
NEAR EAST UNIVERS11~Y

Faculty of Engineering

epartment of Computer Engineering

STATE AGENT WEB SITE

Graduation Project
Com-400

Submitted by: .Selcuk DURAN (980687)

Submitted to: Assoc. Prof. Dr Rahib ABiYEV

Nicosia - 2004

ACKNOWLEDGEMENT

"I am very grateful to my parents and all ofmy teachers who gave me chance to finish
The Near East University

I would like to thank my supervisor Ass Prof Dr RAHIB ABIYEV for his invaluable advice and
belief in my work and myself over the course of this Graduation Project

I thank a lot to my family for their patience

And Thanks very much to all of my friends"

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF CONTENTS

INTRODUCTION

CHAPTER ONE: INTRODUCING ACTIVE SERVER

PAGES

1.1 Introduction

1.2 Scripting

1.3 Components

1.4 Active Server Components

1.5 ActiveX Controls

1.6 Seeing Where ASP and HTTP Fit Together

1. 7 Special Cases
1.7.1 Dynamic Client-Side Scripts

1. 7 .2 HTML Layout Controls

1.8 Understanding the Structure of Active Server Pages
1.8. l HTML, All by Itself

1.8.2 HTML Mixed with .asp Source Code

1.8.3 Server-Side Includes

CHAPTER 2: INTEGRATING VBSCRIPT INTO HTML
2.1 A Brief History of Microsoft's BASIC Languages

2.2 Visual Basic Scripting Edition

2.3 Client-Side Scripting

2.4 Server-Side Scripting

2.5 Java Script, REXX, and Other Scripting Languages

CHAPTER 3: INTRODUCTION TO SQL
3 .1 A Brief History of SQL

3.2 A Brief History of Databases

1

11

1

2

2

2

3

4

5

6

8

8

9

9

9

9

10

12

12

13

14

15

16

17

17

17

3 .2.1 Designing the Database Structure

3.2.2 Today's Database Landscape

3.2.3 A Cross-Product Language

3.2.4 Early Implementations

3.2.5 SQL and Client/Server Application Development

3 .3 An Overview of SQL

3.3.1 Popular SQL Implementations

3 .3 .1.1 Microsoft Access

3 .3 .1.2 Personal Oracle 7

3.3.1.3 Microsoft Query

3.3.1.4 Open Database Connectivity (ODBC)

3.3.2 SQL in Application Programming

CHAPTER 4: INTRODUCING ACTIVEX DATA OBJECTS

4.1 Introduction

4.2 The Family Tree

4.3 OLE DB

4.4 Objects versus Components

4.5 ADO and Server Objects

4.6 The ADO Object Model

4.6.1 Exposed Objects

4.6.2 The Connection Object

4.6.3 The Command Object

4.6.4 The RecordSet Object

4.7 Methods

4.7.1 Abandon

4.7.2 CreateObject

4.7.3 Open

4.7.4 Requery

4.7.5 Update

4. 8 Properties

18

18

19

20

20

:20

21

21

21

22

22

22

24

24

24

25

27

28

30

30

30

31

32

33

33

33

33

34

34

34

4.8.1 ActiveConnection 34

4.8.2 CursorType 34

4.8.3 LockType 34

4.8.4 Name 34

4.8.5 Source 35

4.9 Essential ADO 35

4. 9 .1 Preliminaries 35

4.9.2 Concurrency and Locking Issues 35

4.9.3 Keys, Indexes, and Bookmarks 36

CHAPTER 5: DESCRIPTION OF ESTATE AGENT WEB

PAGE
37

5.1 Introduction 37

5 .2 Searching an Estate 37

5 .3 Search Estate Agents 37

5 .4 Search Countries Estate Agents 38

5.5 Rent I Sell an Agent 1' 39

5.6 Estate Agent Registration 40

5.7 Database & Tables 40

CHAPTER 1

INTRODUCING ACTIVE SERVER PAGES

1.1 Introduction
Active Server Pages is an open, compile-free application environment in which you can

combine HTML, scripts, and reusable ActiveX server components to create dynamic and

powerful Web-based business solutions. Active Server Pages enables server side scripting for JIS

with native support for both VBScript and JScript.

Or we can say, Active Server Pages (ASPs) are Web pages that contain server-side

scripts in addition to the usual mixture of text and HTML tags. Server-side scripts are special

commands you put in Web pages that are processed before the pages are sent from the server to

the web-browser of someone who's visiting your website. When you type a URL in the Address

box or click a link on a webpage, you're asking a web-server on a computer somewhere to send a

file to the web-browser (also called a "client") on your computer. If that file is a normal HTML

file, it looks the same when your web-browser receives it as it did before the server sent it. After

receiving the file, your web-browser displays its contents as a combination of text, images, and

sounds. In the case of an Active Server Page, the process is similar, except there's an extra

processing step that takes place just before the server sends the file.

1.2 Scripting
Programming Active Server Pages with VBScript, client-side scripting and server-side

scripting have different missions in life. Client-side scripts most often add improved user

interface and data validation (when HTML forms are used). Server-side scripts, especially in

Active Server Pages, are practically unlimited; but they are primarily used to capture business

rules and access to data.

The important thing to stress here, however, is that server-side can, if properly

implemented, create client-side scripts. One of the most important questions in Internet

development is the one that makes you choose between programming to the broadest audience

and programming for the richest on-line experience. To the extent that you choose the former,

server-side scripting is important for two reasons:

2

1. Server-side scripts can sense the capabilities of requesting client programs.

2. They can be as powerful as you, the designer, want, regardless of how thin the client is.

For example, the thinnest client on the Internet is the one that cannot render graphics of

- any kind. The ALT parameter of the IMG tag in HTML originally was intended to help such

clients interpret important parts of the screen that they otherwise couldn't see, by describing the

area in words instead of an image. With an Active Server Page, your application can sense when

such a browser (for that's what these kinds of programs are-as opposed to Web client programs

that have more processing power) is making a request of your Web site. You can then present

such graphics-challenged browsers with whole paragraphs, not merely short expressions, to give

hem as much information as possible, given their inherent limitations. In today's Internet, a major

difference between Web clients brands is whether they recognize ActiveX controls or not. Again,

the Active Server Page doesn't care one way or the other. If it senses the ability to interpret

ActiveX controls, it presents them; otherwise, it includes static images (or text, if necessary). Of

far greater importance than these mundane issues is the fact that Active Server Pages promote a

new level of processing power into the Web server. It is critical to remember that the Web server

was never designed to be an application server. It was designed to deliver HTML. This remains

its primary mission, even on the Active Platform, but with Active Server Pages, this design

constraint ceases to be a constraint at al I.

The scripts that are contained in Active Server Pages, especially those driven by Active

Server components, bring virtually all the power of traditional client/server programming to the

Web server. Indeed, to the extent that Active Server components are utilized, Active Server Pages

can do things that even the most sophisticated client/server programs can't. That's a pretty strong

statement.

1.3 Components
Components may be the single most important feature of Active Server Pages. Their

importance to ASP is understandable when you step back and see how pervasively Microsoft has

embraced components in virtually everything they create. Everything from the Internet Explorer

to Windows NT 5.0 has been "componentized" by Microsoft engineers. Components give

programmers many advantages, including lower development time and cost, added flexibility,

easier maintenance, and most important, easy scale ability. For the ASP development community,

3

on the server-side, server components are either intrinsic to the Active Server or they are user

defined. On the client-side, ActiveX controls provide functionality similar to server components.

1.4 Active Server Components
Active Server Components basically do two things. First, they directly expose operating

system services to your Active Server Pages. Second, they encapsulate business rules in a way

that is extremely easy to program. Perhaps even more important in the long run, Active Server
'
Components are easy to create. That is, by using programming tools and environments optimized

to work with the Active Platform, writing sophisticated server components is no longer the

province of the advanced programmer.

There is a truism in programming that the best programmers are users. Active Server

components will prove that not only to be true but important, as well. In the summer of 1996, it

was estimated that the number of lines of Visual Basic code finally exceeded the number of lines

of code written in COBOL, the perennial champ. Perhaps the biggest reason Visual Basic is so

prolific is that users, not professional programmers, wrote these "extra" lines of code. Active

Server component development will bring the same ease of programming to the Internet that

Visual Basic brought to creating Windows programs. The Browser Capabilities component is the

component that permits an Active Server Page to determine what kind of browser or Web client

program is making a request. It makes this determination by looking to the User Agent HTTP

header and looking up the identified browser in the browscap.ini file. All of the listed features of

the browser are exposed as properties of the Browser Capabilities component.

There is one Active Server Component that may keep you up nights, though. It's the

Database Access component, and it exploits an operating system service of earthshaking

importance: objects in the directory system. Actually, the earth won't shake until Windows NT

5.0 ships in 1997; at that time, ActiveX Data Objects (ADO) will be incorporated into the

Windows NT Directory Services. That is, the directory system will be able to be managed like a

database. Files become database objects with properties that will be exposed to ADO. You can

already see what this will look like when you select the Properties menu option of a file on your

Windows Desktop. By the way, these directory services aren't restricted to the Windows Explorer

and the local file system; they reach out to every file system on the Internet!

We mentioned that a key design goal of the ADO team was to enable universal access to

information-they do mean universal. To ADO, it won't matter if the data is a record in an ODBC

database or a message stored in Exchange Server. It won't matter if the data is stored on your own

4

hard drive or on one in the Smithsonian. ADO will find it and present it to your application

(possession is no longer nine-tenths of the law). Again, this is the logical conclusion of the Web.

The Web doesn't let you take possession of HTML. ADO doesn't let you possess the data, either;

it just makes it available to your application.

Now, imagine programming when most of the work done by your applications is done

with the aid of other peoples' server components. Whether you're using a server component to

access an interactive feature in your Web site or you access network functionality in Windows

NT 5.0, you will be able to do far more programming of the real task at hand. No more time

wasted doing things that every other programmer in the world is doing at the same time you are.

Even if the objects exposed by Active Server components don't qualify as "true" objects in the

minds of the purists, the kind of object-centric programming that will become commonplace in

Active Server Pages development will have an impact great enough that most of us will forget

about polymorphism and inheritance ..

1.5 ActiveX Controls
ActiveX controls are used like server components, only on the client side. That is, you

instantiate an ActiveX control in a client-side script with the OBJECT tag, and then you

manipulate this control through its exposed properties and methods. Most ActiveX controls

enhance the user interface of your Web applications, but some can simply return a value directly

to your application. For example, you can write an ActiveX control that makes a complex

calculation from given inputs. The control would receive the inputs through its properties, and the

resulting calculation would be returned to the calling application through a separate property.

On the other hand, Active Server components never have a user interface. They are

designed to render services to your server application for the purpose of producing standard

HTML output. In other words, Active Server Pages are never used directly by people. Active

Server Pages produce the HTML that users see, and that HTML may include ActiveX controls.

So sensing browser capabilities or manipulating text files or providing HTML source code with a

randomly selected image or filling the controls on an HTML form with data from a database are

all examples of the usefulness of server components.

You may be tempted to suggest that Microsoft also wants you to use ActiveX controls

for self-serving reasons, but this allegation carries less weight now that the Open Group is

responsible for the standard.

5

,~-~-------, .•..
: .i'\,j:~,');'(~'.l ~

I ,\:.:Uve:,.._ Sto::'i'!::r 1 .
. rr.:mrt:ncr:tho,-

I ~di~~:-s I : ..:.('.~~,~~~-;

I i.:'.'~=~-~:1
,,WL-~v~r
[=l:.t-"l;';,':.C

'""-··------··.,,.-

Figure U The programming environment of the Active Server is both rich and accessible to all

programming skill levels.

1.6 Seeing Where ASP and HTTP Fit Together
There really are three entities involved in an HTTP transaction: the Web client, the Web

server, and the human being. The Web client and Web server communicate using HTTP headers.

These are collections of data that the client and server exchange with one another to ensure that,

regardless of the contents of the body of the HTTP transaction, the entire transaction remains

coherent and complete. The data displayed to the human being is transmitted from the Web

server to the Web client, and the Web client transfers the text and the interpreted HTML source

code to the screen or printer, so the human can read it.

Active Server Pages permit the developer to affect all facets of the HTTP transaction.

The ASP objects known as Request and Response interact with the HTTP body and headers,

respectively. This feature gives the ASP developer almost unlimited flexibility in management of

interaction on the Web. For example, using these two objects lets the developer authenticate

secure HTTP transactions and control the contents of the ST A TUS header, blocking access to

6

requested content when such access would violate established security policy. Even complex

authentication schemes can be implemented using new headers defined just for your ASP

application.

The Active Server is implemented as an ISAPI filter running under IIS. Whenever a

Web client makes an HTTP request of a Web server, the Active Server ISAPI filter gets a chance

'to intercept the request. If the request is for an .asp file, the Active Server takes over from lIS,

parses the entire file from top to bottom, processes the server script(s), and returns an HTML

output file to HS. JIS then returns this data stream to the requesting Web client.

--- --
0

BNJvtser requests S£unoJB,HTA4
tram Viieb Server

Brawser Server

Server send.,; 5.Jmpfe, HTrv1
ta /Jrovtsifr tiom file system

Server
·•.. . - -- ···-·-·. ··-····--- -····

Figure 1.2 Static web content: request and delivery

7

,---~--
' '

- --· - ·-- ··--- -- - -- - ---

A/i/P posee« the /1rtfJtp1eted
(new ffTML} .back to US
tor s,-&ruM111 to. the cNent

Figure !.3 Dynamically generated web content: request and delivery.

1. 7 Special Cases
With sufficient experience, you may find that there's nothing beyond your reach with ASP

extending your grasp. This new power won't come without exacting a cost, however. To really

improve your reach with Active Server Pages you will have to meet the following two

challenges, at least.

1. .asp files can populate client-side scripting objects with data that is accessed through ADO.

2. They can be used to generate data inside the Microsoft Layout Control's .alx file.

1.7.1 Dynamic Client-Side Scripts

The first challenge presents itself when the server is called to create a dynamic client-side

script. The most frequent occurrence of this almost certainly will be in filling out on-line forms.

For example, say you have an HTML FORM with SELECT tags and TEXT fields in it. Further

8

suppose that the specific variables displayed in these controls are stored in your database. The

OnLoad event of your scripted page would normally populate the SELECT tag. With ASP, the

server-side script would first fetch the SELECT options from the database, and it would then be

ible to write the client-side script that would run when the OnLoad event fired. The result is a

Iynamic SELECT tag.

1.7.2 HTML Layout Controls
Once you get past the more common dynamic HTML challenge, you will likely be

confronted by the second challenge: using the ActiveX Layout Control in your .asp file. The trick

s to give the file created in the ActiveX Control Pad an .asp extension, instead of the standard

I\LX value. There are other requirements that have to do with protecting the .asp delimiters

embedded in the .alx/.asp file, but details dictate a prerequisite knowledge of .asp syntax that you

lon't learn until Chapter 11, "Building a Foundation of Interactivity with Request and Response

)bjects."

l.8 Understanding the Structure of Active Server Pages
There is no structure, per se, in an .asp file that isn't already there in the structure of the

-ITML, Visual Basic, or JavaScript code. In this respect, .asp files are not really programs.

indeed, a single .asp file can implement any combination of supported scripting engines, using

anguages as diverse as Perl and Rexx to Visual Basic and JavaScript. ASP is an "ecumenical"

orogramming environment.

l.8.1 HTML, All by Itself
It is acceptable, though not necessarily recommended, to rename you HTML files with the

asp extension and turn them all into Active Server Pages. That's all that's required to make an

I\SP application. If you only want to control more of the HTTP headers in your HTML files, then

vou may see minimal .asp source code in those renamed HTML files. But if you want to turbo

charge those sluggish old HTML files, or if you want to stop maintaining two versions of your

Web site (one for the interactive-impaired), then read on.

l.8.2 HTML Mixed with .asp Source Code
Once you choose to add .asp source code to your HTML files, you have to make several

nore choices. If you are silent, the Active Server Engine makes a few of these choices on your

9

behalf. The choices fall into two categories: to use scripting or not and, if so, what kind(s) of

scripting.

For the purposes of this discussion, .asp source code consists of either native ASP

commands or scripting commands. Native commands are those that access Active Server Engine

objects and components. Scripting commands rely on a particular syntax, as well. This means that

'you have to tell the Active Server Engine which language to use to interpret the commands. If

you are silent, the engine will use VBScript by default.

This choice is not trivial when you are using Active Server Pages to write client-side

scripts. As soon as you opt for this feature in your Web site, you're back to square one: are you

writing to a captive audience such as an intranet, where all the client programs are the same brand

and version? Even if all the browsers are the same brand and version, do they all support

VBScript, or will you have to rely on the more ubiquitous JavaScript?

As noted in the introduction to this section, you don't have to choose one scripting engine.

Choose the ones that suit your needs. If you have a nifty Perl program that you'd like to use, use

it. If most of your server-side scripting will be done in VBScript because that's the language in

which you are most fluent, use it. And if you need a generic, client-side scripting engine, use

JavaScript, while you're at it.

1.8.3 Server-Side Includes
Server-Side lncludes is powerful tools for programmer productivity. In a sense, they are

the most basic kind of reusable code. Their primary purpose is to insert text file contents into .asp

files. Server-Side Includes can contain other Server-Side Includes, so you can stuff an incredible

amount of text into an .. asp file with a single command.

Because Server-Side Includes are included in your .asp files before any of the files' ASP

commands are executed, Server-Side Includes can't do anything fancy, such as looking up

database records. They can, however, call other Server-Side Includes. Server-Side Includes

inserts text in exactly the same place in your file as they are located. In other words, they replace

themselves at runtime. This distinction can be important when the resulting text has a particular

role to play and that role has a particular place in the file to play it. At other times, this is not so

important. One of the most common uses for the Server-Side Include is when you need to refer to

constants in your .asp source code.

10

A final point about Server-Side Includes is that they really don't add any marginal

overhead. In a UNIX shop, however, .html files are usually not opened before they are sent on to

the client program. But to process a Server-Side Include the server must open the .html file and

the Server-Side Include file. It must then insert the text in the Server-Side Include into the .html

file at the proper location :finally; it must close the .html file and send it on to the Web client.

'Under the Active Server, the .asp file has to be opened anyway, so the extra effort of inserting the

text is negligible. Anyway, this entire file l/0 is processing in the address space of Windows NT,

so even in the worst case, the overhead of processing .asp files in this way is nothing compared to

the power you get in the bargain.

11

CHAPTER2 ,
1t:NTJB:1:;JKATING VBSCRIPT INTO HTML

2.1 A Brief History ol Microsoft's BASIC Languages
The history of the B11. SIC language is a good place to start when putting VB Script and

Active Server Pages develonnent into perspective. The Beginners All Purpose Symbolic

Instruction Code, rno-e cnmmonly known as BASIC, was developed in 1964 at Dartmouth

College by Kenney and (urtz. It was initially designed to provide students with an easy to

understand procedural language, which would be a stepping stone to more powerful languages

like FORTRAN. <In the intervening 30+ years, a great deal has happened to this introductory

computer language.

The language has ;.J;rown and become more feature-rich over the years due mainly to it

vast acceptance in the mar ketplace. To understand the evolution of the BASIC language and hov

it has become the ddi.L'lt ar:guage of Active Server Pages scripting, we begin our story in 197:

when a young man rn·xni:cl Bill Gates, was attending Harvard. Attracted by an article about th

forthcoming M.I.T..S. Alt: ir computer, Paul Allen and Bill Gates developed a version of BASH

that would run on the Altair and was eventually licensed to M.I.T.S. for their Altair computer

When version 2.f• wa s r::J~asc;d later that same year, it was available in two versions, a 4K and a1

8K. Imagine the ent :·~ d -velopment system implemented in 4096 bytes! Today, you would b

hard-pressed to fir.d c. Micoucft Word template that is that small. Basic was the first product eve

sold by Microsoft. 'i .,11;0 .ears later, after porting their version of BASIC to other platform

(CP/M, for exan pk· t! 1;: e «: usive license with M.I.T.S. for Microsoft Basic ended. In l 97S

Microsoft rel e 1~:.s: J,; ~ .. Ja: i-:: tor the 8086, a 16-bit product.

Bill Ge.ti':' 1·,G 1 Ht,;: ,)~,portunity to provide the operating system for the new IBM persona

computer after liJtvl',. cou.ting of Digital Research lnc. to license their CP/M operating systen

failed. Microsof I ice i,,_;j ::1t: ;;CP-DOS operating system and modified it to run on the IBM-PC

The MS-DO:) JJ:2t,.lir i: ~,) s.ern version 1.0, bundled with MS-BASIC was the engine driving th

beginning of th: ., '.:rs,,J) ii 1 :,: rn purer revolution.

Over th i;:m; vlioros oft saw how attractive BASIC was and created a compiler for th,

language in the . :1rn o: ()11,dBasic. QuickBasic reigned supreme until version 4.5, when it wa

replaced wit! 11:: ;_ n ::, : : • rofessional Development System).

12

We h ., · ; , I(~ <l i.1 I hat spring of 1991 that many of our lives were going to change s,

dramatically 'i: ua: B ; 1: IV,Ls announced at the Windows World '91 conference on May 2(

1991. The v:i1wi I::, si c::•'innrnent was to provide graphical application development and ai

integrated deo :. :; : r Jt; I, i -:r::ate compiled executable windows programs, all using the BASH

language. M 11 \' '\ 1: r.: ,1 11,:; 1 levelopers still remember the first time that they used Visual Basi

version 1.0. ·, i' r th n r1i11§ their way though learning the ins and outs of the C language am

building Wi1 : .1·,, '!., :q p, ::s,li)m with Microsoft C and the SOK, they couldn't believe the powe

inherent in tl : n :i,: u 1 ~; l i tic visual development package.

Visur I H ui,:: 1< : Vv indows was followed by Visual Basic for DOS. When the Drn

version cam: ,:,· it, tl 1:t: vnri:: (and still are) many programmers with DOS machines in ou

companies. I :, [JO': · ·;:rsi:in of VB addressed the RAD methodology on the DOS platform

Even though ;J i: 1 t{J(i L c: never made it past version 1.0, it was a useful tool for creating graphica

applications ·: 1· · t:: CO ·1 environment.

By ti ~. 1 .nc '/ sual Basic version 4.0 was released in 1995, countless numbers o

program men \'. r ;: h 1c ked o 1 .he Visual Basic development environment. It's easy learniru

curve, intuiti . 1. i I H:rfD ,, and bu.idled components, combined with incredible extensibility and it:

tightly integr.n erl env re nment make it the logical choice for millions of developers each day.

2.2 Visual f.':21;,k Seripting Edition
The .cri; tir, g edition o ;' Visual Basic is a smaller subset of the Visual Basic for

Applications language. lt is intended for use in Inter/intranet application development and is

currently supported in Microsoft Internet Explorer version 3.0 and above. It brings much of the

power and flexibility of the Visual Basic language to the Internet and intranet. On the client side,

there is the opportunity to interact with ActiveX controls to provide active and interesting

content. On the server-side, the scripting language is used and integrated within HTML to

provide a new level of functionality and ease of use in Web site development.

For VB or VBA programmers, the transition to Active Server Pages development using

VBScript from a traditional client/server environment will be less a challenge of learning the

idiosyncrasies of a sister language than a challenge of changing to the new net development

paradigm. Programming in any language consists of expressions, statements, and procedures. The

trick is to figure out how the language integrates with the environment in which it will be

implemented. In the case of VB or VBA, the environment is the Windows operating system.

13

VBScript, on the other hand, will be implemented on the client, using ActiveX controls,

as well as on the server in ASP, integrating a variety of components to create dynamic pages.

You will be dealing with, not only the scripting language, but also its integration into HTML

code. At first, having your code in pieces throughout the HTML page will take some getting used

to. But, just as it was a struggle to master the VB IDE, you will master VBScript and Active

Server Pages development.

If you are coming to Active Server Pages development from a strictly HTML background,

you also will have a learning curve to climb. If you have been developing Perl or REXX scripts,

the language features of VBScript will not be that foreign to you. Also, you have been used to

adding additional tags as the HTML standard emerges. You can treat VBScript and the associated

implementation as just some additional tags to integrate. But, be sure to utilize the new

components that ship with Active Server Pages. This powerful set of ASP components includes

such features as session and application management, and database connectivity. It would be very

easy to use VBScript for some minor chores and revert back to the old CGI way of doing things

for database access and other local processing tasks.

2.3 Client-Side Scripting
Client-side scripting refers to the scripts that are interpreted and executed in the client

browser. When you are scripting for the client, you have access to the object model available

within the browser.

There are a number of tools available to create client-side pages and their associated

scripting. The ActiveX Control Pad is a good example of such tools. This Microsoft developed

freely available product enables you to design Web pages, adding ActiveX controls and standard

HTML fields at design time. The program then generates the HTML code to create the page.

After the page has been created, you can edit the file and add scripting to provide such client-side

features as field validation, custom responses to user actions, and a host of other capabilities

inherent in the client's browser.

As mentioned previously, the opportunity for field validation of data at the client is an

important feature of client-side scripting. You can have the page validate the data before it is sent

to the server. This ensures that you will not receive a message immediately back from the server

requesting you to provide complete, or correct, information. In addition to providing validation

errors more quickly to the user, this also can reduce network traffic.

14

2.4 Server-Side Scripting
Now we get to the meat and potatoes of our scripting discussion. Server-side scripting

occurs when the scripts within the page are executed at the server, before the page is ever sent to

the client browser, as shown in Figure 2.1. This is an incredibly important distinction. It means

that the server is responsible for generating the HTML that is ultimately sent to the client. You do

not have to worry about the client connecting to a database, reading from a file, querying an on

line service, or any of the thousands of other actions that take place on the server to fulfill the

client request.

Active Server Pages provides server-side scripting for the Internet Information Server

Web server. In addition to enabling custom scripting to be developed, you can also integrate

almost any ActiveX component (that doesn't require a user interface, of course) into your server

scripts. This opens the door wide and enables a level of functionality that was difficult, if not

impossible, to achieve with traditional methods of server-side processing.

D Ac1rve Server
P~et

1,atp TIies) ;=,., ,., .,_.

Dynamc
HTML Fik:

Scripting
i= . " cnqme

/" ,___. .•. ~
IIS Server

Figure 2.1 Active Server Pages scripts execute on the server before passing the page to the client.

Server-side scripting blocks are executed at the server when the ASP interpreter finds the

scripting tag with the R UNAT attribute set to SERVER. In code, it looks like this:

<LANGU/\GL0VBScript RUNA'f:,SE'.RVER>

15

When an Active Server Pages page is requested, the server will call ASP. The .asp file is

read through from top to bottom. Any scripting that needs to execute on the server is performed,

and then the dynamically created HTML page is sent back to the client.

Notice that the code in the CheckField subroutine creates a message box to respond to

user input. If you were to mistakenly add the RUNAT=SERVER to the client code, the message

-box would never be shown on the client because at the server, there is no interface to show a

message box upon. But, what you could do at the server is generate custom messages based upon

the time of day, or based upon data in a database and pop those messages in the client browser

when the validation takes place. You can do this by dynamically generating client-side scripts

from the server.

2.5 Java Script, REXX, and Other Scripting Languages
As discussed in the section "Changing the Primary Scripting Language," the default

language of Active Server Pages is VBScript. Java Script is also supported by ASP "out-of-the

box." The OLE object model for scripting engines, which Active Server Pages supports, enables

you to easily integrate other scripting languages and their associated engines into ASP.

The ability to host a variety of languages within the Active Server Pages environment is

an incredibly powerful feature. If you are a developer with years of experience generating Perl

scripts, there is no need to forgo all of that valuable knowledge. You can immediately become

productive in ASP development. As you begin to learn VBScript or]Script you will be able to

incorporate additional features such as dynamic client-side scripting.

REXX is one of the most widely used scripting/macro languages in existence today. It is

available on platforms ranging from OS/2 to the AS/400 to the mainframe. There are even

versions of REXX implemented today as visual languages. VisPro/REXX is one such example of

a visual REXX environment. This OS/2 application provides an easy to use and incredibly

powerful visual development metaphor, leveraging the REXX language.

For the countless REXX developers working in development today, the ability to plug a

REXX scripting engine into Active Server Pages once again opens the gates wide to let the

greatest number of people maximize their Inter/intranet development.

16

CHAPTER3

INTRODUCTION TO SQL

3.1 A Brief History of SQL
The history of SQL begins in an IBM laboratory in San Jose, California, where SQL was

developed in the late 1970s. The initials stand for Structured Query Language, and the language

itself is often referred to as "sequel." It was originally developed for IBM's D82 product (a

relational database management system, or RDBMS, that can still be bought today for various

platforms and environments). In fact, SQL makes an RDBMS possible. SQL is a nonprocedural

language, in contrast to the procedural or third generation languages (3GLs) such as COBOL and

C that had been created up to that time. The characteristic that differentiates a DBMS from an

RDBMS is that the RDBMS provides a set-oriented database language. For most RDBMSs, this
'

set-oriented database language is SQL. Set oriented means that SQL processes sets of data in

groups.

Two standards organizations, the American National Standards Institute (ANS]) and the

International Standards Organization (ISO), currently promote SQL standards to industry. The

ANSJ-92 standard is the standard for the SQL used throughout this book. Although these

standard-making bodies prepare standards for database system designers to follow, all database

products differ from the ANSI standard to some degree. In addition, most systems provide some

proprietary extensions to SQL that extend the language into a true procedural language. We have

used various RDBMSs to prepare the examples in this book to give you an idea of what to expect

from the common database systems. (We discuss procedural SQL--known as PL/SQL--on Day

18, "PL/SQL: An Introduction," and Transact-SQL on Day 19, "Transact-SQL: An

Introduction.")

3.2 A Brief History of Databases
A little background on the evolution of databases and database theory will help you

understand the workings of SQL. Database systems store information in every conceivable

business environment. From large tracking databases such as airline reservation systems to a

child's baseball card collection, database systems store and distribute the data that we depend on.

Until the last few years, large database systems could be run only on large mainframe computers.

17

These machines have traditionally been expensive to design, purchase, and maintain. However,

today's generation of powerful, inexpensive workstation computers enables programmers to

design software that maintains and distributes data quickly and inexpensively.

3.2.1 Designing the Database Structure
The most important decision for a database designer, after the hardware platform and the

RDBMS have been chosen, is the structure of the tables. Decisions made at this stage of the

design can affect performance and programming later during the development process. The

process of separating data into distinct, unique sets is called normalization.

3.2.2 Today's Database Landscape
Computing technology has made a permanent change in the ways businesses work around

the world. Information that was at one time stored in warehouses full of filing cabinets can now

be accessed instantaneously at the click of a mouse button. Orders placed by customers in foreign

countries can now be instantly processed on the floor of a manufacturing facility. Although 20

years ago much of this information had been transported onto corporate mainframe databases,

offices still operated in a batch processing environment. If a query needed to be performed,

someone notified the management information systems (MIS) department; the requested data was

delivered as soon as possible (though often not soon enough).

In addition to the development of the relational database model, two technologies led to

the rapid growth of what are now called client/server database systems. The first important

technology was the personal computer. Inexpensive, easy-to-use applications such as Lotus 1-2-3

and Word Perfect enabled employees (and home computer users) to create documents and

manage data quickly and accurately. Users became accustomed to continually upgrading systems

because the rate of change was so rapid, even as the price of the more advanced systems

continued to fall.

The second important technology was the local area network (LAN) and its integration

into offices across the world. Although users were accustomed to terminal connections to a

corporate mainframe, now word processing files could be stored locally within an office and

accessed from any computer attached to the network. After the Apple Macintosh introduced a

friendly graphical user interface, computers were not only inexpensive and powerful but also

easy to use. In addition, they could be accessed from remote sites, and large amounts of data

18

could be off-leaded to departmental data servers. During this time of rapid change and

advancement, a new type of system appeared. Called client/server development because

processing is split between client computers and a database server, this new breed of application

was a radical change from main frame based application programming. Among the many

advantages of h1: ,::re of architecture are
• Reduced maintenance costs

• Reduced network load (processing occurs on database server or client computer)

• Multiple operating systems that can interoperate as long as they share a common

network prot. ,(o 1

• Im] n:,',. 1,:'. J rtr: integrity owing to centralized data location
In Implementing Client/Server Computing, Bernard H. Boar defines client/server

computing as follows:

Clien '. ,· d'r, -o.nputing is a processing model in which a single application is partitioned

between mul .i ii. processors (front-end and back-end) and the processors cooperate (transparent

to the end use.') :,, er mplete the processing as a single unified task. Implementing Client/Server

Computing 1'. :;\ i .:n f .c::r ver bond product ties the processors together to provide a single system

image (illusi , 1:1 ;·; It,, L",;: ible resources are positioned as requestor clients that access authorized

services. Thi . 11: '.,i t:::,:n ff is endlessly recursive; in turn, servers can become clients and request

services of o h ::·: ,•: rv m on the network, and so on and so on.

This ,; i: uf qr lication development requires an entirely new set of programming skills.

User interfa ;; r, ·.: 111 n mng is now written for graphical user interfaces, whether it be MS

Windows, II ·r .J :1:~./'. 1\.r1ple Macintosh, or the UNIX X-Window system. Using SQL and a

network con :t,:! : 1, h. application can interface to a database residing on a remote server. The

increased po 1 , 1· ,1· }, »s :i;n::i.l computer hardware enables critical database information to be stored

on a relative y ;':(p,::1 11 :: standalone server. In addition, this server can be replaced later with

ittle or no cl ,l 11..; .o It. (lieut applications.

3.2.3A Cros ·· 111· llll 11: :r .anguage
You , ·· ,·p;)') the basic concepts introduced in this book in many environments=for

.xamp le, Mi ·r 11 ,:! r 1>. 1:::·; -unning on a single-user Windows application or SQL Server running

,:1t,1 100 US· r r:, ,1ric:1: :111::. Ut ,: of SQL's greatest benefits is that it is truly a cross-platform

19

! .nguage anr 11 1. i·,:,i:~ ·,J o.luct language. Because it is also what programmers refer to as a high

level or fou: Ji.. ~:n:~1<J o : 1ar1gllage (4GL), a large amount of work can be donehigher-level

n-jurge 4G, (nut I·.,,: ·c.·:11irn1) language fourth-generation (4GL) language in fewer lines of

xie.

3.2.4 Early] rr.pl r.·rnf1r;: Lli1111rn

Oracl : C, tJ"1Jo ;r · :ir 1~1!1:;;:,ed the first commercial RDBMS that used SQL. Although the

orij.inul vers ,J·t:: 1.1·ci ! , ·:,u'.orr:,:l for VAX/VMS systems, Oracle was one of the first vendors to

release a DO;; •vi. :·:5i:):l 4 J >, ltD:ll\;J'.;. (Oracle is now available on more than 70 platforms.) In the

mid-1980s Syba: c r l ~.· ;,: :! t:; ::oHMS, SQL Server. With client libraries for database access,

support for stor: 1 ~·ri):, ,:IL 1"1;:~ and interoperability with various networks, SQL Server became a

successful pi >,du, L, p.ut ,: 1lrrl:,· i ·1 client/server environments. One of the strongest points for both

of these SQL S1: ver rc.1~lf:ri11I o uabase systems is their scalability across platforms. C language

code (combined witl ~:(l J..), v, ri .ten for Oracle on a PC is virtually identical to its counterpart

written for an Oracle catst.ase running on a VAX system.

3.2.5 SQL and Client Server Aq1pliication Development

The common t.iread that runs throughout client/server application development is the use

client/server computing of SQL and relational databases. Also, using this database technology in

a single-user business application pcsitions the application for future growth.

3.3 An Overview of S:Ql,
SQL is the de facto standard language used to manipulate and retrieve data from these

relational databases. SQL enables a programmer or database administrator to do the following:

• Modify a database's structure

• Change system security settings

• Add user permissions on databases or tables

• Query a database for information

• Update the contents of a database

The most commonly used statement in SQL is the SELECT statement (see Day 2,

"Introduction to the Query: The SELECT Statement"), which retrieves data from the database

and returns the data to the user. The EMPLOYEE table example illustrates a typical example of a

20

SELECT statement situation. In addition to the SELECT statement, SQL provides statements for

creating new databases, tables, fields, and indexes, as well as statements for inserting and

deleting records. ANSI SQL also recommends a core group of data manipulation functions. As

you will find out, many database systems also have tools for ensuring data integrity and enforcing

security (see Day 11, "Controlling Transactions") that enable programmers to stop the execution

of a group of commands if a certain condition occurs.

3.3.1 Popular SQL Implementations
This section introduces some of the more popular implementations of SQL, each of which

has its own strengths and weaknesses. Where some implementations of SQL have been

developed for PC use and easy user interactivity, others have been developed to accommodate

very large databases (VLDB).

3.3.1.1 Microsoft Access
We use Microsoft Access, a PC-based DBMS, to illustrate some of the examples in this

text. Access is very easy to use. You can use GUI tools or manually enter your SQL statements.

3.3.1.2 Personal Oracle 7
We use Personal Oracle7, which represents the larger corporate database world, to

demonstrate command-line SQL and database management techniques. (These techniques are

important because the days of the standalone machine are drawing to an end, as are the days

when knowing one database or one operating system was enough.) In commandline REI, simple

stand + [cedilla] one SQL statements are entered into Oracle's SQL *Plus tool. This tool then

returns data to the screen for the user to see, or it performs the appropriate action on the database.

Most examples are directed toward the beginning programmer or first-time user of SQL. We

begin with the simplest of SQL statements and advance to the topics of transaction management

and stored procedure programming. The Oracle RDBMS is distributed with a full complement of

development tools. It includes a C++ and Visual Basic language library (Oracle Objects for OLE)

that can link an application to a Personal Oracle database. It also comes with graphical tools for

database, user, and object administration, as well as the SQL *Loader utility, which is used to

import and export data to and from Oracle.

21

We can chose the Personal Oracle? RDBMS for several reasons:

• It includes nearly all the tools needed to demonstrate everything about the database.

• It is available on virtually every platform in use today and is one of the most popular

RDBMS products worldwide.

3.3.1.3 Microsoft Query
Microsoft Query is a useful query tool that comes packaged with Microsoft's Windows

development tools, Visual C++, and Visual Basic. It uses the ODBC standard to communicate

with underlying databases. Microsoft Query passes SQL statements to a driver, which processes

the statements before passing them to a database system.

3.3.1.4 Open Database Connectivity (ODBC)
ODBC is a functional library designed to provide a common Application Programming

Interface (API) to underlying database systems. It communicates with the database through a

library driver, just as Windows communicates with a printer via a printer driver. Depending on

the database being used, a networking driver may be required to connect to a remote database.

The unique feature of ODBC (as compared to the Oracle or Sybase libraries) is that none

of its functions are database-vendor specific. For instance, you can use the same code to perform

queries against a Microsoft Access table or an lnformix database with little or no modification.

Once again, it should be noted that most vendors add some proprietary extensions to the SQL

standard, such as Microsoft's and Sybase's Transact-SQL and Oracle's PL/SQL.

You should always consult the documentation before beginning to work with a new data

source. ODBC has developed into a standard adopted into many products, including Visual

Basic, Visual C++, FoxPro, Borland Delphi, and PowerBuilder. As always, application

developers need to weigh the benefit of using the emerging ODBC standard, which enables you

to design code without regard for a specific database, versus the speed gained by using a database

specific function library. In other words, using ODBC will be more portable but slower than

using the Oracle? or Sybase libraries.

3.3.2 SQL in Application Programming
SQL was originally made an ANSI standard in 1986. The ANSI 1989 standard (often

called SQL-89) defines three types of interfacing to SQL within an application program:

22

• Module Language: Uses procedures within programs. These procedures can be called

by the application program and can return values to the program via parameter passing.

• Embedded SQL: Uses SQL statements embedded with actual program code. This

method often requires the use of a precompiler to process the SQL statements. The

standard defines statements for Pascal, FORTRAN, COBOL, and PL/1.

• Direct Invocation--Left up to the implementor.

Before the concept of dynamic SQL evolved, embedded SQL was the most popular way

to use SQL within a program. Embedded SQL, which is still used, uses static SQL--meaning that

the SQL statement is compiled into the application and cannot be changed at runtime. The

principle is much the same as a compiler versus an interpreter. The performance for this type of

SQL is good; however, it is not flexible-sand cannot always meet the needs of today's changing

business environments. Dynamic SQL is discussed shortly.

The ANSI 1992 standard (SQL-92) extended the language and became an international

standard. It defines three levels of SQL compliance: entry, intermediate, and full. The new

features introduced include the following:

• Connections to databases

• Scrollable cursors

• Dynamic SQL

• Outer joins

This book covers not only all these extensions but also some proprietary extensions used

by RDBMS vendors. Dynamic SQL allows you to prepare the SQL statement at runtime.

Although the performance for this type of SQL is not as good as that of embedded SQL, it

provides the application developer (and user) with a great degree of flexibility. A call-level

interface, such as ODBC or Sybase's DB-Library, is an example of dynamic SQL.

Call-level interfaces should not be a new concept to application programmers. When

using ODBC, for instance, you simply fill a variable with your SQL statement and call the

function to send the SQL statement to the database. Errors or results can be returned to the

program through the use of other function calls designed for those purposes. Results are returned

through a process known as the binding of variables.

23

CHAPTER4

INTRODUCING ACTIVEX DATA OBJECTS

4.1 Introduction

Computing originally started on large machines with small terminals. With the advent of

the personal computer and powerful workstations, much of the processing migrated to the

desktop. The introduction of the Web server shifted the balance of power back to a centralized

programming model. Today, Java and ActiveX controls have, yet again, enabled the desktop to

reassert itself.

As important as this egalitarian trait of ASP is, everything done so far in the book is trivial

when compared to the innovations in ActiveX that are covered in this part of the text. These

innovations are called ActiveX Data Objects (ADO).

The apparent impediments of bandwidth and latency may actually be a blessing. Most of

your ADO learning curve will probably occur on intranets-where bandwidth is measured in tens,

if not hundreds, of megabits and where latency is practically zero. By the time we break the

bandwidth bottleneck with Asynchronous Transfer Mode (ATM) switches, ASP/ADO

development will be second nature to you. With those caveats in mind, get ready to take a deeper

look into this radical new resource: ADO.

4.2 The Family Tree
Until Microsoft's acquisition of Fox Software in I 992, the database was conspicuously

absent from Microsoft's desktop arsenal. Today, FoxPro (now matured into Visual FoxPro),

Microsoft Access, and SQL Server round out a balanced database strategy. Each product is

designed for a particular market. For example, Visual FoxPro uses an Indexed Sequential Access

Method (ISAM) file format and is generally recognized as faster than Access but slower than

SQL Server. As the other desktop application, Access uses a special file format that is accessed

through the Jet Data Access Object (DAO) model. DAO gives the programmer direct access to

the database structure, something not as easily done in Visual FoxPro. SQL Server, on the other

hand, is a database server, not a desktop application. It is an industrial-strength application that is

highly scaleable. All three products use ODBC to share data with each other.

24

There is one other thing that these three products have in common, setting them apart

from ADO: Their ability to be deployed in a distributed network is defined by the Remote Data

Object (RDO) specification found in Visual Basic 4.0's Enterprise Edition. Specifically, they

work in connected networks. The Internet, on the other hand, is a connectionless network-a

packet-switched network.

In fact, Web servers are even more problematic for programmers, especially database

programmers, because they are "stateless" as well as connectionless. They're called stateless

servers because once they serve a client request, they forget that the client ever was served. The

server does not keep track of anything going on with the client application.Web servers have

short memories.

In the desktop world, when two applications communicate, they do so for a given period

of time. For example, when an Access database is linked to external files, it tests for the presence

of those files as soon as it is opened. As long as the Access database remains running, any

interruption in the connection (for example, say that a Novell file server goes down) triggers an

event in Access, and a warning flashes in the Access application that the connection has been

broken. In SQL Server, the server is aware of the presence of a client application as long as that

application is engaged in a transaction with the database server. The length of time of such a

transaction is not necessarily as short as it is with a Web server.

A Web server knows about a client application only long enough to deliver a file, but an

Active Server is different. While it, too, disconnects from the client as soon as a file is returned, it

remains connected as long as necessary to do two things: first, process the database and produce a

recordset; second, enable the application to make subsequent calls and still have access to

previously returned data.

4.3 OLE DB

Before getting into the meat of ADO, take a closer look at the application program

interface (API) on which ADO is built, OLE DB (OLE DB is Object Linking and Embedding

applied to databases). ADO is the first Microsoft technology built on this exciting new initiative.

If you thought that the Web spawned an avalanche of great software and business models on the

Internet just wait until developers hear about OLE DB! And, as an ADO programmer, you're

leading the way!

25

First, it's best to set the context with a quick review of the interface, the Open Database

Connectivity (ODBC) specification. ODBC is a desktop SQL-based specification whose API

foundation is built on the C language. This means that it was designed for relational database

systems, the kind with which you all are accustomed to working. ODBC is a real workhorse,

enabling developers to build systems that integrate Jet databases, ISAM files in old FoxBase+

databases, and even SQL Server tables into one coherent user interface. ODBC is the lingua

franca of all these relational dialects meaning it is the linguistic bridge connecting the disparate

native languages of each database management system.

OLE DB, on the other hand, is a specification based on a C++ API, so it is object

oriented. OLE DB consists of data consumers and data providers. Consumers take data from

OLE DB interfaces; providers expose OLE DB interfaces.

ODBC now is a subset of OLE DB. Currently, Microsoft has developed an OLE DB data

provider that enables access to the old relational data. In fact, under some circumstances, OLE

DB can access ODBC data faster than DAO or RDO. This is because DAO and RDO have to

pass through the ODBC layer, and OLE DB connects directly to relational data sources. Figure

4.1 shows subtle difference in the approach taken by ADO.

c::,ent / Da:a r.onsurrer

F?eiation:il Data Te:.-<: Data
Stn3a1rs

Figure 4.1 OLE DB simplifies the connection of your program to database information.

What's more, OLE DB can be used to extend the functionality of simple data providers.

These more sophisticated and specialized objects are called service providers, and they can

assemble everything needed by data consumers into a single table, regardless of data type (for

example, ODBC, spreadsheets, e-mail messages, word processing documents, or file systems) or

storage location (LAN, WAN, Internet, intranet). Service providers, therefore, are both

consumers and providers. That is, a service provider could consume OLE DB interfaces and build

26

a single table from that input; it then could expose OLE DB interfaces to a client application

(such as an .asp file using ADO) for constructing its HTML output.

But OLE DB is, after all, a low-level specification. If you don't have time to learn a

language lower down the food chain than Visual Basic, ActiveX is the answer. Specifically,

ActiveX Data Objects use a language-neutral component technology to provide a high-level

wrapper around the OLE DB AP!, which enables you to exploit all the power of OLE DB without

resorting to low-level programming. On the one hand, this means that all Microsoft programming

languages can use ADO to access data. On the other hand, ActiveX components (ADO is but one

example) can themselves be built using any language that complies with the Component Object

Model.

·······················,
Applet . DLL ODBC ADO

./-......_
/ \

I, C ++API I
\ /•.. ..., __ ./ I

. 11 I I ._______. I

Java Component
Financial

cempenent
ActiveX Dau

Access Control
Data.ba.se Access

Component

ActiveX Server Component Technology

Fig 4.2 ActiveX is a language-neutral wrapper, giving the component developer free choice of

the best breed of development environments.

To recap: ADO works just like DAO and RDO, only more efficiently, especially in a stateless

and connectionless environment like the lnternet/intranet. ADO, an ActiveX component

technology, is based on a C++ AP! called OLE DB (which betrays its family heritage from

ODBC, written in C). Because ADO is a component technology, it is highly extensible, tying

ADO to Microsoft's programming paradigm for the next millennium.

27

4.4 Objects versus Components
The Active Server is a component of the Internet Information Server. Specifically, it is an

Internet Server Application Programming Interface (ISAPI) filter. This means that it is a

Dynamic Link Library file that becomes part of IIS as soon as the operating system starts it

running. This modular design of everything Microsoft publishes these days is a model for the
)

way an ASP developer should write applications.By exposing key ASP resources to the scripting

engine running on the server (e.g., VBScript, JavaScript, Perl, and others), the Active Server

enables the ASP developer to extend the functionality of the Active Server itself.

Components have a similar function; viz., to extend the functionality of the Active Server,

but they have one fundamental difference: they are .dll files that run separately from the Active

Server, but in the same address space as the server. Microsoft wrote these .dll files, but you can

create your own components in any language that produces code compliant with the Component

Object Model (COM) specification. By creating .dll files (and not .exe files that execute in their

own address space), you give your components maximum speed.

Active Server components (both those components intrinsic to ASP and those you create

yourself) do not have a user interface. Indeed, if you forget this and design a server component

with a msgbox or inputbox function, you will hang the server. This is because the program

(namely, your errant server component) that is running is waiting for user input that never comes,

because the user interface is invisible. In addition, server components need to support only three

interfaces.

Finally, VBScript does not have a type library, so if you want to use variable types other

than Variant, write a component. For example, if you want to extend the Active Server's

mathematical power, you DO NOT want to use the Variant data type; it will slow your

mathematical processing to a crawl. Instead, create a program in Visual Basic, and compile it as

an in-process .dll file; register it with the operating system, and call it in your Active Server

Pages.

4.5 ADO and Server Objects
Using ADO, perhaps more than any other Server Component highlights the symbiosis

between Server Objects and Components. The main reason for this interdependence is that,

because Web applications are based on individual HTML pages, these applications can be

problematical for the Active Server developer. The problem arises because, while on one hand,

the application moves freely and easily between several forms or instances of the same form (as

28

you will see demonstrated later), at the same time, a stable substrate of data underlies the

dynamic interplay of user interface. The developer's challenge is to keep this data substrate

available to any and all pages that need it.

There are two specific issues facing the ADO developer- performance and reference.

Performance issues arise because you cannot spare the bandwidth to make repeated calls to server

data stores for the same recordset (just because different pages need it). All pages should refer to

the same fetched data.

Reference issues are similar to performance issues but different, because pages often will

have to exchange data entered by the user; even more often, they will have to exchange data with

each other (whether the data was fetched or entered). One or more pages needs to know what that

data is and must be updated if that data is changed by another page in the application.

Figure 4.3 depicts these inter-relationships. A database contains information needed by an

ASP application. The Active Server makes the call to fetch the data. If you use Session

properties, discussed in the next section, you only have to fetch this data once; all the Active

Server Pages will reference this copy of the data as necessary. If you do not use Session

properties, then every time an .asp file needs the data, it has to require the data provider. Also

note in the figure that data can "trickle down" from one page to several others. This data may

affect and be affected by the data in the original database.

~

~~-········:---·
··--------····' !--------

Data F'rovi der .
-·-----=---

Fetch often
AS;::

' A

1----------1"1~~~=: ~ :::::: =~~
: Recordset
'·

I
I
/

Fetch one.;
.Reference c:ften

ASP F'age

Dat8 {
E-:ntn1 {----~
--,-_:__j

-,------~

I
I

Figure 4.3 The problem of ADO programming centers in repeated calls to a data provider for

data.

29

ASP has something for just this purpose, Session properties. Remember that VBScript is

not yet able to reference a type library at design time and perform early binding. Therefore, all

variables in VBSc:ript are of type Variant. The performance issues that normally attend the

exclusive use of variants usually are not issues in Active Server programming, because the client

apps tend to remain thin. Intelligent design of server components enables the high-performance

processing of variable data.

At any rate, Session properties can be created simply by setting them to a value. For

example, a Record'S :t Object can be created as a Session properties simply by stating the

following:

Sessioni'rst A uthors") = rstAuthors

4.6 The ADO Ol,1i1~1c · Mf_,d't~li

As mentioned, of all the Server Components that ship with ASP, ADO is the most

complex and the 0111~ with the most long-term impact on the future of programming. In this

chapter, we focu.: c.i the highest level of the object model and highlight some of the key

properties and m.i.hc Is 11 ecessary to make ADO work at its most basic level. A key objective of

this chapter is t,:,. :;1 n :: .~. tr at understanding the relationships between features of ADO is more

important than an unucrstanding of its parts.

4.6.1 Exposed O\jcd~

ADO ·:\ ,,.: ~ e; tir: e primary objects to the developer: the Connection Object, the

Command Objec . an: th : Record Set Object. For all practical purposes, the Record Set Object is

the most important; he Connection and Command Objects serve to enable the RecordSet

Object's creatiin

4.6.2 The Cor:11:,11:Ji,a. 1 Oliject

ADO's u fr:rnLigr comes from its ability to work in stateless environments. The

Connection Objcc: '5 responsible for recording the necessary information about the data provider

from which th: 1:1:.:: ·,f:f:t Object will be created. ADO needs to inform the Windows NT server

of the exister» .f: : · c.1 t UUC data provider by citing a Data Source Name (DSN). Recall that

each DSN rec. ·i·,· :~ a r.an:c: the Connection Object refers to that name with its Open method and

30

records the nu 11' :1 i !, ::nrnectionString property. The Open method also needs optional UserlD

and Password : t .::; ::h11 .ld the DSN require them.

Anotl 1E·;< i::JU I(: ,1d Connection Objects will be familiar to Access and SQL Server

programmerr., 1 : : i1 ,: J'.'l'Cd ecessors, ADO can exploit the I/0 efficiency of transactions using the

BeginTrans, C H1 111it l r ,n:, and/or RollbackTrans methods. These methods-at least, in Access-are

part of the \ .i ,1 !, ; p:t, if· .Ji:_ ect, and you can see how it and the Connection Object exist for the

same reason.] hi 11:: c.f t i: Conrection Object as the telephone and circuits that enable you to call

your mother: t1:i::: don t .ln :If: talking, but without them, there's no conversation.

If the ,Cu: nee in - Obect is like the telephone, then its Open method is like placing a call,

and its Exec 11 :· . 1c1 f :.:: i.: 1:1:e opening your mouth. Actually, there are several ways to create a

RecordSet C.•t. i1::1 t. J t :; : r. a iv, you can do it with the Connection, Command or even the

RecordSet Ob ,~r:. irs: f hi· the moment, we remain focused on the Connection Object. Shows

how you instzn :ti: .te z 1:::: n.iection Object from the Database Access Component (identified by the

ADO progid. Y (u o 11 :1 this object by assigning it to the DSN named "Blotter". And you create a

new recordse t 1:i inv 1ic 1111 .ne Execute method.

Set objConn °=Se ·ver 1>eoteObject(''ADODB.Connection'')

objtlonn.Openi'Blou i. ·".)

Set objkst=i),f(mm ;•:. :2{ ute "tbllilotter"

As mentioned, ti ;: .xecure method takes a given SQL command and interrogates the DSN

with it. Success yields a RecordSet Object that is created with the VBScript Set command. Using

this approach creates rm implicit RecordSet Object, by the way. This means that ADO has given

you a minir ial H Ri :1 :c;·rl ;d Object; more important, it generates the least powerful cursor.

Specifically, the .esu'tirg 1:LH'!K1· is the row-wise, scroll-forward, read-only variety.

4.6.3 The Command Object

The Command Obiect provides the second way to create a RecordSet Object. This object

also creates a minirr al cursor, but it was designed to exploit a key concept in database

management: passed parameters. Parameters are variables stored inside queries and stored

procedures. Think of queries, and especially stored procedures, as mini-programs compiled by

the data provider. Like normal programs, these objects can accept data at runtime that affect how

the object behaves. Queries designed like this are called "parameterized queries." For example, if

31

you want to list only certain records from a given table, you pass the name of the field and the

value of interest to the parameterized query, and it filters out all other records from the resulting

record set.

Opening a Simple recordset with the Command Object

Set objCmd = Server.CreateObject(ADODB.Command)

objCmd.ActiveConnection ="intranet"

obj Cmd. CommandText=" q ry PhoneMessagesF or"

Set objRst = objCmd.Execute

Object: Refer to database objects such as queries, stored procedures, or table names; or

use explicit SQL statements such as "SELECT * FROM tb!Blotter". Referring to objects can

yield dramatic improvements in performance because they can exploit all the processing power of

the data provider. However, using a SQL statement makes your code self-documenting; i.e., you

can tell exactly what your program is doing as it interacts with the data provider. In most cases,

this advantage of self-documenting code is more than offset by the loss in performance; and

besides, you can always explicitly document calls to database objects.

4.6.4 The RecordSet Object

When you use the RecordSet Object to create a recordset, you are using the CreateObject

method of the Server Object to instantiate an explicit RecordSet Object. This means that you are

responsible for specifying all the properties of the resulting recordset (unless you accept default

values). Alternatively, you can create a recordset implicitly by using a Connection Object or the

Command Object-but then you have no control over properties. If you need a dynamic cursor that

is fully scrollable and permits batch updates, by using the RecordSet Object, that's exactly what

you'll get.

At this point, you have made the call, connected with the other end, and are ready to start

talking. In the same way that a conversation is full of words, recordsets are full of data. To fill the

recordset with data, then, you don't use an Execute method; you use the Open method. Like the

Execute method, the Open method in a Connection Object context is different from the Open

method with the RecordSet Object. With the Connection Object, the Open method opens a

channel permitting data to flow; with the RecordSet Object, the Open method fills a recordset

with data.

32

The Code Necessary to Create a RecordSet Object

Set objRst = Server.CreateO~ject(''ADODB.Recordset")

objRst.Source = "qryB/otterByDate"

objRst.ActiveConnection= "Blotter"

objRst.Open

Each RecordSet Object contains a Fields collection of all the Field objects that are in the

recordset. By manipulating the Fields collection, you change the structure of the underlying

database table. That is, by referring to the Fields collection, you can construct SQL commands to

update or otherwise modify the structure of the underlying tables at the data provider.

The real meat of the RecordSet Object, however, is in its methods and properties. To the

extent that you do any serious database management using an HTML user interface, your ADO

programs probably will use all those methods at one time or another.

4.7 Methods

4.7.1 Abandon

The Abandon method applies to Active Server Session Objects. Sessions are created as

soon as a user opens an .asp file in a virtual directory of the Internet Information Server. This

session stays open until one of two things happens. Either there is no activity from the user for 20

minutes (or the interval specified in the Timeout property of the Session Object) or an Abandon

method is invoked. If you need access to any connected database before the session expires (for

example, to back up the database), you need to Abandon it first.

4.7.2 CreateObject

· The CreateObject method applies to the Server Object. This method creates instances of

server components (such as TextStream) and ADO objects (such as Connection and RecordSet).

The similarity with this method to its namesake in Visual Basic is that the Server Object must be

part of the call; namely, Server.CreateObject(), not merely CreateObject().

4.7.3 Open

The Open method applies to Connection and RecordSet Objects. With the Connection

Object, the method opens a connection-a channel of communication-to a server; specifically, to a

Data Source Name. When invoked by a RecordSet Object, this method opens a cursor in a table

33

in the DSN. The cursor is a current row-pointer within the recordset created with the Open

method.

4.7.4 Requery

The Requery method applies to the RecordSet Object created with the Open method. Its

function is to re-fire the query that populated the recordset, fetching the current-perhaps updated

values from the underlying database table.

4.7.5 Update

The Update method also is used by the RecordSet Object. It moves the data in the copy

buffer to the RecordSet Object. Until this event occurs, the underlying table can have one value

and the RecordSet Object another; after the Update method, they have the same data-unless

something interfered with the routine processing of updates.

4.8 Properties

4.8.1 ActiveConnection

The ActiveConnection property tells ADO where the data is and how to access it.

ActiveConnection functions like a telephone connection in that it enables communication but

does not communicate directly. Some ADO connections are like station-to-station long distance.

Others are more restricted, like a person-to-person call, limiting data access to only certain people

with specific passwords.

4.8.2 CursorType

CursorType is an important property that applies to the RecordSet Object. It determines

how hard the data provider has to work to make the records it stores available to your ADO

program. The simplest cursor is a forward only, row-wise, read-only cursor. Other data providers

can provide dynamic cursors that keep track of the status of underlying data.

4.8.3 LockType

The LockType property applies to RecordSet Objects and controls what results when the

RecordSet Object executes its Open method. This property is important because it tells the data

provider how to handle concurrency issues, should they arise.

34

4.8.4 Name

The Name property applies to the Field Object of the RecordSet Object ..

4.8.5 Source

The Source property applies to RecordSet Objects. Usually, this is a text string of SQL

commands to fetch data from the data provider. A shortcut is to use the name of the table alone;

this is quicker than typing SELECT * FROM tblBlotter. Note, however, that if you want only a

selected group of records or set of fields, you will have to use a SQL command, a query, or a

SQL Server stored procedure.

4.9 Essential ADO

4.9.1 Preliminaries

To help you come to terms with recordsets, we take a brief detour into the world of

relational database management. The comments that follow are for those who have had little use

for databases until now or those who have used database systems but didn't have a need to get

into the theory of database management. More experienced readers can safely skip this section.

4.9.2 Concurrency and Locking Issues

There is an adage as old as the Internet that goes something like "Information yearns to be

free." In the database business world, there is a related truism: Data needs to be changed. The

subject of this word play raises two serious problems for database developers.

On one hand, displayed data (especially when more than one row is being displayed) often

needs to be up-to-date. This means that when someone adds or deletes a record, all other displays

of data from that table need to reflect the change.

On the other hand, when the value of one or more fields of an existing record gets

changed by more than one person and at the same time, there is a potential conflict, a collision of

wills. The DBMS must be able to sense these collisions and manage them effectively.

Cursors play a part in both of these situations. More precisely, different cursor types play

different roles in these different circumstances. Cursors have two primary flavors-static and

dynamic. Static cursors, as their name suggests, can't see additions and deletions made by other

users. For example, If a business application that works with only one record at a time is being

built, it need not concern itself with the need to update the number of rows in a recordset. This is

35

the kind of recordset that ADO creates by default. Other times, a dynamic cursor is needed.

Dynamic cursors sense, on their own, when the number of rows or the content of fields changes.

The ASP developer also needs to address the issue of concurrency and the related issue of

Jocking. Locking techniques fall into two categories: optimistic and pessimistic. Optimistic

Jocking is relatively easy for the DBMS to implement, for it assumes that collisions and conflicts

will be rare and doesn't activate Jocks until just before updating, and only if a conflict exists.

Pessimistic locking assumes the opposite, and locks on data are required before processing a

record can even begin. Again, not all DBMSs support both, and when some do, they don't give

you a choice between the two.

4.9.3 Keys, Indexes, and Bookmarks
Relational Database Management Systems always work more efficiently if they can

uniquely identify individual records. They also work more efficiently if certain fields are

indexed; that is, put in order, such as last names in alphabetical order. Tables need keys to do

both these things. Indexes sort records based on the values of these key fields; if these values are

unique, they serve double duty-they sort and uniquely identify records. In addition, if a SQL

Server table has a key, it can have a keyset cursor. Access isn't as picky; a table of two fields and

no indexes does not return an error when a dynaset (the closest thing to a keyset cursor that

Access has) is created and updated.

One more concept: bookmarks. Bookmarks are to cursors what cursors are to recordsets

they are placeholders. Some DBMSs (like FoxPro) keep track of record numbers. The Jet engine

in Access and ADO do not. Instead, they rely on bookmarks to move the cursor to a previous

location in a recordset. As you might guess, bookmarks are not supported by all cursors.

Remember that dynamic cursors get updated when records are added or deleted. As a result,

bookmarks aren't supported (in part, because the row that they used to represent may be gone).

Only static and keyset cursors (and dynasets in Access) support bookmarks.

36

CHAPTERS

DESCRIPTION OF ESTATE AGENT WEB PAGE

5.1 Introduction
My project is designing and programming a web page. This web page is about the estate

agents.

5.2 Searching an Estate
Here we can search estates in details. The reason of putting this page is to search the

estates in details.

Home
Search.An Estate

Se arch Estate Agents
Search Countries Estate

Agents
Rent I Sell ll.!I ~eilt

Estate Agent Registratior
·······:::=··

Country

City

Type of Estate

No ofBedrooms

No ofBathrooms

rent I sale Price level r
Rating

Figure 5.1 Search an Estate Screen Shot.

5.3 Search Estate Agents
This page allows you to search estate agents by the first character of its name.

37

Home
Search .An Estate

Search Estate Agents

Figure 5.2 Lists of Estate Agents by Name Screen Shot.

5.4 Search Countries Estate Agents

This page allows searching the countries estate agents.

Home
Se arch An Estate

Search Estate Agents
Search Countries Estate

Agents
Rent I Sell An Agent

Estate Agent Registration
;;;;.;;;;;;;.;.,;,;;.··" ···············--············:;;,:=

Select a Country

Figure 5.3 Search Countries Estate Agents Screen Shot

38

5.5 Rent I Sell an Agent
In this page estate agents must be login to add a new estate to database. If estate agent has

not login the screen is coming(Figure 5.4).

Search .An Estate
Search Estate Agents

Search Countries Estate
Agents

Rent I Sell An Agent
state Agent Registratio
,;6~-;'A:M~wrrn

Please Login First! ..

I·

Figure 5.4 Rent I Sell an Agent page Estate Agent did not logged in.

r~ Home

!
,: c. Search An Estate

i $earch Estate Agents
, Search Countries Estate

!
,, Agents

· Rent I Sell An Agent
. Estate Agent Registrati
,L· h,~~A~ .u

Type ofEstate

Country

City

Address

Bed Rooms

Type of Estate

How much you want? ($)

Figure 5.5 Rent I Sell an Agent page Estate Agent logged in.

39

5.6 Estate Agent Registration
Estate Agents can register to this web site. The registration data has to be looked up by

the Webmaster and then must be send to Agent with usemame and password.

Estate
3~;:n ,;h F.r:tt.'w. Agi:,ntt
S1a:ct i.~e,'..Jwics EGts.rc

Agt;il!S Tel

Figure 5.6 Estate Agent Registration Screen Shot.

5. 7 Database & Tables
I used Microsoft SQL Server 8 for databases. I used SQL Server because in the web you

can not use Microsoft Access. You must use Microsoft SQL Server or Oracle. I know that in web

pages we must use one of this. I choose Microsoft SQL Server 8, because I know how to use it. I

have three tables with no connection. The tables are shown in (Table 5.1 - 5.2 - 5.3).

40

, c Data l':/pe
char
char
char
char
char
char
char
char
char
int

Lengthii Alld,W ~.Jl,llls••
25 V
15 v
100 V
20 V
20 V
15 V
15 V
15 V'
50 V
4

Table 5.1 Estate Agents

char 1100 V
char
char
char
bit
smallint
·;~·auint
char
smallint

Table 5.2 Estates

I/
:v
''v
V
V
V
V
V

41

.·.,,.

V 10

Table 5.3 Estate Agent Usemames

char

INDEX.ASP

<!-- #include file="common.asp" -->

<%

set Conn= Server.CreateObject("ADODB.Connection")

.Conn.Connectionstring = CommonConnectionString

Conn.Open

set RS = Server.CreateObject("ADODB.Recordset")

if request.querystring("op")="li" then

SQLStr ="SELECT* FROM db_login WHERE UN="' &

request.form("UserName") & "' AND PW="' & request.form("Password") & ""'

RS.Open SQLStr, Conn, 1, 1

if not RS.RecordCount=O or not Rs.RecordCount=null then

session("Login") = "True"

session("UN") = request.form("UserName")

end if

end if

if request.querystring("op")="lo" then

session("UN") = null

session("Login") = "False"

end if

conn.close

set conn = nothing

%>

<html>

<head>

<title>Com 400 Graduation Project</title>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1254">

<style>

BODY{

CURSOR: default;

MARGIN-TOP: O;

MARGIN-LEFT: O;

MARGIN-RIGHT: O;

45

MARGIN-BOTTOM: O;

}

</style>

</head>
<body bgcolor="#000033" scroll=no oncontextmenu="retum false" onselectstart="retum

false" ondragstart="retum false" onLoad="MainFrame.location='main.asp';

window.status='Com 400 Graduation Project...';

window. parent.status_ bar. style. visibility='hidden"'

onunload="window.parent.status _bar.style. visibility='visible'; this.focus()">

<table bgcolor="white" width="100%" height="84" border="O" cellpadding="O"

cellspacing="O" align="center">

<tr>
<td width="l 70" valign="top" bgcolor="#FFFFFF"> <IMG height=36

src="images/barleft.gif'' width=l 70>

</td>

<td width="43" align="middle">

</td>

<td align="middle" valign="top" background="images/barright.gif''>

<p style="MARGIN-TOP: 20px; FONT-SIZE: 30px; COLOR: #ccaaOO; FONT

FAMILY: Verdana">Estate

Agent Program ... </p>

</td>

</tr>

<tr>
<td valign="top" bgcolor="#FFFFFF">

<table border="O" bordercolor="#888888" width="160" align="center" style="BORDER

RIGHT: double; BORDER-TOP: double; BORDER-LEFT: double; BORDER-BOTTOM:

double" cellpadding="O" cellspacing="O">
<tr onMouseOver="this.style.color='#OOOOCC'; this.style.cursor='hand';

window.status='Home Page"' onMouseOut="this.style.color="; window.status='Com 400

Graduation Project. .. '" onClick="MainFrame.location='main.asp"'>

<td width="143" height="23" align="middle"

bgcolor="#ddffff''> Home</ strong>

</td>

46

</tr>

<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Search An Estate"'

onMouseOut="this.style.color="; window.status='Com 400 Graduation Project.."

onClick="MainFrame.location='search _ estate.asp"'>

<td height="23" align="middle" bgcolor="#eeffff'>Search An Estate</td>

</tr>

<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Search Estate Agents"'

onMouseOut="this.style.color="; window.status='Com 400 Graduation Project. .. "'

onClick="MainFrame.location='search _ ea.asp'">

<td height="23" align="middle" bgcolor="#eeffff'>Search Estate Agents</td>

</tr>

<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Search Countries Estate Agents"'

onMouseOut="this.style.color="; window.status='Com 400 Graduation Project. .. "'

onClick="MainFrame.location='search _ ctry .asp'">

<td height="23" align="middle" bgcolor="#eeffff'>Search Countries Estate

Agents</td>

</tr>

<%

if session("Login")="True" then

%>

<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Rent I Sell An Agent"'
onMouseOut="this.style.color="; window.status='Com 400 Graduation Project..."'

onClick="MainFrame.location='rent_sell.asp'"

>
<td height="23" align="rniddle" bgcolor="#eeffff'>Rent I Sell An Agent</td>

</tr>

<%

else

%>

47

<tr on.MouseOver="this.style.color='steelbh.ie'; this.style.cursor='hand';

window.status='Rent I Sell An Agent"'

onMouseOut="this.style.color="; window.status='Com 400 Graduation Project..."'

onClick="MainFrame.location='rent_sell.asp'"

>

<td height="23" align="middle" bgcolor="#eeffff''>Rent I Sell An Agent</td>

</tr>

<%

end if

%>

<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Estate Agent Registration"'

onMouseOut="this.style.color="; window.status='Com 400 Graduation Project. .. "'

onClick="MainFrame.location='registration.asp'"

>
<td height="23" align="middle" bgcolor="#eeffff''>Estate Agent Registration</td>

</tr>

</table>

<table border="O" bordercolor="#888888" width="160"

align="center" style="BORDER-RIGHT: double; BORDER-TOP: double; BORDER-LEFT:

double; BORDER-BOTTOM: double" cellpadding="O" cellspacing="O">

<%

if not session("Login")="True" then

%>

<form name="Login" method="POST" action="index.asp?op=li">

<tr>

<td height="23" colspan="2" align="middle" bgcolor="#eeffff''><font

color=" steel blue "> Estate

Agent Login</td>

</tr>

<tr>

<td width="75" height="23" align="middle" bgcolor="#eeffff''><div align="left">

Usemame:</ div></td>

48

<td width="92" align="middle" bgcolor="#eeffff'><div align="right">

<input name="U serName" type="text" value="username" size=" 1 O"

onF ocus= "this. value='"'>

</div></td>

</tr>

<tr>
<td height=" 11" align="middle" bgcolor="#eeffff''><div align="left">

Password:</div>

<div align="right"> </div></td>

<td height=" 11" align="middle" bgcolor="#eeffff''><div align="right">

<input name="Password" type="password" value="password" size="8"

onFocus="this.value="''>

</div></td>

</tr>

<tr>

<td height="12" colspan="2" align="middle" bgcolor="#eeffff'><div align="right">

<input type="submit" name="Submit" value="Login">

</div></td>

</tr>

</form>

<%

else

%>

<tr>

<td height="23" colspan="2" align="middle" bgcolor="#eeffff'><font

color="steelblue">Logged in: <%=session("UN")%></td>

</tr>
<tr onMouseOut="this.style.color="; window.status='Com 400 Graduation Project..."'>

<td height="23" align="rniddle" bgcolor="#eeffff''> Welcome

<%=session("UN")%></td>

</tr>
<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Search Estate Agents"'

onMouseOut="this.style.color="; window.status='Corn 400 Graduation Project. .. "'

49

onClick="document.location='index.asp?op=lo'">

<td height="23" align="middle" bgcolor="#eeffff">Logout</td>

</tr>

<tr onMouseOut="this.style.color="; window.status='Com 400 Graduation Project..."'>

<td height="23" align="middle" bgcolor="#eeffff'> </td>

</tr>

<%

end if

%>

</table>

<table border="O" bordercolor="#555555" width="l50"

align="center" style="BORDER-RIGHT: double; BORDER-TOP: double; BORDER-LEFT:

double; BORDER-BOTTOM: double" cellpadding="O" cellspacing="O">

<tr onMouseOver="this.style.color='steelblue'; this.style.cursor='hand';

window.status='Send Document To The Printer"' onMouseOut="this.style.color=";

window.status='Com 400 Graduation Project"

onClick="MainFrame.focus();MainFrame. print() "><td height="23" align="middle"

bgcolor="#ddeaff'>Print Page</td></tr>

</table>

<div id="status bar">

<table border=O cellspacing="O" align=center>

<tr>

<td align=middle>

<IMG height=20

src="images/status.gif' width=120>

</td>

</tr>

</table>

</div>

</td>

<td bgcolor="#FFFFFF"> .

</td>

50

<td valign="top" bgcolor="#FFFFFF">

<table border="O" width="758" align="center">

<tr>

<td height="308" bgcolor="#FFFFFF">

<iframe frameborder="O" width=" 100%" height=" 100%" narne="MainFrame"

c border="O" scrolling="auto"></iframe>

<ltd>

</tr>

</table>

<ltd>

</tr>

</table>

<table bgcolor=white width=" 100%" cellpadding="O" cellspacing="O">

<tr>

<td valign="top" width="200" background="images/barleftbot.gir'>

<center>

<p style="FONT-SIZE: 11 px; COLOR: #aaaaaa">

Designed by:

Selcuk DURAN 980687

Best Viewed in 1024x768</p>

</center>

<ltd>

<td width="43"><IMG height=79 src="images/barcenterbot.jpg"

width=4 3></td>

<td valign="bottom" align="right"><IMG height=32 src="images/barrightbot.gif'

width= 100%></td>

</tr>

</table>

</body>

</html>

51

ACTION.ASP

<body onload="window. parent.status_ bar .style. visibility='hidden'"

onunload=t'window. parent.status_ bar.style. visibility='visible'"

scroll=auto oncontextmenu="retum false" ondragstart="retum false">

_ <!-- #include file= "common.asp"-->

<%

dim Conn

set Conn= Server.CreateObject("ADODB.Connection")

Conn.ConnectionString = CommonConnectionString

Conn.Open

dim RS

set RS= Server.CreateObject("ADODB.Recordset")

%>

<%

select case (request.QueryString("op"))

case "qs"

ifrequest.Form("qrycat") = l then SQLStr ="SELECT* FROM db_Estate

WHERE EType LIKE '%" & request.Form("qrystr") & "%'"

ifrequest.Form("qrycat") = 2 then SQLStr ="SELECT* FROM db_eagents

WHERE Name LIKE'%" & request.Form("qrystr") & "%' OR Coname LIKE'%" &

request.Form("qrystr") & "%"'

ifrequest.Form("qrycat") = 3 then SQLStr ="SELECT* FROM db_Estate

WHERE Ecountry LIKE'%" & request.Form("qrystr") & "%"'

ifrequest.Form("qrycat") = 3 then SQLStr2 ="SELECT* FROM db_eagents

WHERE Country LIKE'%" & request.Form("qrystr") & "%"'

RS.Open SQLStr, Conn, 1, 1

select case (request.Form("qrycat"))

case 1

if rs.recordcount <> 0 then

response. Write("<table border='O' width='80%'

cellspacing='O' cellpadding='O'>")

response.Write("<tr>")

52

response.Write("<th>Type</th><th>Rent/Sale</th><th>City</th><th>Country</th><

th> Rating</th><th> Price</th></tr> ")

do while not RS.EOF

if RS("Erentsale") = True then RorS = "for Rent"

if RS("Erentsale") = False then RorS = "for Sale"

CreateResult = "<tr

onmouseove1=""this.style.background='lightsteelblue';this.style.cursor='hand'""

onmouseout=" "this.style. background=""" onclick=" "window.open('result.asp?wh=e&ID=" &

RS("Pri") &

"',null,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,menubar=no,toolb

ar=no,statusbar=no')""><td>"

CreateResult = CreateResult & RS("Etype") &

"</td><td>"

CreateResult = CreateResult & RorS &

"</td><td>"

CreateResult = CreateResult & RS("Ecity") &

"</td><td>"

CreateResult = CreateResult & RS("Ecountry") &

"</td><td>"

CreateResult = CreateResult & RS("Erating") &

"</td><td>"

CreateResult = CreateResult & RS("Eprice") &

"</td></tr>"

response. Write(CreateResult)

RS.MoveNext

loop

response.Write("</table>")

else

response.Write("No Estates Found In Your Search ... ")

end if

case 2

if rs.recordcount <> 0 then

53

response. Write("<table border='O' width=Bn''

cellspacing='O' cellpadding='O'>") ...••.
'Cl,

response. Write("<tr>") \$.
't ~ •..••••. ..,

response.Write("<th>Name</th><th>Company</th><th>City</th><th>Co~~zy!7/tt::,,

<th>Phone</th><th>E-Mail</th></tr>")

do while not RS.EOF

CreateResult = "<tr

cm rouseover=" "this. style. background='lightsteelblue' ;this.style. cursor=hand"'"

cm 10useout=""this.style.background=""" onclick=""window.open('result.asp?wh=ea&ID=

,\:: :i ~S("Pri") &

",r1 ull,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,menubar=no,to, l I 1

c11·= 10,statusbar=no')""><td>"

CreateResult = CreateResult & RS("Name") &
11</ d><td>"

Create Result = CreateResult & RS("Coname ") , : .

II ::; d><td>"

CreateResult = CreateResult & RS("City") &

II:'./ d><td>"

CreateResult = CreateResult & RS("Country") ,t:
II ::/ d><td>"

CreateResult = CreateResult & RS("Tel") &
II ::; d><td> II

CreateResult = CreateResult & RS("Email ") &
II ::; d></tr> It

response. W rite(CreateResult)

RS.MoveNext

loop

response.Write("</table>")

else

response.Write("No Estate Agent Found In .r our

,. " rch ") L~ f ,..., • • •

end if

case 3

response. Write("<p style='color:darkred'> Estates:</p>
'')

54

if rs.recordcount <> 0 then

response.Write("<table border='O' width='80%'

cellspacing='O' cellpadding='O'>")

response. Write("<tr>")

response.Write("<th>Type</th><th>Rent/Sale</th><th>City</th><th>Country</th><

, th> Rating</th><th> Price</th></tr> ")

do while not RS.EOF

if RS("Erentsale") = True then Rors· = "for Rent"

if RS("Erentsale") = False then RorS = "for Sale"

CreateResult = "<tr

onmouseover=""this.style.background='lightsteelblue';this.style.cursor='hand'""

onmouseout=" "this.style. background=""" onclick=" "window.open('result.asp?wh=e&ID=" &

RS("Pri") &

"',null,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,menubar=no,toolb

ar=no,statusbar=no')""><td>"

CreateResult = CreateResult & RS(''Etype") &

"</td><td>"
CreateResult = CreateResult & RorS &

"</td><td>"
CreateResult = CreateResult & RS("Ecity") &

"</td><td>"
CreateResult = CreateResult & RS("Ecountry") &

"</td><td>"
CreateResult = CreateResult & RS("Erating") &

"</td><td>"
CreateResult = CreateResult & RS("Eprice") &

"</td></tr>"
response. Write(Create Result)

RS.MoveNext

loop

response.Write(''</table>")

else
response.Write("No Estates Found In Your Search ... ")

end if

55

dimRS2

set RS2 = Server.CreateObject("ADODB.Recordset")

RS2.0pen SQLStr2, Conn, 1, 1

response. W rite("

<hr><p style=' col or:darkred'> Estate

Agents :</p>
 ")

if rs2.recordcount <> 0 then

response.Write("<table border='O' width='80%'

cellspacing='O' cellpadding='O'>")

response. Write("<tr>")

response. Write(" <th> N ame</th><th>Company</th><th>City</th><th>Country</th>

<th>Phone</th><th>E-Mail</th></tr>")

do while not RS2.EOF

CreateResult = "<tr

onmouseover=""this.style.background='lightsteelblue';this.style.cursor='hand'""

onmouseout=" "this. sty le. background=""" on click=" "window .open('result.asp ?wh=ea&ID="

& RS2("Pri") &

"',null,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,menubar=no,toolb

ar=no,statusbar=no')""><td>"

CreateResult = CreateResult & RS2("Name") &

"</td><td>"
CreateResult = CreateResult & RS2("Coname")

& "</td><td>"

CreateResult = CreateResult & RS2("City") &

"</td><td>"

CreateResult = CreateResult & RS2("Country")

& "</td><td>"

CreateResult = CreateResult & RS2("Tel") &

"</td><td>"
CreateResult = CreateResult & RS2("Email") &

"</td></tr>"

response. Write(CreateResult)

RS2.MoveNext

loop

response.Write("</table>")

56

else

response.Write("No Estate Agents Found In Your

Search ... ")

end if

RS2.close

set RS2 = nothing

end select

case "se"

SQLStr = "SELECT * FROM db Estates WHERE "

SQLStr = SQLStr & "Ecountry="' & Convert(l,request.Form("fm1Country"),O)

&"'"

SQLStr = SQLStr & "AND Enoofbed=" & request.Form("frmBedRoom") & "
11

SQLStr = SQLStr & "AND Enoofbath=" & request.Form("frmBathRoom") &

""
SQLStr = SQLStr & "AND Ecity="' & request.Form("frmCity") & "'"

SQLStr = SQLStr & "AND Etype="' & Convert(2,request.Form("frmType"),O)

&"'"

SQLStr = SQLStr & "AND Erentsale=" & request.Form("frmRorS") & ""

SQLStr = SQLStr & "AND Eprice>=" & request.Form("frmPricel ") & " "

SQLStr = SQLStr & "AND Eprice<=" & request.Form("frmPrice2")

RS.Open SQLStr, Conn, 1, 1

if rs.recordcount <> 0 then

response.Write("<table border='O' width='80%' cellspacing='O'

cellpadding='O'>")

response. Write("<tr>")

response. Write("<th> Type</th><th> Rent/Sale</th><th>Ci ty</th><th>Country</th><

th> Rating</th><th> Price</th></tr>")

do while not RS.EOF

if RS("Erentsale") = True then RorS = "for Rent"

if RS("Erentsale") = False then RorS = "for Sale"

CreateResult = "<tr

onmouseover=""this.style.background='lightsteelblue';this.style.cursor='hand'""

onmouseout=""this.style.background=""" onclick=""window.open('result.asp?wh=e&ID=" &

57

RS("Pri") &

"',null,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,rnenubar=no,toolb

ar=no,statusbar=no')" "><td>"

CreateResult = CreateResult & RS("Etype") & "</td><td>"

CreateResult = CreateResult & RorS & "</td><td>"

CreateResult = CreateResult & RS("Ecity") & "</td><td>"

CreateResult = CreateResult & RS("Ecountry") & "</td><td>"

CreateResult = CreateResult & RS("Erating") & "</td><td>"

CreateResult = CreateResult & RS("Eprice") & "</td></tr>"

response.Write(CreateResult)

RS.MoveNext

loop

response. Write("</table> ")

else

response.Write("Your Detailed Search Could Not Be Found ... ")

end if

case "sa"

SQLStr = "SELECT * FROM db_ eagents WHERE conarne LIKE "' &

request.QueryString("agent") & "%"'

rs.open sqlstr, conn, 1, 1

if rs.recordcount <> 0 then

response.Write("<table border='O' width='80%' cellspacing='O'

cellpadding='O'>")

response. Write("<tr>")

response.Write("<th>Narne</th><th>Cornpany</th><th>City</th><th>Country</th>

<th> Phone</th><th> E-Mail </th></tr> ")

do while not RS.EOF

CreateResult = "<tr

onrnouseover=""this.style.background='lightsteelblue';this.style.cursor='hand'""

onrnouseout=" "this. style. background=""" onclick=" "window .open('result.asp ?wh=e~&ID="

& RS("Pri ") &

"',null,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,rnenubar=no,toolb

ar=no,statusbar=no')""><td>"

CreateResult = CreateResult & RS("Name") & "</td><td>"

58

CreateResult = CreateResult & RS("Coname") & "</td><td>"

CreateResult = CreateResult & RS("City") & "</td><td>"

CreateResult = CreateResult & RS("Country") & "</td><td>"

CreateResult = CreateResult & RS("Tel") & "<ztd=<td>"

CreateResult = CreateResult & RS("Email") & "</td></tr>"

response.Write(CreateResult)

RS.MoveNext

loop

response.Write("</table>")

else

response.Write("There is no Estate Agent Starting With

... " & request.QueryString(" agent")&" '.')

end if

case "sc"

SQLStr = "SELECT * FROM db_ eagents WHERE Country LIKE '%" &

request.Form("frmCountry") & "%"'

RS.Open SQLStr, Conn, 1, 1

if rs.recordcount <> 0 then

response.Write("<table border='O' width='80%' cellspacing='O'

cellpadding='O'>")

response. Write("<tr>")

response. Write(" <th> N ame</th><th>Company</th><th>City</th><th>Country</th>

<th> Phone</th><th> E-Mail </th></tr> ")

do while not RS.EOF

CreateResult = "<tr

onmouseover=""this.style.background='lightsteelblue';this.style.cursor='hand'""

onmouseout=" "this. style. background =1111" on click=" "window .open('result.asp?wh=ea&ID="

& RS("Pri ") &

"',null,'top=200,left=300,width=200,height=250,resizable=no,scrollbar=no,menubar=no,toolb

ar=no,statusbar=no')" "><td>"

CreateResult = CreateResult & RS("Name") & "</td><td>"

CreateResult = CreateResult & RS("Coname") & "</td><td>"

CreateResult = CreateResult & RS("City") & "</td><td>"

CreateResult = CreateResult & RS("Country") & "</td><td>"

59

CreateResult = CreateResult & RS("Tel") & "</td><td>"

CreateResult = CreateResult & RS("Email") & "</td></tr>"

response.Write(CreateResult)

RS.MoveNext

loop

response.Write("</table>")

else

response.Write("There is no Estate Agent In ... <font

size='+ l '>"& request.form("frmCountry")&"")

end if

case "rs"

if Request.F orm("frmRentSell ")="" or Request.F orm("frmRentSeJl ")=null then

Response.Write("Please select your estate type: Rent or Sale?
Back")

Response.End

end if

SQLStr = "INSERT INTO db_Estates ("

SQLStr = SQLStr &

"Eaddress,Ecity ,Ecountry ,Etype,Erentsale,Enoo fbed,Enoofbath,Eprice) "

SQLStr = SQLStr & "VALUES ("'

SQLStr = SQLStr & request.Form("frmAddr") & "',"'

SQLStr = SQLStr & request.Form("frmCity") & "','"

SQLStr = SQLStr & request.Form("frmCountry") & "','"

SQLStr = SQLStr & request.Form("frmType") & '","

SQLStr = SQLStr & request.Form("frmRentSell") & ","

SQLStr = SQLStr & request.Form("frmBedRoom") & ","

SQLStr = SQLStr & request.Form("frmBathRoom") & ","

SQLStr = SQLStr & request.Form("frmPrice") & ")"

Conn.execute(SQLStr)

case "ar"

SQLStr = "INSERT INTO db_eagents ("
SQLStr = SQLStr &

"Name,Coname,Address,City,Country,Tel,Fax,Mobile,Email) "

SQLStr = SQLStr & "VALUES ('"

60

SQLStr = SQLStr & request.Form("frmName") & "',"'

SQLStr = SQLStr & request.Form("frmCoName") & "',"'

SQLStr = SQLStr & request.Form("frmAddress") & "',"'

SQLStr = SQLStr & request.Form("frmCity") & "',"'

SQLStr = SQLStr & Convert(l ,request.Form("frmCountry"),O) & "',"'

SQLStr = SQLStr & request.Form("frmTel") & "',"'

SQLStr = SQLStr & request.Form("frmFax") & "','"

SQLStr = SQLStr & request.Form("frmMobile") & "','"

SQLStr = SQLStr & request.Form("frmEmail") & "')"

Conn.Execute (SQLStr)

case "li"

SQLStr = "SELECT * FROM db _login WHERE UN="' &

request.form("UserName") & "' AND PW="' & request.form("Password") & '""

RS.Open SQLStr, Conn, 1, 1

if not RS.RecordCount=O or RS.RecordCount=null then

session("Login") = True

session("UN") = request.form("UserName")

end if

case "lo"

session("UN") = null

session("Login") = False

end select

%>

<%

Conn.Close

set Conn = nothing

%>

</body>

COMMON.ASP

<%

CommonConnectionString = "Provider=SQLOLEDB.1 ;User

ID=sa;Password=ratna57b;Initial Catalog=estate agent.Data Source=PC"

61

function Convert(which,what,wh)

select case which

'country converting

case 1

ifwh=l then

select case lcase(trim(what))

case "turkey"

Convert=I

case "cyprus"

Convert=2

end select

else

select case what

case 1

Convert="Turkey"

case 2

Convert=" Cyprus"

end select

end if

'type converting

case 2

ifwh=l then

select case what

case "villa"

Convert=I

case "flat"

Convert=?

case "bungalow"

Convert=3

end select

else

select case lcase(trim(what))

case 1

Convert="villa"

62

case 2

Convert="flat"

case 3

Convert=''bungalow''

end select

end if

end select

end function

%>

MAIN.ASP

<!-- #include file= "common.asp"-->

<html>

<head>

<body onload="window. parent.status_ bar.style. visibility='hidden"'

onunload="window.parent.status _ bar.style. visibility='visible'"

scroll=no oncontextmenu="return false" ondragstart="return false">

<title></title>

<table width="750" height="256" border="O" bgcolor="#FFFFFF">

<tr>

<td width="787" height="252" colspan="5" align="center" valign="top">

<table width="l00%" height="12%">

<tr>

<td height="26"> <p align="center"> </p></td>

<td height="26" colspan="2"> </td>

<td height="26">Estate Agents Login-vtd>

</tr>

<form name="forml" method="post" action="action.asp?op=qs">

<tr>

<td height="21" align="center"> </td>

<td colspan="2'' bgcolor="#FFFFFF">Quick Search

<input type="text" name="qrystr">

<select name="qrycat">

63

<option value="O" selected>Select one</option>

<option value=" 1 ">Estate</option>

<option value="2">Estate Agent</option>

<option value=" 3 ">Country</option>

</select>

<script language="JavaScript">

function DontGoO

{

if (forml .qrycat.value=='O')

{

alert("Sec birini");

}

else

{

forml .submit();

}

}

</script>

<input name="go" type="button" id="go" value="Go" onClick="DontGo()">

</td>

<td>New Estate Agent</td>

</tr> </form>

<tr>

<td height="21" align="center"> </td>

<td width="40%" bgcolor="#FFFFFF"> <p> </p></td>

<td width="28%" bgcolor="#FFFFFF"> </td>

<td> </td>

</tr>

<tr>

<td height="21" align="center"> </td>

<td colspan="2" bgcolor="#FFFFFF"> </td>

<td> </td>

</tr>

<tr>

64

<td height="21" align="center"> </td>

<td colspan="2" bgcolor="#FFFFFF"> <p> </p></td>

<td> </td>

</tr>

<tr>

<td height="21" align="center"> </td>

<td colspan="2" bgcolor="#FFFFFF"> </td>

<td> <ltd>

</tr>

<tr>

<td width="l 1 %" height="21" align="center"> </td>

<td colspan="2" bgcolor="#FFFFFF"> <p> </p></td>

<td width="21 o/o"> </td>

</tr>

</table>

<div align="center"></div></td>

</tr>

</table>

</body>

</html>

SEARCH ESTATE.ASP

<o/o@LANGUAGE="VBSCRIPT" CODEPAGE="1252"%>

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1 ">

</head>

<body bgcolor="#FFFFFF" onload="window.parent.status _ bar.style. visibility='hidden'"

onunload="window. parent. status_ bar. style. visibility='visible'"

scroll=auto oncontextmenu="retum false" ondragstart="retum false">

<form name="frmSE" method="post" action="action.asp?op=se">

65

<table width="600" height="209" border="O">

<tr>

<td height="21" colspan="2">Search An 1

Estate</ strong></td>

<td width="22%"> </td>

<td width="23 % "> </td>

</tr>

<tr>

<td height="21" colspan="4"><hr width="100%" size="2" color=Ysteelblue'P<ztd>

</tr>

<tr>

<td width="25%" height="2 l ">Country</td>

<td width="30%">

<select name="frmCountry">

<option value="O" selected>Select one</option>

<option value=" l "> Turkey</option>

<option value="2 ">Cyprus</option>

</select>

</td>

<td>No ofBedrooms</td>

<td>

<select name="frmBedRoom ">

<option value="O" selected>Select one</option>

<option value=" 1 "> 1 </option>

<option value="2">2</option>

<option value="3 "> 3</option>

<option value="4">4</option>

<option value="5">5</option>

</select>

</td>

</tr>

<tr>

<td height="21 ">City</td>

<td><input name="frmCity" type="text" size=" 15" maxlength="20''.></td>

66

<td> No of Bathrooms</td>

<td>

<select name="frmBathRoom">

<option value=''O" selected>Select one</option>

<option value=" 1 "> 1 </option>

<option value="2">2</option>

<option value="3 "> 3</option>

</select>

</td>

· :/tr>

· tr>

<td height="21 "> Type of Estate</td>

<td>

<select name="frmType">

<option value="O" selected>Select one</option>

<option value=" l ">Villa</option>

<option value="2">Mustakil</option>

<option value="3 ">Flat</option>

<option value="4 ">dublex</option>

<option value=" 5 "> Apartment</option>

</select>

<ltd>

<td> </td>.

<td> </td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="2 l ">rent I sale</td>

<td>

67

<select name="frmRorS ">

<option value="X" selected>select one</option>

<option value=" l ">rent</option>

<option value="O">for sale</option>

</select>

</td>

<td> Price level </td>

<td>

<input name="frmPricel" type="text" size="3"> - <input type="text"

name="frmPrice2" size="3">

</td>

</tr>

<tr>

<td height="2 l "> </td>

<td> </td>

<td> Rating</td>

<td> </td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td align="right"> <input type="submit" name="Submit" value="Search"> <ltd>

</tr>

</table>

</form>

</body>

</html>

SEARCH EA.ASP

<o/o@LANGUAGE="VBSCRIPT" CODEPAGE=" 1252"%>

<html>

<head>

68

<title></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1 ">

</head>

<body bgcolor="#FFFFFF" onload="window.parent.status _ bar.style. visibility='hidden"'

onunload="window. parent. status_ bar .sty le. visibility='visible'"

scroll=auto oncontextmenu="retum false" onselectstart="retum false" ondragstart="retum

false">

<table width="600" height="214" border="O">

<tr>

<td height="21" colspan="2"> <div align="left">List

of Estate Agents by Name </div></td>

<td colspan="2 "><div align="right"></div></td>

</tr>

<tr bgcolor=l'bbffff">

<td height="21" colspan="4"> <div align="center"><font face="Times New Roman, Times,

serif'>A

I B I C

I D I E

I F I G

I H I I

I J I K

I L I M

I N I O

I P I Q

69

I R I S

I T I U

I V I W

I Y I X

I Z </ a></ strong></ div></td>

</tr>

<tr>

<td height="21" colspan="4"><hr align="center" size="2" color="steelblue">

<ltd>

</tr>

<tr>

<td height="21" colspan="4"><div align="right"></div></td>

</tr>

<tr>

<td width="23%" height="21 "> </td>

<td width="32%"> </td>

<td width="22%"> </td>

<td width="23%"> </td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="2 l "> </td>

<td> </td>

<td> </td>

<td> </td>

70

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="26"> </td>

<td> </td>

<td colspan="2"><div align="right">Search Countries

Estate Agents </div></td>

</tr>

</table>

</body>

</html>

SEARCH CTRY.ASP

<o/o@LANGUAGE="VBSCRIPT" CODEPAGE=" 1252 "%>

<html>

<head>

<title></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1 ">

</head>

<body bgcolor="#FFFFFF" onload="window.parent.status _bar.style. visibility='hidden'"

onunload="window.parent.status_bar.style.visibility='visible'"

scroll=no oncontextmenu="return false" ondragstart="return false">

<table width="600" height="2 l 9" border="O">

<tr>

<td height="21" colspan="2"> <div align="left">Search

Countries Estate Agents</div></td>

<td colspan="2 "><div align="right"></div></td>

71

</tr>

<tr>

<td height="21" colspan="4"><div align="left">

<hr width="100%" size="2" color="steelblue">

</div></td>

</tr>

<form name="forml" method="post" action="action.asp?op=sc">

<tr>

<td>Select a Country</td>

<td>

<input type="text" name=vfrmf.ountry">

<ltd>

</tr>

<tr>

<td align=l'center" colspan="2"><input type="submit" name="Buttonl ''.

value="Go"></td>

</tr>

</form>

<tr>

<td height="2 l "> </td>

<td> </td>

<td> <ltd>

<td> </td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="2 l "> </td>

<td> </td>

<td width="21 %"> </td>

72

<td width="24%"> </td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="26 "> </td>

<td> </td>

<td colspan="2"><div align="right">List of Estate

Agents by Name </div></td>

</tr>

</table>

</body>

</html>

RENT SELL.ASP

<%@LANGUAGE="VBSCRIPT" CODEPAGE=" 1252"%>

<html>

<head>

<title></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1 ">

</head>

<body bgcolor="#FFFFFF" onload="window.parent.status _ bar.style.visibility='hidden"'

onunload="window. parent.status_ bar.style. visibility='visible"'

73

scroll=auto oncontextmenu="retum false" ondragstart="return false">

<%

if not session("Login")="True" then

%>

<table border="O" bordercolor="#888888" width="160" align="center" style="BORDER

RIGHT: double; BORDER-TOP: double; BORDER-LEFT: double; BORDER-BOTTOM:

double" cellpadding="O" cellspacing="O">
t

<form name="Login" method="POST" action="index.asp?op=li" target=iparent">

<tr>

<td height="23" colspan="2" align="middle" bgcolor="#eeffff''><font

color=" steel blue "> Estate

Agent Login</td>

</tr>

<tr>

<td width="7 5" height="23" align="middle" bgcolor="#eeffff''><dliv

align="left">

U semame:</div></td>

<td width="92" align="middle" bgcolor="#eeffff''><div align="right">

<input name="UserName" type="text" value="usemame" size="lO"

onFocus="this.value="">

</div></td>

</tr>

<tr>

<td height=" 11" align="middle" bgcolor="#eeffff''><div align="left">

Password:</div>

<div align="right"> </div></td>

<td height=" 11" align="middle" bgcolor="#eeffff''><div align="right">

<input name="Password" type="password" value="password" size=l'S'' .

onFocus="this.value="">

</div></td>

</tr>

<tr>

<td height=" 12" colspan="2" align="middle" bgcolor="#eeffff''><div

align="right">

74

<input type="submit" name="Submit" value="Login">

</div></td>

</tr>

</form>

</table>

<%

Response.End

end if

%>

<form action="action.asp?op=rs" name="frmSell" method="post">

<table width="600" height="237" border="O">

<tr>

<td height="21" colspan="2">Rent or Sale Your

Estate</ strong></td>

<td height="21" colspan="2"><div align="right"></div></td>

</tr>

<tr>

<td height="21" colspan="4"><hr width=" 100%" size=."2" color="steelblue"></td>

</tr>

<tr>

<td width="32%" height="26">Type ofEstate</td>

<td width="28%"><div align="right"> </div></td>

<td><select name="frmType">

<option value="O" selected>Select one</option>

<option value="villa"> Villa</option>

<option value="flat"> Flat</option>

<option value="bungalow">Bungalow</option>

</select></td>

<td> <itd>

</tr>

<tr>

<td height="2 l ">Country</td>

<td><div align="right"> </div></td>

<td><input type="text" name="frmCountry"></td>

75

<td> </td>

</tr>

<tr>

<td height="21 ">City</td>

<td><div align="right"> </div></td>

<td><input type="text" name="frmCity"></td>

<td> </td>

</tr>

<tr>

<td width="32%" height="26">Address</td>

<td width="28%"><div align="right"> </div></td>

<td>

<textarea name="frmAddr" cols="20" rows="3 "></textarea>

</td>

<td> </td>

</tr>

<tr>

<td width="32%" height="26">Bed Rooms</td>

<td width="28%"><div align="right"> </div></td>

<td><select name="frmBedRoom">

<option value=" 1" selected> 1 </option>

<option value="2">2</option>

<option value="3 "> 3</option>

<option value="4">4</option>

<option value="5">5</option>

</ select></td>

<td> </td>

</tr>

<tr>

<td width="32%" height="26">Type ofEstate</td>

<td width="28%"><div align="right"> </div></td>

<td><select name="frmBathRoom">

<option value=" 1" selected> 1 </option>

<option value="2">2</option>

76

<option value="3 "> 3</option>

</ select></td>

<td> </td>

</tr>

<tr>

<td height="21 ">How much you want? ($)</td>

<td><div align="right"> </div></td>

<td><input name="frmPrice" type="frmPrice" id="frmPrice" size="9"

maxlength="6"></td>

<td> </td>

</tr>

<tr>

<td height="21 "> </td>

<td><div align= "right"></ di v></td>

<td> <div align="left">

<input type="radio" name="frmRentSell" value="l ">

Rent </div></td>

<td width=" 17%"> <div align="left">

<input type="radio" name="frmRentSell" value="O">

Sale </div></td>

</tr>

<tr>

<td height="21 "> </td>

<td> </td>

<td><div align="right"> </div></td>

<td><input type="button" name="Submit2" value="Add Estate"

onClick="DontGo() "></td>

</tr>

</table>

</form>

<script language="JavaScript">

function DontGo()

{

77

if (frmSell.frmAddr.value==")

{

alert("Please Write Your Adress");

return false;

}

if (frmSell.frmCity.value==")

{

alert("Please Write Your City");

return false;

}

if (frmSell.frmType.value==" II frmSell.frmType.value=='O')

{

alert("Please Write Your Estate Type");

return false;

}

if (frmSell.frmCountry.value==")

{

alert("Please Write Your Country");

return false;

}

if (frmSell.frmBedRoom. value=")

{

alert("Please Write Your Bedrooms");

return false;

}

if (frmSell.frmBathRoom. value==")

{

alert("Please Write Your Bathrooms");

return false;

}

if (frmSell.frmPrice.value==")

{

alert("Please Write Price of Your Estate");

return false; '

78

}

else

{

frrnSell.submit();

}

}

</script>

</body>

</html>

REGISTRATION.ASP

<o/o@LANGUAGE="VBSCRIPT" CODEPAGE=" 1252"%>

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1 ">

</head>

<body bgcolor="#FFFFFF" onload="window. parent.status_ bar.style. visi bility=hidden'"

onunload="window.parent.status _bar.style. visibility='visible'"

scroll=no oncontextmenu="retum false" onselectstart="retum false" ondragstart="return

false">

<form name="frrnReg" method="post" action="action.asp?op=ar">

<table width="671" height="268" border="O">

<tr>

<td height="21" colspan="3">Estate Agent

Registration</td>

<td width="9%"> </td>

<td width="29%"> </td>

</tr>

<tr>

<td height="21" colspan="5"><hr width="l00%" size="2" color="steelblue"p,-</td>

</tr>

<tr>

79

<td height="21" colspan="S"> </td>

</tr>

<tr align="left" valign="top">

<td width="18%" height="21 ">Name Surname</td>

<td width="22%">

<input name="frmName" type="text" id="name" size=:="25"></td>

<td width="22%"> </td>

<td>Tel</td>

<td>

<input name="frmTel" type="text" id="tel"> <ltd>

</tr>

<tr align="left" valign="top">

<td height="21 ">Company Name</td>

<td>

<input name="frmCoName" type="text" id="coname" size="25"></td>

<td> </td>

<td>Fax</td>

<td>

<input name="frmFax" type="text" id="fax"></td>

</tr>

<tr align="left" valign="top">

<td height="28">City</td>

<td>

<input name="frmCity" type="text" id="city" size="15" maxlength="20"></td>

<td> </td>

<td> Mobile</td>

<td>
<input name="frmMobile" type="text" id="mobile"></td>

</tr>

<tr align="left" valign="top">

<td height="26">Country</td>

<td>

<select name="frmCountry" id="country">

<option value="O" selected>Select one</option>

80

<option value="l ">Turkey</option>

<option value="2 ">Cyprus</option>

<I select></td>

<td> </td>

<td>E-Mail</td>

<td>

<input name="frmEmail" type="text" id="email"></td>

</tr>

<tr align="left" valign="top">

<td height="21 "> Address</td>

<td colspan="2">

<textarea name="frmAddress" cols="25" rows="2" wrap="VIRTUAL"

id=" address "></textarea></td>

<td> </td>

<td> </td>

</tr>

<tr>

<td height="21 "> </td>

<td colspan="2 "> </td>

<td> </td>

<td><div align="right">

<input type="button" name="Submit" value="Submit" onclick="DontGo()">

</div></td>

</tr>

</table>

</form>

<script language=" JavaScript">

function DontGo()

{

if (frmReg.frmName.value==")

{

alert("Please Write Your name");

return false;

}

81

if (frrnReg.frmCoName.value==")

{

alert("Please Write Your coname");

return false;

}
if (frmReg.frmCountry .value==" II frmReg.frmCountry.value=='O')

{
alert("Please Write Your country");

return false;

}

if (frmReg.frmFax.value==")

{

alert("Please Write Your fax");

return false;

}

if (frmReg.frmCity.value=")

{

alert("Please Write Your city");

return false;

}

if (frrnReg.frmMobile.value=")

{
alert("Please Write Your mobile");

return false;

}

if (frmReg.frmTel.value==")

{ .
alert("Please Write Your tel");

return false;

}

if (frmReg.frmEmail. value==")

{

alert("Please Write Your email");

return false;

82

}

if (frrnReg.frmAddress. value==")

{

alert("Please Write Your adress");

return false;

}

else

{

frrnReg.submit();

}

}

</script>

</body>

</html>

STYLE.CSS

BODY

{

FONT-SIZE: llpx;

FONT-FAMILY: arial;

SCROLLBAR-FACE-COLOR: #ffffff;

SCROLLBAR-HIGHLIGHT-COLOR: #ffffff;

SCROLLBAR-SHADOW-COLOR: #a6caf0;

SCROLLBAR-3DLIGHT-COLOR: #a6caf0;

SCROLLBAR-ARROW-COLOR: #a6caf0;

SCROLLBAR-TRACK-COLOR: #ffffff;

SCROLLBAR-DARKSHADOW-COLOR: #a6caf0

}
p

{

FONT-SIZE: 12px;

FONT-FAMILY: arial

}

83

TR

{

FONT-SIZE: 12px;

FONT-FAMILY: arial

}

TD

{

FONT-SIZE: 12px;

FONT-FAMILY: arial

}

TABLE

{

FONT-SIZE: 12px;

FONT-FAMILY: arial

}

DIV

{

FONT-SIZE: 12px;

FONT-FAMILY: arial

}

INPUT

{

BORDER-RIGHT: #4e4e4e 1 px solid;

PADDING-RIGHT.: lpx;

BORDER-TOP: #fOfOfO lpx solid;

PADDING-LEFT: lpx;

FONT-WEIGHT: bold;

FONT-SIZE: llpx;

PADDING-BOTTOM: lpx;

TEXT-TRANSFORM: uppercase;

BORDER-LEFT: #fOfOfO lpx solid;

COLOR: brown;

PADDING-TOP: 1 px;

BORDER-BOTTOM: #4e4e4e 1 px solid;

84

FONT-FAMILY: Tahoma, Verdana, Sans-serif;

BACKGROUND-COLOR: #89c7f6;

align: center

}

UNKNOWN

{

TEXT-DECORATIO;\: none

}

A:link

{

COLOR: #OOOOff;

TEXT-DECORATIO;(: none;

font-size: 14px

}

A:visited

{

COLOR: #ffffff;

TEXT-DECORATIO;\: none;

font-size: 14px

}

A:active

{

COLOR: #ffffff;

TEXT-DECORATION: none;

font-size: 14px

}

A:hover

{

COLOR: #aOOOOO;

TEXT-DECORATION: underline;

font-size: 14px

}

TEXT AREA

{

85

\' I

BORDER-RIGHT: black double;

BORDER-TOP: black double;

FONT-SIZE: 12px;

OVERFLOW: auto;

TEXT-TRANSFORM: none;

BORDER-LEFT: black double;

COLOR: black;

TEXT-INDENT: lOpx;

BORDER-BOTTOM: black double;

FONT-FAMILY: 'Times New Roman';

BACKGROUND-COLOR: #89c7f6;

TEXT-ALIGN: justify

}

SELECT

{

FONT-WEIGHT: bolder;

FONT-SIZE: lOpx;

TEXT-TRANSFORM: none;

COLOR: brown;

BACKGROUND-COLOR: #89c7f6

}

BUTTON

{

TEXT-TRANSFORM: none;

}

86

I

	Page 1
	Titles
	NEAR EAST UNIVERS11~Y
	Faculty of Engineering
	epartment of Computer Engineering
	STATE AGENT WEB SITE
	Graduation Project

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Page 3
	Titles
	TABLE OF CONTENTS

	Page 4
	Page 5
	Titles
	CHAPTER 5: DESCRIPTION OF ESTATE AGENT WEB

	Tables
	Table 1
	Table 2

	Page 6
	Titles
	CHAPTER 1
	INTRODUCING ACTIVE SERVER PAGES
	1.1 Introduction
	1.2 Scripting

	Page 7
	Titles
	1.3 Components

	Page 8
	Titles
	1.4 Active Server Components
	'

	Page 9
	Titles
	1.5 ActiveX Controls

	Page 10
	Titles
	I
	1.6 Seeing Where ASP and HTTP Fit Together

	Images
	Image 1

	Page 11
	Titles
	0
	Brawser
	Server
	Server
	7

	Images
	Image 1
	Image 2

	Page 12
	Titles
	1. 7 Special Cases

	Images
	Image 1

	Page 13
	Titles
	l.8 Understanding the Structure of Active Server Pages

	Page 14
	Page 15
	Titles
	11

	Page 16
	Titles
	CHAPTER2
	,
	1t:NTJB:1:;JKATING VBSCRIPT INTO HTML
	2.1 A Brief History ol Microsoft's BASIC Languages
	12

	Page 17
	Titles
	2.2 Visual f.':21;,k Seripting Edition
	13

	Page 18
	Titles
	2.3 Client-Side Scripting
	14

	Page 19
	Titles
	2.4 Server-Side Scripting
	D
	,___. .Ł. ~
	15

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	2.5 Java Script, REXX, and Other Scripting Languages
	16

	Page 1
	Titles
	CHAPTER3
	3.1 A Brief History of SQL
	3.2 A Brief History of Databases

	Page 2
	Titles
	3.2.1 Designing the Database Structure
	3.2.2 Today's Database Landscape
	18

	Page 3
	Titles
	19

	Page 4
	Titles
	3.3 An Overview of S:Ql,

	Page 5
	Titles
	21

	Page 6
	Page 7
	Page 8
	Titles
	CHAPTER4
	4.1 Introduction
	4.2 The Family Tree

	Page 9
	Page 10
	Images
	Image 1

	Page 11
	Titles
	Applet .
	DLL
	ODBC
	I
	I I
	._______. I
	ADO
	ActiveX Server Component Technology

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	4.4 Objects versus Components

	Page 13
	Titles
	: Recordset
	I
	~~~-········:---· 
	Data F'rovi der . 

	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Page 15
	Titles
	31 


	Page 16
	Page 17
	Page 18
	Page 19
	Titles
	4.9 Essential ADO 


	Page 20
	Page 21
	Titles
	CHAPTERS 
	DESCRIPTION OF ESTATE AGENT WEB PAGE 
	5.1 Introduction 
	5.2 Searching an Estate 
	r 
	5.3 Search Estate Agents 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 22
	Titles
	Figure 5.2 Lists of Estate Agents by Name Screen Shot. 
	5.4 Search Countries Estate Agents 
	This page allows searching the countries estate agents. 
	Figure 5.3 Search Countries Estate Agents Screen Shot 
	38 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 23
	Titles
	5.5 Rent I Sell an Agent 
	In this page estate agents must be login to add a new estate to database. If estate agent has 
	Figure 5.4 Rent I Sell an Agent page Estate Agent did not logged in. 
	Figure 5.5 Rent I Sell an Agent page Estate Agent logged in. 

	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Titles
	5.6 Estate Agent Registration 
	5. 7 Database & Tables 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 1
	Titles
	·;~·auint 
	:v 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1


	Page 2
	Page 3
	Page 4
	Titles
	> 


	Page 5
	Titles
	> 


	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Titles
	...ŁŁ. 

	Images
	Image 1


	Page 12
	Page 13
	Page 14
	Titles
	"" 


	Page 15
	Images
	Image 1


	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Titles
	{ 
	{ 
	} 


	Page 22
	Page 23
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Titles
	74 


	Page 9
	Page 10
	Page 11
	Page 12
	Titles
	} 
	} 


	Page 13
	Page 14
	Page 15
	Page 16
	Titles
	} 

	Images
	Image 1


	Page 17
	Titles
	} 
	} 
	} 
	{ 


	Page 18
	Page 19
	Titles
	{ 
	} 


	Page 20
	Images
	Image 1
	Image 2



