 10, a potential column to index would be the

Customer_ID column. Remember, you are going to index the columns that you use most

in your queries. If you perform a lot of queries in which you are looking for the last name

of a customer, you might want to index the Last_Name column.

Indexes also work better on columns that contain unique data. That is one of the reasons

that keys are usually your best choices for indexes. That could also be one of the reasons

that people confuse keys and indexes. A key helps define the structure of a database,

whereas an index just improves performance.

One index can be made up of one or more columns. For example, in the Meet_A_Geek

project, you can have an index that is based on the Last_Name and First_Name columns.

This would be useful if you use both of these as criteria in the WHERE clause of an SQL

statement.

You can also have more than one index in a table. In fact, you can have up to 16 indexes

in one table. You should never have to use that many indexes. If you do, take a serious

look at your database design. You may have some problems. However, using a couple of

indexes in a table, based on the criteria I stated previously, is not uncommon.

73

Adding Tables, Columns, and Indexes to Your Database

6.8.2 Creating an Index

By default, MySQL creates an index for you if you declare a column as a primary key.

There is no need to create an index on this column; otherwise, you would have two

indexes on the same column. The syntax for creating a column looks like the following:

CREATE INDEX indexname ON tablename(columnnamelist);

The indexname is anything you choose. Again, use something descriptive to help you

remember what makes up this index. Notice the keyword ON. Make sure you don't forget

this word when creating an index-you are sure to get a syntax error if you do. The

keyword ON is followed by the name of the table that holds the column that is being

indexed. The columnnamelist is a list of columns that will make up your index.

Remember, an index can be made up of one or more columns.

You can also use the ALTER TABLE statement to add an index. For example, if you

wanted to add an index to the Last_Name column of the Customers table, you would

enter the following:

ALTER TABLE Customers ADD INDEX (IDX_Last_Name);

This same syntax is used if you want to add a primary key to a table that does not have

one. That statement would look like the following:

ALTER TABLE Customers ADD PRIMARY KEY (Customer_ID);

Creating an index is a simple process. Indexes are one of the key factors to a fast

database, and MySQL does a fantastic job with them. Remember not to overuse indexes

because, as with all things, moderation is the key.

6.8.3 Deleting Indexes

Deleting an index is as simple as creating one. The syntax is the same as deleting a

column or a table. You can use either of the following statements:

DROP INDEX indexname ON tablename;

or

ALTER TABLE tablename DROP INDEX indexname;

They both produce the same effect. Be aware that if you drop a column that makes up an

index, that index may be dropped too. If one column of a multi-column index is dropped,

74

Adding Tables, Columns, and Indexes to Your Database

mly the dropped column will be deleted from the index. If all the columns that make up

in index are dropped, the entire index is dropped as well.

f you need to drop a PRIMARY KEY, use the following syntax:

1,LTER TABLE tablename DROP PRIMARY KEY;

<.emember that a table can only have one primary key. If you decide that a different

.olumn is better suited as a primary key, you must drop the original one first.

75

Making your Data Normal

7. MAKING YOUR DATA NORMAL

7.1 Introduction
When structuring a database, putting the right columns in the right tables can be a

daunting task. When you finally accomplish this task, you may find out that you have

logic problems within your database, especially if you come from the old world of non­

relational databases where everything was contained in the same file. Using the old idea

of keeping all your data together in one table in a relational databases is a bad idea. It's

almost sacrilegious. A set of rules was established to help database designers. These

guidelines lead to the design of truly relational databases without logic flaws. Applying

these rules to your database structure is referred to as normalizing your data,

_ normalization. What normalization is and the benefits it can provide. The degrees of

normalization.

7.2 What Is Normalization?

Normalization is a set of rules to help database designers develop a schema that

minimizes logic problems. Each rule builds on the previous rule. Normalization was

adapted because the old style of putting all the data in one place, such as a file or

database table, was inefficient and led to logic errors when trying to manipulate the

contained data. For example, look at the Meet_ A_ Geek database. If you stored all the

data in the Customers table, the table would look like something like the following:

• Customers

• Customer ID

• Last Name

• First Name

• Address

• Product Name 1

• Product Costl

• Product Picture 1

76

Making your Data Normal

• Product N ame2

• Product Cost2

• Product Picture2

• Order Date

• Order_ Quantity

• Shipper_Name

The table has been abbreviated, but it still portrays the general idea. Now, in your

Customers table, how could you add a new customer? You would have to add a product

and an order as well. What if you wanted to run a report that shows all the products you

sell? You could not easily separate products from customers in a simple SQL statement.

The beauty of a relational database, if designed correctly, is that you can do just that.

Normalization also makes things easier to understand. Humans tend to break things down

to the lowest common denominator. We do it with almost everything-from animals to

cars. We look at a big picture and make it less complex by grouping similar things

together. The guidelines that normalization provides create the framework to break down

the structure. In your sample database. It is easy to see that you have three distinct

groups: customers, products, and orders. Following normalization guidelines, you would

create your tables based on these groups. The normalization process has a name and a set

of rules for each phase of breakdown/grouping. This all may seem a little confusing at

first, but I hope you will understand the process as well as the reasons for doing it this

way. Most people are happy with a spreadsheet that holds all their pertinent data. The

time it takes to break down your schema by going through the normalization process is

well spent. It will require less time to go through the process than it would to cut and

paste your columns of data so they fit the report the boss wants.

Another advantage to normalizing your database is space consumption. A normalized

database will take up less space overall than one that is not normalized. There is less

repetition of data, so the actual disk space that is consumed holding your data will be
much smaller.

77

Making your Data Normal

7.2.1 Degrees of Normalization

There are basically three steps of normalization. They are First Normal Form (INF),

Second Normal Form (2NF) and Third Normal Form (3NF). Each form has its own set of

rules. After a database conforms to a level, it is considered normalized to that form. Say,

for example, that your database conforms to all the rules of the second level of

normalization. It is then considered to be in Second Normal Form. Sometimes it is not

always the best idea to have a database conform to the highest level of normalization. It

may cause an unnecessary level of complexity that could be avoided if it were at a lower
form of normalization.

Note There are a total of nine different rules of normalization. They are First Normal

Form, Second Normal Form, Third Normal Form, Boyce-Codd Normal Form, Fourth

Normal Form, Fifth Normal Form or Join-Projection Normal Form, Strong Join­

Projection Normal Form, Over-Strong Join-Projection Normal Form, and Domain Key

Normal Form. This book will only cover the first three forms of normalization.

7.2.2 First Normal Form

The rule of First Normal Form states that all repeating columns should be eliminated and

put into separate tables. This is a pretty easy rule to follow. Take a look at the schema for

the Customers database in Table 7.1.

Table 7.1 Schema for Customers Database
Customers
Customer ID
Last Name
First Name
Address
Product Namel
Product Cost!
Product Picture 1
Product Name2
Product Cost2
Product Picture2
Order Number
Order Date
Order Quantity
Shipper Name

78

Making your Data Normal

In Table 7.1, you have several repeating columns. They mostly deal with products. So,

according to the rule, you must eliminate the repeaters and give them their own table.

That's easy to do. The resulting database tables are shown in Table 7.2.

Table 7.2 Eliminating Data Repetition in a Database

Customers Products
Customer ID Product Name
Last Name Product Cost
First Name Product Picture
Address
Order Number
Order Date
Order Quantity
Shipper Name

Now there are two tables. There still is a problem. There is no way currently to relate the

data from the original table to the data in the new table. To do that, a key must be added

to the second table to establish the relationship. To do this, add a primary key to the

Products table called Product_ID, and add a key to Customers table that relates the

Products table to the Customers table. The Product ID field is an ideal candidate. The

resulting tables resemble Table 7.3:

Table 7.3 First Normal Form

Customers Products
Customer ID Product Name
Last Name Product Cost
First Name Product Picture
Address
Order Number
Order Date
Order Quantity
Shipper Name

79

Making your Data Normal

Now, a one-to-many relationship has been established. This represents what the database

will be doing in real life. The client will have many products to sell, regardless of how

many customers there are to buy them. Also, a customer still needs to have ordered a

product to be a customer. You are no longer obligated to add a new customer every time

you add a new product to your inventory. Bringing a database to First Normal Form

solves the multiple column heading problem. Too often, inexperienced database

designers will do something similar to the non-normalized table in today's first example.

They will create many columns representing the same data over and over again. In an

electric company in the Northwest, there was a database that tracked nuclear power plant

parts. The table in their database, which contained the part numbers, had a repeated

column that numbered well into the 30s. Every time a new item was stored for this part,

they created a new column to store the information. Obviously, this was a poorly

designed database and a programmer's/administrator's nightmare. Normalization helps to

clarify the database and break it down into smaller, more understandable pieces. Instead

of having to understand a huge, monolithic table that has many different aspects, you

only have to understand smaller, more tangible objects and the simple relationships they

share with all the other smaller objects. Needless to say, a better understanding of how a

database works leads to a better utilization of your assets.

7.2.3 Second Normal Form
The rule of Second Normal Form states that all partial dependencies must be eliminated

and separated into their own tables. A partial dependency is a term to describe data that

doesn't rely on the table key to uniquely identify it. In the sample database, the order

information is in every record. It would be simpler to use just the order number. The rest

of the information could reside in its own table. After breaking out the order information,

your schema would resemble Table 7.4.

80

Making your Data Normal

Table 7.4 Eliminating Partial Dependencies-Second Normal Form

Customers Products Ord res
Customer ID Product ID Order Number
Product ID Order Date Product Name
Order Number Product Cost Oreder Quantity
Last Name Product Picture
First Name
Address
Shipper Name

Again, by arranging the schema in this way, you have reflected the real world in your

database. You would have to make some changes for your business rules to be applicable,

but for illustrating normalization, this is okay.

By now you should be noticing some things. The table that was once hard to read and

understand is now making more sense. Relationships between the information that is

going to be stored is clearer and easier to understand. Things appear to be more logical.

These are some of the advantages to normalizing a database.

One of the major disadvantages of normalization is the time it takes to do. Most people

are busy enough, and to spend time making sure their data is normalized when it works

just fine is perceived as a waste of time. This is not so. You will spend way more time

fixing a broken, non-normalized database than you would a normalized, well-designed

database.

By achieving the Second Normal Form, you enjoy some of the advantages of a relational

database. For example, you can now add new columns to the Customers table without

affecting the Products or the Orders tables. The same applies to the other tables. Getting

to this level of normalcy allows data to fall naturally into the bounds for which it was

intended.
After you have reached the level of Second Normal Form, most of the logic problems are

taken care of.

81

Making your Data Normal

You can insert a record without excess data in most tables. Looking closer at the

Customers table, there is a Shipper_Name column. This column is not dependant on the

customer. The next level of normalization will explain how to clear this up.

7.2.4 Third Normal Form

The rule of Third Normal Form is to eliminate and separate any data that is not a key.

This column must depend on the key for its value. All values must be uniquely identified

by the key. In the sample database, the Customers table contains the Shipper_Name

column. The Shipper_Name is not uniquely identified by the key. You could separate this

data from the current table and put it into its own table. Table 7.5 shows the resulting
database schema:

Table 7.5 Eliminating Non-Key Data for Third Normal Form

Customers Products OrdreMaster Order Detail Smpper
Product JD Order Number Order Detai I ID Shippim
Order Name Product Date Order Number Shipping
Product Cost Oreder Quantity Oredr Date
Product Picture Order Quantity

Customer ID
Product ID
Order Number
Shipper_JD
Last Name
First Name
Address

Now all your tables are in Third Normal Form. This provides the most flexibility and

prevents any logic errors when inserting or deleting records. Each column in the table is

uniquely identified by the key, and no data is repeated. This provides a clean, elegant

schema that is easy to work with and easy to expand.

82

Making your Data Normal

7.3 How Far to Take Normalization
The next decision is how far to go with normalization. Normalization is a subjective

science. It is up to you to determine what needs to be broken down. If your database is

just going to provide data to a single user for a simple purpose and there is little to no

chance of expansion, taking your data to 3NF might be a little extreme. The rules of

normalization exist as guidelines to create easily manageable tables that are flexible and

efficient.
There are times when normalizing your data to the highest level doesn't make sense. For

example, suppose you added another address column to your database. It is quite normal

to have two lines for an address. The table schema might look like the following:

• Customer ID

• Last Name

• First Name

• Addressl

• Address2
According to the rules that would make this table compliant with First Normal Form, the

address columns would be taken out and replaced with the key for the new table. The

following is the resulting schema:

Customer ID Adderss ID
Last Name Customer ID
First Name Address

The database is now First Normal Form compliant. Your customers can have more than

one address.
The problem that exists is that you have overcomplicated a simple idea because you were

trying to follow the rules of normalization. In the example, the second address is totally

optional. It is there just to collect information that might be used for contact information.

There is really no need to break it into its own table and force the rules of normalization

on it. In this instance, taking it to a form of normalcy defeats the purpose for which the

data is used. It adds another layer of complexity that is not needed. A good way to

determine if your normalizing is getting carried away is to look at the number of tables

83

Making your Data Normal

you have. A large number of tables may indicate that you are normalizing too much.

Take a step back and look at your schema. Are you breaking things down just to follow

the rules, or is it a practical breakdown. These are the things that you, the database

designer, need to decide. Experience and common sense will guide you to make the right

decisions. Normalizing is not an exact science; It is a subjective one.

There are six more levels of normalization that have not been discussed so far. They are

Boyce-Codd Normal F01m, Fourth Normal Form (4NF), Fifth Normal Form (5NF),

Strong Join-Protection Normal Form, Over-Strong Join-Protection Normal Form, and

Domain Key Normal Form. These forms of normalization may take things further than

they need to go. They exist to make a database truly relational. They mostly deal with

multiple dependencies and relational keys. If you are familiar with this level of

normalization .

84

REFERENCES

[1]. http://www.w3.org/TR/html401/struct/global.html#edef-DIV

[2]. http://www.w3.org/TR/html401/struct/global.html#edef-SPAN

[3]. The Web Wizard's Guide to XML Cheryl Hughes Addison-Wesley 2003 (covers

both XML and CSS)

[4]. http://www.carlops.net

[5]. http://www.rfc-editor.org/rfc.html

[6]. http://www.w3.org

[7]. http://library.ukc.ac.uk/library/lawlinks

[8]. http://elj.warwick.ac.uk/jilt/cases/97 _2pitm/default.htm

[9]. http://webjcli.ncl.ac.uk/articles 1 /widdis 1.html

[10]. http://www.patent.gov.uk/

[11]. http://www.patent.gov. uk/copy/index.htm

[12]. http://www.wipo.int/

[13]. http://www.cyber-rights.org/reports/demon.htm

[14] .http://www.law.ed.ac.uk/links/

[15].http://newsvote.bbc.eo.uk/hi/english/uk/newsid_696000/696289.stm

[16]. http://newsvote.bbc.eo.uk/hi/english/sci/tech/newsid _ 695000/695596.stm

[17] .http://www.wired.com/news/politics/O, 1283,20107 ,00.html

[18].http://www.wired.com/news/politics/O, 1283,20107 ,00.html

[19]. http://www.wired.com/news/politics/O, 1283, 18764,00.html

[20]. http://www.cyber-rights.org/reports/demon.htm

85

	Page 1
	Images
	Image 1
	Image 2

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Page 3
	Titles
	ACKNOWLEDGEMENTS

	Page 4
	Titles
	ABSTRACT

	Page 5
	Titles
	CONTENTS

	Page 6
	Page 7
	Tables
	Table 1

	Page 8
	Page 9
	Titles
	I.INTERNET
	1.1 Introduction
	1.2 The Nature of the Internet

	Page 10
	Titles
	1.3 The Internet - a brief History
	1.4 The Origins of the Internet

	Page 11
	Titles
	1.5 The Growth of the Internet
	1.6 Internet Architecture

	Tables
	Table 1

	Page 12
	Titles
	1. 7 Internet Architecture

	Images
	Image 1
	Image 2

	Page 13
	Titles
	Internet
	!.L
	1.8 How the Internet is Built- The Client-Server Architecture
	I
	.Ł...
	',
	5

	Images
	Image 1

	Page 14
	Titles
	1.9 The Internet and What you can do with it

	Tables
	Table 1

	Page 15
	Titles
	1.10 World Wide Web

	Images
	Image 1
	Image 2

	Page 16
	Titles
	--------,--

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 22
	Titles
	2. INTRODUCTION TO THE APACHE SERVER
	2.1 Overview
	2.2 Introduction

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Titles
	2.3 Configuring

	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Titles
	2.4 Starting, Stopping, Restarting

	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Titles
	2.5 Integrating Apache with the Rest of Your Business

	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Titles
	3. PHP
	1 Introduction

	Images
	Image 1

	Page 37
	Titles
	. 2 Adding MySQL Support to PHP

	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1

	Page 39
	Titles
	3.3 Using MySQL API in PHP

	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	3.4 Obtaining Information by Connection Handle

	Images
	Image 1

	Page 3
	Titles
	3.5 Executing Queries

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	Error Handling
	3.7 PEAR

	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	4. MY SQL
	.1 Introduction

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	What Is the Enterprise?

	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	4.3 What Is a Relational Database?

	Images
	Image 1

	Page 18
	Titles
	4.4 The Client/Server Paradigm

	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Titles
	.5 Features of MySQL

	Images
	Image 1

	Page 21
	Titles
	5. CREATING DATABASE
	5.1 Overview
	5.2 The CREATE and DROP Commands

	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	--------·- --~-~

	Images
	Image 1
	Image 2

	Page 26
	Titles
	Adding Users

	Images
	Image 1
	Image 2

	Page 27
	Titles
	. ' ' ' ' ' ' ' ' ' '

	Images
	Image 1
	Image 2

	Page 28
	Titles
	' ' ' ' ' ' ' ' ' ' ' ' ' '
	' ' ' ' ' ' ' ' ' '
	5.4 Creating the Meet_A_Geek Database

	Images
	Image 1

	Page 29
	Titles
	6. ADDING TABLES, COLUMNS, AND INDEXES TO YOUR
	6.1 Overview
	6.2 Creating Tables

	Images
	Image 1

	Page 30
	Images
	Image 1
	Image 2
	Image 3

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	6.3 Altering Existing Tables
	6.4 Changing a Column Name

	Images
	Image 1

	Page 3
	Titles
	6.5 Changing a Column Type
	6.6 Renaming a Table
	;.7 Deleting/Adding Columns and Tables

	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	6.8 Using Indexes

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Titles
	7. MAKING YOUR DATA NORMAL
	7.1 Introduction
	7.2 What Is Normalization?

	Images
	Image 1

	Tables
	Table 1

	Page 10
	Tables
	Table 1

	Page 11
	Images
	Image 1

	Tables
	Table 1

	Page 12
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Images
	Image 1

	Tables
	Table 1

	Page 16
	Titles
	7.3 How Far to Take Normalization

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 17
	Images
	Image 1

	Page 18
	Titles
	REFERENCES

	Images
	Image 1

