
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

DATA BANK PROGRAMMING FOR CLEANING

COMPANY

Graduation Project

COM 400

Student:

Supervisor:
Barış Çelik

Ümit SOYER

Nicosia - 2008

ACKNOWLEDGEMENTS

"First , I would like to thank my supervisor Ümit Sayer for his invaluable advice and belief in

ıy work and myself over the course of this Graduation Project ..

Second,! would like to express my gratitude to Near East University for the scholarship that

made the work possible.

Finally ,I would also like to thank all my friends for their advice and support. "

ABSTRACT

The aim of this project is that provide getting extra time and efficiency for cleaning

ompanies.The basic idea is that input the informations easily into the computer and find out

the informations from the computer in the shortest time. Also integrity and reliability is so

important between the records.
So in my project, after getting the customer orders, an invoice is prepared for this job.Then

employees' records are set up for this job and materials are significated for each

employee.Now we can find out the records about which employees worked in significant job

and which cleaning materials were used for this job easily and efficiently.Which customer has

how much money dept,when did the customer take the invoice and when did the customer

give the receipt to the company.All these informations are gotten easily and we can keep the

integrity between the records and we can get the reliability about these records.

Today's technology provides so many eases for our life.Especially we can see these eases in

working life and its companies.Most of the companies needs extra time and efficiency to

serve better their customers.Computers also main part of this efficiency and getting extra

time.Companies need to save and use the records on necessary time about theirs

customers,materials,bills,employees .. and so on.Also companies need to search and find out

any information about these saved records in short time.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .i
ABSTRACT .ii
TABLE OF CONTENTS .iii
INTRODUCTION 1
CHAPTER 1 2

DELPHI BASICS 2
1. 1 What is Delphi? 2
1 .2 A Brief History of Borland's Delphi 3
1 .3 Writing your first Delphi program 4
1 . 4 Delphi data types 7
1 .5 Programming logic 15
1 .6 Repeating sets of commands 22
1.7 Dates and times 26
1.8 Standard tab GUI components 33

CHAPTER2 40
MICROSOFT ACCESS 40

2. 1 Getting Started 40
2. 1. 1 A Few Terms 40
2.1.2 Getting Started 41
2. 1 .3 Blank Access database 41
2. 1 .4 Access database wizards, pages, and projects 42
2. 1 .5 Open an existing database 43
2. 1.6 Converting to Access 2000 .43

2.2 Screen Layouts 44
2.2. 1 Database Window 44
2.2.2 Design View 44
2.2.3 Datasheet View 46

2.3 Creating Tables 46
2.3. 1 Introduction to Tables 46
2.3.2 Create a Table in Design View .47
2.3.3 Field Properties 49
2.3.4 Primary Key 53
2.3.5 Indexes 53
2.3.6 Field Validation Rules 54

2.4 Datasheet Records 55
2.4. 1 Adding Records 55
2.4.2 Editing Records 56
2.4.3 Deleting Records 56
2.4.4 Adding and Deleting Columns 56
2.4.5 Resizing Rows and Columns 56
2.4.6 Freezing Columns 57
2.4.7 Hiding Columns 57
2.4.8 Finding Data in a Table 58
2.4.9 Replace 59
2.4.10 Check Spelling and AutoCorrect 60
2.4. 11 Print a Datasheet 60

2.5 Table Relationships 60
2.6 Queries 63

111

2.6. 1 Introduction to Queries 63
2.6.2 Create a Query in Design View 63
2.6.3 Query Wizard 66
2.6.4 Find Duplicates Query 67
2.6.5 Delete a Query 70

2.7 Forms 70
2.7.1 Create Form by Using Wizard 70
2.7.2 Create Form in Design View 73
2.7.3 Adding Records Using A Form 74
2. 7 .4 Editing Forms 75

2.8 More Forms 77
2.8.1 Multiple-Page Forms Using Tabs 77
2.8.2 Conditional Formatting 77
2. 8 .3 Password Text Fields 78
2. 8 .4 Change Control Type 79
2.8 .5 Multiple Primary Keys 79

CHAPTER3 80
USER MANUAL 80

3.1 Relationships 80
3 .2 Main Menu 81
3.3 Search Menu 83

3 .3 .1 Customers page 83
3 .3 .2 Bill Page 84
3 .3 .3 Employees Pages 85
3.3.4 Material Page 86
3 .3 .5 Cleaning Kind Page 87

CONCLUSION 88
REFERENCES 89
APPENDIX 91

ıv

INTRODUCTION

Many cleaning company can have many employees and many customers.Controlling

these customers registration is not easy without a computer.If a company is big and

have so many customers ,reaching its records by a computer provides so many

advantages.For example the company can find out all the informations about its records

that when the employees were worked ,what kind of cleaning materials were used,how

much money has a customer dept , and like these; just typing a customer surname can

be reached.Also The company can serve better and efficiently using the computer.But

managing all these records is not easy.A good designed program can help the company

about these better serving and efficiency.

Cleaning companies have to organize efficiently when a customer wants to

serve.What kind of cleaning,how many employee will need,wich materials will be used

have to be known to provide the best serve.In a program all these information can

organize as correspond.Then after finish the work the program can calculate the

customers balance and has to show the authorized person for these payment.

The objective of this project is to investigate the development of a data bank

programming for cleaning companies.The project consist of introduction ,three chapters

and conclusion.

Chapter one briefly explains what is delphi ,how we can use delphi and its components

Chapter two about Microsoft Access and creating new database.In chapter two we can

see how tables are created ,how relationships are connected and important of integrity in

a database programming

Chapter three explains database programming for a cleaning company and its

components .

1

CHAPTER 1

1 DELPHI BASICS

1.1 What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the tools

you need to develop test and deploy Windows applications, including a large number of

so-called reusable components.

Borland Delphi provides a cross platform solution when used with Borland Kylix -

Borland's RAD tool for the Linux platform.

2

1.2 A Brief History of Borland's Delphi

PascalDelphi uses the language Pascal, a third generation structured language. It is what

is called a highly typed language. This promotes a clean, consistent programming style,

and, importantly, results in more reliable applications. Pascal has a considerable

heritage:

BeginningsPascal appeared relatively late in the history of programming languages. It

probably benefited from this, learning from Fortran, Cobol and IBM's PL/1 that

appeared in the early 1960's. Niklaus Wirth is claimed to have started developing Pascal

in 1968, with a first implementation appearing on a CDC 6000 series computer in 1970.

Curiously enough, the C language did not appear until 1972. C sought to serve quite

different needs to Pascal. C was designed as a high level language that still provided the

low level access that assembly languages gave. Pascal was designed for the

development of structured, maintainable applications.

The 1970'sin 1975, Wirth teamed up with Jensen to produce the definitive Pascal

reference book "Pascal User Manual and Report". Wirth moved on from Pascal in 1977

to work on Modula - the successor to Pascal.

The 1980'sin 1982 ISO Pascal appears. The big event is in November 1983, when

Turbo Pascal is released in a blaze of publicity. Turbo Pascal reaches release 4 by 1987.

Turbo Pascal excelled on speed of compilation and execution, leaving the competition

in its wake.

From Turbo Pascal to DelphiDelphi, Borland's powerful Windows? and Linux?

programming development tool first appeared in 1995. It derived from the Turbo

Pascal? product line.

As the opposition took heed of Turbo Pascal, and caught up, Borland took a gamble on

an Object Oriented version, mostly based on the Pascal object orientation extensions.

The risk paid off, with a lot of the success due to the thought underlying the design of

the IDE (Integrated Development Environment), and the retention of fast compilation

and execution.

This first version of Delphi was somewhat limited when compared to today's

heavyweights, but succeeded on the strength of what it did do. And speed was certainly

a key factor. Delphi went through rapid changes through the 1990's.

3

Delphi for Microsoft .NetFrom that first version, Delphi went through 7 further

iterations before Borland decided to embrace the competition in the form of the

Microsoft? .Net architecture with the stepping stone Delphi 8 and then fully with Delphi

~005 and 2006. Delphi however still remains, in the opinion of the author, the best

development tool for stand alone Windows and Linux applications. Pascal is a cleaner

and much more disciplined language than Basic, and adapted much better to Object

Orientation than Basic.

1.3 Writing your first Delphi program

Different types of application

Delphi allows you to create GUI (Graphical User Interface) or Console (text-only)

applications (programs) along with many other types. We will concern ourselves here

with the common, modem, GUI application.

Delphi does a lot of work for us - the programmer simply uses the mouse to click, drag,

size and position graphical parts to build each screen of the application.

Each part (or element) can be passive (displaying text or graphics), or active

(responding to a user mouse or keyboard action).

This is best illustrated with a very simple program.

Creating a simple 'Hello World' program

When you first run Delphi, it will prepare on screen a new graphical application. This

comprises a number of windows, including the menu bar, a code editor, and the first

screen (form) of our program. Do not worry about the editor window at the moment.

The form should look something like this :

tI ~
I
t

1t.·Form1 'i:,t

We have shown the form reduced in size for convenience here, but you will find it

larger on your computer. It is a blank form, onto which we can add various controls and

information. The menu window has a row of graphical items that you can add to the

4

form. They are in tabbed groups : Standard, Additional, Win32 and so on.

We will select the simplest from the Standard collection. Click on the A image to

select a Label. This A will then show as selected:

Having selected a graphical element, we then mark out on the form where we want to

place the element. This is done by clicking and dragging. This gives us our first form

element:

!

ıı• •..••. : •••.• :•;•. ::: ::··.
ıı·· ~: : : " ~b~l1 · . . . ·•· ~ : . •. .
'ı. : : : : •........ •. . . .• : : ...

Changing graphicalelement properties
Notice that the graphical element contains the text Labell as well as resize comers. The

text is called the Caption, and will appear when we run the application. This Caption is

called a Property of the button. The label has many other properties such as height and

width, but for now, we are only concerned with the caption.

Let us blank out the caption. We do this in the window called the Object Inspector

(available under the View menu item if not already present):

Align ialN one....................................... [""'"'""""""'""""""

....01ig.n..rn~n..t... "" r:ı~~ftJLl_s.(ify., ...
1±1.6.nchors . ,[akleft,ak T opJ .

...AutoSize __ ıT rue _ . . .
BiDiMode '.bdLeftT oRight

Adding an active screen element

If we now return to the Standard graphical element collection, and select a button,

shown as a very small button with OK on it, we can add this to the form as well:

"7~f 1 ·lı,9A't- orm :,§,

We now have a label and a button on the form. But the button will do nothing when

pressed until we tell Delphi what we want it to do.

So we must set an action, called an Event, for the button. The main event for a button

is a Click. This can be activated simply by double clicking the button on the form.

This will automatically add an event called On Click for the button, and add a related

event handler in the program code:

Unit1 I

l
pi:ocedure
begin

I
lend;

TForml.ButtonlClick(Sender: TObject);

This 'skeleton' code will not do anything as it stands. We must add some code. Code

that we add will run when the button is clicked. So let us change the label caption when

the button is pressed.

As we type, Delphi helps us with a list of possible options for the item we are working

on. In our instance, we are setting a Label caption:
·İlIi
llru~I

procedure TForml.ButtonlClick(Sender: TObject);
begin

Lab e l 1 . C aj -········ ... _ __ .. ··-····-···· ·-·--- ··············-····-···-···--····· -······ -··-·
end; property Caption : TCaption;

property Canvas : TCanvas;
end.

Here you see that Delphi has listed all appropriate actions that start with ca. If we press

Enter, Delphi will complete the currently selected item in the list. We assign a text

value 'Hello World' to the caption property. Note that we terminate this line of code

with a ; - all Delphi code statements end with this indicator. It allows us to write a

6

ommand spread across multiple lines - telling Delphi when we have finished the

ommand.

~

11vrocedure
TForml. Button1Click (Sender: TObject);

begin
Labell.Caption := 'Hello World';

f\end;

And we have now finished our very simple action - we will set the label to 'Hello

World' when the button is pressed.

Running our first program
To run the program, we can click on the Green triangle (like a Video play button), or

press F9. When the program runs it looks like this:

"T.! Form1 "'.{;' r,J 'o 11:JoJ[fil

~ _ p,ess me -~

When we click on the button, we get:

jii Press _me il
Hello \ı./orld

and our program has set the Label text as we requested.

Note that the program is still running. We can click as many times as we like with the

same outcome. Only when we close the program by clicking on the top right X will it

terminate.

1.4 Delphi data types

Storing data in computer programs

For those new to computer programming, data and code go hand in hand. You cannot

write a program of any real value without lines of code, or without data. A Word

7

Processor program has logic that takes what the user types and stores it in data. It also

es data to control how it stores and formats what the user types and clicks.

Data is stored in the memory of the computer when the program runs (it can also be

stored in a file, but that is another matter beyond the scope of this tutorial). Each

memory 'slot' is identified by a name that the programmer chooses. For example

LineTotal might be used to name a memory slot that holds the total number of lines in a

ord Processor document.
The program can freely read from and write to this memory slot. This kind of data is

alled a Variable. It can contain data such as a number or text. Sometimes, we may

have data that we do not want to change. For example, the maximum number oflines

that the Word Processor can handle. When we give a name to such data, we also give it

its permanent value. These are called constants.

Simple Delphi data types
Like many modem languages, Delphi provides a rich variety ofways of storing data.

We'll cover the basic, simple types here. Before we do, we'll show how to define a

variable to Delphi:

var II This starts a section ofvariables

LineTotal : Integer; II This defines an Integer variable called LineTotal

First.Second : String; II This defines two variables to hold strings of text

We'll show later exactly where this var section fits into your program. Notice that the

variable definitions are indented - this makes the code easier to read - indicating that

they are part of the var block.
Each variable starts with the name you choose, followed by a : and then the variable

type. As with all Delphi statements, a ; terminates the line. As you can see, you can

define multiple variables in one line if they are of the same type.

It is very important that the name you choose for each variable is unique, otherwise

Delphi will not know how to identify which you are referring to. It must also be

different from the Delphi language keywords. You'll know when you have got it right

when Delphi compiles your code OK (by hitting Ctrl-F9 to compile).

Delphui is not sensitive about the case (lower or upper) of your names. It treats

8

theCAT name the same as TheCat.

_ iumber types

Delphi provides many different data types for storing numbers. Your choice depends on

tne data you want to handle. Our Word Processor line count is an unsigned Integer, so

we might choose Word which can hold values up to 65,535. Financial or mathematical

calculations may require numbers with decimal places - floating point numbers.

var

II Integer data types :

Intl : Byte; II

Int2 : Shortlnt; I I

Int3 : Word; II

Int4 : Smalllnt; I I

Int5 : Long Word; I I

Int6 : Cardinal; II

O to 255

-127 to 127

O to 65,535

-32,768 to 32,767

O to 4,294,967,295

O to 4,294,967,295

Int7: Longlnt; II -2,147,483,648 to 2,147,483,647

Int8: Integer; II -2,147,483,648 to 2,147,483,647

Int9: Int64; II -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

II Decimal data types :

Deel : Single; II 7 significant digits, exponent -38 to +38

Dec2 : Currency; II 50+ significant digits, fixed 4 decimal places

Dec3 : Double; I I l 5 significant digits, exponent -308 to +308

Dec4 : Extended; II 19 significant digits, exponent -4932 to +4932

Some simple numerical variable useage examples are given below - fuller details on

numbers is given in the Numbers tutorial.

Text types

Like many other languages, Delphi allows you to store letters, words, and sentences in

single variables. These can be used to display, to hold user details and so on. A letter is

stored in a single character variable type, such as Char, and words and sentences stored

in string types, such as String.

9

var

Strl : Char; II Holds a single character, small alphabet

Str2 : WideChar; II Holds a single character, International alphabet

Str3 : AnsiChar; II Holds a single character, small alphabet

Str4 : ShortString; II Holds a string of up to 255 Char's

Str5 : String; II Holds strings of Char's of any size desired

Str6 : AnsiString; II Holds strings of AnsiChar's any size desired

Str7 : WideString; I I Holds strings of WideChar's of any size desired

Some simple text variable useage examples are given below - fuller details on stmgs

and characters is given in the Text tutorial.

Logical data types

These are used in conjunction with programming logic. They are very simple:

var

Logl : Boolean; II Can be 'True' or 'False'

Boolean variables are a form of enumerated type. This means that they can hold one of

a fixed number of values, designated by name. Here, the values can be True or False.

See the tutorials on Logic and Looping for further details.

Sets, enumerations and subtypes

Delphi excels in this area. Using sets and enumerations makes your code both easier to

use and more reliable. They are used when categories of data are used. For example,

you may have an enumeration of playing card suits. You literally enumerate the suit

names. Before we can have an enumerated variable, we must define the enumeration

values. This is done in a type section.

type
TSuit = (Hearts, Diamonds, Clubs, Spades); // Defines the enumeration

var

suit : TSuit; I I An enumeration variable

Sets are often confused with enumerations. The difference is tricky to understand. An

10

numeration variable can have only one of the enumerated values. A set can have none,

1, some, or all of the set values. Here, the set values are not named - they are simply

indexed slots in a numeric range. Confused? Well, here is an example to try to help you

out. It will introduce a bit of code a bit early, but it is important to understand.

type
TWeek = Set of 1..7; II Set comprising the days of the week, by number

var

week : TWeek;

begin
week:= [l,2,3,4,5]; II Switch on the first 5 days of the week

end;

ee the Set reference, and the Sets and enumerations tutorial for further details. That

aıtorial introduces a further data type - a subrange type.

Lsing these simple data types
·ariables can be read from and written to. This is called assignment. They can also be

used in expressions and programming logic. See the Text tutorial and Programming

.02:ic tutorial for more about these topics.

Assigning to and from variables
"ariablescan be assigned from constant values, such as 23 and 'My Name', and also

- om other variables. The code below illustrates this assignment, and also introduces a

further section of a Delphi program : the const (constants) section. This allows the

rogrammer to give names to constant values. This is useful where the same constant is

ed throughout a program - a change where the constant is defined can have a global

effect on the program.
_ ~ote that we use upper case letters to identify constants. This is just a convention, since

Delphi is not case sensitive with names (it is with strings). Note also that we use= to

efıne a constant value.

types

TWeek= 1..7; II Set comprising the days of the week, by number

11

I TSuit = (Hearts, Diamonds, Clubs, Spades); II Defines an enumeration

const

FRED

YOUNG AGE =23;

= 'Fred'; I I String constant

II Integer constant

TALL : Single = 196.9; II Decimal constant

NO = False; II Boolean constant

var

FirstName, SecondName : String; II String variables

Age

Height

IsTall

Other Name

Week

Suit

: Byte; II Integer variable

: Single; II Decimal variable

: Boolean; II Boolean variable

: String; II String variable

: TWeek; II A set variable

: TSuit; II An enumeration variable

/

ı begin II Begin starts a block of code statements

FirstName := FRED; II Assign from predefined constant

SecondName := 'Bloggs'; II Assign from a literal constant

Age := YOUNG_AGE; II Assign from predefined constant

Age

Height

IsTall

:= 55; II Assign from constant - overrides YOUNG_AGE

:= TALL - 5 .5; I I Assign froma mix of constants

:=NO; I I Assign from predefined constant

Week

OtherName := FirstName; II Assign from another variable

:= [1,2,3,4,5]; II Switch on the first 5 days of the week

Suit := Diamonds; II Assign to an enumerated variable

end; II End finishes a block of code statements

FirstName is now set to 'Fred'

SecondName is now set to 'Bloggs'

Age is now set to 55

Height is now set to 191.4

12

IsTall is now set to False

OtherName is now set to 'Fred'

Week is now set to 1,2,3,4,5

Suit is now set to Diamonds (Notice no quotes)

Note that the third constant, TALL, is defined as a Single type. This is called a typed

constant. It allows you to force Delphi to use a type for the constant that suits your

need. Ohterwise, it will make the decision itself.

Compound data types
The simple data types are like single elements. Delphi provides compound data types,

comprising collections of simple data types.
These allow programmers to group together variables, and treat this group as a single

variable. When we discuss programming logic, you will see how useful this can be.

Arrays
Array collections are accessed by index. An array holds data in indexed 'slots'. Each slot

holds one variable of data. You can visualise them as lists. For example:

var
Suits: array[l . .4] of String; II A list of 4 playing card suit names

begin
\

Suits[l] := 'Hearts'; II Assigning to array index 1
'Suits[2] := 'Diamonds'; II Assigning to array index 2

Suits[3J := 'Clubs'; II Assigning to array index 3

Suits[4] := 'Spades'; II Assigning to array index 4

end;

The array defined above has indexes 1 to 4 (1..4). The two dots indicate a range. We

have told Delphi that the array elements will be string variables. We could equally have

defined integers or decimals.

For more on arrays, see the Anays tutorial.

Records

13

Records are like arrays in that they hold collections of data. However, records can hold

a mixture of data types. Ther are a very powerful and useful feature of Delphi, and one

that distinguishes Delphi from many other languages.

ormally, you will define your own record structure. This definition is not itself a

variable. It is called a data type (see Types for further on this). It is defined in a type

data section. By convention, the record type starts with a T to indicate that it is a type

not real data (types are like templates). Let us define a customer record:

type

TCustomer Record

firstName : string[20];

lastName : string[20];

age : byte;

end;

Note that the strings are suffixed with [20]. This tells Delphi to make a fixed space for

them. Since strings can be a variable length, we must tell Delphi so that it can make a

record of known size. Records of one type always take up the same memory space.

Let us create a record variable from this record type and assign to it:

var

customer : TCustomer;

begin

customer.firstName := 'Fred'; II Assigning to the customer record

customer.lastName := 'Bloggs';

customer.age := 55;

I I Our customer variable

end;

customer.firstName is now set to 'Fred'

customer.lastName is now set to 'Bloggs'

customer.age is now set to 55

Notice how we do not use an index to refer to the record elements. Records are very

14

:nendly - we use the record element by its name, separated from the record name by a

-ualifying dot. See the Records tutorial for further on records.

Objects
bjects are collections of both data and logic. They are like programs, but also like data

structures. They are the key part of the Object oriented nature of Delphi. See the

bject orientation tutorial for more on this advanced topic.

Other data types
The remaining main object types in Delphi are a mixed bunch:

Files
File variables represent computer disk files. You can read from and write to these files

ing file access routines. This is a complex topic covered in Files.

Pointers
Pointers are also the subject of an advanced topic - see Pointer reference. They allow

variables to be indirectly referenced.

Variants
ariants are also an advanced topic - see Variant. They allow the normal Delphi rigid

type handling to be avoided. Use with care!

1.5 Programming logic

What is programming logic?
Programming in Delphi or any other language would not work without logic. Logic is

the glue that holds together the code, and controls how it is executed. For example,

supposing we were writing a word procesor program. When the user presses the Enter

key, we will move the cursor to a new line. The code would have a logical test for the

user hitting the Enter key. If hit we do a line throw, if not, we continue on the same line.

If then else
In the above example, we might well use the If statement to check for the Enter key.

Simple if then else
Here is an example of how the if statement works:

15

var

number : Integer;

text : String;

begin

number := Sgr(l 7);

if number > 400
then text:= '17 squared> 400' II Action when if condition is true

I I Calculate the square of 17

else text:= '17 squared<= 400'; II Action when if condition is false

end;

text is set to : '1 7 squared <= 400'

There are a number of things to note about the if statement. First that it spans a few lines

- remember that Delphi allows statements to span lines - this is why it insists on a

terminating ;
Second, that the then statement does not have a terminating ; -this is because it is part

of the if statement, which is finished at the end of the else clause.

Third, that we have set the value of a text string when the If condition is successful -

the Then clause - and when unsuccessful - the Else clause. We could have just done a

then assignment:

if number > 400

then text:= '17 squared> 400';

ote that here, the then condition is not executed (because 17 squared is not> 400), but

there is no else clause. This means that the if statement simply finishes without doing

anything.
Note also that the then clause now has a terminating ; to signify the end of the if

statement.
Compound if conditions, and multiple statements

We can have multiple conditions for the if condition. And we can have more than one

statement for the then and else clauses. Here are some examples:

16

if (conditionl) And (condition2) II Both conditions must be satisfied

then

begin

statementI;

statement2;

end II Notice no terminating ';' - still part of 'if'

else

begin

statement3;

statement4;

end;

e used And to join the if conditions together - both must be satisfied for the then

lause to execute. Otherwise, the else clause will execute. We could have used a number

of different logical primitives, of which And is one, covered under logical primitives

elow.

Nested if statements

There is nothing to stop you using if statements as the statement of an if statement.

_ Jestingcan be useful, and is often used like this:

if conditionI

then statementl

else if condition2

then statement2

else statement3;

However, too many nested if statements can make the code confusing. The Case

statement, discussed below, can be used to overcome a lot of these problems.

Logicial primitives

17

.ore we introduce these, it is appropriate to introduce the Boolean data type. It is an

erated type, that can have one of only two values : True or False. We will use it in

of a condition in the if clauses below to clarify how they work:

• p false And false

then ShowMessage('false and false = true');

if true And false

then ShowMessage('true and false = true');

if false And true

then ShowMessage('false and true = true');

if true And true

then ShowMessage('true and true = true');

if false Or false

then ShowMessage('false or false = true');

if true Or false

then.Showlvlessager'true or false = true');

if false Or true

then ShowMessage('false or true = true');

if true Or true

then ShowMessage('true or true = true');

if false Xor false

then ShowMessage('false xor false = true');

if true Xor false

18

then ShowMessage('true xor false = true');

if false Xor true

then ShowMessage('false xor true = true');

if true Xor true

then ShowMessage('true xor true = true');

if Not false

then ShowMessage('not false = true');

if Not true

then ShowMessage('not true = true');

end;

true and true = true

false or true = true

true or false= true

true or true = true

false xor true = true

true xor false = true

not false = true

Note that the Xor primitive returns true when one, but not both of the conditions are

true.

Click on the primitives in blue above to learn how they can also be used for

mathematical (bitwise) calculations.

Case statements

The If statement is useful when you have a simple two way decision. Ether you go one

way or another way. Case statements are used when you have a set of 3 or more

alternatives.

A simple numerical case statement

19

: : Integer;

egin

· := RandomRange(15,20); II Generate a random number from 15 to 20

Case i of

15 : ShowMessage('Randoın number was fifteen');

16 : ShowMessage('Random number was sixteen');

17 : ShowMessage('Random number was seventeen');
L

18 : ShowMessage('Random number was eighteen');

19 : ShowMessage('Random number was nineteen');

20 : ShowMessage('Random number was twenty');

end;

end;

JRandom number was fifteen

The RandomRange routine generates a random number between two given values.

However, each time you run the program, it will always start with the same pseudo

random value (unless you use RandomSeed).

The case statement above routes the processing to just one of the statements. OK, the

code is a bit silly, but it is used to illustrate the point.

Using the otherwise clause

Supposing we were not entirely sure what value our case statement was processing? Or

we wanted to cover a known set of values in one fell swoop? The Else clause allows us

to do that:

var

i: Integer;

begin

i := RandomRange(l0,20); II Generate a random number from 10 to 20

Case i of

15 : ShowMessage('Random number was fifteen');

16 : ShowMessage('Random number was sixteen');

20

17 : ShowMessage('Random number was seventeen');

18 : ShowMessage('Random number was eighteen');

19: ShowMessage('Random number was nineteen');

20 : ShowMessage('Random number was twenty');

else
ShowMessageFmt('Unexpected number: %d',[i]);

end;

end;

Unexpected number : 1 O

sing enumeration case values
Just as with the If statement, the Case statement may use any ordinal type. This allows

us to use the very readable enumeration type:

type
TCar = (Nissan, Ford, Rover, Jaguar); II An enumeration type

var

car: TCar;

begin

car := Rover;

II An enumeration variable

II Set t~ variable

case car of
Nissan : ShowMessage('We have a Nissan car');

Ford : Showlvlessageı'Wehave a Ford car');

Rover : ShowMessage('We have a Rover car');

Jaguar: ShowMessage('We have a Jaguar car');

end;

end;

ı We have a Rover car

21

1.6 Repeating sets of commands

Why loops are used in programming

One of the main reasons for using computers is to save the tedium of many repetitive

tasks. One of the main uses ofloops in programs is to carny out such repetitive tasks. A

loop will execute one or more lines of code (statements) as many times as y~m want.

Your choice of loop type depends on how you want to control and terminate the

looping.

The For loop

This is the most common loop type. For loops are executed a fixed number of times,

determined by a count. They terminate when the count is exhausted. The count (loop) is

held in a variable that can be used in the loop. The count can proceed upwards or

downwards, but always does so by a value of 1 unit. This count variable can be a

number or even an enumeration.

Counting up

Here is a simple example counting up using numeric values:

var

count : Integer;

begin

For count:= 1 to 5 do

ShowMessageFmt('Collııt is now %d',[count]);

I
I

end;

Count is now 1

Count is now 2

Count is now 3

Count is now 4

Count is now 5

The ShowMessageFmt routine is useful for displaying information - click on it to read

more.

Counting up using an enumeration

22

Enomerarlons (see Enumeration and sets to explore) are very readable ways of

ssigning values to variables by name. They can also be used to control For loops:

type

TWeekDay = (Monday=l, Tuesday, Wednesday, Thursday, Friday);

Yar

weekday : TWeekDay;

hours : array[TWeekDay] ofbyte;

begin

II Set up the hours every day to zero

for weekDay := Monday to Friday do

hours[weekDay] := O;

II Add an hour of overtime to the working hours on Tuesday to Thursday

for weekDay := Tuesday to Thursday do

Inc(hours[weekDay]);

end;

hours[Monday] = O

hours[Tuesday] = 1

hours[Wednesday] = 1

hours[Thursday] = 1

hours[Friday] = O

Note the use of the Inc routine to increment the hours.

Counting down, using characters

We can also use single letters as the count type, because they are also ordinal types:

var

letter: Char;

begin

for letter := 'G' downto 'A' do

ShowMessage('Letter = '+letter)

23

nd;

etter = G

etter = F

Letter= E

Letter= D

Letter= C

Letter= B

Letter= A

The For statements in the examples above have all executed one statement. If you want

o execute more than one, you must enclose these in a Begin and End pair.

The Repeat loop
The Repeat loop type is used for loops where we do not know in advance how many

times we will execute. For example, when we keep asking a user for a value until one is

provided, or the user aborts. Here, we are more concerned with the loop termination

ondition.

Repeat loops always execute at least once. At-the end, the Until condition is checked,

and the loop aborts of condition works out as true.

A simple example

var

exit : Boolean;

i: Integer;

begin

i := 1;

exit :~ False;

repeat

lnc(i);

if Sgr(i) > 99

then exit := true; II Exit if the square of our number exceeds 99

until exit; II Shorthand for 'until exit := true'

II Our exit condition flag

II do not exit until we are ready

I I Increment a count

end;

24

Upon exit, i will be 10 (since Sqr(lO) > 99)

Here we exit the repeat loop when a Boolean variable is true. Notice that we use a

horthand - just specifying the variable as the condition is sufficient since the variable

value is either true or false.

Using a compound condition

var

i: Integer;

begin

i := 1;

repeat

Inc(i); II Increment a count

until (Sgr(i) > 99) or (Sqrt(i) > 2.5);

end;

Upon exit, i will be 7 (since Sqrt(7) > 2.~)

Notice that compound statements require separating brackets. Notice also that Repeat

statements can accomodate multiple statJments without the need for a begin/end pair.

The repeat and until clauses form a natural pairing.

While loops

While loops are very similar to Repeat loops except that they have the exit condition at

the start. This means that we use them when we wish to avoid loop execution altogether

if the condition for exit is satisfied at the start.

var

i: Integer;

begin

i := 1;

while (Sqr(i) <= 99) and (Sqrt(i) <= 2.5) do

Inc(i); I I Increment a count

25

nd;

.pon exit, i will be 7 (since Sqrt(7) > 2.5)

_ ~otice that our original Repeat Until condition used Or as the compound condition

· oiner - we continued until either condition was met. With our While condition, we use

And as the joiner - we continue whilst neither condition is met. Have a closer look to

see why we do this. The difference is that we repeat an action until something or

omething else happens. Whereas we keep doing an action while neither something nor

something else have happened.

1.7 Dates and times

Why have a tutorial just on dates and times?

Because they are a surprisingly complex and rich subject matter. And very useful,

especially since Delphi provides extensive support for calculations, conversions and

names.

The TDateTime data type

Date and time processing depends on the TDateTime variable. It is used to hold a date

and time combination. It is also used to hold just date or time values - the time and date

value is ignored respectively. TDateTime is defined in the System unit. Date constants

and routines are defined in SysUtils and DateUtils units.

Let us look at some simple examples of assigning a value to a TDateTime variable:

var

date1, date2, date3 : TDateTime; II TDateTime variables

begin

date1 := Yesterday; I I Set to the start of yesterday

date2 := Date; II Set to the start of the current day

date3 := Tomorrow; II Set to the start of tomorrow

date4 := Now; II Set to the current day and time

end;

26

_tel is set to something like 12(12/2002 00:00:00

.::.:ne2 is set to something like 13/12/2002 00:00:00

....1te3 is set to something like 14/12/2002 00:00:00

~te4 is set to something like 13/12/2002 08:15:45

· te : the start of the day is often called midnight in Delphi documentation, but this is

· leading, since it would be midnight of the wrong day.

Some named date values
Delphi provides some useful day and month names, saving you the tedium of defining

.....em in your own code. Here they are:

hort and long month names

. ~ote that these month name arrays start with index = l.

var

month : Integer;

begin
for month:= 1 to 12 do // Display the sh~rt and long month names

'\

begin

ShowMessage(ShortMonthNames[monthj);

ShowMessage(LongMonthNames [month]);

end;

end;

The ShowMessage routine display the following information:

Jan

January

Feb

February

Mar

March

27

pr

- spril

May

May

un

uııe

uly

Aug

August

ep

September

Oct

October
'T ov

ovember

Dec

December

Short and long day names

It is important to note that these day arrays start with index 1 = Sunday. This is not a

good standard (it is not ISO 8601 compliant), so be careful when using with ISO 8601

compliant routines such as DayOffhe Week

var

day : Integer;

begin
for day:= 1 to 12 do // Display the short and long day names

begin

ShowMessage(ShortDayNames[day]);

ShowMessage(LongDayNames[day]);

end;

end;

28

e ShowMessage routine display the following information:

-un

~unday

_Jon

_Jonday

Tue

Tuesday

ed

ednesday

Thu

Thursday

Fri

Friday

Sat

Saturday

Date and time calculations
The largest benefit of TDateTime is the range of calculations Delphi can do for you.

These can be found on the Delphi Basics home page, in the Dates and

Times/Calculations option.

In the following examples, click on the name to learn more:

DayüfTheMonth Gives the day of month index for a TDateTime value

DaysBetween Gives the whole number of days between 2 dates

DaysinAMonth Gives the number of days in a month

DayslnAYear Gives the number of days in a year

DecodeDate

EncodeDate

IncDay

Extracts the year, month, day values from a TDateTime var.

Build a TDateTime value from year, month and day values

Increments a TDateTime variable by + or - number of days

IsLeapYear Returns true if a given calendar year is a leap year

29

Gives the number of minutes in a day

mıiH>la)ing date and time values
,.,. are a number of routines that convert date and or time values to strings for display

e storage purposes, such as dateTimeToStr and TimeToString. But the most

rtant is the FormatDateTime. It provides comprehensive formatting control, as

~uted by the following examples.

g default formatting options

-yDate : TDateTime;

Set up our TDateTime variable with.a full date and time:

910212000 at 05:06:07.008 (.008 ıhilli-seconds)
t

yDate := EncodeDateTime(2000, 2,19, 5, 6, 7, 8);

Date only - numeric values with no leading zeroes (except year)

"howMessage(' dlmly = '+
FormatDateTime('dlmly', myDate));

I Date only - numeric values with leading zeroes

ShowMessage(' ddlmmlyy = '+
FormatDateTime('ddlmmlyy', myDate));

II Use short names for the day, month, and add freeform text ('of)

ShowMessage(' ddd d of mmm yyyy = '+
FormatDateTime('ddd d ofmmm yyyy', myDate));

II Use long names for the day and month

ShowMessage('dddd d of mmmm yyyy = '+
FormatDateTime('dddd d of mmmm yyyy', myDate));

30

I Use the ShortDateFormat settings only

ShowMessage(' ddddd = '+

FormatDateTime('ddddd', myDate));

I Use the LongDateFormat settings only

ShowMessage(' dddddd = '+

FormatDateTime('dddddd', myDate));

ShowMessage(");

ıı Time only - numeric values with no leading zeroes

ShowMessage(' h:n:s.z = '+

FormatDateTiıne('h:n:s.z', myDate));

II Time only - numeric values with leading zeroes

ShowMessage(' hh:nn:ss.zzz = '+
'"Fom1atDateTime('hh:nn:ss.zzz', myDate));

II Use the ShortTimeFormat settings only

ShowMessage(' t = '+FormatDateTime('t', myDate));

II Use the LongTimeFonnat settings only

ShowMessage(' tt = '+FormatDateTime('tt', myDate));

II Use the ShortDateFormat + LongTimeFormat settings

ShowMessage(' c = '+FormatDateTiıne('c', myDate));

end;

The ShowMessage routine shows the following outputs :

dlm/y = 9/2100

dd/mm/yy = 09102100

ddd d ofmmm yyyy = Wed 9 of Feb 2000

31

dddd d ofmmmm yyyy = Wednesday 9 of February 2000

ddddd = 09/02/2000

dddddd = 09 February 2000

C = 09/02/2000 Ü 1 :02:03

h:n:s.z = 1:2:3.4

hh:nn:ss.zzz = 01 :02:03.004

t=Ol:02

tt = O 1 :02:03

c = 09/02/2000 01 :02:03

The above output uses default values of a number of formatting control variables. These

are covered in the next section:

Formatting control variabl~s
-,

The variables and their default values are given below. Note that these control

conversions of date time values to strings, and sometimes from strings to date time

values (such as DateSeparator).

Date Separator

TimeSeparator

ShortDateFormat

LongDateF ormat

TimeAMString

TimePMString

ShortTimeF ormat

LongTimeF ormat

ShortMonthN ames

=!

= dd/mm/yyyy

=ddmmmyyyy

=AM

=PM

=hh:mm

=hh:mm:ss

= Jan Feb ...

LongMonthNames = January, February ...

ShortDayNames = Sun, Mon ...

LongDayNames = Sunday, Monday ...

TwoDigitYearCenturyWindow = 50

32

Standard tab GUI components

ı.ıcomponents
.1 stands for Graphical User Interface. It refers to the windows, buttons, dialogs,

enus and everything visual in a modem application. A GUI component is one of these

_ phical building blocks. Delphi lets you build powerful applications using a rich

ariety of these components.

These components are grouped under a long set of tabs in the top part of the Delphi

screen, starting with Standard at the left. We'll look at this Standard tab here. It looks

something like this (Delphi allows you to tinker with nearly everything in its interface,

-~ it may look different on your system):

-·andard I AQgitior1all.Wjr13J_L~yst~,mJPllta~_9c.e_ş_sJ Data_Coçttrols I .dbExoressl BDE. LADO

~~~~A~~oo~•E•~D~D~ 
Each of the components is itemJseElbelow with a picture of a typical GUI object they

can create:

~- Menu ~ PopupMenu 1:.1 GroupBox [§ RadioGroup

Right click me ---, Tfiroupliox TRadioı:=iroup
O Monday
QTuesda}'
QWednesday
@Thursday~
QFriday v,{

This
is t But!o~]

Button 2
a
popup

A Label Tlabel

labiıı Edit I TE dit I
ill] Button r··TButton~J

Jx CheckBox ~ TCheckBox

,@ RadioButton ® TRadioButton

EIIEl ScrollBar tnı•I [~

33



~!ListBox ~ ComboBox DPanel il Memo

~ [ı@ıımı
,IJ :is~ite;2 -
,~ Listitem3

- -~, .. ~ ~-1 Listitem4

-vl] _::_JI TMemoTPanel

L_ _ 

::J! Frame : see text below ~ ActionList : see text below

_ -ote that the displayed components were taken from an XP computer. In order to get

.--...~ new XP look (the XP 'themed' GUI look), you must add the XP Manifest

component to you form. It is found under the Win32 component tab:
XP
d XP Manifest component.

1e'll now cover each of the components in tum. Components have many properties

and methods and events, but we'll keep the descriptions to the point to keep this article

short enough. Each component is added to you form by clicking it and then clicking (or

dragging and releasing) on your form.

=ılFrame objects

These were introduced in Delphi 5. They represent a powerful mechanism, albeit one

that is a little advanced for a Delphi Basics site. However, it is worth describing their

role if you want to research further.

A frame is essentially a new object. It is defined using the Filejlvew menu. Only then

can you add the frame to your form using the Frame component. You can add the same

frame to as many forms of your application as you want. This is because the frame is

designed as a kind of template for a part of a forrn. It allows you to define the same look

and feel for that part of each form. And more importantly, each instance of the frame

inherits everything from the original frame.

For further reading, Mastering Delphi by Cantu covers this topic with example code.

=
~ Menus

34



rter you add a TMenu component to your form, you can design the menu by double

eking it (or using the right button popup menu for it). You are then shown a panel

_..,. an empty menu. As you type, you are creating the top left menu item. Press enter

ou are positioned at the first sub item of this menu item. Click the new empty box

the right of the first menu item to create a new menu item.

- this way, you can build the menu structure.

make each menu item do something, just double click it. Delphi will then insert

e into your program to handle the menu item, and position your cursor in the form

·1 ready for you to write your,code.

Explore the popup menu for the menu editor to discover more options, such as sub-
/enus.

/
A menu can also be dynamically updated by your code.

ı Popup menus

A popup menu appears in many applications when you right click on something. For

xample, when you right click the Windows desktop. You create a popup menu by

adding the popup menu component to your form and double clicking it. You then

simply type in your menu item list.

You attach the popup menu to an existing form object (or the form itself) by selecting

your new popup menu in the PopupMenu property of the object.

To activate the popup menu items, double click each in turn. Delphi will add the

appropriate code to your form unit. You can then type in the code that each menu item

should perform.

A popup menu can also be dynamically updated by your code.

A Labels

Labels are the simplest component. They are used to literally label things on a form, but

the text, colours and so on can be changed by your code. For example, you can change

the label colour when the mouse hovers over it, and can run code when the user clicks

it. This makes the label like a web page link. Normally, they are just kept as plain,

unchanging text.

]~ıır Edit boxes

35 



edit box allows the user to type in a single line of text. For example, the name of the

er. You set up the initial value with the Text property either at design time or when

ur code runs.

~ Memo boxes

memo box displays a single string as a multi line wrapped text display. You cannot

_;:mly any formatting. The displayed lines are set using the Lines property. This may be

et at design time as well as at run time.

2.JButtons
/

..\ button is the simplest active item. When clicked by a user, it performs some action.

'ou can change the button label by setting the Caption property. Double clicking the

' utton when designing adds code to your form to run when the button is clicked at run

time.

Ix Check boxes

Check boxes are used to give a user a yes/no choice. For example, whether to wrap text

or not. The label is set using the Caption property. You can preset the check box to

ticked by setting the Checked property to true.

CiJ R dl b tt~ a ıo u ons

Radio buttons are used to give a user multiple choices. For example, whether to left,

centre or right align text. The label is set using the Caption property. You can preset a

radio button to selecteded by setting the Checked property to true.

You would normally use radio buttons in groups of two or more. The TRadioGroup

component allows you to do this in a neat and dynamic way.

~List boxes

List boxes provide selectable items. For example, a collection of fish names. If you set

the MultiSelect property to true, you allow the user to select more than one. The items

in the list are added using the Items.Add method, passing the string of each item as a

parameter.

36



_ can act upon an item being selected by setting the OnClick event (by double

g it) to a procedure in your form unit.

following example displays the selected list item in a dialog box:

cedure TForml.ListBoxlClick(Sender: TObject);

.stlsox : TListBox;

dex : Integer;

Cast the passed object to its correct type

· tBox := TListBox(Sender);

I
I

Get the index of the selected list item

index := listBox.Itemlndex;

'/ Display the selected list item value

ShowMessage(listBox.Items [index]);

end;

~ Combo boxes
combo box is like a list box, and is set up in the same way (see above). It just takes up

less space on your form by collapsing to a single line when deselected, showing the

chosen list item. It is not recommend to use one for multi line selection .

.:ı::mScroll bars
Many components have built in scroll bars. For those that don't, you can use this to do

your own scrolling. You link the scrollbar to your component by setting the OnScroll

event. This gives you the details of the last scroll activity made by the user.

[] Group boxes

37



~ _ group box is like a panel. It differs in that it gives a name to the collection of

components that you add to it. This title is set with the Caption property. Use a group

· x to help the user see what controls affect one particular aspect of the application.

=- Radio group panels
Radio buttons are used to give a user a multiple choices. For example, whether to left,

•.. entre or right align text. Unlike individual radio buttons, a group is only set up by your

code.You define the buttons by calling the Items.Add method of the TRadioGroup

object, passing the caption string of each radio button as a parameter. You can reference

each button by using the Buttons indexed property. You might, for example, choose the

third button to be checked. For example:

II Set the third button to be pre-selected (index starts at O)

RadioGroupl .Buttons[2].Checked := true;

-ı
~ Empty panels
When building your form, you might want to add many components. These may fall

into logical groups. If so, you can add each group to a panel, and use the panel to

position the whole group on the form. The panel name can be blanked out by setting the

Caption property.
You can even hide the panel by setting the BevelOuter and Bevellnner properties to

bvNone.

ı:ilAction lists

Action lists are a large topic on their own. They allow you to define, for example,

menus with sub-items that are also shown as buttons on your aplication. Only one

action is defined, regardless of the number of references to it.

For further reading, Mastering Delphi by Cantu covers this topic.

38



CHAPTER2

2 MICROSOFT ACCESS

2.1 Getting Started

2.1.1 A Few Terms

These words are used often in Access so you will want to become familiar with them

before using the program and this tutorial.

• A database is a collection of related information.
• An object is a competition in the database such as a table, query, form, or

macro.
• A table is a grouping ofrelated data organized in fields (columns) and records

(rows) on a datasheet. By using a common field in two tables, the data can be

combined. Many tables can be stored in a single database.

• A field is a column on a datasheet and defines a data type for a set of values in a

table. For a mailing list table might include fields for first name, last name,

address, city, state, zip code, and telephone number.
• A record in a row on a datasheet and is a set of values defined by fields. In a

mailing list table, each record would contain the data for one person as specified

by the intersecting fields.
• Design View provides the tools for creating fields in a table.

• Datasheet View allows you to update, edit, and delete in formation from a table.

40 



.2 Getting Started

=cer opening Access, you will be presented with the window shown below. Select one

- the first two options if you are creating a new database, or the third if youwant to

_;,_ an existing database. All three choices are explained in detail below.

f\_ccess database wizards, pages, and projects

··~TJ~ı~:ır-:

rıfoı GJQ!ii6:.~0::eii.i~_t_i_r19 __file\

2.1.3 'BlankAccess database

1. Unlike Word documents, Excel worksheets, and Power Point presentations, you

must save an Access database before you start working on it. Aft.erselecting

"Blank Access database", you will first be prompted to specify a location and

41



name for the database.

File o._ame: ,dbl.mdbl
Cancel "]Save as type: !Microsoft Access Databases(* .mdb)

2. Find the folder where the database should reside in the Save in drop-down

menu.
3. Type the name of the database in the File name line and click the Create

button.

_,1.4 Access database wizards, pages, and projects

Access' wizards and layout are existing database structures that only need data input.

elect a database type and click OK. Name the database on the next screen.

42



Contact Event Expenses
Management Management~, 

~
Inventory

Control
Ledger Order Entry Resource

Scheduling

Service Call Time and
Management Billing

_.1.5 Open an existing database

l the database was opened recently on the computer, it will be listed on the main

window. Highlight the database name and click OK. Otherwise, highlight "More

Files... " in the list and click OK. From the subsequent window, click the "Look In:"

drop-down menu to find the folder where the database is located, highlight the database

name in the listing and click OK.

2.1.6 Converting to Access 2000

Before opening an existing file that was created in a previous version of Access, it must

first be converted to Access 2000 format. Convert a database by following these steps:

1. Open Access and select Tools!Database Utilities!Convert Database!To

Current Access Database Version from the menu bar.

2. Select the database that should be converted and click the Convert button.

3. The new version will be a completely separate database and the old one will

remain intact so you must then name the new version of the database.

43



Screen Layouts

.1 Database Window

The Database Window organizes all of the objects in the database. The default tables

· ting provides links for creating tables and will list all of the tables in the database

when they have been added.

~ Create table in Desiqn viewl . ~ -
Hl ım Create table by using wizard

ım Create table by entering data

2.2.2 Design View

Design View customizes the fields in the database so that data can be entered.

44 



ex p ressıen

irstName l Text
LastName ı Text
Address IText
Citv ı Text
State ı Text
Ro~~alCnde. _ T P.~t.t J ----------·-------·------·····-····-----·

Field ~r.9E~~ies-
{Generaı"l~o~~R j
j ~·. ,•••------·· -•'ıiıli"'",,......,_"tt ·····-··· ···-·-·-············ -··-·-· ,--····-..·-··"······-···
! Field Size 50

Format
f Input Mask
J Caption First Name
!
, Default Value
;• Validation Rule
} Validation Text
, Required No
f Allow Zero Length No

, r Indexed No

1 Unicode Compression No

I'•
Ii!

A field name can be
up to 64 characters

long.• including
spaces. Press Fl
for help on field

names.

45



Datasheet View

The datasheet allows you to enter data into the database

record. selector

fiiller 'by selımtio:nı t
fiilter .by f.arrn

apply
filter

mevt database·
record wl111<1:hıw

tv1ark 492 VI/. 21st A.v,ı N~eles I FL 13i1

123 Main Street Ft. Myern I FL !3~:11

123 Main Street Ft. Mkers
John
Sall

2.3 Creating Tables

2.3.1 Introduction to Tables

Tables are grids that store information in a database similar to the way an Excel

worksheet stores information in a workbook. Access provides three ways to create a

table for which there are icons in the Database Window. Double-click on the icons to

create a table.

46 



.................................................................
Create table in Design view

~
8

Create table b)' using wizar·d

Create table by entering data..ı::m
ill:j"

~
t=!!l

the Database Window

• Create table in Design view will allow you to create the fields of the table. This

is the most common way of creating a table and is explained in detail below.

• Create table using wizard will step you through the creation of a table.

• Create table by entering data will give you a blank datasheet with unlabelled

columns that looks much like an Excel worksheet. Enter data into the cells and

click the Save button. You will be prompted to add a primary key field. After

the table is saved, the empty cells of the datasheet are trimmed. The fields are

given generic names such as "Fieldl ", "Field2", etc. To rename them with more

descriptive titles that reflect the content of the fields, select Formatlkename

Column from the menu bar or highlight the column, right-click on it with the

mouse, and select Rename Column from the shortcut menu.

_3.2 Create a Table in Design View

Design View will allow you to define the fields in the table before adding any data to

- .. e datasheet. The window is divided into two parts: a top pane for entering the field

name, data type, and an option description of the field, and a bottom pane for specifying

-eld properties.

47 



Text
Text

State

Text
Text
Text

Prıstal(nrlP~ J_JAxt =--~---.-L----~-------·---····--------
t=ield Pr.ı::ı_ı:ı_erties-·~ - .ttl!ili -=-,~

II G~~r al · 1-LookJ~Rl -1i Field Size· · - ··- ·· ___ ,, sô ··· · · ··-"··-········-··----··· ...... - ·--·······-··········

! Format
~ Input Mask

1 Caption First Name

I I Default Valuei I Validation Rule
Validation Text

· · Required ,Nol Allow Zero Length No

'Indexed No

1
) Unicode Compression "No

)

A field name can be
up to 64 characters

long, inclı.ıding
spaces, Press F 1
for help on field

names.

• Field Name - This is the name of the field and should represent the contents of

the field such as "Name", "Address", "Final Grade", etc. The name can not

exceed 64 characters in length and may include spaces.

• Data Type is the type of value that will be entered into the fields.

o Text - The default type, text type allows any combination of letters and

numbers up to a maximum of 255 characters per field record.

o Memo - A text type that stores up to 64,000 characters.

o Number -Any number can be stored.

o Date/Time - A date, time, or combination of both.

o Currency - Monetary values that can be set up to automatically include a

dollar sign ($) and correct decimal and comma positions.

o AutoNumber - When a new record is created, Access will automatically

assign a unique integer to the record in this field. From the General

48



options, select Increment if the numbers should be assigned in order or

random if any random number should be chosen. Since every record in a

datasheet must include at least one field that distinguishes it from all

others, this is a useful data type to use if the existing data will not

produce such values.

o Yes/No - Use this option for True/False, Yes/No, On/Off, or other values

that must be only one of two.

o OLE Object - An OLE (Object Linking and Embedding) object is a

sound, picture, or other object such as a Word document or Excel

spreadsheet that is created in another program. Use this data type to

embed an OLE object or link to the object in the database.

o Hyper/ink - A hyperlink will link to an Internet or Intranet site, or

another location in the database. The data consists of up to four parts

each separated by the pound sign(#):

DisplayText#Address#SubAddress#ScreenTip. The Address is the only

required part of the string. Examples:

Internet hyper/ink example:

Database link example:

FGCU Home Page#http://www.fgcu.edu#

#c:\My Documents\database.mdb#MyTable

• Description (optional) - Enter a brief description ofwhat the contents of the

field are.
• Field Properties - Select any pertinent properties for the field from the bottom

pane.

2.3.3 Field Properties

Properties for each field are set from the bottom pane of the Design View window.

• Field Size is used to set the number of characters needed in a text or number

field. The default field size for the text type is 50 characters. If the records in the

field will only have two or three characters, you can change the size of the field

to save disk space or prevent entry errors by limiting the number of characters

allowed. Likewise, if the field will require more than 50 characters, enter a

49



number up to 255. The field size is set in exact characters for Text type, but

options are give for numbers:

o Byte - Positive integers between 1 and 255

o Integer - Positive and negative integers between -32,768 and 32,768

o Long Integer (default) - Larger positive and negative integers between -

2 billion and 2 billion.

o Single - Single-precision floating-point number

o Double - Double-precision floating-point number

o Decimal - Allows for Precision and Scale property control

• Format conforms the data in the field to the same format when it is entered into

the datasheet. For text and memo fields, this property has two parts that are

separated by a semicolon. The first part of the property is used to apply to the

field and the second applies to empty fields.

Text and memo format.

l'i ,, Text Format
I. ;'.f

I
Format ııDatasheetEntrylL Display

II
Explanation

I
@ indicates a

@@@-@@@@ 1234567 123-4567 required

character or space

& indicates an

@@@-@@@& 123456 123-456 optional

character or space

< converts

< HELLO hello characters to

lowercase

> converts

> hello HELLO characters to

uppercase

1®1! I Hello
\ adds characters

Hello!
to the end

50



@;"No Data Entered"\\Hello )\Hello JI
@;"No Data Entered"\[Cblank) ]JNo Data Entered\

•
Number format. Select one of the preset options from the drop down menu or

construct a custom format using symbols explained below:

I
Number Format I

I Format \\Datasheet Entry\\ Display \\ Explanation I
1###,##0.00 11123456.78 11123,456.78\ O is a placeholder that displays a

digit or O if there is none.

$###,##0.00 o $0.00 # is a placeholder that displays a

digit or nothing if there is none.

###.00% .123 EJ% multiplies the number by 100

and added a percent sign

•
Currency format. This formatting consists of four parts separated by

semicolons:
format for positive numbers; format for negative numbers; format for zero

values; format for Null values.

I
+ Currency Format I'f~

'"

I Format il
Explanation I

$##0.00; ($##0.00) [Red] ;$0.00; "none" Positive values will be normal

currency format, negative numbers

will be red in parentheses, zero is

entered for zero values, and "none"

will be written for Null values .

•
Date format. In the table below, the value "1 /1/0 l" is entered into the datasheet,

51



and the following values are displayed as a result of the different assigned

formats.

Date Format
'

Format
I

Display
II

Explanation
I

dddd" ,"mmmm d" ,"yyyy Monday, January 1, 2001 dddd, mmmm, and yyyy

print the full day name,

month name, and year

ddd","mmm "." d", "'yy Mon, Jan. 1, 'Ol ddd, mmm, and yy print

the first three day

letters, first three month

letters, and last two year

digits

["Today is " dddd [IToday is Monday I

J
lı:n:s: AM/PM 12:00:00 AM "n" is used for minutes

to

avoid confusion with

months

•
Yes/No fields are displayed as check boxes by default on the datasheet. To

change the formatting of these fields, first click the Lookup tab and change the

Display Control to a text box. Go back to the General tab choices to make

formatting changes. The formatting is designated in three sections separated by

semicolons. The first section does not contain anything but the semicolon must

be included. The second section specifies formatting for Yes values and the third

for No values.

Yes/No Format

[ Format ]1 Explanation

'[;"Yes" [green]; "No" [red] ][Prints"Yes" in green or "No" in red

•

52



• Default Value - There may be cases where the value of a field will usually be

the same for all records. In this case, a changeable default value can be set to

prevent typing the same thing numerous times. Set the Default Value property.

_.3.4 Primary Key

-very record in a table must have a primary key that differentiates it from every other

record in the table. In some cases, it is only necessary to designate an existing field as

tae primary key if you are certain that every record in the table will have a different

·nlue for that particular field. A social security number is an example of a record whose

values will only appear once in a database table.

Designate the primary key field by right-clicking on the record and selection Primary

Key from the shortcut menu or select Edit!Primary Key from the menu bar. The

rimary key field will be noted with a key image to the left. To remove a primary key,

peat one of these steps.

If none of the existing fields in the table will produce unique values for every record, a

eparate field must be added. Access will prompt you to create this type of field at the

beginning of the table the first time you save the table and a primary key field has not

been assigned. The field is named "ID" and the data type is "autonumber". Since this

extra field serves no purpose to you as the user, the autonumber type automatically

updates whenever a record is added so there is no extra work on your part. You may

also choose to hide this column in the datasheet as explained on a later page in this

tutorial.

2.3.5 Indexes

Creating indexes allows Access to query and sort records faster. To set an indexed field,

select a field that is commonly searched and change the Indexed property to Yes

(Duplicates OK) if multiple entries of the same data value are allowed or Yes (No

Duplicates) to prevent duplicates.

53



_.3.6 Field Validation Rules

-alidation Rules specify requirements (change word) for the data entered in the

.orksheet. A customized message can be displayed to the user when data that violates

the rule setting is entered. Click the expression builder(" ...") button at the end of the

- alidation Rule box to write the validation rule. Examples of field validation rules

include <> O to not allow zero values in the record, and ??? to only all data strings three

haracters in length.

Input Masks

n input mask controls the value of a record and sets it in a specific format. They are

similar to the Format property, but instead display the format on the datasheet before the

data is entered. For example, a telephone number field can formatted with an input

mask to accept ten digits that are automatically formatted as "(555) 123-4567". The

blank field would look like LJ _- __ . An an input mask to a field by following

these steps:

1. In design view, place the cursor in the field that the input mask will be applied

to.
2. Click in the white space following Input Mask under the General tab.

3. Click the" ... " button to use the wizard or enter the mask,(@@@)@@@

@@@@, into the field provided. The following symbols can be used to create

an input mask from scratch:

i\ Input Mask Symbols
11

[symbolil Explanation I,

\~\Letter or digit
A digit O through 9 without a + or - sign and with blanks displayed as

o
zeros

9 \\Same as O with blanks displayed as spaces

ı~~ as 9 with+/- signs

CJ\Letter lı

54



~!Letter A through Z I
ı C or & JI character or space I
oıconvert letters to lower case I
c=::::=Jlconvert letters to upper case

I

2.4 Datasheet Records

2.4.1 Adding Records

Add new records to the table in datasheet view by typing in the record beside the

asterisk (*) that marks the new record. You can also click the new record button at the

bottom of the datasheet to skip to the last empty record.

filter !by seleetlon ı' new dat.ılbaş.ce,
füter by fom1 record w'lı:ıd'tıw

sort asce.ndi11gt ı apply
sort descendiııg filter find

FL 3
FL 3
FL 3,

55



.ı.2 Editing Records

edit records, simply place the cursor in the record that is to be edited and make the

essary changes. Use the arrow keys to move through the record grid. The previous,

xt, first, and last record buttons at the bottom of the datasheet are helpful in

aneuvering through the datasheet.

.ı.3 Deleting Records

elete a record on a datasheet by placing the cursor in any field of the record row and

selectEditllrelete Record from the menu bar or click the Delete Record button on the

~~ıasheettoolbar.

_.4.4 Adding and Deleting Columns

Although it is best to add new fields (displayed as columns in the datasheet) in design

'iew because more options are available, they can also be quickly added in datasheet

iew. Highlight the column that the new column should appear to the left ofby clicking

label at the top of the datasheet and select InsertlColumn from the menu bar.

Entire columns can be deleted by placing the cursor in the column and selecting

EditJDeleteColumn from the menu bar.

_.4.5 Resizing Rows and Columns

The height of rows on a datasheet can be changed by dragging the gray sizing line

' tween row labels up and down with the mouse. By changing the height on one row,

the height of all rows in the datasheet will be changed to the new value.

Column width can be changed in a similar way by dragging the sizing line between

columns. Double click on the line to have the column automatically fit to the longest

value of the column. Unlike rows, columns on a datasheet can be different widths. More

exact values can be assigned by selecting Formatjlcew Height or Furmatlf.olumn

Width from the menu bar.

56



-4.6 Freezing Columns

imilar to freezing panes in Excel, columns on an Access table can be frozen. This is

pful if the datasheet has many columns and relevant data would otherwise not appear

the screen at the same time. Freeze a column by placing the cursor in any record in

e column and select FormatlFreeze Columns from the menu bar. Select the same

rion to unfreeze a single column or select Format!Unfreeze All Columns.

21Sally I Smith s41) 555-4321
~ 3 Mark Jones (1:)4.1) 555-2301

[t

2.4.7 Hiding Columns

Columns can also be hidden from view on the datasheet although they will not be 

eleted from the database. To hide a column, place the cursor in any record in the

olumn or highlight multiple adjacent columns by clicking and dragging the mouse

along the column headers, and select Formatlffide Columns from the menu bar.

To show columns that have been hidden, select Formatltlnhide Columns from the

menu bar. A window displaying all of the fields in the table will be listed with check

boxes beside each field name. Check the boxes beside all fields that should be visible on

the data table and click the Close button.

57



Co[umn: Çlose )

~ID

oıı.ım--~m-um
D Last Name
~ Address
~City
~ State
~ Postal Code
~ Home Phone
~ Work Phone

2.4.8 Finding Data in a Table

Data in a datasheet can be quickly located by using the Find command.

1. Open the table in datasheet view.

2. Place the cursor in any record in the field that you want to search and select

Editjf'ind ... from the menu bar.

3. Enter the value criteria in the Find What: box.

4. From the Look In: drop-down menu, define the area of the search by selecting

the entire table or just the field in the table you placed your cursor in during step

2.

5. Select the matching criteria from Match: to and click the More>> button for

additional search parameters.

6. When all of the search criteria is set, click the Find Next button. If more than

one record meets the criteria, keep clicking Find Next until you reach the

correct record.

58



Fio.d What: b H E.{J

l,_ook In: State

Matcb.: Whole Field

E.ind Next

Cancel ]

I : <<.L~ss :I

All

59

The replace function allows you to quickly replace a single occurrence of data with a

new value or to replace all occurrences in the entire table.

LajMatch Çase
Cl search Fields As FQ.rmatted

1. Select Editllceplace ... from the menu bar (or click the Replace tab if the Find

window is already open).

2. Follow the steps described in the Find procedure for searching for the data that

should be replaced and type the new value of the data in the Replace With: box.

3. Click the Find Next button to step through occurrences of the data in the table

and click the Replace button to make single replacements. Click Replace All to

change all occurrences of the data in one step.

2.4.9 Replace



~i~ U Replace

L.. . .. . . . .... JE:lj I Eind Next

Cancel

<< L!2_SS

Replace With: ...:,.l F_ıo_r_id_a_···--·------------------------= B_eplace

!,_ook In: State Replace 6.11

Maten: vi/hole Field

' :: : . :: : .: :

2.earch: jAII=----=---===._c

2.4.10 Check Spelling and AutoCorrect

The spell checker can be used to flag spelling errors in text and menu fields in a

datasheet. Select Toolslxpelling from the menu bar to activate the spell checker and

make corrections just as you would using Word or Excel. The AutoCorrect feature can

automatically correct common spelling errors such as two INitial CApitals, capitalizing

the first letter of the first word of a sentence, and anything you define. Select

Toolslauro'Correct to set these features.

2.4.11 Print a Datasheet

Datasheets can be printed by clicking the Print button on the toolbar or select

Filell'rhıt to set more printing options.

2.5 Table Relationships

Table Relationships

To prevent the duplication of information in a database by repeating fields in more than

one table, table relationships can be established to link fields of tables together. Follow

the steps below to set up a relational database:

1. Click the Relationships button on the toolbar. ~

60 



2. From the Show Table window (click the Show Table button on the toolbar to

make it appear), double click on the names of the tables you would like to

include in the relationships. When you have finished adding tables, click Close.

8.dd

Çlose
create b·v entering data
Mailing List
Tablel
Table2

3. To link fields in two different tables, click and drag a field from one table to the

corresponding field on the other table and release the mouse button. The Edit

Relationships window will appear. From this window, select different fields if

necessary and select an option from Enforce Referential Integrity if necessary.

These options give Access permission to automatically make changes to

referential tables if key records in one of the tales is deleted. Check the Enforce

Referential Integrity box to ensure that the relationships are valid and that the

data is not accidentally deleted when data is added, edited, or deleted. Click

61



Create to create the link.

Q]~-~~l!ıl~

ne-To-Man~,

4. A line now connects the two fields in the Relationships window.

FirstName
Last Name
Address

City __ ------··--

5. The datasheet of a relational table will provide expand and collapse indicators to

view subdatasheets containing matching information from the other table. In the

example below, the student address database and student grade database were

related and the two can be shown simultaneously using the expand feature. To

expand or collapse all subdatasheets at once, select

62 



FormatJSubdatasheetJExpand All or Collapse All from the toolbar.

95
o oo

456 Elm Ave. I Ft.10025527041 Jane es
* I I {Auto Number)

2.6 Queries

2.6.1 Introduction to Queries

Queries select records from one or more tables in a database so they can be viewed,

analyzed, and sorted on a common datasheet. The resulting collection of records, called

a dynaset (short for dynamic subset), is saved as a database object and can therefore be

easily used in the future. The query will be updated whenever the original tables are

updated. Types of queries are select queries that extract data from tables based on

specified values,flnd duplicate queries that display records with duplicate values for

one or more of the specified fields, andfind unmatched queries display records from

one table that do not have corresponding values in a second table.

2.6.2 Create a Query in Design View

Follow these steps to create a new query in Design View:

63



1. From the Queries page on the Database Window, click the New button.

5. Add fields from the tables to the new query by double-clicking the field name in

the table boxes or selecting the field from the Field: and Table: drop-down

Create query by using wizard

Desi n View
SimpleQuery Wizard
Crosstab Query \ıl/izard
Find Duplicates Query Wizard
Find Unmatched Query Wizard

Create a new query wıthout
using a wizard.

OK 11! Cancel

2. Select Design View and click OK.

3. Select tables and existing queries from the Tables and Queries tabs and click

the Add button to add each one to the new query.

4. Click Close when all of the tables and queries have been selected.

rr·ahieC - .
fl.dd )

çı~e ı
Table2

Sort:
Show:

Criteria: I ı
or:

64 



menus on the query form. Specify sort orders if necessary.
queıy show sliıôW top
type run tabie ı.otats. values

'tlrt~
6. Enter the criteria for the query in the Criteria: field. The following table

provides examples for some of the wildcard symbols and arithmetic operators

that may be used. The Expression Builder ~can also be used to assist in

writing the expressions.

Query Wildcards and Expression Operators I,

Wildcard I 

I I
Operator

Explanation

I? Street I The question mark is a wildcard that takes the place of a

single letter.

143th. I The asterisk is the wildcard that represents a number of

characters.

1<100 ııvalue less than 100
I

65



\>=l \\Valuegreater than or equal to 1 I
\<>"FL" \Not equal to (all states besides Florida)

\Between 1 and 10 \\Numbersbetween 1 and 1 O I
Is Null Finds records with no value

Is Not Null or all records that have a value

\Like "a*" II with "a" I][All words begınnıng

ı[>O And <=10 ]\All numbers greater than O and less than 1 O

"Bob" Or "Jane" \\Valuesare Bob or Jane

7.
8. After you have selected all of the fields and tables, click the Run button on the

toolbar.
9. Save the query by clicking the Save button.

2.6.3 Query Wizard

Access' Query Wizard will easily assist you to begin creating a select query.

1. Click the Create query by using wizard icon in the database window to have

Access step you through the process of creating a query.

Which fields do you want in your query?

You can choose from more than one table or query.

T ables!QıJeries

Table: Table2

a_vailable Fields: 2.elected Fields:

FirstName
LastName

ID
Address •:.-,:.:
City
State
PostalCode

EinishNext>Cancel

66 



2. From the first window, select fields that will be included in the query by first

selecting the table from the drop-down Tables/Querieş menu. Select the fields

by clicking the > button to move the field from the Available Fields list to

Selected Fields. Click the double arrow button>> to move all of the fields to

Selected Fields. Select another table or query to choose from more fields and

repeat the process of moving them to the Selected Fields box. Click Next>

when all of the fields have been selected.

ı.ıvhat title do you want for your query?

That's all the information the wizard needs to create your
query.

Do you want to open the query or modify the query's desiçn?

C!YJ Qpen the query to view information.

Modify the query design.

Display !::!elp on working with the query?

Cancel

3. On the next window, enter the name for the query and click Finish.

4. Refer to steps 5-8 of the previous tutorial to add more parameters to the query.

2.6.4 Find Duplicates Query

This query will filter out records in a single table that contain duplicate values in a field.

67 



1. Click the New button on the Queries database window, select Find Duplicates

Query Wizard from the New Query window and click OK.

This wizard creates a query
that finds records with
duplicate field values in a
single table or query.

DesiıJn 1/iew
SimpleQuery Wizard
Crosstab Query Wizard
lilli'tilllııı
Find Unmatched Query Wizard ı

OK Cancel

2. Select the table or query that the find duplicates query will be applied to from

the list provided and click Next>.

Find Ouplicales Query \ı/izaıd

Which table or query do you want to search for duplicate field values?

For example, to find cities with more than one customer you would
choose a Customer table below.

create by entering data
:-1111111

Table!
Table2

...; :± .. m••

Cancel t'.lext >

3. Select the fields that may contain duplicate values by highlighting the names in

the Available fields list and clicking the > button to individually move the fields

to the Duplicate-value fields list or>> to move all of the fields. Click Next>

68 



when all fields have been selected.

lfl uı•u uuı• I""' il. """ """ ""''
2 m:r: HNI: :rnH

f 3 HHH 888 888

''ı2 888 888 m:H
4 :~:~:-: m::~ :-::-::~

Which fields might contain duplicate information?

For example, if you are looking for cities with more than one customer, you
would choose City and Region fields here.

Available fields: Duplicate-value fields:

HomePhone JIMailingListID
Firstr,Jame
LastName
Address
City
State

:ı~:ıı ....• •:

['.:!ext> E.inish ]< ~ack

4. Select the fields that should appear in the new query along with the fields

selected on the previous screen and click Next >.

Do you want the query to show fields in addition to those with duplicate values?

For example, if you chose to look for duplicate City values, you could choose
CustomerName and Address here.

Available fields: Additional query fields:

FirstNameMailingListID
:ı[ı

J
City
State
PostalCode

['.:!ext>Cancel < ~ack E.inish

69



Name the new query and click Finish.

Find Duplicates Query \ı/izard · ·. ; , . i \ - },ı , .
What do you want to name vour query?

Do you want to view the query results, or modify the query design?

Modify the design.

DJ Display Help on working with the query,

_.6.5 Delete a Query

o delete a table from the query, click the table's title bar and press the Delete key on

the keyboard.

2.7 Forms

Forms are used as an alternative way to enter data into a database table.

2.7.1 Create Form by Using Wizard

To create a form using the assistance of the wizard, follow these steps:

1. Click the Create form by using wizard option on the database window.

2. From the Tables/Queries drop-down menu, select the table or query whose

datasheet the form will modify. Then, select the fields that will be included on

the form by highlighting each one the Available Fields window and clicking the

single right arrow button > to move the field to the Selected Fields window. To

move all of the fields to Select Fields, click the double right arrow button>>. If

70



you make a mistake and would like to remove a field or all of the fields from the

Selected Fields window, click the left arrow< or left double arrow<< buttons.

After the proper fields have been selected, click the Next> button to move on to

the next screen.

\•Vhich fields do ')"OU want on your form?

You carı choose from more than one table or query.

Tables/Queries

Table: Tablel TI'

8_vailable Fields: 2_elected Fields:

!StuderıtID
TestlGrade
Test2Grade
Test3Grade
CourseAverage
Extr aCredit

inish

3. On the second screen, select the layout of the form.

o Columnar - A single record is displayed at one time with labels and

form fields listed side-by-side in columns

o Justified - A single record is displayed with labels and form fields are

listed across the screen

o Tabular - Multiple records are listed on the page at a time with fields in

columns and records in rows

o Datasheet - Multiple records are displayed in Datasheet View

71



Click the Next > button to move on to the next screen.

-.::~~~:~~~---"'=@11111 ••• :;::::~~i~:*~--ili!IIII c,!,_'q!W,,i!;)i@ 

-$~~/;.,<$;$i 

i.!'A tolumnar

Iabular

Qatasheet

Justified

< !2_ack Einish

What style would you like?

·~,.Je@•oata

4. Select a visual style for the form from the next set of options and click Next>. 

Blends
Blueprint
Expedition

\ Industrial
International
Ricepaper
SandStone
Standard
Stone
Sumi Painting

Cancel [iext >< !2_ack Einish

5. On the final screen, name the form in the space provided. Select "Open the form

to view or enter information" to open the form in Form View or "Modify the

72



form's design" to open it in Design View. Click Finish to create the form.

What title do ')"OU want for your form?

That's al\ the information the wizard needs to create your
form.
Do you want to open the form or modify the form's design?

•ll Qpen the form to view or enter information,

tı_odify· the form's design.

Ol Display tielp on working with the form?

E.inishCancel <~ack

2.7.2 Create Form in Design View 

To create a form from scratch without the wizard, follow these steps:

1. Click the New button on the form database window.

2. Select "Design View" and choose the table or query the form will be associated

with the form from the drop-down menu.

3. Select Viewl'I'oolbox from the menu bar to view the floating toolbar with

additional options.

label

opliım group togglrı button

ttıeck: lıoic:opoon but1o.lil

cornbo box

unbound object frame

page lıre.ı:k: , ,P={ ~
stıbfot.rw'SiıJbtepoıt :®]j ~

rectangle D ~ mtıre .ooıııroia...

73



4. Add controls to the form by clicking and dragging the field names from the

Field List floating window. Access creates a text box for the value and label for

the field name when this action is accomplished. To add controls for all of the

fields in the Field List, double-click the Field List window's title bar and drag all

of the highlighted fields to the form.

:::ı:::::::::;;::::::::::::ı:::::::·::::::;.:::::::::ı::
::: :1::::::::::::::::::::::::1::::::.;:::::::.:::::::::1::
...... <:::::i::: ::::::r::. ::::::::::<r:c=> y--·:
:::::):::::::::::::::::::,.:::
::::r :::::::=::: .::
:::::):::·:·::::::;::::::::::
:::<I::::::· ::· .. :::

nıı; "'
D~

_.7.3 Adding Records Using A Form 

Input data into the table by filling out the fields of the form. Press the Tab key to move

from field to field and create a new record by clicking Tab after the last field of the last

record. A new record can also be created at any time by clicking the New Record 

button lt!lat the bottom of the form window. Records are automatically saved as they

are entered so no additional manual saving needs to be executed.

74 



StudenttO , , 

HtiU?M 
Test2Grade , :;,, 

-.4 Editing Forms 

follow points may be helpful when modifying forms in Design View.

• Grid lines - By default, a series of lines and dots underlay the form in Design

View so form elements can be easily aligned. To toggle this feature on and off

select ViewjGrid from the menu bar.

• Snap to Grid - Select FormatjSnap to Grid to align form objects with the grid

to allow easy alignment of form objects or uncheck this feature to allow objects

to float freely between the grid lines and dots.

• Resizing Objects - Form objects can be resized by clicking and dragging the

handles on the edges and comers of the element with the mouse.

• Chaııgeform object type - To easily change the type of form object without

having to create a new one, right click on the object with the mouse and select

Change To and select an available object type from the list.

• Label/object aligıımeııt - Each form object and its corresponding label are

bounded and will move together when either one is moved with the mouse.

However, to change the position of the object and label in relation to each other

(to move the label closer to a text box, for example), click and drag the large

handle at the top, left comer of the object or label.

• Tab order - Alter the tab order of the objects on the form by selecting ViewjTab 

Order ... from the menu bar. Click the gray box before the row you would like to

75



change in the tab order, drag it to a new location, and release the mouse button.

Custom Order:

Click to select a row, or
click and drag to select
multiple rows. Drag
selected row(s) to move
them to desired tab
order.

f FirstfıJame
I, Las tr-Jame
I Address
lL _City ---f State

I .
[" PostalCode
r WorkPhone

OK Cancel 8_uto Order

• Form Appearance - Change the background color of the form by clicking the

Fill/Back Color button on the formatting toolbar and click one of the color

swatches on the palette. Change the color of individual form objects by

highlighting one and selecting a color from the Font/Fore Color palette on the

formatting toolbar. The font and size, font effect, font alignment, border around

each object, the border width, and a special effect can also be modified using the

formatting toolbar:

nı.rıBa~k
Color

Ltıe,r:Bordet
Cok:ır

IFönt!Fcıre
Color

!Laıe!ıBörı:ler
\i\l'"tdtliı

• Page Header and Footer - Headers and footers added to a form will only appear

when it is printed. Access these sections by selecting Viewlf'age Header/Footer 

on the menu bar. Page numbers can also be added to these sections by selecting

Insertll'age Numbers. A date and time can be added from Insertllrate and 

Time .... Select Viewjl'age Header/Footer again to hide these sections from

view in Design View.

76 



_.8 More Forms 

_.8.1 Multiple-Page Forms Using Tabs 

Tab controls allow you to easily create multi-page forms. Create a tab control by

following these steps:

1. Click the Tab Control icon on the toolbox and draw the control on the form.

2. Add new controls to each tab page the same way that controls are added to

regular form pages and click the tabs to change pages. Existing form controls

cannot be added to the tab page by dragging and dropping. Instead, right-click

on the control and select Cut from the shortcut menu. Then right-click on the tab

control and select Paste. The controls can then be repositioned on the tab

control.

ItemNo - ~
Description jPencii #2 ~

UnitPrice $5.oo\ j

o Add new tabs or delete tabs by right-clicking in the tab area and

choosing Insert Page or Delete Page from the shortcut menu.

o Reorder the tabs by right-clicking on the tab control and selecting Page 

Order. 
o Rename tabs by double-clicking on a tab and changing the Name 

property under the Other tab.

2.8.2 Conditional Formatting 

Special formatting that depends on the control's value can be added to text boxes, lists,

and combo boxes. A default value can set along with up to three conditional formats. To

add conditional formatting to a control element, follow these steps:

77



1. Select the control that the formatting should be applied to and select

Formatlf.onditional Formatting from the menu bar.

2. Under Condition 1, select one of the following condition types:
o Field Value Is applies formatting based upon the value of the control.

Select a comparison type from the second drop-down menu and enter a

value in the final text box.
o Expression Is applies formatting if the expression is true. Enter a value

in the text box and the formatting will be added if the value matches the

expressıon.
o Field Has Focus will apply the formatting as soon as the field has focus.

3. Add additional conditions by clicking the Add>> button and delete conditions

by clicking Delete ... and checking the conditions to erase.

3 ~'L
Default E_ormatting

This format ı,ııill be used if no I AaBbCcYyZz I B I !I II~ ·il~ T

conditions are met:

·.-.•..• .-li•. i.-.r-ı 1 - ... ,..,,,.. - ,,.,,,

Field Value Is !\TH [less than [;IJE
Preview of format to use I AaBbCcVyZz I li1JI !Ill~·lı~·
wheo condition is true:

'-----===--~ ~!l!!~!!~!!!~!.~1:.J;JjLJ'.:'_ - -· ·- - .. ··--··,;;;;!I

Preview of format to use
when condition is true:

AaBbCcYyZz

OK CancelB,dd >>

2.8.3 Password Text Fields

To modify a text box so each character appears as an asterisk as the user types in the

information, select the text field in Design View and click Properties. Under the Data

tab, click in the Input Mask field and then click the button[...] that appears. Choose

"Password" from the list of input masks and click Finish. Although the user will only

see asterisks for each character that is typed, the actual characters will be saved in the

database.

78



.4 Change Control Type 

. -ou decide the type of a control needs to be changed, this can be done without

- ting the existing control and creating a new one although not every control type can

onverted and those that can have a limited number of types they can be converted

. To change the control type, select the control on the form in Design View and

zoose Formatlf.hange To from the menu bar. Select one of the control types that is

t grayed out.

-·v,5 Multiple Primary Keys 

- select two fields for the composite primary key, move the mouse over the gray

lumn next to the field names and note that it becomes an arrow. Click the mouse, hold

: down, and drag it over all fields that should be primary keys and release the button.

"ith the multiple fields highlighted, click the primary key button.

79 



CHAPTER3 

3 USER MANUAL 

3.1 Relationships 

meeerıeoeme
selercomp,rıy

~ 

deantıQkfi:l

~

customer_surname
joboo
irwoıce
receipt
beıeoce

figure 3.1. relationships 

The relationships tables on the microsoft access screen gives us information about

tables will use for the project and theirs relationships.

80 



3.2 Main Menu 

ı,bno • customer_namo customeı suıname phone " addıess cleaningdate j cleaningtime \ cleaningkindfi
!J 3_:~~~ __ , kllsmez . _533345§~~~sa 10/12/2008 !12/30/189912:30:00 ]home .. ~ fl.;.!I

8
4 mus\afa yavuz I 5443457668 le/kosa 12/10/2008 :12/30/189913:30:00 lhome ı [gtj. . ''' -··•···-- ---..l----, j

5 ~ nurıye , soydan j 5334454467 .:._lefkosa _;_12/12/2008 L12/30/1899 15:30:00 J o!fic_e__ I

- ;-~::z· - _ ::veci.. .... -+- -~- ~jj:~~~:~! ~::~.. ------------ -- -----=- _: 1~;~~~:-- -ı~~~~=~;~--J ~!

r:-
NEW REGISTRATION I SAVE UPDATE CANCEL DELETE

JDBNO EMPLOYER_SURNAME JOBNO NAME SURNAME MATEAIAIJIND USED

AüD SAVE UPDATE DELETE AOD

~I

figure3.2.main menu 

The main menu saparated three of part.In first part we see that there is registration

ction.this sectin to register for customers.If a customer call us we have to register this

customer.To register a customer first we get him/her name ,sumame,phone

number,address,workin date,working time and cleaning kind.After we get these

information we push the button 'new registration'. There are some buttons also in

section one to update,save or delete a registration.After getting the informations about

cleaning kind and time we set employers to work in this job.

Second part of main menu (left bottom on the screen)choosing the employers to send

for working.In tum we write jobno and employer surname.After choosing the employers

now we can choose which materials for which employers.

81



In section three of main menu is choosing the materials.We write firstjobno then

employer name,sumame and using material name and the last one is quantity of using

material.We push the button add we can add this information for database.

There is a search button bottom of the screen also.This button is for searching another

informations like customer information,employer information,billing,material

information and cleanin information.The last button is the exit.when we push this button

the program will halt.

82 



Search Menu 

..3.1 Customers page 

_SEARCH BY:

JOB NO NAME SURNAME PHONE
CLEANING DATE

EMPLOYERS

figure 3.3.customers page 

In search menu there are five category for searching.the first one is the customers.In this

section we can search any customer by jobno ,name,sumame,phone or cleaning date by

search fields which replaced top of the screen.There is employers table bottom of the

screen.this table is to find out which employers are worked for signedjobno.We can see

clearly how many employers worked who are these and what are theirs informations.

83



3.3.2 Bill Page

CUSTOMERS L~~Lij EMPLOYERS I MATERIAL I CLEANING KIND I

SEı>.RCH BY,

PAYING ı-----
~J

l.obno !customer_name r;;;:;~torner surnameJphone !address !cıearıingdate ~cıeaningtime Tde~~!
~I Slbasen !küsmez 5333455667 lefkosa )10/12/2008 ! 12rJD/1899 ı 2:30:00 home 1 ~.ıı.

----4~---;~- 5443457668lefkosa - -----·112/10ıiooô-- --r,2130/189913:-30:Ôo ho~ -·-i II
-··-------~!nuri;ıe r;oydan 5334454467 lefkosa -----ıw1212000---~cii1"8991"5"j0:00" ~fİi~-----;·-

, Elrnehmel !öz _ 5334565643 ~irne :~~_:!_2/2008__.\12130/189916:00:00 office

....•.deveci---·- ---·· -· ..... 533~555654E_a!;josa ------·····--------------······---------- 10/11120DB , 121301~899IX 3Qp0Jstore ii

figure 3.4.bill page 

The second section of search menu is for billing.After the work we have to give a

invoice to customer.In main menu when we register a customer we typing the cleaning

kind the cleaning cost is typed into invoice field in bill table automatically.We can find

out the customer that we want to give a receipt by seacrh alternative again.After we find

out the customers we can see how much borrow for customer.When the time for paying

we ask to the customer how much will him/her pay for own job.After decision the

quantity payment now we can type the quantitty of maney into the paying field on the

left of the screen and we push the button balance.

84



3.3.3 Employees Pages 

cusroMrns ı sıLL fIMi'lo?nıs-:j MATERL<>LJ CLEANING KIND I

__ SEARCH BY:

figure 3. 5 employees page 

The third section of the search menu is employers table.In this section there are two

section. The first one is searching the employers by the searching alternative.Also tere

are some buttons to add the new employer or to delete the leaving employer.There is

material informations bottom of the table. This table shows us which employer used

which materials and how many.We registred this informations when we register the

employers for working in main menu.

85



3.3.4 Material Page 

QJSTOMERS I BILL I EMPLOYERS 'MATERIALlj CLEANING KIND I

SEARCH BY:

MATERIAL NAME 

SELi.ER COMPANY

IN STOCK

SAVE ~ DELETE

figure 3.6.materiaf page 

The fourth section of search menu is material.This table gives us material names ,seller

company we bought them and how many material is there in the stock.We can search

for a material via searching fields again.When we register an employer on the main

menu we type how many pattern will use the employer.During the time we type the

quantity of the material kind decreases the quantity in stock balancely in the material

section.Also we can add new materials when the material finish in stock.There are some

buttons for register new materials in this section.

86 



~ .5 Cleaning Kind Page 

__ SEARCH BY:

CLEANING NO KINDı--,..- COSTr- I

'I'11

\ı
I
\

\ı
!

CLEANING KIND
cleanirıgno J cleaningkind \ cleaningcost\~

~1---~t:~:: --~+~---!~~
-·---~!:_ _ __ı__l!B}

CLEANING COST

figure 3. 7.cleaning kind page 

The fifth and last section is cleaning for search menu.In this section gives us

informations about cleaning kind and its cost.We can search any kind of cleaning and its

cost via searching fields.Also we can add new cleaning type or update the cost for any

existing cleaning kind or we can delete for any cleaning kind.

87



CONCLUSION 

sed delphi for this program because of delphi is usable to prepare a databank

graınming.Also Microsoft Access was easy to use and clear for my development.

time it was hard to use delphi for me because it is so detail program but later I

::,;,-:::ıined some books and some internet addresses and I learned necessary informations

~· Delphi to develop my project.
.::is development teach me how can I use Delphi and how can I develop a databank

gramming via using Microsoft Access.Now I know so many things about delphi and

crosoft Access.

--~Y development can be used in any cleaning company.Because while I were

-elopingmy program I researched many cleaning companies and I examine how do

se companies work.

88 



REFERENCES 

_ ~eil Moffat ,"Delphi Basics" from the World Wide Web

: www.delphibasics.eo.uk/index.html

:: ~ FGCU 2007.Florida Gulf Coast University is an equal opportunity/affirmative

·on institution from the World Wide Web

://www.fgcu.edu/support/office2000/access/

...:} Delphi 7 Ezel Balkan Book

89



APPENDIX 

gram Projectl;

rms,

.nitl in 'Unitl.pas' {Forml },

-nit2 in 'Unit2.pas' {Form2},

-nit3 in 'Unit3.pas' {Form3};

-R * .res}

gin

:-\pplication.Initialize;

pplication. CreateF orm(TF orm3, Form3);

Application. CreateF orm(TF orm 1, Form 1 );

Application.CreateForm(TF orm2, Form2);

Application.Run;

end.

unit Unitl;

91



crerface

.ses

indows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, Grids, DBGrids, DB, ADODB, ExtCtrls, ComCtrls, DBCtrls,

Std'Ctrls, Mask;

. -pe

TForml = class(TForm)

PageControll: TPageControl;

TabSheetl: TTabSheet;

TabSheet2: TTabSheet;

Panel 1: TPanel;

ADOConnection 1 : TADO Connection;

DataSource 1: TDataSource;

DBGridl: TDBGrid;

Panel2: TPanel;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

Buttonl: TButton;

Button2: TButton;

Button3: TButton;

Button4: TButton;

Buttons: TButton;

Panel3: TPanel;

DBGrid2: TDBGrid;

Editl: TEdit;

Label 1: TLabel;

ADOQueryl: TADOQuery;

Panel4: TPanel;

AD0Query2: TADOQuery;

DataSource2: TDataSource;

Edit2: TEdit;

92



.-\D0Query3: TADOQuery;

DataSource3: TDataSource;

DBGrid4: TDBGrid;

Button6: TButton;

Button8: TButton;

Button9: TButton;

Buttonl O: TButton;

Edit4: TEdit;

Edit5: TEdit;

Edit6: TEdit;

Label3: TLabel;

ADOQuery4: TADOQuery;

DataSource4: TDataSource;

DBGrid5: TDBGrid;

DBGrid3: TDBGrid;

ADOQuery5: TADOQuery;

DataSource5: TDataSource;

DBGrid6: TDBGrid;

Label2: TLabel;

Label4: TLabel;

Labels: TLabel;

Buttonl 1: TButton;

Button12: TButton;

AD0Query6: TADOQuery;

DataSource6: TDataSource;

DBGrid7: TDBGrid;

Edit3: TEdit;

Button13: TButton;

DBLookupComboBoxl: TDBLookupComboBox;

MaskEdit2: TMaskEdit;

MaskEditl: TMaskEdit;

MaskEdit3: TMaskEdit;

Button14: TButton;

Button15: TButton;

93



Button16: TButton;

Buttonl 7: TButton;

Buttonl 8: TButton;

Button19: TButton;

DBLookupComboBox2: TDBLookupComboBox;

Edit7: TEdit;

DBEdit6: TDBEdit;

Edit8: TEdit;

Button22: TButton;

Button21: TButton;

Button23: TButton;

Label6: TLabel;

Label7: TLabel;

Label8: TLabel;

MaskEdit4: TMaskEdit;

DBEditl: TDBEdit;

DBEdit5: TDBEdit;

DBEdit7: TDBEdit;

Label9: TLabel;

Labell O: TLabel;

Label1 1: TLabel;

Labe112:TLabel;

Label13: TLabel;

Labe114:TLabel;

Label15: TLabel;

Button": TButton;

DBLookupListBoxl: TDBLookupListBox;

Button24: TButton;

Panel5: TPanel;

Button20: TButton;

Button25: TButton;

Label16: TLabel;

Label 1 7: TLabel;

procedure Editl Change(Sender: TObject);

94



procedure TabSheet2Show(Sender: Tübject);

procedure TabSheetl Show(Sender: Tübject);

procedure Edit2Change(Sender: Tübject);

procedure Button6Click(Sender: Tübject);

procedure Button8Click(Sender: Tübject);

procedure Button9Click(Sender: Tübject);

procedure Buttonl OClick(Sender: Tübject);

procedure DBGrid3CellClick(Column: TColurnn);

procedure Edit4Change(Sender: Tübject);

procedure Edit5Change(Sender: Tübject);

procedure Edit6Change(Sender: Tübject);

procedure DBGrid5CellClick(Column: TColumn);

procedure DBGrid4CellClick(Column: TColumn);

procedure Buttonl 1 Click(Sender: TObject);

procedure Button12Click(Sender: TObject);

procedure Edit3Change(Sender: Tübject);

procedure Button13Click(Sender: Tübject);

procedure MaskEditl Click(Sender: Tübject);

procedure MaskEdit3Click(Sender: Tübject);

procedure Button14Click(Sender: Tübject);

procedure Button15Click(Sender: Tübject);

procedure Buttonl 6Click(Sender: Tübject);

procedure Buttonl 7Click(Sender: Tübject);

procedure Buttonl8Click(Sender: Tübject);

procedure Buttonl 9Click(Sender: Tübject);

procedure Button20Click(Sender: Tübject);

procedure DBLookupComboBox2Click(Sender: Tübject);

procedure Button22Click(Sender: Tübject);

procedure Button21 Click(Sender: Tübject);

procedure Button23Click(Sender: Tübject);

procedure MaskEdit4Change(Sender: Tübject);

procedure MaskEditl Change(Sender: Tübject);

procedure MaskEdit2Change(Sender: Tübject);

procedure Buttonl Click(Sender: Tübject);

95



rocedure Button2Click(Sender: TObject);

rocedure Button3Click(Sender: TObject);

rocedure Button4Click(Sender: TObject);

rocedure Button5Click(Sender: TObject);

rocedure Button7Click(Sender: TObject);

rocedure Button24Click(Sender: TObject);

rocedure Button25Click(Sender: TObject);

rocedure FormCreate(Sender: TObject);

rocedure FormKeyPress(Sender: TObject; var Key: Char);

nriv ate

rocedure add click;

rocedure update_ click;

procedure empmat_ add_ click;

{ Private declarations }

ublic

{ Public declarations }

end;

ar

Forml: TForml;

update 1 :integer;

egisken:integer;

implementation

es Unit2;

R *.dfm}

rocedure TForml .Editl Change(Sender: TObject);

Yar

jo bno :integer;

begin

96 



queryl .close;

doqueryl .SQL.Clear;

· oqueryl .SQL.Add('select * from job where jobno like'+#39+( editl .Text)+'%'+#39);

~aqueryl.Open;

oqueryl .Refresh;

_ bno:=adoqueryl .fieldbyname('jobno').Aslnteger;

~uit2.Text:=inttostrGobno );

dit3.Text:=inttostrGobno );

end;

rocedure TForm 1.TabSheet2Show(Sender: TObject);

!obno:integer;

gm

maskedit3. Text:=timetostr(time );

editl .SetFocus;

adoquery2.FieldByName('givenjob').Visible:=true;

repeat

adoqueryl .Next;

until (adoqueryl.Eof = true);

jobno:=adoqueryl .fieldbyname('jobno').Aslnteger;

edit2. Textr=inttostrtjobno );

edit3.Text:=inttostrQobno );

adoquery4.Active:=false;

adoquery4.Active:=true;

adoquery3 .Active:=false;

adoquery3.Active:=true;

adoquery5 .Active:=false;

97 



ioqueryf .Active:=true;

:ldoquery2.Active:=false;

-~oquery2.Active:=true;

adoquery6.Active:=false;

.ıuoquery6.Active:=true;

end;

* rocedure TForml.TabSheetl Show(Sender: Tübject);

gin

editl .Clear;
maskeditl .Text:=datetostr(date);

dbedit5.Text:=maskeditl .Text;

repeat

adoqueryl .Next;

until (adoqueryl.Eof = true)

end;

procedure TForml .Edit2Change(Sender: Tübject);

begin

adoquery3.close;

adoquery3.SQL.Clear;

adoquery3.SQL.Add('select
j obno,employer_name,employer_sumame,employemo,leavingtime,retumingtime,empj o

bno from empjob where jobno like'+#39+(edit2.Text)+'%'+#39);

adoquery3.Open;
adoquery3.FieldByName('empjobno').Visible:=false;

end;

procedure TForml .Button6Click(Sender: Tübject);

98 



empjob_employerno:integer;

ployer_ employerno :integer;

gm

if update 1 =2 then

egin

adoquery3. Cancel;

editl .SetFocus;

updatel :=O;

exit;

end;

if adoquery3 .FieldByName('employer _surname').AsString=" then exit;

button6.Enabled:=false;

if update 1 = 1 then

begin

adoquery3. Cancel;

dbgrid5. Visible:=true;

label2. Visible:=true;

dbgrid3.Visible:=false;

label5. Visible:=false;

label3.Visible:=true;

edit4.Visible:=true;

edit5 .Visible:=true;

edit6. Visible:=true;

if degisken= 1 then

99 



egın

if dbgrid3.Visible=false then dbgrid3.Visible:=true;

if dbgrid6.Visible=false then dbgrid6.Visible:=true;

utton12.Visible:=true;

nd;

if degisken=O then buttonl 1 .Visible:=true;

updatel :=O;

exit;

end;

repeat

adoquery2.N ext;

until (adoquery2.Eof = true);

empjob_employemo:=adoquery3.FieldByName('employemo').Aslnteger;

employer_employemo:= adoquery2.FieldByName('employemo').Aslnteger;

while (employer_employemo<>empjob_employemo) do

begin

adoquery2.Prior;

employer_employemo:= adoquery2.FieldByName('employemo').Aslnteger;

end;

adoquery3 .cancel;

adoquery2.Edit;

adoquery2. UpdateRecord;

adoquery2.FieldByName('givenjob').AsBoolean:=false;

adoquery2.Post;

adoquery4.Active:=false;

adoquery4.Active:=true;

adoquery5 .Active:=false;

adoquery5 .Active:=true;

100



:1 .SetFocus;

edure TForml.Button8Click(Sender: TObject);

TI

.ord;

pjob_employemo :integer;

ployer _employemo:integer;

gm

adoquery3 .FieldByN ame('employer _sumame').AsString=" then

egın

ditl .SetFocus;

exit;

end;

if adoquery3 .FieldByN ame('retumingtime').AsString=" then

begin

repeat

adoquery2.Next;

until (adoquery2.Eof = true);

empjob_employemo:=adoquery3.FieldByName('employemo').Aslnteger;

employer_employemo:= adoquery2.FieldByName('employemo').Aslnteger;

while (employer_ employerno<>empjob _employemo) do

begin

adoquery2.Prior;

employer_ employemo := adoquery2.FieldByN ame('employerno').Aslnteger;

end;

101



a:=application.messagebox('are you sure to send back?','waming',36);

if (a=idyes )then

begin

adoquery3 .Delete;

adoquery3. prior;

adoquery2.Edit;

adoquery2. UpdateRecord;

adoquery2.FieldByName('givenjob').AsBoolean:=false;

adoquery2.Post;

end;

adoquery4.Active:=false;

adoquery4.Active:=true;

adoquery5 .Active :=false;

adoquery5 .Active:=true;

editl .SetFocus;

end

else

begin

showmessage ('this job seems completed');

showmessage('you can use "Add or Delete" button');

end;

end;

procedure TForml.Button9Click(Sender: TObject);

begin

if adoquery3 .FieldByName('employer _surname').AsString=" then

begin

editl .SetFocus;

exit;

end;

button6.Enabled:=false;

if update 1 =2 then

begin

102



adoquery3. post;

editl .SetFocus;

updatel :=O;

exit;

end;

if update 1 = 1 then

begin

dbgrid5.Visible:=true;

label2.Visible:=true;

dbgrid3.Visible:=false;

label5.Visible:=false;

label3. Visible:=true;

edit4.Visible:=-irue;

edit5 .Visible:=true;

edit6.Visible:=true;

if degisken= 1 then

begin

if dbgrid3.Visible=false then dbgrid3.Visible:=true;

if dbgrid6.Visible=false then dbgrid6.Visible:=true;

buttonl 2.Visible:=true;

end;

if degisken=O then buttonl 1 .Visible:=true;

updatel :=O;

end;

try

adoquery3.Post;

except

begin

showmessage('this table is not in "edit" or "insert" mode')

end;

end;

103



adoquery2.Active:=false;

-~oquery2.Active:=true;

oquery4.Active:=false;

_doquery4.Active:=true;

adoqueryô .Active:=false;

oquery5 .Active:=true;

editl .SetF ocus;

editl .SetFocus;

end;

rocedure TForrn 1 .add_ click();

var

aktarl :string;

aktar2:string;

aktar3 :integer;

aktar4:integer;

employer_ employerno :integer;

convenient __employerno: integer;

begin

repeat

adoquery3 .Next;

until (adoquery3.Eof = true);

while adoquery3 .Bof<>true do

begin
if adoquery3.FieldByName('returningtime').AsString<>" then

begin

showmessage('this job seems complited');

showmessage('you can use "Add or Delete" button');

exit;

end;

adoquery3 .Prior;

104



end;

if adoquery3.FieldByName('retumingtime').AsString<>" then

begin

showmessage('this job seems complited');

showmessage('you can use "Add or Delete" button');

exit;

end;

button6.Enabled:=true;

adoquery3 .Append;

aktar3 :=strtoint( edit2. text);

adoquery3.FieldByName(Jobno').Asinteger:=aktar3; 

aktar 1 := adoquery4.FieldByName('employer _name').AsString;

adoquery3 .FieldByName('employer _name').AsString:=aktarl;

aktar2:=adoquery4.FieldByName('employer_sumame').AsString;

adoquery3 .FieldBy Name('employer _sumame').AsString:=aktar2;

aktar4:= adoquery4.FieldByName('employemo').Asinteger;

adoquery3.FieldByName('employemo').Asinteger:=aktar4;

repeat

adoquery2.Next;

until (adoquery2.Eof = true);

convenient_employemo:=adoquery4.FieldByName('employemo').Asinteger;

employer_ employemo := adoquery2.FieldByN ame('employemo').Aslnteger;

while (employer_ employemo<>convenient_ employemo) do

begin

adoquery2.Prior;

employer_ employemo:= adoquery2.FieldByName('employemo').Asinteger;

end;

105



ioqueryz.Edit;

uery2. UpdateRecord;

query2.FieldByName('givenjob').AsBoolean:=true;

uery2.Post;

zdoquery-l.Activer=false;

oquery4.Active:=true;

doquery5 .Active:=false;

sdoqueryf .Active:=true;

end;

rrocedure TForml .update_click();

·ar

ctarl :string;

ctar2:string;

ctar3 :integer;

aktar4:integer;

begin

aktar3: =strtoint( edit2. text);

adoquery3.FieldByName('jobno').Asinteger:=aktar3;

aktar l ı= adoquery2.FieldByName('employer _name').AsString;

adoquery3 .FieldByName('employer _name').AsString:=aktar 1;

aktar2:=adoquery2.FieldByName('employer __sumame').AsString;

adoquery3 .FieldByN ame('employer _sumame').AsString:=aktar2;

aktar4:= adoquery2.FieldByName('employemo').Aslnteger;

adoquery3.FieldByName('employemo').Aslnteger:=aktar4;

end;

procedure TForm 1 .Button 1 OClick(Sender: TObj ect);

var

empjob_ employemo: integer;

employer_ employemo:integer;

begin

106



: adoquery3 .FieldByName('employer _surname').AsString=" then

gin

editl .SetFocus;

exit;

end;
if adoquery3 .FieldBy N ame('returningtime').AsString=" then

gm
-howmessage('you can update after this job completed');

editl .SetFocus;

exit;

end;

update 1 :=1;

utton6 .Enabled: =true;

dbgrid5. Visible:=false;

label2.Visible:=false;

dbgrid6.Visible:=false;

label4.Visible:=false;

dbgrid3. Visible:=true;

label5 .Visible:=true;

label3. Visible:=false;

edit4.Visible:=false;

edit5 .Visible :=false;

edit6.Visible:=false;

buttonl 1 .Visible:=false;

buttonl2.Visible:=false;

repeat

adoquery2.Next;

until (adoquery2.Eof = true);

empjob_employerno:=adoquery3.FieldByName('employerno').Aslnteger;

employer_ employerno := adoquery2.FieldBy N ame('employerno').Aslnteger;

107



'hile (employer_ employerno<>empjob _employerno) do

begin

adoquery2.Prior;

employer_ employerno := adoquery2.FieldByN ame('employerno').Aslnteger;

end;

adoqueryô .edit;

adoqueryô. UpdateRecord;

•.. ditl .SetFocus;

end;

rocedure TF orm 1 .D8Grid3Cel1Click(Column: TColumn);

egın

if update 1 =2 then

begin

update_ click;

exit;

end;

if update 1 = 1 then

update_ click;

end;

procedure TForml.Edit4Change(Sender: TObject);

begin

adoquery4.close;

adoquery4.SQL.Clear;

adoquery4. SQL.Add('select employerno,employer _name,employer _surname,givenjob

from employer where givenjob=false and employerno like'+#39+(edit4.Text)+'%'+#39

);

adoquery4.0pen;

108



..;,oquery4.Active:=false;

oquery4.Active:=true;

- edit4.Text=" then

gm

adoquery4.close;

oquery4.SQL.Clear;

doquery4.SQL.Add('select employemo,employer _name,employer _sumame,givenjob

.- om employer where givenjob=false order by employer_name');

adoquery4.0pen;

end;

end;

procedure TForml.Edit5Change(Sender: TObject);

begin

adoquery4.close;

adoquery4.SQL.Clear;

adoquery4.SQL.Add('select employemo,employer __name,employer_sumame,givenjob

from employer where givenjob=false and employer __name

like'+#39+( edit5. Text)+'%'+#39);

adoquery4.0pen;

adoquery4.FieldByName('givenjob').Visible:=false;

if edit5.Text=" then

begin

adoquery4.close;

adoquery4.SQL.Clear;

adoquery4.SQL.Add('select employemo,employer_name,employer_sumame,givenjob

from employer where givenjob=false order by employer_name');

adoquery4.0pen;

end;

109



d; 

~ocedure TForm 1 .Edit6Change(Sender: Tübj ect);

gm

adoquery4.close;

doquery4.SQL.Clear;

adoquery-l.SQL.Add('select employemo,employer_name,employer_sumame,givenjob

from employer where givenjob=false and employer_sumame

like'+#39+(edit6.Text)+'%'+#39);

adoquery4.0pen;

adoquery4.FieldByName('givenjob').Visible:=false;

if edit6.Text=" then

begin

adoquery4.close;

adoquery4.SQL.Clear;

adoquery4.SQL.Add('select employemo,employer_name,employer_sumame,givenjob

from employer where givenjob=false order by employer_name');

adoquery4.0pen;

end;

end;

procedure TForml .DBGrid5CellClick(Column: TColumn);

begin

add_click;

end;

procedure TForm 1 .DBGrid4CellClick(Colunın: TColumn);

begin

button6.Enabled:=false;

edit7.Text:=";

if degisken=3 then

110



ımat_ add_ click; 

edure TForml.Buttonl lClick(Sender: Tübject);

gisken.=L;

14.Visible:=true;

abelS.Visible :=true;

.:::ıgrid6.Visible:=true;

- bgridô .Visible:=true;

uttonl2.Visible:=true;

uttonl 1 .Visible:=false;

editl .setfocus;

end;

procedure TForml.Button12Click(Sender: TObject);

egın

degisken:=O;

label4.Visible:=false;

labels. Visible :=false;

dbgrid3.Visible:=false;

dbgrid6. Visible:=false;

button12.Visible:=false;

buttonl 1.Visible:=true;

editl .SetFocus;

end;

procedure TForml.Edit3Change(Sender: TObject);

begin

adoquery6.close;

adoquery6.SQL.Clear;

111



.•oqueryô. SQL.Add(' select

no,employer _name,employer _surname,employerno,materialname,used from empmat

ere jobno like'+#39+( edit3. Text)+'%'+#39);

ioqueryô.Open;

end;

crocedure TForml .Button13Click(Sender: TObject);

·ar

_ obno :integer;

gm

editl .Text:=";

repeat

adoqueryl .Next;

until (adoquery l.Eof = true);

jobno:= adoqueryl .FieldByName('jobno').Aslnteger;

editl .Textr=inttostrtjobrıo );

editl .SetFocus;

end;

procedure TFoım 1 .MaskEditl Click(Sender: TObject);

begin

maskeditl .Text:=datetostr( date);

dbedit5. Text:=maskeditl. Text;

end;

procedure TForml .MaskEdit3Click(Sender: TObject);

begin

maskedit3. Text:=timetostr(time );

end;

procedure TForml .Button14Click(Sender: TObject);

var

112



g:string;

.: update 1 =2 then

gm

.eaving.=maskeditô.Text;

oquery3 .FieldB yName('leavingtime ') .AsString:= leaving;

exit;

end;

: update 1 = 1 then

gm

doquery3 .Edit;

adoquery3. UpdateRecord;

adoquery3 .FieldB yName('leavingtime').AsString:=maskedit3. Text;

adoquery3.Post;

dbgrid5.Visible:=true;

labe12.Visible:=true;

dbgrid3. Visible:=false;

label5.Visible:=false;

if degisken= 1 then

begin

label 4.Visible:=true;

label5. Visible:=true;

dbgrid6.Visible:=true;

dbgrid3.Visible:=true;

button12.Visible:=true;

end;

if degisken=O then

begin

buttonl 1 .Visible:=true;

dbgrid3. Visible:=false;

label5. Visible:=false;

113



n6.Enabled:=false;

tel:=0;

t

uery3.Next;

al (adoquery3.Eof = true);

hile adoquery3.bof <> true do

zegin
if adoquery3.FieldByName('leavingtime').AsString=" then

begin

adoquery3 .Edit;

adoquery3 .UpdateRecord;
adoquery3.FieldByName('leavingtime').AsString:=maskedit3.Text;

adoquery3 .Post;

end;

adoquery3 .Prior;

end;

button6.Enabled:=false;

editl .SetFocus;

end;

procedure TF orm 1.Button15Click(Sender: TObj ect);

var

empjob _employerno:integer;

employer , employerno :integer;

returning: string;

begin

114



gın

eruming.=maskeditô. Text;

oquery3 .FieldB yName('retumingtime') .AsString :=returning;

exit;

end;

update 1 = 1 then

gın

if adoquery3 .FieldByN ame('leavingtime').AsString=" then

begin

showmessage('you have to fill leaving time first');

exit;

end;

adoquery3 .Edit;

adoquery3. UpdateRecord;

adoquery3.FieldByName('retumingtime').AsString:=maskedit3.Text;

adoquery3 .Post;

dbgrid5.Visible:=true;

labe12.Visible :=true;

dbgrid3.Visible:=false;

label5. Visible:=false;

if degisken=l then

begin

label4.Visible:=true;

label5. Visible:=true;

dbgrid6.Visible:=true;

dbgrid3. Visible:=true;

button12.Visible:=true;

end;

115



-- degisken=O then

gm

ttonl 1 .Visible:=true;

.fbgridô.Visible:=false;

be15.Visible:=false;

end;

if update 1 =2 then

begin

adoquery3 .FieldByName('retumingtime').AsString:=maskedit3. Text;

end;

button6.Enabled:=false;

updatel:=O;

exit;

nd;

if adoquery3.FieldByName('leavingtime').AsString0=" then

begin

showmessage('you have to fill leaving time first');

exit;

end;

repeat

adoquery3.Next; 

until (adoquery3.Eof = true);

repeat

if adoquery3 .FieldByN ame('retumingtime').AsString<>" then

begin

degisken:=2;

end;

adoquery3 .Prior;

until( adoquery3 .Bof=true );

116



if degisken=2 then

begin

repeat

adoquery3 .Next;

until (adoquery3 .Eof = true);

while adoquery3. bof <> true do

begin

if adoquery3.FieldByName('returningtime').AsString=" then

begin

adoquery3 .Edit;

adoquery3 .UpdateRecord;

adoquery3.FieldByName('returningtime').AsString:=maskedit3.Text;

adoquery3 .Post;

end;

adoquery3 .Prior;

end;

adoquery5 .Active:=false;

adoquery5 .Active.=true;

button6.Enabled:=false;

editl .SetFocus;

degisken:=O;

end;

repeat

117



adoquery3 .Next;

until (adoquery3.Eof = true);

repeat

adoquery2.Next;

until (adoquery2.Eof = true);

while adoquery3.bof <> true do

begin

if adoquery3.FieldByName('retumingtime').AsString=" then

begin

empj ob_employerno :=adoquery3 .FieldBy N ame('employemo').Aslnteger;

employer_ employerno := adoquery2.FieldByN ame('employemo').Aslnteger;

while (employer_ employerno<>empjob _employemo) do

begin

adoquery2.Prior;

employer_ employemo:=

adoquery2 .FieldB yName(' employerno ') .Aslnte ger;

end;

adoquery2.Edit;

adoquery2. UpdateRecord;

adoquery2.FieldByName('givenjob').AsBoolean:=false;

adoquery2.Post;

adoquery3 .Edit;

adoquery3. UpdateRecord;

adoquery3.FieldByName('returningtime').AsString:=maskedit3.Text;

adoquery3 .Post;

end;

adoquery3 .Prior;

end;

adoquery4.Active:=false;

adoquery4.Active:=true;

118



adoquery2.Active:=false;

adoquery2 .Acti ve:=true;

adoquery5 .Active:=false;

adoquery5 .Active:=true;

button6.Enabled:=false;

editl .SetFocus;

end;

procedure TF orm 1 .Buttonl 6Click(Sender: TObj ect);

begin

repeat

adoquery3 .Next;

until (adoquery3.Eof = true);

while adoquery3 .Bof<>true do

begin

if adoquery3.FieldByName('returningtime').AsString=" then

begin

showmessage('you can Add or Delete after returning time will be filled');

exit;

end;

adoquery3 .Prior;

end;

if adoquery3.FieldByName('returningtime').AsString=" then

begin

showmessage('this choice for just complited jobs');

exit;

end;

buttonl 6.Visible:=false;

buttonl 7.Visible:=true;

buttonl 8.Visible:=true;

button8.Visible:=false;

button19.Visible:=true;

119



onl O.Visible:=false;

e12.Visible:=false;

el3.Visible:=false;

abel4.Visible:=false;

labels .Visible:=false;

dbgrid3 .Visible :=false;

dbgrid5. Visible :=false;

dbgrid6.Visible:=false;

edit4.Visible:=false;

edit5. Visible:=false;

edit6. Visib1e:=fa1se;

button 11. Visible:=false;

button 12.Visible:=false;

editl .SetFocus;

end;

procedure TForml .Buttonl 7Click(Sender: TObject);

begin

update 1 :=2;

adoquery3 .Append;

button6.Enabled:=true;

dbgrid5 .Visible :=false;

label2. Visible:=false;

dbgrid6.Visible:=false;

label 4.Visible:=false;

dbgrid3.Visible:=true;

label5. Visible:=true;

end;

procedure TForm l .Buttonl 8Click(Sender: TObject);

var

120



a:word;

begin

a:=application.messagebox('are you sure?' ,'warning',36);

if (a=idyes )then

begin

adoquery3 .Delete;

adoquery3 .prior;

editl .SetFocus;

end;

end;

procedure TForml.Button19Click(Sender: TObject);

begin

button8. Visible :=true;

buttonl O.Visible:=true;

buttonl 6.Visible:=true;

buttonl 7.Visible:=false;

buttonl 8.Visible:=false;

button 19.Visible:=false;

label2.Visible:=true;

label3. Visible:=true;

dbgrid5. Visible:=true;

edit4.Visible:=true;

edit5. Visible :=true;

edit6.Visible:=true;

if degisken= 1 then

begin

121

J 



label4.Visible:=true;

labels. Visible :=true;

dbgrid6. Visible:=true;

dbgrid3. Visible:=true;

button12.Visible:=true;

end;

if degisken=O then

begin

buttonl 1.Visible:=true;

dbgrid3.Visible:=false;

labels. Visible :=false;

end;

end;

procedure TForm 1 .Button20Click(Sender: TObject);

begin

form2.show;

form 1 .Hide;

end;

procedure TForm 1 .DBLookupComboBox2Click(Sender: TObject);

begin

edit8.Text:=form2.ADOQuery2.fieldbyname('materialname').AsString;

end;

procedure TForml.Button22Click(Sender: Tübject);

begin

adoquery6.Cancel;

122



dblookupcornbobox2.Enabled:=false;

degisken:=O;

end;

procedure TF orrn 1 .ernprnat_ add_ click;

var

aktarı :string;

aktar2:string;

aktar3 :integer;

aktar4:integer;

begin

aktar3 := adoquery3 .FieldByNarne('jobno').Aslnteger;

adoquery6.FieldByNarne('jobno').Asinteger:=aktar3;

aktarl := adoquery3 .FieldByNarne('ernployer _narne').AsString;

adoquery6.FieldBy Narne('ernployer _narne').AsString:=aktar 1;

aktar2:=adoquery3.FieldByNarne('ernployer_sumarne').AsString;

adoquery6.FieldByNarne('ernployer_sumarne').AsString:=aktar2;

aktar4:= adoquery3.FieldByNarne('ernployemo').Asinteger;

adoquery6.FieldByNarne('ernployemo').Aslnteger:=aktar4;

end;

procedure TForml.Button21Click(Sender: Tübject);

var

edit_ qty:integer;

rnaterialnarne _material: string;

rernain _rnaterial:integer;

rernain _showrnaterial:integer;

begin

123



if update 1 = 1 O then

begin

adoquery6.Post;

degisken:=O;

updatel :=O;

exit;

end;

if

(adoquery6.FieldByName('employer_sumame').AsString<>")and(adoquery6.FieldByNa

me('used').Aslnteger<>O) then exit;

if adoquery6 .F ieldB yN ame('materialname ') .AsString=" then

begin

showmessage('you have to choose a material');

exit;

end;

if edit7.Text=" then

begin

showmessage('you have to type quantity for this material');

exit;

end;

remain , showmaterial:=form2.adoquery2.fieldbyname('expr 1001 ').Aslnteger;

if remain_ showmaterial < strtoint( edit7. text) then

begin

showmessage('there is no enough this product in_ stock');

exit;

end;

repeat

124



orm.2.adoqueryl .Prior;

til(form.2.adoqueryl .bof=true );

edit, qty:=strtoint( edit7 .text);

while form2.adoqueryl .eof<>true do

begin
materialname _material :=form2. adoquery 1 . fieldbyname('materialname') .AsString;

if materialname material=edit8.Text then

begin

remain _material:=form2.adoquery 1 .fieldbyname('remain').Aslnteger;

if edit_ qty>remain _material then

begin

edit_qty:=(edit_qty) - (remain material);

form2.adoqueryl .Edit;

form2. adoquery 1 . UpdateRecord;

form2.adoquery 1 .FieldByN ame('remain') .Aslnteger:=O;

form2.adoqueryl .Post;

end

else

begin

remain_ material:=(remain _material) - (edit_ qty);

edit_ qty:=O;

form2.adoqueryl .Edit;

form2 .adoquery 1.UpdateRecord;

form2.adoquery 1 .FieldBy N ame('remain').Aslnteger:=remain _material;

form2.adoqueryl .Post;

end;

end;

form2.adoqueryl .Next;

end;

form2.adoquery2.Active:=false;

form2.adoquery2.Active:=true;

125



"'"query6.FieldByN ame('used').Aslnteger:=stıioint( edit7. Text);

.;oquery6.Post;

.:egisken:=O;

_,.,lookupcombobox2.Enabled:=false;

edit7.Text:=";

end; 

rocedure TForm l .Button23Click(Sender: Tübject);

var

a:word;

materialname _material: string;

remain_ material:integer;

used_ empmat:integer;

materialname _empmat: string;

begin

a: =application.message box(' are you sure?', 'warning' ,3 6);

if (a=idyes)then

begin

repeat

form2.AD0Queryl .Next;

until(form2.ADOQueryl .Eof=true );

materialname _empmat:=adoquery6.fieldbyname('materialname').AsString;

used_ empmat:=adoquery6.fieldbyname('used').Aslnteger;

while form2.ADOQueryl .Bof<>true do

begin

materialname _material: =form2.ADOQuery 1 .fi eldbyname('materialname') .AsString;

126



if materialname _material= materialname _empmat then

begin

remain_ material:=form2.AD0Query 1 .fieldbyname('remain').Aslnteger;

remain_ material: =remain_ material + used_empmat;

form2.AD0Queryl .Edit;

form2.AD0Query 1. UpdateRecord;
form2.ADOQuery 1 .FieldByName('remain').Aslnteger:=remain_material;

form2.AD0Query 1 .Post;

form2.ADOQuery2.Active:=false;

form2.ADOQuery2.Active:=true;

adoquery6.Delete;

adoquery6.prior;

degisken:=O;

exit;

end;

form2.AD0Queryl .Prior;

end;

end;

end;

procedure TForm1.MaskEdit4Change(Sender: TObject);

begin

dbeditl.Text:=maskedit4.Text;

end;

127



procedure TForm 1 .MaskEditl Change(Sender: Tübject);

begin

dbedit5.Text:=maskeditl.Text;

end;

procedure TForml.MaskEdit2Change(Sender: Tübject);

begin

dbedit7.Text:=maskedit2.Text;

end;

procedure TForm 1.Button 1 Click(Sender: Tübj ect);

begin

adoquery 1 .Append;

dbedit5.Text:=maskedit 1 . Text;

dbedit2.SetFocus;

end;

procedure TForml .Button2Click(Sender: Tübject);

begin

adoqueryl .Post;

end;

procedure TForml.Button3Click(Sender: Tübject);

begin

adoqueryl .Edit;

adoqueryl .UpdateRecord;

dbedit5.Text:=maskeditl. Text;

end;

procedure TForml.Button4Click(Sender: Tübject);

begin

adoqueryl .Cancel;

128



end;

rocedure TForml.Button5Click(Sender: Tübject);

var

:word;

gin

a:=application.messagebox('are you sure?','waming' ,36);

if (a=idyes )then

begin

adoqueryl .Delete;

adoqueryl .prior;

end;

end;

procedure TForml.Button7Click(Sender: 'I'Objecı);

begin

degisken:=3;

if adoquery6.FieldBy N ame('employer _sumame').AsString=" then

begin

adoquery6.Append;

if degisken = 3 then dblookupcombobox2.Enabled:=lrue;

end;

if (adoquery6.FieldByName('employer _sumame').AsString<>") and

(adoquery6.FieldByName('used').Aslnteger=O) then

begin

showmessage('you have to save this record first');

end;

if (adoquery6.FieldByN ame('employer _sumame').AsString<>") and

(adoquery6 .FieldB yName('used') .Aslnte ger<>O) then

begin

adoquery6.Append;

129



eg,1sken = 3 then db\ooku\)combobox.2.Enabled:=true;

d·

cedure TForm1 .Button24Click(Sender: TObject);

gm 

+ adoquery6.FieldByName('employer_name').AsString=" then begin exit;end;

.:egisken:=3;

update I :=1 O;

doquery6.Edit;

doquery6.UpdateRecord;

nd;

procedure TForml.Button25Click(Sender: TObject);

var

a:word;

begin
a:=application.messagebox('are you sure?','waming',36);

if (a=idyes)then

begin.

halt;

end;

end;

procedure TForml.FormCreate(Sender: TObject);

begin
form1.Caption:='Main Menu';

pagecontrol 1 .ActivePage:=tabsheet1;

end;

procedure TForml.FormKeyPress(Sender: TObject; var Key: Char);

begin

if Key = # 13 then begin

130



Key:= #O;

if (Sender is TDBGrid) then

TDBGrid(Sender).Perforrn(WM _KeyDown,VK _Tab,O)

else

Perforrn(Wrn_NextDlgCtl,0,0);

end;

end;

end.

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, CornCtrls, ExtCtrls, DBCtrls, Grids, DBGrids, DB, ADODB,

Mask;

type

TForrn2 = class(TForrn)

PageControll: TPageControl;

TabSheetl: TTabSheet;

TabSheet2: TTabSheet;

TabSheet3: TTabSheet;

TabSheet4: TTabSheet;

TabSheet5: TTabSheet;

ADOQueryl: TADOQuery;

131



DataSource 1: TDataSource;

AD0Query2: TADOQuery;

DataSource2: TDataSource;

AD0Query3: TADO Query;

DataSource3: TDataSource;

Panell: TPanel;

DBGrid3: TDBGrid;

Editl: TEdit;

Edit2: TEdit;

Edit3: TEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

MaskEditl: TMaskEdit;

MaskEdit2: TMaskEdit;

DBLookupComboBoxl: TDBLookupComboBox;

Panel2: TPanel;

Button2: TButton;

Button3: TButton;

Button4: TButton;

Buttons: TButton;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Panel3: TPanel;

DataSource4: TDataSource;

DBGrid4: TDBGrid;

DataSource5: TDataSource;

DBGrid5: TDBGrid;

ADOTable 1: TADOTable;

ADOTable2: TADOTable;

132



Edit5: TEdit;

AD0Query4: TADOQuery;

DataSource6: TDataSource;

Panel4: TPanel;

DBGrid6: TDBGrid;

Panel5: TPanel;

AD0Query5: TADOQuery;

DataSource7: TDataSource;

AD0Query6: TADOQuery;

DataSource8: TDataSource;

DBGrid7: TDBGrid;

Edit6: TEdit;

Edit7: TEdit;

Edit8: TEdit;

Edit9: TEdit;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

Labell O: TLabel;

Label 1 1: TLabel;

Button6: TButton;

Button7: TButton;

Button8: TButton;

Button9: TButton;

ButtonlO: TButton;

DBGrid9: TDBGrid;

Editl O: TEdit;

Label12: TLabel;

MaskEdit3: TMaskEdit;

Editl 1: TEdit;

Edit12: TEdit;

Edit13: TEdit;

Edit14: TEdit;

Edit15: TEdit;

133



Label13: TLabel;

Label14: TLabel;

Labell 5: TLabel;

Label16: TLabel;

Labell 7: TLabel;

Label18: TLabel;

Labell 9: TLabel;

Label20: TLabel;

DataSource9: TDataSource;

DataSource 1 O: TDataSource;

Panel6: TPanel;

Panel7: TPanel;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

MaskEdit4: TMaskEdit;

· MaskEdit5: TMaskEdit;

Buttonl 1: TButton;

Button12: TButton;

Button13: TButton;

Button14: TButton;

Button15: TButton;

Panel8: TPanel;

Edit16: TEdit;

Editl 7: TEdit;

Editl 8: TEdit;

Edit4: TEdit;

Edit19: TEdit;

Label21: TLabel;

Label22: TLabel;

Label23: TLabel;

Label24: TLabel;

Label25: TLabel;

DBEditl: TDBEdit;

134



DBGridl 1: TDBGrid;

DataSource 11: TDataSource;

Edit20: TEdit;

Label26: TLabel;

DBGridlO: TDBGrid;

DBGrid8: TDBGrid;

AD0Query7: TADO Query;

AD0Query8: TADOQuery;

AD0Query9: TADOQuery;

ADOQuerylO: TADOQuery;

DataSource 12: TDataSource;

Panel9: TPanel;

DBGrid12: TDBGrid;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

Panellü: TPanel;

Button16: TButton;

Buttonl 7: TButton;

Button18: TButton;

Buttonl 9: TButton;

Button20: TButton;

Panel 11: TPanel;

DBGridl: TDBGrid;

DBEditl O: TDBEdit;

DBEditl 1: TDBEdit;

DBEdit12: TDBEdit;

DBEditl 3: TDBEdit;

MaskEdit6: TMaskEdit;

Pane112: TPanel;

Button21: TButton;

Button22: TButton;

Button23: TButton;

Button24: TButton;

Button25: TButton;

135



DBEdit14: TDBEdit;

DBGrid2: TDBGrid;

Edit21: TEdit;

Edit22: TEdit;

Edit23: TEdit;

Label27: TLabel;

Label28: TLabel;

Label29: TLabel;

Label30: TLabel;

DBEdit15: TDBEdit;

DBEdit16: TDBEdit;

DBEditl 7: TDBEdit;

Panel13: TPanel;

Buttonl: TButton;

Button26: TButton;

Label31: TLabel;

Label32: TLabel;

Label33: TLabel;

Label34: TLabel;

procedure Buttonl Click(Sender: Tübject);

procedure Editl Change(Sender: Tübject);

procedure Edit2Change(Sender: Tübject);

procedure Edit3Change(Sender: Tübject);

procedure Edit5Change(Sender: Tübject);

procedure Edit6Change(Sender: Tübject);

procedure Edit7Change(Sender: Tübject);

procedure Edit8Change(Sender: Tübject);

procedure Edit9Change(Sender: Tübject);

procedure Button6Click(Sender: Tübject);

procedure Button7Click(Sender: Tübject);

procedure Button8Click(Sender: Tübject);

procedure Button9Click(Sender: Tübject);

procedure ButtonlOClick(Sender: Tübject);

procedure DBGrid7Cel1Click(Column: TColumn);

136



procedure DBGrid9Ce11Click(Column: TColumn);

procedure TabSheet2Show(Sender: Tübject);

procedure MaskEdit3DblClick(Sender: Tübject);

procedure Editl 1 Change(Sender: Tübject);

procedure Edit12Change(Sender: Tübject);

procedure Edit13Change(Sender: Tübject);

procedure Edit14Change(Sender: Tübject);

procedure Edit15Change(Sender: Tübject);

procedure Labe120Click(Sender: Tübject);

procedure Buttonl lClick(Sender: Tübject);

procedure Button12Click(Sender: Tübject);

procedure Button13Click(Sender: Tübject);

procedure Button14Click(Sender: Tübject);

procedure Button15Click(Sender: Tübject);

procedure Button2Click(Sender: Tübject);

procedure Button3Click(Sender: Tübject);

procedure Edit4Change(Sender: Tübject);

procedure Edit19Change(Sender: Tübject);

procedure Edit16Change(Sender: Tübject);

procedure Editl 7Change(Sender: Tübject);

procedure Editl 8Change(Sender: Tübject);

procedure MaskEdit5Change(Sender: Tübject);

procedure Edit20Change(Sender: Tübject);

procedure Buttonl 6Click(Sender: Tübject);

procedure Buttonl 7Click(Sender: Tübject);

procedure Buttonl 8Click(Sender: Tübject);

procedure Button19Click(Sender: Tübject);

procedure Button20Click(Sender: Tübject);

procedure MaskEdit6Change(Sender: Tübject);

procedure Button21 Click(Sender: Tübject);

procedure DBEdit13Change(Sender: Tübject);

procedure Button22Click(Sender: Tübject);

procedure Button23Click(Sender: Tübject);

procedure Button24Click(Sender: Tübject);

137



procedure Button25Click(Sender: Tübject);

procedure Edit21Change(Sender: Tübject);

procedure Edit22Change(Sender: Tübject);

procedure Edit23Change(Sender: Tübject);

procedure FormCreate(Sender: Tübject);

procedure MaskEdit2Change(Sender: Tübject);

procedure Button4Click(Sender: Tübject);

procedure Button5Click(Sender: Tübject);

procedure TabSheetlShow(Sender: Tübject);

procedure MaskEdit4Change(Sender: Tübject);

procedure MaskEditl Change(Sender: Tübject);

procedure MaskEditl Click(Sender: Tübject);

procedure Button26Click(Sender: Tübject);

procedure FormKeyPress(Sender: Tübject; var Key: Char);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form2: TForm2;

balance:integer;

implementation

uses Unitl;

{$R *.dfm}

procedure TForm2.Button1Click(Sender: Tübject);

begin

forml.show;

form2.Hide;

138



end;

procedure TForm2 .Editl Change(S ender: TObj ect);

begin

adoquery3 .close;

adoquery3.SQL.Clear;

adoquery3.SQL.Add('select * from job where jobno like'+#39+(editl.Text)+'%'+#39);

adoquery3. Open;

end;

procedure TForm2.Edit2Change(Sender: TObject);

begin

adoquery3 .close;

adoquery3.SQL.Clear;

adoquery3.SQL.Add('select * from job where customer_name

like'+#3 9+( edit2. Text )+'%'+#3 9);

adoquery3. Open;

end;

procedure TForm2.Edit3Change(Sender: TObject);

begin

adoquery3 .close;

adoquery3.SQL.Clear;

adoquery3.SQL.Add('select * from job where customer_sumarne

like'+#39+(edit3.Text)+'%'+#39);

adoquery3. Open;

end;

procedure TForm2.Edit5Change(Sender: TObject);

begin

adoquery3.close;

adoquery3.SQL.Clear;

139



oquery3.SQL.Add('select * from job where cleaningdate

···e'+#39+(edit5.Text)+'%'+#39);

doquery3.Open;

end;

procedure TForm2.Edit6Change(Sender: TObject);

egin

adoquery6.close;

adoquery6.SQL.Clear;
adoquery6.SQL.Add('select * from job where jobno like'+#39+(edit6.Text)+'%'+#39);

adoquery6.Open;

if degisken<>S then

begin

adoquery4.close;

adoquery4.SQL.Clear;
adoquery4.SQL.Add('select * from BILL where jobno

like'+#39+(edit6.Text)+'%'+#39);

adoquery4.0pen;

end;

end;

procedure TForm2.Edit7Change(Sender: TObject);

begin

adoquery6.close;

adoquery6.SQL.Clear;
adoquery6.SQL.Add('select * from job where customer_name

like'+#39+(edit7.Text)+'%'+#39);

adoquery6.0pen;

end;

procedure TForm2.Edit8Change(Sender: TObject);

begin

adoquery6.close;

adoquery6.SQL.Clear;

140



adoquery6.SQL.Add('select * from job where customer_sumame

like'+#39+( edit8. Text)+'%'+#39);

adoquery6.0pen;

end;

rocedure TForm2.Edit9Change(Sender: TObject);

gm

adoquery6.close;

doquery6.SQL.Clear;

doquery6.SQL.Add('select * from job where cleaningdate

like'+#39+(edit9.Text)+'%'+#39);

adoquery6.0pen;

end;

rocedure TForm2.Button6Click(Sender: TObject);

egin

degisken:=4;

edit1 O.Text:=";

repeat

adoquery4 .next;

until (adoquery4.eof = true);

balance:=adoquery4.FieldByName('balance').Asinteger;

adoquery4.Append;

end;

procedure TForm2.Button7Click(Sender: TObject);

begin

if degisken=5 then

begin

adoquery4.Post;

adoquery4 .Refresh;

141



editl O.Enabled:=true;

egisken:=O;

exit;

nd;

if (adoquery4 .FieldB yN ame('recei pt') .Asinteger=O) and

(adoquery4.FieldByName('balance').Asinteger=O)and (editl O.Text=") then

begin

adoquery4.FieldByName('balance').Asinteger:=

adoquery4.FieldByName('invoice').Asinteger;

adoquery4.Post;

adoquery4.Refresh;

editl O.Enabled:=true;

degisken:=O;

exit;

end;

if balance=O then

begin

showmessage('this person has not dept');

exit;

end;

if strtoint( edit 1 O. Text )>balance then

begin

showmessage('receipt can not bigger than balance');

exit;

end;

balance: =balance-strtoint( edit 1 O.Text);

adoquery4.FieldByName('balance').Asinteger:=balance;

adoquery4.FieldByName('receipt').Asinteger:=strtoint(edit10.text);

adoquery4.Post;

142



adoquery4.Refresh;

editl O.Enabled:=true;

degisken:=O;

end;

procedure TForm2.Button8Click(Sender: Tübject);

begin

adoquery4.Cancel;

editl O.Enabled:=true;

degisken:=O;

end;

procedure TForm2.Button9Click(Sender: Tübject);

begin

degisken:=5;

adoquery4.Edit;

adoquery4.UpdateRecord;

end;

procedure TForm2.Button10Click(Sender: Tübject);

var

a:word;

begin

a:=application.messagebox('are you sure?' ,'warning' ,36);

if (a=idyes )then

begin

adoquery4.Delete;

adoquery4.prior;

end;

end;

procedure TForm2.DBGrid7Ce11Click(Column: TColumn);

var

143



aktarı :string;

aktar2:string;

aktar3 :integer;

aktar4:string;

begin

if (degisken=4) or (degisken=S)then

begin
aktar3:= adoquery6.FieldByName('jobno').Aslnteger;

adoquery4.FieldByName('jobno').Asinteger:=aktar3;

aktar l r= adoquery6.FieldByName('customer_name').AsString;

adoquery4.FieldByName('customer_name').AsString:=aktarl;

aktar2:=adoquery6.FieldByName('customer_surname').AsString;

adoquery4.FieldByName('customer_sumame').AsString:=aktar2;

aktar4:= adoquery6.FieldByName('cleaningkind').Asstring;

adoquery4.FieldByName('cleaningkind').Asstring:=aktar4;

end;

end;

procedure TForm2.DBGrid9Ce11Click(Column:TColumn);

var

aktar:integer;

begin
if (degisken=4) or (degisken=S)then

begin
aktar:= adoquery5.FieldByName('cleaningcost').Aslnteger;

adoquery4.FieldByName('invoice').Asinteger:=aktar;

edit 1 O .Enabled:=false;

end;

end;

procedure TForm2.TabSheet2Show(Sender: Tübject);

144 



gm 

maskedit3.Text:=datetostr(date);

adoquery6.Active:=false;

adoquery6.Active:=true;

adoquery5.Active:=false;

adoquery5.Active:=true;

adoquery4.Active:=false;

adoquery4.Active:=true;

end;

procedure TForm2.MaskEdit3DblClick(Sender: TObject);

var

aktar4:string;

begin
if (degisken=4)or (degisken=5) then

begin
aktar4:= maskedit3.Text;
adoquery4.FieldByName('billdate').AsString:=aktar4;

end;

end;

procedure TForm2.Editl 1 Change(Sender: TObject);

begin
adoquery4.close;

adoquery4.SQL.Clear;
adoquery4.SQL.Add('select * from BILL where billno

like'+#39+(editl l .Text)+'%'+#39);

adoquery4.0pen;

end;

procedure TForm2.Edit12Change(Sender: Tübject);

145



egın

adoquery4.close;

adoquery4.SQL.Clear;

adoquery4.SQL.Add('select * from BILL where billdate

like'+#39+(ecfül2.Text)+'%'+#39);

adoquery4.Open;

end;

procedure TForm2.Edit13Change(Sender: TObject);

begin

adoquery4.close;

adoquery4.SQL.Clear;

adoquery4.SQL.Add('select * from BILL where jobno

like'+#39+(editl 3.Text)+'%'+#39);

adoquery4.0pen;

end;

procedure TForm2.Edit14Change(Sender: TObject);

begin

adoquery4.close;

adoquery4.SQL.Clear;
adoquery4.SQL.Add('select * from BILL where customer_name

like'+#39+(editl 4.Text)+'%'+#39);

adoquery4.0pen;

end;

procedure TForm2.Edit15Change(Sender: TObject);

begin

adoquery4.close;

adoquery4.SQL.Clear;
adoquery4.SQL.Add('select * from BILL where customer_sumame

like'+#39+(editl 5.Text)+'%'+#39);

adoquery4.0pen;

end;

146



procedure TForm2.Label20Click(Sender: Tübject);

begin

maskedit3. Text:=datetostr( date);

end;

procedure TForm2.Buttonl 1 Click(Sender: Tübject);

begin

adoquery7 .Append;

end;

procedure TForm2.Button12Click(Sender: Tübject);

begin

adoquery7 .Post;

adoquery7.Active:=false;

adoquery7 .Active:=true;

end;

procedure TForm2.Buttonl3Click(Sender: Tübject);

begin

degisken:=6;

adoquery7 .Edit;

adoquery7. UpdateRecord;

end;

procedure TForm2.Button14Click(Sender: Tübject);

begin

adoquery7. Cancel;

end;

procedure TForm2.Button15Click(Sender: Tübject);

var

a:word;

begin

147



a:=application.messagebox('are you sure?','waming',36);

if (a=idyes)then

begin

adoquery7 .Delete;

adoquery7. prior;

end;

end;

procedure TForm2.Button2Click(Sender: Tübject);

begin

adoquery3 .Edit;

adoquery3. UpdateRecord;

dbeditl 6. Text:=maskeditl. Text;

dbeditl 7.Text:= maskedit2.Text;

dbedit15.Text:=maskedit4.Text;

dbedit2.SetFocus;

end;

procedure TForm2.Button3Click(Sender: Tübject);

begin

adoquery3 .Post;

end;

procedure TForm2.Edit4Change(Sender: TObject);

begin

adoquery3.close;

adoquery3.SQL.Clear;

adoquery3.SQL.Add('select * from job where phone like'+#39+(edit4.Text)+'%'+#39);

adoquery3.0pen;

end;

procedure TForm2.Editl 9Change(Sender: Tübject);



egın

adoquery7 .close;

doquery7.SQL.Clear;

doquery7.SQL.Add('select * from employer where phone

ike'+#39+( editl 9.Text)+'%'+#39);

adoquery7. Open;

end;

procedure TForm2.Edit16Change(Sender: TObject);

egın

adoquery7 .close;

adoquery7.SQL.Clear;

adoquery7.SQL.Add('select * from employer where employemo

like'+#39+( editl 6.Text)+'%'+#39);

adoquery7. Open;

adoquery9 .close;

adoquery9.SQL.Clear;

adoquery9.SQL.Add('select * from empmat where employemo

like'+#39+( editl 6.Text)+'%'+#39);

adoquery9. Open;

adoquery9 .Refresh;

end;

procedure TForm2.Editl 7Change(Sender: TObject);

begin

adoquery7 .close;

adoquery7 .SQL.Clear;

149



adoquery7.SQL.Add('select * from employer where employer_name

like'+#39+(editl 7.Text)+'%'+#39);

adoquery7. Open;

adoquery9 .close;

adoquery9.SQL.Clear;

adoquery9.SQL.Add('select * from empmat where employer_name

like'+#39+(editl 7.Text)+'%'+#39);

adoquery9. Open;

adoquery9 .Refresh;

end;

procedure TF orm2.Editl 8Change(Sender: TObject);

begin

adoquery7.close;

adoquery7.SQL.Clear;

adoquery7.SQL.Add('se1ect * from employer where employer_sumame

1ike'+#39+( editl 8. Text)+'%'+#39);

adoquery7. Open;

adoquery9 .close;

adoquery9.SQL.Clear;

adoquery9.SQL.Add('select * from empmat where employer_sumame

like'+#39+( editl 8.Text)+'%'+#39);

adoquery9. Open;

adoquery9 .Refresh;

150



end;

procedure TForm2.MaskEdit5Change(Sender: TObject);

begin

dbeditl .Text:= maskedit5.Text;

end;

procedure TForm2.Edit20Change(Sender: TObject);

begin

adoquery9 .close;

adoquery9.SQL.Clear;

adoquery9.SQL.Add('select * from empmat where jobno

like'+#39+(edit20.Text)+'%'+#39);

adoquery9.Open;

adoquery8.close;

adoquery8.SQL.Clear;

adoquery8.SQL.Add('select * from job where jobno like'+#39+(edit20.Text)+'%'+#39);

adoquery8.Open;

end;

procedure TForm2.Button16Click(Sender: TObject);

begin

adoqueryl O.Append;

dbedit5.SetFocus;

end;

procedure TForm2.Buttonl 7Click(Sender: TObject);

begin

adoqueryl O.Post;

adoquery1 O.Active:=false;

adoqueryl O.Active:=true;

151



end;

procedure TForm2.Buttonl 8Click(Sender: TObject);

begin

adoqueryl O.edit;

adoquery 1 O. UpdateRecord;

end;

procedure TForm2.Buttonl 9Click(Sender: TObject);

begin

adoqueryl O.Cancel;

adoqueryl O.Active:=false;

adoqueryl 0.Active:=true;

end;

procedure TForm2.Button20Click(Sender: TObject);

var

a:word;

begin

a:=application.message box(' are you sure?',' warning' ,3 6);

if (a=idyes )then

begin

adoquery 1 O .Delete;

adoqueryl O.prior;

end;

end;

procedure TForm2.MaskEdit6Change(Sender: TObject);

begin

dbeditl 2.Text:=maskedit6. Text;

end;

152



procedure TForm2.Button21Click(Sender: TObject);

begin

adoqueryl .Append;

end;

procedure TForm2.DBEdit13Change(Sender: TObject);

begin

dbedit14.Text:=dbedit13.Text;

end;

procedure TForm2.Button22Click(Sender: TObject);

begin

adoqueryl .Post;

adoqueryl .Active:=false;

adoqueryl .Active:=true;

adoquery2.Active:=false;

adoquery2.Active:=true;

end;

procedure TForm2.Button23Click(Sender: TObject);

begin

adoquery l .Edit;

adoquery 1. UpdateRecord;

end;

procedure TForm2.Button24Click(Sender: TObject);

begin

adoqueryl .Cancel;

adoqueryl .Active:=false;

adoqueryl .Active:=true;

153



adoquery2.Active:=false;

adoquery2.Active:=true;

end;

procedure TForm2.Button25Click(Sender: TObject);

var

a:word;

begin

a:=application.messagebox('are you sure?', 'warning' ,36);

if (a=idyes )then

begin

adoqueryl .Delete;

adoqueryl .prior;

adoquery2.Active:=false;

adoquery2.Acti ve:=true;

end;

end;

procedure TF orm2.Edit21 Change(Sender: TObject);

begin

adoquery l .close;

adoqueryl .SQL.Clear;

adoqueryl .SQL.Add('select * from MATERIAL where materialname

like'+#39+( edit21. Text)+'%'+#39);

adoqueryl .Open;

end;

procedure TForm2.Edit22Change(Sender: TObject);

begin

adoqueryl .close;

adoqueryl .SQL.Clear;

154



adoqueryl.SQL.Add('select * from MATERIAL where sellercompany

like'+#39+(edit22.Text)+'%'+#39);

adoqueryl .Open;

end;

procedure TForm2.Edit23Change(Sender: TObject);

begin

adoqueryl .close;

adoqueryl .SQL.Clear;

adoqueryl .SQL.Add('select * from MATERIAL where buyingdate

like'+#39+(edit23.Text)+'%'+#39);

adoqueryl .Open;

end;

procedure TForm2.FormCreate(Sender: TObject);

begin

pagecontroll .ActivePage:=tabsheetl;

form2.Caption:='Search';

end;

procedure TFonn2.MaskEdit2Change(Sender: TObject);

begin

dbeditl 7.Text:= maskedit2.Text;

end;

procedure TForm2.Button4Click(Sender: TObject);

begin

adoquery3.Cancel;

end;

procedure TForm2.Button5Click(Sender: TObject);

var

a:word;

begin

155



a:=application.rnessagebox('are you sure?' ,'waming',36);

if (a=idyes)then

begin

adoquery3 .Delete;

adoquery3 .prior;

end;

end;

procedure TForm2.TabSheetl Show(Sender: TObject);

begin

rnaskedit 1. Text: =datetostr( date);

dbedit 16. Text:=rnaskeditl. Text;

adoquery3 .Active:=false;

adoquery3 .Active:=true;

adotablel .Active:=false;

adotable l .Active:=true;

adotable2.Active:=false;

adotable2.Active:=true;

end;

procedure TForm2.MaskEdit4Change(Sender: TObject);

begin

dbeditl 5.Text:=rnaskedit4.Text

end;

procedure TForm2.MaskEdit1Change(Sender: Tübject);

begin

dbeditl 6. Text:=rnaskeditl .Text;

end;

156



procedure TForm2.MaskEditl Click(Sender: TObject);

begin

rnaskeditl. Text:=datetostr( date);

dbeditl 6. Text:=rnaskeditl. Text;

end;

procedure TForm2.Button26Click(Sender: TObject);

var

a:word;

begin

a:=application.rnessagebox('are you sure?' ,'warning',36);

if (a=idyes )then

begin

halt;

end;

end;

procedure TForm2.FormKeyPress(Sender: Tübject; var Key: Char);

begin

if Key = # 13 then begin

Key:= #O;

if (Sender is TDBGrid) then

TDBGrid(Sender).Perform(WM _KeyDown, VK_Tab,O)

else

Perform(Wrn_NextDlgCtl,0,0);

end;

end;

end.

157



unit Unit3;

interface

158



uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls;

type

TForm3 = class(TForm)

Editl: TEdit;

Edit2: TEdit;

Label 1: TLabel;

Label2: TLabel;

Buttonl: TButton;

Button2: TButton;

procedure Buttonl Click(Sender: Tübject);

procedure Button2Click(Sender: Tübject);

procedure FormCreate(Sender: Tübject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form3: TForm3;

implementation

uses Unitl;

{$R *.dfm}

procedure TForm3.Button1Click(Sender: Tübject);

begin

halt;

end;

159



procedure TForm3.Button2Click(Sender: Tübject);

begin

if (editl .Text='baris') and (edit2.Text='1234') then

begin

forml.show;

form3 .Hide;

end

else

begin

showmessage('invalid usemame or password');

end;

end;

procedure TForm3.FormCreate(Sender: TObject);

begin

form3.Caption:='LOG IN';

end;

end.

160


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 
	Department of Computer Engineering 
	DATA BANK PROGRAMMING FOR CLEANING 
	Graduation Project 

	Images
	Image 1


	Page 2
	Titles
	ACKNOWLEDGEMENTS 

	Images
	Image 1


	Page 3
	Titles
	ABSTRACT 


	Page 4
	Titles
	TABLE OF CONTENTS 

	Images
	Image 1


	Page 5
	Page 6
	Titles
	INTRODUCTION 
	1 


	Page 7
	Titles
	CHAPTER 1 
	1 DELPHI BASICS 
	1.1 What is Delphi? 

	Images
	Image 1


	Page 8
	Titles
	1.2 A Brief History of Borland's Delphi 

	Images
	Image 1
	Image 2


	Page 9
	Titles
	1.3 Writing your first Delphi program 
	t 
	I ~ 
	I 

	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Titles
	! 
	ıı• •..••. : •••.• :•;•. ::: ::··. 
	' . . ..... .. 
	ı. : : : : •........ •. . . .• : : ... 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 11
	Titles
	Lab e l 1 . C aj -········ ... _ .... __ .. ··-····-···· .... ·-·--- ··············-····-···-···--····· -······ -··-· .. .. .. 
	Ii 
	llru~I 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 12
	Titles
	11:JoJ[fil 
	jii .. .. .. .. Press _me il 
	1.4 Delphi data types 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1
	Image 2


	Page 5
	Titles
	1.5 Programming logic 

	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Titles
	J 

	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Titles
	1.6 Repeating sets of commands 

	Images
	Image 1


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Titles
	1.7 Dates and times 

	Images
	Image 1


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1

	Tables
	Table 1


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1
	Image 2
	Image 3


	Page 1
	Titles
	dlm/y = 9/2100 

	Images
	Image 1


	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Titles
	Standard tab GUI components 
	~~~~A~~oo~ŁEŁ~D~D~ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 4
	Titles
	-vl] _::_JI TMemo
	~ [ı@ıımı
	- -~, .. ~ ~-1 Listitem4
	=

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	-ı

	Images
	Image 1

	Page 9
	Titles
	CHAPTER2
	2 MICROSOFT ACCESS
	2.1 Getting Started

	Images
	Image 1

	Page 10
	Titles
	rıfoı GJQ!ii6:.~0::eii.i~_t_i_r19 __ file\

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Titles
	~,

	Images
	Image 1
	Image 2

	Page 13
	Titles
	Screen Layouts

	Images
	Image 1
	Image 2

	Page 14
	Titles
	ex p ressıen
	45

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Titles
	2.3 Creating Tables

	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 17
	Images
	Image 1

	Tables
	Table 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Tables
	Table 1

	Page 1
	Titles
	•
	•
	•

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 2
	Titles
	•
	•

	Images
	Image 1

	Tables
	Table 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	o
	CJ\Letter lı

	Images
	Image 1
	Image 2

	Page 5
	Titles
	2.4 Datasheet Records

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	~ID

	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 10
	Titles
	L.. JE:lj I Eind Next
	=----=---===._c
	2.5 Table Relationships

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Titles
	Q]~-~~l!ıl~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 13
	Titles
	o
	o
	o
	2.6 Queries

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Titles
	çı~e ı

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 15
	Titles
	't

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 17
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Titles
	JI
	J
	69
	when all fields have been selected.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 20
	Titles
	2.7 Forms

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	-.::~~~:~~~
	-
	--"'=@
	-
	-
	·~,.Je@•oata

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 4
	Titles
	<r:c=> y--·:
	:::<I::::::· ::· .. :::
	::::r :::::::=::: .::
 <:::::i::: ::::::r::. ::::::::::
	nıı; "'

	Images
	Image 1
	Image 2

	Page 5
	Titles
	HtiU?M

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 7
	Titles
	- ~
	_.8 More Forms

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	'-----===--~ ~!l!!~!!~!!!~!.~1:.J;JjLJ'.:'_ - -· ·- - .. ··--··,;;;;!I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Tables
	Table 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	CHAPTER3
	3 USER MANUAL
	3.1 Relationships

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 11
	Titles
	~I
	- ;-~::z· - _ ::veci.. -- -~- ~jj:~~~:~! ~::~.. ---------- -- -- -----=- _: 1~;~~~:-- -ı~~~~=~;~--J ~!
	r:-
	3.2 Main Menu

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Images
	Image 1

	Page 13
	Titles
	Search Menu

	Images
	Image 1
	Image 2

	Page 14
	Titles
	~J

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 17
	Titles
	'
	I
	r-
	~1---~t:~:: --~+~---!~~
	ı--,..-

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Titles
	CONCLUSION

	Images
	Image 1

	Page 19
	Titles
	REFERENCES

	Images
	Image 1

	Page 20
	Titles
	APPENDIX

	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	102

	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 1
	Titles
	J

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

