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ABSTRACT

Ever since the beginning of communication the need for enhancement was

obvious. During the beginning years of telecommunications quality of sound travelling

through their various channels diminished so much by the time they reached their

destination that many times either the information was not understood at all or a

person's voice changed to a level where it was not recognizable no more. This happens

due to a phenomenon known as noise. In the field of communications, noise is our worst

enemy. This is why we try to eliminate it to a maximum degree. Sadly, it cannot be

eliminated 100%. But we are getting close.

Within this project we will see what noise is and what it does to a simple .wav

file, simulating that which might occur in real world cases where sound might travel

over a channel that is quite noisy. This will be done with the GUI we are going to build

using Matlab. We will study, and observe the effects of noise on a signal and see what

happens during filtering.

\
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INTRODUCTION

Signal processing provides the basic analysis, modelling and synthesis tools for

diverse area of technological fields, including telecommunication, artificial

intelligence, biological computation and system identification. Signal processing is

oncemed with the modelling, detection, identification and utilisation of patterns and

structures in a signal process. Applications of signal processing methods include audio

hi-fi, digital TV and radio, cellular mobile phones, voice recognition, vision, radar,

onar, geophysical exploration, medical electronics, bio-signal processing and in general

any system that is concerned with the communication or processing and retrieval of

information. Signal processing theory plays a central role in the development of digital

telecommunication and automation systems, and in the efficient transmission, reception

and decoding of information.

Noise can be defined as an unwanted signal that interferes with the

communication or measurement of another signal. Noise and distortion are the main

factors limiting the capacity of data transmission in telecommunications and accuracy in

signal measurement systems. Therefore the modeling and removal of the effects of

noise and distortions have been at the core of the theory and practice of communications

and signal processing. Noise reduction and distortion removal are important problems in

applications such as cellular mobile communications, speech recognition, image

processing, medical signal processing, radar and sonar, and in any application where the

signals cannot be isolated from noise and distortion.

Speech enhancement in noisy environments, such as in cars, trains, streets and at

noisy public venues, improves the quality and intelligibility of speech. Noise reduction

benefits a wide range of applications, such as mobile phones, hands-free phones,

teleconferencing, in-car cabin communication systems and automated speech

recognition services. This chapter provides an overview of the main methods for single­

input speech enhancement in noise. De-noising speech improves the quality and the

intelligibility of voice communication in noisy environments and reduces

communication fatigue. Noise reduction benefits the users of hands-free phones, mobile

phones and voice-controlled automated services used in noisy moving environments

such as cars, trains, streets, conference halls and other public venues. We present a brief

overview of the speech enhancement problem for wide-band noise sources that are not
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orrelated with the speech signal. Our main focus is on the spectral subtraction approach

and some of its derivatives in the forms of linear and non-linear minimum mean square

error estimators. For the linear case, we review the signal subspace approach, and for

the non-linear case, we review spectral magnitude and phase estimators. On line

estimation of the second order statistics of speech signals using parametric and non­

parametric models is also addressed.

Here in this project we will also look into something known as a graphical user

interface, or GUI as we will call from here on. A user interface helps with making a

program simpler for the end user. It removes the need for knowledge on language

processing to perform required processing.

Chapter 1 begins with a definition of signals, and a brief introduction to various

signal processing methodologies. We will also talk about several key applications of

digital signal processing in adaptive noise reduction, channel equalisation, audio signal

coding, signal detection, and Dolby noise reduction.

In chapter 2, we study the characteristics and modeling of several different

forms of noise. These are done to get a better understanding of how we can later remove

these noises if we know how they were formed.

In chapter 3 we will talk on speech enhancement in more detail. We will see

some methods of removal of noise from audio signals.

Chapter 4 shows how the GUI was built o Matlab with easy to follow

instructions and pictorial representation.

6



CHAPTER ONE

SIGNAL PROCESSING

1.1 Preview

Signal processing provides the basic analysis, modelling and synthesis tools for

a diverse area of technological fields, including telecommunication, artificial

· telligence, biological computation and system identification. Signal processing is

concerned with the modelling, detection, identification and utilisation of patterns and

structures in a signal process. Applications of signal processing methods include audio

hi-fi, digital TV and radio, cellular mobile phones, voice recognition, vision, radar,

sonar, geophysical exploration, medical electronics, bio-signal processing and in general

any system that is concerned with the communication or processing and retrieval of

information. Signal processing theory plays a central role in the development of digital

telecommunication and automation systems, and in the efficient transmission, reception

and decoding of information.

This chapter begins with a definition of signals, and a brief introduction to

various signal processing methodologies. We consider several key applications of

digital signal processing in adaptive noise reduction, channel equalisation, pattern

classification/recognition, audio signal coding, signal detection, spatial processing for

directional reception of signals and Dolby noise reduction.

1.2 Signals and Information

A signal is the variation of a quantity by which information is conveyed

regarding the state, the characteristics, the composition, the trajectory, the evolution, the

course of action or the intention of the information source. A signal is a means of

conveying information regarding the state(s) of a variable.

The information conveyed in a signal may be used by humans or machines for

communication, forecasting, decision-making, control, geophysical exploration, medical

diagnosis, forensics, etc. The types of signals that signal processing deals with include

textual data, audio, ultrasonic, subsonic, image, electromagnetic, medical, biological,

financial and seismic signals.
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Figure 1. 1 illustrates a communication system composed of an information

e, I(t), followed by a system, T[.] for transformation of the information into

ion of a signal, x(t), a communication channel, h[.], for propagation of the signal

the transmitter to the receiver, additive channel noise, n(t), and a signal processing

at the receiver for extraction of the information from the received signal.

In general, there is a mapping operation that maps the output, I(t), of an

formation source to the signal, x(t), that carries the information; this mapping operator

y be denoted as T[.] and expressed as

x(t) = T[I(t)] (1. 1)

The information source I(t) is normally discrete-valued, whereas the signal x(t)

ı carries the information to a receiver may be continuous or discrete. For example, in

ultimedia communication the information from a computer, or any other digital

ommunication device, is in the form of a sequence of binary numbers (ones and zeros),

fıich would need to be transformed into voltage or current variations and modulated to

the appropriate form for transmission in a communication channel over a physical link.

As a further example, in human speech communication the voice-generating

mechanism provides a means for the speaker to map each discrete word into a distinct

pattern of modulation of the acoustic vibrations of air that can propagate to the listener.

To communicate a word, w, the speaker generates an acoustic signal realisation of the

word, x(t); this acoustic signal may be contaminated by ambient noise and/or distorted

by a communication channel, or impaired by the speaking abnormalities of the talker,

and received as the noisy, distorted and/or incomplete signal y(t), modelled as

y(t) = h[x(t)] + n(t) (1.2)

In addition to conveying the spoken word, the acoustic speech signal has the

capacity to convey information on the prosody (i.e. pitch, intonation and stress patterns

in pronunciation) of speech and the speaking characteristics, accent and emotional state

of the talker. The listener extracts this information by processing the signal y(t). -
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Figure 1.1 Illustration of a communication and signal processing system.

In the past few decades, the theory and applications of digital signal processing

'e evolved to play a central role in the development of modem telecommunication

d information technology systems.
Signal processing methods are central to efficient communication, and to the

velopment of intelligent man-machine interfaces in.areas such as speech and visual

rtern recognition for multimedia systems. In general, digital signal processing is

oııcemed with two broad areas of information theory:
(1) efficient and reliable coding, transmission, reception, storage and representation

of signals in communication systems; and
(2) extraction of information from noisy signals for pattern recognition, detection,

forecasting, decision-making, signal enhancement, control, automation, etc.

In the next section we consider four broad approaches to signal processing.

1.3 Signal Processing Methods

Signal processing methods have evolved in algorithmic complexity, aiming for

optimal utilisation of the information in order to achieve the best performance. In

general, the computational requirement, of signal processing methods increases, often

exponentially, with the algorithmic complexity. However, the implementation cost of

advanced signal processing methods has been offset and made affordable by the

consistent trend in recent years of a continuing increase in the performance, coupled

with a simultaneous decrease in the cost, of signal processing hardware.
Depending on the method used, digital signal processing algorithms can be

categorised into one or a combination of four broad categories. These are transform­

based signal processing, model-based signal processing, Bayesian statistical signal
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~-ing and neural networks, as illustrated in Figure 1.2. These methods are briefly

~ıoed below.

Neuralneıworks

'I

models
Layered networks or
'neuron' etemerıts

Linear
predıcncn

Prcbabil ·ıit ic
esumacicrt

Hidden Markov

Figure 1.2 A broad categorisation of some of the most commonly used signal processing
methods.

1.3.1 Transform-Based Signal Processing

The purpose of a transform is to describe a signal or a system in terms of a

mbination of a set of elementary simple signals (such as sinusoidal signals) that lend

selves to relatively easy analysis, interpretation and manipulation. Transform-based

_ al processing methods include Fourier transform, Laplace transform, z-transform

wavelet transforms. The most widely applied signal transform is the Fourier

form, which is effectively a form of vibration analysis, in that a signal is expressed

terms of a combination of the sinusoidal vibrations that make up the signal. Fourier

transform is employed in a wide range of applications, including popular music coders,

ise reduction and feature extraction for pattern recognition. The Laplace transform,

and its discrete-time version the z-transform, are generalisations of the Fourier

transform and describe a signal or a system in terms of a set of sinusoids with

exponential amplitude envelopes. In Fourier, Laplace and z-transform, the different

inusoidal basis functions of the transforms all have the same duration and differ in

terms of their frequency of vibrations and amplitude envelopes. In contrast, the wavelets

are multi-resolution transforms in which a signal is described in terms of a combination

of elementary waves of different durations. The set of basis functions in a wavelet is

omposed of contractions and dilations of a single elementary wave. This allows non­

stationary events of various durations in a signal to be identified and analysed.
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1.3.2 Model-Based Signal Processing

Model-based signal processing methods utilise a parametric model of the signal

-.erarion process. The parametric model normally describes the predictable structures

· e expected patterns in the signal process, and can be used to forecast the future

~ of a signal from its past trajectory. Model-based methods normally outperform

ıaıparametric methods, since they utilise more information in the form of a model of

signal process. However, they can be sensitive to the deviations of a signal from the

of signals characterised by the model. The most widely used parametric model is

linear prediction model. Linear prediction models have facilitated the development

ıvancedsignal processing methods for a wide range of applications such as low-bit­

speech coding in cellular mobile telephony, digital video coding, high-resolution

tral analysis, radar signal processing and speech recognition.

1.3.3 Bayesian Signal Processing

The fluctuations of a purely random signal, or the distribution of a class of

dom signals in the signal space, cannot be modelled by a predictive equation, but can

described in terms of the statistical average values, and modelled by a probability

ibution function in a multidimensional signal space. For example, a linear

diction model driven by a random signal can provide a source-filter model of the

oustic realization of a spoken word. However, the random input signal of the linear

diction model, or the variations in the characteristics of different acoustic realisations

~ the same word across the speaking population, can only be described in statistical

.erms and in terms of probability functions.
The Bayesian inference theory provides a generalised framework for statistical

ocessing of random signals, and for formulating and solving estimation and decision-

aking problems.

1.3.4 Neural Networks
Neural networks are combinations of relatively simple nonlinear adaptive

processing units, arranged to have a structural resemblance to the transmission and

rocessing of signals in biological neurons. In a neural network several layers of parallel
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~""IITS are interconnected by a hierarchically structured connection

ection weights are trained to perform a signal processing function
• ı- it tion or classification.

'orks are particularly useful in nonlinear partitioning of a signal

ex'lractionand pattern recognition and in decision-making systems. In

em recognition systems neural networks are used to complement
::cıo:ence methods. Since the main objective of this project is to provide a

aıllamı: ~ti.on of the theory and applications of statistical signal processing and

nned and removed, neural networks are not discussed in this project.

••• ,- ıca.'tions ot D\~\ta\ '5,\~na\ "\""rocess\.ng,

cent years, the development and commercial availability of increasingly
affordable digital computers has been accompanied by the development of

lllliı wıı:::ıo.:, digital signal processing algorithms for a wide variety of applications such as

l"'!;"tTnı.-non, telecommunications, radar, sonar, video and audio signal processing,

gnition, geophysics explorations, data forecasting, and the processing of

cı:aooses for the identification, extraction and organisation of unknown

I ;i!ing structures and patterns. Figure 1.3 shows a broad categorisation of some

processing (DSP) applications.

.......1 Adaptive Noise Cancellation

speech communication from a noisy acoustic environment such as a moving

train, or over a noisy telephone channel, the speech signal is observed in an
aıatirn-e random noise.
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codıug. daıa compressien. coınmunicaüon on

mobile channels

Spectral analysis. radar
and sonar signal processing,
signal enhancement, geophysics
exploration

Speech recognirıon. imaşe
ancı character recogniııon,
bio-signal processing

Figure 1.3 A classification of the applications of digital signal processing.

measurement systems the information-bearing signal is often contaminated by

from its surrounding environment. The noisy observation, y(m), can be modelled

y(m) = x(m) + n(m) (1.3)

x(m) and n(m) are the signal and the noise, and m is the discrete-time index. In

e situations, for example when using a mobile telephone in a moving car, or when

g a radio communication device in an aircraft cockpit, it may be possible to measure

estimate the instantaneous amplitude of the ambient noise using a directional

phone. The signal, x(m), may then be recovered by subtraction of an estimate of

noise from the noisy signal.

Figure 1 .4 shows a two-input adaptive noise cancellation system for

cement of noisy speech. In this system a directional microphone takes as input the

_. signal x(m)+n(m), and a second directional microphone, positioned some distance

y, measures the noise orurn+T). The attenuation factor, a, and the time delay, T,

vide a rather over-simplified model of the effects of propagation of the noise to

erent positions in the space where the microphones are placed. The noise from the

ond microphone is processed by an adaptive digital filter to make it equal to the

· e contaminating the speech signal, and then subtracted from the noisy signal to

el out the noise. The adaptive noise canceller is more effective in cancelling out the

w-frequency part of the noise, but generally suffers from the nonstationary character

13



ignals, and from the over-simplified assumption that a linear filter can model the

1.4.2 Adaptive Noise Reduction

In many applications, for example at the receiver of a telecommunication

ii.!*fil. there is no access to the instantaneous value of the contaminating noise, and

e noisy signal is available. In such cases the noise cannot be cancelled out, but it

reduced, in an average sense, using the statistics of the signal and the noise

signal

\. v(mJ =x(m)+ nim)

Noise estimation filter

Figure 1.4 Configuration of a two-microphone adaptive noise canceller.

14



~ foısy signal
m ı = x(ın) +n(m) Restored signal

ı-l _n_;O)_. .İ. ••••••_ .J~ç_\ iw.ı ı
{~-~./

I
Y( n I ı... / ı:=~;~~. I XO )'; ~~ \~-~...> ı, I:v ..-~

I

I

H2ı 1 ··.__ı j_ , ...._"_,--~ I X(2)..-.. -· ... ·l_.·~ ı\ı,, ':; . ,..,
7""'

/ ,,....-
j

1 t. ifY' I{;,,, .. ,
J

.
r..x.1· .<, ,·1'.~1 v- 1' J--+-- n 1~ - ·v . ;ı,, l

.,,.,, .

x(O)

y(lıJ-1) -
Y(N-1 ),

Sıgııal and noise
1

pow-er spectra
Wiener filter

estimator

Figure 1.5 A frequency-domain Wiener filter for reducing additive noise.

e 1 .5 shows a bank of Wiener filters for reducing additive noise when only the

_: signal is available. The filter bank coefficients attenuate each noisy signal

ıuency in inverse proportion to the signal-to-noise ratio at that frequency. The

- ener filter bank coefficients are calculated from estimates of the power spectra of the

_ 1 and the noise processes.

ı.4.3 Blind Channel Equalisation

Channel equalisation is the recovery of a signal distorted in transmission through

ommunication channel with a nonflat magnitude or a nonlinear phase response.

ben the channel response is unknown, the process of signal recovery is called 'blind

equalisation'. Blind equalisation has a wide range of applications, for example in digital

ecommunications for removal of inter-symbol interference due to nonideal channel

multipath propagation, in speech recognition for removal of the effects of the

rophones and communication channels, in correction of distorted images, in analysis

-~ seismic data and in de-reverberation of acoustic gramophone recordings.
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practice, blind equalisation is feasible only if some useful statistics of the

input are-available. The success of a blind equalisation method depends on how

· known about the characteristics of the input signal and how useful this

ı.-ıedge can be in the channel identification and equalisation process. Figure 1 .6

ıaıes the configuration of a decision-directed equaliser. This blind channel

iiser is composed of two distinct sections: an adaptive equaliser that removes a

part of the channel distortion, followed by a nonlinear decision device for an

r~Yed estimate of the channel input. The output of the decision device is the final

- nate of the channel input, and it is used as the desired signal to direct the equaliser

miııxation process.

Channel distortion
• •. ı HU) j,r-...../-""',

ll/11)

I..•
ILI Adapraüon

algoıit:hrn

Blind decision-directed equaliser

Figure 1.6 Configuration of a decision-directed blind channel equaliser.

1.4.4 Signal Classification and Pattern Recognition

Signal classification is used in detection, pattern recognition and decision­

making systems. For example, a simple binary-state classifier can act as the detector of

e presence, or the absence, of a known waveform in noise. In signal classification, the

aim is to design a minimum-error system for labelling a signal with one of a number of

ely classes of signal.
To design a classifier, a set of models is trained for the classes of signals that are

of interest in the application. The simplest form that the models can assume is a bank, or

ode book, of waveforms, each representing the prototype for one class of signals. A
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omplete model for each class of signals takes the form of a probability

~on function. In the classification phase, a signal is labelled with the nearest or

st likely class. For example, in communication of a binary bit stream over a

~s channel, the binary phase-shift keying (BPSK) scheme signals the bit '1'

e waveform Ac sin oıet and the bit 'O' using - Ac sin «ıet.

At the receiver, the decoder has the task of classifying and labelling the received

1.7 illustrates a correlation receiver for a BPSK

Decision
deviceCorrelator for symbol 'l '

'] '

Coreh l.)

CmeJ(O)

Correlator for symbol 'O'

Figure 1.7 A block diagram illustration of the classifier in a binary phase-shift keying

demodulation.
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Figure 1.8 Configuration of a speech recognition system; f(Y I Mi) is the likelihood of the model

Mi given an observation sequence Y.

receiver has two correlators, each programmed with one of the two symbols
senting the binary states for the bit '1' and the bit 'O'. The decoder correlates the

abelled input signal with each of the two candidate symbols and selects the candidate

t has a higher correlation with the input.
Figure 1.8 illustrates the use of a classifier in a limited-vocabulary, isolated­

.ord speech recognition system. Assume there are V words in the vocabulary. For each

·ord a model is trained, on many different examples of the spoken word, to capture the

average characteristics and the statistical variations of the word. The classifier has

access to a bank of V+ 1 models, one for each word in the vocabulary and an additional

model for the silence periods. In the speech-recognition phase, the task is to decode and

label an acoustic speech feature sequence, representing an unlabelled spoken word, as

18



Y likely words or silence. For each candidate word the classifier calculates a

.5 Linear Prediction Modelling of Speech

inear predictive models are widely used in speech processing applications such

· -rate speech coding in cellular telephony, speech enhancement and speech

I _oition. Speech is generated by inhaling air into the lungs, and then exhaling it

• Jı the vibrating glottis cords and the vocal tract. The random, noise-like, air flow

· e lungs is spectrally shaped and amplified by the vibrations of the glottal cords

resonance of the vocal tract. The effect of the vibrations of the glottal cords and

al tract is to introduce a measure of correlation and predictability to the random

:jımıiırions of the air from the lungs. Figure 1.9 illustrates a source-filter model for

sıııııech production. The source models the lung and emits a random excitation signal

is filtered, first by a pitch filter model of the glottal cords and then by a model of

Pitch period

ı
Vocal tract

rnodel
H(z) Speech

Random \ ı~~Wııl
-. ı

Glottal {1.Ji.tchJ
moder
P(::Jurce Excitation

Figure 1.9 Linear predictive model of speech.

The main source of correlation in speech is the vocal tract modelled by a linear

ictor. A linear predictor forecasts the amplitude of the signal at time m, x(m), using

ear combination of P previous samples (x(m-1), ... ,x(m-P)] as

(1 .4)

.here x'(m) is the prediction of the signal x(m), and the vector a1 =ja], .... ,ap] is the

oeffıcients vector of a predictor of order P. The prediction error e(m), i.e. the

difference between the actual sample, x(m), and its predicted value, x(m), is defined as

19



e(m) = x(m) - Lk=ı akx(m - k) (1.5)

iction error e(m) may also be interpreted as the random excitation or the so­

innovation content of x(m). From Equation (1.5) a signal generated by a linear

~r can be synthesised as

x(m) = Lk=ı akx(m - k) + e(m) (1.6)

1.4.6 Digital Coding of Audio Signals
In digital audio, the memory required to record a signal, the bandwidth required

· gnal transmission and the signal-to-quantisation noise ratio are all directly

nional to the number of bits per sample. The objective in the design of a coder is

hieve high fidelity with as few bits per sample as possible, at an affordable

ementation cost. Audio signal coding schemes utilise the statistical structures of the

and a model of the signal generation, together with information on the

_ lıoacoustics and the masking effects of hearing. In general, there are two main

gories of audio coders: model-based coders, used for low-bit-rate speech coding in

ications such as cellular telephony, and transform-based coders used in high-quality

g of speech and digital hi-fi audio.

aı
Speech x{m)

Pitch and vocal-tract Synt11eEjser
ı Scalar I .c,oefficienl:s

quantiser
coefficients

Vector
quantiser

, Model-based
il.fl I .Jukuıi·.' \ speech analysis I E, ·-· .l/"V-i,"111111\ I xcııauon e(m)

Excitation addressr:r,,_, ---

Excitation -----,
address Ex.citation
O •. codebook

Pitch c:o,~fficientsı
Vocal-tract coefficientı Reconstructed

pee.ch-.,, Voca1-tracrfilterPitch filter

Figure 1.10 Block diagram configuration ofa model-based speech (a) coder and (b) decoder.
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Figure 1.1 O shows a simplified block diagram configuration of a speech coder­

lllıroder of the type used in digital cellular telephones. The speech signal is modelled as

uıput of a filter excited by a random signal. The random excitation models the air

ed through the lung, and the filter models the vibrations of the glottal cords and the

tract. At the transmitter, speech is segmented into blocks about 30 ms long, during

h speech parameters can be assumed to be stationary. Each block of speech

les is analysed to extract and transmit a set of excitation and filter parameters that

used to synthesise the speech. At the receiver, the model parameters and the

tion are used to reconstruct the speech.
A transform-based coder is shown in Figure 1. 11. The aim of transformation is

onvert the signal into a form that lends itself to more convenient and useful

retation and manipulation.

ur signal Binary coded signal Recoıı srructed
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Figure 1.11Illustration of a transform-based coder.

In Figure 1.11 the input signal is transformed to the frequency domain using a

filter bank, or a discrete Fourier transform, or a discrete cosine transform. The three

main advantages of coding a signal in the frequency domain are:

(1) The frequency spectrum of a signal has a relatively well-defined structure, for

example most of the signal power is usually concentrated in the lower regions of

the spectrum.
(2) A relatively low-amplitude frequency would be masked in the near vicinity of a

large-amplitude frequency and can therefore be coarsely encoded without any

audible degradation.
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The frequency samples are orthogonal and can be coded independently with

different precisions.

The number of bits assigned to each frequency of a signal is a variable that

the contribution of that frequency to the reproduction of a perceptually high-

• signal. In an adaptive coder, the allocation of bits to different frequencies is

vary with the time variations of the power spectrum of the signal.

1.4.7 Detection of Signals in Noise

In the detection of signals in noise, the aim is to determine if the observation

of noise alone, or if it contains a signal. The noisy observation, y(m), can be

y(m) = b(m)x(m) + n(m) (1.7)

x(m) is the signal to be detected, n(m) is the noise and b(m) is a binary-valued

.,,. indicator sequence such that b(m) = 1 indicates the presence of the signal, x(m),

m) = O indicates that the signal is absent. If the signal, x(m), has a known shape,

a correlator or a matched filter can be used to detect the signal, as shown in Figure

impulse response h(m) of the matched filter for detection of a signal, x(m), is the

e-reversed version of x(m) given by

h(m) = x(N - 1 - m) (1.8)

ere N is the length of x(m). The output of the matched filter is given by

z(m) = ı:!-::t h(m - k)y(m) (1.9)
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b{ rn)=x(m) + .ı:ı(m)
o I

z(m" Threshold
comparator

Matched filter
h(m)= ll}\!- 1-m)

Figure 1.12 Configuration of a matched filter followed by a threshold comparator for detection

of signals in noise.

hım) Detector decision

1
1

o
1
o
1

Signa! absent Correct
Signal absent (J\1issed)
Signal present (False alarm}
Signal present Correct

Table 1.1 Four possible outcomes in a signal detection problem.

matched filter output is compared with a threshold and a binary decision is made as

b(m) = {1, if z(m) > Threshold
O, otherwise

(1.10)

b(m) is an estimate of the binary state indicator sequence b(m), and may be

neous, particularly if the signal-to-noise ratio is low. Table 1. 1 lists four possible

omes that, together, b(m) and its estimate, b(m), can assume. The choice of the

shold level affects the sensitivity of the detector. The higher the threshold, the lower

likelihood that noise would be classified as signal is, so the false alarm rate falls, but

probability of misclassification of signal as noise increases. The risk in choosing a

shold value 8 can be expressed as

'R(Threshold = e) = PFalse Alarm(e) + PMiss(e) (1. 11)

The choice of the threshold reflects a trade-off between the misclassification rate

P~iiss(8) and the false alarm rate PFalse Alarm(8).
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1.4.8 Dolby Noise Reduction

Dolby noise-reduction systems work by boosting the energy and the signal-to­

ratio of the high-frequency spectrum of audio signals. The energy of audio signals

y concentrated in the low-frequency part of the spectrum (below 2 kHz). The

frequencies that convey quality and sensation have relatively low energy, and

degraded by even a small amount of noise. For example, when a signal is

ed on a magnetic tape, the tape 'hiss' noise affects the quality of the recorded

. On playback, the higher-frequency parts of an audio signal recorded on a tape

a smaller signal-to-noise ratio than the low frequency parts. Therefore noise at

frequencies is more audible and less masked by the signal energy. Dolby noise

· on systems broadly work on the principle of emphasizing and boosting the low

::.: of the high-frequency signal components prior to recording the signal. When a

is recorded, it is processed and encoded using a combination of a pre-emphasis

and dynamic range compression. At playback, the signal is recovered using a

er based on a combination of a de-emphasis filter and a decompression circuit.

encoder and decoder must be well matched and cancel each other out in order to

id processing distortion.
Dolby developed a number of noise-reduction systems designated Dolby A,

by Band Dolby C. These differ mainly in the number of bands and the pre-emphasis

ıegy that that they employ. Dolby A, developed for professional use, divides the

_ 1 spectrum into four frequency bands: band 1 is low-pass and covers O to 80 Hz;

d 2 is band-pass and covers 80 Hz to 3 kHz; band 3 is high-pass andcovers above 3

kHz; and band 4 is also high-pass and covers above 9 kHz. At the encoder the gain in

b band is adaptively adjusted to boost low-energy signal components. Dolby A

ovides a maximum gain of 1O-15 dB in each band if the signal level falls 45 dB

low the maximum recording level. The Dolby B and Dolby C systems are designed

or consumer audio systems, and use two bands instead of the four bands used in Dolby

A. Dolby B provides a boost of up to 1 O dB when the signal level is low (less than 45

dB below the maximum reference) and Dolby C provides a boost of up to 20 dB, as

illustrated in Figure 1. 15.
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Figure 1.15 Illustration of the pre-emphasis response of Dolby C: up to 20 dB boost is

provided when the signal falls 45 dB below maximum recording level.
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CHAPTER TWO

NOISE

_ ;oise can be defined as an unwanted signal that interferes with the communication

urement of another signal. A noise itself is a signal that conveys information

--Ulllg the source of the noise. For example, the noise from a car engine conveys

ation regarding the state of the engine and how smoothly it is running. The

es of noise are many and varied and include thermal noise intrinsic to electric

ı-ructors, shot noise inherent in electric current flows, audio-frequency acoustic noise
1 nating from moving, vibrating or colliding sources such as revolving machines,

ring vehicles, computer fans, keyboard clicks, wind, rain, etc. and radio-frequency

omagnetic noise that can interfere with the transmission and reception of voice,

ge and data over the radio-frequency spectrum. Signal distortion is the term often

to describe a systematic undesirable change in a signal and refers to changes in a

due to the nonideal characteristics of the communication channel, reverberations,

. multipath reflections and missing samples.

Noise is present in various degrees in almost all environments. For example, in a

1 cellular mobile telephone system, there may be several varieties of noise that

d degrade the quality of communication, such as acoustic background noise,

al noise, shot noise, electromagnetic radio-frequency noise, co-channel radio

rference, radio-channel distortion, acoustic and line echoes, multipath reflection,

g and signal processing noise. Noise can cause transmission errors and may even

pt a communication process; hence noise processing is an important and integral

of modem telecommunications and signal processing systems. The success of a

ise processing method depends on its ability to characterize and model the noise

ocess, and to use the noise characteristics advantageously to differentiate the signal

from the noise.
Depending on its source, a noise can be classified into a number of categories,

indicating the broad physical nature of the noise, as follows:
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• ~~oustic noise - emanates from moving, vibrating or colliding sources and is

most familiar type of noise present to various degrees in everyday

ıvironments. Acoustic noise is generated by such sources as moving cars, air­

nditioners, computer fans, traffic, people talking in the background, wind,

rain, etc.

and shot noise - thermal noise is generated by the random

movements of thermally energized particles in an electric conductor. Thermal

noise is intrinsic to all conductors and is present without any applied voltage.

Shot noise consists of random fluctuations of the electric current in an electrical

onductor and is intrinsic to current flow. Shot noise is caused by the fact that

the current is carried by discrete charges (i.e. electrons) with random

fluctuations and random arrival times.

_ . Electromagnetic noise - present at all frequencies and in particular at the radio

frequency range (kHz to GHz range) where telecommunications take place. All

electric devices, such as radio and television transmitters and receivers, generate

electromagnetic noise.

) Electrostatic noise - generated by the presence of a voltage with or without

current flow. Fluorescent lighting is one of the more common sources of

electrostatic noise.

5) Channel distortions, echo and fading - due to nonideal characteristics of

communication channels. Radio channels, such as those at GHz frequencies used

by cellular mobile phone operators, are particularly sensitive to the propagation

characteristics of the channel environment and fading of signals.

(6) Processing noise - the noise that results from the digital-to-analogue processing

of signals, e.g. quantization noise in digital coding of speech or image signals, or

lost data packets in digital data communication systems.

Depending on its frequency spectrum or time characteristics, a noise process can

further classified into one of several categories as follows:

(1) White noise - purely random noise that has a flat power spectrum. White noise

theoretically contains all frequencies in equal intensity.

(2) Band-limited white noise - a noise with a flat spectrum and a limited bandwidth

that usually covers the limited spectrum of the device or the signal of interest.
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owband noise - a noise process with a narrow bandwidth such as a 50-60

'hum' from the electricity supply.

Iored noise - nonwhite noise or any wideband noise whose spectrum has a

at shape; examples are pink noise, brown noise and autoregressive noise.

pulsive noise - consists of short-duration pulses of random amplitude and

ransient noise pulses - consists of relatively long duration noise pulses.

is defined as an uncorrelated random noise process with equal

at all frequencies (Figure 2. 1 ). A random noise that has the same power at all

..-=ncies in the range of± oo would necessarily need to have infinite power, and is

~·fnre only a theoretical concept. However a band-limited noise process, with a flat

covering the frequency range of a band-limited communication system, is to

ts and purposes from the point of view of the system a white noise process. For

le, for an audio system with a bandwidth of 1b kHz, any flat-spectrum audio

with a bandwidth of equal to or greater than 1 O kHz looks like white noise. The

orrelation function of a continuous-time zero-mean white noise process with a

ce of (J'~ is a delta function [Figure 2.l(b)] given by

TNN(T) = E[N(t)N(t + r)] = o-28(r) (2.1)

j.b /'NN(kJ

I

o 50 ıoo 150 200 zso 300
/JI

Ir., f

(a) (b) (c)

Figure 2.1 (a) Illustration of white noise. (b) Its autocorrelation function is a delta function. (c)

Its power spectrum is constant.
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power spectrum of a white noise, obtained by taking the Fourier transform

lııııion (2.1 ), is given by

(2.2)

Eouation (2.2) and Figure 2.l(c) show that a white noise has a constant power

-.2.1 Additive White Gaussian Noise Model

In classical communication theory, it is often assumed that the noise is a

lllllllJııary additive white Gaussian (AWGN) process. Although for some problems this

alid assumption and leads to mathematically convenient and useful solutions, in

i-=nce the noise is often time-varying, correlated and non-Gaussian. This is

impulsive-type noise and for' acoustic noise, which are

-a::,.ı9.a.ationary and non-Gaussian and hence cannot be modelled using the AWGN

ption. Nonstationary and non-Gaussian noise processes can be modelled by a

.ovian chain of stationary subprocesses.

2.2.2 Hidden Markov Model (HMM) for Noise

Most noise processes are nonstationary; that is the statistical parameters of the

· e, such as its mean, variance and power spectrum, vary with time. Nonstationary

esses may be modelled using HMM. An HMM is essentially a finite-state Markov

of stationary subprocesses. The implicit assumption in using HMMs for noise is

r the noise statistics can be modelled by a Markovian chain of stationary

processes. Note that a stationary noise process can be modelled by a single-state

HMM. For a nonstationary noise, a multistate HMM can model the time variations of

e noise process with a finite number of stationary states. For non-Gaussian noise, a

mixture Gaussian density model can be used to model the space of the noise within each

state. In general, the number of states per model and number of mixtures per state

required to accurately model a noise process depends on the nonstationary character of
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(a)
(b)

example of a nonstationary noise is the impulsive noise of Figure 2.2(a).

) shows a two-state HMM of the impulsive noise sequence: the state So

·impulseoff' periods between the impulses, and state S 1 models an impulse.

Figure 2.2 (a) An impulsive noise sequence. (b) A binary-state model of impulsive noise.

Coloured Noise
.Although the concept of white noise provides a reasonably realistic and

.-:bematically convenient and useful approximation to some predominant noise

cesses encountered in telecommunications systems, many other noise processes are

.hite. The term 'colored noise' refers to any broadband noise with a nonwhite

. For example most audio-frequency noise, such as the noise from moving cars,

-~ from computer fans, electric drill noise and people talking in the background, has

nwhite predominantly low-frequency spectrum. Also, a white noise passing through

hannel is 'colored' by the shape of the frequency response of the channel. Two

sic varieties of colored noise are so-called 'pink noise' and 'brown noise', shown in

igures 2.3 and 2.4.
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Figure 2.3 (a) A pink noise signal and (b) its magnitude spectrum.
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Figure 2.4 (a) A brown noise signal and (b) its magnitude spectrum.

4 Impulsive Noise
Impulsive noise consists of random short-duration 'on/off noise pulses, caused

_,- a variety of sources, such as switching noise, electromagnetic interference, adverse

dıannel environment in a communication system, drop-outs or surface degradation of

io recordings, clicks from computer keyboards, etc.

Figure 2.5(a) shows an ideal impulse and its frequency spectrum. In

ommunication systems, a real impulsive-type noise has a duration that is normally

ore than one sample long. For example, in the context of audio signals, short-duration,

sharp pulses, of up to 3 ms (60 samples at a 20 kHz sampling rate) may be considered as

impulsive noise. Figure 2.5(b) and (c) illustrates two examples of short-duration pulses

and their respective spectra.
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In a communications system, an impulsive noise originates at some point in time

space, and then propagates through the channel to the receiver. The received noise

time dispersed and shaped by the channel, and can be considered as the channel

ulse response. In general, the characteristics of a communication channel may be

or nonlinear, stationary or time-varying. Furthermore, many communications

ms exhibit a nonlinear characteristic in response to a large-amplitude impulse.

gure 2.6 illustrates some examples of impulsive noise, typical of that observed on an

gramophone recording. In this case, the communication channel is the playback

ystem, and may be assumed to be time-invariant. The figure also shows some

rariations of the channel characteristics with the amplitude of impulsive noise. For

example, in Figure 2.6( c) a large impulse excitation has generated a decaying transient

se with time-varying period. These variations may be attributed to the nonlinear

:haracteristics of the playback mechanism.
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Figure 2.5 Time and frequency sketches of: (a) an ideal impulse; (b) and (c) short-duration

pulses.

32



(bj (Ci

~nı:,(mı

Figure 2.6 Illustration of variations of the impulse response of a nonlinear system with

increasing amplitude of the impulse.

2.5 Transient Noise Pulses
Transient noise pulses, observed in most communications systems, are caused by

interference. Transient noise pulses often consist of a relatively short, sharp initial pulse

followed by decaying low-frequency oscillations, as shown in Figure 2.7. The initial

pulse is usually due to some external or internal impulsive interference, whereas the

oscillations are often due to the resonance of the communication channel excited by the

initial pulse, and may be considered as the response of the channel to the initial pulse. In

a telecommunications system, a noise pulse originates at some point in time and space,

and then propagates through the channel to the receiver. The noise pulse is shaped by

the channel characteristics, and may be considered as the channel pulse response. Thus,

we should be able to characterize the transient noise pulses with a similar degree of

consistency as in characterizing the channels through which the pulses propagate.

As an illustration of the shape of a transient noise pulse, consider the scratch

pulses from a damaged gramophone record shown in Figure 2.7(a) and (b). Scratch

noise pulses are acoustic manifestations of the response of the stylus and the associated

electromechanical playback system to a sharp physical discontinuity on the recording

medium. Since scratches are essentially the impulse response of the playback

mechanism, it is expected that, for a given system, various scratch pulses exhibit similar

characteristics. As shown in Figure 2.7(b), a typical scratch pulse waveform often

exhibits two distinct regions:

33



) the initial high-amplitude pulse response of the playback system to the physical

discontinuity on the record medium; followed by

-) decaying oscillations that cause additive distortion; the initial pulse is relatively

short and has a duration on the order of 1-5 ms, whereas the oscillatory tail has

a longer duration and may last up to 50 ms or more.

Note in Figure 2.7(b) that the frequency of the decaying oscillations decreases

time. This behaviour may be attributed to the nonlinear modes of response of the

tromechanical playback system excited by the physical scratch discontinuity.

ervations of many scratch waveforms from damaged gramophone records reveals

they have a well-defined profile, and can be characterised by a relatively small

ber of typical templates.
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Figure 2.7 (a) A scratch pulse and music from a gramophone record. (b) The averaged profile of

a gramophone record scratch pulse.

2.6 Thermal Noise
Thermal noise, also referred to as Johnson noise (after its discoverer, J.B.

Johnson), is generated by the random movements of thermally energised (agitated)

particles inside an electric conductor. Thermal noise is intrinsic to all resistors and is not

a sign of poor design or manufacture, although some resistors may also have excess

noise. Thermal noise cannot be circumvented by good shielding or grounding.

Note that thermal noise happens at equilibrium without the application of a

voltage. The application of a voltage and the movement of current in a conductor cause

an additional random fluctuation known as shot noise, as described in the next section.
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The concept of thermal noise has its roots in thermodynamics and is associated

the temperature-dependent random movements of free particles such as gas

lecules in a container or electrons in a conductor. Although these random particle

,vements average to zero, the fluctuations about the average constitute the thermal

· e. For example, the random movements and collisions of gas molecules in a

nfined space produce random fluctuations about the average pressure. As the

perature increases, the kinetic energy of the molecules and the thermal noise

rease.
Similarly, an electrical conductor contains a very large number of free electrons,

gether with ions that vibrate randomly about their equilibrium positions and resist the

movement of the electrons. The free movement of electrons constitutes random

spontaneous currents, or thermal noise, that average to zero since, in the absent of a

·oltage, electrons move in different directions. As the temperature of a conductor, from

heat provided by its surroundings, increases, the electrons move to higher-energy states

and the random current flow increases. For a metallic resistor, the mean square value of

the instantaneous voltage due to the thermal noise is given by

v2 = 4kTRB (2.3)

where k = 138x 10-23 J/k is the Boltzmann constant, T is the absolute temperature in

degrees Kelvin, R is the resistance in ohms and Bis the bandwidth. From Equation (2.3)

and the preceding argument, a metallic resistor sitting on a table can be considered as a

generator of thermal noise power, with a mean square voltage v2 and an internal

resistance R. From circuit theory, the maximum available power delivered by a 'thermal

noise generator', dissipated in a matched load of resistance R, is given by

vz 
R = - = kTB (W)

4R

(2.4)

where Vrms is the root mean square voltage. The spectral density of thermal noise is

given by
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kTPN(f) = -(W /Hz)
2

(2.5)

Equation (2.5), the thermal noise spectral density has a flat shape, i.e. thermal

is a white noise. Equation (2.5) holds well up to very high radio-frequencies of

~ Hz.

Electromagnetic Noise
Electromagnetic waves present in the environment constitute a level of

kground noise that can interfere with the operation of communication and signal

essing systems. Electromagnetic waves may emanate from man-made devices or

al sources. The primary natural source of electromagnetic waves is the Sun. In the

er of decreasing wavelength and increasing frequency, various types of

ectromagnetic radiation include: electric motors (kHz), radio waves (kHz to GHz),

· crowaves (1011 Hz), infrared radiation (1013 Hz), visible light (1014 Hz), ultraviolet

diation (1015 Hz), X-rays (1020 Hz) and y-radiation (1023 Hz).
Virtually every electrical device that generates, consumes or transmits power is a

source of pollution of radio spectrum and a potential source of electromagnetic noise

interference for other systems. In general, the higher the voltage or the current level, and

the closer the proximity of electrical circuits/devices, the greater will be the induced

noise. The common sources of electromagnetic noise are transformers, radio and

television transmitters, mobile phones, microwave transmitters, a.c. power lines, motors

and motor starters, generators, relays, oscillators, fluorescent lamps and electrical

storms.
Electrical noise from these sources can be categorized into two basic types:

electrostatic and magnetic. These two types of noise are fundamentally different, and

thus require different noise-shielding measures. Unfortunately, most of the common

noise sources listed above produce combinations of the two noise types, which can

complicate the noise reduction problem.
Electrostatic fields are generated by the presence of voltage, with or without

current flow. Fluorescent lighting is one of the more common sources of electrostatic

noise. Magnetic fields are created either by the flow of electric current or by the

presence of permanent magnetism. Motors and transformers are examples of the former,
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the Earth's magnetic field is an instance of the latter. In order for noise voltage to be

·eloped in a conductor, magnetic lines of flux must be cut by the conductor. Electric

noise) generators function on this basic principle. In the presence of an alternating

kl, such as that surrounding a 50-60 Hz power line, voltage will be induced into any

ionary conductor as the magnetic field expands and collapses. Similarly, a conductor

ving through the Earth's magnetic field has a noise voltage generated in it as it cuts

lines of flux.
The main sources of electromagnetic interference in mobile communications

ystems are the radiations from the antennas of other mobile phones and base stations.

The electromagnetic interference by mobile users and base stations can be reduced by

e use of narrow-beam adaptive antennas, the so-called 'smart antennas'.

2.8 Channel Distortions

On propagating through a channel, signals are shaped, delayed and distorted by

the frequency response and the attenuating (fading) characteristics of the channel. There

are two main manifestations of channel distortions: magnitude distortion and phase

distortion. In addition, in radio communication, we have the multipath effect, in which

the transmitted signal may take several different routes to the receiver, with the effect

that multiple versions of the signal with different delay and attenuation arrive at the

receiver. Channel distortions can degrade or even severely disrupt a communication

process, and hence channel modelling and equalization are essential components of

modem digital communications systems. Channel equalization is particularly important

in modem cellular communications systems, since the variations of channel

characteristics and propagation attenuation in cellular radio systems are far greater than

those of the landline systems.
Figure 2.8 illustrates the frequency response of a channel with one invertible and

two noninvertible regions. In the noninvertible regions, the signal frequencies are

heavily attenuated and lost to the channel noise. In the invertible region, the signal is

distorted but recoverable.
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Figure 2.8 Illustration of channel distortion: (a) the input signal spectrum; (b) the channel

frequency response; (c) the channel output.

This example illustrates that the channel inverse filter must be implemented with

are in order to avoid undesirable results such as noise amplification at frequencies with

a low signal-to-noise ratio.
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CHAPTER THREE

SPEECH ENHANCEMENT IN NOISE

De-noising speech improves the quality and the intelligibility of voice

unication in noisy environments and reduces communication fatigue. Noise

tion benefits the users of hands-free phones, mobile phones and voice-controlled

omated services used in noisy moving environments such as cars, trains, streets,

erence halls and other public venues. Figure 3.1 illustrates a classification of the

· signal processing methods for enhancement of noisy speech into two broad types:

(1) Single-input speech enhancement systems, where the only available signal is the

noise contaminated speech picked up by a single microphone. Single input

systems do not cancel noise, rather they suppress the noise using estimates of

the signal-to-noise ratio of the frequency spectrum of the input signal. Single­

input systems rely on the statistical models of speech and noise, which may be

estimated from the speech-inactive periods or decoded from a set of pre-trained

models of speech and noise. An example of a useful application of a single­

input enhancement system is a mobile phone system used in noisy

environments.
(2) Multiple-input speech enhancement systems, where a number of signals

containing speech and noise are picked up by several microphones. Examples of

multiple inputs systems are adaptive noise cancellation, adaptive beam-forming

microphone arrays and multiple-input multiple-output (MIMO) acoustic echo

cancellation systems. In multiple-input systems the microphones can be

designed, spatially arranged and adapted for optimum performance. Multiple­

input noise-reduction systems are useful for teleconferencing systems and for

in-car cabin communication systems.

Figure 3 .1 illustrates a categorization of the main noise reduction methods used for

single-input and multiple-input scenarios. In order to achieve the best noise-reduction
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ııııınce, where possible, the advantages of the signal processing methods

for single-input noise suppression and multiple-inputs noise cancellation

Speech enhancement methods

Multi.pk-sensor methods ~ l fu•••-•rOOO• l
---,ı Restcrnriou

via modf.'1-baseil
analysis­
synthesis

Specıml
estimaıion

IMAP. M!v!SE)
Hem11--fonnl1ıg Multiple-input

mutnple-ouput
systems

\V[ene1
filter

Kannan
filter

suppression

Decoders supply statistical models af sıgnnl aırd noise

A categorization of speech enhancement methods. Note that statistical models can optionally

provide single-input noise reduction methods with the additional information needed for

improved performance.

Single-Input Speech-Enhancement Methods

In single-input systems the only available signal is the noisy speech; however, in

lications where speech enhancement and recognition are performed on the same

ystem, the results of speech recognition can provide the speech enhancement method

.ith such information as the statistics of the power spectra or correlation matrices

tained from decoding the most likely speech and noise models. Single-input noise­

reduction methods include Wiener filter, spectral subtraction, Kalman filter, MMSE

method and speech restoration via model-based analysis and synthesis methods, as

described in this section.

3.2.l An Overview of a Speech-Enhancement System

Assuming that the speech signal, x(m), and the noise, n(m), are additive, the

noisy speech, y(m), is modelled as

y(m) = x(m) + n(m) (3. 1)

40



the integer variable m denotes the discrete-time index. It is generally assumed

the speech is not correlated with noise; this is a reasonable assumption in most

s when the signal and noise are generated by independent sources.

The general form of a typical speech-enhancement method is shown in Figure

-· The speech-enhancement system is composed of a combination of the following

(1) speech segmentation into a sequence of overlapping frames (of about 20-30 ms)

followed by windowing of each segment with a popular window such as the

Hann window;

(2) discrete Fourier transformation of the speech samples within each frame to a set

of short-time spectral samples;

(3) estimation of the spectral amplitudes of clean speech - this involves a

modification of the magnitude spectrum of noisy speech according to an

estimate of the signal to noise ratio at each frequency;

(4) an inter-frame signal smoothing method to utilise the temporal correlations of

the spectral values across successive frames of speech;

(5) speech and noise models, and a speech and noise decoder, to supply the speech

estimator with the required statistics (power spectra, correlation matrices, etc.)

of speech and noise;

(6) voice activity detection, used to estimated and adapt noise models from the

noise-only periods and also for applying extra attenuation to noise-only periods.

In the following, the elements of a speech-enhancement system are described in more

detail.

3.2.1.1 Segmentation and Windowing of Speech

Speech processing systems divide the sampled speech signal into overlapping

frames of about 20-30 ms duration. The N speech samples within each frame are

processed and represented by a set of spectral features or by a linear prediction model of

speech production:
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Figure 3.2 Block diagram illustration of a speech-enhancement system.

ignal within each frame is assumed to be a stationary process. The choice of the

of speech frames (typically set to between 20 and 30 ms) is constrained by the

~ty assumption of linear time-invariant signal processing methods such as

llmrier transform or linear prediction model, and by the maximum allowable delay for

~e communication systems such as voice coders.

3.2.1.2 Spectral Representation of Speech and Noise

Speech is segmented into overlapping frames of N samples and transformed to

ney domain via discrete Fourier transform. In the frequency domain, the noisy

h can be represented as

Y(k) = X(k) + N(k) k = O, ... N ...,. 1 (3.2)

e X(k), N(k) and Y(k) are the short-time discrete Fourier transforms of speech,

and noisy speech, respectively. The integer k represents the discrete frequency

· ble; it corresponds to an actual frequency of 2krr IN (rad/s) or kFs/N (Hz) where F,

the sampling frequency.
Equation (3.2) can be written in the complex polar form in terms of the

gnitudes and the phases of the signal and noise at discrete frequency k as

(3.3)
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y(m) = Lk=ı akx(m - k) + L%=ı bkn(m - k) + v(m) (3.4)
' '

Speech model Noise model

whereYk = \Y(k)\ and 9yk =~tan-1 {Im [Y(k)) /Re [Y(k))} are the magnitude and phase

of the frequency spectrum, respectively. Note that the Fourier transform models the

orrelation of speech samples with sinusoidal basis functions. The DFT bins can then be

cessed individually or in groups of frequencies, taking into account the

.ychoacousticsof hearing.

3.2.1.3 Linear Prediction Mode\ Representation of Speech and

Noise
The correlation of speech (or noise) samples can be modelled with a linear

ediction (aka autoregressive) model. Using a linear prediction model of speech and

noise, the noisy speech is expressed as

where ak and bk are the coefficients of linear prediction models of speech and noise,

respectively. Linear prediction models can be used in a variety of speech enhancement

methods, including Wiener filters, Kalman filters and speech restoration via

decomposition and re-synthesis.

3.2.1.4 Interframe and Intraframe Correlations

The two main issues in modelling noisy speech are:
(1) modelling and utilization of the probability distributions and the intraframe

correlations of speech and noise samples within each noisy speech frame;

(2) modelling and utilization of the probability distributions and the interframe

correlations of speech and noise features across successive frames of noisy

speech.
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The implementation of a noise-reduction method such as the Wiener filter,

Kalman filter, spectral subtraction or a Bayesian estimation method requires estimates

of the statistics (and in particular the power spectra or equivalently the correlation

matrices) of the speech and noise. An estimate of the noise statistics can be obtained

from speech-inactive periods; however, for best results the speech and noise statistics

are obtained from a network of probability models of speech and noise, and this

3.2.1.6 Probability Models of Speech and Noise

speech-enhancement systems are based on estimates of the short-time amplitude

trum or the linear predi,tion model of speech. The phase distortion of speech is

red. In the case of DFT-based features, each spectral sample, X(k), at a discrete

ency k is the correlation of speech samples, x(m), with a sinusoidal basis function

2
;;-kmlNl . The intraframe spectral correlation, that is the correlation of spectral

ples within a frame of speech, is ofren ignored, as is the inter-frame temporal

lation of spectral samples across successive speech frames.
In the case of linear prediction models, the poles model the spectral correlations

.ithin each frame. However, the denoising of linear prediction model poles, or

ffıcients, is achieved through denoising the frequency response of clean speech and

.t ignores the correlation of spectral samples. The optimal utilization of the interframe

d intraframecorrelations of speech samples is a continuing research issue.

At the heart of a speech-enhancement system is the speech-estimation module.

For speech enhancement, usually the spectral amplitude, or a linear prediction model, of

speech is estimated and this estimate is subsequently used to reconstruct speech

samples. A variety of methods have been proposed for the estimation of clean speech,

including the Wiener filter, spectral subtraction, Kalman filters, the minimum mean

squared error and the maximum a posteriori method. For proper functioning of the

speech estimation module, knowledge of the statistics of speech and noise is required

and this can be estimated from the noisy speech or it can be obtained from pre-trained

models of speech and noise.

3.2.1.5 Speech Estimation Module
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(3.7)

ıially implies that in an optimal speech processing system speech recognition and

h enhancement would need to be integrated. The most commonly used probability

els for speech are hidden Markov models. Hidden Markov models, or alternatively

sian mixture models, can also be used for modelling nonstationary noise. To model

erent types of noise, a number ofHMMs need to be trained, one HMM for each type

- noise. Alternatively, one can use a GMM of noise with a large number of

mponents, with each component effectively modelling a different type of noise.

3.2.2 Wiener Filter for De-Noising Speech
The Wiener filter theory, introduced in Chapter 6, forms the foundation of

speech de-noising systems. The output of a Wiener filter is given by

x(m) = Z:f=o w(i)y(m - i)
(3.5)

where w(k) is the filter coefficient for de-noising the input speech y(m) and x(m)

is the estimate of clean speech x(m).

R -1w = yyrxy
(3.6)

where Ryy is the autocorrelation matrix of the noisy speech signal, y, and rvx is the cross

correlation vector of the clean speech, x, and noisy speech, y.
For uncorrelated speech and noise, the Wiener filter Equation (3.6) can be written as

where Rxx and Rnn are the autocorrelation matrices of the speech and noise,

respectively, and rX,v. is the autocorrelation vector of the speech. In the frequency

domain, for additive noise uncorrelated with speech, the Wiener filter equation

Pxx(k)
W(k) = PxxCk)+PNN(k)

(3.8)
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e W(k) is the frequency response of the Wiener filter, Pxx(k) and PNN(k) are the

rwer spectra of speech and noise, respective\ y, and k is the discrete frequency variable.

igure 3.3 outlines. a block diagram implementation of a frequency domain Wiener

r.

.. oisy speech®--______,_\- ---~ı \Viene.r filter

Speech and: noise
power specm.nn

estiu:ıation
L-----------'pNN(f)

Figure 3.3 Block diagram overview of implementation of a Wiener filter for a speech­

enhancement system.

By dividing the numerator and the denominator of Equation (3.8) by PNN(k), the

Wiener filter can be expressed in terms of the signal-to-noise ratio as

SNR(k)
W(k) == SNR(k)+l

This equation reveals an important aspect of the general workings of the signal­

input noise reduction system: noise suppression methods effectively use afanction of the

estimates of the signal-to-noise ratios to modify the spectral amplitudes of the noisy

signal.

3.2.2.1 Wiener Filter Based on Linear Prediction Models

Wiener filters employing linear prediction models of speech and noise may be

used for speech enhancement. The frequency response of Wiener filter can be expressed

in terms of the ratio of power spectra of autoregressive (i.e. linear prediction) models of

speech and noise as
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W (f) = 1:J!x(fl = GVA~(f) = G} A}(fl
P-yy(f) Gf IA}(f) Gf A}(f)

e G,(f)/Aif) and G,(f)/A,(f) are the frequency responses of linear prediction

(3.10)

els of speech and noisy speech, respectively. In the time domain a square root

LOU of Wiener filter equation (3 .1 O) can be implemented as
~ ...

ıere a,(k) and a,(k) are the coefficients of autoregressive models of clean speech and

isy speech, respectively.

3.2.2.2 HMM-b~sed Wiener Filters
The key to the successful implementation of a Wiener filter is the accurate

,stimation of the power spe~tra of speech and noise, PxxCkl and PNN(k), for the
Ifrequency domain Wiener filter of Equation (3.8) or equivalently the estimation of the

correlation matrices of speech and noise, R,, and R""' for the time domain Wiener filter
of Equation (3.7). This is not a trivial task as speech and roost noise processes are

nonstationary.

V warbi clecoder

..-------"---- Enbancecl
speed'ı___,.-

Wiener filters
Noisy speech

SNR 
estitnatioıı

.Model co.ınbination

'Speech and noise
hidden Markov mode1s

Figu" 3.4 Block diagram illustration of a speech-enhancement system based on Wien« fılte<S

and hidden Markov models.

Given the noisy speech signal, the time-varying power spectra of speech and

noise may be estimated from a set of pre-trained hidden Markov models, or Gaussian
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,odels, of speech and noise using a Viterbi decoder (Figure 3.4). An HMM

d Wiener filter involves the following signal processing steps:

peech and noise decomposition - this invoIves the estimation of the most likely

orobination of speech and noise HMMs given the noisy speech signal. Using

Titerbi state decoders, the most likely combination of speech and noise states

-ield the pdfs of the spectra of the roost likely estimates of the clean speech and

Tne speech and noise power spectra from (1) are used to implement state-based

Wiener filters.

ıoıse

In HMM-based Wiener filtering, the choice of the speech features for training

; needs to be appropriate for both speech recognition and enhancement. Linear

tion-based cepstrum features provide a suitable choice as the cepstrum

cients obtained from HMM states can be mapped to the linear prediction model

cients and thereafter to the linear prediction model spectrum for use in the

mentation of the Wiener filter.
Assuming that for a noisy speech signal spectrum, Y(k), the Viterbi decoder

ns M different most likely state sequences, and that in each state the probability

ity function of the speech spectrum is represented by a mixture of L Gaussian pdfs,

Wiener filter is given by

- l M L 1X(k) == tf3=ı L.y=ı p({5, y)wf3,y(k) Y(k)
(3.12)

ere p(~,y) is the estimated probability of speech and noise spectra from mixture of

1M state~ and W~.v(K) is the state Wiener filter.
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Figure 3.5 Block diagram illustration of an FFT-based spectral subtraction system for de-noising

speech.

3.2.3 Spectral Subtraction of Noise
A simple and widely studied speech enhancement method is the spectral

ıction method (Figure 3 .5). In spectral subtraction an estimate of the average

itude spectrum of the noise is subtracted from the magnitude spectrum of noisy

h. The spectral subtraction filter can be expressed as the product of the noisy

.h spectrum, Y(k), and a spectral gain function, Wss(k)

X(k) = WssCk)Y(k)
(3.13)

re the frequency response of the spectral subtraction filter, Wss(k), is

WssCk) = fn r 1 - a(k)N(k)1l Y(k)
(3.14)

ere N(k) is an estimate of the noise average amplitude spectrum, a(k) is a frequency­

ıendent subtraction factor and the function fn(') is chosen to avoid negative values of

,s(k) and provide a smoother frequency response when the signal-to-noise ratio drops

relatively lower values. The form of the function fn(') can be chosen as

l a(k)N(k) .s,(k) = 1 - Y(k) ıf SNR(k) < SNRThcesh

y exp{-~[SNRrhresh - SNR(k))} else

(3.15)
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t(k) is an estimate of the signal-to-noise ratio at the discrete frequency k and

is a threshold SNR below which spectral subtraction switches to a form of

ıl attenuation, y is a parameter that provides continuity at the switching point

il attenuation control factor.
ıe problem with spectral subtraction is that it often distorts the speech and

the appearance of annoying short bursts of noise. The shortcomings of spectral

ın method can be summarized as follows:

['he only statistics used in spectral subtraction is the mean of the magnitude

;pecırum of the noise. Tue mean and variance of the clean speech and the

variance of the noise are not employed in the estimation process. Consequently

noise variations about the mean are not suppressed and this results in more

distortions than would be the case if the variance information were also used.

A hard decision needs to be employed to avoid the values of the estimates of the

magnitude spectrum after subtraction going negative or below a noise floor

value.
The spectral subtraction method is not speech-specific; the spectral trajectories

of speech across time are not modelled and used in the de-noising process.

3.2.4Speech Enhancement Via Linear Prediction Model

Reconstruction
Speech can be enhanced through a process of decomposition, de-noising and

reconstruction of the source-filter parameters of a linear prediction model of

ch. An LP model of speech, may be expressed as
X(z) == E(z)V(z) (3.16)

,re E(z) is the z-transform of the excitation signal and V(z) is the z-transfer function

a combined model of the vocal tract, glottal pulse and lip radiation; V(z) can be

ıressedby a cascade combination of a set of second-order resonators and a first-order

,del as
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V(z, m)
(3.17)

e <l>k(m) and rk(m) are the time-varying radii and the angular frequencies of the

: of the LP model, respectively, and G(m) is the overall gain of the LP model. In

ıtion (3 .17) the second-order sections model the resonance of speech spectrum and

irst-order section models the slope of the spectrum of speech.
Formants are the resonances of speech. The poles of the LP model are the

ıant candidates, the raw data from which formants and their models are estimated.

spectral resonance at a formant is characterized by a parameter vector comprising

frequency Fı., bandwidth Bk and magnitude of the resonance Mk and their temporal

,e of variation (velocity), as
(3 .18)

ere tı denotes the slope of the trajectory of a feature vector over time, e.g. !ıFk(t)

resenting the velocity of the k-th formant at frame tis obtained as

ııp ( ) = L~=ı m[Fk(t+m)-Fk(t+m)] k = ı M u k t '\;'N 2 I •••• ,

"'m=ı2m
(3.19)

uations (3 .17)-(3 .19) lead to the concept of formant-tracking LP models for speech

;toration. Format-synthesisers are well established in speech technology, many being

velopments of the Klatt synthesiser.
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Figure 3.6 Overview of the speech-enhancement system.

3.2.4.1 Formant-tracking Speech Restoration System

The formant-tracking speech restoration system, illustrated in Figure 3.6,

consists of the following sections:
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(1) an LP model analysis module for estimation of the LP model parameters and the

excitation parameters of noisy speech;

(2) a noise detection-estimation module for estimation of the time-varying

parameters of noise model;

(3) a speech pre-cleaning module based either on the spectral subtraction or on the

MMSE spectral amplitude estimation;

(4) a formant tracking method for tracking the formant parameters of pre-cleaned

speech across successive speech frames;

(5) an excitation model for estimating the excitation parameters and providing an

estimate of the cleaned excitation;

(6) speech enhancement via synthesis using an estimate of the LP model of speech

combined with excitation.

The input to the LP pole analysis is the noisy speech spectrum with the mean of

the LP spectrum of noise removed through spectral subtraction. An LP model is fitted to

the speech spectrum and the poles of the model are obtained through a polynomial

rooting function.
Figure 3.7 shows the reduction in formant tracking error from application of

different noise reduction methods. Figure 3.8 shows a comparative illustration of the LP

spectrograms of clean speech, noisy speech and speech restored with the spectral

subtraction method and the formant synthesis method.
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3.2.4.2 De-noising of Speech Excitation Signal ; . ).~c-cır; , .. ,.~ '

The noisy speech excitation can be modeled, Figure 3.9, as a comöi~}~n of the ,/

harmonic and the fricative noise content of the excitation and the residual~

noise remaining after the inverse LP filtering as

e(m) = 9h Lt=1[ak sin(2rrkF0(m)) + bk cos(2rrkF0(m))] + gnv(m) + n,(m) (3.20)

where F0(m) is the time-varying fundamental frequency of speech excitation, ak and bk

are the amplitude of each excitation harmonic, v(m) is the noise-like excitation, gh and

gn are the mixture weights and nr(m) is the background noise after inverse LP filtering.

Periodic excitation
:rı{ml

Random excitation

Figure 3.9 A harmonic plus noise model of speech excitation observed in background noise.

3.3 Speech Distortion Measurements
The most commonly used measure for quality of speech is signal-to-noise ratio.

An average SNR measure is defined as

SNR = lOlogıo (?Signal) dB
PNoise

(3.21)

where Xk(m) and Xm(m) are the clean signal and restored signal at frame m, N is

the total number of frames and K is the number of samples in each frame. The

segmental SNR of speech signals can fluctuate widely, as illustrated in Figure 3.1 O,

which shows the variation of segmental SNR at average SNRs of O, 5 and 1 O dB.
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Figure 3.10 Illustration of beam-forming. The array of filters can be adjusted to change the
'looking' direction of the beam.

The signal-to-noise ratio is not the best measure of speech quality as it does not

nto account the structure of the speech or the psychoacoustics of hearing. The

a-Saito distance (ISD) measure,is defined as

ISD = ~ Lıy- [aı(j)-az(j)]RıU)[aı(j)-az(j)f
12 N J-1 aı(j)Rı(j)aı(j)T

(3.22)

: a1G) and a2G) are the linear predication model coefficient vector calculated from

and transformed speech at frame j and RlG) is an autocorrelation matrix derived

the clean speech. Owing to the asymmetry of the ISD measure (i.e. ISD2ı#SD12),

ıllowing segmental ISD measure is used:

ISDsym= (ISD12+ISD2ı)/2 (3.23)
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The ISD criterion is a more balanced measure of the distance between an original clean

speech signal and a distorted speech signal as speech frames with relatively large SNRs

o not dominate the overall distance measure to the same extent as in the more

onventional SNR measures of Equations (3.21)-(3.22).
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CHAPTER THREE

BUILDING THE USER INTERFACE

4.1 Introduction
The graphical user interface, or the GUI used in this project was done using

Matlab. It is a simple program that shows how a crude working of a filter. As we know

what a low-pass, high-pass or band-pass filter does is remove frequencies of certain

values. This of course differs according to each filter. In this chapter we will see how a

simple GUI is built.

4.1.1 What Is a GUI?
A graphical user interface (GUI) is a graphical display that contains devices, or

components, that enable a user to perform interactive tasks. To perform these tasks, the

user of the GUI does not have to create a script or type commands at the command line.

Often, the user does not have to know the details of the task at hand.

The GUI components can be menus, toolbars, push buttons, radio buttons, list boxes,

and sliders-just to name a few. In MATLAB® software, a GUI can also display data

in tabular form or as plots, and can group related components. The following figure

illustrates a simple GUI.
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The GUI contains

• An axes component
• A pop-up menu listing three data sets that correspond to MATLAB functions: peaks,

membrane, and sine
• A static text component to label the pop-up menu
• Three buttons that provide different kinds of plots: 'surface,mesh, and contour

When you click a push button, the axes component displays the selected data set using

the specified plot.

4.1.2 How Does a GUI Work?
Each component, and the GUI itself, is associated with one or more user-written

routines known as callbacks. The execution of each callback is triggered by a particular

user action such as a button push, mouse click, selection of a menu item, or the cursor

passing over a component. You, as the creator of the GUI, provide these callbacks.
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In the GUI described in this' project, the user loads a sound file of .wav format,

then adds noise to it and filters it. Clicking the button triggers the execution of a

callback that plots the selected data in the axes.
This kind of programming is often referred to as event-driven programming. The

event in the example is a button click. In event-driven programming, callback execution

is asynchronous, controlled by events external to the software. In the case of

MATLAB® GUis, these events usually take the form of user interactions with the GUI.

The writer of a callback has no control over the sequence of events that leads

to its execution or, when the callback does execute, what other callbacks might

be running simultaneously.

4.1.3 Where Do I Start?
First you have to design your GUI. You have to decide what you want it to do, how you

want the user to interact with it, and what components you need. Next, you must decide

what technique you want to use to create your GUI. MATLAB® software enables you

to create GUis programmatically or with GUIDE, an interactive GUI builder. It also

provides functions that simplify the creation of standard dialog boxes. The technique

you choose depends on your experience, your preferences, and the kind of GUI you

want to create.
This table outlines some possibilities.
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GUI Tedınique____ __.__.__,_ -· -··'--"
MATLAB software provides a
selection of standard dialog boxes
that you can create with a single
function call. For links to these
runctions, see "Predefined Dialog
Boxes" in the MATL..ı\.B Function
Reference documentation.

Dialog box

GUI containing just a few
components

It is ciften simpler to create Gl.Ils
that contain only a few components
prograınmatica11y. Each component
can be fully defined with a single
function call.

Moderately eomplexGl.Il GUIDE simplifies the creation of
such GUis.

Complex GUis with many
components, and GUis that
require inte:ractimı with other Gills

Creating such GUis
pı-ogremmaticelly lets you control
exact placement of the components
and prevides reproducibility.

4.2 Building the GUI

When we open Matlab at the toolbar we see a GUIDE button as you see on

figure 4.1.

Figure 4.1

Clicking on it will open a window asking us if we want to create a new GUI or

edit an existing one. We will open a new Default Blank GUI. This will open a window

like that in Figure 4.2.
This is a blank GUI with no buttons or pop-menus. This is where we will input

our various functions to our user interface (push buttons, slider etc.). As you see on the

left side you see various things that can be added to the GUI.
,
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Figure 4.2

Let us try clicking in the Axes button and creating a couple of axe to our GUI. These

axes will show us the different kinds of sound waves that we wish to see during our

audio processing/speech enhancement. We can make the axes as big as we wish

(according to the GUI window), but since we need three for this project let us try to

keep them reasonable. If you see that the axes created are not aligned we can do so by

choosing Align Objects from the Tools menu as seen in Figure 4.3. Once we have set

and aligned our axes, we should get started on setting the push buttons that will work

the different functions of our GUI.

61



•

D ıa::;liil I ı ~~ ıQ ,.,. ı ıt ~~~I ınt ~·:Ir--
1 ~ Select ,j ı I . I I '
llill Pu_sh Button . I I : I I
1;:ı~::~Button -1~-
13 Check Box I ı , I I
iiölq:ditText I ı. I I. . , I

Distribute

OFF ooc B8B oDe
c::,_t •o-t1 0-l o_t
c::ı- p-·, o- o_

Align

!"'.JStaticText ı ı~. axes2 .... 1
EIPop-up·Menu l ~-
~ Listbox l__ _j_l..::::::;~, ::..---.-· --·· -·;,-·-·--r, ""'

Horlzontat

Dıstribute

,OFF I~ § ~l
D D DD DD DD,.., ,..., ,... , ,•...,

Align

Apply . ] [ Cance!

!Current Point: f254, 4201 iPosition:'f68, 113, 201, 511

Figure 4.3

Next task in the building of our GUI is to add the push-buttons. Select the Push

Button push from the component palette at the left of the Layout Editor and drag it into

the layout area. Position them as shown in Figure 4.5. Use the Align Object tool from

the menu if necessary.
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Once we have added our axes and the push buttons, we will add our pop-up menus. We

do so by selecting pop-up menu and placing them in the layout area. Once we have

placed them we should not forget that for the end user the pop-up menu should be

explained as to what it is for. We just simply add some text on top of them by selecting

static text and placing them on top of each menu respectively. Our GUI should look as

in Figure 4.6.
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Figure 4.6

After we have placed all of our axes, push buttons and pop-up menus we are left with

the task of naming them. To do this, select a push button. Then right click on it. A menu

will appear. Select property inspector. A window will pop up as in Figure 4.7.
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FontWeight
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HandleVisibility

HitTest

HorizontalAlignment

Interruptible

KeyPressFcn

ListboxTop

Max

points

normal
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As shown in the highlighted area String, we will change the name of our button

'pushbuttorıl ' to 'Load' as its function will be to load a sound of format .wav into our

GUI program. Similarly we will change:

on

on

center

on

Min

1.0

1.0

o.o
[69.8 26.308 15.2 2.077]

The pop-up menus each provide a choice of three data sets. Menul: High Noise,

Medium Noise, Low Noise. These correspond to the different forms of noise we will

add to our input signal. Menu2: High Pass, Low Pass, Band Pass. These data sets

!±J Position

SelectionHighlight

1B SliderStep

on

[O.Ol 0.1]

~I WUii:fflfflM
pushbutton

pushbutton 1

Style

Tag

TooltipString

UIContextMenu <None>

Units characters

Figure 4.7

• Pushbutton2 to Play

• Pushbutton3 to Add Noise

• Pushbutton4 to Play Noise

• Pushbutton5 to Filter

• Pushbutton6 to Play Filtered
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Irrespond to forms of filtering we will perform on our noisy signal. This shows you

w to list those data sets as choices in the pop-menu.

1 In the layout area, select the pop-up menu by clicking it.

In the Property Inspector, click the button next to String. The String dialog box

displays (as in Figure 4.8)

Figure 4.8

3 Replace the existing text with the names of the three data sets: High Noise, Low Noise

and Medium Noise. Press Enter to move to the next line.
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4 When you are done, click OK The first item in your list, High Noise, appears in the

pop-up menu in the layout area.
Static Text

!

iHigh Noise f~ll\
·~ .'<;. ~-

Similarly pop-up menu2 is done.

To edit the static text:
1 In the layout area, select the static text by clicking it.
2 In the Property Inspector, click the button next to String. In the String dialog box that

displays, replace the existing text with the phrase Noise Level
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Stııng

rırrn om~· r Static Text

text

1og ·string 13.. ~,,,I
A,;;f,

1ooltipString

3 Click OK. The phrase Select Data appears in the static text component above the pop-

up menu.
Iı:•-
1~-I-~ I

Noise Level
i i
lHigh Noise

Similarly we will perform the same tasks to our static text2.

4.3 Completed Layout
In the Layout Editor, your GUI now looks like Figure 4.9. This and the next step is

to save the layout.
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Figure 4.9

Next all we have to do is to edit them-file and assign a callback for each button, axes

and pop-up menu.
Them-file for this project's user interface is given in the appendix section.
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APPENDIX

Matlab Code for
Speech enhancement GUI

function varargout projl(varargin)

PRüJl M-file for .ı, .• :ıo

PRC),~_L, itself, creates a new PROJl or raises the existing

sıng eten*

H PROJl returns the handle to a rıew T"\D,~, ""r'ôt·r...uv .ı or the handle to

the ezisting singleton*.

% PFZOJJ ( 'CAJ..ıLıB.ACK 1
,

ect,eventData,handles, call.s the oca~

function named CALLBACK in PROJl.M with the ven input

argurrtent.s.

exist.:_nc: s eton ·I-" Start. f r orrı the eft, p rop e r t y value

ıea to the GUI before projl OpeningFcn gets called. An

~ unrecognized property name or invalid value makes property

application
stop. All incuts are passed to projl OpeningFcn via varargin.

ions on GUIDE's Tools menu. Choose "GUI allows

orılv ene
~ instance co run (singleton)

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to he projl

'6 Last Modif .i ed bv'} GUIDE v2.5 25-May-2008

·'6 initialization code - DO NOT EDI

gui Singleton= l;

gui State struct (' Name 1 mfilename,

Singletor:', guı Singleton,
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'gui_OpeningFcn', @projl_OpeningFcn,

'gui_OutputFcn', @projl OutputFcn,
'gui you t Fen ' , [ J

[ J ) ;r qu.i 1back',
if nargin && ischar(varargin{l})

gui State.qui Callback= str2func(varargin{l});
end 

if nargout

[varargout{l:nargout}J
guı_mainfcn(gui State, varargin{:});else

end
gui_mainfcn(gui State, varargin{:});

End initıalization code - DO NOT EDIT

t --- Executes just before
l is maae visible.

function projl_OpeningFcn(hObject, eventdata, handles, varargin)

This function has no output args, see OucputFcn.
hObj ec:t handle tc figure

s eventdata reserved - to be defined in a future version of MATLAB
hand1E:s

structure with handles and user data (see GOIDATA)
var a rq J_ n

command line arguments to projl (see VARARGIN)

~ Choc>s,c., default command line output for pr o j 1
axes(handles.axesl); ela;

axes(handles.axes2); ela;

axes(handles.axes3); ela;

handles.a=O;

handles.x2=0;

handles.selectednoise=l;

handles.selectedfilter=l;

handles.fileLoaded = O;

handles.fileNoisy = O;

handles.fileFinal = O;

handles.output= hübject;
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Update handles st~ucture

guidata(hObject, handles);

UIWI\.IT ma k e s wait for user response (see UIRESUME)

uiwait(handles.figurel);

5;,; --- Outputs from this function are returned t o the command line.

function varargout = projl_OutputFcn(hObject, eventdata, handles)

varargout cell array for returning ou
a r qs (see \TP.. RARGOUT);

r(. hObj ect nancı'-e to f
% eventdata reserved - to be defined ın a future version of MATLAB

structure w i t.h handles arıd user data (see GUID.l~,_TA)

" Get default command line output from handles sı::ructure

varargout{l} = handles.output;

--- Executes on button press in

function pushbuttonl Callback(hübject, eventdata, handles)

ect handle co pushbuttonl (see GCBOl

eventdata reserved - to be defined in a future versıon of MATLAB

handles sı::ructure with handles and user data ısee GUIDATA)

[FileName,PathName] = uigetfile({ '*.wav'},'Load Wav File');

[x,Fs] = wavread([PathName '/' FileName]);

handles.x = x ./ max(abs(x));

handles.Fs = Fs;

axes(handles.axesl);

time= 0:1/Fs: (length(handles.x)-1)/Fs;

handles.time= time;

plot(handles.time, handles.x);

xlabel ( 'time (s) ')

axis([O max(time) -1 1]);

handles.fileLoaded = l;

handles.fileNoisy = O;

handles.fileFinal = O;

guidata(hObject, handles);
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--- Ezecutes on button press ın pushbutton2.

function pushbutton2 Callback(hübject, eventdata, handles)

hOtıj ec:t narıcile to tton: (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

h handles 
structure with handles and user data (see GUIDATA)

if (handles.fileLoaded==l)

sound(handles.x, handles.Fs);

end

ı --- Ezecutes on se ection chance in

function popuprnenulCallback(hübject, eventdata, handles)

5 hObject handle to popuprnenul (see GCB0)

S eventdata reserved - r o be defined in a future ver.sion cf MAT:;.,AB

% harıd ıe s
.structurewith handles and user data (see GUIDATA)

Eint~:;: corıt.en t s
l'

J returns cont.erıt c.~ 

as ce 1 ar.ray 
c:ontents{gst(hObject, 'Value')} returns selected .i t em r r orn

popuprne nu l
S = get(hübject, 'Value');

switch (S)

case (1)

handles.selectednoise=l;

case (2)

handles.selectednoise=2;

case(3)

handles.selectednoise=3;

end

guidata(hübject, handles);

Q --- Ezecutes during
ect creation, after setting all properties.

function popuprnenulCreateFcn(hObject, eventdata, handles)

hObject handle to ( see GCB0)

evı:;ntdata resec:ed - to be definsd in a future ver.sicrı o f MATL}1.B
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handles empty - handles not created until after all CreateFcns 

called 

Hint: popupmenu controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc && isequal (get (hübject, 'Ba

get (O, 'defaultUicont:::c)1B2,c

roundColor'), 

or' ) )

set(hübject, 'Ba rcu:1dCo.l..0r', 1 whi te ı)

end 

-'6 --_- Executes on button press in pushbutton3.

function pushbutton3 Callback(hübject, eventdata, handles)

r eventdata reserved - to be defined in a future version of MATLAB
hübject handle to pushbutton3 (see GCBO)

handles structure with handles and user daca (see GUIDATA)

if handles.fileLoaded==l

d = (length(handles.x)-1)/handles.Fs;

done=O;

switch (handles.selectednoise)

case (1)

1:hiah. noise
noise=sqrt(O.l)*randn(l, length(handles.x));

done=l;

case (2)

:i;ın.ediu:rn noise.
noise=sqrt(O.Ol)*randn(l, length(handles.x));

done=l;

case (3)

%.l.ow noise 

noise=sqrt(O.Oül)*randn(l, length(handles.x));

done=l;

end

if (done==l)

handles.fileNoisy = l;

handles.x2 = handles.x +noise.';
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axes(handles.axes2);

time= 0:1/handles.Fs: (length(handles.x2)-1)/handles.Fs;

plot (time, handles.x2);

xlabel('tirne (s)')

end

end 

guidata(hübject, handles);

--- Executes on button press in pushbutton4.

function pushbutton4 Callback(hübject, eventdata, handles)

9,,_ hObl ect handle to pushbutton3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

1: handles structure with handles and user data (see GUIDATA)

--- Executes on s eı.e ct i.orı charıqe Lrı popupınenu.: .

function popupmenu2 Callback(hübject, eventdata, handles)

hObject. handle to popupmenu: (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

structure with handles and user data (see GUIDATA)

Hints: contents get(hObject, 'String') returns popupmenu2 contents

as cell array 

contents{get(hObject, 'Value')} returns selected item from

popupmenu2 

v = get (hübject,'Value');

switch (v)

case (1)

handles.selectedfilter=l;

case (2)

handles.selectedfilter=2;

case(3)

handles.selectedfilter=3;

erıa.

guidata(hübject, handles);
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ı --- Ezecutes durina
ect creation, after setting all properties.

function popupmenu2 CreateFcn(hObject, eventdata, handles)

hObject handle r c (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

z~ handles
- handles not created until after all CreateFcns

ca led 

Hin 
controls usually have a whıte background on Windows.

See ISPC and COMPUTER.

if ispc && isequal(get(hübject, 'Sac lor'),

get(O, 'defaultOicontrolBackgroundColor'))

set (hübject, 'BackgroundC:olor', 'white');

end

--- Executes on button press in

function pushbutton6 Callback(hübject, eventdata, handles)

c- hObj ec:t.~ h and l.e to

event.data res1c:rved - t o b,~ defined in a future version of MATLAB

structure with handles and user data (see GUIDATA)

Done=O;

filter=O;

if (handles.fileNoisy==l)

switch (handles.selectedfilter)

case ( 1) HlGHPAS~;
filter= ones(l, length(handles.time)) ;initia izaiton by

filter(l, 1 : (4000*length(handles.time)/handles.Fs)) = O;

filter(l, length(handles.time) -

(4000*length(handles.time)/handles.Fs)
length(handles.time)) o;

Done=l;

case (2) LOVJPASS

filter= zeros(l, length(handles.time));

filter(l, 1 : (2000*length(handles.time)/handles.Fs)) = l;

filter(l, length(handles.time) -

(2000*length(handles.time)/handles.Fs)
length(handles.time)) l;bsr 
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Done=l;

case ( 3) )~Bl-\NDPASS

filter= zeros(l, length(handles.time));

filter(l,

(2000*length(handles.time)/handles.Fs):(4000*length(handles.time)/hand

les.Fs)) = 1;

filter(l, (length(handles.time) -

(4000*length(handles.time)/handles.Fs)): (length(handles.time) -

(2000*length(handles.time)/handles.Fs))) = 1;

Done=l;

end

end

a= fft(handles.x2);

a= a.* filter.';

a = ifft (a);

a= real(a);

handles.a=a;

Done=l;

FFT

filte 

if (Done==l)

handles.fileFinal=l;

axes(handles.axes3);

time= 0:1/handles.Fs: (length(handles.a)-1)/handles.Fs;

(tims, handles.a);

%specgram(handles.a)

x = linspace(O, handles.Fs/2, length(handles.time)/2);

t = fft(handles.a);

t = t . * conj ( t) ;

size(x)

size (t ( 1: ( length (handles.time)/2)) . /max (t))

semilogy (x', t ( 1: ( length (handles.time)/2)) . /max(t));

xlabel ( 'Frequency Hz . ) ')

title('Sp~ctrum of Filtersd Sound')

end

guidata(hObject, handles);
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--- Ezecutes on button press in pushbutton5.

function pushbuttons Callback(hübject, eventdata, handles)

hObj ec:"':~ handlE· to r orı S ( see GCBO)

evencdata reserved - to be defined in a future version of MATLAB

hancJles
structure with handles and user data (see GOIDATA)

if (handles.fileFinal==l)

sound(handles.a, handles.Fs);

end

--- Executes on bucton press in pushbuttons.

function pushbuttons Callback(hübject, eventdata, handles)

ecL handle LO oushbuttonB (see GCBO)

eventdata reserved - co be defined in a future version of MATLAB

'r121:dl'""'·-'
structure with handles and user daca (see GUIDATA)

if (handles.fileLoaded==l)

sound(handles.x2, handles.Fs);

end
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