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ABSTRACT

The contamination of a desired signal by unwanted and unpredictable noise is a

problem often encountered in digital communication and control systems.

When the signal and noise occupied fixed and separate frequency band

convenutional linear filters (analog or digital) can be based. When aspectral overlap

between signal and noise occurs or band occupied by the noise is unknown or varies

with time, it is necessary to design a filter adapted to changes of the signal

characteristics.

One of the important problems in long distance communication system over a

telephone channel is removing residual and far end echo signals.

Aim of this thesis is the analysis and interpretation of the adaptive noise

canceller based on LMS algorithm for removing hybrid and acoustic echo noises within

the digital environment for improving a voice quality of the long distance

telecommunication systems.
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INTRODUCTION

The design of a Wiener filter requires a priori information about the

statistics of the data to be processed. When this information is not known

completely, however, it may not be possible to design the Wiener filter or else the

design may no longer be optimum. A straightforward approach that used in such

situations is the "estimate and plug" procedure. For real-time operation, this

procedure has the disadvantage of requiring excessively elaborate and costly

hardware.

A more efficient method is to use an adaptive filter. By such a device we mean

one that is self-designing in that the adaptive filter relies for its operation on a

recursive algorithm, which makes it possible for the filter to perform satisfactorily

in an environment where complete knowledge of the input signal characteristics is

not available.

Introducing the least-mean-square LMS algorithm. Is important because of its

simplicity, ease of computation, and because it does not require off-line gradient

estimations or repetitions of data.

In this thesis, design adaptive filters based on Least Mean Square Algorithm are

discussed.

Fundamental problems related with hardware and software implementation of

the echo cancellator are considered.

This has led to intensive research into the area of echo cancellation, with the aim

of providing solutions that reduce background noise and remove hybrid and acoustic I

echo before any transcoder processing.

The first chapter represents classification of filters, approximation of the

frequency response characteristics using Butterworth, Chebyshev, and Elliptic Filters.

Chapter provides comparison of analog and digital filters and different frequency

response Characteristic.

Chapter two is devoted to the adaptive filter that provides real time operation in

unknown input signal characteristic. General properties, Open loop, closed-loop

adaptation are examined.

End sections of the chapter consider application of adaptive filter in identification, noise

cancellation.

1
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Chapter three explores adaptive echo cancellation, acoustic echo, hybrid echo,

and combined problems of the digital cellular telephone.

Chapter four examines the fundamental problems and solutions of echo

cancellation and echo suppression in the telephone network.

Chapter five presents analysis of LMS algorithm and their software and

hardware implementation. Basic limitations related with the effect of nonstationarity of

input signals, computer worldlength requirement, driftt of coefficients are considered.

Chapter six treats Finite Precision Effect, stalling phenomenon, and parameter

drifts of the precision of filtering using LMS.

Chapter seven is devoted to the practical implementation and design of classical

filter and adaptive filter using MATLAB. As input signal, is used signal combining of

15 and 30 harmonic component and white noise.

Structure of adaptive filter and timing diagram of signal are plotted by MATLAB

argument.

In the conclusion are given important results obtained by the author of the thesis on

analysis interpretation and practical realization of the adaptive filter.

I
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Overviewof Filters

1. OVERVIEW OF FILTERS

Filtering is a process by which the frequency spectrum of signal can be modified, reshaped,

or manipulated according to some desired specification. It may entail amplifying or

attenuating a range of frequency components, rejecting or isolating one specific or

attenuating a range of frequency component, etc. The uses of filtering are manifold, e.g., to

eliminate signal contamination such as noise to remove signal distortion brought about by

an imperfect transmission channel or by inaccuracies in measurement, to separate two or

more distinct signals which were purposely mixed in order to maximize channel utilization,

to demodulate signals, to convert discrete-time signals into continuous-time signals.

The digital filter is a digital system that can be used to filter discrete-time signals. It can

be implemented by mean of software (computer programs) or by means of dedicated

hardware, and in either case it can be used to filter real-time signals or non-real-time

(recorded) signals.

Software digital filters made their appearance along with the first digital computer

in the late forties, although the name digital filter did not emerge until the midsixties. Early

in the history of the digital computer many of the classical numerical analysis formulas of

NEWTON, STARLING, ete,. and others were used to carry out interpolation,

differentiation, and integration of function (signals) represented by mean of sequences of

numbers (discrete-time signals). Since interpolation, differentiation, or integration of a

signal represents a manipulation of the frequency spectrum of the signal, the subroutines or

programs constructed to carry out these operations were essentially digital filters. In

subsequent years, many complex and highly sophisticated algorithms and programs were

3



Overview of Filters

developed to perform a variety of filtering tasks in numerous application, e.g., data

smoothing and prediction, pattern recognition, electrocardiogram processing, and spectrum

analysis. In fact, as time goes on, interest in the software digital filter is becoming

progressivelymore intense while its applications are increasing at an exponential rate.

Band-limited continuous-time signals can be transformed into discrete-time signals by

means of sampling. Conversely, the discrete-time signals so generated can be used to

regenerate the original continuous-time signals by means of interpolation, by virtue of

Shannon's sampling theorem. As a consequence, hardware Digital's filters can be used to

perform real-time filtering tasks, which in the not too distant past were performed almost

exclusively by analog filters. The advantages to be gained are the traditional advantages

associated with digital systems in general:

I. Component tolerances are uncritical.

2. Component drift and spurious environmental signals have no influence on the system

performance.

3. Accuracy is high.

4. Physical size is small.

5. Reliability is high.

A very important additional advantage of digital filters is the ease with which filter

parameters can be changed in order to change the filters characteristics. This feature allows

one to design programmable filters which can be used to perform a multiplicity of filtering

tasks. Also one can design new types of filters such as adaptive filters. The main

disadvantage of hardware digital filters at present is their relatively high cost. However,

with the tremendous advancements in the domain of large-scale integration, the cost of

4
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Overview of Filters

hardware digital filters is likely to drop drastically in the not too distant future.

1.1 Classic Analog Filters

While the importance of analog filters is continuously being reduced by their digital

counterparts, they remain an important study, if for no other reason than they provide a

gateway to the study of digital filters. The design of a contemporary analog filter, in many

cases, remains today as it was during the early days of radio. The design objective of the

radio engineers was to shape the frequent-spectrum of a received or transmitted signal

using modulators, demodulators, and frequency-selective filters. The frequency-selective

filters were defined in terms of a mathematical ideal. The ideal models represent low-pass,

high-pass, band-pass, band-stop, and all-pass filters. These are graphically interpreted in

Figure 1. 1. Their shape represents the steady-state magnitude-frequency response of a filter

with a transfer function of H(Q) = H(s) I s=in where Q denotes an analog frequency

measured in radians per second. The mathematical specification of each ideal filter is

summarized as,

Ideal High-pass IH(Q)I = {o if o E [-B,BJ
1 otherwise

ldealBand-pass IH(Q)l={J if 0E[-B2,-B1]orQE[Bı,Bı]
O otherwise

Ideal Band-stop IH(Q)I = {o if Q E [-B2 ,-B,] or Q E ıs., Bı]
1 otherwise

5



I

Overview of Filters

All-pass IH(ü)I = 1 for all OE [-oo, co]

Low-Pass

IH.(ü)I
High-Pass

IH~ü)I

- •...,..
-BO B -B O B

All-Pass
IE;CO)I

Band-Pass
IH,(ü)I

o - B2 - Bı o B2 Bı

Band-Stop
lf1ı(O)I

- B2 - Bı o B2 Bı

Figure 1.1 Basic Ideal Filter Types

Analog filter design is often based on the use of several well-known models called

Butterworth, Chebyshev, and elliptic (Cauer) filters. To standardize the design procedure, a

set of normalized analog prototype filter models was agreed upon and reduced to tables,

charts, and graphs. These models, called prototypes, were all developed as low-pass

6



Overview of Filters

systems having a known gain (typically -1 dB or -3 dB pass-band attenuation) at a known

critical cut-off frequency (typically 1 radian/second). The transfer function of an analog

prototype filter, denoted Hp(s), would be encapsulated in a standard table as a function of

filter type and order. The prototype filter HP (s) would then be mapped into a final filter

H(s) having critical frequencies specified by the designer. The mapping rules,

... ~ Lowpass-ıo­
Lowpass

ı.o Lcwpass-to­
highpı.,<

IH<n~' o., ı----.....\ IH<flJl2 0.5

(cı)

llU i___. "-.__ !lcrtJhıtt)

. o.o ıi,
(b)

I ,,,,.,,, .
o.oo.o o,

" I.O I .owpassPrototype
,,

IH(O)j20.5

c- 001 ~ nı,.ı,,.., _,
o.o I

ı.o I m Lowpass-to- LOI \ Lowpess.ıc-
Bandpa$ı; Bıındsıop,....,,,T1L [ jH{O)l20.>

n(r..Vııı:c)
00 '. ·- ' o.o---,

. o.o ıi,, ıı, ıi,, o.o n,, n, n,,

Figure 1.2 Frequency Transform

called frequency - frequency transforms, as shown in figure I .2.
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1.2 Polynomial Approximations of the Frequency

1.2.1 Butterworth Approximation

The magnitude-squared response of an analog low-pass Butterworth filter Ha (s) of Nth

order is given by [ I 3],

1
IH.(jnf = ı+(nınc)2 (1.1)

It can be easily shown that the first 2N-l derivatives of IHa (jnf at Q =Oare equal to

zero, and as a result, the Butterworth filter is said to have a maximally-flat magnitude at

Q =O.The gain of the Butterworth filter in dB is given by,

g(n)= 10 log., IH. (jnf dB.

A de i.e., at Q = O, the gain in dB is equal to zero, and at Q = ne, the gain is,

g(Qc) = 10 log ., (1/2) = -3.0103 ~ -3 dB

and therefore, He is often called the 3-dB cutoff frequency. Since the derivative of the

squared-magnitude response, or equivalently, of the magnitude response is always negative

for positive values of o, the magnitude response, is monotonically decreasing with

increasing Q. For Q >> Qc, the squared-magnitude function can be approximated by,

1
IH. (jnf = 1 + (n ı nJ2N

The gain g(Q2) in dB at Q2 = 2Qı with Oı>> Qc is given by,

8
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g(O.)= -20 log., ( ~: r = g(O, )- 6N dB,

where g(Q 1) is the gain in dB at Q 1 • As a result, the gain roll-off per octave in the stop-

band decreases by 6 dB, or equivalently, by 20 dB per decade for an increase of the filter

order by one. In other words, the pass-band and the stop-band behaviors of the magnitude

response improve with a corresponding decrease in the transition band as the fitter order N

increases. A plot of the magnitude response of the normalized Butterworth low-pass filter

with Qc = 1 for some typical values ofN is shown in figure.

o.s~--
i·'= 0.6
i
~ 0:4

-~, : ~ .

-;,... .- -:-0.2

ol ,o ,.J:ıl-lQ
0.5 I 1.5 2

Normaliı.cd froıuency
2.5 J

Figure 1 .3 Typical Butterworth low-pass filter response .

. The two parameters completely characterizing a Butterworth filter are therefore the 3-dB

cutoff frequency Qc and the order N. These are determined from the specified pass-band

edge QP, the minimum pass-band magnitude 1/ .Jı + &2 , the stop-band edgeQ5, and the

maximum stop-band ripple 1/A. From Eq. (1.1) we get,

)2 1 -
IHaUQP~ =1+(Qp/QJ2N -1+&2

(l.2a)

~
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Overview of Filters

1I --
!Ha{jnsf = 1 + (ns I nJ2N - A 2 ( 1.2b)

By solving the above we get the expression for the order N as,

N = .!._ log 10 [(A 2
- I )ı 8

2]
_ log 10 (11 k 1)

2 log., (ns I Qp) - log., (Ilk)
(1.3)

Since the order N of the filter must be an integer, the value ofN computed using the above

I

expression is rounded up to the next higher integer. This value of N can be used next in

either Eq. (1.2a) or (1.2b) to solve for the 3-dB cutoff frequency Qc. lf it is used in Eq.

(1.2a), the pass-band specification is met exactly, whereas the stop-band specification is

exceeded. On the Other hand, if it is used in Eq. (1.2b), the stop-band specification is met

exactly, whereas the pass-band specification is exceeded.

The expression for the transfer function of the Butterworth low-pass filter is given by,

f""'\N QNC ı:.lc = c

Ha(s)= DN(s) =SN+ L;~~dese n;=Js-pf ( 1.4)

Where,

p.t' = Qcej[;r(N+2t-ı)ı2N)' .t' = 1,2,... , N (1.5)

The denominator D ~, (s) of Eq. (1.4) is known as the Butterworth polynomial of order N

and is easy to compute.

10
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1.2.2 Chebyshev Approximation

In this case, the approximation error, defined as the difference between the ideal brick

wall characteristic and the actual response, is minimized over a prescribed band of

frequencies. In fact, the magnitude error is equiripple in the band. There are two types of

Chebyshev transfer functions [2]. In the Type 1 approximation, the magnitude haracteristic

is equiripple in the pass-band and monotonic in the stop-band, whereas in the Type 2

approximation, the magnitude response is monotonic in the pass-band and equiripple in the

stop-band.

1.2.3 Type 1 Chebyshev Approximation

The type 1 Chebyshev transfer function Ha (s) has a magnitude response given by,

1
IHa(jnt = 1 +&2 T:ı(nınp)' (1.7)

Where T N (Q) is the Chebyshev polynomial of order N:

I

{
cos(N cos·1n}

T ~· (Q) =
cosh(N cosh·1n}

ını~ı.
ını>ı, (1.8)

The above polynomial can also be derived by recurrence relation given by,

Tr (n) = 2Q r., (Q)-Tr-ı (Q), r z Z, (1 .9)

11
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p,.=ae+jne, f = 1,2,..... ,N, (1.11)

Overviewof Filters

With TO (Q) = 1 and T 1 (Q) = n

The zeros are on the jQ-axis and are given by,

ns
z, = j [(2f-})1r],

cos ıN
f=l,2, ..... ,N. (1.1 O)

lf N is odd, then for f = (N + 1 )/2, the zero is at s = co, The poles are located at,

Where,

n = nsl3e
e 2 A.2 ,ae +,-,e

. [(2f - ı)n] [(2f - ı}n]
ae = -QPçsın ıN , 13e = Q/; cos ıN ,

nsae
cr = 2 A.2 '

e ae + 1-'e

(1.12)

y2 -1
ç= - '

2y

2ç = y +ı
2y ,

y = (A + .jA 2 - 1 JIN.

The order N of the Type 2 Chebyshev low-pass filter is determined from given f:, ns , and

A using Eq. (1.11).

12
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Overview of Filters

(1.13)

1.2.4 Elliptic Approximation:

An elliptic filter [8], also known as a Cauer filter, has an equiripple pass-band and an

equiripple stop-band magnitude response, as indicated in Figure 1.4 for typical elliptic

low-pass filters. The transfer function of an elliptic filter meets a given set of filter

specifications, pass-band edge frequency Qv , stop-band edge frequency 1', pass-band ripple

Q5, and minimum stop-band attenuation A, with the lowest filter order N. The theory of

elliptic filter approximation is mathematically quite involved. The square-magnitude

response of an elliptic low-pass filter is given by,

1
IH.(jn~2 = I+&ı R~(nınJ

where RN (Q) is a rational function of order N satisfying the property RN (1 IQ)=

l /RN (Q) , with the roots of its numerator lying within the interval O < Q < 1 and the roots

of its denominator lying in the interval 1 < Q < co, For most applications, the filter order

meeting a given set of specifications of pass-band edge frequency Qv , pass-band ripple s,

stop-band edge frequency Q5 , and the minimum stop-band ripple A can be, estimated by

using the approximate formula,

N = 2 logıo(4/kı)
log., (ı Ip)

(1.14)

where k 1 is the discrimination parameter and p is computed as follows :

~

13
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k'=0-k2

1--/k'P - --,,,.__-='<)0
- 2\1 + Jk'

p=p0 +2(p0)5 +15(p0)9 +150(p0)'3.

( 1.15)

in Eq.(1 .15a), k is the selective parameter.

0.8 • ·

~
-~ 0.6
~
io.4

~. . · .

O'--~.....•. ~~_._..!.-~.lwc:~~~~~~~~
o

0.2

0.5 I 1.5 2 25
Normalized frequency

3

Figure 1.4 Typical elliptic low-pass filter responses with 1 dB pass-band ripple and l O dB

minimum stop-band attenuation.

1.2.5 Linear-Phase Approximation

The previous three approximation techniques are for developing analog low-pass transfer

functions meeting specified magnitude or gain response specifications without any concern

for their phase responses. In a number of applications it is desirable that the analog low-

pass, filter being designed have a linear-phase characteristic in the pass-band, in addition to

approximating the magnitude specifications. One way to achieve this goal is to cascade an

14



B; (s) = (2N -1) BN - l(s) + s2BN-ı (s) ( 1.17)

OverviewofFilters

analog all-pass filter with the filter designed to meet the magnitude specifications, so that

the phase response of the overall cascade realization approximates linear-phase response in

the pass-band. This approach increases the overall hardware complexity of the analog filter

and may not be desirable for designing an analog anti-aliasing filter in some AID

conversion or designing an analog reconstruction filter in DIA conversion applications. It is

possible to design a low-pass filter that approximates a linear-phase characteristic in the

pass-band but with a poorer magnitude response than that can be achieved by the previous

three techniques. Such a filter has an all-pole transfer function of the form,

H(s)=~= do I\!

BN(s) d0 +d1s+ ..... +dN_1s+s
( 1.16)

and provides a maximally flat approximation to the linear-phase characteristic at n= O, i.e.,

has a maximally flat constant group delay at de (n = O). For a normalized group delay of

unity at de, the denominator polynomial fi B N (s) of the transfer function, called the Bessel

polynomial[2,8], can be derived via the recursion relation,

starting with B 1 (s) = s + I and B 2 (s) = s 2 + 3s + 3. Alternatively, the coefficients of the

Bessel polynomial BN (s) can be found from,

(2N-f)! ,
de= 2N-tf!(n-f)!

f = 0,1,.... ,N -1 (1.26)

15
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These filters are often referred to as Bessel filters.

1.3 A Comparison of the Filter Types

In the previous sections we have discussed four types of analog low-pass fitter approx­

imations, three of which have been developed primarily to meet the magnitude response

specifications while the fourth has been developed primarily to provide a linear-phase

approximation. In order to determine which filter type to choose to meet a given magnitude

response specification, we need to compare the performances of the four types of

approximations. To this end, we compare here the frequency responses of the normalized

Butterworth, Chebyshev, and elliptic analog low-pass filters of same order. The pass-band

ripple of the Type 1 Chebyshev and the equiripple filters are assumed to be the same, while

the minimum stop-band attenuation of the Type 2 Chebyshev and the equiripple filters are

assumed to be the same. The filter specifications used for comparison are as follows: filter

order of 6, pass-band edge at n= 1, maximum pass-band deviation of 1 dB, and minimum

stop-band attenuation of 40 dB. The frequency responses computed using MATLAB are

plotted in Figure 1.5.

16
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As can be seen from Figure 1.5, the Butterworth filter has the widest transition

band, with a monotonically decreasing gain response. Both types of Chebyshev filters have

o

-~
··· Bnıwri
··C~dınl
- Chdıym u
- Ellipı.:

o 0.2 04 0.6 0.8
NomııliUdtiequeııc1

.g ~--__._.._ ....___.....
O U I U 2 LJ

Noım,JiUd tleqıım:y

(b} (c}

Figure 1.5 A comparison of the frequency response of the four types of analog low-pass.

A transition band of equal width that is smaller than that of the Butterworth filter

but greater than that of the elliptic filter. The Type l Chebyshev filter provides a slightly

faster roll-off in the transition band than the Type 2 Chebyshev filter. The magnitude

response of

the Type 2 Chebyshev filter in the pass-band is nearly identical to that of the Butterworth

filter. The elliptic filter has the narrowest transition band, with an equiripple pass-band and

an equiripple stop band response.

The Butterworth and Chebyshev fillers have a nearly linear-phase response over about

three-fourths of the pass-band, whereas the elliptic filter has a nearly linear-phase response

over about one-half of the pass-band. On the other hand, the Bessel filter may be more

attractive if the linearity of the phase response over a larger portion of the pass-band is

,.,

17
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desired at the expense of a poorer gain response. However, the Bessel filter provides a

minimum of 40 dB attenuation at approximately Q = 9.4 and as a result, has the largest

transition band compared to the other three types.

18
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2. ADAPTIVE FILTERS

2.1 Overview

The design of a Wiener filter requires a priori information about the statistics of the

data to be processed. The filter is optimum only when the statistical characteristics of

the input data match the priori information on which the design of the filter is based.

When this information is not known completely, however, it may not be possible to

design the Wiener filter or else the design may no longer be optimum.

A straightforward approach that we may use in such situations is the "estimate

and plug" procedure. This is a two-stage process whereby the filter first "estimates" the

statistical parameters of the relevant signals and then "plugs" the results so obtained into

a non-recursive formula for computing the filter parameters. For real-time operation,

this procedure has the disadvantage of requiring excessively elaborate and costly

hardware. A more efficient method is to use an adaptive filter. By such a device we

mean one that is self-designing in that the adaptive filter relies for its operation on a

recursive algorithm, which makes it possible for the filter to perform satisfactorily in an

environment where complete knowledge of the relevant signal characteristics is not

available. The algorithm starts from some predetemıined set of initial conditions,

representing whatever we know about the environment. Yet, in a stationary

environment, we find that after successive iterations of the algorithm it converges to the

optimum Wiener solution in some statistical sense.

In a non-stationary environment, the algorithm offers a tracking capability , in that it

can track time variations in the statistics of the input data, provided that the variations
~

are sufficiently slow .
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As a direct consequence of the application of a recursive algorithm whereby the

parameters of an adaptive filter are updated from one iteration to the next, the

parameters become data dependent. This, therefore, means that an adaptive filter is in

reality a nonlinear device, in the sense that it does not obey the principle of

superposition. The adaptive filters are commonly classified as linear or nonlinear. An

adaptive filter is said to be linear if the estimate of a quantity of interest is computed

adaptively (at the output of the filter) as a linear combination of the available set of

observations applied to the filter input. Otherwise, the adaptive filter is said to be

nonlinear.

A wide variety of recursive algorithms have been developed in the literature for the

operation of linear adaptive filters [13). In the final analysis, the choice of one algorithm

over another is determined by one or more of the following factors:

• Rate of convergence. This is defined as the number of iterations required for the

algorithm, in response to stationary inputs, to converge "close enough" to the optimum

Wiener solution in the mean-square sense. A fast rate of convergence allows the

algorithm to adapt rapidly to a stationary environment of unknown statistics.

• Misadjustment. For an algorithm of interest, this parameter provides a quantitative

measure of the amount by which the final value of the mean-squared error, averaged

over an ensemble of adaptive filters, deviates from the minimum mean- squared error

that is produced by the Wiener filter.

• Tracking. When an adaptive filtering algorithm operates in a non-stationary

environment, the algorithm is required to track statistical variations in the environment.

The tracking performance of the algorithm, however, is influenced by two

contradictory features: (a) rate of convergence, and (b) steady-state f1 uctuation due to

algorithm noise.
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• Robustness. For an adaptive filter to be robust, small disturbances (i.e., disturbances

with small energy) can only result in small estimation errors. The disturbances may

arise from a variety of factors, internal or external to the filter.

• Computational requirements. Here the issues of concern include (a) the number of

operations (i.e., multiplications, divisions, and additions/subtractions) required to make

one complete iteration of the algorithm, (b) the size of memory locations required to

store the data and the program, and (c) the investment required to program the algorithm

on a computer.

• Structure. This refers to the structure of information flow in the algorithm, deter­

mining the manner in which it is implemented in hardware form. For example, an

algorithm whose structure exhibits high modularity, parallelism, or concurrency is well

suited for implementation using very large-scale integration (VLSI).

• Numerical properties. When an algorithm is implemented numerically, inaccuracies

are produced due to quantization errors. The quantization errors are due to analog-to­

digital conversion of the input data and digital representation of internal calculations.

Ordinarily, it is the latter source of quantization errors that poses a serious design

problem. In particular, there are two basic issues of concern: numerical stability and

numerical accuracy. Numerical stability is an inherent characteristic of an adaptive

filtering algorithm. Numerical accuracy, on the other hand, is determined by the number

of bits (i.e., binary digits) used in the numerical representation of data samples and filter

coefficients. An adaptive filtering algorithm is said to be numerically robust when it is

insensitive to variations in the word-length used in its digital implementation.

These factors, in their own ways, also enter into the design of nonlinear adaptive filters,

except for the fact that we now no longer have a well-defined frame of reference in the
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form of a Wiener filter. Rather, we speak of a nonlinear filtering algorithm that may

converge to a local minimum or, hopefully, a global minimum on the error-performance

surface.

In recent years, growing field of research in "adaptive systems" has resulted in a variety

of adaptive automates whose characterestics in limited ways resemble certain

characterestics of living systems and biological adaptive processes.

Some meanings of "adaptation" can be applied in industrial, biological, social and etc.

An adaptive automation is asystem whose structure is alterable or adjustable in

such a way that its behavior or performance (according to some desired criterion)

improves through contact with its environment. A simple example of an automation

or automatic adaptive system is the automatic gain control (AGC) used in radio and

television receivers. The function of this circuit is to adjust the sensitivity of the

receiver inversely as the average incoming signal strength. The receiver is thus able

to adapt a wide range of input levels and to produce a much narrower range of

output signals.

The purpose of this work is to present certain basic principles of adaptation; to

explain the design, operating characteristics, and applications of the simpler forms

of adaptive systems; and to describe means for their physical realization. The types

of systems discussed include those designed primarily for the purposes of adaptive

control and adaptive signal processing. Such systems usually have some or all of the

following characteristics:

1. They can automatically adapt (self-optimize) in the face of changing

(nonstationary) environments and changing system requirements.

2. They can be trained to perform specific filtering and decision-making tasks.

Syntliesis of systems having these capabilities can be accoplished
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automatically through training. In a sense, adaptive systems can be

"programmed" by atrain process.

3. Because of the above, adaptive systems do not require the elaborate

synthesis procedures usually needed for nonadaptive systems. Instead, they

tend to be "self-designing."

4. They can be extrapolate a model ofbehavior to deal with new situations after

having been trained on a finite and often small number of training signals or

patterns.

5. To alimited extent, they can repair themselves; that is, they can adapt around

certain kinds of internal defects.

6. They can usually be described as nonlinear systems with time-varying

parameters.

7. Usually, they are more complex and difficult to analyze than nonadaptive

systems, but they offer the possibility of substantially increased system

performance when input signal characteristics are unknown or time varying.

2.2 General Properties

The essential and principal property of the adaptive system is its time­

varying, self-adjusting performance. The need for such performance may readily

be seen by realizing that if a designer develops a system of fixed design which

he or she considers optimal, the implications are that the designer has foreseen

all possible input conditions, at least statistically, and knows what he or she

would like the system to do under each of these conditions. The designer has

then chosen a specific criterion whereby performance is to be judged, such as

#
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the amount of error between the output of the actual system and that of some

selected model or "ideal"system.

Finally, the designer has chosen the system that appears best according to the

performance criterion selected, generally choosing this system from an a

priorirestricted class of designs (such as linear systems).

In many instances, however, the complete range of input conditions may not be

known exactly, or even statistically; or the conditions may change from time to

time. In such circumstances,an adaptive system that continually seeks the

optimum within an allowed class of possibilities, using an ordinarly search

process, would give superior performance compared with a system of fixed

design.

By their very nature, adaptive systems must be time varying and

nonlinear. Their characteristics depend, among other things, on their input

signals. If an input signal x1 is applied, an adaptive system will adapt to it and

produce an output y1• If another input signal, x2, is applied, the system will adapt

to this second signal and will again produce an output y2.

Generally, the form or the structure or the adjustments of the adaptive system

will be different for the two different inputs. If the sum of the two inputs is

applied to the adaptive system, the latter will adapt to this new input-but it will

produce an output that will generally not be the same as yı+Y2, the sum of the

outputs that would have corresponded to inputs x1 and x2. In such a case, as

illustrated in Figure 2.1, the principle of superposition does not work as it does

with linear systems. If a signal is applied to the input of an adaptive system to

test its response characteristics, the systems adapts to this specific input and
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thereby changes its own form. Thus the adaptive system is inherently difficult to

characterize in conventional terms.

Whithin the realm of nonlinear systems, adaptive systems cannot be

distinguished as belonging to an absolutely clear subset. However, they have

two features that generally distinguish them from other forms of nonlinear

systems.

Xı lıııl H

X2 •I
+ ~ Yı + Yı

H I
Yı

Xı

t
r I

Xı
r H I .Y3

Figure 2.1. The lower output Y3 if H is a linear system, if H is adaptive Y3 is

generally different from YI+ Y2

First, adaptive systems are adjustable, and their adjustments usually depend on finite­

term average signal characteristics rather than on instantaneous values of signals or

instantaneous values of the internal system state. Second, the adjustments of the

adaptive systems are changed purposefully in order to optimize specified performance

measures.

Certain forms of adaptive systems become linear systems when their

adjustments are held constant after adaptation. These may be called "linear adaptive

systems." They are very useful; they tend to be mathematically tractable; and they are

generally easier to design than other forms of adaptive systems.
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2.3 Open-And Closed-Loop Adaptation

Several ways to classify adaptive schemes have been proposed in the literature [4]. It is

most convenient here to begin by thinking in terms of open-loop and closed-loop

adaptation. The open-loop adaptive process involves making measurements of input or

environmental characteristics, applying this information to a formula or to a

computational algorithm, and using the results to set the adjustments of the adaptive

system.

Closed-loop adaptation, on the other hand, involves automatic experimentation with

these adjustments and knowledge of their outcome in order to optimize a measured

system performance. The latter process called adaptation by "performance feedback."

The principles of open- and closed-loop adaptation are illustrated in figures 2.2

and 2.3. The "other data" in these figures may be data about the environment of the

adaptive system, or in the closed-loop case, it may be a desired version of the output

signal.

Input • ~I
signal

Processor

Figure 2.2 Open-loop adaptations
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Figure 2.3 Closed loop adaptation

When designing an adaptive process, many factors determine the choice of closed-loop

versus open-loop adaptation. The availability of input signals and performance-

indicating signals is a major consideration. Also, the amount of computing capacity and

the type of computer required to implement the open-loop and closed-loop adaptation

algorithms will generally differ. Certain algorithms require the use of a general-purpose

digital computer, whereas other algorithms could be implemented far more

economically with special-purpose chips or other apparatus.

It is difficult to develop general principles to guide all choices, but several advantages

and a few disadvatntages of closed-loop adaptation, which is the main subject can be

pointed out here.

Closed-loop adaptation has the advantages of being workable in many

applications where no analytic synthesis procedure either exists or is known, for

example, where error criteria other than mean-square are used, where systems are

nonlinear or time variable, where signals are nonsattionary, and so on.
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Closed-loop can also be used effectively in situations where physical system component

values are variable or inaccurately known. Closed-loop adaptation will find the best

choice of component values. In the event of partial system failure, an adaptation

mechanism that continually monitors performance will optimize this performance by

adjusting and reoptimizing the intact parts. As a result, system reliability can often be

improved by the use of performance feedback.

The closed-loop adaptation process is not always free of difficulties, however. In

certain situations, performance functions do not have unique optima. Automatic

optimization is an uncertain process in such situations. In other situations, the closed­

loop adaptation process, like a closed-loop control system, could be unstable. The

adaptation process could diverge rather than converge. In spite of these possibilities,

performance feedback is a powerful, widely applicable technique for implementing

adaptation.

2.4 Applications

The ability of an adaptive filter to operate satisfactorily in an unknown environment and

track time variations of input statistics make the adaptive filter a powerful device for

signal-processing and control applications. Indeed, [4] adaptive filters have been

successfully applied in such diverse fields as communications, radar, sonar, seismology,

and biomedical engineering. Although these applications are indeed quite different in

nature, nevertheless, they have one basic common feature: an input vector and a desired

response are used to compute an estimation error, which is in turn used to control the

values of a set of adjustable filter coefficients. The adjustable coefficients may take the

form of tap weights, reflection coefficients, rotation parameters, or synaptic weights,

depending on the filter structure employed. However, the essential difference between
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the various applications of adaptive filtering arises in the manner in which the desired

response is extracted. In this context, we may distinguish four basic classes of adaptive

filtering applications, as depicted in Fig. 2.4. For convenience of presentation, the

following notations are used in this figure:

u = input applied to the adaptive filter

Y = output of the adaptive filter

d = desired response

e = d -y = estimation error .

The functions of the four basic classes of adaptive filtering applications depicted here in

are as follows:

I. Identification Fig. 2.4(a). The notion of a mathematical model is fundamental to

sciences and engineering. In the class of applications dealing with identification, an

adaptive filter is used to provide a linear model that represents the best fit (in some

sense) to an unknown plant. The plant and the adaptive filter are driven by the same

input. The plant output supplies the desired response of the adaptive filter. If the plant is

dynamic in nature, the model will be time varying.

Adaptive Filter

System
OutnutInput ~, ~

System Plant

(a)
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System Outputuem Plant Adaptive Filter

Delay
(b)

d System, + .. ·············· ııı,,:Output 1
+

dom il Adaptive
Filter

Delay •al

(c)
Prim ar~~~~~~~~~~~~~~~~~~---,
Signal

Reference U
Signal

Adaptive
Filter

I e 11ıı,System
Output•

(d)

Fig. 2.4 Four Basic Classes of Adaptive Filtering Applications

(a) Identification (b) Inverse Modeling (c) Prediction (d) Interference Canceling

II. Inverse modeling Fig. 2.4(b ). In this second class of applications, the function of the

adaptive filter is to provide an inverse model that represents the best fit (in some sense)

to an unknown noisy plant. Ideally , in the case of a linear system, the inverse model has

30
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a transfer function equal to the reciprocal (inverse) of the plant' s transfer function, such

that the combination of the two constitutes an ideal transmission medium. A delayed

version of the plant (system) input constitutes the desired response for the adaptive

filter. In some applications, the plant input is used without delay as the desired response.

III. Prediction Fig.2.4(c). Here the function of the adaptive filter is to provide the best

prediction (in some sense) of the present value of a random signal. The present value of

the signal thus serves the purpose of a desired response for the adaptive filter. Past

values of the signal supply the input applied to the adaptive filter. Depending on the

application of interest, the adaptive filter output or the estimation (prediction) error may

serve as the system output. In the first case, the system operates as a predictor; in the

latter case, it operates as aprediction- errorjilter.

IV. Noise Cancellation Fig.2.4(d). In this final class of applications, the adaptive filter

is used to cancel unknown interference contained (alongside an information-bearing

signal component) in a primary signal, with the cancellation being optimized in some

sense. The primary signal serves as the desired response for the adaptive filter. A

reference (auxiliary) signal is employed as the input to the adaptive filter. The reference

signal is derived from a sensor or set of sensors located in relation to the sensor(s)

supplying the primary signal in such a way that the information-bearing signal

component is weak or essentially undetectable.

2.5 Application of Adaptive Filters

The contamination of a signal of interest by other unwanted, often larger, signals or

noise is a problem often encountered in many applications. Where the signal and noise

occupy fixed and separate frequency bands, conventional linear filters with fixed

coefficients are normally used to extract the signal. [4]. However, there are many
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instances when it is necessary for the filter characteristics to be variable, adapted to

changing signal characteristics, or to be altered intelligently. In such cases, the

coefficients of the filter must vary and cannot be specified in advance. Such is the case

where there is a spectral overlap between the signal and noise, see Figure 2.5. or if the

band occupied by the noise is unknown or varies with time.

Interference Spectrum

/
Desired Signal Spectrum

/

.........~~~-'--~~~~~--=-----+-

Figure 2.5. An illustration of spectral overlap between a signal and a strong

interference

Typical applications where fixed coefficient filters are inappropriate are the following.

• Electroencephalography (EEG), where artefacts or signal contamination

produced by eye movements or blinks is much larger than the genuine electrical

activity of the brain and shares the same frequency band with signals of clinical

interest. It is not possible to use conventional linear filters to remove the

artefacts while preserving the signals of clinical interest.

• Digital communication using a spread spectrum, where a large jamming signal,

possibly intended to disrupt communication, could interfere with the desired

signal. The interference often occupies a narrow but unknown band within the

wideband spectrum, and can only be effectively dealt with adaptively.
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• In digital data communication over the telephone channel at a high rate. Signal

distortions caused by the poor amplitude and phase response characteristics of

the channel lead to pulses representing different digital codes to interfere with

each other (intersymbol interference), making it difficult to detect the codes

reliably at the receiving end. To compensate for the channel distortions which

may be varying with time or of unknown characteristics at the receiving end,

adaptive equalization is used.

An adaptive filter has the property that its frequency response is adjustable or

modifiable automatically to improve its performance in accordance with some criterion,

allowing the filter to adapt to changes in the input signal characteristics. Because of

their self-adjusting performance and in-built flexibility, adaptive filters have found use

in many diverse applications such as telephone echo canceling, radar signal processing,

navigational systems, equalization of communication channels, and biomedical signal

enhancement.

In summary we use adaptive filters

• When it is necessary for the filter characteristics to be variable, adapted to

changing conditions,

• When there is spectral overlap between the signal and noise, or

• If the band occupied by the noise is unknown or varies with time.

In most adaptive systems, the digital filter in figure 2.6. Is realized using a transversal or

finite impulse response (FIR) structure. Other forms are sometimes used, for example

the infinite impulse response (IIR) or the lattice structures, but the FIR structure is the
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most widely used because of its simplicity and guaranteed stability. For the N-point

filter depicted in figure 2.6, the output is given by

N-1

iik = Lwk(i)xk-i
i=O

where wk(i), i=O,l, ... , are the adjustable filter coefficients (or weights) and xk(i) and Xk

are the input and output of the filter. Figure 2.6. Illustrates the single-input, single-

output system. In a multiple-input single-output system, the Xk may be simultaneous

inputs from N different signal sources.

Y1ı: - s1,: +n1,: ---+-
( siçnel+noise J

X_t _....., _
A

e1,: = S1,:•Digital Filter

A

n1,:
L------+­
(noise estimate)

+

Signal estimate

---+- Adaptive
Algorithm +----__.

Figure 2.6. Block Diagram of an Adaptive Filter as a Noise Canceller

2.5.1 Loud speaking telephones

• The hybrid network is used to separate the transmit and receive paths (that is, the

loudspeaker from the microphone), but there is a significant acoustic coupling between

the loudspeaker and the microphone because of their proximity as wel 1 as a leakage

across the imperfectly matched hybrid network (South et al., 1979).

• The difficulty then is how to provide adequate gain for the receive and transmit

directions without causing instability.
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• The conventional solution to the problems is to use a voice-activated switch to select

the transmit and receive paths, but this is not satisfactory because it does not al 1 ow ful 1

• A better solution is to use adaptive filtering techniques to estimate and control the

acoustic and hybrid echoes Figure 2.7(b). The number of filter coefficients here can be

quite large, for example 512, making the use of a fast algorithm attractive.

• In teleconferencing networks (or public address systems) acoustic feedback leads to

problems similar to those described above. Adaptive filters used for these may require

large numbers of coefficients (250 to 1000), especially in rooms with long

reverberation times, and must converge rapidly.

Loudspeaker

r tAcoustic
coupling HybridHybrid

echo

Microphone [a)

,------,
r - ~-; •...,..•.,--~
I~ I
I t I
I I
I I
I AF I
I I
I I
I I
I I

Loudspeaker

AF Hybrid

~·ıı•. J

Acoustic echo canceller

ı._ J

Hybrid echo canceller
(b)

Figure 2.7. (a) Loud Speaking Telephone (b) Acoustic and Hybrid Echo Cancellation in

Loud speaking Telephone
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Adaptive signal processing techniques are widely used to solve a number of problems

associated with radar. For example, adaptive filters are used in monostatic radar systems

to remove or cancel clutter components from the desired target signals. In HF ground

wave radar, adaptive filters are used to reduce co-channel interference which is a major

problem in the HF band.

2.5.3 Separation of Speech signals from background noise

Acoustic background noise is a serious problem in speech processing. An adaptive filter

may be used to enhance the performance of speech systems in noisy environments (for

example in fighter aircrafts, tanks, cars) to improve both intelligibility and recognition

of speech.

Xıı-2 z-ı Xı.:-IN-1'xk • ı.l z-1
Xıı.ı z-ı

"'k(O) ~(2) ~(N-1)~(1)

L
N-1

nl( = I:wl( Ci)xh-i
i,.O

Figure 2.8. Finite Impulse Response Filter Structure
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3. Adaptive Echo Cancellation

Overview, Definitions

The performance limits of adaptive echo cancellation techniques are investigated. In

· ular we analyze the effects of signal characteristics such as auto and cross correlation on

achievable echo suppression. Techniques to enhance signal characteristics such as to

rove both the learning ability and the steady state echo suppression quality are identified.

· ce feature of our work is that it links in a natural way the complexity of the learning task

the dimension of the adapted parameter vector), the available information (via the signal

cteristics) to the achievable echo suppression quality. [7).

Wireless phones are increasingly being regarded as essential communications tools,

impacting how people approach day-to-day personal and business

unications. As new network infrastructures are implemented and competition between

less carriers increases, digital wireless subscribers are becoming ever more critical of the

ice and voice quality they receive from network providers. A key technology to provide

-wire line voice quality across a wireless carrier's network is echo cancellation.

scribers use speech quality as the benchmark for assessing the overall quality of a

vork. Regardless of whether or not this is a subjective judgment; it is the key to

· taining subscriber loyalty. For this reason, the effective removal of hybrid and acoustic

o inherent within the digital cellular infrastructure is the key to maintaining and improving

ceived voice quality on a call. This has led to intensive research into the area of echo

cellation, with the aim of providing solutions that can reduce background noise and

ove hybrid and acoustic echo before any transcoder processing. By employing this

hnology, the overall efficiency of the coding can be enhanced, significantly improving the
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ity of speech. This tutorial discusses the nature of echo and how echo cancellation is

pful in making mobile calls meet acceptable quality standards.

History of Echo Cancellation

The late 1950s marked the birth of echo control in the telecommunications industry

ith the development of the first echo-suppression devices. These systems, first employed to

age echo generated primarily in satellite circuits, were essentially voice-activated

.itches that transmitted a voice path and then turned off to block any echo signal. Although

ho suppressers reduced echo caused by transmission problems in the network, they also

sulted in choppy first syllables and artificial volume adjustment. In addition, they eliminated

uble-talk capabilities, greatly reducing the ability to achieve natural conversations.

ho-cancellation theory was developed in the early 1960s by AT&T Bell Labs, followed by

introduction of the first echo-cancellation system in the late 1960s by COMSAT

leSystems (previously a division of COMSAT Laboratories). COMSAT designed the first

log echo canceller systems to demonstrate the feasibility and performance of satellite

mmunications networks. Based on analog processes, these early echo-cancellation systems

.ere implemented across satellite communications networks to demonstrate the network's

ormance for long-distance, cross-continental telephony. These systems were not

mmercially viable, however, because of their size and manufacturing costs.

the late 1970s, COMSAT TeleSystems developed and sold the first commercial analog

o cancellers, which were mainly digital devices with an analog interface to the network.

e semiconductor revolution of the early 1980s marked the switch from analog to digital

ecommunications networks. More sophisticated digital interface, multichannel echo­

celler systems were also developed to address new echo problems associated with long­

ce digital telephony systems. Based on application-specific integrated circuit (ASIC)
•.

hnology, these new echo cancellers' utilized high-speed digital signal-processing
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hniques to model and subtract the echo from the echo return path. The result was a new

igital echo-cancellation technique that outperformed existing suppression-based techniques,

atirıg improved network performance.

e 1990s have witnessed explosive growth in the wireless telecommunications industry,

ulting from deregulation that has brought to market new analog and digital wireless

dsets, numerous network carriers, and new digital network infrastructures such as TDMA,

DMA, and GSM. According to the Cellular Telecommunications Industry Association

CTIA), new subscribers are driving the growth of the wireless market at an annual rate of 40

rcent. With wireless telephony being widely implemented and competition increasing as

w wireless carriers enter the market, superior voice transmission quality and customer

ice have now become key determining factors for subscribers evaluating a carrier's

twork. Understanding and overcoming the inherent echo problems associated with digital

ellular networks will enable network operators and telecommunications to offer subscribers

e network performance and voice quality they are demanding today.

.3 Acoustic Echo

Acoustic echo is generated with analog and digital handsets, with the degree of echo

lated to the type and quality of equipment used. This form of echo is produced by poor

·oice coupling between the earpiece and microphone in handsets and hands-free devices.

Further voice degradation is caused as voice-compressing encoding/decoding devices

vocoders) process the voice paths within the handsets and in wireless networks. This results

· returned echo signals with highly variable properties. When compounded with inherent

igital transmission delays, call quality is greatly diminished for the wire line caller.

Acoustic echo was first encountered with the early video/audioconferencing studios and now

also occurs in typical mobile situations, such as when people are driving their cars. In this

ituation, sound from a loudspeaker is heard by a listener, as intended. However, this same
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sound also is picked up by the microphone, both directly and indirectly, after bouncing off the

roof, windows, and seats of the car. The result of this reflection is the creation of multipath

echo and multiple harmonics of echo, which, unless eliminated, are transmitted back to the

distant end and are heard by the talker as echo. Predominant use of hands-free telephones in

the office has exacerbated the acoustic echo problem.

Acoustic echo cancellation is required in order to provide full duplex, fully

interruptible speech. The acoustic echo canceller functions by modeling the speech being

passed to the loudspeaker and removing any echoes picked up by the microphone. This type

of operation necessitates a much more complex unit than is used in telephony in order to

remove the many acoustic (multi-path) echoes generated with each syllable of speech. The tail

circuit requirement, or the amount of time the canceller has to hold the power.

3.4 Hybrid Echo

Hybrid echo is the primary source of echo generated from the public-switched

telephone network (PSTN). This electrically generated echo is created as voice signals are

transmitted across the network via the hybrid connection at the two-wire/four-wire PSTN

conversion points, reflecting electrical energy back to the speaker from the four-wire circuit.

Hybrid echo has been around almost since the advent of the telephone itself. The signal path

between two telephones, involving a call other than a local one, requires amplification using a

four-wire circuit. Although not a factor in itself on digital cellular networks, hybrid echo

becomes a problem in PSTN-originated calls. The cost and cabling required rules out the idea

of running a four-wire circuit out to the subscriber's premise from the local exchange. For this

reason, an alternative solution had to be found. Hence, the four-wire trunk circuits were

converted to two-wire local cabling,

'
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using a device called a "hybrid" (see Figure 3. 1).

ft 4~ıı,ı('.R0V-P08T
..., THL lsmHsured at a single rre.cıu•ney
,,.. ERt l.s mgsur·ed!using b:and-flmtt•d white noise

Figure 3.1 Hybrid Echo

Unfortunately, the hybrid is by nature a leaky device. As voice signals pass from the four-wire

to the two-wire portion of the network, the energy in the four-wire section is reflected back on

itself, creating the echoed speech. Provided that the total round-trip delay occurs within just a

few milliseconds (i.e., within 28 ms), it generates a sense that the call is live by adding side

tone, which makes a positive contribution to the quality of the call.

In cases where the total network delay exceeds 36 ms, however, the positive benefits

disappear, and intrusive echo results. The actual amount of signal that is reflected back

depends on how well the balance circuit of the hybrid matches the two-wire line. In the vast

majority of cases, the match is poor, resulting in a considerable level of signal reflecting back.

This is measured as echo return loss (ERL). The higher the ERL, the lower the reflected

signal back to the talker, and vice versa. [7].

Acoustic echo apart, background noise is generated through the network when analog and

digital phones are operated in hands-free mode. As the microphone directly and indirectly

picks up additional sounds, multi-path audio is created and transmitted back to the talker. The

surrounding noise, whether in an automobile or in a crowded, public environment, passes

through the digital cellular vocoder, causing distorted speech for the wire line caller.
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Digital processing delays and speech-compression techniques further contribute to echo

generation and degraded voice quality in wireless networks. Delays are encountered as signals

are processed through various routes within the networks, including copper wire, fiber optic

Jines, microwave connections, international gateways, and satellite transmission. This is

especially true with mixed technology digital networks, where calls are processed across

numerous network infrastructures.

Echo-control systems are required in all networks that produce one-way time delays greater

than 16 ms. In today's digital wireless networks, voice paths are processed at two points in the

network within the mobile handset and at the radio frequency (RF) interface of the network.

As calls are processed through vocoders in the network, speech processing delays ranging

from 80 ms to 100 ms are introduced, resulting in an unacceptable total end-to-end delay of

160 ms to 200 ms. As a result, echo cancellation devices are required within the wireless

network to eliminate the hybrid and acoustic echoes in a digital wireless call.

3.5 The Combined Problem on Digital Cellular Networks

To deal with hybrid echo created by vocoder processing delays, it is mandatory for

digital cellular mobile calls to have a group echo canceller installed-even for local calls. As

a result, all calls on to the PSTN must pass through an echo canceller to remove what would

otherwise be a noticeable and annoying echo, as shown in Fig 3 .2
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Figure 3.2 Digital Cellular Networks

For example, consider a digital cellular mobile user who makes a call to the PSTN without an

echo canceller in place. The user would hear his or her own speech being echoed back 180 ms

or more later, even if the called person is in the same locality. The mobile user will either be

using a hands-free system installed in his or her vehicle or a hand portable. In either case,

these units will involve the occurrence of direct and indirect coupling between the

microphone and the speaker, creating acoustic echo. In this situation, however, it is the PSTN

user who suffers by experiencing poor speech quality. Hence, the echo canceller installed in

the digital cellular network must be capable of handling both sources of echoes.
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.6 Process of Echo Cancellation

In modern telephone networks, echo cancellers are typically positioned in the digital

· cuit, as shown in Figure 3.3 the process of canceling echo involves two steps. First, as the

1 is set up, the echo canceller employs a digital adaptive filter to set up a model or

haracterization of the voice signal and echo passing through the echo canceller. As a voice

th passes back through the cancellation system, the echo canceller compares the signal and

e model to cancel existing echo dynamically. This process removes more than 80 to 90

rcent of the echo across the network. The second process utilizes a non-linear processor

.. LP) to eliminate the remaining residual echo by attenuating the signal below the noise

floor.

PSTN PCS Network Wireltss

Figure 3.3 Typical Locations of Echo Cancellers

Today's digital cellular network technologies, namely TDMA, CDMA, and GSM, require

significantly more processing power to transmit signal paths through the channels. As these

technologies become even more sophisticated, echo control will be more complex. Echo

cancellers designed with standard digital signal processors (DSPs), which share processing

time in a circuit within a channel or across channels, provide a maximum of only 128 ms of

cancellation and are unable to cancel acoustic echo. With network delays occurring in excess

of 160 ms in today's mixed-signal network infrastructures, a more powerful, application-
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-cific echo-cancellation technology is required to control echo across wireless networks

ectively

Controlling Acoustic Echo

In echo cancellation, complex algorithmic procedures are used to compute speech

ıdels. This involves generating the sum from reflected echoes of the original speech, and

rı subtracting this from any signal the microphone picks up. The result is the purified

.ech of the person talking. The echo canceller in a process known as adaptation must learn

format of this echo prediction. It might be said that the parameters learned from the

ıptation process generate the prediction of the echo signal, which then forms an audio

ture of the room in which the microphone is located. Figure 3.4 shows the basic operation

arı echo canceller in a conference room type of situation.

Lcıud.spea!k~r

•••• A·eceived sign a I

Local
Speech

Microp.hOt'ı_t!:.it

Speeqh~~~~~~~~~~~~~-.. •...
echo~···"""""==""""""""""""""""""""' •••••••===="""""' •••-

Figure 3 .4 Operation of an Acoustic Echo Canceller

ring the conversation period, this audio picture constantly alters, and, in turn, the canceller

st adapt continually. The time required for the echo canceller to fully learn the acoustic
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ture of the room is called the convergence time. The best convergence time recorded is 50

, and any increase in this number results in syllables of echo being detected.

er important performance criteria involve the acoustic echo canceller's ability to handle

zoustictail circuit delay. This is the time span of the acoustic picture and roughly represents

e delay in time for the last significant echo to arrive at the microphone. The optimum

-quirement for this is currently set at 270 ms-any time below this could result in echoes

eing received by the microphone outside the ability of the echo canceller to remove them,

ad hence in participants hearing the echoes.

.nother important factor is acoustic echo return loss enhancement (AERLE). This is the

nount of attenuation, which is applied to the echo signal in the process of echo

ıncellation-i.e., if no attenuation is applied, full echo will be heard. A value of 65 dB is the

ıinimum requirement with the non-linear processor enabled, based on an input level of -10

Bm white noise electrical and 6 dB of echo return loss (ERL).

he canceller's performance also relies heavily on the efficiency of a device called the center

lipper, or non-linear processor. This needs to be adaptive and has a direct bearing on the

.vel of AERLE that can be achieved. [14].

.8 Controlling Complex Echo in a Wireless Digital Network

Although acoustic echo is present in every hands-free mobile call, the amount of echo

epends on the particular handset design and model that the mobile user has. On the market

re a few excellent handsets that limit the echo present, but, due to strong price pressures,

ıost handsets do not control the echo very well at all-in fact, some phones on the market

ave been determined to have a terminal compiling loss of 24 dB. Echo becomes a problem

ıhen the processing inherent to the digital wireless network adds an additional delay
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ypically in excess of 180 ms round-trip). This combination makes for totally unacceptable

I quality for the fixed network customer, as shown in Fig. 3.5

Echo CancellerBoard

Figure 3.5 Bi-directional Echo Cancellation

This back-to-back configuration ensures a high audio quality for both PSTN and mobile

ustomers. In addition, the echo canceller's software configuration is designed to provide a

etailed analysis of background noises, including acoustic echo from the mobile user's end.

ome echo cancellers incorporate a user-settable network delay, which enables network

perators to fine-tune the echo control to suit their parameters via a menu option on the

anceller's hand-held terminal or on the network management system (NMS).

Applying effective echo control via the echo-cancellation platform is one way of

proving the overall call clarity on digital cellular networks. Another derives from

improvements that must be made within the handset or terminal itself. There also is

onsiderable room to enhance the network itself, focusing principally on vocoder

development.

Recent headlines have charted the ongoing commercial battles regarding which digital

echnologies will eventually emerge as the winners, as equipment manufacturers fight it out.

However, this public battle will soon be overshadowed by another battle concerning handsets.
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• ~t present, there are four major players in the digital cordless market. Europe has cordless

lephony {CT2) and digital European cordless telephony (DECT), while Japan has the

rsonal handy phone system (PHS) and the United States has personal communications

rvices (PCS).

Connecting directly into the plain old telephone system, CT2 was one of the first

igital technologies to provide low-cost mobile phones. Although the technology worked

vell, it had a fundamental problem: it could not handle cell handovers. DECT and GSM have

overcome this problem and will eventually dominate European cellular services.

During the development of early cordless telephony, attention was paid to basic and enhanced

functions and interworking with different network architectures. While the early generation of

handsets looked very elegant and aesthetically pleasing, very little attention was paid to

designing the handset with echo suppression/cancellation in mind. The result was that they

looked good but were extremely poor at reducing acoustic echo.

In the setting of standards for GSM and PCS, handset design and the impact of different

design approaches on call quality were researched. As a result, recommendations stated a

range of parameters; including side-tone tolerance and echo return loss performance. With the

resultant advent of new recommendations with much tighter requirements for handsets, there

is a call for greatly improved designs to be implemented. This, complemented by ongoing

improvements in network technology and echo cancellation techniques, will bring digital

wireless telephony much closer to matching wire line quality.
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.9 Echo Cancellation System For Radio Telephony

The customer has developed technology for major manufacturers in the

lecommunications industry. This has included a host of popular electronic devices, from

.ellular and cordless telephones, to computers and digital television products.

Iicrosystems Engineering has worked extensively with the customer over a number of years

leveloping echo cancellation systems for radiotelephony projects. The project described here

an example of a recent echo cancellation system designed and implemented by

licrosystems Engineering. Many radiotelephony devices require additional echo control to

ıe incorporated into the system. The main reason for this is the group delay usually imposed

y the radio link protocol. Sources of echo that would not normally be noticeable to the user

come annoying due to the 1 O - 20ms round trip delay that often exists between the portable

art and the fixed part of the system.

lhe diagram below illustrates the elements of a typical radiotelephony system that relate to

ıcho and its control.

Portable
Put

Fixed Part Rem:ıte Hyb rrl

,ı
ı------' AIR.OUT UNIDUT

Figure 3.6 typical radio telephony system

Ihe echo control part of the system would generally reside at the base station (in the Fixed

)art of the above diagram) and would be responsible for three kinds of echo, [8]:
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• Coupling at the portable part resulting in echo of the AIROUT signals back into the

AIRIN signal. This is generally of the order of 20-21ms. For the PSTN equipment to

suppress this an artificial echo signal needs to be added by the system.

• Reflection at the fixed part 4-wire to 2-wire hybrid resulting in short delay echo of

LINEOUT signals in the LINEIN signal (O- 4ms). This is cancelled using an adaptive

FIR algorithm.

• Reflection at the exchange 2-wire to 4-wire hybrid resulting in long delay echo of

LINEOUT signals in the LINEIN signal. This can be between O and 70ms. This is

reduced to acceptable levels using a soft suppressor algorithm.
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The Fundamental Problems and Solutions to Echo Cancellation

THE FUNDAMENTAL PROBLEMS AND SOLUTIONS TO ECHO

CANCELLATION

.1 Overview

Communication applications are discussed. The applications that yield line echo are

the long-distance calls between ordinary fixed telephones and the digital data transmission

on subscribers' loop. The application of calls between a cellular to a fixed telephone can

produce either line echo or both line and acoustic echoes depending on whether the hands­

free operation on the cellular is used. Tele-conferencing/ videoconferencing application

causes acoustic feedback coupling between the loudspeaker and microphone, and thus

creates the acoustic echo. To remove the line and acoustic echoes successfully requires the

use of adaptive echo cancellers. These devices have better performance than the non­

adaptive echo suppressors. There are several problems associated with the design of

effective echo cancellers, i.e. divergence due to double-talking or silent far-end signal and

residual echoes. Most existing echo cancellers are designed with adaptive transversal

finite impulse response (FIR) digital filters, and based on variations of the least mean

square (LMS) and least square (LS) algorithms. Therefore, the concept of conventional

LMS and LS algorithms for the use in echo cancellers are discussed. Other methods are

also recommended that can overcome the inherent problems of slow convergence in the

LMS algorithm and high computation in the LS algorithm.
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.2 Introduction

Echo is a phenomenon in which a delayed and distorted version of an original sound

or electrical signal is reflected back to the source. There are two types of echo, namely

line and acoustic echoes. Telephone line echo the author is with the Signal Processing

Group, Dept. of Applied Electronics, Chalmers University of Technology, and

Gothenburg, Sweden. Results from impedance mismatch at the telephone ex-change

hybrids where the subscriber's two-wire line is connected to a four-wire line. If the

communication is just between two handsets, then only line echo will occur. However, if

the telephone connection is between one or more hands-free telephones, a feedback path is

set up between the loudspeaker and microphone at each end. This acoustic coupling is due

to the reflection of loudspeaker's sound from walls, floor, ceiling, windows and other

objects back to the microphone 1. Adaptive cancellation of this acoustic echo has become

very important in hands-free telephony or teleconference communication system. The

effects of an echo depend on the time delay between the incident and the reflected waves,

the strength of the reflected waves and the number of paths through which the waves are

reflected. If the time delay is not long, the acoustic echo can be perceived as soft

reverberation, which adds artistic quality for example in a concert hall. However, echo

arriving a few tens of milliseconds or more after the direct sound will be highly

undesirable because long delayed echo is irritating. Likewise in line echo, the short

delayed echo cannot be distinguished from the normal side tone of the telephone, which is

intentionally inserted to make the telephone communication channel sound "alive", and a

round trip delay of more than 40msec will cause significant disturbances to the talker.

Such a long delay is caused by the propagation time over long distances and/orjhe digital

encoding of the transmitted signals. In digital cellular systems, the one-way transmission

delay is about 1 OOms when blocks of speech samples are transmitted in wireless, and this
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delay is caused by the speech and channel coding methods used in radio communication.

It is worse in geostationary satellite links, which have a round trip delay of about

520msec. The International Telecommunication, Union-Telecommunication,

Standardization Section (ITU-T) G.131 recommends the use of echo cancellers for calls

with round-trip delay that is above 50msec. In digital cellular communications, these

devices are normally located at the mobile switching center (MSC), while in long distance

telephony path; they are usually located in an international switching center (ISC). This

report describes the echo phenomena and the general methods of removing the echo in a

long-distance international call between ordinary fixed telephones, in a full-duplex data

transmission between voice-band modems, in a national call between a fixed telephone

and a cellular telephone and in a teleconference/videoconference communication system.

.3 Long-Distance International Calls Between Ordinary Fixed Telephones

A simplified long-distance telephone connection is shown in Fig.4.1. This connection

contains two-wire sections on the ends (the subscriber loops and possibly some portion of

the local network), and a four-wire section in the center (carrier systems for medium to

long-haul transmission).

2

2

Figure 4.1 A long-distance connection.
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Every telephone in a given geographical area is connected to the local exchange by a two-

wire line, called the subscriber's loop, which carries connection for both directions of

transmission. A local call is established simply by connecting the two subscribers' loops

at the local exchange. However, repeaters are used to amplify the speech signal when the

distance between the two telephones exceeds 50km. Thus, a four-wire line is required

which segregates the two directions of transmission on two different transmission paths. A

hybrid is used to convert from the two-wire to four-wire line and vice versa as shown in

Fig.4.2 and it is basically a bridge network [3].

Echo from Talker B - - - ..._

Signal from Talker A ---..

Balance --,­
Network C.J

---..
Near-End Talker

Echo from Talker A • - - -

Signal from Talker B ..,.__

Figure 4.2. Two-wire to four-wire hybrid.

An echo can be decreased if the hybrid has significant loss between its two four-wire

ports. To achieve this large loss will require the hybrid to be perfectly balanced by an

impedance located at its four-wire portion. Unfortunately, this is impossible in practice

because it requires the knowledge of the two-wire impedance, which varies considerably

over the population of subscriber loops. When the bridge is not perfectly balanced,

impedance mismatch occurs and this causes some of the talker's 'signal energy to be

reflected back as echo. The crucial talker path, as shown in Fig. 4.3a, requires that the

hybrid does not have a lot of attenuation between its two-wire and either four-wire port.

There are two types of echo as shown in Fig. 4.3b and 4.3c. Talker echo results in the
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talker hearing a delayed version of his or her own speech, while in listener echo it is the

listener who hears a delayed version of the talker's speech. When there is insignificant

transmission delay, this phenomena presents no problem, and, in any case, the talker or

listener already heard the "side tone" of his or her own speech via the telephone

instrument. The effects of echo can be controlled by adding an insertion loss to the four-

wire portions of the connection, since the echo signals experience this loss two or three

times (for talker and listener echo respectively) while the talker speech suffers this loss

only once. However, on long connections, this loss can become very significant and as a

result it is not an optimum solution and other echo control techniques must be used.

•
• •(a) Talker

Path

•

Figure 4.3. Sources of echo in the telephone network

.3.1 Echo Suppressor
Echo suppressors have been used since the introduction of long-distance

communication.

This device takes advantage of the fact that people seldom talk simultaneously. It is also

helped by the fact that during such double-talking, poor transmission quality is less

noticeable. The echo suppressor dynamically controls the connection based on who is

talking, which is decided by the speech and double talking detector. Double-talking is

detected if the level of signal in path Ll is significantly lower than that in path L2. When
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the far-end talker A is speaking, the path used to transmit the near-end speech is opened so

that the echo is prevented. Then, when talker B speaks or in double talking case, the same

switch is closed and a symmetric one at the far-end speech path is opened. However, echo

suppressors can clip speech sounds and introduce impairing interruptions. For example, if

the near-end talker is initially listening to the far-end but suddenly wants to talk, it is quite

likely that the switch preventing his or her speech from being transmitted will not close

quickly enough, and the far-end talker may not receive the entire message. This distortion

is more pronounced in long transmission with a round-trip delay of more than 200ms. Due

to the long delay, a quick response by talker B may cause suppression of something said

by talker A at a later time. Talker B, encouraging him/her to stop and wait for talker A to

get through, notices this deletion. The resulting confusion may stop the conversation

entirely while each party waits for the other to say something.

4.3.2 Adaptive Echo Canceller

An alternative solution to remove echo is to use an echo canceller as shown in Fig.4.4.

The echo canceller mimics the transfer function of the echo path to synthesize a replica of

the echo, and then subtracts that replica from passes talker A's signal and blocks his/her

echo with the open switch. The combined echo and near-end speech signal to obtain the

near-end speech signal alone. However, the transfer function is unknown in practice and

so it must be identified. The solution to this problem is to use an adaptive filter that

gradually matches its impulse response to the impulse response of the actual echo path, as

shown in Fig.4.4. The echo path is highly variable, depending on the distance to the

hybrid, the characteristics of the two-wire circuit, etc. These variations are taken care of

by the adaptive control loop built into the canceller. The canceller in Fig.(4.5,4.6) is for

one direction of transmission only (from talker A to talker B).
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How are you
Ilı

U(t)

Far-End TalkerA ,._~--.

Echo
Canceller

Echo Echo
Path

+I Y (t)

d(t) = U(t) + Y(t)

+ I Y(t)
Near-Far Talker

X(t) B

Figure 4.4. Principle of a non-adaptive echo canceller

The adaptive canceller in Fig. 4.6 is placed at the four-wire path near the origin of the

echo. The synthetic echo, r(n) is generated by passing the reference input signal, y(n)

from the far-end talker through the adaptive filter that will ideally match the transfer

function of the echo path. The echo signal, r(n) is produced when y(n) passes through the

hybrid. The signal, r(n) plus the near-end talker signal, x(n)cop.stitute the "desired"

response for the adaptive canceller. The two signals, y(n)and r(n) are correlated because

the later is obtained by passing y(nhhrough the echo channel. The synthetic echo r(n) is

subtracted from the desired response r(n)+x(n) to yield the canceller error signal,
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How are you U(t)

Far-End Talker
A ..------''---.

Adaptive
Filter

Echo Echo
Path

- ın (t) +I n(t)
ear-Far Talker B

X(t)Error-Signal +- - d(t)

Figure 4.5. General configuration of an adaptive echo canceller

Similar to the echo suppressors, adaptive echo cancellers also face the problem of double-

talking. The situation that must be avoided is interpreting x(n) as part of the true error

signal which results in making large corrections to the estimated echo path in a doomed-

to-failure attempt to cancel it. In order to avoid this possibility, the tap weights must not

be up-dated as soon as double-talking is detected as shown in Fig. 4.6. The design of a

good double-talking detector is difficult. Even with the assumption of a fast-acting

detector, there is still a possibility of changes occurring in the echo channel during the

time that the canceller is frozen, which leads to increased unconcealed echo. But,

fortunately the duration of double-talking is usually short. In the system, as shown in

Fig.4.6, the effect of the speech/echo misclassification is that the echo is sub optimally

cancelled. This is more acceptable than in the case of echo suppressor, which removes

part of the speech signal during misclassification.
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How are you
lıııı

U(t)

Far-End Talker
A ..-~---.

........................ J'"'"'' . ·

Adaptive
Filter

Echo Echo
Path

- m (t)

Error·Signal

Figure 4.6. The double-talking detector stops adjustment when the near-end talker is

active

To add to the problems of effective echo canceller design, it sometimes occur that no

far-end signal is present and even an echo canceller which is working well will leave some

residual unconcealed echo. In the former case, the adaptation is generally halted once the

signal is estimated to be insignificant and in the latter case, a non-linear processor is used

to remove the residual echo [8]. The presences of residual echo or the limitations on the

achievable cancellation ratio are imposed by the presence of additive noise, nonlinear

distortion, echo dispersion beyond the length of the transversal filter and digital resolution

constraints. The working mechanism of the non-linear processor is to block this small-

unwanted signal if the signal magnitude is lower than a certain (small) threshold value

during single talking. However, the non-linear processor will only distort and not block

the near-end signal during double-talking. The distortion is generally unnoticeable and so
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the processor does not have to be removed during double-talking. In practice, it is

desirable to cancel the echoes in both directions of the trunk. Therefore, two adaptive echo

cancellers are used as shown in Fig.4.7. One of the cancellers removes the echo from each

end of the connection. The near-end talker for one canceller is the far-end talker of the

other. The requirements of an echo canceller are influenced by the following transmission

characteristics: in One-Way transmission delay:

ısc
Echo Path Delay

(J
~

One· Way Transmission Delay..,._ --..
Notation:

EC: Echo Canceller
ISC: International Switching Center
H : Hybrid
LE : Local Exchange

Figure 4.7. Location of echo canceller

The required total echoes return loss (TERL) for a connection is determined by the one-

way transmission delay (depicted in Fig.4.7). This loss is defined as the total level loss

between the talker's mouth and his ear. ITU-T Recommendation G.131 sets the minimum

value of TERL at the range of 46-54dB. Echo path delay: The number of coefficients

needed in the adaptive filter depends on the echo path delay and the length of the impulse

response of the hybrid, which both are relatively short. The echo delay is defined as two

times the delay from the canceller to the hybrid as shown in Fig.4.7. For the adaptive echo

canceller to operate properly, the impulse response of the adaptive filter should have a

length greater than the combined effect of the hybrid's impulse response length and echo
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path delay, [2]. Let Ts be the sampling period of the digitized speech signal,M be the

number of adjustable coefficients in an adaptive finite impulse response filter, and be the

combined effect to be accommodated. Therefore, MTs> The value of Ts is 125s in the

telephone network, and if Ts=30 ms, then we must choose M>240 taps for a satisfactory

performance. Type of transmission and end-user equipment: Non-linearities in the echo

path will affect the performance of the echo canceller. Devices such as bit-rate coders and

end-user equipment with acoustic crosstalk can also cause non-linearities. The TERL

requirement must be met even when this factor is considered. Naturally, the degree of

impairment will vary from connection to connection. Thus, it is crucial that the echo

canceller adapts to the specific situation on a per call basis in order to achieve the best

possible speech quality.
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The LMS Algorithm

5. THE LMS ALGORITHM

Overview, Derivation

In this chapter we introduce the Least-Mean-Square (LMS) Algorithm. The LMS

ırithm is important because of its simplicity and ease of computation, and because it does

require off-line gradient estimations or repetitions of data. If the adaptive system is an

ptive linear combiner, and if the input vextor Xı and the desired response dk are available

each iteration, the LMS algorithm is generally the best choice for many different

lications of adaptive signal procesing.

recall that the adaptive linear combiner was applied in two basic ways, depending on

ether the input is available in parallel (multiple inputs) or series (single input) form. These

, ways are shown in figure 5.1.

ıoth cases we have the combiner output, yı, as a linear combination of the input samples.

have

ek == dk -X[Wk

ere Xk is the vector of the input samples in either of the two configurations in figure 5 .1.

!t Wok Desired
Y8JpOTIJ8

dk•k

Wik

•
•

• Wrk

(a)
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J,.,pııı

.ll

+ +
Oıııpııı • •rn Error

Yk

Wlk
Desired
response
dk.

+

(b)

Figure 5.1 the adaptive Linear Combiner: (a) in general form: (b) as a transversal.

o develop an adaptive algorithm using the previous methods, we would estimate the gradient

.- ı; = E[s;] by taking differencies between short-term averages of s;. Instead, to develop the LMS

lgorithm,we take sf. itself as an estimate of ı;k.
hen, at each iteration in the adaptive process, we have a gradient estimate of the form

ası askk
awo awo

~\ =I = = 2sk I= -2skxk (5.2)
ası askk

awL ew,

he derivatives of ı;k. with respect to the weights follow derictly from (5.1 ).

'ith simple estimate of the gradient, we can now specify a steepest-descent type of adaptive

gorithm. We have

wk+ı = wk - µv k

= Wk + 2µskXk
(5.3)

s before, µ is the gain constant that regulates the speed and stability of adaptation. Since the weight

ıanges at each iteration are based on imperfect gradient estimates, we would expect the adaptive

·ocess to be noisy, that is, it would not follow the true line of steepest descent on the performance

ırface, [6].

·om its form in (5.3), we can see that the LMS algorithm can be implemented in a practical system

ithout squaring, averaging, or differentiation and is elegant in its simplicity and efficiency. As noted
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ve, each component of the gradient vector is obtained from a single data sample without pertubing

weight vector.

ithout averaging, the gradient components do contain a large component of noise, but the noise is

enuated with time by the adaptive process, which acts as a low-pass filter in this respect.

Convergence of the Weight Vector

with all adaptive algorithms, a primary concern with the LMS algorithm is its convergence

the optimum weight vector solution, where E[s;] is minimized. To examine LMS

onvergence, we first note that the gradient estimate in (5.2) can readily be shown to be

biased when the weight vector is held constant. The expected value of (5.2) with Wk held

E[v k ]= -2E[skxk]
= -2E[dkXk -XkX[W]
=2(RW-P) =V

The second line of (5.4) follows from (5.1) plus the fact that e, is a scalar and can thus be

ommuted. Since the mean value of V k is equal to the true gradient V,V k must be an unbiased

estimate.

eeing that the gradient estimate is unbiased, we could make the LMS algorithm into a true

steepest-descent algorithm, at least in limiting case, by estimating Vat each step as in (5.2)

~
ut not adapting the weights until many steps have occurred, in this way V k could be made to

approach V k • With the weight vector changing at each iteration, we need to examine the

weight vector convergence in a different manner, as follows.

From (5.3) we can see that the weight vector Wk is a function only of thepast input

ectors Xk_PXk-ı , X0• If we assume that successive input vectors are independent over

time Wk is independent of Xk. For stationary input processes meeting this condition, the
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cted value of the weight vector E [ W, ] after a sufficient number of iterations can be

wn as follow to converge to the Wiener optimal solution, that is, to w· = R-1 P

Taking the expected value of both sides of (5.3) yields the difference equation

E[Wk+ı] = E[Wk ]+ 2µE[.s\Xk]

= E[Wk ]+ 2µ(E[dkXk ]-E[xkx[wk p (5.5)

sing the foregoing assumption that X k and Wk are independent, we have the expected

roducts as in (S.S). Also, we have the optimum weight vector given as w· = R-1 P. Thus

5.5) becomes

E[Wk+ı] = E[Wk] + 2µ(P - RE[Wk])

=(1-2µR)E[Wk ]+2µRW* (5.6)

Using expected values, the solution is

E[v;] = (I - 2µRA)k v·o (5.7)

Where V' is the weight vector, W, in the principal-axis system A is the diagonal eigeanvalue

matrix of R, and V~ the initial weight vector in the principal-axis system.

Thus, ask increases without bound, we see that expected weight vector in (5.7) reaches the

optimum solution (i.e., zero in the principal-axis system) only if the right side of the optimum

convergence to zero.

Where Amax is the largest eigenvalue, that is, the largest diagonal element in A. So in (5.8),

we have bounds on µ for convergence of the weight vector mean to the optimum weight

vector. Within these bounds, the speed of adaptation and also the noise in the weight vector

solution are determined by the size ofµ We also note that ;ı,nıax cannot be greater than the

trace of R, which is the sum of the diagonal elements of R, that is,
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Amax s tr[A]= L (diagonal.elements.ofA)

urthermore, with a transversal adaptive filter gives tr[R] as just (L + I)E[xJ 1 or L+ 1 times

e input signal power. Thus convergence of the weight vector mean is assured by:

n general: 0<µ<1/tr[RJ

ransversal filter 0<µ<1/(l+1) (5.10)

But is much easier to apply, because the elements Rand the signal power can generally be

timated more easily eigenvalues of R.

The assumption of deceleration and stationary of input vector used to drive the result in

this section are not necessary condition for convergence of the LMS algorithm but have been

adopted in this chapter for analytic convergence.

Convergence with certain correlated and non-stationary inputs is demonstrated in the

literature on the LMS algorithm [4].

Under these conditions the analysis becomes much more complex. We know of no

unconditional proof of convergence of the LMS algorithm.
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Noise in The Weight-Vector Solution

'ith the LMS algorithm, the gradient estimate as given by (5.2) is not based on weight

rbation, so we must reexamine its variance.

t us define Nı, as a vector of noise in the gradient estimate at the kth iteration. Thus

f:ık =", +Nk

.- we assume that the LMS process, using a small value of the adaptive gain constant µ, has

*onverged to a steady-state weight vector solution near W , then 'v k in (5.11) will be close to

zero. Then, in accordance with (5.2), the gradient noise is close to

A

Nk = 'v k = -2&kXk (5.12)

The covariance of the noise is thus given by

cov[Nk]= E[NkNr]= 4E(&;xkx[] (5._13)

If we assume that the weight vector, Wk, remains near its optimum, w*, we conclude that &i
approximately uncorrelated with the signal vector, so that (5.13) becomes

cov[Nk]~ 4E(&; ]E[xkxt]
~ 4ı;ıninR

(5. 14)

e need to transform (5.14) into the principal-axis coordinate system, as follows:

cov[N;] = cov[Q-1 Nk]
= E[Q-ı Nk (Q-ı Nk )1.]
= Q-1E[NkN;']Q
= e:' cov[Nk]Q ~ 4ı;ıninA

(5.15)

The weight vector covariance in the principal-axis coordinate system. The result is

cov[v;] = µ (A - µA2 )-1 cov[N;]
4

~ µçınin (A- µA2fı A

(5.16)
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n practical situations the elements of µA tend to be considerably less than 1, so we simplify

he expression in (5.16) by neglecting the term µA2 to obtain

cov[v;]~ µçminA-1A (5.17)
~ µçminJ

.hus, transforming back to unprimed coordinates, we have the steady-state noise in the

veight vector solution given approximately by

cov[Vk]= Q cov[v; ]Q-1

~ µçmin QJQ-l
~ µçnıin]

(5.18)

· .4 The basic LMS adaptive algorithm

One of the most successful adaptive algorithms is the LMS algorithm developed by

~indrows and his coworkers (Windrow et al., 1975a). Instead of computing W0n in one go

suggested by equation 5.18, in the LMS the coefficients are adjusted from sample to

ample in such a way as to minimize the MSE.

The LMS is based on the steepest descent algorithm where the weight vector is updated

rom sample to sample as follows:

wk+ı = wk - ıN k (5.19)

Where Wk and V k are the weight and the true gradient vectors, respectively, at the kth

samplinginstant. µ Controls the stability and rate of convergence.

The steepest descent algorithm in Equation 5 .18 still requires knowledge of R and P,

since V k is obtained by evaluating Equation 5.16. The LMS algorithm is a practical method

of obtaining estimates of the filter weights Wk in real time without the matrix inversion in

Equation 5.17 or the direct computation of the auto correlation and cross- correlation. The

Widrow-HopfLMS algorithm for updating the weights from sample to sample is given by
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wk+l = W, + ıı»,«, (5.20a)

bere:

ek= Yk -W/ x, (5.20b)

learly, the LMS algorithm above does not require prior knowledge of the signal statistics

at is the correlation's Rand P), but instead uses their instantaneous estimates. The weights

tained by the LMS algorithm are only estimates, but these estimates improve gradually with

me as the weights are adjusted and the filter learns the characteristics of the signals.

Eventually, the weights converge. The condition for convergence is

1
O(µ) lmax (5.21)

Where Wk is the maximum eigenvalue of the input data covariance matrix. In practice, Wk

ever reaches the theoretical optimum (the Wiener solution),

ut fluctuates about it see figure (5.2).

ivk

Woı:ıt

k

Figure 5.2 An illustration of the variations in the filter weights.
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.5 Implementation of the basic LMS algorithm

The computational procedure for the LMS algorithm is summarized below.

(1) Initially, set each weight Wk(i), i= 0,1, ,N-1, to an arbitrary fixed value,

such as O.

For each subsequent sampling instants, k=l,2,3 .. , carry out steps (2) to (4) below:

(2) Compute filter output.

N-1

nk = I wk (i)xk-i
i=O

(3) compute the error estimate

ek=yk-nk

(4) update the next filter weights

wk+ı (i) = wk (i) + 2µekxk-i

The simplicity of the LMS algorithm and ease of implementation, evident from above,

make it the algorithm of first choice in many real-time systems. The LMS algorithm

requires approximately 2N+1 multiplications and 2N+1 additions for each new set of

input and output samples. Most signals processors are suited to the mainly multiply-

accumulate arithmetic operations involved, making a direct implementation of the

LMS algorithm attractive.

The flowchart for the LMS algorithm is given in Figure 5.3 figure 5.4



I* update filter coefficients *I

The LMS Algorithm

lnitiali~s
~(,)andXk-i

I

Read Xk and Yk
from ADC

I
FiltsrXk

n" = LW"(i)X~i
ııı. I

Computs error

e" =y" =n,

I
Computsfactor

2µe"
I

Updcu« co4ffeci,m

Wk-+ı = W" + 2µe"X"-i
I

Figure 5.3 Flowchart for the LMS adaptive filter.

Inputs: xk(i) vector of the latest input samples

yk current contaminated signal sample
wk(i) vector of filter coefficients

Outputs: ek current desired output (or error) sample
Wk(i) vector of updated filter coefficients

I* compute the current error estimate *I

ek=yk
for i =1 to N do

ek = ek - xk(i)*wk(i)
end

gk = 2u*ek
for i =1 to N do

wk(i) = wk(i) + xk(i)*gk
end
return

Figure 5.4 Coding of the LMS adaptive filter.
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Data
memory

Filter f------.-ı ADC
~ Digital 1-.-J DAC I •• I Filter

processor
such as

~ ı~Filter ~ ADC 1----..ı TM320 Filter

Coefficient
memory

Figur 5.5 Hardware implementation for real-time LMS adaptive filtering.

And 5.5, respectively, show a pseudo-code for the software and hardware

implementations.

5.6 Practical limitations of the basic LMS algorithm

In practice, several practical problems are encountered when using the basic LMS

algorithm, leading to a lowering of performance. Some of the more important

problems are discussed here.

5.6.1 Effect of non-stationarity

In a stationary environment, the error performance surface of the filter has a constant shape

and orientation, and the adaptive filter merely converges to and operates at or near the

optimum point. If the signal statistics change after the weights have converged, the filter

responds to the change by re-adjusting its Weights to anew set of optimal values, provided

that the change in signal statistics is sufficiently slow for the filter to converge between

hange. In a nonstationary environment, however, the bottom or minimum point continually

moves, and its orientation and curvature may also be changing (see Figure 5.6) thus the
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gorithm in this case has the task not only of seeking the minimum point of the surface but

o of tracking the changing position, leading to significant lowering of performance. (Such

mean, variance, autocorrelation) change with time. Such change can result from, for

xample, sudden changes due to sporadic interference of short duration or bad data, and often

set the filter weights).

A number of schemes have been developed to overcome this problem but these in general

nd to increase the complexity of the basic LMS algorithm. One such scheme is the time-

quenced adaptive (Ferrari and Windrow, 1981).

(a)

Changes due to sporadic interference

I /:

~1ü~ AA~ 1:.____..____ __;I ı~~v n~l
X(t)

(b)
ti t2

Figure 5 .6 An illustration of nonstationary processes

(a) modulated waveform; (b) sporadic interference.
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·.6.2 Effects of signals component on the interference input channel

[be performance of the algorithm relies on the measured interference signal, Xk(i) being

ıighly correlated with the actual interference, but weakly correlated (theoretically zero) with

e desired signal. In most cases, this condition is not met. In some applications, the

.ontaminating input may contain both the undesired interference as well as low-level signal

·omponents. Such a situation is illustrated in Figure (5.7). It is shown in Windrow et al.

1975a) that the adaptive noise canceling process still leads to a significant improvement in

he desired signal-to-noise ratio in these cases but only at the expense of a small signal

Signal
source

r----- --ı ---------,

~

ıek
Signalı-- ,------ ---.

+ I ,~~

I

\ i
• ~ Xk I - r Adaptive

-~~ filter
I
I
L ...ı

~

ik

noise

lif 

Noise
source

+
signal

Adaptive noise canceller

Figure 5.7 Adaptive noise canceling with some signal components in both the desired signal

and interference input channels.

)istortion. However, if xk contains only signals and no noise component what so ever, the

lesired signal in Yı may be completely obliterated. Our work in biomedical signal processing

onfırms their results (Ifeachor et al.1986).
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n = Lwk (i)xk-ı
i=O

(5.22a)
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,.6.3 Computer worldlength requirements

[be LMS-based FIR adaptive filter is characterized by the following equations:

=-or the digital filter,

:or the adaptive algorithm,

wk+ı = wk + zıe,x, (5.22b)

Vhen adaptive filters are implemented in the real world, the filter weights, Wk, and the input

·ariable, Xk and Yk', are of necessity represented by a finite number of bits. Similarly, the

ıumerical operations involved are carried out using a finite precısıon arithmetic. The

ecessive nature of the LMS algorithm means that the word-length will grow without limit

ınd so some of the bits must be discarded before each updated weight is stored. Thus the Yk'

'k and Wk (i) may differ significantly from their true values. The use of filter weights and

esults of arithmetic operations with limited accuracy may include (i) possible non-

onvergence of the adaptive filter whose effects may include (i) possible non-convergence of

he adaptive filter to the optimal solution, leading to an inferior performance. For example, if

he filter is used as an interference canceller some residual interference may remain, (ii) the

ilter outputs may contain noise, which will cause it to fluctuate randomly, and (iii) aperture

ermirıation of the algorithm may occur. Thus sufficient number of bits should be used to keep

hese errors at tolerable levels. Most adaptive system described in the open literature represent

e digital signals, xk-ı and yk, as fixed point numbers of between 8 and 16 bits, with the

oefficients quantized to between 16 and 24 bits. The multipliers used range from 8x8 to

4 * 16bits, and accumulators of between 16 and 40 bits are used. It appears that for low order
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wk+ı (i) = wk + 2j.ıekxk-i ± ô

(5.23a)
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ters (up to about 100 coefficient) it is sufficient to store the coefficient to no more than 16-

it accuracy and to use a 16*16 bit multiplier with an accumulator of length 32 bits.

5.6.4 Coefficient drift

In the presence of certain types of inputs (for example narrowband signals), the filter

oefficient may drift from the optimum values and grow slowly, eventually exceeding the

permissible wordlength. This is an inherent problem in the LMS algorithm and leads to a

long-term degradation in performance. In practice, introducing a leakage factor, which gently

nudges the coefficients towards zero, counteracts coefficient drift. Two such schemes are

given in Equations 5.23:

small 8, the leakage factor, ensures that drift is contained, but introduce bias in the error term,

ek.

The usefulness of the basic LMS algorithm has been extended by more sophisticated LMS­

based algorithm as mentioned before. These include

(I) The complex LMS algorithm which allows the handling of complex data,

(2) The block LMS algorithm which offers substantial computational advantages in some

cases faster convergence, and

(3) Time-sequenced LMS algorithm to deal with particular types of non-stationary.
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Yk = Lw(i)xk (i) + ek
i=O

(5.24)
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.7 Fast LMS algorithm

A number of blocks LMS algorithms have been proposed which offer substantial

omputational saving especially when the number of filter coefficients is large. The

omputational is saving result from processing the data in blocks instead of one sample at a

time. Frequency domain implementations of the block LMS exploit the computational

advantage of the fast Fourier transforms (FFT) in performing convolutions (Mansour and

Gray, 1982).

5.8 Recursive least squares algorithm

The RLS algorithm is based on the well known least square method (Figure 5.8). An

output signal, Yk, is measured at the discrete time, k, in response to a set of input signals, Xk

fi), i = 1,2,3, n. The input and output signals are related by the simple regression model

Where ek represents measurements errors or other effects that cannot be accounted for, and

w(O represents the proportion of the it input that is contained in the primary signal, Yı. The

problem in the LS method is, given the X/i) and Yk above, to obtain estimates of

w(O) to w(n-1).

Yk{signal + noise)

ek(output)

LS
filterXk(noise)

Figure 5.8 An illustration of the basic idea of the least-squares method.

Optimum estimates (in the least square sense) of the filter weights, w(i),are given by
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[ T 1-I Twk = X111X111 X111Y,11 (5.25)

Where Y,11.W,"andX111 are given by

yO
yl

y ='y2
Ill

XT (O)
XT (I)

X ='xr(2)
Ill

w(O)
w(l)

w =' w(2)
Ill

Ym-ı T
X (111-I) w(n-I)

xr(k) = [xk(O)xk(I) xk(n-1)1 k=0,1,2,3, rn-I

The suffix m indicates that each matrix above is obtained using all m data points and T

indicates transposition. Equation 5.30 gives the OLS estimates of Wm which can be obtained

using any suitable matrix inversion technique. The filter output is then obtained as

ıı-1

nk = L w(i)kk-ı,
i=O

k=l ,2,3, ,m (5.26)

The computation of Wm. in Equation 5.25 requires the time-consuming computation of

the inverse matrix. Clearly, the LS method above is not suitable for real- time or on- line

W, = Wk-ı + o», (5.27a)

filtering. In practice, when continuous data is being acquired and we wish to improve our

estimate of Wm. using the new data, recursive methods are preferred. With the recursive least

squares algorithm the estimates of Wm and to allow the tracking of slowly varying signal

characteristics. Thus

J [ T ]P, = - ~-I -GkX (k)Pk-1r (5.27b)
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(5.28)

where

G, = Pk-ıx(k)
ak

ek = Yk -X7 (k)Wk-ı

ak = y + x' (k)Pk_,X(k)

Pk is essentially a recursive way of computing the inverse matrix [x;"Xk ]-ı.
The argument k emphasizes the fact that the quantities are obtained at each sample

point. y is referred to as the forgetting factor . This weighting scheme reduces to that of the LS

when y = 1. Typically, y is between 0.98 and 1. Smaller values assign too much weight to the

more recent data, which leads to wildly fluctuating estimates. The number of previous

samples that significantly contribute to the value of Wk at each sample point is called the

asymptotic sample length (ASL) given by

"' k 1
LY = 1-y
k=I

This effectively defines the memory of the RLS filter. When y= 1, that is when it corresponds

to the LS, the filter has an infinite memory.

Wıo
Buffer

W1(i)

X;(O) ~
l: ~xı (1) s ~ 1~,:..:-:;.· -+----ı

X (2N-1) ~t
.I ">~

.•.. ~:.: ...•·- .,
() "~i

A "'~

Y/2 N - 1) '----=...I

""':.: b()ı:ı:.:
tıo·­:.::.:·;:: ;g
~:.ı&I ...•

X/0)

EJ(O)
E1(1)

2N-point uE/2N-1)
F"FTprocessor

1}----. e1(i)

Zero first
N values of(.{i)

ei(i)

Figure 5.9 Simplified block diagram of a frequency domain LMS filter
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5.9 Limitations of the recursive least squares algorithm

The RLS method is very efficient and involves exactly the same number of arithmetic

operations between samples as Wk and Pk in Equations 5.27 a and b; have fixed dimensions.

This is an important requirement for efficient real-time filtering. There are, however, two

main problems that may be encountered when the RLS algorithm is implemented directly.

The first, referred to as blow-up', results if the signal Xk (i) is zero for a long time, when the

matrix Pk will grow exponentially as a result of division by y (which is less than unity) at each

sample point:

The second problem with the RLS is its sensitivity to computer round off errors, which

results in a negative definite P matrix and eventually to instability. For successful estimation

of W, it is necessary that the P be positive semi definite which is equivalent to requiring in the

LS method that the matrix x:X be inevitable, but, because of differencing of terms in

Equation 5.27b, positive definiteness of P cannot be guaranteed. This problem can be worse in

multi parameter models, especially if the variables are linearly dependent and when the

algorithm is implemented on a small system with a finite word length, when the algorithm

has iterated for a long time the two terms in the parentheses in Equation 5.27b are very nearly

equal and subtraction of such terms in a finite word length system may lead to errors and a

negative definite Pk matrix.

The problem of numerical instability may be solved by suitably factorizing the matrix

P such that the differencing of terms in Equation 5.27b is avoided.

Such factorization algorithms are numerically better conditioned and have accuracies that are

comparable with the RLS a1gorithmthat uses double precision. Two such algorithms are the
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square root and the UD factorization algorithms. In terms of storage and computation the UD

algorithm is more efficient, and is thus preferred. In fact, the UD algorithm is a square-root­

free formulation of the square root algorithm and thus shares the same properties as the latter.

~



Finite-Precision Effects

6. FINITE-PRECISION EFFECTS

6.1 Overview

In order to simplify the discussion of finite-precision effects on the performance of the LMS

algorithm. We will depart from the practice followed in previous chapters, and assume that

the input data and therefore the filter coefficients are all real valued. This

Q

• Q
Yq(n).(n) I Uq(n)..,I Wq(n)~ o

Control
Mechanism

eq(n)

Figure 6.1 Block diagram representation of the finite-precision form ofLMS algorithm

Assumption, made merely for convenience of presentation, will in no way affect the validity

of the findings presented in this section.

A block diagram of the finite-precision least- 'mean-square (LMS) algorithm depicted in Fig

6. I. Each of the blocks (operators) labeled Q represents a quantizer. Each one introduces a

quantization, or round-off error of its own. Specifically, we mean the input-output relations of

the quantizers operating in Fig. 6. 1 as follows:

1. For the input quantizer connected to u (n) we have

U q (n) = Q[U(n)]
=U{n)+rı11(n) (6.1)
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Where rıu(n) is the input quantization error vector.

2. For the quantizer connected to the desired response d(n), we have

dq (n) = Q[d(n)]

= d(n) + rıd (n)
(6.2)

Where rıct(n) is the desired response quantization error.

3. For the quantized tap-weight vector w q (n), we write

w q (n) = Q[w(n)]

= w(n) + ~w(n)
(6.3)

Where w(n) is the tap-weight vector in the infinite-precision LMS algorithm, and ~ w(n) is

(6.6)

the tap-weight error vector resulting from quantization.

4. For the quantizer connected to the output of the transversal filter represented by the

quantized tap-weight vector w q (n), we write

y q(n) = Q[u; (n)w q(n)]

= u; (n)w q (n) + iJy (n)
(6.4)

Where 11Y(n) is thefiltered output quantization error.

The following pair of relations describes the finite-precision LMS algorithm:

eq (n) = dq (n) - y q (n)

w q(n + 1) = w q (n) + Q~eq (n)uq (n)]

(6.5)

Where yq(n) is itself defined in Equation (6.4). The quantizing operation indicated on the

right-hand side of Equation (6.6) is not shown explicitly in Fig. 6.1; nevertheless. It is basic to

the operation of the finite-precision LMS algorithm. The use of Equation (6.6) has the

following practical implication. The product µeq (n) Uq(n), representing a scaled version of the

gradient vector estimate, is quantized before addition to the contents of the tap-weight

accumulator. Because of hardware constraints, this form of digital implementation is

preferred to the alternative method of operating the tap-weight accumulator in double
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recision and then quantizing the tap weight to single precision at the accumulator output.

In a statistical analysis of the finite-precision LMS algorithm, it is customary to make the

'allowing assumptions:

1. The input data are properly scaled so as to prevent overflow of the elements of

the quantized tap-weight vector w q (n) and the quantized output yq(n) during

the filtering operation.

2. Each data sample is represented by BD bits plus sign, and each tap weight is

represented by Bw bits plus sign. Thus, the quantization error associated with a

Bo-plus-sign bit number (i.e.. data sample) has the variance

Similarly, the quantization error associated with a Bw plus-sign bit number (i.e..

tap weight) has the variance

2
2-2Bw

crw = --
12

(6.8)

3. The elements of the input quantization error vector IJu (n) and the desired

response quantization error lJd (n) are white-noise sequences. independent of

the signals and from each other. Moreover, they have zero mean and variance

2
CTo·

4. The output quantization error lJY (n) is a white-noise sequence, independent of

the input signals and other quantization errors. It has a mean of zero and a

variance equal to c crt, where c is a constant that depends on the way in which

the inner product u; (n)w q (n) is computed. If the individual scalar products in

u; (n)w q (njare all computed without quantization, then summed, and the final
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= d(n)- u; (n)w q (n)-rıy (n)
(6.9)
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result is quentized in BD bits plus sign, the constant c is unity and the variance

of rıy(n) is crt as defined in Eq. (6.7). If, on the other hand, the individual

scalar products in uT (n)w q (n) are quantized and then summed, the constant c

is Mand the variance of TJY (n) is Mcr~ where Mis the number of taps in the

transversal filter implementation of the LMS algorithm.

5. The independence theory dealing with the infinite- precision LMS algorithm, is

invoked.

6.2 Total Output Mean-squared Error

The filtered output yq(n), produced by the finite-precision LMS algorithm, presents a

quentized estimate of the desired response. The total Output error is therefore equal to the

differenced (n) - yq(n} Using Equation (6.4), we may therefore express this error as

Substituting Equation (6.1) and (6.3) in Equation (6.9), and ignoring all quantization error

terms higher than first order, we get

etotal (n) = [d(n)- UT (n)w(n) ]-[fıw T (n)u(n) + Yj~ (n)w(n) + YJy(n)] (6.10)

The term inside the first set of square brackets on the right-hand side of Equation (6. 1 O) is the

estimation error e(n) in the infinite-precision LMS algorithm. The term inside the second set

of square brackets is entirely due to quantization errors in the finite-precision algorithm.

Because of assumptions 3 and 4 (i.e., the quantization errors rıu and TJY are independent of the

input signals and of each other), the quantization error-related terms tıw T (n)u(n) ,and TJY are

uncorrelated with each other. Basically, for the same reason, the infinite-precision estimation
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error e(n) is uncorrelated with both rı! (n)w(n) and rıy(n).

E[e(n)6wT (n)u(n)]= E[6w 'r (n)]E[e(n)u(n)]

Moreover, by invoking this same independence assumption. We may show that the

expectation E[6w(n)]is zero. Hence. e(n) and 6w T (n)u(n) Are also uncorrelated.

In other words, the infinite-precision estimation error e(n) is uncorrelated with all

quantization-error-related terms 6w r (n)u(n), rı! (n)w(n),and rıY (n) in Equation (6.1 O).

Using these observations, and assuming that the step-size parameterµ is small, shown in

Caraiscos and Liu (1984) that the total output mean-squared error produced the finite­

precision algorithm has the following steady-state structure:

The first term Jmin(l + M) on the right-hand side of Equation (6.11) is the mean-squared error

of the infinite-precision LMS algorithm. In particular, Jmin is the minimum mean squared error

of the optimum Wiener filters, and M is the misadjustment of the infinite-precision LMS

algorithm. The second term Çı( cr~v, µ) arises because of the error 6w(n) in the quantized tap­

weight vector w q (n). This contribution to the total output mean-squared error is inversely

proportional to the step-size parameter µ. The third term Ç2 ( cr~)arises because of two

quantization errors: the error ııu(n) in the quantized input vector uq(n) and the error 11Y(n) in

the quantized filter output yq(n).However, unlike Ç1 ( cr~,., µ), this final contribution to the total

output mean-squared error is, to a first order of approximation, independent of the step-size

parameter µ.

We know that decreasing µ reduces the misadjustment M and thus leads to an improved

performance of the algorithm. In contrast, the inverse dependence of the contribution

Ç1(cr~v'~t)on µ in Equation (6.11) indicates that decreasingµ has the effect of increasing the..
deviation from infinite-precision performance. In practice, therefore. The step-size parameter
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ımay only be decreased to a level at which the degrading effects of quantization errors in the

ap weights of the finite-precision LMS algorithm become significant.

Since the misadjustment M decreases withµ and the contribution Ç1 ( cr~, µ)

Increases with. reduced µ we may (in theory) find an optimum value of µ for which the

total output mean-squared error in Equation (6.11) is minimized. However, it turns out that

this minimization results in an optimum value µö for the step-size parameter µ that is too

small to be of practical value. In other words, it does not permit the LMS algorithm to

converge completely. Indeed. Equation (6.11) for calculating the total output mean­

squared error is valid only for a µ that is well in excess of µô. Such a choice of µ is

necessary so as to prevent the occurrence of a phenomenon known as stalling, described

later in the section.

t.3 Leaky LMS Algorithm

To further stabilize the digital implementation of the LMS algorithm, we may use a

echnique known as leakage. Basically, leakage prevents the occurrence of overflow in a

imited-precision environment by providing a compromise between minimizing the mean

quared error and containing the energy in the impulse response of the adaptive filter.

Iowever, the prevention of overflow is attained at the expense of an increase in hardware cost

nd at the expense of degradation in performance compared to the infinite- precision form of

he conventional LMS algorithm. In the leaky LMS algorithm, the cost function

s minimized with respect to the tap-weight vector w(n), where a is a positive control

arameter, The first term on the right-hand side of Equation (6.12) is the squared estimation

rror, and the second term is the energy in the tap-weight vector w(n) · [6] The minimization

escribed herein (for real data; yields the following time update for the tap-weight vector
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w(n + 1) = (1- µa)w(n) + µe(n)u(n) (6.13)

Where q is a constant that satisfies the condition

1
O~a<­

µ

Except for the leakage factor (1 - µa) associated with the first term on the right-hand side of

Equation (6.13), the algorithm is of the same mathematical form as the conventional LMS

algorithm.

Note that the inclusion of the leakage factor (1-µa) in Equation. (6.13) has the equivalent

effect of adding a white-noise sequence of zero mean and variance a to the input process

u(n). This suggests another method for stabilizing a digital implementation of the LMS

algorithm. Specifically. A relatively weak white-noise sequence (of variance a). Known as

dither, is added to the input process U(n). And samples of the combination are then used as tap

inputs (Werner. 1983).

6.4 Stalling Phenomenon

There is another phenomenon. Known as the stalling or lock-up phenomenon, not

evident from Equation (6.11), which may arise in a digital implementation of the

LMS algorithm. This phenomenon occurs when the gradient estimate is not

sufficiently noisy. To be specific. A digital implementation of the LMS algorithm

stops adapting or stalls, whenever the correction term µeq(n)uq(n-i)for the ith tap

weight in the update equation is smaller in magnitude than the least significant

bit (LSB) of the tap weight. As shown by (Gitlin et al.. 1973)

lµeg(n0)ug(n0 -i)I ~ LSB (6.14)
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.ere, no is the time at which the ith tap weights stops adapting. Suppose that the condition of

quation (6.14) is first satisfied for the ith tap eight. To a first order of approximation. We

tay replace uq(no - i) by its root -mean-square (RMS) value. Arms. Accordingly, using this

alue in Equation (6.14), we get the following relation for the RMS value of the quantized

ıtimation error when adaptation in the digitally implemented LMS algorithm stops:

ieq (n)I ~ LSB _µA - eo (u)
rms

he quantity eo(µ} defined on the right-hand side of (6.15). is called the digital residual error.

o prevent the algorithm-stalling phenomenon due to digital effects, the digital residual error

)(µ) must be made as small as possible. According to the definition of

quation (6.15), this requirement may be satisfied in one of two ways:

1. The least significant bit (LSB)is reduced by picking a sufficiently large number of

bits for the digital representation of each tap weight reduces

2. The step-size parameter µ is made as large as possible, while still guaranteeing

convergence of the algorithm.

nother method of preventing the stalling phenomenon is to insert dither at the input of the

rantizer that feeds the tap-weight accumulator (Sherwood and Bershad, 1987). Dither is a

rıdom sequence that essentially "linearizes" the quantizer. In order word, the addition of

.ther guarantees that the quantizer input is noi.sy enough for the gradient quentization error

ector ııw, to be again modeled as white noise (i.e.. the element of ııw are uncorrelated in time

ıd with each other, and have a common variance cr~v ). When dither is used in the manner

escribed here, it is desirable to minimize its effect on the overall operation of the LMS

gorithm. This is commonly achieved by shaping the power spectrum of the dither so that the

gorithm at its output effectively rejects it.
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6.5 Parameter Drift

In addition to the numerical problems associated with the LMS algorithm. There is one other

rather subtle problem that is encountered in practical applications of the algorithm

Specifically. Certain classes of input excitation can lead to parameter drift, that is parameter

estimates or tap weights in the LMS algorithm attain arbitrarily large values despite bounded

inputs. Bounded disturbances. And hounded estimation errors (sethares et al.,1986). Although

such an unbounded behavior may he unexpected, it is possible for the parameter estimates to

drift to infinity while all the signals observable in the algorithm converge to zero. Parameter

drift in the LMS algorithm may be viewed as a hidden form of instability, since the tap

weights represent internal" variables of the algorithm it may result in new numerical

problems, increased sensitivity to un-modeled disturbances, and degraded long-term

performance.

In order to appreciate the subtleties of the parameter drift problem. We need to introduce

some new concepts relating to the parameter space. We therefore digress briefly from the

issue at hand to do so.

A sequence of information-bearing tap-input vectors u(n) for varying time n may be used­

to partition the real M-dimensional parameter space RM into orthogonal subspace where Mis

the number of tap weights (i.e.. the available number of degrees of freedom). The aim of this

partitioning is to convert the stability analysis of an adaptive filtering algorithm.
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'

ParameterSpace RM

Excited Subspace

Unexcited
Persistently Decreasingly OtherwiseSubspace excited excited excited
Subspace Subspace Subspace

Figure 6.2 Decomposition of parameter space RM, based on excitation.

(e.g.. the LMS algorithm) into simpler subsystems and thereby provide a closer linkage

between the transient behavior of the parameter estimates and the filter excitations. The

partitioning we have in mind is depicted in Fig. 6.2. In particular, we may identify the

following subspaces of RM

1. The on-excited subspace· Let the Mıby- 1 vector z be any element of the

parameter space RM, which satisfies two conditions:

• The Euclidean norm of the vector z is 1; that is,

11211 = 1

• The vector z is orthogonal to the tap-input vector u(n) for all but a finite

number of n; that is,

zru(n) * O, only finitely often (6.16)

Let fu denote the subspace of RM that is spanned by the set of all such vectors z. The subspace

fu is called the unexcited subspace in the sense that it spans those directions in the parameter

space RM that are excited onlyfinitely often.

2. The excited subspace. Let fe denote the orthogonal complement of the unexcited

Subspace fu . "Clearly; fe is also a subspace of the parameter space RM. It contains those

directions in the parameter space RM that are excited infinity often. Thus, except for the null
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vector, every element z belonging to the subspace fe satisfies the condition

zTu(n) ":;/; O, Infinitely often (6.17)

The subspace fe, is called the excited subspace.

The subspace fe may itself be decomposed into three orthogonal subspaces of its own,

depending on the effects of different types of excitation on the behavior of the adaptive

filtering algorithm. Specifically, three subspaces of fe may be identified as follows (Sethares et

al. 1986):

• The persistently excited subspace. Let z be any vector of unit norm that lies

in the excited subspace fe. For any positive integer m and any a> O, choose

the vector z such that we have

zTu(i) > a for n :=:;; i :=:;; n + m and for all but a finite number of n (6.18)

Given the integer m and the constant a, let [p(m,a) be the subspace spanned by all

such vectors z that satisfy the condition of (6.18). There exist a finite mo and a positive uo for

which the subspace fe(mo,ao) is maximal. In other words [p(mo,ao) contains [p(m,a) for all m

> O and for all a> O. The subspace [p = [p(mo,ao) is called the persistently excited subspace;

and mo is called the interval of excitation. For every direction z that lies in the persistently

excite subspace [p there is an excitation of level co at least once in all but a finite number of

intervals of length mo. In the persistently excited subspace, we are therefore able to find a tap-

input vector u(n) rich enough to excite all the internal modes that govern the transient

behavior of the adaptive filtering algorithm being probed (Narendra and Annaswamy, 1989).

• The subspace of decreasing excitation. Consider a sequence u(i) for which

we have

( a, Jfp~frlu(i)IP < co (6.19)
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Such a sequence is said to be an element of the normed linear space ZP for 1 < p <~. The

norm of this new space is defined by

M, -( t,ıu<i)I' )"' (6.20)

Note that if the sequence u(i) is an element of the normed linear space ZP for 1 < p~oo, then

Jim (n) = O
n--400

(6.21)

Let z be any unit-norm vector z that lies in the excited subspace fo such that for

I < p<cothe sequence iu(n) lies in the normed linear space ZP . Let [d be the subspace that is

spanned by all such vectors z. The subspace fo is called the subspace of decreasing excitation

in the sense that each direction of fo is decreasingly excited, for any vector zt O, the two

conditions

lzTu(n)I=a> O. infinitely often

and

limzru(n)=O
ıı~cn

Cannot be satisfied simultaneously. In actual fact, we find that the subspace of decreasing

excitation [4 is orthogonal to the subspace of persistent excitation [p

The otherwise excited subspace. Let [pUfo denote the union of the persistently excited

subspace [p and the subspace of decreasing excitation fo. Let fo denote the orthogonal

complement of [pU[d that lies in the excited subspace fe. The subspace fo is called the otherwise

excited subspace. Any vector that lies in the subspace fo is not unexciting, not persistently

exciting, and not in the normal linear space LP for any finite p. An example of such a signal is

the sequence
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Returning to our discussion of the parameter drift problem in the LMS algorithm. We find

that for bounded excitations and bounded disturbances. In the case of unexcited and

persistently exciting subspaces the parameter estimates resulting from the application of the

LMS algorithm are indeed bounded. It however, in the decreasing and otherwise excited

cases, parameter drift may occur (Sethares et al., 1986). A common method of counteracting

the parameter drift problem in the LMS algorithm is to introduce leakage into the tap-weight

update equation of the algorithm. Here is another reason for using the leaky LMS algorithm

that was described previously.

6.6 Recursive Least-Squares Algorithm

The recursive least-squares (RLS) algorithm offers an alternative to the LMS algorithm as a

tool for the solution of adaptive filtering problems. We know that the RLS algorithm is

characterized by a fast rate of convergence that is relatively insensitive to the eigenvalue

spread of the underlying correlation matrix of the input data, and a negligible misadjusiment

(zero for a stationary environment without disturbances). Moreover, although it is

computationally demanding (in the sense that its computational complexity is on the order of

M2. where Mis the dimension of the tap-weight vector), the mathematical formulation and

therefore implementation of the RLS algorithm is relatively simple. However, there is a

numerical instability problem to be considered when the RLS algorithm is implemented in

finite-precision arithmetic.

Basically, numerical instability or explosive divergence of the RLS algorithm is of a similar

nature to that experienced in Kalman filtering, of which the RLS algorithm is a special case.

Indeed, the problem may be traced to the fact that the time-updated matrix P(n) in the Riccati
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equation is computed as the difference between two nonnegative definite matrices.

Accordingly, explosive divergence of the algorithm occurs when the matrix P(n) loses the

property of positive definiteness or Hermitian symmetry.Iv].

Table 6.1. Summary Of A Computationally Efficient Symmetry-Preserving Version

Of The RLS Algorithm

Initialize the algorithm by setting
P(O) = s-11.
w(O) = O

8 = small positive constant

For each instant oftime, n = 1,2, , compute
n(n) = P(n - l)u(n)

1r(n)=-----
A+uH(n)n(n)

K(n) = r(n)n(n)
ç(n) = d(n)- wH (n -l)u(n)
w(n) = w(n -1) + K(n)ç(n)
P(n) = Tri[A-ı [P(n - 1) - K(n)nH (n)]]

This is precisely what happens in the usual formulation of the RLS algorithm

Described in Table 6.1 (Verhaegen. 1989).

How then can the RLS algorithm be formulated so that the Hermitian symmetry of the matrix

P(n) is preserved despite the presence of numerical errors? For obvious practical reasons, it

would also be satisfying if the solution to this fundamental question can be attained in a

computationally efficient manner. With these issues in mind, we present in Table 6. 1 a

particular version of the RLS algorithm from Yang (1994), which describes a computationally

efficient procedure for preserving the Hermitian symmetry of P(") by design. The improved

computational efficiency of this algorithm is achieved because it computes simply the upper I

lower triangular part of the matrix P(n), as signified by the operator Tri { } , and then fills in
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the rest of the matrix to preserve Hermitian symmetry Moreover. Division by 'A, is replaced by

multiplication with the precomputed

value of 'A, .ı

6.7 Error Propagation Model

According to the algorithm o/Table 6.1. The recursions involved in the computation of

P(n)proceed asfollows:

n(n) = P(n - l)u(n)
1r(n)=---­

A + u H (n)n(n)
k(n) = r(n)n(n)
P(n) = Tri[ı-1 [P(n - 1)- k(n)nH (n)]]

(6.23)

(6.24)

(6.25)
(6.26)

Where ).. is the exponential weighting factor. Consider the propagation of a single quantization

error at time n-I to subsequent recursions. Under the assumption that no other quantization

errors are made. In particular, let

Pq ( n - 1) = Pn - 1) + T) P (n - 1) (6.27)

Where the error matrix ıııı(n-1) arises from the quantization of P(n-1). The corresponding

quantized value of n(n) is

nq (n) = n(n) + Tlp (n - l)u(n) (6.28)

Let rq(n) denote the quantized value ofr(n) Using the defining equation (6.28), we may write
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1
rq(n) = A+ u H (n)nq(n)

=~~~~~~~~~....,.,.-~~~~~~~~-1
A+ u H (n)n(n) + u H (n)rıP (n - l)u(n)

ı ( u" (n)rıP (n - l)u(n))-ı- ı+~~-=----~~~
- A+uH(n)n(n) A+uH(n)n(n)

ı u H (n)rıP (n - l)u(n) 2= H - ( )2 + O(rıp )
A+U (n)n(n) A+uH(n)n(n)

uH (n)rıP (n - l)u(n) 2
= r(n)- ( )2 + O(rıP )

A+ u H (n)n(n)

(6.29)

Where O(rı ~) denotes the order of magnitude llrı P f .
In an ideal situation. The infinite-precision scalar quantity r(n) is nonnegative,

taking on values between zero and 1/l. On the other hand. if u\n)n{n) is small compared to A

and 1ı, itself is small enough compared to 1. Then according to Equation (6.29), in a finite-

precision environment it is possible for the quantized quality rq(n) to take on a negative value

large in magnitude than 1/A. When this happens. The RLS algorithm exhibits explosive

divergence (Bottomley and Alexander. I 989).

The quantized value of the gain vector k(n) is written as

kq (n) = rq (n)nq (n)

= k(n) + rık (n)
(6.30)

Where TJk(n)is the gain vector quentization error, defined by

rık (n) = r(n)(I - k(n)u H (n))rıP (n - l)u(n) + O(rıP
2) (6.31)

Finally, using Equation (6.26), we find that the quantization error incurred in computing in

updated inverse-correlation matrix pen) is

TJp (n) = A-1 (I - k(n)uH (n))rıP (n - 1)(1 - k(n)u H (nj)" (6.32)
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where the term O(rı~) has been ignored.

On the basis of Equation (6.32), it would be tempting to conclude that rı: (n) = rıP (n) and

therefore the RLS algorithm of Table 6.1 is Hermitian-symmetry preserving, if we can

assume that the condition rı: (n -1) = rıP (n -1) holds at the previous iteration. We are

justified in making this assertion by virtue of the fact there is no blow-up in this formulation

of the RLS algorithm, as demonstrated in what follows (it is also assumed that there is no

stalling).

Equation (6.32) defines the error propagation mechanism for the RLS algorithm summarized

in Table 4. 1 on the basis of a single quantization error in P(n-ı ).

The matrix I- k(n) UH(n) plays a crucial role in the way in which the single quantization error

T\P(n- 1) propagates through the algorithm.

k(n) = <D-1 (n)u(n) (6.33)

We may write

I - k(n)u H (n) = I - <D-1 (n)u(n)u H (n) (6.34)

Next, we have

<I>(n) = ıı,<I>(n -1) + u(n)uH (n) (6.35)

Multiplying both sides of Equation (6.35) by the inverse matrix <D·\n) and rearranging terms,

we get

I - <D-1 (n)u(n)u H (n) = ıı,<!)-ı (n)C!>(n -1)

Comparing Equations (6.34) and (6.36), we readily deduce that

I - k(n)u H (n) = ıı,<!)-ı (n)<D(n- 1)

(6.36)

(6.37)

Suppose now we consider the effect of the quantization error T\P(no) induced at time.•.
n0 ~ n. When the RLS algorithm of Table 6.1 is used and the matrix P(n) remains Hermitian,
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then according to the error propagation model of Equation (6.32). The quantization error

TJP(no )becomes modified at time n as follows:

rıp(n) = A-<ıı-ııo)<p(n,n0)rıP (n, )cp8 (n.n. ), n ~ n0 (6.38)

Where cp(n, no) is a transition matrix defined by

<p(n,n0)=(1-k(n)uH(n))···(I-k(n0 +l)uH(n0 +1)) (6.39)

The repeated use of Equation (6.37) in (6.39) leads us to express the transition matrix in the

equivalent form

cp(n,no) = Aıı-ııocp-ı (n)<D(no) (6.40)

The correlation matrix <l>(n) is defined by

n

<D(n) = LAn-iu(i)uH(i)
i=l

(6.41)

On the basis of this definition, the tap-input vector u(n) is said to be uniformly persistently

exciting for sufficiently large n if there exist some a> O and it n > O such that the following

condition is satisfied (Ljung and Ljung. 1985):

<P(n) ~ al for n ~ N (6.42)

The notation used in Equation (6.42) is shorthand for saying that the matrix <I>.(n) is positive

definite. The condition for persistent excitation not only guarantees the positive definiteness

of <I>(n), but also guarantees its matrix norm to be uniformly bounded

for n?: N, as shown by

ll<t>-' cn)II s !
a

for n ~ N (6.43)

Returning to the transition matrix cp (n,no) of Equation (6.40) and invoking the mutual

consistency property of a matrix norm. We may write

llcp(n, no )II 5 An-no ıı{J)-ı (n)11-ll<I>( no )II (6.44)

Next. Invoking the inequality of (6.43). We may rewrite that of Equation (6.44) as
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An-no
JJcp(n,no)II ~ -JJ<I>(no)II

a
(6.45)

finally. We may use the error propagation equation (6.38) to express the vector norm of 11P(n)

as

JJrı p(n)JJ s tı.-(n-no) ll<ı>(n, no )JJ.JJrı /n - l)JJ,ll<PH (n, no )il

Which, in light of (6.48), may be rewritten as

llrıp (n)II ~ lı.n-noM n 2 no (6.46)

Where Mis a positive number defined by

M = a\ IJ<1>(n0)Jı2ilrı/n -1)11 (6.47)

Equation (6.4 7) states that the RLS algorithm of Table 6. 1 is exponentially stable in the sense

that a single quantization error T'JP(no) occurring in the inverse correlation matrix P(no) at time

"o decays exponentially provided that tı.<1 (i.e., the algorithm has finite memory). In other

words, the propagation of a single error through this formulation of the standard RLS

algorithm with finite memory is contractive. Computer simulations validating this result are

presented in Verhaegen (1989).

However, the single-error propagation for the case of growing memory (i.e.=1) is not

contractive. The reason for saying so is that when 1ı. = 1, neither q,(n, no)~ I nor ll<ı>(n,n0)II ~ 1

holds, even if the input vector u(n) is persistently exciting. Consequently, the accumulation of

numerical errors may cause the algorithm to be divergent (Yang 1994). In an independent

study, Slock and Kai lath (1991) also point out that the error propagation mechanism in the

RLS algorithm with 1ı. = 1 is unstable and of a random walk type. Moreover, there is

experimental evidence for this numerical divergence. Which reported in (Ardalan and

Alexander, 1987).

As with the LMS algorithm, a second form of divergence. Referred to as the stalling
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phenomenon, occurs when the tap weights in the RLS algorithm stop adapting. In particular

this phenomenon occurs when the quantized elements of the matrix P (n) become very small,

such that multiplication by P(n) is equivalent to multiplication by a zero matrix (Bottomley

and Alexander. 1989). Clearly. The stalling phenomenon may arise no matte how the RLS

algorithm is implemented.

The stalling phenomenon is directly linked to the exponential weighting factor 1ı. and the

variance cr~ of the input data u (n). Assuming that is 1ı. close to unity, we find from the

definition of the correlation matrix <l> (n) that the expectation of <l> (n) is given by .

R
E[<l>(n)] ~ l -1ı. Largen (6.48)

For tı, close to unity, we have

E[P(n)] = E[<l>-1 (n)] ~ (E[<l>(n)l' (6.49)

Hence, using Equation (6.48) in Equation (6.49), we get

E[P(n)] ~ (l -1ı.)R _, Largen (6.50)

Where K1 is the inverse of matrix R. Assuming that the tap-input vector u(n) is drawn from a

wide-sense stationary process with zero mean, we may write

ilı=-1R
(J2

u

(6.51)

Where 9l is a normalized correlation matrix with diagonal elements equal to ı and off-

diagonal elements less than or equal to 1 in magnitude, and cr~. is the variance of an input data

sample u(n). We may therefore rewrite Equation (6.50) as

E[P(n)] ~ (1-/J9ı-ı
(Ju

For large n (6.52)

Equation (6.52) reveals that the RLS algorithm may stall if the exponential weighting factor 1ı.

is close to 1 and/or the input data variance cr~ is large. Accordingly, we may prevent stalling
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of the standard RLS algorithm by using a sufficiently large number of accumulator bits in the

computation of the inverse correlation matrix P (n).
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7. PRACTICAL CONSIDERATIONS AND DESIGN FILTERS

7.1 Design procedure

Given the digital filter specification Wp, Ws, Rp and Rs we want to determine H(z).

The design steps in the procedure are following.

1. Choose a value of T. This is arbitrary, and we may set T=l.

2. Prewarp the cutoff frequencies Wp and Ws; that is, calculated as Op and Os using

2 (())s JO. =-tan -
s T 2

2(0JPJ'OP =T 2 (7.1)

3. Design an analog filter Ha(s) to meet the specifications Op, Os, Rp and Rs.

4. Finally, set

( -IJ21-z
H(z) = Ha TI+ z-ı

7. 2 Matlab implementation

MATLAB provides a function called bilinear to implement this mapping. Its invocation

is similar to the impinvr function, but it also takes several forms for different in-put out-

put quantities.

Here is the design procedure of digital IIR filters(butterworth, chebyshevand elliptic)

under the following specifications:
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- •.•.·-- ......•.• ·-
Wp=0.2n, Ws=0.3n, Rp=ldB and Rs=l5dB.

»%DIGITAL FILTER SPECIFICATIONS

» Wp=0.2*pi; Ws=0.3*pi; Rp=l; Rs=15;

» % inverse mapping for freq:

» T=l; Fs=l/T;

» Op=(2/T)*tan(Wp/2); % prewrwap prototype passband freq

» Os=(2/T)*tan(Ws/2); % prewrwap prototype stopband freq

» %Butterworth filter order calculation:

» [N,Wn]=buttord(Op,Os,Rp,Rs,'s');

» [num,den]=butter(N,Wn,'s');

» %bilinear transformation

» [b,a]=bilinear(nurn,den,Fs);

» %magnitude and phase response

» freqz(b,a,512);

As Shown in figure 7. 1. 200
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Figure 7. 1 Magnitude and Phase Response of ButterWorth Filter.
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~-~ ·-- - ---
»% Chebyshevl filter order calculation:

ıı » [N,Wn]=cheblord(Op,Os,Rp,Rs,'s');

» [num,den]=chebyl(N,Rp,Wn,'s');

» %bilinear transformation

» [b,a]=bilinear(num,den,Fs);

» %magnitude and phase response

» freqz(b,a,512);

As Shown in figure 7.2.

o

Magnitude
Response
(dB)

! l
-1 O O r.................. ·······+·-··· 1 T .

-200 r t i i ,
-300 i i

O 0.2 0.4 0.6 0.8 1
Normalized frequency (Nyquist) =1
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o
~:~~~,---' ~--+ .....

i\
-300r--·-Ts ı ı l

i i i !
-400 J ~ d.4 o.e 0.8 1

Normalized frequency (Nyquist = 1)

Figure 7.2 Magnitude and Phase Response of Chebyshev 1 Filter.
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»%Chebyshev type 2 order calculation:

» [N,Wn]=cheb2ord( Op, Os,Rp,Rs, 's');

>> [num,den ]=cheby2(N ,Rs, Wn,'s');

» [b,a]=bilinear(num,den,Fs);

» freqz(b,a,512);

As Shown in Figure 7.3.

Magnitude
Response (dB)

so~~~~~~~~~~~~~~~

J__ ı+-¥i--::.... ::---:
-100L---_........J..... _.____ __._ ....J.........__ __,

o 0.2 0.4 0.6 0.8

Phase
(decrees)

Normalized frequency (Nyquist== 1)
100~1

~:::~~J-
-3oob 0'2 ol4 ol6 ola 1

Normalized frequency (Nyquist == 1)

Figure 7.3. Magnitude Response of Chebyshev 2 Filter.

»%Elliptic filter order calculation:

» [N,Wn]=ellipord(Op,Os,Rp,Rs,'s');

» [num,den ]=elli p(N ,Rp,Rs, Wn,'s');

» [b,a ]=bilinear(num,den,Fs );

» freqz(b,a,512);

As shown in figure '7.4.
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50
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Figure 7.4. Magnitude and Response of Elliptic Filter.

7.3 Lowpass filter design

In this section demonstrates the use of matlab filter design routines to design digital

lowpass filters. These functions use the bilinear transformation because of its desirable

advantages as discussed in the previous section. These functions are as follows:

1. [b,a]=bntter(N,wn)

This function designs an Nth-order lowpass digital Butterworth filter and returns the

filter coefficients in length N+ 1 vectors b and a. In MATLAB all digital frequencies are

given in unit of 1ı. . Hence wn is computed by using the following relation:

2 (QT)
{J)n = n tan " -t-

2. [b,a ]=cheby 1 (N .Rp,wn)
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This function designs an Nth-order lowpass digital Chebyshev-I filter with Rp

decibels of ripple in the passband. It returns the filter coefficients in length N + 1

vectors

b and a. The cutoff frequency wn is the digital pasaband frequency in units of A;

that is,

lü" =m,,,n

3. [b,a]=cheby2[N,As,Wn)

This function designs an Nth-order lowpass digital Chebyshev-Il filter with the

stopband attenuation As decibels. It returns the filter coefficients in length N + 1

vectors b and a. The cutoff frequency wn is the digital stopband frequency in units of

A; that is,

(J),, = (J)sın

4. [b,al=ellip[N,Rp,As,Wn)

This function designs an Nth-order lawpass digital elliptic alter with the passband

ripple of Ap decibels and a stopbsnd attenuation of As decibels. It returns the filter

coefficients in length N + 1 vectors b and a. The cutoff frequency wn is the digital

pass band frequency in units of A; that is,

(1)11 = lüptn

Here is matlab implementation of above functions for the designing of lowpass

Butterworth, Chebyshev and Elliptic filters under the following
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specifications.Passband normalized edde frequency Wp=0.2*pi ,stopband edge

frequency Ws=0.3*pi ,passband ripples Rp=ldB and stopband attanuation Rs=15dB.

At the end a comperison is given to choose a best one.

a. Butterworth lowpass filter:

» Wp=0.2*pi; Ws=0.3*pi; Rp=l; Rs=15;
•

% analog prototype specification

» T=l;

·• » Op=(2/T)*tan(Wp/2); %prewrwap prototype passband freq.

» Os=(2/T)*tan(Ws/2); %ptewrap prototype stopband freq.

» % analog butterworth prototype order calculation

» N=ceil((logl 0((1O"(Rp/10)-1)/(1O"(Rs/10)- 1)))/(2*logI O(Op/Os)));

» fprintf('**Butterworth filter order=%2.0f\n',N);

**Butterworth filter order= 6

» % analog Butterworth prototype cuttoff frequency

» Oc=Op/((1O"(Rp/10)-1)"(1/(2*N))); %analog cuttoff freq.

» Wn=2*atan((Oc*T)/2); %digital cuttoff freq.

» %Digital filter design

»Wn=Wn/pi; %cuttoff freq. In pi unit

» [b,a]=butter(N,Wn);

» disp(a);

1.0000 2.3505 2.8579 2.0069 0.8539 0.2034 0.0211

» disp(b);
ti

0.1452 0.8713 2.1782 2.9043 2.1782 0.8713 0.1452

-

109

İJ!ı,ı;mıı-'•·~



Practical Considerations Design Filters

b. Chebyshev-1 lowpassfilter:

-- ~- -
» % Analog chebyshev-1 prototype order calculation

» ep=sqrt(lQ!'(Rp/10)-1); %passband ripple factor

» Oc=Op; o/oanalogcutoff freq.

» Or=Os/Op; %Transition ratio

» A=lO"'(Rs/20); o/ostopbanbattenuation

» g=sqrt(A *A-1)/ep; %Intermediate cal.

>> N=ceil(logl O(g+sqrt(g*g-1))/logl O(Op+sqrt(Or*Or-1)));

» fprintf('chebyshev-1 filter order =%2.0f\n',N);

chebyshev- 1 filter order = 4

» % digital chebyshev-1 filter design

» Wn=Wp/pi; %passband freq. In unit of pi.

» [b,a)=chebyl(N,Rp,Wn);

» disp(a);

1.0000 -3.9634 6.6990 -5.9815 2.8111 -0.5558

» disp(b);

0.0003 0.0015 0.0029 0.0029 0.0015 0.0003
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c. Chebyshev-2 lowpass filter design:

» % analog chebyshev-2 order calculation

» ep=sqrt(l 0/\(Rp/10)-1);

» A=lO/\(Rs/20);

» g=sqrt(A*A-1)/ep;

» Oc=Op;

» Or=Os/Op;

» N=ceil(logl O(g+sqrt(g*g-1))/logl O(Or+sqrt(Or*Or-1)));

» fprintf('***chebyshev-2 filter order is=%2.0f,N);

***chebyshev-2 filter order is= 4

» % digital chebyshev-2 filter design

» Wn=Ws/pi;

» [b,a]=cheby2(N,Rs,Wn);

» disp(a);

1.0000 -1.5508 1.3423 -0.4707 0.1079

» disp(b);

0.1797 -0.0916 0.2525 -0.0916 0.1797
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d. Elliptic lowpass filter:

» % analog ellip prototype order calculation

» ep=sqrt( 1OA(Rp/10)-1);

» A=JOA(Rs/20);

» g=sqrt(A*A-1)/ep;

» k=Op/Os;

» kl=ep/sqrt(A *A-1);

» capk=ellipke([k./\2 1-k./\2]);

» capkl=ellipke([(kl ./\2) 1-(kl ./\2)]);

» N=ceil(capk(l )*capkl (2)/(capk(2)*capkl (1 )));

» fprintf('***\n ellip filter order=%2.0f ,N);

*** ellip filter order= 3

» % Digital Elliptic filter design

» Wn=Wp\pi;

» [b,a]=ellip(N,Rp,Rs,Wn);

» disp(a);

1.0000 3.0000 3.0000 1.0000

» disp(b);

1. 0000 3.0000 3.0000 1.00
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7.4 Comparison of three filters

The filters compared in terms of order N and stopband attenuation Rs under the

specification they were designed ,the comparison is shown in table 7.1

Prototype OrderN Stopband Attenuation

(dB)

Butterworth 6 15

Chebyshev-1 4 25

Elliptic 3 27

Clearly the Elliptic prototype gives the best design.However, if we compere

their phase response ,elliptic design has the most non linear phase response in the

passband.

To compare different filters suppose we have the following input signal

S(t) = sin 2n-(5)t + sin 2n-(15)t + sin 2n-(30)t.

Using MATLAB Implementation as

% Here's an example of filtering with the Signal Processing

% Toolbox. First make a signal with three sinusoidal

% components (at frequencies of 5, 15, and 30 Hz).

Fs=lOO;
t=(l: 100)/Fs;

sl =sin(2*pi*t*5); s2=sin(2*pi*t* 15); s3=sin(2*pi*t*30);

s=sl +s2+s3;

plot(t,s);

The signal is shown in figure 7.5
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Figure 7.5. The distorted signal.

To design a filter to keep the 15 Hz sinusoid and get rid of the 5 and 3 O Hz sinusoids,

we create an eighth order IIR filter with a passband from 1 O to 20 Hz. Here is its

frequency response. The filter was created with the ELLIP command.

to find the poles and zeros and the gain of an order n analog filter of the appropriate

type with cutoff frequency 1 rad/sec. And to plot the filter

To design a Butterworth filter

[b,a] = butter(4,0.1,40,[10 20]*2/fs);

[h,w] = freqz(b,a,512);

plot(w*fs/(2*pi),abs(h));

The following figure 7.6. shows the charecteristic response of the butterwoth filter
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Figure 7.6 Characteristic Response of Butterworth Filter.

MATLAB Implementation for the filtered signal

sf=filter(b,a,s);

» plot(t,sf);

» xlabel('Time (seconds)');

» ylabel('Time waveform');

» axis([O 1 -1 1 ]);

The filtered signal is shown in figure 7.7 below.

E o.sı A

.e
~ or\J<1l
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E
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MATLAB Implementation for Illustration of Up-sampling by an integer Factor as

shown in figure 7.8.

» %Illustrate of Up-sampling by an Integer Factor

» elf;

» N=input('lnput length=');

Input length =50

» L=input('Up-sampling Factor=');

Up-sampling Factor =3

» fo=input('Input signal frequency =');

Input signal frequency =0.12

» %Generate the input sinusoidal sequence

» n= O:N-1;

» x= sin(2*pi*fo*n);

» %Generate the Up-sampled sequence

» y= zeros(}, L*length(x));

» y([l: L: length(y)])= x;

» %Plot the input and the output sequences

» subplot(2, 1, 1)

» stem(n,x);

» title('lnputSequence');

» xlabel('Time index n');ylabel('Amplitude');

» subplot(2, 1,2)

» stem(n,y(l :length(x)));

» title(['Output sequence upsampled by', nurn2str(L)]);

» xlabel('Time index n');ylabel('Amplitude');
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lnputSequence
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Fig. 7.8. Illustrate of Up-sampling by an Integer Factor
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MATLAB Implementation for the Effect of Up-sampling in the Frequency Domain as

shown in figure 7.9.

%Effect of up-sampling in the Frequency Domain

%Use fir2 to create a bandlimited input sequence

freq=[O0.45 0.5 1];

mag=[O 1 O O];

x=fir2(99, freq, mag);

%Evaluate and plot the input spectrum

[Xz, w]= freqz(x, 1, 512);

plot(w/pi, abs(Xz)); grid

xlabel('Normalized frequency'); ylabel('Magnitude');

title('Input spectrum');

pause

%Generate the up-sampled sequence

L=input('Type in the up-sampling factor=');

Type in the up-sampling factor=5

y=zeros(l, L*length(x));

y([l: L: length(y)])= x;
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Fig 7.9. MATLAB generated input and output spectrum of a factor-of-5 up-sampler.

MATLAB Implementation for the Effect of Down-sampling in the frequency Domain is

shown in figure 7 .1 O.
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» %Effect of Down-sampling in the Frequency Domain

» %Use fir2 to create a badlimited input sequence

» freq=[O0.42 0.48 1];

» mag=[O 1 O O];

» x=fir2(101, freq, mag);

» %Evaluate and plot the input spectrum

» [Xz, w]=freqz(x, 1, 512);

» plot(w/pi, abs(Xz)); grid

» xlabel('Normalized frequency');ylabel('Magnitude');

» title('Input spectrum');

» pause

» %Generate the down-sampled sequence

» M=input('Type in the down-sampling factor =');

Type in the down-sampling factor =2

» y=x([l: M: length(x)]); %Evaluate and plot the output

spectrum

» [Yz, w]=freqz(y, 1, 512); plot(w/pi, abs(Yz));grid

» xlabel('Normalized frequency'); ylabel('Magnitude');

title('Output spectrum');
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Figure.7.10. Effect of Down-sampling in the Frequency Domain use fir2 to create a

bad-limited input sequence
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7.5 Adaptive LMS
The following Block Diagram represents the Adaptive Noise

Cancellation Using LMS Algorithm.
Adaptive Noise Cancellation

DODO 
00 B B BSignal

Input signal Signal + noise Output signal

Jlı, ~ .,
Input

fir]

Zero-Order Hold

1 ~

NoiseFilter
~----ı••ıErr Taps I 11 ~I rıı l t----J Filter Taps

,11n Out
~ı ---..,, LMS 

w LMS Flip

Adaptive Filter

Noise

cope

Figure 7.12. Block Diagram of Adaptive Noise Cancellation.
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Basic Elements of the Adaptive Noise Cancellation are:

7.5.a. LMS Adaptive Filter:

hı0\ Bfu

Ot

~

T~
\\[k+IJ ôI I. l · · 2

z IEr

qk]

Figure 7 .13. Basic Elements of Adaptive Filter.
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7.5.b. Digital FIR Filter Design:

In 1 Out 1

~ Multichannel ~G)V •..
IIR Filter

7.5.c. Buffer:

Inl

Buffer

7.5.d. Dot Product Unit:

In 1

SumProduct

In 2
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7.5.e FFT Scope:

Use dB

:f Iım~U ·o
Zero Pad Magnitude.js] I I Switch Buffer Scope

dB

7.5.f. Band Limited White Noise:

~ ·G)~HR
White Noise Zero-Order Gain

Hold
Out 1

'7.5.g. Multi-Channel IIR Filter:

Multichannel
In IIR

I G)• 1
Out
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7.5.h. Magnitude:

lu2 ı
Magnitude
Squared

r-----0
Magnitude

7.5.i. Zero Pad:

G) •I Zero Pad I •G)
In Out

7.5.j. Complex Zero Pad Split:

~
11"1 1o----., Demultiplexer Real '

~
Imag.
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The computer results, Frequency Response of the Adaptive Filter as shown in fig. 7.14,

Adaptation Coefficients of the Adaptive Filter as shown in fig. 7.15,

Signals Obtained from Adaptive Filter Using LMS Algorithm as shown in fig. 7. 16.
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Figure 7.14. Frequency Response of the Adaptive Filter.
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Figure 7.15. Adaptation Coefficients of the Adaptive Filter
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Input Signal Input+ Noise Signal Output Signal

Figure 7.16 Signals Obtained from Adaptive Filter Using LMS Algorithm.

126



CONCLUSION

* While the importance of analog filters is continuously being continuously reduced by

their digital counterparts, they remain an important study, if for no other reason than

they provide a gateway to the study of digital filters. An anti-aliasing filter introduced to

the signal processing system is based on analog filtering. Analog and digital

conventional filters provide filtering if there is no overlap between spectrum signals and
noıse.

* The design of a Wiener filter requires a priori information about the statistics of the

data to be processed. The filter is optimum only when the statistical characteristics of

the input data match the priori information on which the design of the filter is based.

When this information is not known completely, however, it may not be possible to

design the Wiener filter or else the design may no longer be optimum.

* An adaptive filter having self organizing structure based on recursive algorithm make

it possible to perform satisfactory filtering in an environment where complete

knowledge of the relevant signal characteristics are not available.

* Comparison between LMS algorithm and other algorithms show that LMS algorithm

is simple for realization and computation, and it does not require off-line gradient

estimations of the data. But instead knowledge of signal statistics, it uses instantaneous

estimation. These estimates improve gradually with time as the weights are adjusted and

the filter learns the characteristics of the signal.

'

* The performance limits the adaptive echo cancellation techniques are investigated. In

particular was analyzed the effects of signal characteristics such as auto-and cross­

correlation on the achievable echo suppression. Techniques to enhance signal

characteristics such as linearity and signal to noise ratio are identified.

* Acoustic echoes generated by telephone hand-set and line echo, results obtained based

on the analysis and interpretation theory and design of adaptive filters were

recommended for echo cancellation in the digital telephone communication system.
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Simulation echo cancellator by MATLAB, show that it satisfy the requirements for real

time noise cancellation.

* Wireless and personal communication systems are increasingly being regarded as

essential communication tool for future. From this point of view as new network

infrastructure are implemented and the competition between them increases.

* The requirements of high voice quality from network provider are required, solution

of this need investigation of adaptive filtering in the wireless and personal

communication systems where frequency scattering is one of the important problems.
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