
NEAR -EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Customer Registration Program by Using Delphi

Graduation Project

COM 400

Student: Turgay BALTEPE
••

Supervisor: Umit SOYER

Nicosia - 2008

ACKNOWLEDGEMENT

First of all, I would like give my special thanks to my supervisor Umit SOYER. He

· lped and supported me to complete myproject by any means of necessary. In addition

ıo this he never doubted about me, he always believed in me that I will fulfill and

succeed on myproject. I am glad to that I did not disappoint him.

Tf!RGAY BALTEPE

-:,.

ABSTRACT

The aim of this program is registering the customers of a hostel and when the residing

ends , making a registry out for the customer ,calculating the total price and displaying

them as active or inactive.As a programming language Delphi was used and as a

taoase Access was used.

chosed Delphi as programming language because Delphi speeds Win32 development

· y combining Delphi's proven visual Rapid Application Development approach for

accelerated Win32 development with support for Windows Vista, AJAX, and

streamlined database connectivity. In the real world, developers need to be able to

develop applications that run on multiple platforms, not just the latest and greatest. Most

new machines come with Windows Vista, while existing machines will continue

running Windows 2000 or XP. Developers must support this mixed-use environment,

because they can't count on their organization or customers upgrading en masse. They

have to meet the demand for critical new technologies and trends in marketplace by

including support for these technologies in their applications, but they want to retain the

flexibility of developing on the platform that is most productive for them. Access

database is one of the the world's most popular database because of its consistent fast

performance, high reliability and ease of use. In Microsoft Access 2003, you can view

information on dependencies between database objects. Viewing a list of objects that

use a specific object helps maintain a database over time and avoid errors related to

missing record sources. For example, the Quarterly Orders query in the Sales database

is no longer needed, but before deleting it, you might want to find out which other

objects in the database use the query. Then, you could either change the record source

of the dependent objects, or delete them, before deleting the Quarterly Orders query.

Viewing a complete list of dependent objects helps you save time and minimize

errors.In addition to viewing the list of objects that are bound to a selected object, you

can also view the objects that are being used by the selected object.Macros, modules,

and data access pages are not searched for dependencies. Access projects do not support

this feature.

11

Table of Contents
ACKNOWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENTS III
INTRODUCTION 1

CHAPTER ONE : BASIC CONCEPT OF DELPHI

1. 1 Introduction to Delphi 2
1 .2 What is Delphi? 2
1 .2. 1 Delphi Compliers 2
1.2.2 What kind of programming can you do with Delphi? 3
1 .2.3 History of Delphi 4
1.2.4 Advantages & Disadvantages Delphi 6
1.3 Delphi 6 Editions 7
1.3.1 Delphi 6 Architect. ?
1 .3 .2 Installation Delphi 6 8
1 .4 A Tour of the Environment.. , 1 O

'1 .4. 1 Running Delphi for the First Time 1 O
1 .4.2 The Delphi IDE 11
1.4.3 The Menus & Toolbar 12
1 .4.4 The Component Palette , 12
1 .4.5 The Code Editor 13
1 .4.6 The Object Inspector 14
1.4.7 The Object TreeView 15
1 .4.8 Class Completion 16
1 .4.9 Debugging applications 17
1 .4. 1 O Exploring Databases 18
1.4.11 Templates and the Object Repository 19
1.5 Programming with Delphi 20
1.5.1 Starting a New Application ; 20
1.5.2 Setting Property Values - 21
1.5.3 Adding objects to the form 22
1 .5.4 Add a Table and a StatusBar to the Form 22
1.5.5 Connecting to a Database , l'ı ••.••.••.••••.••.••.••••• 24

CHAPTER TWO : THE RAVE REPORTING

2.1 Project Tree 28
-·2 Design Tools 29
_.3 Reuse and Maintenance Tools 32
_.4 Standard Components 34
_.5 Drawing Components 35
-·6 Reporting Components 35

Barcode Components 39
-·8 Anchors 39
_.9 Code Based Reports 40

lll

2.9.1 Simple Code Base Report .40
2.9.2 Tabular Code Based Report .41
2.9.3 Graphical Code Based Report .43
2. 1 O Visually Designed Reports 45
2.10.1 The Visual Designer .45
2.10.2 Interacting with the Project.. .48
2.11 Data Aware Reports 55
2.11 .1 The Database Connection 55
2.11.2 The Driver Data View 55
2.11.3
2.11.4
2.11.5

Regions and Bands 58
Adding Fields : 59
Adding the Report to Your Project.. 60

CHAPTER THREE : USER MANUAL

3.1 Enter Form 61
3.2 Main Form 62
3.3 HoneyHill Hostel Form 63

3.3.1 Customer Registration Page.. : 64
3.3.2 Customer Registration Out Page ,. 65
3.3.3 Search Page 66
3.3.4 Registries General Status 67
3.3.5 Rooms General Status 68

CONCLUSION 69

REFERENCES 70
APPENDIX 71

ıv

INTRODUCTION

Honeyhill Hostel Automation Software designed as simple as possible. There is no

animations that drains CPU and reduces system performance.User can open another

program without closing the program.It uses three tables in the database which are

related eachother.

The user basically register the customers who will stayed in the hostel and by

making this program shows them as active when a necessary search is done.If a

customer wants to leave, the user make them out and by making this program·shows

it inactive when a necessary search is done.

••

1

CHAPTER 1

1 BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums I

thought it was time to write a good introductory article for Delphi

1.2 What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the tools

you need to develop test and deploy Windows applications, including a large number of

so-called reusable components.

Borland Delphi provides a .cross platform solution when used with Borland Kylix -

Borland's RAD tool for the Linux platform.

1.2.1 Delphi Compliers

There are two types complier for Delphi

2

• Turbo Delphi: Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own Visual Component Framework.

• Turbo Delphi for .NET: Free industrial strength Delphi application development

environment and compiler for the Microsoft .NET platform.

1.2.2 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters cir fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere hasl)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications
~

• Image processing/Image recognition

• Data analysis ••.
• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

3

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3 History of Delphi

Delphi was one of the first of what came to be known as "RAD" tools, for Rapid

Application Development, when released in 1995 for the 16-bit Windows 3. 1. Delphi 2,

released a year later, supported 32-bit Windows environments, and a C++ variant, C++

Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was Anders

Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on Visual

J++ and subsequently became the chief designer of C Sharp programming language C#

and a key participant in the creation of the Microsoft .NET Framework.

••In 2001 a Linux version known as Kylix programming tool Kylix became available.

However, due to low quality and subsequent lack of interest, Kylix was abandoned after
•

version 3.

Support for Linux and Windows cross platform development (through Kylix and the

CLX component library) was added in 2002 with the release of Delphi 6.

Delphi 8, released December 2003, was a .NET -only release that allowed developers to

compile Delphi Object Pascal code into .NET Microsoft Intermediate Language MSIL.

It was also significant in that it changed its IDE for the first time, from the multiple-

4

floating-window-on-desktop style IDE to a look and feel similar to Microsoft's Visual

Studio.NET.

Although Borland fulfilled one of the biggest requests from developers (.NET support),

it was criticized both for making it available too late, when a lot of former Delphi

developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 also lacked

significant high-level features of the c sharp, C# language, as well as many of the more

appealing features of Microsoft's Visual Studio IDE. (There were also concerns about

the future of Delphi Win32 development. Because Delphi 8 did not support Win32,

Delphi 7. 1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET development

in a single IDE, reiterating Borland's commitment to Win32 developers. Delphi 2005

includes design-time manipulation of live data from a database. It also includes an

improved IDE and added a "for ... in" statement (like C#'s for each) to the language.

However, it was criticized by some for its bugs; both Delphi 8 and Delphi 2005 had

stability problems when shipped, which were only partially resolved in service packs.

In late 2005, Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable than

Delphi 8 or Delphi 2005 when shipped, and improved even more after the service packs

and several hot fixes.

On February 8, 2006, Borland announced that it was looking for a buyer for its IDE and
•

database line of products, which include Delphi, to concentrate on its Application

Lifecycle Management ALM line. The news met with voluble optimism from the

remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of the not yet

spun off company) of Borland Software Corporation released single language versions

of Borland Developer Studio, bringing back the popular "Turbo" moniker. The Turbo

product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo C++, and

5

Turbo C#. Each version is available in two editions: "Explorer" a free downloadable

version and "Professional" a relatively cheap (US$399) version which opens access to

thousands of third-party components. Unlike earlier "Personal" editions of Delphi, new

"Explorer" editions can be used for commercial development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

1.2.4 Advantages & Disadvantages Delphi

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low­

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL

versioning issues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source comgatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily•
enabling dual-platform development and deployment

• Cross FBC - a sister project to Cross Kylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programming polymorphism

6

Disadvantages:

• Limited cross-platform capability for Delphi itself. Compatibles provide more
architecture/OS combinations

• Access to platform and third party libraries require header files to be translated

to Pascal. This creates delays and introduces the possibilities of errors in
translation.

• There are fewer published books on Delphi than on other popular programming
languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonally and predictability have suffered

1.3 Delphi 6 Editions

There are 3 editions in Delphi 6:

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows
development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily
integrate Web Services into client-side applications.

• Delphi Enterprise - inçludes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a
snap.

This Program will concentrate on the Enterprise edition.
••

1.3.1 Delphi 6 Architect

Delphi 6 Architect is designed for professional enterprise developers who need to adapt

quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

7

facing Web applications with executable state diagrams, object-relational mapping, and

transparent persistence.

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and includes

the complete ECO III framework, including new support for ECO State Machines

powered by State Chart visual diagrams, and simultaneous persistence to multiple and

mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2 Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install; you only have one choice "Delphi 6":

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key
(the two you got from inside a CdRom driver).

8

~la:IJiı,•tWJ~'M,;,jjl·İı'.«'·
~r..v,,:i,,

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen will popup:

'ı_:".,;..!!;!:F na
--k'!ı- ••.......,~~

Figure 1.3 License Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

Figure 1.4 SetUp Type and Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu in the

Programs section of the Start menu, leading to the main Delphi 6 Enterprise program

plus some additional tools.

9

I
I;; Borland Delphi 13 ~

Figure 1.5 Start Menu

1.4 A Tour of the Environment

This chapter explains how to start Delphi and gives you a quick tour of the main parts

and tools of the Integrated Development Environment (IDE)

1.4.1 Running Delphi for the First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) is a

folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

Borland Delphi.ô •

Help Image Editor Register Now

Figure 1.6 Borland Delphi 6 Folder

10

1.4.2 The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs I Borland

Delphi 6 I Delphi 6 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on your

hardware performance) you are presented with the IDE: the user interface where you

can design, compile and debug your Delphi projects.

Figure 1.7 IDE

Like most other development tools (and unlike other Windows applications), Delphi
••IDE comprises a number of separate windows.

•
Some of the facilities that are included in the "Integrated Development Environment"

(IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimizing compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

11

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.4.3 ~,,, The Menus & Toolbar

The main window, positioned on the top of the screen, contains the main menu, toolbar

and Component palette.

title bar ,,,,.. menu bat·

speed bar ."component palette

Figure 1.8 Menu, Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll see in

some of the future chapters what exactly is a Delphi project). The menu bar includes a

dozen drop-down menus - we'll explain many of the options in these menus later

through this course. The toolbar provides a number of shortcuts to most frequently used

operations and commands - such as running a project, or adding a new form to a project.

To find out what particular button does, point your mouse "over" the button and wait for

the tool tip. As you can see from the tool tip (for example, point to [Toggle Form/Unit]),

many tool buttons have keyboard shortcuts ([F12]).

The menus and toolbars are freely customizable. I suggest you to leave the default

arrangement while working through the chapters of this course.

1.4.4 The Component Palette

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components). Components are the building blocks.of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

12

click to see \ı'ı/in32 controls

click the arrow to see more controls on {page

Figure 1.9 Component Palates

Depending on the version of Delphi (assumed Delphi 6 Personal through this course),

you start with more than 85 components at your disposal - you can even add more

components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the function they

perform. Each page tab in the Component palette displays a group of icons representing

the components you can use to design your application interface. For example, the

Standard and Additional pages include controls such as an edit box, a button or a scroll

box.

To see all components on a particular page (for example on the Win32 page) you simply

click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side. "

••
1.4.5 The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Form1. This form can be renamed, resized

and moved, it has a caption and the three standard buttons which are minimize,

maximize and close. As you can see a Delphi form is a regular Windows window

13

;s~;'.jf

Di~l:0!3a,;

'V.f"a:n-'...1: cıa1u.ı f"JF'ı:tı:to'ı
jiı.l(ii.l'ılt.;ü

(Jf.t:.2 ;.•.1t:o: d~C.lca!~iltıat~ f
ıvui.ıu.o

I P..~lllsc d~ı.-:J-ı1r~¢.ı41·a-t:t ,ı
~:

!IBIS"

r-orm:ı ; TYcıCilll;

Figure 1.10Code Editor Window

If the Forml is the active window and you press [F12], the Code Editor window will be

placed on top. As you design user interface of your application, Delphi automatically

generates the underlying Object Pascal code. More lines will be added to this window as

you ,add your own code that drives your application. This window displays code for the

current form (Forml); the text is stored in a (so-called) unit - Unitl. You can open

multiple files in the Code Editor. Each file opens on a new page of the Code editor, and

each page is represented by a tab at the top of the window.

1.4.6 The Object Inspector

Each component and each form has a set of properties - such as color, size, position,

caption - that can be modified in the Delphi IDE or in your code, and a collection of

events - such as a mouse click, keypress, or component activation - for which you can

specify some additional behavior. The Object Inspector displays the properties and

events (note the two tabs) for the selected component and allows you to change the

property value or select the response to some event.

14

lSffli,i•MAffi
!I Forrn1 _ .
;~ Pr~p~ı~es t[çe~ı[lı, .. -

Figure 1.11 Object Inspector

For example, each form has a Caption (the text that appears on it's title bar). To change

the captions of Forml first activate the form by clicking on it. In the Object Inspector

find the property Caption (in the left column), note that it has the 'Forml' value (in the

right column). To change the captions of the form simply type the new text value, like

'My Form' (without the single quotes). When you press [Enter] the caption of the form

will change to My Form.

Note that some properties can be changed more simply, the position of the form on the

screen can be set by entering the value for the Left and Top properties - or the form can

be simply dragged to the desired location.

1.4.7 The Object TreeView

Above the Object Inspector you should see the Object TreeView window. For the
"'

moment its display is pretty simple. As you add components to the form, you'll see that

it displays a component's parent-child relationships in a tree diagram. One of the great••
features of the Object TreeView is the ability to drag and drop components in order to

change a component container without losing connections with other components.

15

HJ·~ Default {Session}
;.~ Edit1
:·~ Edit2

-iğ Edit3
, ...rg lmage1
L ·!3J I mage3
: ·W I rnage4
i · r;ı I rnage5
L ..~ lrnagelist1
l-4 lrnagelist2
! ..eJ Label1

i..ı ;.. ..!]j.,.;:,. Label2• /-·{;il Label3
!. ,~ I :.hol..1

Figure 1.12 Object Tree View

The Object TreeView, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focused in the Object TreeView.

1.4.8 Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere within

a class declaration; then press Ctrl+Shift+C, or right-click and select Complete Class at

Cursor. Delphi automatically adds private read and write specifies to the declarations..
for any properties that require them, and then creates skeleton code for all the class's

methods. You can also use Class Completion to fill in class declarations for methods••
you've already implemented.

To configure Class Completion, choose Tools I Environment Options and click the

Explorer tab.

16

Type Library I Environment Variables I Delphi Direct I
Preferences I Designer I Object Inspector I Palette l Librar}'

r Explorer options
j P ~ı:ıtcı_rrı_~_\i~~lly_~_h._cı_'ı'ı .. ~X.P.1(3.r_eıfjı P Highlight jncomplete class items

l r show _geclar ation syntax

- Explorer sorting -------- ..I r. Alpha.l2etical

I r 2~~'.ce
Class completion option---~

Einish incomplete properties

Initial browser vie\..,-------,

(." Çlasses r !Jnits r .G.lobals ı
rBrowser scope-------1
I r. Eroject symbols only · j
! ('" AJI symbols , l
'----------~-'---~--j

Internet
Explorer

Explorer ca!egories:

~J
~-1 Protected
~·i Public
~ :l Published
~ 1 Field
~ :l Properties
~:l Methods

Classes
[;?.] :l Interfaces
~ 1 Procedures
~ ~ Types
~ :i Variables/Constants
~;ı Uses

1::: Virtuals
fa Statics

~U Inherited
Introduced

OK] Cancel I)Jelp

Fig.1.13 Class Completion

1.4.9 Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in your

code. The debugger lets you control program execution, watch variables, and modify

data values while your application is running. You can step through your code line by
••

line, examining the state of the program at each breakpoint.
'

•

17

Run
t-

F9 W(

I'
i'-
II

I
FS IF7

Shift+F7

F4

Shift+FC:

. t, RunI Vr~ J: Attach to Process...
!I •····~ Tf:>.t Parameters...

\

· fı< Regb.-te. r Active>: Ser. veı
Uııre,;;ıi:;ter ,6,ctive>'. ~erv0,
Install ::oM+ obıects

· Cl!" Step Over

c:ı Trace Into

·~~ Trace to Next Source Line

'ITH Run to Cursor

Run Until Retum

_ Show Execution Point

mı Pro,;ıram Pause

m Program Reset Ctrl+F2

It,. Inspect ..

I ~ Evaluate/Modify ...
+

('Qj Add Wateh ...

L Add Breakpoint

Ctrl+F7

Ctrl+F5

Figurel.14 Run

To use the debugger, you must compile your program with debug information. Choose

Project I Options, select the Compiler page, and check Debug Information. Then you

can begin a debugging session by running the program from the IDE. To set debugger

options, choose Tools I Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,

Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing

View I Debug Windows. To learn how to combine debugging windows for more

convenient use, see "Docking tool windows". •

1.4.10 Exploring Databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you work

directly with a remote database server during application development. For example,

you can create, delete, or restructure tables, and you can import constraints while you

are developing a database application.

18

Definition Dal.a

rs;;ın !cinsi
:678 Ekran Karlı
456 Harddisk
013 Hoıddisk
'012 Anakarl
011 Cdrom dg

Figure 1.15 SQL Explorer

1.4.11 Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose File I New

to display the New Items dialog when you begin a project. Check the Repository to see

if it contains an object that resembles one you want to create.

New
Business l

j ActiveX I
WebSnap I WebS.ervices I Corba

Multitier l Project1 l Forms I Dialogs l Projects I Data ModulesI

~ @ [~1 ~ ~-
CLX Component Console Control Panel Control Panel

Application Application Application Module

[] ~ ~ Eel ~
;;:;;;;;;;

r

Form Frame Package Project Group Report

~ m ~ ~ ~.

Service Te:-:t Thread Object Unit Web Server
Application Application

•- ii
Batch File

Data Module DLL Wizard

I Reso. urce DLL
Wizard

~
XML Data

Binding

Service

r

I_J.
I OK I_.~ t[elp

Figure 1.16New Item

19

You can add your own objects to the Repository to facilitate reusing them and sharing

them with other developers. Reusing objects lets you build families of applications with

common user interfaces and functionality; building on an existing foundation also

reduces development time and improves quality. The Object Repository provides a

central location for tools that members of a development team can access over a

network.

1.5 Programming with Delphi

The following section provides an overview of software development with Delphi.

1.5.1 Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder in the Projects directory off the main Delphi directory.

2. Open a new project.
Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose File I New Application

to create a new project. When you open a new project, Delphi automatically creates

the following files.
• Projectl .DPR : a source-code file associated with the project. This is

called a project fıJe.

• Unitl.PAS : a source-code file associated with the main project form.

This is called a unit file.

• Unitl .DFM : a resource file that stores information about the main

project form. This is called a form file.
3. Choose File I Save All to save your files to disk. When the Save dialog appears,

navigate to your folder and save each file using its default name.

Later on, you can save your work at any time by choosing File I Save All.

20

When you save your project, Delphi creates additional files in your project directory.

You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named Forml

by default. You'll create the user interface and other parts of your application by placing

components on this form.

Figure 1.17 Form Screen

The default form has maximize, minimize buttons and a close button, and a control

menu

Next to the form, you'll see the Object Inspector, which you can use to set property

values for the form and components you place on it.
•

The drop-down list at the top of the Object Inspector shows the current selected object.

When an object is selected the Object Inspector shows its properties.

1.5.2 Setting Property Values

When you use the Object Inspector to set properties, Delphi maintains your source code

for you. The values you set in the Object Inspector are called design-time settings.

For Example; set the background color of Forml to Aqua.

21

Find the form's Color property in the Object Inspector and click the drop-down list

displayed to the right of the property. Choose clAqua from the list.

1.5.3 Adding objects to the form

The Component palette represents components by icons grouped onto tabbed pages.

Add acomponent to a form by selecting the component on the palette, then clicking on

the form where you want to place it. You can also double-click a component to place it

in the middle of the form.

Components

Component palette tabs

Figure 1.18 Standard Bar

1.5.4 Add a Table and a StatusBar to the Form

Drop a Table component onto the form. Click the BDE tab on the Component palette.

To find the Table component, point at an icon on the palette for a moment; Delphi

displays a Help hint showing the name of the component.

"'

Figure 1.19 BDE Component palette

When you find the Table component, click it once to select it, and then click on the

form to place the component. The Table component is non visual, so it doesn't matter

22

where you put it. Delphi names the object Table 1 by default. (When you point to the

component on the form, Delphi displays its name--Table 1--and the type of object it is-­

Table.)

....

. •G•
Ol1, • •

.~~.--•:
. • Tabieı: TTable I

Figure 1.20 Table in the Form

Each Delphi component is a class; placing a component on a form creates an instance of

that class. Once the component is on the form, Delphi generates the code necessary to

construct an instance object when your application is running.

Set the DatabaseName property of Tablel to DBDEMOS. (DBDEMOS is an alias to the

sample database that you're going to use.) •

Select Tablel op the form, and then choose the DatabaseName property in the Object

Inspector. Select DBDEMOS from the drop-down list.

23

'.:.ti Form1
i3 l?'ı Default {Session}

E ~ij DBDEMOS {Alias}
l±l·? 4, <?> {Table1}

Table1 TT able

Properties I Events I
,~ AutoRefresh J Fabe .
ii . CachedUpdat. False , .

Constraints fT CheckConstraints,ı
DatabaseNamelDB DEMOS

. Exc~~ve ı'["" Fi;ldİ5;f; DefaultDD ·
:!-"'"""'·" ·""""''·"'''""'""
j Filter Excel Files("""i:iİt~·;;d IBLocal

ıt~r~1:?t!rs:. ~e~i·~:cess D etebese I~
; : sinem
ii lndexFıeldNaımı:-=.c~---__Jr~f.~t~~:,ıli~~~;~,i;j
>."·""".,,, •.,. .•..••• ,,,, "'·"""""'"*'"'·"'" .•'""""' •.•.,,•..,.,,,.,,,__ .", •.
. M,:ısterSoı.ırce"....................... ""1""""""""""" .
· Name T able1
·ı,,ıı ('ı,h.-..ı.ı.ııı-,

Figure 1.21 Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component palette.

This adds a status bar to the bottom of the application.

Set the AutoHint property of the status bar to True. The easiest way to do this is to

double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to••
True allows Help hints to appear in the status bar at runtime.)

1.5.5 Connecting to a Database

The next step is to add database controls and a DataSource to your form.

24

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is non visual, so it doesn't

matter where you put it on the form. Set its DataSet property to Table 1.

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

and then expand it by dragging its upper right comer.

If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure:

The Data Control page on Component palette holds components that let you view

database tables .

. . . •· .•~. D-+I·~ı- ,ı.,.-.• ".'9:-.ıı: J .

••
......

.. " .. ·•· ..

,• .-:~:.-.' -_· •. ·-: . ·.

Figure 1.22 DBGrid in the Form

25

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, ak'Top, akRight, and akBottom; set them

all to true.

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Tablel object you placed on the form earlier.

5. Select the Tablel object on the form, and then set its TableName property to

BIOLIFE.DB. (Name is still Tablel.) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB database

table. If the grid doesn't display data, make sure you've correctly set the properties of all

the-objects on the form, as explained in the instructions above. (Also verify that you

copied the sample database files into your ... \Borland Shared\Data directory when you

installed Delphi.)

: ~I: u-+I_: : : · - ·
. 5:~::::·

l Species No I Category 1 Common_Name
~il__ yüQ20 i Triggerfish J_Clown T riggerfish

: 90030 I Snapper İ Red Emperor
..:.I "_·-···-··---·-·-·-----···---··--·--·················-·- - ··-·-----··- ---· : -··-·-----·-· ._ , ,,._, __,, ,

90050 !Wrasse Giant Maori Wrasse

•90080 ; Cod i Lunartail F: ockcod

9o_g9-~? ~_c:rP-_i?n,fi~f~ __J~irefi!~
_ 90100 I Butterflyfish I Ornate Butterflyfish _

9011 O ' Shark I Swell Shark

Figure 1.23 Show Table

26

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

points to a DataSource object, which in tum points to a dataset object (in this

case, a Table). Finally, the dataset (Tablel) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

data-aware control
(Grid)

dataset
(Table) BDE databaseDataSource

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

••

27

CHAPTER2

2 THE RAVEREPORTING

2.1 Project Tree

The Project Tree provides an efficient way to visually manage all of the reports in your

project. It quickly tells you the structure of your reporting project and the types of

components contained on each page with icons that are the same as the component

buttons. The Project Tree also visually shows parent-child relationships, the print order

of component as well as the current selection (green check marks). You can select

components by clicking on the component on the Page in the Visual Designer or on the

Project Tree. Non-visual components appear only in the Project Tree in order not to
clutter up your report design.

l
~RavePrciiect

,-~, ..;~- .
ı;;:1""%,i' Report Lıbrary

· Ei l]füı R eport1
[ill] Page1

-~ Globel Page Catalog
Sl···@, Data View Dictionary

,:, ../'tını D etebesel

=

Figure 2.1 Project Tree

There are three main sections in the Project Tree:

• The Report Library ~

• The Global Page Catalog

• The Data View Dictionary

Reports themselves can contain any number of page definitions. Global Pages are used

•

to hold items that you want accessible to multiple reports. Data Views contain your field

definitions and provide a link to the data in your application.

28

2.2 Design Tools

Rave is all about easy management. Besides making reporting easy and organized, Rave

likes to keep itself organized and all according to what you want.

Figure 2.2 Toolbars

Since Rave is designed to be of ease to you there are three easy three ways for you to

manage the many toolbars within Rave, which are:

• Tab-docking

• Normal docking

• Free-floating

Rave's many toolbars make it easy to design even the most complicated report. The

toolbars include: Project, Designer, Zoom, Alignment, Color, Line, Font, Standard,

Drawing, Report and Barcode component toolbars. Since it is possible to create and
••install new components, you may have other component toolbar buttons in your

designer.

Figure 2.3 Project Toolbar

The Project toolbar provides quick access to project level functions such as New

Project, Project Open, Project Save, New Report, New Global Page, New Data View,

New Report Page or Execute Report.

29

Figure 2.4 Designer Toolbar

The Designer toolbar allows you to change the characteristics of the Page in the Visual

Designer. Characteristics such as whether the grid is being shown, snap to grid, draw

grid on top, show band headers, show rulers, and show the waste area of the page. The

last button brings up Rave's extensive Preferences dialog, which is described later.

ız·o···o·-m· ·-· -·- ---·- ---· -· -·· E3
..... -·--· -· ·---- -· '·-~-- ----,,

Figure 2.5 Zoom Toolbar

When you are working on a report with a complex design, you will find it much easier

if you become familiar with the Zoom toolbar, which gives you quick access to Rave's

extensive zooming capabilities. Select the zoom percent from a drop down list, type it in

or use the Zoom Tool, Zoom In, Zoom Out, Zoom Selected, Zoom Page Width or Zoom

Whole Page buttons.

Alignment ·-·-·------- ''~----"-----------=----=--,... -==~~=---~~~.=-Ci~--·,
Figure 2.6 Alignment Toolbar

•••To help keep your report looking professional, Rave's Alignment toolbar provides

access to a whole host of options to micro-manage the components on your page. The

Left/Top, Center, Right/Bottom, Center In Parent, Space Equally, Equate

Widths/Heights options offer the traditional alignment options. The Move Forward,

Move Behind, Bring to Front and Send to Back order movement buttons allow you to

change the print order of components and are visually backed up by the listing of the

components in the Project Tree. Lastly, the buttons Tap Left, Tap Right, Tap Up and

30

Tap Down allow you to micro-adjust the position of components to the exact position

you need.

Figure 2.7 Colors Toolbar

The Color toolbar allows you to quickly select the primary and secondary colors of your

components. There are 8 color spots that you can use to store any custom colors that

you will be reusing throughout the project. If the colors available aren't enough, you can

double click on the custom color palettes and create a different color using Rave's Color

Editor (shown at right). With the Color Editor, you can select from a wider variety or

colors or create your own combination of Red, Green and Blue and even select a

percent saturation for the current color.

Color Editor DI
II Current Color - Yellow (25%)

,;J.fJlY_<·_;,~,,--)t>iöl'·':i•'''k 0f.~A•>??. '>···,-,~·, ···"'°"'·-=·• QK

Figure 2.8 Colors Editor

The Line toolbar is a useful tool for changing the line/border thickness and style for

components such as Line and Circle. Sizes are listed in points instead .•of pixels so that

your lines will always be the same thickness on your reports no matter the resolution of

the printer that you are using.

Figure 2.9 Line Toolbar

31

The Font toolbar provides quick access to a text component's font and alignment

properties. It can also be useful for quickly viewing the font options for the currently

selected text component(s).

Figure 2.10 Fonts Toolbar

2.3 Reuse and Maintenance Tools

Reports often take a large part of the development time for an application. Many times,

there are many similarities between the design of separate reports.

This is where Rave's Mirroring technology comes in. When a component is set to mirror

another, it assumes the appearance and properties of the component it is mirroring. The

two components can be on the same page, across pages within the same report or on a

global page. This is the primary purpose of a global page. You can almost think of it

like an Object Repository, a central location for you to store reporting items that you

want accessible to more than one report. If the component is a container control like

TRaveSection (similar to Delphi's TPanel), all child components are mirrored as well.

When the original component changes, all mirroring components will also change.

While the mirrored component ••cannot change it properties, you can add additional

components if it is a container control.

Here are just a few examples of where Mirroring would be useful:

Your customer wants a standard page header and footer on every page of their 50

reports. Now imagine you have all the reports done and your customer wants to change

the layout of the headers and footers.

The Old Way - You would need to open up all 50 report definitions and change them

one at a time.

32

The Rave Way - You would mirror the standard header and footer on each report you

create and then any changes would only have to be done in one location. Also, if the

standard header included a large bitmap, your reporting project would only contain a

single copy rather than the many copies that a traditional report designer would require.

You have to replicate a pre-printed form. The problem is there are 6 different variations

of this form with only minor differences between each.

The Old Way - Assuming a traditional report designer could even handle this type of

report, you would create the first form, cut and paste it into the second, make the minor

modifications, then repeat for the other 4 forms, ending up with 6 reports that would be

hard to maintain and take up a lot more memory.

The Rave Way - You would first create the common items of the form on a separate

page, then mirror those on each form and add the unique parts for each as needed. If

anything ever needed to be changed in the common section of the form, you would only

need to change it in one place and since you're sharing most of the form's content, the

report definitions take up much less room.

Rave Repoıb 4 O D \ıppıo\Rave4\Demos\Rave\AaveDemoıav Rl!Jlf:i

eject
E ~ Report Libr&ry

I ıntroductionReport
MasterDetailReport
Grouping Report

:-··- Mirror Report
~i-- DırtaMirrorReport

, t I::::·~
±1 1""' USSection
=1 rt"" Intersection

D Rectangle?
--,It' Sections

mtl Datalext2
TText1
TText2

F.!:1 rt_- Addr10rılySection
$ 1•• Addr1 Addr2Section
(t] ~-- AddressSection

I MulUPogoR,pori
MeilMerç::ı~Report
TwoDetails
VV2TeıxForm
Invoice

~~ Global Page catalog
!±l ~ GlobalP&ge1

. f±l· ~ Globıı1Page2
1 1 E!-4> Data View Dictionary

!±l ~ CustomerDV
~ OrdersDV
~ BiolifeDV

l±! ~ ClientsDV
~ ltemsDV

1com~•rıy J
fAddf1 I
lC1ti/P•-+-St:it'i +' "·+Zip- - - • - - - - -lın;;;ıı.=.,---;;;;m.ı ..1····-··········--

Figure 2.11 Mirror Report Example

33

Every text component has a FontMirror property which you can assign to a FontMaster

component. This will allow you to change the fonts of many text controls from a single

location. Imagine having Header, Body and Footer FontMaster components on a global

page and changing the appearance of all of your reports with just a few mouse clicks.

Another important aspect of maintaining any large project is documentation. The

Project and every Report, Page, Data View and Data Field component has a multi-line

Description Property that can be used to comment the intended usage or other

information. This can be useful if you are coming back to a project that you last worked

on 6 months ago or especially if another programmer or your end user will be

modifying reports that you created.

2.4 Standard Components
--·-·---~- ----"-----·
Standard £1

Figure 2.12 Standard Tool Bar

Text - This component is used to display fixed text on your report for items such as

column headers or report titles.

Memo - This component is used to display fixed text in a word wrapped fashion on your
"'report. Using the MailMergeltems property and the Mail Merge Editor shown below,

you can create a mail merge type of report where Rave will replace tokens in the memo. .
text with a replacement string. Note that this replacement string can be edited with the

Edit button, which will display the Data Text Editor for quite a bit of extra functionality.

Section - This component is a terrific component manager. It acts as a container for

other components, in other words it help you to group components together. By

properly using section components and mirroring, you can create reusable and

maintainable reports in no time flat.

34

Bitmap - This component is used to display a bitmap (* .bmp). Through the FileLink

property you can reference a file on the hard disk.

Metafile - This component is used to display a metafile (* .wmf). Through the FileLink

property you can reference a file on the hard disk.

FontMaster - This component is used to control the font characteristics of any text

control through their FontMirror properties. See Reuse and Maintenance for more

information.

2.5 Drawing Components

Line - Draws a diagonal line. (This may not seem like a unique feature but did you

know that most Delphi reporting tools cannot create a diagonal line visually.)

Figure 2.13 Drawing Tool Bar

HLine - Draws a horizontal line.

VLine - Draws a vertical line.

Rectangle - Draws a rectangle.

Square - Draws a square.

Ellipse - Draws an ellipse.

Circle - Draws a circle. •

2.6 Reporting Components

Region - This component acts as a container for Band and DataBand components. To

create a composite or sub-report, simply drop more than one region on a page and add

the appropriate bands to each.

35

·-
Report Ci

Figure 2.14 Report Tool Bar

Band - This component is primarily used to create header and footer bands in a banded

style report. A Band component can only be created within a region and it's purpose is

controlled through the Band Style Editor shown below. The Band Style Editor displays

a virtual layout of all of your bands for the given print locations of each band or data

band. Note that you can create as many Bands as you like and a Band may print in

multiple locations if the report design requires it. So for example, if you want a solid

horizontal line to appear above and below a detail body, you could create a single band

and set it to print on both the Body Header and Body Footer. You can also control the

Print Occurrence for a Band, having it continue on a new page or column or any

combination of occurrence settings. You can set a Band to group on specific fields and

can create as many different types of group headers or footers as your report requires.

Basically, with Rave's Band and DataBand components, you'll be able to create just

about any banded style layout that you can imagine.

Band Display for Region1: DataBı

! ,l DemoTextBand (B)

l l Band1 (R)
i + DataBand1 (Master)

V Band2 (B)
V Band3 (B)+ DataBand? {De-tail\
+ DataBand:2 /Detail\+ D,rtaB,;;ıd2 (Detail\
A Band4 (b)

' l Band·! (R)+ DataBand1 (Master)
'f,f Band2 (B)
V Band3 (B)
+ DataBand2. met~ih
+ DataBmul2 /Detail\+ DataBand:2 me.tail\
/A Band4 (b)

l Bandl (R)+ DataBand1 (Master)
V Band2 (B)
'(/ Band3 (B)
+ DataBand:2 metam
+cıataBand2 met~ilı
+ DataBmıd2 (De-tam
I,. Band4 (b)

[__ QK

I ~ancel

Print [.ocation

O ~ody Header (B)

O Q.roup Header (G)

O B_ow Header (R)

@Q.etail (D)

ORo~ Footer (r)

•0Grouı;ı_Footer (g)

0Bodı:Footer (b)

Print OcciJrrence

@E)rst(1)

O ~ew Page (P)

O N~w Column (C)

Figure 2.15 Band Style Editor

36

DataBand - The DataBand component is fairly similar to a band component except that

it is tied to a particular Data View and iterates across the rows in the Data View. You can

link DataBands together for Master-Detail to unlimited levels or multiple details on the

same level. Some advanced features that are supported by a DataBand include

KeepBodyTogether, KeepRowTogther, StartNewPage, MaxRows and Orphan/Widow

control.

DataText - The DataText component is the primary means to output fields from your

database. You can quickly select a specific Data View and DataField with Property

Panel or use the Data Text Editor shown below to create any combination of string

constants, data fields, report variables or project parameters. The & concatenation

operator is the same as the + operator, except that it also inserts a space. Report

Variables are items such as total pages or current date and time in a variety of formats.

Project Parameters are custom variables that you create and initialize from your Delphi

application. Project Parameters can be used for items such as user defined report titles,

printing the current user name or other custom information.

Data Fields
Data View

Defautt

@Selected [custornerDV -·

Dateı Field

Post lnrtieılize Variables
Insert Pl ~ar

Data Text
'Page' & Report.CurrentPage& 'of' & Report.TotalPages

QK . J! I Çancel

Figure 2.16 Data Text Editor

37

DataMemo - This component is very similar to the Memo component except that it

retrieves data from a DataField. DataMemo component's print text data out in a word

wrapped fashion and the DataField can be any text type, not just memo fields. It also

has RTF and mail merge support.

CalcText - This component is used to perform simple operations such as Sum, Average,

Count, Min and Max on a data field. You can set the value as a running total and place

it in any type of band or anywhere on the page) you need it.

DataMirrorSection - The data mirror section component is similar to Rave's section

component (found in the Standard Toolbar) with one major difference, it will

dynamically mirror another section depending upon the value of a DataField. You

configure the data mirror section using the Data Mirror Editor (shown below). This

component is very useful for printing out data that has different formats depending upon

the type of data. One example is an address field that could print a US format if the

country field is "US" and an international format otherwise (using the Default option in

the Data Mirror Editor). You could also print Boolean field values with your own

custom bitmaps.

Data Mirrors,,.. ~.,,- ~ - ,_,,._.

I· Default • (Page2Jnt-;;;section)
ll!M@i#!M!@MWffltlMlmWWMMWMII

ı
6,dd ••] [Qelete

Data Mirror Settings
ODefault

Mirrored Section

Page2.USSection

Figure 2.17 Data Mirror Editor

38

2.7 Barcode Components

Figure 2.18 Barcode Toolbar

PostNetBarCode - Prints a US PostNet bar code.

I2of5BarCode - Prints Interleaved 2 of 5 barcodes.

Code39BarCode - Prints standard and extended Code 39 barcodes.

Codel28BarCode - Prints A, Band C Code 128 barcodes.

UPCBarCode - Prints UPC~12barcodes.

EANBarCode - Prints EAN-13 barcodes.

2.8 Anchors

Anchors are a powerful way to create a report that dynamically adjusts to changing

sizes. This allows you to create reports that can print well whether the user selects

landscape or portrait, 8.5" by 11" or A4. There are 6 different anchor values for both the

horizontal and vertical dimensions to allow you to control each component in exactly

the manner that it needs. The Anchor Editor (shown at right) even shows you a helpful

bitmap of how each anchor setting works.
"'

Vertical Anctıor Horizontal Anchor

O~ett
Q[lıght •
@Cı;_nter
Ostretctı
QResi~e
QSpreag_

••0Iop
Q~ottom
Oçenter
O~retch
0Res[ze
osıı.read

verncet Sample Horizontal Sample

I ·-; Illliiı .,.. ı
lk2

QK j [Çancel j

Figure 2.19 Anchor Editor

39

2.9 Code Based Reports

Lately Delphi has decided to include Rave Reports as the default reporting solution,

replacing Quick Reports. Since they work in very different paradigms, many people

were confused by the new environment. This is intended as an introduction for people

who haven't worked with Rave yet, and would like to start.

Nowadays Delphi ships with Rave Reports 5.0.8. If you haven't already, download the

update from the registered users page, since it fixes some important problems.

You can develop reports with Rave using two different ways: Code Based or with the

Visual Designer.

With Code Based, you write reports using plain Delphi code. That provides a very

flexible way displaying any kind of data, allowing any kind of complex layouts.

To write a code based report, just drop a TRvSystem component on the form and write

the report on the OnPrint event handler. Sender is the report you are creating, and can

be typecasted to TBaseReport. It contains all the methods you need to output

information to that particular report.

2.9.1 Simple Code Base Report

Here's a simple report using the code based mechanism:
"'procedure TFormMain.RvSystemPrint(Sender: TObject);

begin

with Sender as TBaseReport do

begin

SetFont('Arial', 15);

GotoXY(l,l);

Print('Welcome to Code Based Reporting in Rave');

•

end;

end;

40

To execute this report, call RvSystem.Execute method.

So, what does that simple code do? First, it calls SetFont to select the font and size of

the text that will be printed from that point on. Then it positions the cursor on the

coordinates (1, 1). These coordinates are expressed using the units set in the

SystemPrinter.Units property of the RvSystem object, and it defaults to Inches. You can

set it to unUser and set a number relative to Inches in the SystemPrinter.UnitsFactor

property. For example, if UnitsFactor was set to 0.5 then 1 unit would correspond to

half an inch. Finally, the code calls the Print method to output the text. Here's the

output:

o'.f 1

Welcome to Code Based Reporting in Rave

Figure 2.20 Report Preview

2.9.2 Tabular Code Based Report

Here's another example. It displays a list of the folders in the root of the current drive,

along with a recursive count of number of files and folder, and total size of the files•
included in each folder.

procedure TFormMain.PrintTabularReport(Report: TBaseReport);

var
FolderList : TStringList;

: Integer;

NumFiles : Cardinal;

NumFolders: Cardinal;

41

SizeFiles : Cardinal;

Root : string;

begin

with Report do

begin

SetFont('Arial', 15);

New Line;

PrintCenter('List of Folders in the Drive Root', 4);

NewLine;

New Line;

ClearTabs;

SetTab(0.2, pjLeft, 1.7, O, O, O);

SetTab(l.7, pjRight, 3.1, O, O, O);

SetTab(3.l, pjRight, 3.5, O, O, O);

SetTab(3.5, pjRight, 4.5, O, O, O);

SetFont('Arial', 10);

Bold := True;

PrintTab('Folder Name');

PrintTab('Number of Files');

PrintTab('Number of Folders');

PrintTab('Size of Files');

Bold := False;

NewLine;
~

FolderList := TStringList.Create;

try
Root := IncludeTrailingPathDelimiter(ExtractFileDrive(ParamStr(O)));

EnumFolders(FolderList, Root);

for i :=Oto FolderList.Count - 1 do

begin

PrintTab(FolderList[i]);

GetFolderlnfo(IncludeTrailingPathDelimiter(Root+FolderList[i]),

NumFiles, NumFolders, SizeFiles);

PrintTab(F ormat('o/ou', [NumF iles]));

42

PrintT ab(F ormat('o/ou', [NumF olders]));

PrintTab(Format('o/ou bytes',[SizeFiles]));

NewLine;

end;

finally

FolderList.Free;

end;

end;

end;

Notice that a different approach has been taken: instead of specifying the coordinates of

each text output, the printing was done using Lines and Columns as references. The line

heigh depends on the size of the current font: each unit represents 1/72nds of an inch, so

each line printed with a size 10 font will have, aproximatelly, a height of 0.138 inches.

Lines are advanced after calls to PrintLn or NewLine. Colums are defined using calls to

the SetTabs method, and the PrintTab method will print the text in the current column

and advance to the next one. Here's the output:

List of Folders in the Drive Root

Fı)lderName
Arquivos de proqramas
Documents and Settiııgs

Number of Files
984
899

Numberof Folders
1571
1359

Figure 2.21 Report Preview •

2.9.3 Graphical Code Based Report

You can include shapes and images in your code based report, along with the text. The

following example demonstrates that:

procedure TF ormMain.PrintGraphicsReport(Report: TBaseReport);

var

Bitmap : TBitmap;

43

begin

with Report do

begin

Canvas.Brush.Color:= clGray;

Rectangle(0.3, 0.3, 4.7, 3.3);

SetFont('Arial', 15);

FontColor := clRed;

PrintXY(0.5,0.5, 'Just look at all the graphics!');

Bitmap := TBitmap.Create;

try
Bitmap.LoadFromFile('delphi.bmp');

PrintBitmap(3.5,0.3,l,l, Bitmap);

PrintBitmap(l,2,3,3, Bitmap);

Canvas.Pen.Color := clBlue;

Canvas.Brush.Bitmap := Bitmap;

Ellipse(S,0.3,6,3 .3);

Ellipse(2, 1 ,4, 1.9);

finally

Bitmap.Free;

end;

Canvas.Pen.Color:= clBlack;

Canvas.Brush.Style := bsSolid;

Canvas.Brush.Color := clYellow;

Pie(0.7,0.7,l.7,l.7,l,l,l,2);

Canvas.Brush.Color:= clGreen;

Pie(0.7 ,0.7 ,1.7 ,1.7 ,1,2, 1,1);

end;

end;

"'

•

In this example the methods Rectangle, Ellipse and Pie have been used draw shapes

with different fills. Bitmaps were outputted using PrintBitmap and as the brush of the

ellipses. Here's the output:

Graphics Report Example

44

Figure 2.22 Report Preview

2.10 Visually Designed Reports

2.10.1 The Visual Designer

If you are used to work with Quick Reports, the default reporting engine included in the

previous versions of Delphi, you created your reports using Delphi's own form designer,

and they were save in the DFM, included as resources in your executable. Rave works a

bit differently in this aspect: it has it's own report designer, and saves the report using

it's own file format. This has some advantages, including the fact that your reports can

be made "standalone", and be used or updated independently of your application, or

even made available in a Intranet or in the Internet, using Nevrona's Rave Report

Server. Of course, you can still have it saved in a form's DFM.

To get started with the Rave Visual Designer, drop a TRvProject in a form. This will be

the link from your application to the reports you are developing. If you want, you can

add a TRvSystem and link your RvProject to it, through it's Engine property. The

RvSystem is the object responsible for the general configuration of the reports: the

printer that is going to be used, the margins, the number of pages, and so on. To start a

new project, double click the RvProject you added to the form, or select "Rave Visual

Designer" from its context menu.

45

This is the interface that you will be working on:

,.~}P~a:P~:~:~::\'
· ~ Global Page Cataio;·· 4> Data View Dictions'

Figure 2.23 Rave Visual Designer

The interface is simple, and you might be familiar with some parts of it from Delphi's

IDE. On the top there's the menu, the toolbar, and the component pallete that contain the

components that will be used in the reports. In the left there's the Object Inpector, which

will be used to adjust the properties of the components of the report. In the middle

there's the Page Designer or the Event Editor, and in the left there's the very usefull

Project Treeview. For a quick overview of the components in the pallete, you can go to

Nevrona's Visual Designer page.

A Rave Project File can have one or more reports. That way you can keep common

items between them in a single location, called Global Pages. If you expand the Report

Library node of the Project Treeview, you can see that right now you are working on

Reportl. Clicking on it, its properties will show on the Inspector. Let's change it's name

and call it SimpleReport. Next, go to the Standard tab on the Component Pallete, and

pick a Text component and add it to the page. Change its text property, and adjust its

size and position. Here's how it looks like:

46

Figure 2.24 Component Palette: Standard Tab

As you can see, the properties that were changed from the default values are shown in

bold. In this case, I changed the Font, Text and Truncate properties. By default it does

not highlight Name, Pos and Size changes. If you'd like to see them, right click the

Inspector and uncheck "Exclude Name, Size and Pos changes" in the context menu.

You might have also noticed that Rave does not have an auto size property. You can use

the Truncate property to have that effect: if truncate is false, the design time size will

have no effect.

You can see the result of this simple report right on the designer: Press F9 or use

File/Execute Report to run it. Now let's do it in our application. Save your project and
••

return to Delphi. Change to ProjectFile property of RvProject to point to the file you

just saved. To run the report, add a call to the Execute method of the RvProject object in

a button click, for example.

RvProject.Execute will only work for now because we only have one report in this

project. If we had multiple reports, we'd have to call SelectReport to choose one before

calling Execute, or calling ExecuteReport directly.

47

Here's the output:

Welcome to Rave Reports Visual Designer
u.,
~ıt£l.<

Figure 2.25 Report Preview

Tip: If you Close and Open your project before executing, you won't need to to

recompile your application or restart it to see the changes you just made in the designer.

2.10.2 Interacting with the Project

If you worked with Quick Reports, you might be used to manipulating the objects in

runtime, changing their Position, Text and Visibility. After all, they were just TObjects!

While this is possible with Rave, and I'll cover it in a later article, it's a little harder than

it was with QR. But don't worry, Rave provides a different answer to this kind of

problems.

Parameters

If you can use parameters in your reports. They can be defined using the parameters..
property of either the Project, a Report or a Page. Parameters can be defined in either of

these places, they are just in multiple places for easier access.

You can only select the Project and a Report through the Project Treeview. A page,

however, can be selected using the Project Treeview or clicking on it's title above the

page designer.

Among other uses, you can print parameters. So, for instance, if the title of your report

can be user-defined , you could pass it from your application into the report as a

parameter.

48

Let's add a new report to this project to see how parameters work. To do that, click the

fourth button on the toolbar or choose File/New Report. Call it ParametrizedReport,

changing its name through the object inspector. This report is going to be very similar to

the first one, except the text is going to be user-defined.

Now we need to define the parameter that is going to be printed. To do that, still having

the report as the selected object, open the property editor the the parameters property.

There should be listed all parameters of this report, each on a separate line. Add a

parameter called Name, like this:

tsı:rin'ns~f:ditor

Name

I
;·. \\1.. I.: ti~ı I

' ··ı·ı_ .· ,ıi0~' j ··· -~'Çcimcel l,
Figure 2.26 Strings Editor

Parameters can be printed using a DataText component, available in the Report tab of

the component pallete. Add a DataText to the page, and open the property editor of the

Datal ield property. There you can choose which field is going to be printed, when

working with DataAware reports. You can also choose Project Variables, Parameters

and Post-Initialize Variables from there.

So choose the parameter added previously from the Parameters drop-down combo and

press the Insert Parameter button. The data text expression is now Param.Name. Press

49

OK and try to execute the report, as before. Nothing is printed, since the parameter has

not been set.

We need to set this parameter before printing. Don't forget to save your changes, and

return to Delphi, adding a call to SelectReport before Execute, so we can see the right

report. Before executing, though, we need to set the parameter we added. That is made

using RvProject's SetParam method. This is how my code looks like right now:

procedure TFormMain.btnExecuteClick(Sender: TObject);

begin

RvProject.Open;

RvProject.SelectReport('ParametrizedReport',False);

RvProject.SetParam('Name','Leonel');

RvProject.Execute;

RvProject.Close;

end;

Now, when we execute the report, we are going to see the string we set as a parameter

printed.

Tip: You can use RvProject.GetReportList to get a list of avaible projects, and add them

to a ComboBox, or a RadioGroup, for example. That makes selecting the report easier.

But this is too simple. Let's change the expression that is going to be printed. Return to

Rave Designer and open the property editor for the DataText we added. You can add
••

any text you want, combining text, fields, parameters and variables. I changed it to this:

Figure 2.27 Data Text Sample

50

Here's the result:

Hello, Leonel, nice to meet you.

Figure 2.28 Report Preview

Post-Initialize Variables
Post-Initialize Variables, or simply PI Vars, are variables whose value is only known

after the report has already been printed. It may sound strange, at first, but think about

the number of pages of a report, for example. We can only know it's value after the

report is ready. Actually TotalPages is a report variable that acts like a PI var, and can

easily be printed using DataTexts as we did with Parameters.

Global Pages
When you have parts of reports that are common to two or more reports, you can put

these in a global page. Let's supose we have a header with our company name, the date

and time that report is being printed, the current page and the number of pages of that

report. We want that header to be.in every report. How can we do it?

First, add a global page to the project, using File/New Global Page, or the Toolbar

shortcut. In that page, add a section component, available in the standard tab of the

component palette.

Sections are logical groupings of components. They can be used to group component so

they can be easily moved around the report or as containers for Mirrors, as we are doing

right now.

51

Inside that section we add what we want to be printed. In this case, a few DataTexts.

My header looks like this:
-- --·----------------------- -------- ------- - ' . --------"-----~

Introduction to Rave Repoıts '
[Report.Date·Short + '' .+.Report:T.imeShort J [~Paçıe '.+ Report.CurrentPage + '.'of' +-Report:TotalF'ages+ '.'] :. i

----------------------------------- ı

Figure 2.29 Header Sample

Hint: Instead of changing the font property of several components to the same font, link

them to a FontMaster component, available in the standard tab, and set the font on it.

That way is easier to change the font in the future, in case it's needed.

Now add another section to the Page1 of SimpleReport. Set its Mirror property to

GlobalPagel.Sectionl. You will see a copy of the header you created in the global page.

Do the same thing to ParametrizedReport. Now both reports share the same header.

Here how it looks like:

=====--~~~~----~~~~~____:._~~~~~~~-~.
Introduction to Rave Reports

31 /08t2003 16:42
Page 1 ort

Hello, Leonel, nice to meet you.

Figure 2.30 Report Preview

••

Conditional Printing
Sometimes ~e need to print certain parts of a reporting depending of some conditions.

Rave has a very powerful way of dealing with this. We can conditionally mirror

sections depending on field values or parameters. Let's create a new Report, calling it a

ConditionalReport.

52

Let's pretend that this new report is a trick one. The user can choose the header that is

going to be printed, from two different kinds of headers. He can also choose for the

report to be printed without a header. We are going to use a parameter to tell the report

what kind of header is going to be printed, and a DataMirrorSection to select the proper

header at runtime.

First, add a parameter to this new report called HeaderKind. Let's assume that it will

have the values HO (for no header), Hl (for the first header), H2 (for the second kind of

header). Now add a new section to the global page (you can reach it through the Project

Treeview), with the second kind of header layout. I created a header similar to the first

one, changing the font title and adding a border around the values. It looks like this:

------·M-------------------- ------------------------- ----- ----------- -----------~-----~
lntıroductfon ro Rave Reports ,

-------ı'; I [Report.[)ateShort + '' + Report.Tirne.Sr,ort] ['Page'+ Report.CurrentPage +'of'+ Report.TotalPag~es+ '.'J !:
-'-----·---------------------------------------·------- ----·--------- '. ' '

Figure 2.31 Header Sample

Now return to the Pagel of ConditionalReport, and add a DataMirrorSection, available

at the Report tab of the component pallete. Go to its DataField property editor, and set

Param.HeaderKind as the expression. Now go to the DataMirrors property editor, and

add two Data Mirrors: if the value is Hl, it should point to the first header, H2, to the

second. Since HO does not match any mirrors, nothing will be printed. It should look

like this:

Figure 2.32 Data Mirror Editor

53

Notice that I gave more meaningful names to each of the sections earlier.

Hint: You can use the OnMirrorValue event of the DataMirrorSection to work on

ranges of values.

Now return to Delphi and add the code to set the parameter according to the user's

choice. I added a ComboBox with the options and my code looks like this:

procedure TFormMain.btnExecuteClick(Sender: TObj ect);

begin

RvProject. Open;

RvProject. SelectReport(cmbReports. Text,F alse);

case cmbReports.Itemindex of

1: RvProject.SetParam('Name',edName.Text);

2: RvProject. SetParam('HeaderKind' ,F ormat('H%d', [cmbHeaderKind.Itemindex]));

end;

RvProject.Execute;

RvProject.Close;

end;

Now the proper header will be printed according to the user's choice.

Embedding the Project in the Executable

When you deploy your application, you must include you project file. You can have it.
as a separated file, so you can update it in a easier way, only shipping a new one,

without recompiling your application, or include it in your executable. It's easy to do

that: open the property editor for the StoreRAV property of RvProject. There you can

press Load to include the file in the DFM, Save to extract a previously saved file, and

Clear to remove an embedded file. When there's a file loaded in this property, you don't

need to ship the project file separately.

54

2.11 Data Aware Reports

2.11.1 The Database Connection

There are two ways to access data from inside a report: you can share the same

connection established by your application, fetching records from Datasets that exists in

your Forms or Datamodules, or you can configure a new connection on the report,

allowing it to be independent of a particular application. For the first method you would

use a Direct Data View, and a Driver Data View for the second. Data View is the analog

of a DataSource/DataSet combination inside the report.

If you intend to deploy your application using Nevrona's Rave Report Server, you

should use Driver Data Views.

2.11.2 The Driver Data View

Let's create a simple database report using a Driver Data View. Start the Rave Visual

Designer, and start a new project. We need to define the database connection. To do

this, choose File/New Database Object, or press the sixth button in the toolbar (the

purple cube). The Data Connections window will appear:

nnettıi:ır:ıs'

Data •)bject Type! I Data Lookup"SecuritYController

~ Database ı;:orınectiorı

Ii Direct Data View

1B Driver Data Vie'N

/i Simple Security Controller

Figure 2.33 Data Connection Window

55

Choose Database Connection, and you will be asked which Data Link you are going to

be using. There is a folder called DataLinks where Rave has been installed, containing

some files with the .rvd extensions, responsible from the connection mechanism. By

default, you can choose between BDE, DbExpress and ADO. I'll be using BDE for this

example. Choose BDE, press Finish, and the Database Connection Parameters window

will show up. Every Data Link has a different set of connection parameters available,

similar to those available in the Delphi IDE. For now, just set Alias to DbDemos and

press OK. Notice that a Database object has been added to the Project Treeview, under

Data View Dictionary:

r,?fuvePrciiect
51·~ Report Library

,GJ llmJ Report1
·• ····· llifil Page1

: -~ Global Page Catalog
8··0- Data View Dictionary

... ,ftj Database1

Figure 2.34 Project Tree View

Notice that the settings you configured in the Database Connection Parameters, after the

wizard, including usemame and password, if applicable, were saved in the AuthDesign

property of the Database component. In the AuthRun property you can use different

settings to be used at runtime, when your report has been deployed.

We are going to create now the Driver Data View. Click on New Data Object, and then

choose Driver Data View. You"should now choose the Database Connection that is

going to be used by this Data View: choose the Database created in the previous step. A

Query Advanced Designer will show up. Drag andDrop the table customer.db from the

table list to the Layout window. It should look like this:

56

customer_db {Tl l
RH·'

animais.dbf
biolife db

l clients.dbf
country.db
custoly.db
customer.db
employee.db
events.db
holdings dbf

tf}\dbf

O CustNo
rı Company
U Addr1
0 Addr2
O City
O State
O Zip

0 Countr!,1 u··..··.ııO Phone "I
0 F.6X ·'
OT axRate r,;:.:-ıIO Contact [!iıın I ~-•I~, .~:~~r...:,k .

master.dbf
nextcust.db
nextitem.db
nextord.db
orders-db
parts.db
reservat.db
vendors.db
venues.db

EditGH; l
Figure 2.35 Query Advanced Designer Window

If you have more than one table, you should drag and drop fields that should be joined

between tables. If you press the Editor button you can check the generated SQL, or

type-in a more complex query. Let's keep the simple Customer Listing for now. Press

OK and a DriverDataView will be added to the Project Treeview, below the Database

components, having the selected fields as subitems:

ra·+ fıata'View Dictionary
fjj DbDemos

8 ili DvCustomer
Ii D vCustomerÜJstNo
~ D vCustomer.Company.
•fi· DvCustomer.6.ddr1
ti: DııCustomerAddr2
··rW DvCustomer.City
tifr DvCustomerState
tör D vCustomerZip
I! D vCustomer.Courıtry
ir DvCustomerPhone
ml' DvCustomerF.6X
iii DvCustomerTaxRate
·ii DvCustomer.Contact
~ DııCustomerlastlnvoiceDate

Figure 2.36 Project Tree View

57

Notice that I renamed the Database Connection and the Data Viewto more appropriate

names. It's in the Treeview where properties of the fields should be set, like the Display

Label (FullName property), and the DisplayFormat.

2.11.3 Regions and Bands

Report components that should be printed in a fixed position in every page, like fixed

headers and footers can be put directly in page. Components, whose position will be

dependent of previously printed items, should be put in bands. DataBands will be

printed once for every record in the linked Data View, while regular Bands will only be

printed once, regardless of how many records have been selected. Both can contain

Data-Aware components (like DataText), or regular components (like Text).

Bands should be put inside Regions. Regions delimitate the width of the bands, and the

maximum height that bands can use before starting a new page. One page can have

many Regions, and one Region can contain many Bands.

Add a Region to the Page covering its whole area. Inside the region add a Band, to be

used as the report header, a DataBand, to print the customer information, and another

Band, the report footer.

If you wish to change the ordering of existing bands in a report, use the Move Forward

and Move Behind buttons in the •.Aligment Toolbar.

Rename the bands to more meaningful names ,(I used Header, CustomerData and

Footer). Set the DataView property of CustomerData to DvCustomer, and set

CustomerData as the ControllerBand of the Header and Footer bands. You should also

run the Band Style Editor, from the Object Inspector, and set the Print Location of those

two bands to Body Header and Body Footer, respectively. You can have an idea on how

the report is going to be printed observing the Band Display as you change the settings.

It shows iterating bands repeated three times, and other bands only once:

58

, Header (8)+ CustornerData (Master)+ CustomerData (Master)
• Customerüata (Master)
1 FooterfM

Figure 2.37 Band Display

We also want the Header to be printed in other pages in case the listing spans more than

one page: check the New Page option in the Print Occurrence groupbox, in that same

dialog.

The Footer band will only print when DvCustomers has reached its end. If you want it

printed in every page, regardless of that, just put the components directly on the page,

below the region, and not in a Band.

In the editor, you can quickly identify the relationship between bands, their styles and

their print occurrences:

[. -··.. - .. --- .. -- ... ']J_E'.~gioiı1 i t:~ader,

\ ,;j;;Re;~io~j:f-~~dr

Figure 2.38 Editor Sample

2.11.4 Adding Fields

It's not hard to add fields to a report. You can Ctrl+Drag the fields from the DataView,

in the Project Treeview, to add DataText components to the report, and Alt+Drag them

to add Text components containing the Fullname property. This allows you to quickly

create the layout of the report. Now add some fields to CustomerData and their title to

the Header. I added CustNo, Company, Phone, TaxRate and LastlnvoiceDate.

Don't forget that you can use the tools on the Alignment Toolbar to align the

components, even if they are in different bands.

59

I added a title to the Header band and a simple text to the Footer band, indicating that

the listing has ended. Later on the series we are going to see how to use the Calcüp and

CalcTotal components to be able to add totals, averages and other calculated values to

the Footer.

2.11.5 Adding the Report to Your Project

To add this report to your project you should use use the same approach as seen in Part

II: just use a RvProject in a Form or DataModule, link it to the report file, and call it's

Execute method. But there is one gotcha when using Driver Data Views: your

application must load the apropriate driver. To do that, just add the unit RvDLBDE to

your uses clause, if using BDE, RvDLDBX if using DbExpress, or RvDLADO if using

ADO.

60

CHAPTER3

3 USERMANUAL

3.1 Enter Form
When user executes this program, first password enter screen appears. In this screen

user enters a password as seen in the figure 3. 1 below.If the user wants to leave the

program without entering , this can be done by clicking the EXIT button.
"'···~. 'flh ~· -- ..-· - ------- --~iJJ E~Trn·

Figure 3.1

61

3.2 Main Form
After password are entered, main screen appears as seen in the figure 3 .2

below.RENT A ROOM and EXIT buttons exists in this form.When the user clicks

the RENT A ROOM button, HONEYHILL HOSTEL form shows up as you may

see in the figure 3.3 below

Figure 3.2

62

3.3 Honeyhill Hostel Form

There are five pages in this form .First page is the Customer Registration page

as you may see in the figure 3.4 below.And the other pages follow this pages

consecutively as Customer Registration Out,Search,Registries General Status,Rooms

General Status.

SURNAME

TEL

' ·:~rsren DATE

110\\'MANYU'R

Figure 3.3

63

3.3.1 Customer Registration Page

In this page, there are six empty fields which are used for entering customer

information.One of these fields has fixed numbers as 1,2,3,4 related with the

number of the people who will be stayed in a room .When user clicks on one of

these numbers , a panel shows up on the right of the page with the rooms inside of it

and the rooms are displayed as blue if the chosen number suits to room ,because

some of rooms maybe full, if it happens like that the rooms are displayed as white. The

panel includes 2 empty fields and 20 rooms as rectangles with written room numbers

on them .One of these fields displays the unit price of the room and the other

displays the room no when the user move around mouse point over the rooms

.When the user clicks on a room these two fields catches the unit price and the room

number.After all informations are ensured , the user can save this customer registry .

After the registration process are completed for the customer , seems as active in

the system until the registration out process is completed by the user .

Figure 3.4

64

3.3.2 Customer Registration Out Page

This page was designed to make customer registries out or inactive.If the user enters

into the field of name one of the first letters that customer names have , all customer

infos as name , surname , roomno and customers.registerno shows up on the black

screen.If a complete customer name is entered into the name field ,only one line

shows up on the screen which is related with this customer.After the line appears,the

user clicks on the line and the empty fields which are on the left of the screen ,

catches the informations about the customer as surname ,leaving date ,unit price of the

room,enter date , howmany people have stayed in the room, howmany days have been

stayed on the hostel and the total price which is calculated by the program.When the

user press the Save Registration Out button , the process of making customer

inactive is being performed.If Registration Out Cancel button is pressed ,the process

of making customer inactive is canceled and the all fields are cleared.

tlJııtd[

L£AVIHGCDAT£

SAVLREGISlRATION OUT REGISTRATION OUT CANCEL.J

Figure 3.5

65

3.3.3 Search Page

There are options in this page to search customers as search by roomno,search by

name and search by the dates.It is possible to see the customers as active or inactive

on the screen.

;'#HON&YHILL,HO.STEL---~,,...,, ·:·· ,..... ' """' " .. ---=···"'-···~------..,,_.._.__.......,,. =--o,·:--~-----···-"''-:'-""'""-..--. -~---~ --~--,---t CI.ISTOMJB_REGISTRATION J CUSTOMER REGISTRATION Ol!! fSEA~REGISTRlES'GENEAM. STATU$ J"ROOMS.GEt-!~~J.ı.L Ş.TA!!JS}: -
\1fil/J "·' ·=J, . .. - ·' "' .

Figure 3.6

•

66

3.3.4 Registries General Status

There are three options to see the registries.First the user can choose the all the

registries box and the all registries appear on the screen .If the user wants to see

the acrive registries ,active registries box is choosed and the all active registries

show up on the screen .The user can use the nonactive registries box which is the

last option and after that user sees the all nonactive registries on the screen.

'f'frNONACTl\i'E fl:fGJSTAIES {',iACTIVLREG!STRIES

False- 202 C -2.30/05/2003
Iuıe ;304 f311os/20na
F~l~e, '.lflf

~•...
'3 31/05/200{/

Fa!te 203 t!i,3;01 /06/2008
F~b~·203 3 02/GG/2008 09/06/201l8
Fa1$e 401 I .02106/2008 09/06/2009

Figure 3.7

67

3.3.5 Rooms General Status

In page you can see the rooms fullness status with the ratios.There are 20 panels

on the page with shape of rectangles.If the user presses the 'Show the fullness ratio

button' ,the ratios appears in the rectangles.If the roomno 102 is full ,the ratio

appears as 2/2 or if the user presses the other button which is 'Show the being empty

ratio' and if the room 102 is full ,it appears as 0/2 .If the room which is for 4

people has 3 people inside of it the fullness ratio appears for this room as 3/4 and the

being empty ratio appears as 1/4.

Figure 3.8

68

CONCLUSION

It was a really good decision for me to use Delphi as programming language and

Access as a database.Because I succeeded everything that I have planned before

started to my project.In the most situations I used the internet and searched some

books.I had some difficulties with the SQL commands and programming in this

project.But with the help of the some books and internet, I accomplished.

Because of I am not advanced in delphi programming , it was difficult to get

control in the programming section.But this project helped me to develope myself

with the delphi .

This program is enough for a hostel to register its customers and control this

registration .With making some extra additions , this program can be made more

functional.

I want to learn another language to jump level in the programming as soon as

possible.

••

69

REFERENCES

http://www.w3schools.com/sql

http://www.delphibasics.co.uk

Delphi 7 Ezel Balkan Book

Delphi 7 Zirvedeki Beyinler Nihat Demirli Yuksel lnan (ebook)

Borland Delphi 6 for Windows (e Book)

Mastering Delphi 6 - Mastering Delphi 7

70

•

unit turgay;

interface

APPENDIX

Program Codes

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ADODB, DB, Grids, DBGrids, Mask, ExtCtrls, ComCtrls,

TabNotBk, DBCtrls;

type

TForm1 = class(TForm)

ads1: TADODataSet;

adq1: TADOQuery;

dsl: TDataSource;

TabbedNotebookl: TTabbedNotebook;

Label4: TLabel;

Label8: TLabel;

Label9: TLabel;

Labellü: TLabel;

Label13: TLabel;

Labe114:TLabel;

Edit5: TEdit;

Edit7: TEdit;

MaskEdit3: TMaskEdit;

MaskEdit4: TMaskEdit;

Button4: TButton;

ComboBoxl: TComboBox;

Labell: TLabel;

Edit2: TEdit;

••

71

Label2: TLabel;

DBGridl: TDBGrid;

Label5: TLabel;

Edit8: TEdi t;

Edit9: TEdit;

Label6: TLabel;

Edit4: TEdit;

Editl O: TEdit;

Buttonl: TButton;

Label3: TLabel;

Label 1 1: TLabel;

Editll: TEdit;

Label12: TLabel;

Edit12: TEdit;

Label 15: TLabel;

Label16: TLabel;

Edit13: TEdit;

RadioButton4: TRadioButton;

RadioButton5: TRadioButton;

RadioButton7: TRadioButton;

DBGrid2: TDBGrid;

GroupBox 1: TGroupBox;

Button2: TButton;

Label18: TLabel;

MaskEdit 1: TMaskEdit;

MaskEdit2: TMaskEdit;

GroupBox2: TGroupBox;

Label19: TLabel;

Edit15: TEdit;

GroupBox3: TGroupBox;

Edit16: TEdit;

Button6: TButton;

DBGrid3: TDBGrid;

.•.

72

GroupBox5: TGroupBox;

GroupBox6: TGroupBox;

GroupBox7: TGroupBox;

GroupBox8: TGroupBox;

GroupBox9: TGroupBox;

GroupBoxlO: TGroupBox;

GroupBox 11 : TGroupBox;

GroupBox12: TGroupBox;

GroupBox 13: TGroupBox;

GroupBox14: TGroupBox;

GroupBox 16: TGroupBox;

GroupBox 1 7: TGroupBox;

GroupBox20: TGroupBox;

GroupBox21: TGroupBox;

GroupBox22: TGroupBox;

GroupBox23: TGroupBox;

GroupBox 18: TGroupBox;

GroupBox4: TGroupBox;

GroupBox 15: TGroupBox;

GroupBox 19: TGroupBox;

Label20: TLabel;

Label21: TLabel;

Label22: TLabel;

Label23: TLabel;

Label24: TLabel;

Label25: TLabel;

Label26: TLabel;

Label27: TLabel;

Label28: TLabel;

Label29: TLabel;

Label30: TLabel;

Label31: TLabel;

Label32: TLabel;

••

73

Label33: TLabel;

Label34: TLabel;

Label35: TLabel;

Label36: TLabel;

Label3 7: TLabel;

Label38: TLabel;

Label39: TLabel;

Button8: TButton;

Button7: TButton;

Label40: TLabel;

Label4 l: TLabel;

Label42: TLabel;

Label43: TLabel;

Label44: TLabel;

Label7: TLabel;

GroupBox24: TGroupBox;

ol Ol: TPanel;

0201: TPanel;

0301: TPanel;

0401: TPanel;

0501: TPanel;

0502: TPanel;

0402: TPanel;

0302: TPanel;

0202: TPanel;

0102: TPanel;

0103: TPanel;

0203: TPanel;

0303: TPanel;

0403: TPanel;

0503: TPanel;

o104: TPanel;

0204: TPanel;

•

74

0304: TPanel;

0404: TPanel;

0504: TPanel;

Label54: TLabel;

Label53: TLabel;

Label52: TLabel;

Label5 l: TLabel;

Label50: TLabel;

Label48: TLabel;

Label47: TLabel;

Label46: TLabel;

Label45: TLabel;

Label49: TLabel;

Label 1 7: TLabel;

Edit14: TEdit;

Editl 7: TEdit;

Edit6: TEdit;

Editl: TEdit;

Edit3: TEdit;

Button3: TButton;

adc 1: TADOConnection;

Buttons: TButton;

procedure Button4Click(Sender: Tübject);

procedure Edit7Enter(Sender: TObject);

procedure ComboBoxlChange(Sender: TObject);
••

procedure goster(Sender: Tobject);

procedure FormCreate(Sender: Tübject);

procedure Edit8Enter(Sender: Tübject);

procedure DBGridl CellClick(Column: TColumn);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

75

procedure Edit2Change(Sender: TObject);

procedure Edit9Enter(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure RadioButtonl Click(Sender: TObject);

procedure RadioButtonlEnter(Sender: TObject);

procedure RadioButton2Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Edit15Change(Sender: TObject);

procedure TabbedNotebooklChange(Sender: TObject; NewTab: Integer;

var AllowChange: Boolean);

procedure RadioButton4Click(Sender: TObject);

procedure RadioButton5Click(Sender: TObject);

procedure RadioButton7Click(Sender: TObject);

procedure Button7Click(Sender: TObject);

procedure Button8Click(Sender: TObject);

procedure Buttonl Click(Sender: TObject);

procedure Edit16KeyPress(Sender: TObject; var Key: Char);

procedure MaskEdit2KeyPress(Sender: TObject; var Key: Char);

procedure olülMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o303MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

procedure Edit8Exit(Sender: TObject);
••

procedure MaskEdit3Exit(Sender: TObject);

procedure o201MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o504MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o301MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o401MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o501MouseMove(Sender: TObject; Shift: TShiftState; X,

76

Y: Integer);
procedure o102MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o202MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o302MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o402MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o502MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o 103MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o203MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o403MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o503MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o 104MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure o204MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
...

procedure o304MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure o404MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure MaskEdit3KeyPress(Sender: Tübject; var Key: Char);

procedure Edit2KeyPress(Sender: Tübject; var Key: Char);

procedure Button3Click(Sender: TObject);

procedure Button5Click(Sender: Tübject);

77

private

{ Private declarations }

public

{ Public declarations }

end;

var

Forml: TForml;

gonder:integer;

cambaz:integer;

implementation

{$R *.dfm}

function fiyat_goster(oda: string) :integer;

begin

form l .adq l .close;

forml .adql .SQL.clear;

forml.adql.sql.add('select * from rooms where roomno=:oda');

form l .adq 1.parameters [O].Value :=oda;

form 1 .adq 1. Open;
fiyat_goster:=form l .adq l .FieldByName('unitprice').Aslnteger;

end;
procedure TForml .Button4Click(Sender: Tübject);

begin
adsl.CommandText:='select * from customers';

ads l .Active:=true;

ads 1 .Insert;
ads l .FieldByName('identityno').AsString:=maskedit3 .Text;

ads l .FieldByName('name').AsString:=editS. Text;

ads 1 .FieldByName('sumame').AsString:=edit6.Text;

ads l .FieldByN ame('tel').AsString:=maskedit4. Text;

•

78

ads l .FieldByName('active').AsBoolean:=true;

adsl .Post;
gonder:=ads l .F ieldB yName('registerno').Aslnteger;

ads l .Active:=false;

adsl.CommandText:='select * from custreg';

ads l .Active:=true;

ads 1.Insert;
ads l .FieldByName('registerno').Aslnteger:=gonder;

ads l .FieldByName('howmany').value:=combobox l .Text;

adsl .FieldByName('roomno').AsString:=editl .Text;

ads l .FieldByName('enterdate').AsDateTime:=strtodate(edit7 .Text);

adsl.Post;

ads l .Active:=false;

adql.Close;

adq 1. SQL. Clear;
adql.SQL.Add('select * from rooms where roomno='"+editl.Text+'" ');

adql.Open;

adql.Edit;
adql .FieldByName('empty').Aslnteger:=adq l .fıeldbyname('empty').Aslnteger-

strtoint(comboboxl .Text);

adql.Post;

maskedit3. Text:='###########';

edit5.Text:=";

edit6.Text:=";

maskedit4.Text:=' () - ';

edit7.Text:=";

combo box 1.Text:=' .. choose';

editl.Text:=";

end;

II

79

procedure TForml.Edit7Enter(Sender: Tübject);

begin

edit? .Text:=datetostr(date);

end;

procedure TForml.ComboBoxlChange(Sender: Tübject);

begin

groupbox24.Visible:=true;

adql.Close;

adq l .SQL.Clear;

adql.SQL.Add('select * from rooms');

adql.Open;

adql.First;

repeat
Tpanel(F indcomponent(' o '+adq 1. fıeldbyname('roomno ') .asstring)) .color: =clMenu;

adql.Next;

until adq l .Eof;

adql.Close;

adql.SQL.Clear;
adql.SQL.Add('select * from rooms where empty>=:bull');

adq l .Parameters(O] .Value:=strtoint(comboboxl .Text);

adql.Open;
if adq l .RecordCount<>O then begin

adq l .First;
•

repeat
Tpanel(F indcom ponent(' o'+adq l .fıeldbyname('roomno ') .asstring)) .color: =cl blue;

adql.Next;

until adq l .Eof;

end

else showmessage('NOPE');

end;

80

procedure Tforml.goster(Sender: Tobject);

var

gelen:Tpanel;

begin

gelen:=Tpanel(sender);

adq 1. Close;

adql.SQL.Clear;

adq 1 .SQL.Add('select * from rooms where roomno=bul2');

adq 1 .Parameters[O] .Value:=copy(gelen.Caption,2,3);

adql.Open;
if adq 1 .FieldByName('empty').value=O then begin showmessage('this room is full');

editl.Text:=";

editl 7.text:=";

end

else

editl .text:=copy(gelen.Caption,2,4);

editl4.Visible:=false;

editl 7.Visible:=true;

editl 7 .text:=inttostr(adq 1 .FieldByName('unitprice').value);

if (strtoint(adq 1 .FieldByName('capacity').AsString)<strtoint(comboboxl .Text))

then begin showmessage('THIS ROOM ISNT FOR YOU');

editl.Text:=";

editl 7 .text:=";

end; •
if
(strtoint(adq 1 .FieldByName('capacity').AsString)>=(strtoint(comboboxl .Text))) and

(adql .FieldByName('empty').value<strtoint(comboboxl .Text)) then

showmessage('THIS ROOM IS FOR YOU BUT FULL');

end;

procedure TForml .Form.Create(Sender: TObject);

begin

adc 1 .Connected:=true;

81

groupbox24.Visible:=false;

editl 7.Visible:=false;

tabbednotebook l .Pagelndex:=O;

end;
procedure TForm l .Edit8Enter(Sender: TObject);

begin

edit8.Text:=datetostr(date);

end;

procedure TForm l .DBGrid 1 CellClick(Column: TColumn);

begin

edit2.Text:=adq l .fieldbyname('name').AsString;

edit3 .Text:=adq l .fieldbyname('sumame').AsString;

edit4.Text:=adq l .fieldbyname('enterdate').Value;

editl O .Text:=adq l .fieldbyname('unitprice').Value;

editl l .Text:=adq l .fieldbyname('identityno').Value;

editl2.Text:=adq l .fieldbyname('howmany').Value;

cambaz:=adq l .fieldbyname('customers.registemo') .Value;

end;

I

procedure TForml.FormClose(Sender: Tübject; var Action: TCloseAction);

begin

adc l .Connected:=false;

end;

procedure TF orm l .Edit2Change(Sender: Tübj ect);

begin

adql.Close;

adq l .SQL.Clear;

82

•

adq l .SQL.Add('select * from customers,custreg,rooms

and customers.registemo=custreg.registemo

where

and
rooms.roomno=custreg.roomno

active=true and name like:a');

adql.parameters[O].value:=edit2.text+'%';

adql.Open;

end;

procedure TForm l .Edit9Enter(Sender: TObject);

begin

edit9. Text:=inttostr(strtoint(editl O.Text)*strtoint(editl 2.Text)* strtoint(editl 3 .Text));

end;

procedure TForml .Button2Click(Sender: TObject);

var k:integer;

begin

adql.Close;

adq l .SQL.Clear;

adq l .SQL.Add('select
customers,custreg

(custreg.enterdate>=t 1)

where

and
* from

(customers.registemo=custreg.registemo)

(custreg.leavingdate<=t2)');

adql .Parameters[O].Value:=maskeditl .text;

adq l .Parameters[l] .Value:=maskedit2.text;

and

•
adql.Open;

k:=O;

adq l .First;

while not adq l .Eof do begin

k:=k+l;

adq 1.Next; end;
if k=O then showmessage('THERE IS NO ANY REGISTRY BETWEEN THESE

DATES');

83

end;

procedure TForm l .RadioButtonl Click(Sender: TObject);

begin
groupbox l .Visible:=true;

end;

procedure TForm l.RadioButton 1 Enter(Sender: TObject);

begin
groupbox l .Visible:=true;

end;

procedure TForm l .RadioButton2Click(Sender: TObject);

begin
groupbox2.Visible:=true;

end;

procedure TForml.Button6Click(Sender: TObject);

begin

adq l .Close;

adql.SQL.Clear;
adql.SQL.Add('select ' from customers,custreg where

(custom ers.registerno-custreg.registemo) and (custreg.odano-'"+editl 6 .text+"')');

adq 1. Open; "
if adq l.RecordCount-0 then showmessage('UNTIL NOW NOBODY HAVE STAYED

IN THIS ROOM');

end;

procedure TForml.EditlSChange(Sender: TObject);

begin

adq l .Close;

adq l .SQL.Clear;

84

adq l .SQL.Add('select * from customers,custreg where

customers.registemo=custreg.registemo and name like:a');

adq l .Parameters[O] .Value:=editl 5.Text+'%';

adql.Open;

end;

procedure TForml.TabbedNotebooklChange(Sender: TObject; NewTab: Integer;

var AllowChange: Boolean);

var i:integer;

begin

adq l .close;

adql.SQL.Clear;

for i:=20 to 39 do
tlabel(find component('label' +inttostr(i))). Caption:=";

radiobutton4. checked: =false;

radiobutton5 .checked:=false;

radiobutton7 .checked:=false;

end;

procedure TForml .RadioButton4Click(Sender: TObject);

begin

adq l .Close;

adql.SQL.Clear;

adq l .SQL.add('select

•

fromidentityno,name,sumame,roomno,howmany,enterdate

customers inner join custreg on customers.registemo=custreg.registemo where

active=true');

adql.Open;

end;

85

procedure TForın l .RadioButton5Click(Sender: TObject);

begin

adql.Close;

adq l .SQL.Clear;
adq l .SQL.add('select identityno,name,surname,enterdate,leavingdate from customers

inner join custreg on customers.registemo=custreg.registemo where active=false');

adql.Open;

end;

procedure TForınl .RadioButton7Click(Sender: TObject);

begin

adq 1. Close;

adql.SQL.Clear;

adq 1.SQL.add('select

identityno,name,sunıame,active,roomno,howmany,enterdate,leavingdate

customers inner join custreg on customers.registemo=custreg.registemo');

adql.Open;

end;

from

procedure TForınl.Button7Click(Sender: TObject);

var i:integer;

begin

adql.Close;

adql .SQL.Clear;

adql.SQL.Add('select * from rooms');

adql.Open;

i:=-1;

adqI .First;

while not adql .Eof do begin

i:=i+1;

86

TLabel(findcomponent('label'+inttostr(i+ 20))) .caption:=inttostr(strtoint(adq l .fieldbyna

me('capacity').asstring)-
adq l .fieldbyname('empty').asinteger)+'/'+adq l .fieldbyname('capacity').asstring;

adql.Next;

end;

end;

procedure TForml.Button8Click(Sender: Tübject);

var i:integer;

begin

adq l .Close;

adq l .SQL.Clear;

adql .SQL.Add('select * from rooms');

adql.Open;

i:=-1;

adq l .First;

while not adq l .Eof do begin

i:=i+ l;
TLabel(findcomponent('label'+inttostr(i +20))) .caption:=inttostr(adq l .fieldbyname('empt

y').asinteger)+'/'+adq l .fieldbyname('capacity').asstring;

adql.Next;

end;

end;
procedure TForml .Buttonl Click(Sender: Tübject);

begin

adq l .Close;

adql.SQL.Clear;

adq l .SQL.Add('select * from rooms,customers,custreg

and customers.registemo=custreg.registemo

where

and
rooms.roomno=custreg.roomno

customers .registemo=o l');

adq l .Parameters[O).Value:=cambaz;

87

adql.Open;

adql.Edit;
adql.FieldByName('leavingdate').AsDateTime:=strtodate(edit8.Text);

adq l .FieldByName('empty').Aslnteger:=adq l .FieldByName('empty').Aslnteger+strtoint

(edit12.text);
adq l .FieldByName('active').AsBoolean:=False;

adq l .FieldByName('total').Value:=strtoint(edit9.Text);

adql.Post;

editl l.Text:=";

edit2.Text:==";

edit3.Text:==";

edit4.Text:==";

edit8.Text:==";

edit9.Text:==";

editl O.Text:=";

edit12.Text:==";

edit13.Text:=";

end;

procedure TForml.Edit16KeyPress(Sender: TObject; var Key: Char);

begin

if key=# 13 then begin

adq l.Close;

adq l .SQL.Clear;
adq l .SQL.Add('select * from customers,custreg where

(customers.registemo=custreg.registemo) and (custreg.roomno=='"+editl 6.text+"')');

adql.Open;
if adq l .RecordCount=O then showmessage('UNTIL NOW NOBODY HAVE STA YED

IN THIS ROOM .. ');

end;

88

end;

procedure TForml.MaskEdit2KeyPress(Sender: Tübject; var Key: Char);

var k:integer;

begin

if key=# 13 then

begin

adq 1 .Close;

adql.SQL.Clear;

adq 1 .SQL.Add('select * from customers,custreg

(custreg.enterdate>=t 1)
(customers.registemo=custreg.registemo)

(custreg.leavingdate<=t2)');

adq 1 .Parameters[O] .Value:=maskeditl .text;

adq 1 .P ammeters [1].Value: =maskedit2. text;

and

where

and

adql.Open;

k:=O;

adq 1.First;

while not adq 1 .Eof do begin

k:=k+l;

adq 1.Next; end;
ifk=O then showmessage('THERE IS NO REGISTRY BETWEEN THESE DATES');

end;

end;

procedure TForml.olOlMouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin
editl 4.Text:=inttostr(fıyat_goster(' 1 O 1 '));

89

•

end;

procedure TF orın l .o303MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin
edit 14.Text:=inttostr(fiyat_goster('303 '));

end;

procedure TForın 1.Edit8Exit(Sender: Tübject);

begin
edit 13.Text:=floattostr(strtodate(edit8 .text)-adq l .fieldbyname('enterdate').AsDateTime);

end;

procedure TF orın l .MaskEdit3Exit(Sender: TObj ect);

var

i,s:integer;

begin

s:=O;
for i:=1 to length(maskedit3.Text) do begin

if copy(maskedit3.Text,i,1)<>'#' then s:=s+ 1;

end;
•• if s<l l then showmessage('ENTER MORE CHARACTER');

end;

procedure TForın l .o201MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

begin
editl 4.Text:=inttostr(fiyat_goster('20 l '));

end;

procedure TForınl.o504MouseMove(Sender: Tübject; Shift: TShiftState; X,

90

Y: Integer);

begin

edit 14.Text:=inttostr(fıyat_goster(' 504'));

end;

procedure TForml .o301MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fıyat_goster('301 '));

end;

procedure TForml.o401MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fıyat_goster('401 '));

end;

procedure TForm 1.o501 MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fıyat_goster('501 '));

end;

procedure TForm 1.o102MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fıyat_goster(' 102'));

end;

procedure TForm 1 .o202MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

91

editl 4.Text:=inttostr(fiyat_goster('202'));

end;

procedure TForml.o302MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

edit 14. Text:=inttostr(fiyat_goster('302'));

end;

procedure TForml .o402MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

edit 14.Text:=inttostr(fiyat_goster('402'));

end;

procedure TF orm 1 .o502MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fiyat_goster(' 502 '));

end;

procedure TForml.o103MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fiyat_goster(' 103'));
••

end;

procedure TForml .o203MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4. Text:=inttostr(fiyat_goster('203 '));

end;

92

procedure TForml.o403MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fiyat_goster('403 '));

end;

procedure TForml.o503MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

edit 14.Text:=inttostr(fiyat_goster(' 503 '));

end;

procedure TForml.o104MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

editl 4.Text:=inttostr(fiyat_goster(' 104'));

end;

procedure TForml.o204MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

edit 14. Text:=inttostr(fiyat_goster('204'));

end;

procedure TForml.o304MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

edit 14.Text:=inttostr(fiyat_goster('304'));

end;

procedure TForml.o404MouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);

begin

93

edit 14. Text:=inttostr(fiyat_goster(' 404'));

end;

procedure TForml.MaskEdit3KeyPress(Sender: Tübject; var Key: Char);

begin

if key=char(VK ~RETURN)then begin

key:=#0;

postmessage(Handle, WM_ NEXTDLGCTL,0,0);

end;

end;

procedure TForml.Edit2KeyPress(Sender: Tübject; var Key: Char);

begin

if key=char(VK _RETURN)then begin

key:=#0;

postmessage(Handle, WM_ NEXTDLGCTL,0,0);

end;

end;

procedure TForml .Button3Click(Sender: Tübject);

begin

editl 1 .Text:=";

edit2.Text:=";

edit3.Text:=";

edit4.Text:=";

edit8.Text:=";

edit9.Text:=";

editlO.Text:=";

edit12.Text:=";

edit13.Text:=";

end;

procedure TForml .Button5Click(Sender: Tübject);

94

•

var

a:integer;

begin

a:=messagedlg('ARE YOU SURE?',mtconfirmation,[mbyes, mbno],O);

if a=mryes then

application. Terminate;

end;

end.

•

95

