
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Food Sales Company Stock

Graduation Project

COM-400

Student: Mehmet Sait Yavuz (20032070)

Supervisor: Asst. Prof. Dr. Firudin Muradov

Nicosia - 2008

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Asist. Prof. Dr. Firudin Muradov for his
invaluable advice and belief in my work and myself over the cource ofthis Graduation
Project.

Second, I would like to determine my gratitude to Near East University for he scholarship that
made the work possible.

Third, I thank my family for their constant encouragement and support during the preparation
of this Project.

Finally, I would also like to thank all my friends for their advice and support.

I

ABSTRACT

Delphi programming is an object oriented, visual programming environment for

rapid application development. You can write Windows programs more quickly and

more easily than was ever possible before with Delphi Programming. Delphi

Programming Language and Paradox? Data base system in building this program.

Delphi programming is one of the modem programming languages, it contains

thousands of commands, components, tools ... etc. it is easy to use too. The program

stores every sale operation done by a user; it also stores income and outcome payments,

lists the activities and duties of all the personals working in Market.

This project has as its goal to develop software, processing information about

activities of Food Wholesaler. Many forms used in building this project, the most

important form is Stock Detail form, using this form the program records the entrance

of new items to the stock, also while selling something it automatically decrease the

stock amount of that item Software developed in this project contains both employee

information, and information associated with sales and purchase . The project can be

developed by improving the software for processing all activities of the company.

II

TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1 BASIC CONCEPT OF DELPHI 7

1.1 Introduction
1.2 What is Delphi?

1.2.1 Developer Support Services and Web Site
1.3 A Tour of The Environment

1.3 .1 Starting Delphi
1.3.2 Delphi(IDE)
1.3.3 The object inspector
1 .3 .4 The Delphi Workspace
1.3.5 The Menus and Toolbars
1.3.6 The Component Palette and Form Designer
1.3.7 The Object Tree View
1.3.8 The Object Repository
1 .3 .9 The Code Editor

1.3.9.1 Code Insight
1 .3. 1 O Class Completion
1 .3. 1 1 Code Browsing
1.3.12 The Diagram Page
1.3.13 Viewing Form Code
1.3.14 The Code Explorer
1.3.15 The Project Manager
1.3.16 The Project Browser

1 .4 Programming With Delphi
1.4. 1 Creating a Project
1 .4.2 Adding Data Modules
1 .4.3 Building the user interface
1 .4.4 Placing components on a form
1.4.5 Setting the properties of the component
1 .4.6 Writing Code

1.4.6.1 Using The Component Library
1.4.7 Compiling and Debugging Projects

1 .4.7. 1 Deploying Applications
1.4.7.2 Internationalizing Applications

1.4.8 Types of Projects
1.4.8.lDelphi (CLX Applications)

III

I
II
III

V

1

2
3
4
4
5
5
7
8
8
10
11
12
13
14
15
16
17
17
18
19
19
20
20
20
21
21
22
24
27
28
30
31
30
31

1.4.8.2 Delphi (Database Applications)
1.4.9 Administrator(BDE)

1.4.10 Database Explorer

1.4.1 1 Database Desktop
1.4.12 Data Dictionary
1.4.13 Components of custom

1.4.14 Dynamic-link libraries

1.4.15Delphi(COM and ActiveX)

1.4.16 Component Type Libraries

1.5 Work Area (IDE)

1.5.1 Arranging Menus and Toolbars

1.5.2 Tool Windows

1.5.3 Desktop Layouts

1 .6The Component Palette

1 .6. 1 Creating Component Templates

31
32

32

32
32
33

33

33

34

34

34

35

37

38

39

CHAPTER 2 DATABASE CONCEPT OF DELPHI 7 40

2.1 About Dbase And Paradox
2.1. 1 Architecture of database
2. 1 .2 Relational database concept
2. 1 .3 Accessing data in other database
2. 1 .4 dBase IV Table Specification
2. 1 .5 dBase V Table Specification
2. 1 .6 dBase Field Types

2.2 Paradox Standard Table Specifications
2.2. 1 Paradox4 table structure
2.2.2 Paradox 5 Table Specifications
2.2.3 Paradox 7 and Above Table Specifications
2.2.4 Paradox Field Types

40
40
40
41
41
42
42
44
44
45
46
47

CHAPTER 3 MAIN FORMS OF THE APPLICATION
PROGRAM

48

3. 1 Database Design of The Program
3 .2 Relationships between Tables
3 .3 Execution of the Programs

50
51
64
65

CONCLUSION
REFERENCES
APPENDIX 1: Program Codes
APPENDIX 2: Database Tables

66
67
100

IV

INTRODUCTION

The Goods Trader Automation System is an important program for all markets, all the

operations done through this system. Delphi programming Language is used in this project.

The project consist of three chapters

Chapter 1 describes Delphi programming basic concept, such as menus and toolbar,

component palette, form designer, code editor, code explorer, project manager and project

browser. it is also present information about programming with Delphi and work area. same

time this chapter explain Delphi's command and properties are available in menus, it has

many usable and wonderful ready commands. In the same time it has some disadvantages,

while writing Codes the program does not alert you when you write wrong codes and does not

show you the exact fault.

Chapter 2 Describe about database and paradox. it's table arrangement's are easier

than other database programs. Also it's Delphi's own program, while using delphi. Making

changes in the tables are more easier than other database programs. Specialists prefer using

this database than Microsoft Access.

In the Chapter 3 describe the forms and examples runs of the application program.

There are tables such as login form, main form, product entry form, customer form, personnel

form .etc. my own program that I made it by myself, it is a Food Stock Program, used for all

the Market's not just Food Market, it is a useful program, do jobs of more than one person in

a speedy way without mistake, also it can be developed in the future by adding other

properties to the program.

Finally I promise myself to do a program much more better than this, because this was

my first program, maybe I made mistakes during programming it, but in the future I'll made

one better than this in appearance and properties.

V

CHAPTER!

1. BASIC CONCEPT OF DELPHI 7

1.1. Introduction

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey (the

founders of the method) were particular happy. Since many of the early Delphi studies

focused on utilizing the technique to make forecasts of future occurrences, the name was first

applied by some others at Rand as a joke. However, the name stuck. The resulting image of a

priestess, sitting on a stool over a crackin tlıe eardz, inlıaling sulfurfumes, a11dmaking vague
ancl iumb\ecl statements tb.at cmılcl be interpretecl in man;{ differen; waJs, did not exactly

inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information "sounds" so

easy to do that many people have done "one" Delphi, but never a second. Since the name

gives no obvious insight into the method and since the number of unsuccessful Delphi studies

probably exceeds the successful ones, there has been a long history of diverse definitions and

opinions about the method. Some of these misconceptions are expressed in statements such as

the following that one finds in the literature:

• It is a method for predicting future events.

• It is a method for generating a quick consensus by a group.

• It is the use of a survey to collect information.

• It is the use of anonymity on the part of the participants.

• It is the use of voting to reduce the need for long discussions.

• It is a method for quantifying human judgement in a group setting.

1

Some of these statements are sometimes true; a few (e.g. consensus) are actually contrary to

the purpose of a Delphi. Delphi is a communication structure aimed at producing

detailed critical examination and discussion, not at forcing a quick compromise. Certainly

quantification is a property, but only to serve the goal of quickly identifying agreement and

disagreement in order to focus attention. It is often very common, even today, for people to

come to a view of the Delphi method that reflects a particular application with which they are

familiar. In 1975 Linstone and Turoff proposed a view of the Delphi method that they felt

best summarized both the technique and its objective.

The essence of Delphi is structuring of the group communication process. Given that there

had been much earlier work on how to facilitate and structure face-to-face meetings, the other

important distinction was that Delphi was commonly applied utilizing a paper and pencil

communication process among groups in which the members were dispersed in space and

time. Also, Delphis were commonly applied to groups of a size (30 to 100 individuals) that

could not function well in a face-to-face environment, even if they could find a time when

they all could get together.

The result, however, is not merely confusion due to different names to describe the same

things; but a basic lack of knowledge by many people working in these areas as to what was

learned in the studies of the Delphi Method about how to properly employ these techniques

and their impact on the communication process. There seems to be a great deal of

"rediscovery" and repeating of earlier misconceptions and difficulties.

Given this situation, the primary objective of this chapter is to review the specific properties

and methods employed in the design and execution of Delphi Exercises and to examine how

they may best be translated into a computer based environment.

1.2. What is Delphi?

Delphi is an object-oriented, visual programming environment for rapid application

development (RAD). With Delphi, you can write Windows programs more quickly and more

easily than was ever possible before. You can create Win32 console applications or Win32

graphical user interface (GUI) programs. When creating Win32 GUI applications with

Delphi, you have all the power of a true compiled programming language (Object Pascal)

2

wrapped up in a RAD environment. What this means is that you can create the user interface

to a program (the user interface means the menus, dialog boxes, main window, and so on)

using drag-and-drop techniques for true rapid application development. You can also drop

ActiveX controls on forms to create specialized programs such as Web browsers in a matter

of minutes. Delphi gives you all this, and at virtually no cost: You don't sacrifice program

execution speed because Delphi generates fast compiled code.

Delphi provides all the tools you need to develop, test, and deploy applications, including

a large library of reusable components, a suite of design tools, application and form templates,

and programming wizards.

Delphi does a good job of hiding some of the low-level details that make up the guts of a

Windows program, but it cannot write programs for you. In the end, you must still be a

programmer, and that means you have to learn programming. That can be a long, uphill

journey some days. The good news is that Delphi can make your trek fairly painless and even

fun. Yes, you can work and have fun doing it!

1.2.lDeveloper Support Services and Web Site

Borland offers a variety of support options to meet the needs of its diverse developer

community. To find out about support, refer to http://www.borland.com/devsupport/. From

the Web site, you can access many newsgroups where Delphi developers exchange

information, tips, and techniques. From the Web site, you can access many newsgroups where

Delphi developers exchange information, tips, and techniques. The site also includes a list of

books about Delphi, additional Delphi technical documents, and Frequently Asked Questions

(FAQs).

1.2. A Tour of The Environment

This chapter explains how to start Delphi and gives you a quick tour of the main parts and

tools of the integrated development environment (IDE).

1.3.1. Starting Delphi

3

You can start Delphi in the following ways:

• Double-click the Delphi icon (if you've created a shortcut).

• Choose Programsllsorland Delphi 71Delphi 7 from the Windows Start menu.

• Choose Run from the Windows Start menu, then enter Delphi32.

• Double-click Delphi32.exe in the Delphi\Bin directory.

1.3.2Delphi (IDE)

When you first start Delphi, you'll see some of the major tools in the IDE. In Delphi, the IDE

includes the menus, toolbars, Component palette, Object Inspector, Object TreeView, Code

editor, Code Explorer, Project Manager, and many other tools. The particular features and

components available to you will depend on which edition ofDelphi you've purchased.

FIGURE 1.1.The Delphi IDE and the initial blank form.

The Delphi IDE is divided into three parts. The top window can be considered the main

window. It contains the toolbars and the Component palette. The Delphi toolbars give you

one-click access to tasks such as opening, saving, and compiling projects. The Component

palette contains a wide array of components that you can drop onto your forms. (Components

are text labels, edit controls, list boxes, buttons, and the like.) For convenience, the

4

components are divided into groups. Did you notice the tabs along the top of the Component

palette? Go ahead and click on the tabs to explore the different components available to you.

To place a component on your form, you simply click the component's button in the

Component palette and then click on your form where you want the component to appear.

Don't worry about the fact that you don't yet know how to use components. You'll get to that

in due time. When you are done exploring, click on the tab labeled Standard, because you'll

need it in a moment.

TheClıject TreeVfew diff.)lays a
hierarchfoaliview·ofyı:ıur oomp:ınents'
parent-child relationshi~.

.,. The menus and:toolbars access a host offeatures
/__._,? ard tocls to hep y:ıu writeanapçlbation.

.,,.--
The Cornı;x,neııtpalette
contains reıııdy-made
components to· add: to
y:ıur pı;cjeclt..

Code editor displays
~--,__. eede to view aed edit.

The Form Designer
contaı ns a blankform
on vıtıiı:hıto start
designfng the user
interface for your
applicaforı . .ı\n
application can inch.de
several forms.

The dbiect Inspectoris
used to changeobjects'
properties and s.eb::,t event
handlerı.

The Code E:xpbrer .soows you the classes, variables, and
routines inyoururiit and lets you navigate quk.kJiı.

Fig. 1.2 IDE

Delphi's development model is basedon two-way tools. This meansthat you can move back

and forth between visual design tools and text-based code editing. For example, after using

the Form Designer to arrange buttons and other elements in a graphical interface, you can

immediately view the form file that contains the textual description of your form. You can

also manually edit any code generated by Delphi without losing access to the visual

programming environment.

From the IDE, all your programming tools are within easyreach.You can design graphical

interfaces,browse through class libraries, write code, and compile, test, debug, and manage

projects without leaving the IDE.

5

Delphi's development mode] is based on two-way tools. This means that you can move back

and forth between visual design tools and text-based code editing. For example, after using

the Form Designer to arrange buttons and other elements in a graphical interface, you can

immediately view the form file that contains the textual description of your form. You can

also manually edit any code generated by Delphi without losing access to the visual

programming environment.

From the IDE, all your programming tools are within easy reach. You can design graphical

interfaces, browse through class libraries, write code, and compile, test, debug, and manage

projects without leaving the IDE.

1.3.3 The Object Inspector

Fig. 1.3 object inspector

Below the main window and on the left side of the screen is the Object Inspector. It is

through the Object Inspector that you modify a component's properties and events. You

will use the Object Inspector constantly as you work with Delphi. The Object Inspector has

two tabs: the Properties tab and the Events tab. A component's properties control how the

component operates. For example, changing the Color property of a component changes the

background color of that component. The list of properties available varies from component

to component, although components usually have several common elements (Width and

Height properties, for instance).

The Events tab contains a list of events for a component. Events occur as the user

interacts with a component. For example, when a component is clicked, an event is

generated that tells you that the component was clicked. You can write code that responds

to these events, performing specific actions when an event occurs. As with properties, the

events that you can respond to vary from component to component.

6

1.3.4 The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially displays the Form

Designer. It should come as no surprise that the Form Designer enables you to create forms.

In Delphi, a form represents a window in your program. The form might be the program's

main window, a dialog box, or any other type of window. You use the Form Designer to

place, move, and size components as part of the form creation process.

Hiding behind the Form Designer is the Code Editor. The Code Editor is where you type code

when writing your programs. The Object Inspector, Form Designer, Code Editor, and

Component palette work interactively as you build applications.

Now that you've had a look at what makes up the Delphi IDE, let's actually do something.

1.3.5 The Menus and Toolbars

The main window, which occupies the top of the screen, contains the main menu, toolbars,

and Component palette.

Main window
in Its default
arrangemeni

Fig. 1.4 Menus and Toolbars

Delphi's toolbars provide quick access to frequently used operations and commands. Most

toolbar operations are duplicated in the drop-down menus.

7

Standard tool bar

New
Open

Save project

View toolbar
Remove
me trom View Toggre
project unit fo.rn:iurıit

Open Save all Add file
to project

Debug toolbar

Ust of projects Trace
you can run into

Run Pause Step over

Internet toolbar

New WebSnap New WebSnap
Appı:ication Data Modute

NewWebSnap External
Page Moduile Editor

Fig. 1.5 Toolbars

Desktops toolbar

Name of saved
desktop layout

Save current
desktop

Set debug
desktop

To find out what a bııtton does,
point to it tora moment until a
tooltıp appears.

Yau can use the right-dic,k
menu to hide anytoolbar. To
display a toolbar if it's not
showing, choose ViewlT oolbars
and check the one you want

Many operations have keyboard shortcuts as well as toolbar buttons. When a keyboard

shortcut is available, it is always shown next to the command on the dropdown menu. You

can right-click on many tools and icons to display a menu of commands appropriate to the

object you are working with. These are called context menus.The toolbars are also

customizable. You can add commands you want to them or move them to different locations.

1.3.2. The Component Palette and Form Designer

The Component palette, Form Designer, Object Inspector, and Object TreeView work

together to help you build a user interface for your application. The Component palette

includes tabbed pages with groups of icons representing visual or nonvisual components. The

pages divide the components into various functional groups. For example, the Standard,

Additional, and Win32 pages include windows controls such as an edit box and up/down

button; the Dialogs page includes common dialog boxes to use for file operations such as

opening and saving files.

8

Component pa!lette pages, grouped by 1ıunction
Click to view
more pages

Comçoııents

Fig. 1.6 Component Palatte

Each component has specific attributes properties, events, and methods that enable you to

control your application. After you place components on the form, or Form Designer, you can

arrange components the way they should look on your user interface. For the components you

place on the form, use the Object Inspector to set design time properties, create event

handlers, and filter visible properties and events, making the connection between your

application's visual appearance and the code that makes your application run.

After you p;lace components on a form, the ObJect !ln~pector dynamically
changesthe set o1 properties ,~ displays,, based on the component selected.

'

Fig. 1.7 Changing Set of Properties in Object Inspector

1.3.7The Object TreeView

The Object TreeView displays a component's sibling and parent-child relationships in a

hierarchical, or tree diagram. The tree diagram is synchronized with the Object Inspector and

9

the Form Designer so that when you change focus in the Object TreeView, both the Object

Inspector and the form change focus.

You can use the Object TreeView to change related components' relationships to each other.

For example, if you add a panel and check box component to your form, the two components

are siblings. But in the Object TreeView, if you drag the check box on top of the panel icon,

the check box becomes the child of the panel.

If an object's properties have not been completed, the Object TreeView displays a red

question mark next to it. You can also double-click any object in the tree diagram to open the

Code editor to a place where you can write an event handler. If the Object TreeView isn't

displayed, choose View.Object TreeView.

The Object T,eeV,iew,
ObJ)!ct lııspector, and the .,
Form Desıgner wo,rk \
together. When you cHck an · .
object on your form, it \
auto rnaticaUy changes the \ •••J ..••., .••..••..••............•••.•.•..•..•
focus in both the Object
Ti"eeView and the Object
Inspector and vice versa
Prsss Alt·Shitt·F11 to ,focus
on the Object TreeView.

Fig. 1.8 Panel

The Object TreeView is especially useful for displaying the relationships between database

objects.

1.3.8The Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs, sample

applications, and other items that can simplify development. Choose File] Newlfrther to

display the New Items dialog box when you begin a project. The New Items dialog box is the

same as the Object Repository. Check the Repository to see if it contains an object that

resembles one you want to create.

10

Ttıe Repos,ilory's taöbed pages rndude
09jects like forms, fra~e~, uni.ts, and -----3>c
wızards to create specıalızed items.

W,hen you're c,reating an item based on
one tmrn the Object Reposilory, you
can copy, inheril, or use the ileırr.
Cq:ıy (the defau1t} c,rea1es a. copy of
the ıtem ln yom proiect 1rıberit means
c:tıan:ges to tne objoct in the Repository"
a.re inherited by the one ırı your project ·
Use means changes to the object ln
your projeci are inheraed by the object
m the Reposltory.

B•kh FJ., a..x c~ ı::«ı,cı.
Appt<lırıo Appl<iıoo

~ q ~ w ii.

•Co--~·clP~ 0:ttrci p~ Dal~ Mr.ıM, DLLwı~d Fam
Appi:,,;icn Mc,:U,,

1'· e fjf ~,.·
Frc«.a Prl<03 Pı.oiect Grı:ı.t> Rı,,ı,::ı.ıoe Dll Smt:>3

Fig. 1.9 Object Repository

To edit or remove objects from the Object Repository, either choose Toolslkepository

or right-click in the New Items dialog box and choose Properties.

a~-mneı;;
WibS;w
SOAP
Cı:ıbs'!
[Dbi?d:A~k•Yl

T.!l:eıed~
~[)~liıtooı
§I Q\rlfüpoıı Liıt
E) Qw.Repoııhb:.ter.•Oeıd
l;l Clınıfüpoıı Latıa~

You can add, remove1 or
rename tabbed pages t:rom
1he Object Repository.

CHck the arrows to change
the orde:r ln which a tabbed

--- ıpage appears in the New
Items dialog box.

Fig. 1.10 Adding project and form templates to the Object Repository

1.3.9The Code Editor

11

As you design the user interface for your application, Delphi generates the underlying

Delphi code. When you select and modify the properties of forms and objects, your changes

are automatically reflected in the source files.

You can add code to your source files directly using the built-in Code editor, which is a full

featured ASCII editor. Delphi provides various aids to help you write code, including the

Code Insight tools, class completion, and code browsing.
Componentsadded
to the lormare
reflected in the cede.

Generated
code.

TJar.ıa1 -:: .cl~ını: ! '.?'Form(
lhrt:toı\l: TBJJt:.t.ı:ın:
Fa:ıru:ıı~-01.:ıı; JFopUJ1~ntı.;

.ır1"fato

Fig. 1.11 Code Editor

1.3.9.lCode Insight

The Code Insight tools display context-sensitive pop-up windows.

Code templates

How it works
Type a class name followed by a dot(.) to display a list of
properties, methods, and events appropriate to the class, select
it, and press Enter. In the interface section of your code you
can select more than one item. Type the beginning of an
assignment statement and press Ctrl+space to display a list of
valid values for the variable. Type a procedure, function, or
method name to bring up a list of arguments.
Type a method name and an open parenthesis to display the
syntax for the method's arguments.
While your program has paused during debugging, point to
any variable to display its current value.
While editing code, point to any identifier to display its
declaration.
Press Ctrl+Jto see a list of common programming statements
that you can insert into your code. You can create your own
templates in addition to the ones supplied with Delphi.

Tool

Code completion

Code parameters

Tooltip expression
evaluation

Tooltip symbol insight

12

To turn these tools on or off, choose Toolslliditor Options and click the Code Insight tab.

Check or uncheck the tools in the Automatic features section.

1.3.10 Class Completion

Class completion generates skeleton code for classes. Place the cursor anywhere within a

class declaration of the interface section of a unit and press Ctrl+Shift+C or right click and

choose Complete Class at Cursor. Delphi automatically adds private read and write specifiers

to the declarations for any properties that require them, then creates keleton code for all the

class's methods. You can also use class completion to fill in class declarations for methods

you've already implemented.

To turn on class completion, choose Toolsllinvironment Options, click the Explorer tab, and

make sure Finish incomplete properties is checked.

1.3.11 Code Browsing

While passing the mouse over the name of any class, variable, property, method, or other

identifier, the pop-up menu called Tooltip Symbol Insight displays where the identifier is

declared. Press Ctrl and the cursor turns into a hand, the identifier turns blue and is

underlined, and you can click to jump to the definition of the identifier. The Code editor has

forward and back buttons like the ones on Web browsers. As you jump to these definitions,

the Code editor keeps track of where you've been in the code. You can click the drop-down

arrows next to the Forward and Back buttons to ove forward and backward through a history

of these references.

13

Press Cr! and cfök or right-elick and click Fioo
--------+-, Dedaralioıı to jump to the defin~brı of the kiııntifier.

/
/ The Code edfror maintairıs a liN of the oofinitiooş you

jumped to.

~~•.{r.;,x ,. ,.lit!!!;l'~~i..ı:,ı:i;
lb-..·•..ı...,,
tı;,,r.4.,~-loıl4.._ ••.1.••. ı,r.N,,Mii<ı::lı,.,t.•J-•
ffi.;;ı:w,t~~.,: • ~,..._,._ t.fff<~;·:,~.:,Of>; ~cl.Ial>"!'~·i.,ıt.iiloı:
fit...-J:Ml:-~ff'ı<tH'"'t·;.u,iiu~ l~t; ~:t,,~4 J..(:f;,ow: J::,q~

.,~nı rı,,ıe,,: Mı~n~l'< °M\iıı!!f;i ,t tiı.:;<!o!;,.;
1'.fJt<::~-t:4ı~.•Ji.~*~,.1• ~.,-.t'W;jın t!-e«r: ı r,~~1M.ıx,,;,f

d,.,., n;,.,. •. , ,.,..~, T<:.•• ,,,..-ı.-.;ı..•.,..) ..t .O::,ul~
'!Mi~Un&wıt;;!;;d, ""'ji"H'nü• ;Wiı;(lıi'.i 9~ll¢n ~ii:t';~I 'l!::>i:"~~

1'M J.l~~. »ı~Ul t¥!i>~! ,ı,c~t;:
~)u!"f...r.c#iM: ·+ fiİ.'!l>)H}{~·,· HJj•>.Hl 1!1-lı»fJe.t!l
m,ıı:ı..<!e~¥~·ııM~l'"..<1!':'!!:ı:<',-~.:ıı•'-:ııı . .:ı

~ Clı::k the back arrow to
return 1ıı the ast pk1ce
you were working in
yourcode. Then,dick
tlı e forward arrow to
nıove forward again.

Fig. 1.12 Code Editor

You can also move between the declaration of a procedure and its implementation by pressing

Ctrl+Shift+j or Ctrl+Shift+J.
To customize your code editing environment, see "Customizing the Code Editor".

1.3.12 The Diagram Page

The bottom of the Code editor may contain one or more tabs, depending on which edition of

Delphi you have. The Code page, where you write all your code, appears in the foreground by

default. The Diagram page displays icons and connecting lines representing the relationships

between the components you place on a form or data module. These relationships include

siblings, parent to children, or components to properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag one or

multiple icons to the Diagram page to arrange them vertically. To arrange them horizontally,

press Shift while dragging. When you drag icons with parentchildren or component-property

dependencies onto the page, the lines, or connectors, that display the dependent relationships

are automatically added. For example, if you add a dataset component to a data module and

drag the dataset icon plus its property icons to the Diagram page, the property connector

automatically connects the property icons to the dataset icon.

For components that don't have dependent relationships but where you want to show one, use

the toolbar buttons at the top of the Diagram page to add one of four connector types,

14

including allude, property, master/detail, and lookup. You can also add comment blocks that

connect to each other or to a relevant icon.

I To view ether dia9ranıs yoo've named in 1he

I cu··.· rrerıt project1 clıckthe drop·ı:ktwn list box.
/ TJl=Je a name and de$Jrptron for your

/ / diaqram,
Use the Diagram page
toolbar buttons.-Propedy1

MasterIDetail and loolru p
to designate the relatkmship
between c,cmp:::ınents and
conıp:::ınerıts and their
prcperties. The appearance
oi the connecting line w.ıı:ies
for e0.ch i&pe d: reilatons.hip.

1 ~,,111,~"! <:;I Cli::k 1he Co~ment blook
' ""ı button to add a cıomment1•

and the Allude connector
button to draw a oonnoctkm
to arıolner comment or leen ..

Fromlhe Object TreeView, drag
1f:ıe icons of tfue componentsto
the Dıagraın page.

Fig. 1.13 Diagram Page Toolbar Button
You can type a name and description for your diagram, save the diagram, and print it when

you are finished

1.3.13 Wiewing Form Code

Forms are a very visible part of most Delphi projects they are where you design the user

interface of an application. Normally, you design forms using Delphi's visual tools, and

Delphi stores the forms in form files. Form files (.dfm, or .xfın for a CLX application)

describe each component in your form, including the values of all persistent properties. To

view and edit a form file in the Code editor, right-click the form and select View as Text. To

return to the graphic view ofyour form, right-click and choose View as Form.

UseViewı\s
Teıcı to vew a
text de..-criı:;tion
of the ieem's
aiiribull'l$1n the
Code editor.

Fig. 1.14 View

as Text

Description of

Form

15

You can save form files in either text (the default) or binary format. Choose Tools]

Environment Options, click the Designer page, and check or uncheck the New forms as text

check box to designate which format to use for newly created forms.

1.3.14 The Code Explorer

When you open Delphi, the Code Explorer is docked to the left of the Code editor window,

depending on whether the Code Explorer is available in the edition of Delphi you have. The

Code Explorer displays the table of contents as a tree diagram for the source code open in the

Code editor, listing the types, classes, properties, methods, global variables, and routines

defined in your unit. It also shows the other units listed in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you double

click a method in the Code Explorer, a cursor jumps to the definition in the class declaration

in the interface part of the unit in the Code editor.

·.....ı:ur.ı; <:r.rı:-,_.:,·ı::ırr.ı. 1'iı:~uo,:,,.11-<11i4l.i..::;t,:·ı~a.üi.:c-ı 'l&j-.t.>t) s...

Double-cli:k an item hı the Cooe
Eııplorer aoo lfıe cursor moves to
that item's implementaforı in lhe
Code eı:fitor. Press Cri~Shift..Et.o
move ine cursor back and forth
belween the last pla:ıe yı:ıu were in
the Cooe Explorer and Cede editor .
Each item, in ine Cooe Eıqıl'orer has
an ioorı lfıat desrgnates its type.nıcc:<ıun '.l'?'r·:tw.ııı,Tocnt, ~Jlllli;:ı:ı:ıı::a::\S.C-adıı:~: 'tl;,b(Jll!<~);.

~iR
:U. {}t'!!:fifi.ldH.:tı..lO.ihf~ınt.:e: -th:Nl.

Fig. 1.15 Code Explorer

To configure how the Code Explorer displays its contents, choose Toolsllinvironment Options

and click the Explorer tab.

1.3.lSThe Project Manager

16

When you first start Delphi, it automatically opens a new project. A project includes several

files that make up the application or DLL you are going to develop. You can view and

organize these files such as form, unit, resource, object, and library files in a project

management tool called the Project Manager. To display the Project Manager, choose

Viewll'roject Manager.

C;_f:'!,))111i f!o"..ıJAflıı..J\D~\81',
CJ,1'"9ın Fi,,,!&l•rıd\Oııiıfır.,'Lı,.ud~
C;\h_~ii,'.öf!,;;0£;.ıtı.;pJ)ıl(i,6'4',;ı-.;;;\\,".>ı!i;.ı
ı::::ıcı:;.:,ann ~"4"'1\0ı:!t-.t;,,~,;:efo:;ı~,-,o
C,~ Flınc'fu1-f,Iı4,h6'£""""X.'\,;:l,ng
ı:;:,F'ıo).11l!ll ™1"~ıı.ı!$:ılıı;ı~,ı;.-,,u·..ı

Ty.·-~ 'T,.t:km:.~ c~ •.• rw.:ı:.•L'iMJiıi6:1'i.0~1~~"~...r;o
<-ıra r,"'°""lfurt C:\h.,7 ••• Fkr'&-..0~.r,ı;ı

,ı.""..•..•.•....• --····T· -, ------··--···sr····· ..,.,.., .••. - •.•. ,.,·s.,· •• ·• --····-'' Fig. 1.16 Project Manager

You can use the Project Manager to combine and display information on related projects

into a single project group. By organizing related projects into a group, such as multiple

executables, you can compile them at the same time. To change project options, such as

compiling a project, you can use Setting project options.

1.3.16The Project Browser
The Project Browser examines a project in detail. The Browser displays classes, units, and

global symbols (types, properties, methods, variables, and routines) your project declares or

uses in a tree diagram. Choose Viewllsrowser to display the Project Browser.

rk-'4 TI'Ef>l•'='~
r.;.tı4, TO:::rrponl'!!~1

,q4Tı::Ortr04
A ~ ThVhOJnroi

i~} .,_ 15:cralrqıı~nC-r.ıfıb'ci
d~ TL~;mFam

2.\, Tfurm
b-4 TFormı

€il~~
f-'"lh AttııııCilrr~Yudon

+. SQto.ı·GDw~ıur..tlorı
~ Oo:a=i,'H'o

Ooo:~N~
a~ı,N~"
a,::ı:nPıu1:!:"rJ'tr--~i CJ;~,s,sT::,p~

h-,ıj',J (le,!1r1.ıpn~_ona:
1-• Cr;ıfflı··+ cı ••.,,ıı-ı.t<Jkıt
("ti Oıasôfrily
i-··• Olı:pı!ıkhr~-~ fll3~~ji1ı-e:ss

L-~2 ...'J~2'.V

Fig. 1.17 Project Browser

Tue Project Browser has two
resizeable panes: the
Inspector pane (on ıhe left)
and ıhe Details pane .. The
lnspecterpane bas three tabs
for globals, classes, and units.
Gbbals displays classes,
Wpes, preoertes, methods,
variables, and reufines,
Classes displays elasses ina
hierarchical diagram.
Units displays units, iderıtifi:ers
declared in each u nrt, ard lhe
other units that use and are
used by each unit.

By default, the Project Browser displays the symbols from units in the current project only.

You can change the scope to display all symbols available in Delphi. Choose Tools!

Environment Options, and on the Explorer page, check All symbols.

17

1.4 Programming With Delphi

The following sections provide an overview of software development with Delphi, including

creating a project, working with forms, writing code, and compiling, debugging, deploying,

and internationalizing applications, and including the types of projects you can develop.

1.4.1 Creating a Project

A project is a collection of files that are either created at design time or generated when you

compile the project source code. When you first start Delphi, a new project opens. It

automatically generates a project file (Projectl.dpr), unit file (Unitl.pas), and resource file

(Unitl .dfm; Unitl .xfm for CLX applications), among others. If a project is already open but

you want to open a new one, choose either File[New[Application or File[New[Other and

double-click the Application icon. File[New[Other opens the Object Repository, which

provides additional forms, modules, and frames as well as predesigned templates such as

dialog boxes to add to your project. When you start a project, you have to know what you

want to develop, such as an application or DLL.

1.4.2 Adding Data Modules

A data module is a type of form that contains nonvisual components only. Nonvisual

components can be placed on ordinary forms alongside visual components. But if you plan on

reusing groups of database and system objects, or if you want to isolate the parts of your

application that handle database connectivity and business rules, data modules provide a

convenient organizational tool.To create a data module, choose File[New[Data Module.

Delphi opens an empty data module, which displays an additional unit file for the module in

the Code editor, and adds the module to the current project as a new unit. Add nonvisual

components to a data module in the same way as you would to a form.

18

ClienlDataSet1 D.t.aSaurce1

Ooı.ble-di::ka nonvisı.ıal
ccırıpooent ontbe Ccmponerıt
palette to place the component in
:the dala module.

Fig. 1.18 Adding Data Modules

When you reopen an existing data module, Delphi displays its components.

1.4.3 Building the user interface

With Delphi, you first create a user interface (UI) by selecting components from the

Component palette and placing them on the main form.

1.4.4 Placing components on a form

f*" ı:ct;:;-h: , ""''tn,a:11 ~1.!!1£1
"" .. A->C.,,C .. ,C .. ,e.c, ~~-*- - . •"• .$. .>;!(<=K..v. ~ .W,..~.,=c, ..><.;;f;<;-~.<c,<o<.'s~'&"'M=-f-«<

.ı1\

Clidk a componentootlıe 'COO'.lponentpalette.

Fig. 1.19 Component Palette

ig.1.20 Placing Component To

place a Button on the form, click once on the Button component on the toolbar. Then move

the mouse cursor over to the Form and click on the Form where you want the Button to be.

Repeat the same procedure with the Label component.

19

Fig.1.21 Button and Label

It will look something like this. Actually you can run your application now. Simply press F9,

click Ok to save your project and it's running.

Fig.1.22.Run

Try to click on the button. Nothing happens? Well, since we have not added any code yet,

there are no instructions for what will happen when you press the button. This will be done

later. For now, exit your application (click on the Iii).

1.4.5 Setting the properties of the components

20

To change the text 'Button I' on the button, we change the value of its Caption property. Click

on the Button once ('select' the Button), move to the Object Inspector and enter the new value

on the Caption row.

Fig.1.23.Properties Component

To remove the text from the Label, we set the Caption property to "(empty string). Select

the Label and delete the text 'Labell' on the Caption row of the Object Inspector.

Fig.1.24. Button (Say Hello)

If we run our application now, we see that we have made some progress since the first

step. Press F9 to run.

21

Fig.1.25.Run form

The Button and the Label now show the messages we want them to do. However, it still

doesn't happen anything if we press the Button. We will deal with this now.

1.4.6 Writing Code

An integral part of any application is the code behind each component. While Delphi's RAD

environment provides most of the building blocks for you, such as preinstalled visual and

nonvisual components, you will usually need to write event handlers, methods, and perhaps

some of your own classes. To help you with this task, you can choose from thousands of

objects in the class library.

To specify what will happen if we press the button, we enter code for the OnClick

event of the Button. Select the button, move over to the Object Inspector and click on the

Events tab.

22

Fig.1.26.0nClick

Double click on the OnClick row. The Code Editor will popup and a procedure for the

OnClick event will be created.

Fig.1.27.Unit.pas page

You can fill this empty procedure with code that is going to be executed when you press the

Button. The task of this application was to let the Label show the 'Hello World' message

when we click on the button, remember?

23

Fig.1.28. On Cick Operation

This code should do the trick. It will be explained in the next lessons. Just type it in, run the

application and press the Button.

Fig.1.28.Run Aplication (say hello)

Here we gol Hello World!

As you have noticed by now, this is not a very useful application. However, by creating it

you have learnt the three essential steps of creating any application in Borland Delphi.

Creating applications in other 'visual' programming languages like Visual Basic or Borland

C++ Builder is done in the same way, it is sort of a standard. But once you have learnt

some more Delphi, you will probably not change to another programming language unless

you have to. Delphi has all the features you will ever need.

24

Select the component and drag it to wherever you want on the form.

Then dick 'Where you want to place It on the form,
Oohoosea
,component fro.m,
an alphabetical
list.

Fig. 1.30 Component List

1.4.6.lUsing The Component Library

Delphi comes with a component library made up of objects, some of which are also

components or controls, that you use when writing code. You can use VCL components for

Windows applications and CLX components for Windows and Linux applications. The

component library includes objects that are visible at Runtime such as edit controls, buttons,

and other user interface elements as well-as non visual controls like datasets and timers. The

following diagram shows some of the principal classes that make up the VCL hierarchy. The

CLX hierarchy is similar.

E I.xoeptıon ITStream

TOb]ed

,... I, TC I Ob', .-er.s;ıstent om · ıe,::t

TCJponent .,." " I ,, I1 w11e01Jon TStrmgs

rcoJtrol TCommbnOialog: TF~kJ
.I . I Mostvisu,aJ(x;ntrolsin/ıeıit

TGraphıcControl wmdontrol trom TWıı:ıControl or ınI CC<, TWidgeCı:ırıtroJ.

TSc:ro!lingW~Contro] TCııS'tokontrol
I

TCLfStoı:nForm

T l .r .
Jıf)p ıootıon ıTDataSet ıTMenu

25

Fig. 1.31 Component Library

Objects descended from TComponent have properties and methods that allow them to be

installed on the Component palette and added to Delphi forms and data modules Because the

components are hooked into the IDE, you can use tools like the Form Designer to develop

applications quickly. Components are highly encapsulated. For example, buttons are

preprogrammed to respond to mouse clicks by firing OnClick events. If you use a button

control, you don't have to write code to handle generated events when the button is clicked;

you are responsible only for the application logic that executes in response to the click itself.

Most editions of Delphi come with the component library source code and examples of

Delphi programming techniques.

1.4.7Compiling and Debugging Projects

After you have written your code, you will need to compile and debug your project. With

Delphi, you can either compile your project first and then separately debug it, or you can

compile and debug in one step using the integrated debugger. To compile your program with

debug information, choose Projectloptions, click the Compiler page, and make sure Debug

information is checked.

Delphi uses an integrated debugger so that you can control program execution, watch

variables, and modify data values. You can step through your code line by line, examining the

state of the program at each breakpoint. To use the integrated debugger, choose

Toolsllrebugger Options, click the General page, and make sure Integrated debugging is

checked.

You can begin a debugging session in the IDE by clicking the Run button on the Debug

toolbar, choosing Runlkun, or pressing F9.

hoose any of the debugging
ommands from the Run
enu. Some commands are

lso available on the toolbar.

26

Run button

Fig. 1.32 Compiling and Debugging

With the integrated debugger, many debugging windows are available, including Breakpoints,

Call Stack, Watches, Local Variables, Threads, Modules, CPU, and Event Log. Display them

by choosing ViewJDebug Windows. Not all debugger views are available in all editions of

Delphi.

Once you set up your desktop as you like it for debugging, you can save the settings as the

debugging or runtime desktop. This desktop layout will be used whenever you are debugging

any application.

1.4.7.1 Deploying Applications

You can make your application available for others to install and run by deploying it When

you deploy an application, you will need all the required and supporting files, such as the

executables, DLLs, package files, and helper applications. Delphi comes bundled with a setup

toolkit called InstallShield Express that helps you create an installation program with these

files. To install InstallShield Express, from the Delphi setup screen, choose InstallShield

Express Custom Edition for Delphi.

1.4.7.2Internationalizing Applications

27

Delphi offers several features for internationalizing and localizing applications. The IDE and

the VCL support input method editors (IMEs) and extended character sets to internationalize

your project. Delphi includes a translation suite, not available in all editions of Delphi, for

software localization and simultaneous development for different locales. With the translation

suite, you can manage multiple localized versions of an application as part of a single project.

The translation suite includes three integrated tools:

• Resource DLL wizard, a DLL wizard that generates and manage resource DLLs.

• Translation Manager, a table for viewing and editing translated resources.

• Translation Repository, a shared database to store translations.

To open the Resource DLL wizard, choose FileJNewJOther and double-click the Resource

DLL Wizard icon. To configure the translation tools, choose ToolsJ Translation Tools

Options.

1.4.8Types of Projects

All editions of Delphi support general-purpose 32-bit Windows programming, DLLs,

packages, custom components, multithreading, COM (Component Object Model) and

automation controllers, and multiprocess debugging. Some editions support server

applications such as Web server applications, database applications, COM servers, multi

tiered applications, CORBA, and decision-support systems.

1.4.8.lDelphi (CLX Applications)

You can use Delphi, to develop cross-platform 32-bit applications that run on both the

Windows and Linux operating systems. To develop a CLX application, choose FileJ

NewJCLX Application. The IDE is similar to that of a regular Delphi application, except that

only the components and items you can use in a CLX application appear on the Component

palette and in the Object Repository. Windows-specific features supported on Delphi will not

port directly to Linux environments.

1.4.8.2 Delphi (Database Applications)

28

Delphi offers a variety of database and connectivity tools to simplify the development of

database applications. To create a database application, first design your interface on a form

using the Data Controls page components. Second, add a data source to a data module using

the Data Access page. Third, to connect to various database servers, add a dataset and data

connection component to the data module from the previous or corresponding pages of the

following connectivity tools:

• dbExpress is a collection of database drivers for cross-platform applications that provide fast

access to SQL database servers, including DB2, Informix, InterBase, MSSQL, MySQL, and

Oracle. With a dbExpress driver, you can access databases using unidirectional datasets.

• The Borland Database Engine (BDE) is a collection of drivers that support many popular

database formats, including dBASE, Paradox, FoxPro, Microsoft Access, and any ODBC data

source. ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data source,

including relational and nonrelational databases, e-mail and file systems, text and graphics,

and custom business objects.

• InterBase Express (IBX) components are based on the custom data access Delphi

component architectures. IBX applications provide access to advanced InterBase features and

offer the highest performance component interface for InterBase 5.5 and later. IBX is

compatible with Delphi's library of data-aware components. Certain database connectivity

tools are not available in all editions of Delphi.

1.4.9Administrator (BDE)

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the aliases

used by data-aware VCL controls to connect to databases.

1.4.10 Database Explorer

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it to

create database aliases, view schema information, execute SQL queries, and maintain data

dictionaries and attribute sets.

1.4.llDatabase Desktop

29

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and dBase

database tables in a variety of formats.

1.4.12Data Dictionary

When you use the BDE, the Data Dictionary provides a customizable storage area,

independent of your applications, where you can create extended field attribute sets that

describe the content and appearance of data. The Data Dictionary can reside on a remote

server to share additional information.

1.4.13 Components of custom

The components that come with Delphi are preinstalled on the Component palette and offer a

range of functionality that should be sufficient for most of your development needs. You

could program with Delphi for years without installing a new component, but you may

sometimes want to solve special problems or display particular kinds of behavior that require

custom components. Custom components promote code reuse and consistency across

applications. You can either install custom components from third-party vendors or create

your own. To create a new component, choose CornponerıtlblewComponent to display the

New Component wizard.

1.4.14 Dynamic-link libraries

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be called

by applications and by other DLLs. A DLL contains code or resources typically used by more

than one application.

1.4.15 Delphi (COM and ActiveX)

30

Delphi supports Microsoft's COM standard and provides wizards for creating ActiveX

controls. Choose FilelNewlOther and click the ActiveX tab to access the wizards. Sample

ActiveX controls are installed on the ActiveX page of the Component palette. Numerous

COM server components are provided on the Servers tab of the Component palette. You can

use these components as if they were VCL components. For example, you can place one of

the Microsoft Word components onto a form to bring up an instance of Microsoft Word

within an application interface.

1.4.16Cmponent Type Libraries

Type libraries are files that include information about data types, interfaces, member

functions, and object classes exposed by an ActiveX control or server. By including a type

library with your COM application or ActiveX library, you make information about these

entities available to other applications and programming tools. Delphi provides a Type

Library editor for creating and maintaining type libraries.

1.5WorkArea (İDE)

The IDE provides many tools to support development, so you'll want to reorganize your work

area for maximum convenience. You can rearrange menus and toolbars, combine tool

windows, and save your new desktop layout.

1.5.lArranging Menus and Toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette by

clicking the grabber on the left-hand side of each one and dragging it to another location.

31

You can move menus and toolbars witiMn. the main window. Drag the
grabber (the doubte bar on the left) oi an ındlvdual toolbar to move it

Fig. 1.33 Arranging Menus and Toolbars

You can separate parts from the main window and place them elsewhere on the screen or

remove them from the desktop altogether. This is useful if you have a dual monitor setup.

Main window
or~anized
dfffernntly.

Fig. 1.34 Main Window

You can add or delete tools from the toolbars by choosing Viewl'Toolbarslf'ustomize, Click

the Commands page, select a category, select a command, and drag it to the toolbar where you

want to place it.

On the Commands
page, seEct any
command and drag it
onto any toolbar.
On the Qptions page,
d[c:k Slhow tooftips to
ma:ke sure the hints for
components and
toolbar ams appear.

Fig. 1.35 Customize Command

32

1.5.2 Tool Windows

You can open and close individual tool windows and arrange them on the desktop as you

wish. Many windows can also be docked to one another for easy management. Docking

which means attaching windows to each other so that they move Together helps you use

screen space efficiently while maintaining fast access to tools. From the View menu, you can

bring up any tool window and then dock it directly to another. For example, when you first

open Delphi in its default configuration, the Code Explorer is docked to the left of the Code

editor. You can add the Project Manager to the first two to create three docked windows.

Here the Project Manager and Code
Explorer are docked to the Code editor.
You can combine, or ------.ı
"dock" windows with either grabbers, as on
the right, or tabs, as on page 5-4.

I

Messages, Sy3Utils, Variants, Classes, Graphic::ı, Cont
nıe joçe , StdCtr ls;

TForml •• oıa.sı: (TForm)
Buttonl: TBut ton;
CheckBoxl: TCheck.Box;
Labell: TLal::ıel;

private
{ Pri va:te dec.lcU<!tion.s }

public
{ Public dec.ld.rations }

end;

forml: Tforml;

Fig. 1.36 Docking Tool Windows

To dock a window, click its title bar and drag it over the other window. When the drag outline

narrows into a rectangle and it snaps into a comer, release the mouse. The two windows snap

together.

To get docked windows with
grabbers, release the
mouse when the drag _______...
outline snaps to the -----
window's comer.

fiindows, Messages, SysUtils, Variants, Classes, Gt:"aphics, Cont
Dialogs, StdCtrl:3;

TForml ,. claıuı {Tform)
Buttonl: TB ut ton;
Check
Lobel Pruı,_,, tt1:ırı:ıJ"'ı EJ

••••••••••••--·---•., • MV"mwm~nv--·•

C:\PıQO"am Files
ffi--~--PrO·i~Ci1.exe C:\Pıogam Files

Fig. 1.37 Two Windows Snap Together

You can also dock tools to form tabbed windows.

To get docked windows that are
tabbed, release the mouse before
the drag outline snaps to the other
window's comer.

Windovs, llessaqes, SysUt.ils, Variant.s, Classe
p ı.eıcçe , StdCtrl:,;

TForml • class (Tforro)
Butt.anı: TButt.on;
CheclcBoxl: TChecltllox;
Leı.bell: TLabel;

{ Privdte cec.ı eee e.ı cas)
public

{ Public dee.la.rations }

Fornl: TForml;

Fig. 1.38 Docking Tools to Form

To undock a window, double click its grabber or tab, or click and drag the tab outside of the

docking area. To turn off automatic docking, either press the Ctrl key while moving windows

around the screen, or choose Toolsllinvironment Options, click the references page, and

uncheck the Auto drag docking check box.

1.5.3Desktop Layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE includes a

pick list of the available desktop layouts and two icons to make it easy to customize the

desktop.

34

Save current
deskıtop

Named desktop
settings are listed here.

Set debug
desktop

Fig. 1.39 Saving Desktop Layouts

Arrange the desktop as you want, including displaying, sızıng, and docking particular

windows. On the Desktops toolbar, click the Save current desktop icon or choose

Viewlfresktops.Save Desktop, and enter a name for your new layout.

l.4.5 The Component Palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use the

Palette Properties dialog box. You can open this dialog box in several ways:

• Choose Componentlı.onfigure Palette.

• Choose Toolsllinvironment Options and click the Palette tab.

• Right-click the Component palette and choose Properties.

Additional
Win32
System
Data Access
Data Controls
D8E:.:press
Data Snap
BOE
ADO
lnter8ase
lnternetExpress
Internet
WebSnap
FasıNel
O ecisicn Cube
QReporl
Dialogs

u can rearrange the palette
nd add new pages.

Fig. 1.40 Palette Properties Dialog Box

35

1.4.6 Creating Component Templates

Component templates are groups of components that you add to a form in a single operation.

Templates allow you to configure components on one form, then save their arrangement,

default properties, and event handlers on the Component palette to reuse on other forms.

To create a component template, simply arrange one or more components on a form and

set their properties in the Object Inspector, and select all of the components by dragging the

mouse over them. Then choose Componentlf'reate Component Template. When the

Component Template Information dialog box opens, select a name for the template, the

palette page on which you want it to appear, and an icon to represent the template on the

palette.

After placing a template on a form, you can reposition the components independently,

reset their properties, and create or modify event handlers for them just as if you had

placed each component in a separate operation.

36

CHAPTER2

DATABASE CONCEPT OF DELPHI 7

2.1 About Dbase And Paradox

2.1.1 Architecture of database

• Relational database concepts

• The pieces of a database system

• How the pieces fit together

• Multi-tier computing architecture

• Using multiple databases

• About dbase

•
2.1.2 Relational database concepts

A relational database-management system (RDBMS) is a system for storing and retrieving

data, in which the data is organized into interrelated tables.

SQL Anywhere Studio provides two relational database systems. Adaptive Server

Anywhere is the primary, full featured RDBMS, with a multitude of uses, from a network

database server hosting many clients to a compact embedded database. UltraLite is a small

footprint relational database. The UltraLite deployment technology allows you to use

Adaptive Server Anywhere features on even the smallest of devices.

• Database tables

• Relations between tables

• Other database objects

2.1.3Accessing data in other databases

37

You can access databases on multiple database servers, or even on the same server, using

the Adaptive Server Anywhere Remote Data Access features. The application is still

connected to a single database as in the architecture diagrams above, but by defining

remote servers, you can use proxy tables that exist on the remote database as if they were in

the database to which you are connected.

Sybase ASE,
Sybase AS IQ,
Oracle,
MS SQL Server,
D82, or
ODBCdata source

ODBC
or JDBC

Fig. 2.1 Relation Diagram

2.1.4dBASE IV Table Specification

The dBASE IV table format was introduced in dBASE IV for DOS. Following are the

specifications for dBASE IV tables:

• 2GB file size.

• Two billion records per file.

• A maximum of 255 fields per record.

Maintained indexes can have up to 47 indexes per file. Each index can be created using field

expressions of virtually any combination, including conditional expressions of up to 255

characters per expression that result in an index of up to 100 bytes. Unlimited nonmaintained

indexes can be stored on disk. You can use up to 47 of them simultaneously.

2.1.5 dBase V Table Specifications

38

The dBASE V table format was introduced in dBASE V for Windows. Following are the

specifications for dBASEA V tables.

• Up to one billion records per file.

• A maximum of 1,024 fields per record.

• Up to 32,767 bytes per record.

• Unlimited nonmaintained indexes can be stored on disk. You can use up to 47 of them

simultaneously.

• Up to 1 O master index files open per database. Each master index can have up to 47

indexes.

• Maintained indexes can have up to 47 indexes per file. Each index can be created using

field expressions of virtually any combination, including conditional expressions of up to

255 characters per expression that result in an index ofup to 100 bytes.

2.1.6 dBASE Field Types

Character (C)

dBASE III+, IV, and V field type that can contain up to 254 characters (including blank

spaces). This field is similar to the Paradox Alpha field type.

Date (D)

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V. dBASE tables can store dates from

January 1, 100, to December 31, 9999. Paradox 5 tables can store from 12/31/9999 B.C. to

12/31/9999A.D.

Float (F)dBASE IV, and V floating-point numeric field type provides up to 20 significant

digits.

Logical (L)

Paradox 5 and 7 and dBASE III+, IV, and V field type can store values representing True or

False (yes or no). By default, valid entries include T and F (case is not important).

Memo (M)

Paradox 4, 5, and 7 as well as dBASE III+, IV, and V field. A Paradox field type is an Alpha

variable-length field up to 256MB per field. dBASE Memo fields can contain binary

as well as memo data.

39

OLE (O)

Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE data.

Number(N)
Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V field type can store up to 15

significant digits -10307 to+ 10308 with up to 15 significant digits.

dBASE number fields contain numeric data in a Binary Coded Decimal (BCD) format. Use

number fields when you need to perform precise calculations on the field data. Calculations

on number fields are performed more slowly but with greater precision than are calculations

on float number fields. The size of a dBASE number field can be from 1 to 20. Remember,

however, that BCD is in Paradox 5 and 7 only for compatibility and is mapped directly to the

Number field type.

Short (S)

Paradox 3.5, 4, 5, and 7 field type that can contain integers from -- 32,767 through 32,767 (no

decimal)

2.2Paradox Standard Table Specifications-

40

Fig. 2.2 Paradox Standart Table

2.2.1 Paradox 4 table structure.
The Paradox standard table format was introduced in Paradox for DOS version 4. Other

products that use the standard format include Paradox for DOS version 4.5, ObjectVision 2.1,

and Paradox for Windows versions 1 .O and 4.5.

Earlier versions of the Paradox table type are referred to as the Compatible table type. In the

BDE Configuration Utility, the level option for the Paradox driver dictates what default table

type is created by Paradox for Windows. Use 3 for Compatible tables, 4 for Standard tables

(the default). Following are the specifications for standard Paradox tables:

• 256MB file size limit if the table is in Paradox format and using a 4K block size.

Up to 255 fields per record.

Up to 64 validity checks per table .

A primary index can have up to 16 fields.

Tables can have up to 127 secondary indexes.

Up to two billion records per file.

•
•
•
•
•

Because of the 256MB file size limit and other factors such as block size, however, the limit

is much smaller. Tables of 190,000 records are easily achievable (and you can have more if

you don't use up the 1,350-bytes-per-record limit for a keyed table). Tables with close to a

million records are common.

41

Block size can be 1024, 2048, 3072, or 4096. Paradox stores data in fixed records. Even if

part or all of the record is empty, the space is claimed. Knowing the interworkings can save

you disk space. Paradox stores records in fixed blocks of 1024, 2048, 3072, 4096 in size.

After a block size is set for a table, that size is fixed, and all blocks in the table will be of that

size. To conserve disk space, you want to try to get your record size as close to a multiple of

block size as possible (minus 6 bytes, which are used by Paradox to manage the table).

Record size. 1,350 for keyed tables and 4,000 for unkeyed tables. When figuring out the size

(the number of bytes or characters) of a table, remember that Alpha fields take up their size

(for example, an Alü = 10 bytes), numeric field types take up 8 bytes, short number field

types take up 2 bytes, money takes up 8, and dates take up 4 bytes.

Memos, BLOBs, and so on take 1 O bytes plus however much of the memo is stored in the

.DB. For example, M15 takes 25 bytes.

2.2.2Paradox 5 Table Specifications

The Paradox 5 table format was introduced in Paradox for Windows version 5.

Following are the specifications for Paradox 5 tables:

• Up to two billion records per file.

• File size is limited to two gigabytes.

• Up to 255 fields per record.

Record size: Up to 10,800 bytes per record for indexed tables and 32,750 bytes per record for

nonindexed tables. When figuring out the size (the number of bytes or characters) of a table,

remember that Alpha fields take up their size (for example, an Alü = 10 bytes), numeric field

types take up 8 bytes, short number field types take up 2 bytes, money takes up 8, and dates

take up 4 bytes.

Memos, BLOBs, and so on take 1 O bytes plus however much of the memo is stored in the

.DB. For example, M15 takes 25 bytes.

Up to 64 validity checks per table for Paradox for Windows tables.

A primary index can have up to 16 fields.

Tables can have up to 127 secondary indexes.

42

Block size can be from lK to 32K in steps of lK. For example, 1024, 2048, 3072, 4096,

5120 ... 32768.

2.2.3Paradox 7 and Above Table Specifications

The Paradox 7 table format was introduced in Paradox version 7 for Windows 95/NT. The

Paradox 7 table format has all the same specifications as the Paradox 5 table format with two

additions. Following are the specification additions for the Paradox 7 table format:

• Added descending secondary indexes.

• Added unique secondary indexes

Fig. 2.3 Paradox Create Table

2.2.2.lParadox Field Types

43

Fig. 2.4 Paradox fields type

Alpha (A)

Paradox 3.5, 4, 5, and 7 field type that can contain up to 255 letters and numbers. This field

type was called Alphanumeric in versions of Paradox before version 5. It is similar to the

Character field type in dBASE.

Autoincrement (+)

Field type introduced in the Paradox 5 table format that adds one to the highest number

in the table whenever a record is inserted. The starting range can from -2,147,483,647

to 2,147,483,647. Deleting a record does not change the field values of other records.

BCD(#)

Paradox 5 and 7 field type which is provided only for compatibility with other applications

that use BCD data. Paradox correctly interprets BCD data from other applications that use the

BCD type. When Paradox performs calculations on BCD data, it converts the data to the

numeric float type, then converts the result back to BCD. When this field type is fully

supported, it will support up to 32 significant digits.

Binary (B)

Paradox 1, 5, and 7 field type that can store binary data up to 256MB per field.

Bytes (Y)

44

Paradox 5 and 7 field type for storing binary data up to 255 bytes. Unlike binary fields, bytes

fields are stored in the Paradox table (rather than in the separate .MB file), allowing for faster

access.

Date (D)

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V. dBASE tables can store dates from

January 1, 100, to December 31, 9999. Paradox 5 tables can store from 12/31/9999 B.C. to

12/31/9999 A.D.

Formatted Memo (F)

Paradox 1, 4.5, 5, and 7 field type is like a memo field except that you can format the text.

You can alter and store the text attributes of typeface, style, color, and size. This rich text

document has a variable-length up to 256MB per field.

Graphic (G)

Paradox 1, 5, and 7 field type can contain pictures in .BMP (up to 24 bit), .TIF (up to 256

color), .GIF (up to 256 color), .PCX, and .EPS file formats. Not all graphic variations are

available. For example, currently you cannot store a 24-bit .TIF graphic. When you paste a

graphic into a graphic field, Paradox converts the graphic into the .BMP format.

Logical (L)

Paradox 5 and 7 and dBASE III+, IV, and V field type can store values representing True or

False (yes or no). By default, valid entries include T and F (case is not important).

Memo (M)

Paradox 4, 5, and 7 as well as dBASE III+, IV, and V field. A Paradox field type is an Alpha

variable-length field up to 256MB per field. dBASE Memo fields can contain binary as well

as memo data.

For Paradox tables, the file is divided into blocks of 512 characters. Each block is referenced

by a sequential number, beginning at zero. Block O begins with a 4-byte number in

hexadecimal format, in which the least significant byte comes first. This number specifies the

number of the next available block. It is, in effect, a pointer to the end of the memo file. The

remainder of Block O isn't used.

Money($)

Paradox 3.5, 4, 5, and 7 field type, like number fields, can contain only numbers. They can

hold positive or negative values. Paradox recognizes up to six decimal places when

performing internal calculations on money fields. This field type was called Currency in

previous versions of Paradox.

OLE (O)

45

Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE data.

Number(N)

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V field type can store up to 15

significant digits -10307 to + 10308 with up to 15 significant digits.

dBASE number fields contain numeric data in a Binary Coded Decimal (BCD) format. Use

number fields when you need to perform precise calculations on the field data. Calculations

on number fields are performed more slowly but with greater precision than are calculations

on float number fields. The size of a dBASE number field can be from 1 to 20. Remember,

however, that BCD is in Paradox 5 and 7 only for compatibility and is mapped directly to the

Number field type.

Short (S)

Paradox 3.5, 4, 5, and 7 field type that can contain integers from -- 32,767 through 32,767 (no

decimal).

Time (T)

Paradox 5 and 7 field type that can contain time times of day, stored in milliseconds since

midnight and limited to 24 hours.This field type does not store duration which is the

difference between two times. For example, if you need to store the duration of a song, use an

Alpha field. Whenever you need to store time, make a distinction between clock time and

duration. The Time field type is perfect for clock time. Duration can be stored in an Alpha

field and manipulated with code.

TimeStamp (@)

Paradox 5 field type comprised of both date and time values. Rules for this field type are the

same as those for date fields and time fields.

46

CHAPTER3

3. DATABASE DESIGN OF THE PROGRAM

3.1 Database Design of The Program

The stock database consists of six tables those are Stock list table, Company table,

Customer table, Personnel table, Sale table, Customer sale(report) table.

Stock table contains Eight fields :

• Product Id

• Product Name

• Purchase Price

• Selling Price

• Company

• Date

• Piece

• Picture

Customer List table contains Nine fields :

• Customer Id

• Name

• Surname

• Address

• Phone

• Fax

• E-Mail

• Date

• Picture

47

Company table contains Nine fields :

• Company Id

• Name

• Phone

• Fax

• Address

• E-mail

• Web

• Date

• Picture

Customer table contains Nine fields :

• Personnel Id

• Name

• Surname

• Phone

• E-Mail

• Address

• Date

• Salary

• Picture

Sale table contains six fields :

• Product Name

• Selling Price

• Company

• Quantity

• Total

• Date

Customer Sale (Report) table contains Nine fields :

48

• Customer Id

• Customer Name

• Customer Surname

• Product Name

• Selling Price

• Company

• Quantity

• Total

• Date

The relationships between tables will as follows:

In Company Table Company Id field is a primary key.

In Customer Sale(Report) Order Id is not Primary key(ifhave key, You can not entry same

Product)

In Stock List Table Product Id is a primary key.

In Customer Table Customer Id is a primary key.

In Sale Table Sale Id is not Primary key(if have key, You can not entry same Product)

In Personnel No is a primary key.

When you execute the program Login Form opens, then it will ask you Usemame and

Password. You can see it in Fig 3. 1.

49

Fig 3.0 Login Form

/

I\,,
'/

If you do not know Usemame and Password you can not login this program. In fig3.1 write

Usemame and Password then Click Login Button or Press Enter Key to login this program.

eroject1

Fig 3.1 Login Click

If you try three times wrong. Program will be automatically Close.

In this program there is Stock, Customer, Companies, Personnel, Product Sale Extra, About

and Exit menus (shown in Fig 3.2)

50

STOO: OJSTOt'ıfFt §: 'COMPANY l'ERsoıı.EI. USEl!.5 PRCOUCT SAlE fXTAA AOC>UT EXIT
-···-·- ·········-··..--···-·-·--.. ·---·--·------·-·--·---·-·--···-·-

--"-"'

Fig 3.2 Main Form

In Stock Menu there are two submenus. These are Product Entry Submenu and Stock List

Submenu.

COW/JN'(PERSOta PROOUCTSALE EXTRA AOC:uT EXIT

23.05.2008
17:07:05

Fig 3.3 Product Entry Submenu

When you select Product Entry Submenu then Product Entry form is appeared.

51

Fig 3.4 Product Entry Form

In this form we can add new product to the database then it is shown in the Fig 3.4 on

the form. And also we can delete the product which was added before after select on the table.

Moreover we can delete the product which we have added before. And when we press the

clear button it clears all the texts. Also we can go next and prior by pressing next and previous

button of the navigator. If the product exists in the stock, then we can select "Product in the

stock" select in the table as well, then we can update (Edit) its details as well.

When you select Stock List Submenu then Stock List form is appeared.

This is Delete message. When you click Delete button, will be open This message

Fig 3.4 Delete Click

52

Fig 3.5 Stock List

In this form we can see all the product details by Product Name , Selling_Price, Company.

And we can search the product by Company Name, search by Product Name as well. So we

will show customer. Because customer want to see Selling Price. But You can not see

Purchase Price.

Fig 3.6 Customer Form

53

- • I,,· I ~

·;etke~~·~;c;:·5~~~
. ··- ... ········-······. ···-········ . - .

-~:.~~~-~-~~-(-~-~-~-?-~ .
,4866166625'4866166523:emiı_ya,uz@holrnai
:342123:1izj_34zj_~:;;;~.;i~~~

ziaat baı*asi~no:10···················:{~-~-·· ~ :~·~;-~4·····....

=-====•] 4ıeıcan... r~~~ ·••··•··••··· ,;;;;~;~akı,ı10~.;,5;s~ -~.. --~~-~~~~
6i~ yavuz :izzetkeıeı
8 ; sdk'.I : mehmet

Fig 3.7 Customer Form

Here Customer details are held in this form. We can add customer, delete customer, update

customer, we can take customer Photo in this form. Moreover we can search customer by ID

and by First Name and Surname together in the same form. We can Clear all text, Delete

Customer information from DBMS, Change information, in DBMS.

54

izzet kezer cad. no:5 cizre/sirnak

ziraat bankasi yeni no:1 O

menav sokak no: 4

mar din

Fig 3.8 Customer List

This Form is Customer information for search with Name. Customer Id, Name, Surname,
Address, Phone, Fax, E-mail and record Date. We can take find Customer all information.
This form is extra form.

-ıgesi_no: 56 -··

. !

2J.aa·:2ö·o/d·~·g;·~·@d~·g;~:·~~;J6\D~-~-~·;·~~t~--~-~-d··s~rt
,.·.,., .. .,,.,.,.....,_ ·------·· ··---· . ., .. .,.,.,.....•., .. .,.. ., ...,.,~.,·····--·····-····.,······---······-.

Fig 3.9 Company Entry I List

55

In" New Company/List" We can Add new Record and Save information in the
DBMS. We can change information with Edit from DBMS, Delete information from DBMS
and Clean all edits with Clear button. We Save Company Id, Name, Telephone, Fax,
Address, Web, Date, E-mail and Picture in the DBMS. Ifwe want, we can use Navigator for
Delete, Refresh, Insert, First record, Last record. We can Search Company name in the
DBMS. Main Menu button, we use for back Ana Menu.

Fig. 4.0 New Personnel

When we click New Personnel in the Ana Menu. Open New Personnel form.

56

Fig 4.1 Personnel Entry I List

Here Personnel details are held in this form. We can Add personnel, Save Personnel, Delete

Personnel, Update Personnel, Clean the all edits and Print table in this form. Moreover we

can search First Name and Surname in the same form in Fig 4.1. We can save Personnel Id,

Name, Surname, Phone, E-mail, Address, Date, Salary and Personnel Picture. If we want to

Delete information about Personnel will be open "are you sure"

57

PERSONNEL REPORT

PERSONNEL NAME SALARY

Nurullah 750,00 TL

Zeki 650,00 TL

İbrahim 500,00 TL

TOTAL 1900 TL

Fig 4.2 Personnel Report

This form is Personnel Report. When we click Print Button In the Personnel Entry I List
form, will open this form. We can see all Personnel Total Salary.

Fig 4.3 Product Sale

58

First table is stock table and second table is Product Sale table. This form is Product Sale
form. But only Cash Sale. Before we Search Product name in the Stock table. After then we
can see" Product Name, Selling Price, which Company and Piece" We can calculate,
multiplication Quantity with Selling price and Quantity automatically minus from Piece.
When you click "TOT AL" button automatic have calculate. Insert button Save Cash Sale
table. lfwe want to Sale recorded Customer, Before we must search Customer account in the
Customer table. After then we can see Customer Id, Customer Name and Customer Surname
When you click insert button save in the Customer Sale table when you click "SALE" butto
go to Print Page

Fig 4.4 Product Sale

This Button go to FOOD SELLING REPORT page

7'Prırıt Preview
;,<~:,c:

FOOD SELLİNG REPORT 27.05.2008 10:54:20

PRODUCTNAME SELLING PRICE COMPANY QUANTITY TOTAL DATE

sütlü çikolata 13 saadet 5 65 23.05.2008

ŞEKER 14 SAADET 4 56 24.05.2008

ŞEKER 14 SAADET 4 56 20.05.2008

cips 13 gesa 4 52 20.05.2008

cips 13 gesa 6 78 24.08.2008

.Fig 4.5 Product Sale (Food Selling Report)

59

This is Report (Cost selling) Page. We can see, how many Product, Quantity, Total, and Date.

Fig 4.7 Report Button

When you click this Button, will be open Report Page. This button in the Product Sale Form

...................................

... [al~~~z
[edebiyat

.cips
[seker

, sapan l bisküvi 12.00 TL:saadet

Fig 4.8 Report

60

This Form is Report Page. Ifwe want to see Customer Account, we must write Customer
Name and Customer Surname in the first and second edits. After then will be open Customer
all account. If we want to see report between dates, we can write first date and second date in
the edits for find Monthly Report. After then opening the between Dates Report. This form is
very important for Customer account. When we write Product Name, Price, Quantity, and
Customer Name, Customer Surname "TOTAL" automatically Insert from Product Sale form
to Report form

Fig 4.9 Print (Customer Sales)

This button is Print customer account or all Report about company

CUSTOMER REPORT
NAME SURNAME PRODUCT NAME SELLING PRICE COMPANY QUANTITY TOTAL

mehmet emiyawz ŞEKER 14,00 TL SAADET 4 56,00 TL

said yawz sütlü çikolata 13,00 TL saadet 5 65,00 TL

emin er cips 13,00 TL gesa 4 52,00 TL

emin er cips 13,00 TL gesa 4 52,00 TL

emin er çikolata 13,00 TL mertsan 4 52,00 TL

serean alagöz cips 13,00 TL gesa 3 39,00 TL

fevzi edebiyat seker 14,00 TL saadet 4 56,00 TL

nurullah sapan biskü1.1 12,00 TL saadet 2 24,00 TL

TOTAL 396 TL
···,.-:·······-::-.::·····

'''~->ltH.,.,., :xz>"<

Fig 5.1 Customer Report

61

This Form is Print Customer account or Customer monthly Report.

, ,, , :, [,':~,~,]~[+{ .. c":,].~.+'~~:'m·w~
1\C~J"''[~)IT10tJ ~]
I~~J+[Il[D't}]D ~
f.,~]'000[][]

Fig 5.2 Calculator

This Form is Calculator very important for mathematical calculate. But we will use extra

62

Fig 5.3 About Form

Gives the user a brief description about the programmer and program

I' ANAMENU

When you click this button or (X) will be close the program

63

64

CONCLUSION

Later done so very study about Delphi Programming language and research through

internet to make this project, I learned very things about Delphi programming, because I

obliged to finish my project and everything had to be done by myself alone. So done practical

things is much better than learning it literary.

While the project I faced to many problems they were hard for me because it is first

project, later after practicing and learning from books it became easier by the time and I used

to know how to use Delphi and how to write codes. So the first 2 or 3 forms where hard to

organize and write codes, but later other forms become easier in design and writing codes.

In the future other options could be add to the program, it can be updated according to

the need, also it can be connected to the internet, at that time sales could be done on net, for

instance when someone wants to buy something, he/she looks to the internet first, investigates

about that item, its image, size, color and price, also the payment facilities could be shown to

the customer, so if the customer likes what he/she wants to buy, he orders through internet

and the workplace provides that item for him in the limited time.

65

REFERENCES

Books:

1- Borland Delphi 7 - İhsan Karagülle (Türkmen Kitabevi)

Web Sites:

2- www.barcodewiz.com

3-www.borland.com

4- www.delphiturk.com

5- www.programmersheaven.com

6- www.programlama.com

7- www.delphidunyasi.com

66

APPENDIX 1 : PROGRAM CODES

FORMl.PASSWORD (FORMl)

unit Unitl;

interface

uses
Windows, Messages;SysUtils,Variants, Classes, Graphics, Controls, Forms,
Dialogs,StdCtrls, jpeg, ExtCtrls;

type
TSIFRE = class(TForm)
Imagel: Timage;
Editl: TEdit;
Edit2: TEdit;
Labell: TLabel;
Label2: TLabel;
Buttonl: TButton;
procedure FormCreate(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Edit2Change(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

var
i:integer=O;
SIFRE: TSIFRE;

implementation
uses unit2;

{$R*.dfm}

procedure TSIFRE.FormCreate(Sender: TObject);
begin

II SIFRE=FORMl
II LOGIN TO PROGRAMM

67

SIFRE.Caption:='P ASSWORD';
SIFRE.BorderStyle:=bsDialog;
labell.Caption:='USERNAME';
LABEL2.Caption:='P ASSWORD';

editl. Text:=";
edit2. Text:=";
end;

procedure TS1FRE.Button1Click(Sender: TObject);
begin

buttonl.Caption:='LOGIN';
buttonl.Default:=True;

//when you click login button 3 times, will be close to automatically the program

i:=i+l;
if(i=3) then close;

if(editl.Text='cici') and (edit2.Text='1927')or (editl.Text='said')and(edit2.Text='yavuz')
or (editl.Text='neu')and (edit2.Text='edu')then
begin
ANAMENU.SHOW;
SIFRE. Visible: =false;
end
else
begin
showmessage('Your User Name Or password Wrong');
editl.Text:=";
edit2. Text:=";
editl.SetFocus;

end;
end;
procedure TS1FRE.Edit2Change(Sender: TObject);
begin
edit2.PasswordChar:=' *';
end;

end.

68

FORM2.ANAMENU (FORM2)

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, jpeg, ExtCtrls, StdCtrls, ComCtrls,comobj;

type
TANAMENU = class(TForm)
MainMenul: TMainMenu;
STOCKl: TMenultem;
PRODUCTENRTYl: TMenultem;
STl: TMenultem;
CUSTOMERl: TMenultem;
NEWCUSTOMERl: TMenultem;
CUSTOMERLSTl: TMenultem;
COMPANYl: TMenultem;
NEWCOMPANYl: TMenultem;
NEWPERSONELl: TMenultem;
PERSONELLSTl: TMenultem;
Imagel: Tlmage;
Labell: TLabel;
Image2: Tlmage;
Image3: Tlmage;
REPORTl: TMenultem;
CALCULATEl: TMenultem;
EXITl: TMenultem;
Label2: TLabel;
CLOSEl: TMenultem;
CALCULATORl: TMenultem;
MEDAPLAYERl: TMenultem;
Timerl: TTimer;
Label3: TLabel;
Label4: TLabel;
procedure PRODUCTENRTYlClick(Sender: TObject);
procedure STlClick(Sender: TObject);
procedure NEWCUSTOMERl Click(Sender: TObject);
procedure CUSTOMERLSTl Click(Sender: TObject);
procedure NEWCOMPANYlClick(Sender: TObject);
procedure COMPANYClick(Sender: TObject);
procedure PERSONELLSTl Click(Sender: TObject);
procedure CALCULATEl Click(Sender: TObject);
procedure CALCULATORl Click(Sender: TObject);
procedure CLOSElClick(Sender: TObject);
procedure EXITlClick(Sender: TObject);
procedure Timerl Timer(Sender: TObject); _

69

procedure FormCreate(Sender: TObject);
procedure MEDAPLAYERl Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
ANAMENU: TANAMENU;

implementation
uses unitl,unit3,unit4,unit5,unit6,unit7,unit8,unit9,unitl0,unitll, Unit12;

{$R *.dfm}

procedure TANAMENU.PRODUCTENRTYlClick(Sender: TObject);
begin

STOCK_ ENTRY.Show;
end;

//STOCK ENTRY= FORM3

procedure TANAMENU.STl Click(Sender: TObject);
begin
STOCK_LIST.Show; //STOCK LIST= FORM4
end;

procedure TANAMENU.NEWCUSTOMERl Click(Sender: TObject);
begin
NEW_ CUSTOMER.Show; //NEW CUSTOMER= FORMS
end;

procedure TANAMENU.CUSTOMERLSTl Click(Sender: TObject);
begin
CUSTOMER_LIST.Show; // CUSTOMER LIST= FORM6
end;

procedure TANAMENU.NEWCOMPANYlClick(Sender: TObject);
begin
NEW_ COMP ANY.Show; //NEW COMP ANY= FORM7
end;

procedure TANAMENU.COMP ANYClick(Sender: TObject);
begin

~\)1"\~~ Lı"&ı~now;)) ~\)1'Wl\.W'i 1...1.~ı =~\)1\.M."i>,
en.d;

\)Tocedun~ ı: AN A.MENU .\>"ERSONE.LLS1.'lC\ick(.Sen.deT~1.'0b1ect);

70

begin
form9.Show;
end;

II PERSONEL LIST

procedure TANAMENU.CALCULATEl Click(Sender: TObject);
begin
formlO.Show;
end;

procedure TANAMENU.CALCULATORlClick(Sender: TObject);
begin
Winexec('Calc.exe',SW_Show); // CALCULATOR
end;

procedure TANAMENU.CLOSEl Click(Sender: TObject);
begin
SIFRE.Close;// SIFRE= FORMl
end·'
procedure TANAMENU.EXITlClick(Sender: TObject);
begin
forml 1.Show;
end;

procedure TANAMENU.TimerlTimer(Sender: TObject);
begin
labe13.Caption:=DateToStr(date); // TIME ANDDATE
label4.Caption: =timetostr(time);
end;

procedure TANAMENU.FormCreate(Sender: TObject);
begin

//HERE İS ANAMENU... FOR ENTRY PROGRAMM

ANAMENU.Caption:='ANAMENU';
ANAMENU.WindowState:=wsMaximized;
ANAMENU.FormStyle:=fsMDIForm;

II ANAMENU=FORM2

timerl.Interval:=1000;
timerl.Enabled:=true; //USE FOR CLOCK

labell.Caption:='A-RAŞ LTD.ŞTİ';
label2.Caption:=' A-RAŞ LTD.ŞTİ';
end;

procedure TANAMENU.MEDAPLAYERlClick(Sender: TObject);
begin
form12.Show;
end;

71

procedure TANAMENU.FormClose(Sender: TObject; var Action: TCloseAction);
begin
SIFRE.Close;
end;

end.

FORM3.STOCK ENTRY (FORM3)

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, jpeg, ExtCtrls, ComCtrls, Grids, DBGrids, ExtDlgs, DB,
DBTables, Mask, DBCtrls;

type
TSTOCK _ENTRY= class(TForm)
Imagel: Tlmage;
GroupBoxl: TGroupBox;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Buttonl: TButton;
Button2: TButton;
Button3: TButton;
Button4: TButton;
Label6: TLabel;
DBGridl: TDBGrid;
Buttons: TButton;
Image2: Tlmage;
OpenPictureDialogl: TOpenPictureDialog;
Button6: TButton;
DataSourcel: TDataSource;
Queryl: TQuery;
Button7: TButton;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;

72

DBEditS: TDBEdit;
DBEdit6: TDBEdit;
Label7: TLabel;
DBEdit7: TDBEdit;
GroupBox2: TGroupBox;
Label8: TLabel;
Editl: TEdit;
QuerylPRODUCTID: TAutolncField;
QuerylPRODUCTNAME: TStringField;
QuerylPURCHASEPRICE: TCurrencyField;
QuerylSELLINGPRICE: TStringField;
Queryl COMP ANY: TStringField;
QuerylDATE: TDateField;
QuerylPIECE: TStringField;
QuerylPICTURE: TStringField;
procedure ButtonSClick(Sender: TObject);
procedure Button6Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure Button7Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure EditlChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
STOCK_ENTRY:TSTOCK_ENTRY;

implementation

uses Unit2;

{$R *.dfm}

procedure TSTOCK _ENTRY.ButtonSClick(Sender: TObject);
begin
BUTTONS.Caption:='MAIN MENU';
STOCK_ ENTRY.close;
ANAMENU.show;
end;

procedure TSTOCK _ENTRY.Button6Click(Sender: TObject);
begin
BUTTON6.Caption:='PICTURE'; II INSERT THE NEW PICTURE
if openpicturedialogl.Execute then

73

begin
Queryl.Edit;
Image2. picture.loadfromfile(openpicturedialogl.filename);
Queryl.FieldByName('picture').asstring:=openpicturedialogl.FileName;
Queryl.post;
end;
end;

procedure TSTOCK _ENTRY.Button2Click(Sender: TObject);
begin
BUTTON2.Caption:='NEW RECORD';
queryl.Insert;
end;

procedure TSTOCK_ENTRY.Button4Click(Sender: TObject);
begin
BUTTON4.Caption:='EDIT';
queryl.Edit; II CHANGE THE PRODUCT INFORMATION
end;

procedure TSTOCK_ENTRY.Button7Click(Sender: TObject);
begin
BUTTON7.Caption:='SAVE';
queryl.Append; II RECORD NEW PRODUCT TO DBMS
end;

procedure TSTOCK_ENTRY.Button3Click(Sender: TObject);
var
msj:integer;
begin
msj:=Application.MessageBox('are you
sure',' delete',mb_YesNo+MB_ICONQUESTION);
if msj=mryes then
Queryl.Delete;
BUTTON3.Caption:='DELETE';
end;

procedure TSTOCK_ENTRY.FormCreate(Sender: TObject);
begin
STOCK_ENTRY.Color:=clBtnFace;
queryl.Active:=True;
end;

procedure TSTOCK_ENTRY.ButtonlClick(Sender: TObject);
begin
BUTTONl.Caption:='CLEAR';

DBeditl. Text:=";
DBedit2.Text:='';
DBedit3.Text:="; II CLEAN THE ALL EDITS

74

DBedit4. Text:=";
DBeditS.Text:=";
DBedit6.Text:='';
dbeditl.SetFocus;

end;

procedure TSTOCK _ENTRY.Editl Change(Sender: TObject);
begin
II SEARCH WİTH PRODUCT NAME

queryl.close;
query1.SQL.Clear;
queryl.sql.add('select * from stock2 where PRODUCTNAME
like'+#39+(editl.text)+'%'+#39);
queryl.Open;

end;

end.

FORM4.STOCK_LIST (FORM4)

unit Unit4;

interface

uses
Windows, Messages,SysUtils,Variants, Classes, Graphics, Controls, Forms,
Dialogs,Grids, DBGrids, StdCtrls, DB,DBTables;

type
TSTOCK_LIST = class(TForm)
GroupBoxl: TGroupBox;
Labell: TLabel;
Editl: TEdit;
DBGridl: TDBGrid;
DataSourcel: TDataSource;
Queryl: TQuery;
Buttonl: TButton;
QuerylPRODUCTNAME: TStringField;
QuerylSELLINGPRICE: TStringField;
Qucryl COMPANY: TStringField;
QuerylDATE: TDateField;
QuerylPIECE: TStringField;
procedure EditlChange(Sender: TObject);

75

procedure ButtonlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure LabellClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
STOCK_LIST: TSTOCK_LIST;

implementation

uses Unit2;

{$R *.dfm}

procedure TSTOCK_ LIST .Editl Change(Sender: TObject);
begin
queryl.close; // search product name for customer
queryl.SQL.Clear;
queryl.sql.add('select * from stock2 where PRODUCTNAME
like'+#39+(editl.text)+'%'+#39);
queryl.Open;
end;

procedure TSTOCK _LIST .Button l Click(Sender: TObject);
begin
BUTTONl.Caption:='MAIN MENU';
STOCK_ LIST .Close;
ANAMENU.Show;
end;

procedure TSTOCK_ LIST .FormCreate(Sender: TObject);
begin
STOCK _LIST .Caption:='STOCK _LIST';
STOCK_ LIST .Color:=clCream;
STOCK_ LIST .BorderStyle:=bsDialog;
STOCK_ LIST .Color:=clCream;
end;

procedure TSTOCK_ LIST .La bell Click(Sender: TObject);
begin
labell.Caption:='STOCK NAME';
end;

end.

76

FORMS.CUSTOMER_ENTRY (FORMS)

unit UnitS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, jpeg, ExtCtrls, StdCtrls, ComCtrls, DBCtrls,
ExtDlgs, Mask, DB, DBTables;

type
TNEW _CUSTOMER= class(TForm)
GroupBoxl: TGroupBox;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
LabelS: TLabel;
Label6: TLabel;
Buttonl: TButton;
Button2: TButton;
Button3: TButton;
Button4: TButton;
GroupBox2: TGroupBox;
Label7: TLabel;
Edit6: TEdit;
Imagel: Tlmage;
DBGridl: TDBGrid;
DBNavigatorl: TDBNavigator;
Label8: TLabel;
Label9: TLabel;
Button6: TButton;
GroupBox3: TGroupBox;
Button7: TButton;
Image2: Tlmage;
OpenPictureDialogl: TOpenPictureDialog;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DataSourcel: TDataSource;

77

Tablel: TTable;
Tablel CUSTOMERID: TFloatField;
Tablel~AME: TStringField;
TablelSURNAME: TStringField;
TablelADDRESS: TStringField;
TablelPHONE: TFloatField;
TablelFAX: TFloatField;
TablelEMAIL: TStringField;
TablelDATE: TDateField;
TablelPICTURE: TStringField;
Editl: TEdit;
Buttons: TButton;
GroupBox4: TGroupBox;
Edit2: TEdit;
Button8: TButton;
LabellO: TLabel;
procedure Button6Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure Button7Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure ButtonSClick(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Button8Click(Sender: TObject);
procedure Edit6Change(Sender: TObject);
procedure EditlChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
NEW_ CUSTOMER: TNEW _CUSTOMER;

implementation

uses Unit2;

{$R *.dfm}

procedure TNEW _CUSTOMER.Button6Click(Sender: TObject);
begin
NEW_ CUSTOMER.Close;
ANAMENU.show; //BACK TO ANAMENU
end;

procedure TNEW _CUSTOMER.Button2Click(Sender: TObject);

78

begin

table l.Append;
end;

II SAVE TO DBMS

procedure TNEW_CUSTOMER.Button3Click(Sender: TObject);
var
m:integer;
begin
m:=Application.MessageBox('are you
sure','delete',mb_YesNo+MB_ICONQUESTION);
if m=mryes then
table l.Delete;
end;

II DELETE FROM DBMS

procedure TNEW_CUSTOMER.Button4Click(Sender: TObject);
begin
tablet.REFRESH;
end; //CHANGE THE NEW INFORMATION

procedure TNEW_CUSTOMER.Button7Click(Sender: TObject);
begin
if openpicturedialogl.Execute then
begin // ENTRY CUSTOMER PHOTO
tablet.Edit;
Image2.picture.loadfromfile(openpicturedialogl.filename);
tablet .FieldByName('picture ').asstring:=openpicturedialogl.FileN ame;
tablel.post;
end;
end;

procedure TNEW_CUSTOMER.FormCreate(Sender: TObject);
begin
tablel.Active:=True;
NEW_CUSTOMER.Caption:='NEW_CUSTOMER';
end;

procedure TNEW_CUSTOMER.ButtonSClick(Sender: TObject);
var
ara:Boolean; //SEARCH WİTH NAME-SURNAME
begin
ara:=Tablel.Locate('NAME;SURNAME',varArrayOf([Edit6.Text,Editl.Text]),[]);
if not ara Then
ShowMessage('Kayıt Bulunamadı');
end;

procedure TNEW_CUSTOMER.Edit2Change(Sender: TObject);
begin
if(Edit2.Text =")then
begin //SEARCH WİTH NAME

79

Tablel.Filtered:=false;
end
else
begin
Tablel.FilterOptions:=[foCaseinsensitive];
Tablel.Filter:=' CUSTOMERID='+QuotedStr(Edit2. Text);
Tablel.Filtered:=true;

end;
end;

procedure TNEW _CUSTOMER.Buttonl Click(Sender: TObject);
begin
dbeditl. Text:=";
dbedit2.Text:='';
dbedit3.Text:="; II CLEAR THE ALL EDİT OR DBEDİT
dbedit4.Text:=";
dbeditS.Text:=";
dbedit6.Text:=";
dbedit7.Text:=";
dbedit8.Text:=";
dbeditl.SetFocus;
end;

procedure TNEW_CUSTOMER.Button8Click(Sender: TObject);
begin
tablel.Insert; II NEW INFORMATION TO DBMS
end;

procedure TNEW_CUSTOMER.Edit6Change(Sender: TObject);
begin
if(Edit6.Text ='')then
begin
Tablel.Filtered:=false; //SEARCH WITH NAME IN DBMS
end
else
begin
Tablel .FilterOptions:=[foCaselnsensitive];//harf duyarlılığı yok
Tablel .Filter:='NAME='+QuotedStr(Edit6. Text+'*');//kriter
Tablel.Filtered:=true;

end;
end;

procedure TNEW_CUSTOMER.Editl Change(Sender: TObject);
begin
if(Editl.Text =")then
begin
Tablel.Filtered:=false; II SEARCH WITH SURNAME
end
else
begin

80

Tablel.FilterOptions:=[foCaselnsensitive] ;//harf duyarlılığı yok
Tablel.Filter:='SURNAME='+QuotedStr(Editl.Text+'*');//kriter
Tablel.Filtered:=true;

end;
end;

end.

FORM6.CUSTOMER_LIST (FORM6)

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, DB, DBTables;

type
TCUSTOMER_LIST = class(TForm)
GroupBoxl: TGroupBox;
Labell: TLabel;
Editl: TE dit;
Buttonl: TButton;
DBGridl: TDBGrid;
Tablel: TTable;
DataSourcel: TDataSource;
TablelCUSTOMERID: TFloatField;
TablelNAME: TStringField;
TablelSURNAME: TStringField;
TablelADDRESS: TStringField;
TablelPHONE: TFloatField;
TablelFAX: TFloatField;
TablelEMAIL: TStringField;
TablelDATE: TDateField;
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);

private
{ Private declarations }

public

81

{ Public declarations }
end;

var
CUSTOMER_ LIST: TCUSTOMER _LIST;

implementation

{$R *.dfm}

procedure TCUSTOMER _LIST .FormCreate(Sender: TObject);
begin
editl. Text:=";
end;

procedure TCUSTOMER _LIST.Editl Change(Sender: TObject);
begin
if(Editl.Text =")then
begin //SEARCH WİTH NAME
Tablel.Filtered:=false;
end
else
begin
Ta blel .FilterOptions :=[foCaselnsensitive];
Tablel.Filter:='NAME='+QuotedStr(Editl. Text+'*');
Tablel.Filtered:=true;

end;
end;

end.

COMP ANY ENTRY (FORM7)

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, StdCtrls, Grids, DBGrids, ExtCtrls, DBCtrls, Mask,
ExtDlgs, jpeg, DB, DBTables;

type
TNEW _COMPANY = class(TForm)

82

____,,,,---------------------------------------~-----

GroupBoxl: TGroupBox;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
LabelS: TLabel;
Label6: TLabel;
Label7: TLabel;
Buttonl: TButton;
Button2: TButton;
Button3: TButton;
Button4: TButton;
GroupBox2: TGroupBox;
DBNavigatorl: TDBNavigator;
DBGridl: TDBGrid;
GroupBox3: TGroupBox;
Label8: TLabel;
Edit6: TEdit;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBMemol: TDBMemo;
DBEditS: TDBEdit;
GroupBox4: TGroupBox;
Imagel: Tlmage;
OpenPictureDialogl: TOpenPictureDialog;
Button6: TButton;
Button7: TButton;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
Label9: TLabel;
DataSourcel: TDataSource;
Tablet: TTable;
Buttons: TButton;
procedure Button7Click(Sender: TObject);
procedure Button6Click(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure Edit6Change(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure ButtonSClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

83

var
NEW_COMPANY: TNEW_COMPANY;

implementation

uses Unit2;

{$R *.dfm}

procedure TNEW _COMP ANY.Button7Click(Sender: TObject);
begin
NEW_ COMP ANY.Close;
ANAMENU.show;
end;

procedure TNEW _COMP ANY.Button6Click(Sender: TObject);
begin
if openpicturedialogl.Execute then
begin
tablet.Edit;
Imagel. picture.loadfromfile(openpicturedialogl .filename);
tablel.FieldByName('picture').asstring:=openpicturedialogl.FileName;
table I.post;
end;
end;

procedure TNEW _COMPANY.Button! Click(Sender: TObject);
begin
table.l.Append;

end;

procedure TNEW _COMP ANY.Button3Click(Sender: TObject);
begin
tablet.edit;;
end;

procedure TNEW _COMP ANY.Button2Click(Sender: TObject);
var
msj:integer;
begin
msj :=Application.MessageBox(' are you
sure','delete',mb_YesNo+MB_ICONQUESTION);
if msj=mryes then
tablet.Delete;
end;

procedure TNEW _COMP ANY.Button4Click(Sender: TObject);
begin
dbeditl. Text:=";

84

dbedit2. Text:=";
dbedit3. Text:=";
dbedit4. Text:=";
dbmemol. Text:=";
DBeditS.Text:='';
DBedit6. Text:=";
DBedit7.Text:=";
dbeditl.SetFocus;
end;

procedure TNEW _COMP ANY.Edit6Change(Sender: TObject);
begin
if(Edit6.Text =")then
begin
Tablel.Filtered:=false; // search with filtered table
end
else
begin
Tablel.FilterOptions:=[foCaselnsensitive] ;//harf duyarlılığı yok
Tablel.Filter:='NAME='+QuotedStr(Edit6.Text+'*');//kriter
Tablel.Filtered:=true;

end;
end;

procedure TNEW _COMP ANY.FormCreate(Sender: TObject);
begin
tablel.Active:=True;
end;

procedure TNEW _COMP ANY.Button5Click(Sender: TObject);
begin
tablet.Insert;
end;

end.

85

FORM9.PERS0NEL ENTRY/ LIST (FORM9)

unit Unit9;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DBCtrls, Mask, Grids, DBGrids, ExtCtrls, ExtDlgs, jpeg,
DB, DBTables;

type
TForm9 = class(TForm)
GroupBoxl: TGroupBox;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
LabelS: TLabel;
DBEditS: TDBEdit;
Label6: TLabel;
DBMemol: TDBMemo;
Label7: TLabel;
Buttonl: TButton;
Button2: TButton;
Button3: TButton;
Button4: TButton;
Buttons: TButton;
DBEdit6: TDBEdit;
Label8: TLabel;
DBEdit7: TDBEdit;
Label9: TLabel;
GroupBox2: TGroupBox;
Imagel: Tlmage;
OpenPictureDialogl: TOpenPictureDialog;
Button6: TButton;
GroupBox3: TGroupBox;
GroupBox4: TGroupBox;
Editl: TEdit;
DBNavigatorl: TDBNavigator;
DBGridl: TDBGrid;
Tablet: TTable;

86

DataSourcel: TDataSource;
TablelPERSONELID: TFloatField;
TablelNAME: TStringField;
TablelSURNAME: TStringField;
TablelPHONE: TStringField;
TablelEMAIL: TStringField;
TablelADDRESS: TStringField;
TablelDATE: TDateField;
TablelSALARY: TCurrencyField;
TablelPICTURE: TStringField;
Tablet COUNT: TAutolncField;
Button7: TButton;
Button8: TButton;
Edit2: TEdit;
Labelll: TLabel;
Label12: TLabel;
procedure ButtonSClick(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Button7Click(Sender: TObject);
procedure Button8Click(Sender: TObject);
procedure Button6Click(Sender: TObject);
procedure Edit2Change(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form9: TForm9;

implementation

uses Unit2, Unit14;

{$R *.dfm}

procedure TForm9.Button5Click(Sender: TObject);
begin
form9.Close;
ANAMENU.show;
end;

procedure TForm9.Button1Click(Sender: TObject);
begin

87

tablel.Append;
end;

//SAVE INFORMATION IN DBMS

procedure TForm9.Button2Click(Sender: TObject);
var
m:integer; //DELETE INFORMATION FROM DBMS
begin
m:=Application.MessageBox('are you
sure',' delete' ,mb_YesNo+MB_ICONQUESTION);
if m=mryes then
tablet.Delete;

end;

procedure TForm9.Button3Click(Sender: TObject);
begin
tablet.Edit; //CHANGE ROW FROM DBMS
end;

procedure TForm9.FormCreate(Sender: TObject);
begin
tablel.Active:=True; // OPEN THE DATABASE FOR
INFORMATION
end;

procedure TForm9.Button4Click(Sender: TObject);
begin
db edit 1.Text:='';
dbedit2. Text:=";
dbedit3. Text:=";
dbedit4.Text:="; //CLEAN ALL EDITS IN THE FORM
dbedit5. Text:=";
dbMemol.Text:=";
dbedit6. Text:=";
dbedit7.Text:=";
dbeditl.SetF ocus;
end;

procedure TForm9.Editl Change(Sender: TObject);
begin

if(Editl.Text =")then
begin
Tablel.Filtered:=false;
end
else
begin
Tablel.FilterOptions:=[foCaselnsensitive] ;//harf duyarhlığı yok
Tablel.Filter:='NAME='+QuotedStr(Editl.Text+'*');//kriter

//FILTER THE NAME IN THE DBMS

88

Tablel.Filtered:=true;
end;

end;

procedure TForm9.Button7Click(Sender: TObject);
begin
table.I.Insert;

II RECORD NEW ROW İN THEend;
DBMS

procedure TForm9.Button8Click(Sender: TObject);
begin
form14.QuickRepl.Preview;
end;

//PRINT

procedure TForm9.Button6Click(Sender: TObject);
begin
button6.Caption:='PICTURE';
if openpicturedialogl.Execute then
PHOTO
begin
Tablet.Edit;
Imagel.picture.loadfromfile(openpicturedialogl.filename);
Tablel.FieldByName('picture').asstring:=openpicturedialogl.FileName;
Tablel.post;
end;
end;

//INSERT NEW

procedure TForm9.Edit2Change(Sender: TObject);
begin
if(Edit2.Text =")then
begin
Tablel.Filtered:=false;

SURNAME
end
else
begin
Tablel.FilterOptions:=[foCaselnsensitive];//harf duyarlılığı yok
Tablel.Filter:='SURNAME='+QuotedStr(Edit2.Text+'*');//kriter
Tablel.Filtered:=true;

II SEARCH WITH

end;
end;

encl

FORMlO.PRODUCT SALE (FORMlO)

89

unit UnitlO;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DB, DBTables, Mask, DBCtrls, Grids, DBGrids, ExtCtrls,
Spin, jpeg;

type
TFormlO = class(TForm)
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
Queryl: TQuery;
DataSourcel: TDataSource;
Editl: TEdit;
Label4: TLabel;
Buttonl: TButton;
DBEdit3: TDBEdit;
Label5: TLabel;
Label6: TLabel;
Button2: TButton;
DBGridl: TDBGrid;
DBNavigatorl: TDBNavigator;
DBEdit6: TDBEdit;
Label?: TLabel;
DataSource2: TDataSource;
DBGrid2: TDBGrid;
Query2: TQuery;
DBNavigator2: TDBNavigator;
Edit2: TEdit;
SpinEditl: TSpinEdit;
Edit3: TEdit;
Label8: TLabel;
ComboBoxl: TComboBox;
Imagel: Tlmage;
Button3: TButton;
Button4: TButton;
Buttons: TButton;
Label9: TLabel;
LabellO: TLabel;
Labelll: TLabel;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
Edit4: TEdit;
DataSource3: TDataSource;

90

Query3: TQuery;
Button6: TButton;
DBEdit7: TDBEdit;
QuerylPRODUCTNAME: TStringField;
QuerylSELLINGPRICE: TStringField;
Queryl COMP ANY: TStringField;
QuerylPIECE: TStringField;
Query2PRODUCTNAME: TStringField;
Query2COMP ANY: TStringField;
Query2DATE: TStringField;
Query2QUANTITY: TStringField;
Query2TOT AL: TStringField;
Query2SELLINGPRICE: TStringField;
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure DBEditlChange(Sender: TObject);
procedure DBEdit2Change(Sender: TObject);
procedure DBEdit3Change(Sender: TObject);
procedure DBEdit6Change(Sender: TObject);
procedure SpinEditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure ButtonSClick(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure Button6Click(Sender: TObject);
procedure DBEdit7Change(Sender: TObject);
procedure DBEdit4Change(Sender: TObject);
procedure DBEditSChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
musteri: String;

end;

var
FormlO: TFormlO;

implementation

uses Unit13, Unit2,unit12;

{$R *.dfm}

procedure TFormlO.FormCreate(Sender: TObject);
begin

91

queryl.DatabaseName:='STANDARD6'; // search the stock table
queryl.RequestLive:=true;
queryl.SQL.Text:='select * from stock2';
queryl.Active:=true;
editl.Text:=";
end;

procedure TFormlO.EditlChange(Sender: TObject);
begin
Editl.Font.Size:=14;
queryl.Close; //search the STOCK table for sale
queryl.SQL.Clear;
queryl.SQL.Add('select * from stock2 where PRODUCTNAME
Like'+#39+(editl.Text)+'%'+#39);
queryl.Open;
end;

procedure TForml O.Button2Click(Sender:TObject);
begin
query2.Insert; //save the sale table
query2.Fields[O] .AsString:=DBEditl. Text;
query2.Fields[1] .AsString:=DBEdit2.Text;
query2.Fields[2] .AsString:=DBEdit3.Text;
query2.Fields[3] .AsString:=SpinEditl. Text;
query2.Fields[4].AsString:=Edit2.Text;
query2.Fields[5].AsString:=Edit3.Text;
query2.Append;
button2.Caption:='INSERT';

//form 12 sale the customer (report)
form12.Queryl.Insert;
form12.Queryl.Fields[O].AsString :=DBEdit7.Text;
form12.Queryl.Fields [1].AsString :=DBEdit4.Text;
form12.Queryl.Fields[2].AsString :=DBEditS.Text;
form12.Queryl.Fields[3].AsString :=DBEditl.Text;
form12.Queryl.Fields[4].AsString :=DBEdit2.Text;
form12.Queryl.Fields[5].AsString :=DBEdit3.Text;
form12.Queryl.Fields[6].AsString :=SpinEditl.Text;
form12.Queryl.Fields[7].AsString :=Edit2.Text;
form12.Queryl.Fields[8].AsString :=Edit3.Text;
form12.Queryl.Append;

editl.Text:=";
DBEditl.Text:=";
DBEdit2.Text:=";
DBEdit3.Text:=";

II clean the all edits

92

DBEdit6. Text:='';

SpinEditl. Text:='';
edit2. Text:=";
edit3. Text:=";
editl.SetFocus;
end;

procedure TFormlO.DBEditl Change(Sender: TObject);
begin
DBEditl.Font.Size:=11;
end;

procedure TForm10.DBEdit2Change(Sender: TObject);
begin
DBEdit2.Font.Size:=l l;
end;

procedure TForm10.DBEdit3Change(Sender: TObject);
begin
DBEdit3.Font.Size:=ll;
end;

procedure TForm10.DBEdit6Change(Sender: TObject);
begin
DBEdit6.Font.Size:=11;
end;

procedure TForml O.SpinEditl Change(Sender: TObject);
begin
SpinEditl.Font.Size:=11;
end;

procedure TForm10.Edit2Change(Sender: TObject);
begin
Edit2.Font.Size:=ll;
end;

procedure TForm10.Edit3Change(Sender: TObject);
begin
Edit3.Font.Size:=11;
end;

procedure TForm10.Button4Click(Sender: TObject);
begin
form13.QuickRepl.Preview;

//PRINT
end;

procedure TFormlO.ButtonlClick(Sender: TObject);

93

II here substruct the stock
begin

II total all product
Edit2.Text:=FloatToStr(StrToFloat(dbedit2.Text)*StrToFloat(SpinEditl.Text));
Queryl.Edit; // refresh the stock
DBedit6.Text:=FloatToStr(StrToFloat(dbedit6.Text)-StrToFloat(SpinEditl.Text));
Queryl.Post;
end;

procedure TFormlO.ButtonSClick(Sender: TObject);
begin
FORMl O.Close;
ANAMENU.SHOW; //back to ANAMENU
end;

procedure TForm10.Button3Click(Sender: TObject);
Begin
query2.Cancel;
form12.Queryl.Cancel;

end;

procedure TFormlO.Edit4Change(Sender: TObject);
begin
Edit4.Font.Size:=14; // search the customer name for sale (indepted)
query3.Close;
query3.SQL.Clear;
query3.SQL.Add('select * from Customer where NAME
Like'+#39+(edit4.Text)+'% '+#39);
query3.0pen;
end;

:I
,,'

procedure TForm10.Button6Click(Sender: TObject);
begin
form12.Show;
end;

procedure TForm10.DBEdit7Change(Sender: TObject);
begin
DBEdit7.Font.Size:=11;
end;

'procedure TForm10.DBEdit4Change(Sender: TObject);
begin
DBEdit4.Font.Size:=11;
end;

procedure TFormlO.DBEditSChange(Sender: TObject);

94

begin
DBEditS.Font.Size:=11;
end;

end.

FORMU.ABOUT (FORM 11)

unit Unit11;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls, jpeg;

type
TForm11 = class(TForm)
Imagel: Tlmage;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Timerl: TTimer;
Timer2: TTimer;
Timer3: TTimer;
Label4: TLabel;
LabelS: TLabel;
procedure Timerl Timer(Sender: TObject);
procedure Timer3Timer(Sender: TObject);
procedure Timer2Timer(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

95

public
{ Public declarations }

end;

var
Formll: TFormll;

implementation

{$R *.dfm}

procedure TForml 1. Timerl Timer(Sender: TObject);
begin
timerl.Enabled:=true;
imagel.Enabled:=false;
timer2.Enabled:=true;
labell.Enabled:=false;
timer3.Enabled:=true;
label2.Enabled:=false;
end;

· procedure TFormll.Timer3Timer(Sender: TObject);
begin
timerl.Enabled:=false;
imagel.Enabled:=true;
timer2.Enabled:=true;
labell.Enabled:=false;
timer3.Enabled:=false;
label2.Enabled:=true;
end;

procedure TForml 1. Timer2Timer(Sender: TObject);
begin
timerl.Enabled:=true;
imagel.Enabled:=false;
timer2.Enabled:=false;
labell.Enabled:=true;
timer3.Enabled:=false;
label2.Enabled:=true;
end;

procedure TFormll.FormHide(Sender: TObject);
begin
Timerl.Enabled := false;
Timer2.Enabled := false;
Timer3.Enabled := false;
end;

procedure TFormll.FormShow(Sender: TObject);
begin

96

Timerl.Enabled := true;
Timer2.Enabled := true;
Timer3.Enabled := true;
end;

procedure TForml 1.FormCreate(Sender: TObject);
begin

end;

end.

FORMU.REPORT (FORM 12)

unit Unit12;

interface

uses
Windows, Messages, SysUtils,Variants, Classes, Graphics, Controls, Forms,
Dialogs,DB, StdCtrls, DBTables, Grids, DBGrids, ExtCtrls, DBCtrls;

type
TForm12 = class(TForm)
DataSourcel: TDataSource;
Queryl: TQuery;
DBGridl: TDBGrid;
GroupBoxl: TGroupBox;
Edit3: TEdit;
Edit4: TEdit;
Button2: TButton;
DBNavigatorl: TDBNavigator;
Button3: TButton;
Label3: TLabel;
Label4: TLabel;
Queryl CUSTOMERID: TStringField;
QuerylNAME: TStringField;
QuerylSURNAME: TStringField;
QuerylPRODU CTNAME: TStringField;
Queryl COMPANY: TStringField;
QuerylQUANTITY: TStringField;
QuerylSELLINGPRICE: TCurrencyField;
QuerylTOTAL: TCurrencyField;
QuerylDATE: TDateField;
DataSource2: TDataSource;
Tablel: TTable;
Edit5: TEdit;

97

procedure Edit3Change(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form12: TForm12;

implementation

uses unitlO, UnitlS;
{$R *.dfm}

procedure TForm12.Edit3Change(Sender: TObject);
begin
Edit3.Font.Size:=14;
queryl.Close;
queryl.SQL.Clear;
queryl.SQL.Add('select * from GENELSATIŞ where CUSTOMERID
Like'+#39+(edit3.Text)+'%'+#39);
queryl.Open;
end;

procedure TForm12.Button2Click(Sender: TObject);
var
ara:Boolean; //SEARCH WİTH NAME-SURNAME
begin
if(Edit4.Text = ")and (editô.text=") then
begin //SEARCH WİTH NAME
query I .Filtered :=false;
end
else

begin
ara:=queryl.Locate('NAME;SURNAME',varArrayOf([Edit4.Text,Edit5.Text]),[]);
if not ara Then
ShowMessage('RECORD NOT FOUND');
end;
end;
procedure TForm12.Button3Click(Sender: TObject);
begin
formlS.QuickRepl.Preview;
end;

procedure TForm12.FormCreate(Sender: TObject);
begin

98

{
Tablel.lndexName:='TARIHINDEX';
Tablel.SetRange([Editl.Text],[Edit2.Text]);
Tablet.Apply Range;//
}
end;

end.

99

APPENDIX 2 : DATABASE TABLES

Fig. 5.4 Stock List Table

Fig. 5.5 Customer List

100

Fig. 5.6 Company List

Fig. 5. 7 Personnel List

101

Fig. 5.8 Sale Table

Fig 5.9 Sale The Customer List

102

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Page 2
	Titles
	ACKNOWLEDGMENTS
	I

	Page 3
	Titles
	II

	Page 4
	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Titles
	CHAPTER!
	1. BASIC CONCEPT OF DELPHI 7
	1.1. Introduction
	1

	Page 8
	Titles
	1.2. What is Delphi?

	Page 9
	Titles
	1.2.lDeveloper Support Services and Web Site
	1.2. A Tour of The Environment
	1.3.1. Starting Delphi

	Page 10
	Titles
	1.3.2Delphi (IDE)
	4

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	1.3.3 The Object Inspector

	Images
	Image 1

	Page 13
	Titles
	1.3.4 The Delphi Workspace
	1.3.5 The Menus and Toolbars

	Images
	Image 1

	Page 14
	Titles
	1.3.2. The Component Palette and Form Designer

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 15
	Titles
	'
	1.3.7The Object TreeView

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	1.3.8The Object Repository

	Images
	Image 1

	Page 17
	Titles
	1.3.9The Code Editor

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 18
	Titles
	1.3.9.lCode Insight

	Images
	Image 1
	Image 2

	Page 19
	Titles
	1.3.10 Class Completion
	1.3.11 Code Browsing

	Page 20
	Titles
	1.3.12
	The Diagram Page

	Images
	Image 1

	Page 21
	Titles
	1.3.13 Wiewing Form Code

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Titles
	1.3.14 The Code Explorer
	1.3.lSThe Project Manager

	Images
	Image 1

	Page 23
	Titles
	1.3.16The Project Browser

	Images
	Image 1
	Image 2

	Page 1
	Titles
	1.4 Programming With Delphi
	1.4.1 Creating a Project
	1.4.2 Adding Data Modules

	Page 2
	Titles
	1.4.3 Building the user interface
	1.4.4 Placing components on a form

	Images
	Image 1
	Image 2

	Page 3
	Titles
	1.4.5 Setting the properties of the components

	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Titles
	1.4.6 Writing Code

	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	1.4.6.lUsing The Component Library
	,... I, TC I Ob'
	ı
	I
	I
	E I.
	ı

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Titles
	1.4.7Compiling and Debugging Projects

	Images
	Image 1

	Page 10
	Titles
	1.4.7.1 Deploying Applications
	1.4.7.2Internationalizing Applications

	Images
	Image 1

	Page 11
	Titles
	1.4.8Types of Projects
	1.4.8.lDelphi (CLX Applications)
	1.4.8.2 Delphi (Database Applications)

	Page 12
	Titles
	1.4.9Administrator (BDE)
	1.4.10 Database Explorer
	1.4.llDatabase Desktop

	Page 13
	Titles
	1.4.12Data Dictionary
	1.4.13 Components of custom
	1.4.14 Dynamic-link libraries
	1.4.15 Delphi (COM and ActiveX)

	Page 14
	Titles
	1.4.16Cmponent Type Libraries
	1.5WorkArea (İDE)
	1.5.lArranging Menus and Toolbars

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	1.5.2 Tool Windows
	I

	Images
	Image 1
	Image 2

	Page 17
	Titles
	1.5.3 Desktop Layouts

	Images
	Image 1
	Image 2

	Page 18
	Titles
	l.4.5 The Component Palette

	Images
	Image 1
	Image 2

	Page 19
	Titles
	1.4.6 Creating Component Templates

	Page 20
	Titles
	CHAPTER2
	DATABASE CONCEPT OF DELPHI 7
	2.1 About Dbase And Paradox
	2.1.1 Architecture of database
	•
	2.1.2 Relational database concepts
	2.1.3Accessing data in other databases

	Images
	Image 1

	Page 21
	Titles
	2.1.4dBASE IV Table Specification
	2.1.5 dBase V Table Specifications

	Images
	Image 1
	Image 2

	Page 22
	Titles
	2.1.6 dBASE Field Types

	Page 23
	Titles
	2.2Paradox Standard Table Specifications-

	Page 24
	Titles
	2.2.1 Paradox 4 table structure.
	•
	•
	•
	•
	•
	•

	Images
	Image 1

	Page 25
	Titles
	2.2.2Paradox 5 Table Specifications

	Page 1
	Titles
	2.2.3Paradox 7 and Above Table Specifications
	2.2.2.lParadox Field Types

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Page 4
	Page 5
	Titles
	CHAPTER3
	3. DATABASE DESIGN OF THE PROGRAM
	3.1 Database Design of The Program

	Page 6
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3

	Page 7
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 8
	Titles
	/
	I\
	,,

	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	--"-"'
	-···-·- ·········-·· .. --···-·-·-- .. ·---·--·------·-·--·---·-·--···-·-
	Fig 3.2 Main Form
	In Stock Menu there are two submenus. These are Product Entry Submenu and Stock List
	COW/JN'(PERSOta PROOUCT SALE EXTRA AOC:uT EXIT
	23.05.2008
	Fig 3.3 Product Entry Submenu
	When you select Product Entry Submenu then Product Entry form is appeared.
	51

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	FOOD SELLİNG REPORT

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 18
	Titles
	Fig 4.7 Report Button
	Fig 4.8 Report

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 20
	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	Fig 5.3 About Form

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Page 23
	Titles
	CONCLUSION

	Images
	Image 1

	Page 24
	Titles
	REFERENCES

	Page 25
	Titles
	APPENDIX 1 : PROGRAM CODES

	Page 26
	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Page 30
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Titles
	____ ,,,,---------------------------------------~-----

	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Titles
	APPENDIX 2 : DATABASE TABLES

	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1
	Image 2
	Image 3

	Page 30
	Images
	Image 1

