
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Using Computer Programming for Office Reception
Desk in Prisons

Graduation Project
COM 400

Student : Hatice Ozsaltrk
(20030076)

Supervisor : Mr Umit SOYER

Nicosia - 2008

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Mr. Umit SOYER for his invaluable advice

and belief in my work and myself over the course of this graduation project.

Second, I want to say thanks to my family for their endless support. I will never forget the

things that my father Mr Kemal Ozsaltik and my mother Mrs Pembe Ozsaltik did for me

during my educational life .I thank my fiance Mr Idris Oral for his constant encouragement,

support and patience during the preparation of this project.

Finally, I would also thank Mr Samir Mirghani for his help in Visual Basic programming

and helpful ideas.

ABSTRACT

There is not any computer program in North Cyprus prisons for making the visitors and

prisoners controlling. It must be, because it is very important for security. This project

consists of make the program for controlling visitor's and prisoner's in prisons. We

implemented this project using Visual Basic 6.0. The aim of this project is the dependable

entering, exiting and controlling of visitors and prisoners in the prison. There are lots of

advantages of this program for prisons. Only administrators and users will be using this

program. Each administrator and user must have a usemame and a password for accessing

the program functions. The implemented program allows users to add new visitor

information, search visitor records, and find information about visitors and prisoners. It

provides information such as the visitor's name, contact information about which the visitor

visited, the reason of the visit, the date and time of the visit. The system can generate

reports about both the prisoner's records and the visitor's records. When the user enters the

visit information will be required to take and attach a photo of the visitor to the record by

using web cam. This program will be helpful to users and administrators in finding

information about visitors and prisoners. This information may then help prisoner officials

and control illegal activities.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT 1

ABSTRACT ii
TABLE OF CONTENTS iii
INTRODUCTION I
CHAPTER I: VISA UL BASIC

1.1. Overview 3
1.2. What is Programming Language? 3
1.3. Introduction to the Visual Basic Programming Language 3
1.4. How to Install Visual Basic 4
1.5. How Visual Basic Programming Works 5
1.5.1. Representing Words, Numbers, and Values with Variables in VB 5
1.5.2. Words and Text: Using String Variables to Organize Words in VB 6
1.5.3. Arrays: Variables That Represent More Than One Value 7
1.5.4. What To Do When Something Goes Wrong: Handling Errors 8

1.6. Introducing Visual Studio 9
1.6.1. Visual Studio Highlights 9
1.6.2. About Visual Studio Team System 10
1.6.3. Description The .NET Framework 11
1.6.4. What is .NET 11
1.6.5. What is Visual Studio .NET 12

1.7. Summary 13
CHAPTER 2: MICROSOFT ACCESS AND DATABASES

2.1. Overview 4
2.2. Introduction to Microsoft Access 4
2.2.1. History of Microsoft Access 4
2.2.2. Uses of Access 15
2.2.3. Features of Access 15
2.2.4. Development of Access 16
2.2.5. File extensions of Access 17
2.2.6. Versions of Access 17

2.3. What is Database? 18
2.3 .1. History of Database 19
2.3.2. Database Models 20
2.3.3. Database Management Systems 22
2.3.4. DBMS Internals 23
2.3.4. Applications of Databases 24

2.4. Summary 24

lll

CHAPTER3: SQL
3.1. Overview
3.2. What is SQL?

3 .2.1. Table Basics
3.2.2. Selecting Data
3.2.3. Creating Tables
3.2.4. Inserting into a Table
3.2.5. Updating Records
3.2.6. Deleting Records
3.2.7 Drop a Table

3.3. Summary
CHAPTER 4: ACTIVEX DAT A OBJECTS (ADO)

4.1. Overview
4.2. What is ADO?
4.3. About Universal Data Access
4.4. ADO Existing Technologies
4.5. Why ADO?
4.6. Data Providers and Data Consumers
4.7. New Features of ADO
4.8. ADO Connection Object
4.9. ADO Attributes Property
4.10. ADO Database Connection
4.10.1. Create a DSN-less Database Connection
4.10.2. Create an ODBC Database Connection

4.11. ADO Recordset

25
25
25
27
29
31
31
32
32
32

33
33
34
35
35
36
36
37
39
40
40
40
41

4.12. ADO Recordset Object 42
4.13. Summary 44

CHAPTER 5: AUTOMATION SYSTEM FOR MANAGING PRISON
VISITATION

5.1. Overview
5.2. Project Explanation

5.2.1. Explanation of Login Window
5.2.2. Explanation of Main Window

5.3. Summary
CONCLUSION
REFERENCES
APPENDIX A
APPENDIX B

45
45
45
46
55
56
57
58
149

IV

INTRODUCTION

In this project concerned a program to visitors and prisoners automation system for prison

using Visual Basic Language. The aim of this project is the dependable entering, exiting

and controlling visitors and prisoners in the prison. There are lost of advantages of this

program for prisons. Only administrators and users will be using this program.

Administrators and users must have username and password for using access to the

program functions. The program's main functions are; users can add new visitor

information, to search the visitor's records, find information about visitors and prisoners. It

shows information such as the visitor's name, surname, ID number, contact number, to who

they came, the reason of the visit, date and finally their in and out going time.

Users can take to generate printable reports for both the prisoner's records and the visitor's

records. When the user enters the visit information will be required to take and attach a

photo of the visitor to the record by using web cam. This program will be helpful to users

and administrators in finding information about visitors and prisoners. This information

may then help prisoner officials and control illegal activities.

We implemented this project using Visual Basic 6.0, allow developers to target Windows,
,; -. r 1 1 1 • 1 1 • • • . , , , , . - • . , ,. .- • ,- .,. .• .,,........,.,....,_ .,,...... ~

vveo, ano n10011e cevices . .f\S \VHn au languages targeting tne rvncrosott .l'~t:: 1 r-ramework,

programs written in Visual Basic benefit from security and language interoperability.

Microsoft Office Access, is a relational database management system from Microsoft that

combines the relational Microsoft Jet Database Engine with a graphical user interface and

software development tools.

This project consists of the introduction, five chapters and conclusion.

First four chapters give a basic introduction about the visual basic, Microsoft access, SQL

and ActiveX Data Objects (ADO). Last chapter give description about project.

In Chapter I, the visual basic programming language will be explained. After brief

introduction about visual studio, framework .net, types, architectures and security and VB

handling errors will be described.

In Chapter 2, the application Microsoft access and database will be explained. These

include both file extensions and versions. The applications of database with general models

and algorithms are also discussed.

In Chapter 3, the general information about SQL, SQL table basics, creating and inserting

table and updating, deleting records will be discussed.

In Chapter 4, presents the property and fonksiyons the ADO with existing technologies and

new features. In this chapter will describe the meaning of the ADO connection objects,

ADO Recordsets and ADO Attributes Property.

In Chapter 5, the description about project will be presented with login, main windows and

their functions and forms.

ln Conclusion, the general results of this work are explained.

2

CHAPTER 1

VISAUL BASIC

1.1 Overview

In this chapter, the general information about visual basic programming language, visual

studio and framework .NET, types, architectures and security and Visual Basic handling

errors will be explained briefly.

1.2 What is Programming Language?

People express themselves using a language with many words. Computers use a simple

language consisting of only ls and Os, withal meaning "on" and a O meaning "off." Trying

to talk to a computer in its own language would be like trying to talk to your friends. A

programming language acts as a translator between you and the computer. Rather than

learning the computer's native language (known as machine language), you can use a

programming language to instruct the computer in a way that is easier to learn and

understand.

A specialized program known as a compiler takes the instructions written in the

programming language and converts them to machine language. This means that as a

Visual Basic programmer, you don't need to understand what the computer is doing or how

it does it, you just need to understand how the Visual Basic programming language works.

1.3 Introduction to the Visual Basic Programming Language

Visual Basic allows developers to target Windows, Web, and mobile devices. As with all

languages targeting the Microsoft .NET Framework, programs written in Visual Basic

benefit from security and language interoperability.

This version of Visual Basic brings back support for Edit and Continue and has new

features for rapid application development. One of these features, called My, provides

quick access to common tasks provided by the .NET Framework, as well as information

and default object instances that are related to the application and its run-time environment.

3

New language features include loop continuation, guaranteed resource disposal, operator

overloading, generic types, and custom events.

"Visual" refers to the method used to create what the user sees the graphical user interface,

or GUI. "Basic" refers to the BASIC (Beginners All-Purpose Symbolic Instruction Code)

programming language, a language used by more programmers than any other language in

the history of computing

Inside the Visual Basic Language; in many ways, Visual Basic is a Jot like the language

that you use every day. When you speak or write, you use different types of words, such as

nouns or verbs, which define how they are used. Visual Basic also has different types of

words known as programming elements that define how they are used to write programs.

Programming elements in Visual Basic include statements, declarations, methods,

operators, and keywords. Written and spoken language also has rules, or syntax, that

defines the order of words in a sentence. The language you write and speak also has

structure: for example, a book has chapters with paragraphs that contain sentences.

Programs written in Visual Basic also have a structure: modules are like chapters. Visual

Basic also has syntax at first it may look strange, but it is actually very simple. For

example, to state "The maximum speed of my car is 120", you would write:

Car.Speed.Maximum = 120

1.4 How to Install Visual Basic

Visual basic 6.0 comes as a part of the Microsoft Visual Studio 6.0, and by obtaining the

Microsoft Visual Studio 6.0 CDs which is S CDs visual basic can be installed as a part of

the full installation or just setting it up alone in the system. By running the setup you can

follow the steps guiding you to your need.

4

1.5 How Visual Basic Programming Works

On its own, a computer isn't very smart. A computer is essentially just a big bunch of tiny

electronic switches that are either on or off. By setting different combinations of these

switches, you can make the computer do something, for example, display something on the

screen or make a sound. That's what programming is at its most basic telling a computer

what to do. Of course, understanding which combination of switches make the computer

will do what you want would be a daunting task that's where programming languages come

in. Inside the Visual Basic Language; in many ways, Visual Basic is a lot like the language

that you use every day. When you speak or write, you use different types of words, such as

nouns or verbs, which define how they are used. Visual Basic also has different types of

words known as programming elements that define how they are used to write programs.

1.5.1 Representing Words, Numbers, and Values with Variables in VB

Variables are an important concept in computer programming. A variable is a letter or

name that can store a value. When you create computer programs, you can use variables to

store numbers, such as the height of a building, or words, such as a person's name. Simply

put, you can use variables to represent any kind of information your program needs.

,.,...,, . . . • l l

1 nere are steps ro using a vanaoie:

• Declare the variable: Tell the program the name and kinds of variable you want to

use. You declare a variable using the Dim and As keywords.

Dim aNumber As Integer, This line of code tells the program that you want to use a

variable named aNumber, and that you want it to be a variable that stores whole

numbers (the Integer data type). Because aNumber is an Integer, it can store only

whole numbers. If you had wanted to store 42.5, for example, you would have used

the Double data type (Dim aDouble As Double). And if you wanted to store a word,

you'd use a data type called a String (Dim aName As String).

• Assign the variable: Give the variable a value to hold. You assign a value to your

variable with the = sign, which is sometimes called the assignment operator, as

shown in the following example: aNumber = 42 This line of code takes the value
42 and stores it in the previously declared variable named aNumber.

s

• Use the variable: Retrieve the value held in the variable and use it in your program.

You can declare a variable on one line of code, and then later assign the value on

another line. This can result in an error if you try to use the variable before

assigning it a value. For that reason, it is a better idea to declare and assign variables

on a single line. Even if you don't yet know what value the variable will hold, you

can assign a default value. The code for declaring and assigning the same variables

shown earlier would look like the following: Dim aName As String = "default
string" Dim YesOrNo As Boolean = True

1.5.2 Words and Text: Using String Variables to Organize Words in VB

A string is any series of text characters, such as letters, numbers, special characters, and

spaces. Strings can be human-readable phrases or sentences. String variables are created

just as other variables: by first declaring the variable and assigning it a value, as shown

below:

Dim aString As String "This is a string"

When assigning actual text (also called a string literal) to a String variable, the text must be

enclosed in quotation marks C} You can also use the = character to assign one String
variable to another String variable. You can use the ampersand (&) character to

sequentially combine two or more strings into a new string, as shown below:

Dim aString As St,ring = "Across the Wide"

Dim bString As String = "Missouri"

Dim cString As String

cString = aString & bString

The previous example declares three String variables and respectively assigns "Across the

Wide" and "Missouri" to the first two, and then assigns the combined values of the first two

to the third variable. The value is "Across the WideMissouri" because there is no space at

the end of aString or at the beginning of bString.

6

The two strings are simply joined together. If you want to add spaces or anything else

between two strings, you must do so with a string literal, such as " ", as shown below:

Dim aString As String = "Across the Wide"

Dim bString As String = "Missouri"

Dim cString As String =
cString = aString & " " & bString

The text contained in cString now reads as "Across the Wide Missouri".

1.5.3 Arrays: Variables That Represent More Than One Value

V aria bl es are used to store different types of data for use by your program. There is another

type of variable called an array that provides a convenient way to store several values of the

same type.

For example, suppose you were writing a program for a baseball team and you wanted to

store the names of all of the players on the field. You could create nine separate string

variables, one for each player, or you could declare an array variable that looks something

like the code below:

Dim players() As String

You declare an array variable by putting parentheses after the variable name. If you know

how many values you need to store, you can also specify the size of the array in the

declaration as follows.

Dim players(9) As String

As with other types of values, you need to assign values to arrays. To do so, you refer to the

element number as part of the assignment, as shown below:

players(O) = "hatice"

players(3) = "idris"

In the above code, the value hatice is assigned to the first element of the array (element 0)

and the value idris is assigned to the fourth element (element 3).

7

As with other types of values, you can declare and assign values to an array on a single line

as follows:

Dim players() As Integer= { 1, 2, 3, 4, 5, 6, 7, 8, 9}

Retrieving Values from Arrays, Just as you use numbers to specify an item's position in an

array; you use the element number to specify which value you want to retrieve.

Dim AtBat As String

AtBat = players(3)

The above code retrieves the fourth element of the array and assigns it to the string variable

AtBat.

1.5.4 What To Do When Something Goes Wrong: Handling Errors

In this topic, you will learn how to create basic error-handling code for your programs.

Even the best designed programs sometimes encounter errors. Some errors are defects in

your code that can be found and corrected. Other errors are a natural consequence of the

program; for example, your program might attempt to open a file that is already in use. In

cases like this, errors can be predicted but not prevented. As a programmer, it is your job to

predict these errors and help your program deal with them.

• Run-Time Errors: An error that occurs while a program is running is called a run

time error. A run-time error occurs when a program tries to do something it wasn't

designed to do. For example, if your program attempts to perform an illegal

operation, such as converting a non-numeric string to a numeric value, a run-time

error occurs. When a run-time error occurs, the program issues an exception, which

deals with errors by looking for code within the program to handle the error. If no

such code is found, the program stops and has to be restarted. Because this can lead

to the loss of data, it is wise to create error-handling code wherever you anticipate
errors occurrmg.

• The Try ... Catch ... Finally block: You can use the Try ... Catch ... Finally block to

handle run-time errors in your code. You can Try a segment of code if an exception

is issued by that code, it jumps to the Catch block, and then the code in the Catch

8

block is executed. After that code has finished, any code in the finally block is

executed. The entire Try ... Catch ... Finally block is closed by an End Try statement.

The following example illustrates how each block is used:

Try

' Code here attempts to do something.

Catch

'If an error occurs, code here will be run.

Finally

' Code in this block will always be run.

End Try

First, the code in the Try block is executed. If it runs without error, the program

skips the Catch block and runs the code in the Finally block. If an error does occur

in the Try block, execution immediately jumps to the Catch block, and the code

there is run; then the code in the Finally block is run.

1.6 Introducing Visual Studio
Visual Studio is a complete set of development tools for building ASP.NET Web

applications, XML Web Services. desktop applications, and mobile applications. Visual

Basic, Visual C++, Visual C#, and Visual J# all use the same integrated development

environment (IDE), which allows them to share tools and facilitates in the creation of

mixed-language solutions. In addition, these languages leverage the functionality of the

.NET Framework, which provides access to key technologies that simplify the development

of ASP Web applications and XML Web Services.

1.6.1 Visual Studio Highlights
This section contains information about some of the latest tools and technologies available

in this release of Visual Studio.

• Visual Studio Tools for Office: Microsoft Visual Studio 2005 Tools for the

Microsoft Office System can help you create solutions by extending Word 2003

documents and Excel 2003 workbooks using Visual Basic and Visual C#.

9

• Visual Web Developer: Visual Studio features a new Web page designer named

Visual Web Developer that includes many enhancements for creating and editing

ASP.NET Web pages and HTML pages. It provides a simpler, faster way to create

and maintain Web sites as local folders, in Internet Information Services (IIS), or on

an Ff P or SharePoint server.

• Web Forms: Web Forms render themselves as browser-compatible HTML and

script, which allows any browser on any platform to view the pages. Using Web

Forms, you create Web pages by dragging and dropping controls onto the designer

and then adding code, similar to the way that you create Visual Basic forms.

• Windows Forms: Windows Forms is for creating Microsoft Windows applications

on the .NET Framework. This framework provides a clear, object-oriented,

extensible set of classes that enables you to develop rich Windows applications.

• XML Web Services: In Visual Studio, you can quickly create and include XML

Web Services using Visual Basic, Visual C#,]Script, or ATL Server.

1.6.2 About Visual Studio Team System

Visual Studio Team System is a productive, integrated, and extensible software

development life-cycle tools platform that helps software teams by improving

communication and collaboration throughout the software development process. It consists

of the following:

• Team Foundation: is an extensible team collaboration server that provides work

item tracking, source control, reporting, and process guidance.

• Team Edition for Architects: is a set of integrated application design tools for

service-oriented development.

• Team Edition for Developers: provides code quality and performance tools that

enable teams to build reliable, mission-critical services and applications.

• Team Edition for Testers: provides advanced load testing tools that enable teams

to verify the performance of applications before deployment.

JO

1.6.3 Description The .NET Framework

The .NET Framework is a multi-language environment for building, deploying, and

running XML Web Services and applications. It consists of three main parts:

• Common Language Runtime: The runtime actually has a role in both a

component's runtime and development time experiences. While the component is

running, the runtime is responsible for managing memory allocation, starting up and

stopping threads and processes, and enforcing security policy, as well as satisfying

any dependencies that the component might have on other components. At

development time, the runtime's role changes slightly; because it automates so much

(for example, memory management).

• Unified programming classes: The framework provides developers with a unified,

object-oriented, hierarchical, and extensible set of class libraries (APls). Currently,

C++ developers use the Microsoft Foundation Classes and Java developers use the

Windows Foundation Classes. The framework unifies these disparate models and

gives Visual Basic and]Script programmer's access to class libraries as well.

• ASP.NET builds on the programming classes of the .NET Framework:

providing a Web application model with a set of controls and infrastructure that

make it simple to build Web applications. ASP.NET includes a set of controls that

encapsulate common HTML user interface elements, such as text boxes, buttons,

and list boxes. These controls run on the Web server, however, and render their user

interface as HTML to the browser.

1.6.4 What is .NET

.NET is both a business strategy from Microsoft and its collection of programming support

for what are known as Web services, the ability to use the Web rather than your own

computer for various services. Microsoft's goal is to provide individual and business users

with a seamlessly interoperable and Web enabled interface for applications and computing

devices and to make computing activities increasingly Web browser oriented. The .NET

platform includes servers; building-block services, such as Web-based data storage; and

device software.

l l

The .NET platform was designed to provide:

• The ability to make the entire range of computing devices work together and to

have user information automatically updated and synchronized on all of them

• Increased interactive capability for Web sites, enabled by greater use of XML

(Extensible Markup Language) rather than HTML

• A premium online subscription service, that will feature customized access and

delivery of products and services to the user from a central starting point for the

management of various applications, such as e-mail, for example, or software, such

as Office .NET

• Centralized data storage, which will increase efficiency and ease of access to

information, as well as synchronization of information among users and devices

• The ability to integrate various communications media, such as e-mail, faxes, and

telephones

• For developers, the ability to create reusable modules, which should mcrease

productivity and reduce the number of programming errors.

The full release of .NET is expected to take several years to complete, with intermittent

releases of products such as a personal security service and new versions of Windows and

Office that implement the .NET strategy coming on the market separately. Visual Studio

.NET is a development environment that is now available. Windows XP supports certain

.NET capabilities.

1.6.5 What is Visual Studio .NET
Visual Studio .NET is Microsoft's visual programming environment for creating Web

services based on use of the Extensible Markup Language (XML). The product suite

provides a visual interface for identifying a program as a Web service, forms for building a

user interface (including support for mobile device interfaces), features for integrating

existing application data, and for debugging. Visual Studio .NET comes with the; .NET

Framework, including the Common Language Runtime, and includes several programming

languages including Visual Basic, Visual C++, and Visual C#.

12

Visual Studio .NET comes in any of three levels of capability and price: Professional,

Enterprise Developer (which includes Microsoft's SQL Server), and Enterprise Architect

(which includes the Visio product for modeling an application program). In Microsoft's

view, Visual Studio .NET aims at setting a benchmark of ease in application development

for the Web in the present decade just as its Visual Basic set a benchmark for visual

programming in the 1990s. Existing users of Microsoft's Visual line and related languages

may upgrade to Visual Studio .NET for a discount from the full price.

1.7 Summary

Chapter 1, a general information about visual basic is explained. The types visual studio,

framework .net of together with their securitys and meaning of the basic topics are

presented.

13

CHAPTER 2

MICROSOFT ACCESS AND DATABASES

2.1 Overview

In this chapter, the application Microsoft access and database are covered. We will

introduce meaning of Microsoft access with their file extensions and versions and then we

will cover the application of database with general models and an algorithm.

2.2 Introduction to Microsoft Access

Microsoft Office Access, previously known as Microsoft Access, is a relational database

management system from Microsoft that combines the relational Microsoft Jet Database

Engine with a graphical user interface and software development tools. It is a member of

the 2007 Microsoft Office system.

Access can use data stored in Access/Jet, Microsoft SQL Server, Oracle, or any ODBC

compliant data container (including MySQL and PostgreSQL). Skilled software developers

and data architects use it to develop application software. Relatively unskilled programmers

and non-programmer "power users" can use it to build simple applications. It supports some

object-oriented techniques but falls short of being a fully object-oriented development tool.

Access was also the name of a communications program from Microsoft, meant to compete

with ProComm and other programs. This proved a failure and was dropped. One Years

later Microsoft reused the name for its database software.

2.2.1 History of Microsoft Access

Access version 1 .0 was released in November 1992. Since that time, the following versions

have been released: 2.0, 95, 97, 2000, 2002 (also called XP), 2003, and the latest,

2007.Microsoft specified the minimum operating system for Version 2.0 as Microsoft

Windows v3.0 with 4 MB of RAM. 6 MB RAM was recommended along with a minimum

of 8 MB of available hard disk space (14 MB hard disk space recommended). The product

was shipped on seven 1 .44 MB diskettes. The manual shows a 1993 copyright date.

14

Access's initial codename was Cirrus; the forms engine was called Ruby. This was before

Visual Basic - Bill Gates saw the prototypes and decided that the BASIC language

component should be co-developed as a separate expandable application, a project called

Thunder. The two projects were developed separately as the underlying forms engines were

incompatible with each other; however, these were merged together again after VBA.

2.2.2 Uses of Access

Access is used by small businesses, within departments of large corporations, and by hobby

programmers to create ad hoc customized desktop systems for handling the creation and

manipulation of data. Access can be used as a database for basic web based applications

hosted on Microsoft's Internet Information Services and utilizing Microsoft Active Server

Pages ASP. Most typical web applications should use tools like ASP/Microsoft SQL Server

or the LAMP stack.

Some professional application developers use Access for rapid application development,

especially for the creation of prototypes and standalone applications that serve as tools for

on-the-road salesmen. Access does not scale well if data access is via a network, so

applications that are used by more than a handful of people tend to rely on Client-Server

based solutions. However, an Access "front end" (the forms, reports, queries and VB code)

can be used against a host of database backend, including JET (file-based database engine,

used in Access by default), Microsoft SQL Server, Oracle, and any other ODBC-compliant

product.

2.2.3 Features of Access

One of the benefits of Access from a programmer's perspective is its relative compatibility

with SQL (structured query language) queries may be viewed and edited as SQL

tatements, and SQL statements can be used directly in Macros and VBA Modules to

manipulate Access tables. Users may mix and use both VBA and "Macros" for

programming forms and logic and offers object-oriented possibilities.

15

MSDE (Microsoft SQL Server Desktop Engine) 2000, a mini-version of Microsoft SQL

Server. 2000, is included with the developer edition of Office XP and may be used with

Access as an alternative to the Jet Database Engine.

2.2.4 Development of Access

Access allows relatively quick development because all database tables, queries, forms, and

reports are stored in the database. For query development, Access utilizes the Query Design

Grid, a graphical user interface that allows users to create queries without knowledge of the

SQL programming language. In the Query Design Grid, users can "show" the source tables

of the query and select the fields they want returned by clicking and dragging them into the

grid. Joins can be created by clicking and dragging fields in tables to fields in other tables.

Access allows users to view and manipulate the SQL code if desired.

The programming language available in Access is, as in other products of the Microsoft

Office suite, Microsoft Visual Basic for Applications. Two database access libraries of

COM components are provided: the legacy Data Access Objects (DAO), which was

uperseded for a time (but still accessible) by ActiveX Data Objects (ADO); however

(DAO) has been reintroduced in the latest version, Microsoft Access 2007.

Since all database queries, forms, and reports are stored in the database, and in keeping

with the ideals of the relational model, there is no possibility of making a physically

structured hierarchy with them. One recommended technique is to migrate to SQL Server

and utilize Access Data Projects. This allows stored procedures, views, and constraints

which are greatly superior to anything found in Jet.

Access allows no relative paths when linking, so the development environment should have

the same path as the production environment (though it is possible to write a "dynamic

linker" routine in VBA that can search out a certain back-end file by searching through the

directory tree, if it can't find it in the current path). This technique also allows the developer

to divide the application among different files, so some structure is possible.

16

2.2.5 File extensions of Access

Microsoft Access saves information under the following file extensions:

.mdb - Access Database (2003 and earlier)

.mde - Protected Access Database, with compiled VBA (2003 and earlier)

.accdb - Access Database (2007)

.accde - Protected Access Database, with compiled VBA (2007)

.mam - Windows Shortcut: Access Macro

.maq - Windows Shortcut: Access Query

.mar - Windows Shortcut: Access Report

.mat - Windows Shortcut: Access Table

.maf - Windows Shortcut: Access Form

.adp - Access Project

.adn - Access Blank Project Template

.mda - Access Database, used for adding (2, 95,97), previously used for workgroups

.mdw - Access Workgroup, database for user-level security .

. mdf - Access (SQL Server) detached database (2000)

2.2.6 Versions of Access

Table 2.1 Versions of access

Version Office suite
Date Version , Supported OS

number· version

1992 Access 1.1 1 Windows 3.lx

1993 Access 2.0 2.0 Windows 3.lx Office 4.3 Pro

Access for Office 95
1995 7.0 Windows 95

Windows 95 Professional

17

1997 8.0

1999

2001

2003 : Access 2003 11

2007
Microsoft Office

12
, Access 2007

Office 97

Windows 9x, NT 3.5/4.0

2000

Windows 9x, NT 4.0, Professional,

2000

Windows 98, Me, 2000. Office XP
XP , Professional

and Developer

Office 2003

Professional

and

Professional

Enterprise

Office 2007

Profession al.
Windows XP SP2. Vista ,

, Plus, Ultimate

Windows 2000, XP

and Enterprise

All of the Office 95 products have OLE 2 capabilities, and Access 7 shows that it was

compatible with Word 7.

2.3 What is a Database?

A database is a structured collection of records or data. A computer database relies upon

software to organize the storage of data. The software models the database structure in what

are known as database models. The model in most common use today is the relational

model. Other models such as the hierarchical model and the network model use a more

explicit representation of relationships.

18

Database management systems are the software used to organize and maintain the database.

These are categorized according to the database model that they support. The model tends

to determine the query languages that are available to access the database. A great deal of

the internal engineering of a DBMS, however, is independent of the data model, and is

concerned with managing factors such as performance, concurrency, integrity, and recovery

from hardware failures. ln these areas there are large differences between products.

2.3.1 History of Computer Databases

The first database management systems were developed in the 1960s. A pioneer in the field

was Bachman's early papers show that his aim was to make more effective use of the new

direct access storage devices becoming available: until then, data processing had been

based on punched cards and magnetic tape, so serial processing was the dominant activity.

The relational model was proposed by E. F. Cod in 1970. He criticized existing models for

confusing the abstract description of information structure with descriptions of physical

access mechanisms. For a long while, however, the relational model remained of academic

interest only. While CODASYL products (]DMS) and network model products (]MS) were

conceived as practical engineering solutions taking account of the technology as it existed.

During the 1980s, research activity focused on distributed database systems and database

machines. Another important theoretical idea was the Functional Data Model, but apart

from some specialized applications in genetics, molecular biology, and fraud investigation,

the world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some success in

fields where it was necessary to handle more complex data than relational systems could

easily cope with, such as spatial databases, engineering data, including software, and

multimedia data. Some of these ideas were adopted by the relational vendors, who

integrated new features into their products as a result. The 1990s also saw the spread of

Open Source databases, such as PostgreSQL and MySQL.

19

In the 2000s, the fashionable area for innovation is. the XML database. As with object

databases, this has spawned a new collection of start-up companies, but at the same time

the key ideas are being integrated into the established relational products. XML databases

aim to remove the traditional divide between documents and data, allowing all of an

organization's information resources to be held in one place, whether they are highly

structured or not.

2.3.2 Database Models

Various techniques are used to model data structure. Most database systems are built

around one particular data model, although it is increasingly common for products to offer

support for more than one model. For any one logical model various physical

implementations may be possible, and most products will offer the user some level of

control in tuning the physical implementation, since the choices that are made have a

significant effect on performance.

• Hierarchical model: In a hierarchical model, data is organized into an inverted

tree-like structure, implying a multiple downward link in each node to describe the

nesting, and a sort field to keep the records in a particular order in each same-level

list. This structure arranges the various data elements in a hierarchy and helps to

establish logical relationships among data elements of multiple files. Each unit in

the model is a record which is also known as a node. In such a model, each record

on one level can be related to multiple records on the next lower level. A record that

has subsidiary records is called a parent and the subsidiary records are called

children. Data elements in this model are well suited for one-to-many relationships

with other data elements in the database. This model is advantageous when the data

elements are inherently hierarchical. The disadvantage is that in order to prepare the

database it becomes necessary to identify the requisite groups of files that are to be

logically integrated.

20

• Network Model: The network model tends to store records with links to other

records. Each record iJ? the database can have multiple parents, i.e., the relationships

among data elements can have a many to many relationship. Associations are

tracked via "pointers". These pointers can be node numbers or disk addresses. Most

network databases tend to also include some form of hierarchical model. Databases

can be translated from hierarchical model to network and vice versa. The main

difference between the network model and hierarchical model is that in a network

model, a child can have a number of parents whereas in a hierarchical model, a
child can have only one parent.

• Relational Model: The basic data structure of the relational model is a table where

information about a particular entity (say, an employee) is represented in columns

and rows. The colurrrns enumerate the various attributes of an entity (e.g.

employee_name, address, phone_number). Rows (also called records) represent

instances of an entity (e.g. specific employees).The "relation" in "relational

database" comes from the mathematical notion of relations from the field of set

theory. A relation is a set of tupelos, so rows are sometimes called tuple. All tables

in a relational database have these rules: The ordering of colurru1s is immaterial,

Identical rows are not allowed in a table, each row has a single (separate) value for

each of its columns (each tuple has an atomic value).

Tables can have a designated column or set of columns that act as a "key" to select rows

from that table with the same or similar key values. A "primary key" is a key that has a

unique value for each row in the table. Keys are commonly used to join or combine data

from two or more tables. For example, an employee table may contain a column named

address which contains a value that matches the key of an address table. Keys are also

critical in the creation of indexes, which facilitate fast retrieval of data from large tables. It

is not necessary to define all the keys in advance; a column can be used as a key even if it
was not originally intended to be one.

21

2.3.4 DBMS Internals

• Storage and Physical Database Design: Database tables/indexes are typically stored

in memory or on hard disk in one of many forms, ordered/unordered flat files,

ISAM, heaps, hash buckets or B+ trees. These have various advantages and

disadvantages discussed further in the main article on this topic. The most

commonly used are B+ trees and ISAM. Other important design choices relate to

the clustering of data by category (such as grouping data by month, or location),

creating pre-computed views known as materialized views, partitioning data by

range or hash.

• Security: Database security denotes the system, processes, and procedures that

protect a database from unintended activity. In the United Kingdom legislation

protecting the public from unauthorized disclosure of personal information held on

databases falls under the Office of the Information Commissioner. United Kingdom

based organizations holding personal data in electronic format (databases for

example) are required to register with the Data Commissioner.

• Locking: Locking is the act of putting a lock (access restriction) on an aspect of a

database which at a particular given instance is being modified. Such Jocks can be

applied on a row level, or on other levels such as an entire table. This helps

maintain the integrity of the data by ensuring that only one user at a time can

modify the data. Databases can also be locked for other reasons, like access

restrictions for given levels of user. Databases are also locked for routine database

maintenance, which prevents changes being made during the maintenance.

• Architecture: Depending on the intended use, there are a number of database

architectures in use. Many databases use a combination of strategies. On-line

Transaction Processing systems (OLTP) often use row-oriented data store

architecture, while data-warehouse and other retrieval-focused applications like

Google's Bitable, or bibliographic database (library catalogue) systems may use

column-oriented data store architecture.

23

/

Indexing: All of these databases can take advantage of indexing to increase their speed,

and this technology has advanced tremendously. The most common kind of index is a

sorted list of the contents of some particular table column, with pointers to the row

associated with the value. An index allows a set of table rows matching some criterion to be

located quickly. Typically, indexes are also stored in the various forms of data-structure

mentioned above. Usually, a specific technique is chosen by the database designer to

increase efficiency in the particular case of the type of index required.

Relational DBMSs have the advantage that indexes can be created or dropped without

changing existing applications making use of it. The database chooses between many

different strategies based on which one it estimates will run the fastest.

2.3.5 Applications of Databases
Databases are used in many applications, spanning virtually the entire range of computer

software. Databases are the preferred method of storage for large multi-user applications,

where coordination between many users is needed. Even individual users find them

convenient, and many electronic mail programs and personal organizers are based on

standard database technology. Software database drivers are available for most database

platforms so that application software can use a common Application Programming

Interface to retrieve the information stored in a database. Two commonly used database

APls are JDBC and ODBC. For example supplier's database contains the data relating to

suppliers such as; supplier name, supplier code, supplier address it is often used by schools

to teach students and grade them.

2.4 Summary
Chapter 2, introduced Microsoft Access with meaning, file extensions, versions and it

covered the application of database by general models and an algorithm.

24

CHAPTER3

SQL
3.1 Overview

In this chapter, the general information about SQL, SQL table basics, creating and inserting
table and updating, deleting records will be explained briefly.

3.2 What is SQL?

SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to

communicate with a database. According to ANSI (American National Standards Institute),

it is the standard language for relational database management systems. SQL statements are

used to perform tasks such as update data on a database, or retrieve data from a database.

Some common relational database management systems that use SQL are: Oracle, Sybase,

Microsoft SQL Server, Access, Ingres, etc. Although most database systems use SQL, most

of them also have their own additional proprietary extensions that are usually only used on

their system. However, the standard SQL commands such as "Select", "Insert", "Update",

"Delete", "Create", and "Drop" can be used to accomplish almost everything that one needs
to do with a database.

3.2.1 Tables Basic

A relational database system contains one or more objects called tables. The data or

information for the database is stored in these tables. Tables are uniquely identified by their

names and are comprised of columns and rows. Columns contain the column name, data

type, and any other attributes for the column. Rows contain the records or data for the
columns.

The Microsoft Jet database engine searches the specified table or tables, extracts the chosen

columns, selects rows that meet the criterion and sorts or groups the resulting rows into the

order specified. SELECT statements don't change data in the database. SELECT is usually

e first word in an SQL statement. Most SQL statements are either SELECT or
SELECT. . .INTO statements.

25

SELECT Statement: Instructs the Microsoft Jet database engine to return information

from the database as a set of records.

SELECT [predicate] {* I table.* [table. J fieldl [AS

aliasl] [, [table.Jfield2 [AS alias2] [, ..]}

FROM tableexpression [, ... J [IN externaldatabase]

[WHERE ...]

[GROUP BY .

[HAVING]

[ORDER BY .

[WITH OWNERACCESS OPTION]

The SELECT statement has the following parts:

• Predicate: One of the following predicates: ALL, DISTINCT, DISTINCTROW, or

TOP. You use the predicate to restrict the number of records returned.

• *: Specifies that all fields from the specified table or tables are selected.

• Table: The name of the table containing the fields from which records are selected.

• fieldl, field2: The names of the fields containing the data you want to retrieve. If

you include more than one field, they are retrieved in the order listed.

e alias l, aliasz: The names to use as column headers instead of the original column

names in table.

• table expression: The name of the table or tables containing the data you want to

retrieve.

• external database: The name of the database containing the tables in table

expression if they are not in the current database.

The minimum syntax for a SELECT statement is:

SELECT fields FROM table

You can use an asterisk(*) to select all fields in a table. The following example selects all

of the fields in the Employees table:

SELECT* FROM Employees;

26

SELECT Statement: Instructs the Microsoft Jet database engine to return information
from the database as a set of records.

SELECT (predicate] {* I table.* I (table. J fieldl (AS

aliasl] (, (table.Jfield2 [AS alias2] [, ..]}

FROM tableexpression [, ... J [IN externaldatabase]
[WHERE ...]

[GROUP BY .

[HAVING]

(ORDER BY .

[WITH OWNERACCESS OPTION]

The SELECT statement has the foJJowing parts:

• Predicate: One of the following predicates: ALL, DlSTINCT, DISTINCTROW, or

TOP. You use the predicate to restrict the number of records returned.

• *: Specifies that all fields from the specified table or tables are selected.

• Table: The name of the table containing the fields from which records are selected.

• fieldl, field2: The names of the fields containing the data you want to retrieve. If

you include more than one field, they are retrieved in the order listed.

e alias l, aliasz: The names to use as column headers instead of the originai column
names in table.

• table expression: The name of the table or tables containing the data you want to
retrieve.

• external database: The name of the database containing the tables in table

expression if they are not in the current database.

The minimum syntax for a SELECT statement is:

SELECT fields FROM table

You can use an asterisk (*) to select aJl fields in a table. The following example selects all
of the fields in the Employees table:

SELECT* FROM Employees;

26

If a field name is included in more than one table in the FROM clause, precede it with the

table name and the . (dot) operator. In the following example, the Department field is in

both the Employees table and the Supervisors table. 'The SQL statement selects departments
from the Employees table and supervisor names from the Supervisors table:

SELECT Employees.Department, Supervisors.SupvName

FROM Employees INNER JOIN Supervisors

WHERE Employees.Department= Supervisors.Department;

When a Recordset object is created, the Microsoft Jet database engine uses the table's field

name as the Field object name in the Recordset object. If you want a different field name or

a name isn't implied by the expression used to generate the field, use the AS reserved word.

The following example uses the title Birth to name the returned Field object in the resulting
Recordset object:

SELECT BirthDate

AS Birth FROM Employees;

Whenever you use aggregate functions or queries that return ambiguous or duplicate Field

object names, you must use the AS clause to provide an alternate name for the Field object

The following example uses the title HeadCount to name the returned Field object in the
esulting Recordset object:

SELECT COUNT (EmployeeID)

AS Headcount FROM Employees;

3.2.2 Selecting Data

e select statement is used to query the database and retrieve selected data that match the
iteria that you specify. Here is the format of a simple select statement:

select "column1"

[, " column 2 " , etc]

from "tablename"

[where "condition" J ;
[] = optional

27

The column names that follow the select keyword determine which columns will be

returned in the results. You can select as many column names that you'd like, or you can
use a "*" to select all columns.

The where clause (optional) specifies which data values or rows will be returned or
displayed, based on the criteria described after the keyword where.

Conditional selections used in the where clause:
= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

<> Not equal to

LIKE *See note below

The LIKE pattern matching operator can also be used in the conditional selection of the

where clause. Like is a very powerful operator that allows you to select only rows that are

"like" what you specify. The percent sign "%" can be used as a wild card to match any

possible character that might appear before or after the characters specified. For example:
select first, last, city

from empinfo

where first LIKE 'Er%';

This SQL statement will match any first names that start with 'Er'. Strings must be in single
uotes. Or you can specify,

select first, last

from empinfo

where last LIKE '%s';

This statement will match any last names that end in a 's'.

select* from empinfo

where first= 'Eric';

This will only select rows where the first name equals 'Eric' exactly.

28

3.2.3 Creating Tables

The create table statement is used to create a new table. Here is the format of a simple
creates table statement:

create table "tablename"

("columnl" "data type",

"column2" "data type",

"column3" "data type")

Format of create table if you were to use optional constraints:

create table "tablename"

("columnl" "data type"

[constraint],

"column2" "data type"

[constraint],

"column3" "data type"

[constraint]);

[J = optional

1 ou may have as many columns as you'd like, and the constraints are optional.
Example: create table employee

(first varchar(lS),

age number(3),

address varchar(30),

city varchar(20),

last varchar(20),

To create a new table, enter the keywords create table followed by the table name, followed

an open parenthesis, followed by the first column name, followed by the data type for

that column, followed by any optional constraints, and followed by a closing parenthesis. It

·~ important to make sure you use an open parenthesis before the beginning table and a

losing parenthesis after the end of the last column definition. All SQL statements should
end with a";".

29

~.-,-------~-· --- -.-'-"'·-- .. ·-''·'-· ··. ·.·a .. ···-.•·=-"~ ·---.,---•~-,,""'--~•ss,-- · ·-----------

The table and column names must start with a letter and can be fol1owed by letters,

numbers, or underscores - not to exceed a total of 30 characters in length. Do not use any

SQL reserved keywords as names for tables or column names (such as "select", "create",

insert", etc).

Data types specify what the type of data can be for that particular column. If a column

ailed "Last_Name", is to be used to hold names, then that particular column should have a

varchar" (variable-length character) data type.

Here are the most common Data types:

• char(size): Fixed-length character string. Size is specified in parenthesis.

• varchar(size) : Variable-length character string. Max size is specified ID

parenthesis.

• number(size): Number value with a max number of column digits specified ID

parenthesis.

• Date: Date value

• number(size,d): Number value with a maximum number of digits of "size" total,

with a maximum number of "d" digits to the right of the decimal.

\\'hat are constraints: When tables are created, it is common for one or more columns to

nave constraints associated with them. A constraint is basically a rule associated with a

olumn that the data entered into that column must follow. For example, a "unique"

onstraint specifies that no two records can have the same value in a particular column.

They must all be unique. The other two most popular constraints are "not null" which

specifies that a column can't be left blank, and "primary key". A "primary key" constraint

defines a unique identification of each record (or row) in a table. Constraints can be entered

..:1 this SQL interpreter, however, they are not supported in this Intro to SQL tutorial &

rterpreter.

30

3.2.4 Inserting into a Table

The insert statement is used to insert or add a row of data into the table.To insert records

into a table, enter the key words insert into followed by the table name, followed by an

open parenthesis, followed by a list of column names separated by commas, followed by a

closing parenthesis, followed by the keyword values, followed by the list of values

enclosed in parenthesis. The values that you enter will be held in the rows and they will

match up with the column names that you specify. Strings should be enclosed in single

quotes, and numbers should not.

insert into "tablename"

(first_column, ... last_column)

values (first_value, ... last_value);

In the example below, the column name first will match up with the value 'Hatice', and the

olumn name state will match up with the value 'Ozsaltik'.

Example: insert into employee

(first, last, age, address, city, state)

values ('Hatice', 'Ozsal tik' , 00, '2130 Boars

'Hazard Co', 'Georgia');

3.2.5 Updating Records

The update statement is used to update or change records that match specified criteria. This

is accomplished by carefully constructing a where clause.

update "tablename"

[, "nextcolumn" =

where "columnname"

OPERATOR "value"

[and I or "column"

OPERATOR "value"];

Examples: update phone_book

set area code= 623

set "columnname" = "newvalue"

"newvalue2" ... J

where prefix= 979;

31

3.2.6 Deleting Records

The delete statement is used to delete records or rows from the table.

Delete from "tablename"

where "columnname"

OPERATOR "value"

[and/ or "column"

OPERATOR "value"];

[J = optional

Examples: delete from employee

where lastname = 'May';

To delete an entire record/row from a table, enter "delete from" followed by the table name,

-allowed by the where clause which contains the conditions to delete. 1f you leave off the
vhere clause, all records will be deleted.

3.2.7 Removing Tables

The drop table command is used to delete a table and all rows in the table. To delete an

entire table including all of its rows, issue the drop table command followed by the table

ame. Drop table is different from deleting all of the records in the table. Deleting all of the

ords in the table leaves the table including column and constraint information. Dropping

e table removes the table definition as well as all of its rows.

drop table "tablename"

Example.

drop table myemployees_ts02J l;

_.J Summary

apter 3, a general information about SQL is explained. The creating, inserting table and
"ting ,deleting records are presented.

32

-------- -

CHAPTER4

ACTIVEX DATA OBJECTS (ADO)

4.1 Overview

This chapter will present the property and fonksiyons the ActiveX Data Objects (ADO)

with existing technologies and new features and this chapter focuses on general purpose

ADO connection objects, ADO Recordsets and ADO Attributes Property will include with
general applications.

4.2 What is ADO?

ActiveX Data Objects (ADO) and Object Linking and Embedding Database (OLE DB), its

underlying technology, currently play a big part in data access. Microsoft has

unequivocally committed its future to it, and rightly so. The paperless office has yet to

appear, but the amount of data stored on computer systems increases every day. This is

illustrated by the rate at which the Web is expanding and that's just the public face of data.

Much more data is hidden from general view in corporate applications or intra.nets. ADO is

entral to Microsoft's data access strategy, so it's important to understand why it came
about and what sort of a future it has.

What is Data: Make a mental note of how many separate pieces of information you've got:

ta.bases, documents, spreadsheets, e-mail messages, HTML and Active Server Pages

. .\SP) documents, etc. They are all pockets of data, but are stored in different forms. This

· ght seem obvious, but traditionally data has been thought of as being stored only in a

tabase; if you built a business application, the data had to be in a database. In fact, as

mputers become more powerful, the term "data" is starting to include multimedia items

h as music and video, as well as objects and the more typical document-based data. So,

.· "data" 1 mean any piece of information whatever its contents. Whether it's your address

k, you 're monthly expenses spreadsheet, or a pleading letter to the taxrnan, its all data.

33

4.3 About Universal Data Access

Universal Data Access (UDA) is Microsoft's strategy for dealing with all this data. It's

aimed at providing high-performance access to a variety of data stores. That data is stored

in many different ways, and there is no central way of accessing it all. UDA offers an easy

to-use methodology that allows access to multiple sources of data in a single way. Build in

high performance and support for existing data access methods, and you're on your way to

omething that could make a real difference. It's important to remember that UDA is

imply Microsoft's strategy for accessing data, not a technology. UDA is physically

implemented as a collection of four technologies: ADO, OLE DB, Remote Data Services

(RDS), and Open Database Connectivity (ODBC). Collectively, these four technologies are

known as the Microsoft Data Access Components (MDAC). This means that you don't

have to bundle all your data into a single data store. Here's how it can work:

/.\DO
t .•.

Figure 4.1. Shown Microsoft data access components (MDAC)

'hen building an application, you can make sure it uses ADO for its data access, and ADO

·ill talk to all the data sources required. This means that programming is easier, because

_ ou need learn how only one programming syntax, as shown in the following illustration.

Because ADO provides fast, transparent access to different types of data, there's no reason

to use any other method. The three main design goals for the Data Access Components:

• Meeting the key customer requirements, such as performance, reliability, and broad

industry support

• Giving access to the widest range of data sources through a common interface

• Providing an easy migration path for existing data access technologies

34

- ----~ - - -- - - --===----- - """

4.4 ADO Existing Technologies

• DB-Library (DBLib): This is the underlying technology for connecting to SQL

Server. It is primarily designed for C, but is often used in Visual Basic. Because it is

specific to SQL Server, it is extremely fast and functional. For this very reason,

however, it doesn't allow access to any other source of data. Other databases, such

as Oracle and Sybase, have similar native communication libraries.

• ODBC: Open Database Connectivity (ODBC) was the first step on the road to a

universal data access strategy. ODBC was designed as a cross-platform, database

independent method for accessing data in any relational database through the use of

an Application Program Interface (API), known as the ODBC APL Although

ODBC was designed for multi database use, it is often used only on single relational
databases.

• DAO: The Data Access Objects (DAO), introduced with Microsoft Access,

provided a strictly hierarchical set of objects for manipulating data in Jet and other

Indexed Sequential Access Method (ISAM) and SQL databases. These objects were

first available with Visual Basic 3.0 and quickly became the most commonly used

data access method for early Visual Basic programs. DAO also had the advantage

of being able to sit on top of ODBC, which allowed it to communicate with many
different databases.

• RDO: RDO also brought the world of remote database servers to the world of many

programmers. RDO and ODBC share the same relationship as ADO and OLE DB: a

thin layer on top of an underlying data access mechanism.

• ODBCDirect: An extension to DAO, ODBCDirect combined portions of DAO and

RDO. It allows programmers to use the DAO programming model and also allows

access to ODBC data sources without having the Jet database engine loaded.

-ts Why ADO?

OLE DB is a COM-based set of object-oriented interfaces, so it is too complex for a large

ortion of the programming community to use, or it is not suitable because they use

rograrnming languages that don't have access to custom COM interfaces. For example,

accessing OLE DB directly requires C++ because of the OLE DB interface's complexity.

35

ADO is the higher-level model that most people will use, because it allows access from

dual-interface COM components that can be accessed from Visual Basic and scripting

languages. It equates fairly well to the DAO level, where you create an object and call its

methods and properties. As a COM component, it can be used from any language that

supports COM, such as Visual Basic, VBA, scripting languages, and Visual C++.

Various languages all have the ability to use a central data access strategy. Some languages

(like Java and Visual C++) can talk directly to OLE DB in addition to talking to the easier

ADO.ADO also improves speed and ease of development by providing an object model

that allows data to be retrieved from a data source with as little as one line of code.

4.6 Data Providers and Data Consumers

OLE DB introduces two new terms that help to explain how OLE DB and ADO fit
together:

1. A Data Consumer is something that uses (or consumes) data. Strictly speaking,

ADO is actually a consumer, because it uses data provided by OLE DB.

2. A Data Provider is something that provides data. This isn't the physical source of

the data, but the mechanism that connects you to the physical data store. The

provider may get the data directly from the data store, or it may go through another
layer (such as ODBC) to get to the data store.

4.7 New Features of ADO

ADO 2.5 and 2.6 have a host of new features that make programming easier and ex tend the
goal of Universal Data Access.

ADO 2.5

• The Record Object: The Record object is designed to deal with Document Source

Providers, which are OLE DB Providers that don't access databases, but provide

data from semi structured data stores. Two examples of this are Microsoft's

Exchange Server 2000 and Internet Information Server 5.0; both are sources of

large amounts of data, and the OLE DB Provider for Internet Publishing allows you

to access the data storage structure and the stored objects themselves.

36

• The Stream Object: The Stream object is a component that wraps the COM

!Stream interface, allowing easy access to streams of memory. This provides a way

to transfer Recordsets directly to other components (such as the ASP 3. 0 Request

and Response objects) that support streams. The Stream is also used with Document
Source Providers to allow access to file contents.

ADO 2.6

• Command Streams: Command streams allow a Stream object to be used as the

source of a command. A good example of this is a Stream containing an XML
command to be executed against SQL Server 2000.

• Results in Streams: Along with command streams, ADO 2.6 allows the results of a

data query to be returned into a Stream object. This is particularly useful for
obtaining XML data directly from SQL Server 2000.

• Field Status Values: The Status property of the Field object is now filled with

information to help with the dreaded "Errors Occurred" error.

• SQL Variant Support for Cursor Service: Extended support for variant types has
been added to the OLE DB Cursor Service.

• ADOX Group and User Properties: The Properties collection has been added to

the ActiveX Data Objects Extensions (ADOX) Group and User properties to allow
access to provider-specific properties.

• ADO MD UniqueName support: The UniqueName property can now be used to

access ActiveX Data Objects Multidimensional ADO MD objects. This means that

parent collections no longer need to be populated to retrieve schema objects .

. 8 ADO Connection Object

The ADO Connection Object is used to create an open connection to a data

ce. Through this connection, you can access and manipulate a database.If you want to

ess a database multiple times; you should establish a connection using the Connection

,ject. You can also make a connection to a database by passing a connection string via a

mmand or Recordset object. However, this type of connection is only good for one
ific, single query.

37

ProgID

set objConnection=Server.CreateObject("ADODB.connection'')

Properties

or returns the attributes of a Connection object

or returns the number of seconds to wait while altc1rn

or returns the details used to create a connection

ConnectionTimeout 1-::iets or returns the number of seconds to wait for a

or returns the location of the cursor service

DefaultDatabase 1-::iets or returns the default database name

.\lode r.',Pt, or returns the provider access permission
Provider

'ersion
a value describing if the connection is open or closed

the ADO version number

_.lethods

_.fethod

Cancel an execution

CommitTrans
any changes and ends the current transaction

E"lecute
a query, statement, procedure or provider

38

r
!

~---- , · .. , l/O~ens a_conncction .. -· ·- • ·-- _ _ .J
!OpenSchema /Returns schema information from the provider about the data!
i !
' I / /source /
L..... •.. •••..•. •... .••.••.• •.• .. •••• ·--·····-·-...J.. . . ·--···---·- ····-····•..•....... ·- --... •. . --·-··------------- •......• ---/
!RollbackTrans /Cancels any changes in the current transaction and ends thej
i I , I transaction /
i I 1 L. J ,, ,, .,___________________ -------- -~

Events
;Event · ·· · · ·

BeginTransComplete /Triggered after the BeginTrans operation
I -------------------·-""·--· ··-·--+.----· .. ···----·---........................ -·---·-······ ...

ComrnitTransComplete fTriggered after the CommitTrans operation

after a connection ends

Jnf oMessage
after a command has finished executing

if a warning occurs during a

-·------ !:= -----------------------......... -···--···--------"-···----·--------------------------... : RollbackTransComplete f lriggered after the Rollh::irk-Tnmc nnorM;~-

Will Connect
before a connection starts

illExecute
before a command is executed

-t9 ADO Attributes Property

The Attributes property sets or returns a long value that indicates one or more

-haracteristics of an object. When setting multiple attributes, it is possible to sum the
alues. Syntax:

object.Attributes

"'" -·-·····"', ·--, ·----- •• , •••..••••.••••• ,c, .. _,_,_.,.,,.,_________ __ , •. __ , '"'" , ""'--· ""'

~ect /Description of the Attributes Property
-·-. -~· ,.,,,.......,-,,,.,~~m~w,v•· "'·•~ ,-,,,-~- "-~»~v·•w-=a~•~•=,~,~ .• ,w~,~--=•=nm•v=,•--•~· =•ow,·-..,,..,,,_,_,N,,-....,.,.~,,,,.,,_,~_,~---••~,-=,~=--~ ~

unecnon jThe Attributes property has read/write permissions on a Connection'
. I

XactAttributeEnum
I

/object. lts value can be the sum of one or more
/values. Default value is 0

39

Parameter · · ffhe Attributes property has read/write permissions on· a· Parameter'
! ;
!object. Its value can be the sum of one or more ParameterAttributesEnum)
f i
!values. Default value is adParamSigned j

--·-···-·····l ···-···-··-··""""'--·'-·-·-···-··---·- ··--·- ··-·-···--··-··-·····- ·-·- !
Field [The Attributes property has read/write permissions when used to create aj

l j
I '

jRecordset, but it has read-only permissions when you open an existing]
I ,
1Recordset. Its value can be the sum of one or more FieldAttributeEnum!

~alues
I

- . ..,, ••. ~--"' S"••~•,,.,_,,-,~W••~- •• ft· ,~w<vW .,.,.~,_., •. ,,,.,,,.,.,..,,.., • .,..,._,.,,, .. ,,.~n,oo,,dd",..""'°,...,""""'d<-•A••O•M Vft,,o,, mft-ft" ,o·o,. •• ~.,,,,_,,,. hAA.~dA-,OOAOn• ,·,, .• UoOA'<<ft«•C"P•-Wtt,,,~o,o·,-,,-,,,,.,.,...,,_,_,,,~,_,..,.,A,._,,_ •• , -•••• .. ,

Property [Ihe Attributes property is read-only for a Property object. Its value can!
i i

jbe the sum of one or more PropertyAttributesEnum values
i

4.IO ADO Database Connection

Before a database can be accessed from a web page, a database connection has to be

stablished .

. IO.I Create a DSN-Jess Database Connection

The easiest way to connect to a database is to use a DSN-less connection. A DSN-Jess

nnection can be used against any Microsoft Access database on your web site.

- you have a database called "northwind.mdb" located in a web directory like

-:/webdata/", you can connect to the database with the following ASP code:

<% set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb11 %>

.10.2 Create an ODBC Database Connection

· you have an ODBC database called "north wind II you can connect to the database with the

lowing ASP code:

<% set conn=Server.CreateObject(11ADODB.Connection")

conn.Open "northwind" %>

th an ODBC connection, you can connect to any database, on any computer m your

work, as long as an ODBC connection is available.

40

- --------- - - - ·=-- - - --------- eee

4.11 ADO Recordset

Record: A set of related data about a person, place, event, or some other item. Table data is

tored in records (rows) in the database. Each record is composed of a set of related fields

(columns) each field defining one attribute of information for the record. Taken together, a

record defines one specific unit of retrievable information in a database.

Create an ADO Table Recordset

Suppose we have a database named "Northwind", we can get access to the "Customers"

table inside the database with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs. Open "Customers", conn

%>

Create an ADO SQL Recordset

,Ve can also get access to the data in the "Customers" table using SQL:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select* from Customers", conn

%>

Extract Data from the Recordset

After a recordset is opened, we can extract data from recordset.

Suppose we have a database named "North wind", we can get access to the "Customers"

ble inside the database with the following lines:

41

~~--

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

for each x in rs.fields

response.write(x.name)

response.write(" = ")

response.write(x.value)

next

%>

When creating a Recordset object using a non-linked TableDef object in a Microsoft Jet

workspace, table-type Recordset objects are created. Only dynaset-type or snapshot-type

Recordset objects can be created with linked tables or tables in Microsoft Jet-connected

ODBC databases

4.12 ADO Recordset Object

You use Recordset objects to manipulate data in a database at the record level. When you

e DAO objects, you manipulate data almost entirely using Recordset objects. All

Recordset objects are constructed using records (rows) and fields (columns). There are five

ypes of Recordset objects:

• Table-type Recordset: representation in code of a base table that you can use to

add, change, or delete records from a single database table (Microsoft Jet

workspaces only).

• Dynaset-type Recordset: the result of a query that can have updatable records. A

dynaset-type Recordset object is a dynamic set of records that you can use to add,

change, or delete records from an underlying database table or tables. A dynaset

type Recordset object can contain fields from one or more tables in a database. This

type corresponds to an ODBC keyset cursor.

42

• Snapshot-type Recordset: a static copy of a set of records that you can use to find

data or generate reports. A snapshot-type Recordset object can contain fields from

one or more tables in a database but can't be updated. This type corresponds to an

ODBC static cursor.

• Forward-only-type Recordset - identical to a snapshot except that no cursor is

provided. You can only scroll forward through records. This improves performance

in situations where you only need to make a single pass through a result set. This

type corresponds to an ODBC forward-only cursor.

• Dynamic-type Recordset - a query result set from one or more base tables in

which you can add, change, or delete records from a row-returning query. Further,

records other users add, delete, or edit in the base tables also appear in your

Recordset. This type corresponds to an ODBC dynamic cursor.

In a Microsoft Jet workspace, if you don't specify a type, DAO attempts to create the type

of Recordset with the most functionality available, starting with table. If this type isn't

available, DAO attempts a dynaset, then a snapshot, and finally a forward-only type

Recordset object .

. ..\ new Recordset object is automatically added to the Recordsets collection when you open

e object, and is automatically removed when you close it. You can create as many

Recordset object variables as needed. Different Recordset objects can access the same

bles, queries, and fields without conflicting

- you use variables to represent a Recordset object and the Database object that contains

Recordset, make sure the variables have the same scope, or lifetime. For example, if

u declare a public variable that represents a Recordset object, make sure the variable that

resents the Database containing the Recordset is also public, or is declared in a Sub or

ction procedure using the Static keyword.

e default collection of a Recordset object is the Fields collection, and the default

perty of a Field object is the Value property. Use these defaults to simplify your code.

43

When you create a Recordset object, the current record is positioned to the first record if

there are any records. 1f there are no records, the RecordCount property setting is O, and the
BOF and EOF property settings are True.

You can use the MoveNext, MovePrevious, MoveFirst, and MoveLast methods to

reposition the current record. Forward-only-type Recordset objects support only the

MoveNext method. When using the Move methods to visit each record (or "walk" through

the Recordset), you can use the BOF and EOF properties to check for the beginning or end
of the Recordset object.

With dynaset- and snapshot-type Recordset objects in a Microsoft Jet workspace, you can

also use the Find methods, such as FindFirst, to locate a specific record based on criteria. If

the record isn't found, the NoMatch property is set to True. For table-type Recordset
objects, you can scan records using the Seek method.

The Type property indicates the type of Recordset object created, and the Updatable

operty indicates whether you can change the object's records. Information about the

cture of a base table, such as the names and data types of each Field object and any
...•• dex objects, is stored in a TableDef object.

refer to a Recordset object in a collection by its ordinal number or by its Name property
ing, use any of the following syntax forms:

-E:ordsets(O)

-e::>rdsets ("name")

-=-::0rdsets ! [name]

13 Summary

er 4, explained the meaning and property of the ActiveX Data Objects (ADO) with

ng technologies and new features. ADO connection objects, ADO Recordsets and
Attributes Property are presented with general applications.

44

CHAPTERS

AUTOMATION SYSTEM FOR MANAGING PRISON VISITATION

5.1 Overview

In this chapter, description about project will be presented with login, main windows and

their functions and forms.

5.2 Project Explanation

There are two important parts in my project. First, Login window and second one the main

window. Now these parts will be presented.

5.2.1 Explanation of Login Window

To be able to use the program the user must enter the right username and password to have

access to the program functions. The usemame is not case sensitive but the password is

case sensitive. This form will first control is the username exist in the database or not and

then moves forward to check the password. Once the login is successful the program will

move to the main form and the user can proceed to use the program.

45

Figure 5.1 Shows the Login window

5.2.2 Explanation of Main Window

Once the user has a successful login this form will appear to the user. In the right side is the
program's main functions panel, which consist of:

Today: to show the today's records of visitors.

New Record: to add new visitor information.

Find Record: to search the visitors records for a specific name.

Prisoners: managing prisoner's information.

Reports: to generate printable reports for both the prisoner's records and the visitors
records.

User Management: managing the users of the program and defining how can login.

Logout: to logout of the system or change active user. (Will not exit the program)
Exit: to close the program.

Figure 5.2 Shows the Main window

46

The Today Window

This form shows all the current records of the visitors came in and out in the current day. It

shows information such as the visitor's name and surname, his/hers ID number, Contact

number, to who they came, the reason of the visit, date and finally their in and out time.

Information of the each record can be modified by double-clicking on the record, and then a

form will open to show the information of the record and will allow the user to modify. By

selecting a record and right-clicking on it will allow the user to end a visit, by doing so the

out time will be added to the record for future use.

I
I;
i I ,.
! [,,,
11·
I
I

1[2j~Surname .!!!._J Mobile !Address
.1., . I. •

2 Andrew Fulle1 222222 Timur Citak
3 Janet Leverling 33333333 Melin Kemal
4 Ma,garet Peacock 444444444 Senol Bilgin
5 Steven Buchanan 55555555 Timur C,tak
6 Michael Suyama 66666666 Senol Bilgin
7 Robert King 77777777 Ahmel Na1
8 l.eue Callahan 888888 Mehmet Kamil
9 Anne Dodswo,th 939939339 Ozan Pasa

727 58 PM
7 2828PM
72821 PM

Reson I Date
[ffj)(t1)mj
6/2/2008 72600 PM
6/2/2008 72600 PM
6/2/2008 72600 Pl"
6/2/2008 72600 PM
612/2008 72600 PM
612/2008 72600 PM
6/2/2008 726 00 PM
6/2/2008 72600 Pl"

72754 PM

Figure 5.3 Shows the Today window

47

The Add New Record Window

When a visitor come to visit a prisoner the user will have to add the visit information to the

database. Such information will be both related to the visitor and the prisoner, such as their

names and the reason of the visit and the relationship, some additional information will be

what the visitor got for the prisoner. An additional function of this program is to be able to

capture the photos of the visitors and save them for complete identification. When any

visitor comes in, any video capturing device attached to the operating system such as a

webcam will allow the program to capture an image of the visitor and saves it for facial

identification

· Visitor Information·

I I Name

Surname

Prisoner

ID No.

Relation

Name
Select

TEL

Address
Vi sol
Reason

Capture

Gbject

i
' .:] ! T ane

Add » j

YTL

Add » --

I Save ii Cancel

Root Amount Tfpe
Object

Amout1t i

r, In r Out

Cash

Figure 5.4 Shows the Add new record window

48

Prisoner Select Window

When adding visit information the user must enter the prisoner name that the visitor is

going to visit. By clicking on the select button in the add window this window will appear

to easily select a prisoner, by writing their name or just choosing from the list.

Name

16 name surname
1 .6.hmet rsJar
5 idris Oral
2 Mehmet Kamil
6 Mesut Oral
4 Metin Kemal
8 t..-1uslum Oglan
9 Ozan Pasa
7 Senol Biloin

10 Terkan Sanatci
3 Tirnur Citak

OK Cancel

Figure 5.5 Shows the Prisoner select window

Capture Window

Vhen the user enter the visit information he will be required to snap and attach a photo of

the visitor to the record, by clicking on the capture button a window will open and starts the

attached video capture device to the system in real-time mode and then by clicking on the

capture button again the window will capture a single frame and send it to the add window

so it will be saved with the record.

49

The Find Record Window

For looking at the saved record that has been saved in the database the user can search the

database by entering a name or a date. User can find information both related to the visitor

and the prisoner, such as their names, surnames, IDS, mobiles, address, in come dates, and

in-out going times.

\/is,tor Nam~ !I r Date 23 Show All

~Name I Surname f Kimlik f Address f ToName f T o5urname [Relation [Reson [Date 1 Time
1 Nancy Davolio 1111111 Muslum Oglan 6/2/2008 7 2600 P
2 Andrew Fuller 222222 Timur Citak 6/212008 72600 P
3 Janet Leverling 33333333 Metrn Kernal 6/2/2008 72600 P
4 Margaret Peacock 444444444 Senol Bilgin 6/2/2008 7 26 00 P
5 Steven Buchanan 55555555 Timur Citak 6/2/2008 72600 P
6 Michael Suyama 66666666 Senol Bilgin 6/2/2008 7 26 00 P
7 Robert King 77777777 Ahmet Na, 6/2/2008 72600 P
8 Laura Callahan 888888 Mehmet Kami I 6/2/2008 7 26:00 P
9 Anne Dodsworth 999999999 Ozan Pasa 612/2008 7 26 00 P

L
Figure 5.6 Shows the Find record window

50

The Prisoners Window

In this window all the records of the prisoners will be managed from here. The user can add

a new prisoner record or modify an existing one by double clicking on it. And user can

make search with prisoner's name and status. Status shows the user if prisoner inside or

Add~ Find

II ID Name Surname lnDale OutDale Status Note
1 Ahmel Nar 6/2/2008 ·01212ms Normal Killer
5 idris O,al 6/2/2008 6/2/2038 T rensteued Killer
2 Mehmel Kamil 6/2/2008 6/2/2038 Normal Needs Care

l••I 6 Mesut Oral 6/2/2008 6/2/2038 Transferred Mad
4 Melin Kemal 6/2/2008 6/2/2038 Transferred
8 Muslum Oglan 6/2/2008 6/2/2038 Normal 1 Crazy
9 Ozan Pasa 6/2/2008 6/212038 In Hospital Crazy
7 Sena! Bilgin 6/2/2008 £,/2/2038 In Hospital

10 T erken Sanatci 6/2/2008 6/2/2038 Normal I Mad
'>I 3 Lirnur Citak 6/2/2008 6/2/2038 Normal

f:·

outside.

Figure 5.7 Shows the Prisoners window

51

Add New Prisoner

By clicking on add new in the prisoner's window, this window will appear to enter a new

prisoner record. The user must enter the prisoner information to be saved in the database.

cAdd New Prisoner

Name
Save

Surname Cancel

In Date 23.05.2008

Out Date ! 2305 2008

Status Note

Figure 5.8 Shows the Prisoners window

52

Find Prisoner

To find a prisoner to be modified the user can search the database by using this window.

User can make search with prisoner name and their status (if he/she inside or outside).

Prisoner Name Status Show All

- -·- ---·--------------·-·-·---------- ID Name Surname lnDale DulDale Status Note 1 Ahmet Nar 6/2/2008 6/2/2038 Normal Killer
5 idris Oral 6/2/2008 6/2/2038 Transferred Killer 2 Mehmet Kamil 6/2/2008 6/2/2038 Normal Needs Care 6 Mesul Oral 6/2/2008 6/2/2038 T tensfetted Mad
4 f·.~etin Kernel 6/2/2008 6/2/2038 T,ansferred
8 Muslum Oglan 6/2/2008 6/2/2038 Normal Crazy
9 Ozan Pese 6/2/2008 6/2/2038 !n Hospital Crazy
7 Senol Brlain 6/2/2008 6/2/2038 In Hospital

10 T erkan Sanatci 6/2/2008 6/2/2038 Nonnel Mad
3 Timur Citak 6/2/2008 6/2/2038 Normal

-- . ·-·-·------·---

Figure 5.9 Shows the Find prisoner window

53

The Reports Window
This window can prepare printable reports for the user, for both the visitors and the

prisoner's records. The visitor's reports can be prepared by choosing records selecting 2

dates, the start date and the end date. The prisoner reports can be prepared by selecting the

"Visit or s Reports

Oil. Report:s ·. ,; . <,,:, :,£ii~,

3 <> ! 29.08 2008 Date :f 29. 08 2007

Pr.isoners Reports

Status irAII

1[2.J·visito1 Name:j Visitor Surnc/ Prisoner Nari Prisoner Sur j D~i;;; I v;;Tt,- ime--J o:
1 Nancy Davolio Muslum Oglan 6/2/2008 7:26:00 PM 7·
~ .6.ndrew Fuller Tirnur Citak 5/2/2008 7 26:00 PM

3 Janet Leverling Melin Ke mat 6/2/2008 7 26:00 PM 7:
4 Margaret Peacock Senol Bilgin 6/2/2008 7:26:00 PM

5 Steven Buchanan Timur Citak 6/2/2008 7:26:00 PM

6 t,1ichoel Suyama Senol Bilgin 6/2/2008 7:26:00 PM
7 Robert King Ahmet Na, 6/2/2008 7:26:00 PM 7·
8 Laura Callahan Mehmet Ka mil 6/2/2008 726:00 Ptv1 7:
9 Anne D'o cis vvor t+i Ozan Pasa 6/2/2008 7:26:00 F'M 7·

prisoner status.

Figure 5.10 Shows the reports

54

The Users Management Window

The administrators managing the users of the program and defining how can login. Thi
information's automatically will be written in user.db data table.

..2:SJ
.First Name Clear j r
Last Name

P;d~ NeVvy ser J
E~it c,~rrenttJ. serJ

User Name

User Type r Remove User

Password

Confirm Passv,!ord

Close

Figure 5.11 Shows the users management window

5.3 Summary

In Chapter 5, a general information about project is explained. The login and main
.vindows are presented with their fuctions.

55

CONCLUSION

This project introduced the program used in visitor's automation system for prisons. The

software tools Microsoft Visual Basic, SQL and Microsoft Office Access was

implementing this program.

In this project concerned a program to visitors and prisoners automation system for prison.

This project is the dependable entering, exiting and controlling visitors and prisoners in the

prison. There are lost of advantages of this program for prisons. The implemented program

allows users to add new visitor information, search visitor records, and find information

about visitors and prisoners. The system can generate reports about both the prisoner's

records and the visitor's records. When the user enters the visit information will be required

to take and attach a photo of the visitor to the record by using web cam. This program will

be helpful to users and administrators in finding information about visitors and prisoners.

This information may then help prisoner officials and control illegal activities.

This project is the first version and has future works. I want to make second version in my

master education. It will develop this program with using .NET for online interface web

pages. This progi am will can make database archives and it is possible to take database

feedback. I am thinking to make Work log functions for learning which user make records

and when user do records, and only administrator will use this function.

56

REFERENCES

1. Peter Wrights, Beginning Visual Basic 6 Objects, Publishing Wrox Press, August

1998.

2. John Smiley, Learn to Program with Visual Basic 6, 1st ed., Publisher Peer

Information, 1998.

3. Valery V Shmeleff, "Visual Basic 6.0 User Guide E-book",

http://www.oflameron.ru/

4. Beginning Visual Basic 6 Database Programming online paper. From the World

Wide Web: http://www.universaldataacces.org

5. Jeffrey P. McManus , Database Access with Visual Basic 6, Publisher Sams;

Pap/Cdr edition, January 1999.

6. Steven Holzner, ADO Programming in Visual Basic 6, Prentice Hall PTR;

Pap/Cdr edition (November 24, 1999)

Adobe Photoshop CS Help Files.

. John Connell 's Web Page, http://www.amazon.com.

·57

APPENDIX A

PROGRAM CODE
Option Explicit

Private Declare Sub CopyMemory Lib "kemel32" Alias "RtlMoveMemory" (_

lpvDest As Any, lpvSource As Any, ByVal cbCopy As Long)

Private Type SAFEARRA YBOUND

cElements As Long

lLbound As Long

End Type

Private Type SAFEARRA Y2D

cDims As Integer

£Features As Integer

cbElements As Long

cLocks As Long

pvData As Long

Bounds(O To 1) As SAFEARRA YBOUND
End Type

Private Declare Function VarPtrAnay Lib "msvbvm50.dll" Alias "VarPtr" (Ptr() As Any)
• As Long

Private Type RGBQUAD

rgbBlue As Byte

rgbGreen As Byte

rgbRed As Byte

rgbReserved As Byte

End Type

Private Type BITMAPINFOHEADER '40 bytes

biSize As Long

biWidth As Long

biHeight As Long

biPlanes As Integer

iBitCount As Integer

58

biCompression As Long

biSizelmage As Long

biXPelsPerMeter As Long

biYPelsPerMeter As Long

biClrUsed As Long

biClrlmportant As Long

End Type

Private Type BITMAPINFO

bmiHeader As BITMAPINFOHEADER

bmiColors As RGBQUAD

End Type

Private Declare Function CreateCompatibleDC Lib "gdi32" (ByVal hdc As Long) As Long

Private Declare Function GetDC Lib "USER32" (ByVal hwnd As Long) As Long

Private Declare Function GetDesktopWindow Lib "USER32" () As Long

'Note - this is not the declare in the API viewer - modify lplpVoid to be

'Byref so we get the pointer back:

Private Declare Function CreateDJBSection Lib "gdi32" _

(ByVal hdc As Long,_

pBitmaplnfo As BITMAPINFO, _

ByVal un As Long,_

lplpYoid As Long,_

ByVal handle As Long,_

ByVal dw As Long) As Long

Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC As Long, ByVal x As Long,

ByVal y As Long, ByVal nWidth As Long, ByVal nHeight As Long, ByVal hSrcDC As

Long, ByVal xSrc As Long, ByVal ySrc As Long, ByVal dwRop As Long) As Long

Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, ByVal hObject

As Long) As Long

Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Declare Function DeleteDC Lib "gdi32" (ByVal hdc As Long) As Long

59

Private Declare Function ReleaseDC Lib "USER32" (ByVal hwnd As Long, By Val hdc As

Long) As Long

Private Declare Function Loadlmage Lib "USER32" Alias "LoadlrnageA" (ByVal hlnst As

Long, ByVal lpsz As String, ByVal unl As Long, ByVal nl As Long, ByVal 112 As Long,

ByVal un2 As Long) As Long

Private Const BI_RGB = O&

Private Const BI_RLE4 = 2&

Private Const BI_RLE8 = 1 &

Private Const DIB_RGB_COLORS = 0' color table in RGBs

Private Type BITMAP

bmType As Long

bm Width As Long

bmHeight As Long

bm WidthBytes As Long

bmPlanes As Integer

bmBitsPixel As Integer

bmBits As Long

End Type

Private Declare Function GetObjectAPI Lib "gdi32" Alias "GetObjectA" (ByVal hObject

As Long, ByVal nCount As Long, lpObject As Any) As Long

Private Declare Function timeGetTime Lib "winmm.dll" () As Long

Private Declare Function CreateCompatibleBitmap Lib "gdi32" (ByVal hdc As Long,

ByVal nWidth As Long, ByVal nHeight As Long) As Long

'Clipboard functions:

Private Declare Function OpenC!ipboard Lib "USER32" (By Val hwnd As Long) As Long

Private Declare Function CloseClipboard Lib "USER32" () As Long

Private Declare Function SetClipboardData Lib "USER32" (ByVal wFonnat As Long,

ByVal hMem As Long) As Long

Private Declare Function EmptyClipboard Lib "USER32" () As Long

Private Const CF _BITMAP= 2

Private Const CF _DIB = 8

60

'Handle to the cunent DIBSection:

Private m_hDib As Long

'Handle to the old bitmap in the DC, for clear up:

Private m_hBmpO!d As Long

'Handle to the Device context holding the DIBSection:

Private m_hDC As Long

'Address of memory pointing to the DIBSection's bits:

Private m_lPtr As Long

'Type containing the Bitmap information:

Private m_tBI As BITMAPINFO

Public Function CopyToC!ipboard(_

Optional By Val bAsDIB As Boolean= True_

) As Boolean

Dim lhDCDesktop As Long

Dim lhDC As Long

Dim lhBmpO!d As Long

Dim hObj As Long

Dim !Fmt As Long

Dim b() As Byte

Dim tBI As BITMAPINFO

Dim !Ptr As Long

Dim hDibCopy As Long

lhDCDesktop = GetDC(GetDesktopWindow())

If (lhDCDesktop <> 0) Then

lhDC = CreateCompatibleDC(lhDCDesktop)

If (lhDC <> 0) Then

If (bAsDIB) Then

MsgBox "I don't know how to put a DIB on the clipboard! Copy as bitmap instead' 11"

' Create a duplicate DIBSection and copy

' to the clipboard:

'LSet tBI = m_tBI

61

'hDibCopy = CreateDIBSection(_
lhDC, _

rn_tBI, _

DIB_RGB_COLORS, _

!Ptr, _

0, 0)

'If (hDibCopy <> 0) Then

' lhBrnpOld = SelectObject(lhDC, hObj)

' BitB!t lhDC, 0, 0, Width, Height, rn_hDC, 0, 0, vbSrcCopy

' SelectObject lhDC, lhBrnpOld

' lFrnt = CF _DIB

'Else

' hObj = 0
'End If

Else

' Create a compatible bitmap and copy to

· the clipboard:

hObj = CreateCompatibleBitmap(lhDCDesktop, Width, Height)

If (hObj <> 0) Then

lhBrnpOld = SelectObject(lhDC, hObj)

PaintPicture lhDC

SelectObject lhDC, lhBmpOld

lFrnt = CF _BITMAP

'Now set the clipboard to the bitmap:

If (OpenC!ipboard(O) <> 0) Then

EmptyC!i pboard

If (SetClipboardData(]Fmt, hObj) <> 0) Then

CopyToClipboard = True

End If

62

CloseCJipboard

End If

End If

End If

DeleteDC JhDC

End If

DeleteDC JhDCDesktop

End If

End Function

Public Function CreateDIB(_

ByVal lhDC As Long,_

ByVal IWidth As Long,_

ByVal !Height As Long,_

By Ref hDib As Long_

) As Boolean

With m_tBI.bmiHeader

.biSize = Len(m_tBI.bmiHeader)

.biWidth =]Width

.bil-leight = IlIeight

.biPJanes = 1

.biBitCount = 24

.biCompression = BI_RGB

.biSizelmage = BytesPerScanLine * .biHeight
End With

hDib = CreateDIBSection(_

lhDC, _

m_tBI, _

DIB_RGB_COLORS, _

m_lPtr, _

0, 0)

CreateDIB = (hDib <> 0)

63

End Function

Public Function CreateFrornPicture(_

ByRef picThis As StdPicture _

)

Dim IhDC As Long

Dim IhDCDesktop As Long

Dim lhBmpO!d As Long

Dim tBMP As BITMAP

Dim lh Wnd As Long

GetObjectAPI picThis.handle, Len(tBMP), tBMP

If (Create(tBMP.bmWidth, tBMP.bmHeight)) Then

lh Wnd = GetDesktop Window()

lhDCDesktop = GetDC(lh Wnd)

If (lhDCDesktop <> 0) Then

lhDC = CreateCompatibleDC(lhDCDesktop)

ReleaseDC lh Wnd, lhDCDesktop

If (lhDC <> 0) Then

lhBmpOid = SelectObject(lhDC, picThis.handle)

LoadPictureBlt lhDC

SelectObject lhDC, lhBmpO!d

DeleteDC lhDC

End If

End If

End If

End Function

Public Function Create(_

ByVal !Width As Long,_

ByVal !Height As Long_

) As Boolean

Clear Up

m_hDC = CreateCompatibleDC(O)

64

If (m_hDC <> 0) Then

If (CreateDIB(m_hDC,]Width, IHeight, m_hDib)) Then

m_hBmpOid = SelectObject(m_hDC, m_hDib)

Create = True

Else

DeleteDC m_hDC

m_hDC = 0

End If

End If

End Function

Public Property Get BytesPerScanLine() As Long

' Scans must align on dword boundaries:

BytesPerScanLine = (m_tBJ.bmiHeader.biWidth * 3 + 3) And &HFFFFFFFC
End Property

Public Property Get Width() As Long

Width= m_tBI.bmiHeader.biWidth

End Property

Public Property Get Height() As Long

Height = m_iBI.bmiHeader.biHeight

End Property

Public Sub LoadPictureBlt(_

ByVal lhDC As Long,_

Optional ByVal ISrcLeft As Long= 0, _

Optional ByVal ISrcTop As Long= 0, _

Optional ByVal lSrcWidth As Long= -1, _

Optional ByVal ISrcHeight As Long= -1, _

Optional ByVal eRop As RasterOpConstants = vbSrcCopy _
)

If ISrcWidth < 0 Then ISrcWidth = m tBI.bmiHeader.biWidth

If ISrcHeight < 0 Then ISrcHeight = m_tBI.bmiHeader.biHeight

BitBlt m_hDC, 0, 0, ISrcWidth, JSrcHeight, lhDC, ISrcLeft, ISrcTop, eRop

65

End Sub

Public Sub PaintPicture(_

ByVal lhDC As Long,_

Optional ByVal lfrestl.eft As Long= 0, _

Optional ByVal IDestTop As Long= 0, _

Optional ByVal IDestWidth As Long= -1, _

Optional ByVal IDestHeight As Long= -1, _

Optional ByVal lSrcLeft As Long= 0, _

Optional ByVal lSrcTop As Long= 0, _

Optional ByVal eRop As RasterOpConstants = vbSrcCopy _

)

If (]Dest Width< 0) Then !Dest Width= m_tBI.bm.iHeader.biWidth

If (IDestHeight < 0) Then IDestHeight = m_tBI.bmiHeader.biHeight

BitBlt lhDC, IDestLeft, !DestTop, IDestWidth, IDestHeight, m_hDC, lSrcLeft, lSrcTop,

eRop

End Sub

Public Property Get hdc() As Long

hdc = m_hDC

End Property

Public Property Get hDib() As Long

hDib = m_hDJb

End Property

Public Property Get DIBSectionBitsPtr() As Long

DIBSectionBitsPtr = m_lPtr

End Property

Public Sub RandomiseBits(_

Optional ByVal bGray As Boolean= False_

)

Dim bDib() As Byte

Dim x As Long, y As Long

Dim JC As Long

66

Dim tSA As SAFEARRA Y2D

Dim xEnd As Long

'Get the bits in the from DIB section:

With tSA

.cbElements = 1

.cDims = 2

.Bounds(O).ILbound = 0

.Bounds(O).cElements = m_tBI.bmiHeader.biHeight

.Bounds(}).!Lbound = 0

.Bounds(1).cElements = BytesPerScanLine()

.pvData = m_lPtr

End With

CopyMemory ByVal VarPtrArray(bDib()), VarPtr(tSA), 4

'random:

Randomize Timer

xEnd = (Width - 1) * 3
If (bGray) Then

For y = 0 To m_tBI.bmiHeader.biHeight - 1

For x = 0 To xEnd Step 3

IC= Rnd * 255
bDib(x, y) = IC
bDib(x + 1, y) = IC
bDib(x + 2, y) = IC

Next x

Next y

Else

For x = 0 To xEnd Step 3
For y = 0 To m_tBI.bmiHeader.biHeight - 1

bDib(x, y) = 0
bDib(x + 1, y) = Rnd * 255
bDib(x + 2, y) = Rnd * 255

67

Next y

Next x

End If

' Clear the temporary array descriptor

' (This does not appear to be necessary, but

' for safety do it anyway)

CopyMemory ByVal VarPtrArray(bDib), O&, 4

End Sub

Public Sub ClearUp()

If (m_hDC <> 0) Then

If (m_hDib <> 0) Then

SelectObject m_hDC, m_hBmpOld

DeleteObject m_hDib

End If

DeleteDC m_hDC

End If

m_hDC = 0: m_hDib = 0: m_hBmpOld = 0: m_lPtr = 0
End Sub

Public Function Resample(_

ByVal lNewHeight As Long,_

ByVal lNewWidth As Long_

) As cDIBSection

Dim cDib As cDJBSection

Set cDib = New cDIBSection
If cDib.Create(]NewWidth, lNewHeight) Then

If (]NewWidth <> m_tBI.bmiHeader.biWidth) Or (lNewHeight <>

m_tBI.bmiHeader.biHeight) Then

' Change in size, do resample:

ResampleDib cDib

Else

' No size change so just return a copy:

68

cDib.LoadPictureBlt m_hDC

End If

Set Resample = cDib

End If

End Function

Private Function ResampleDib(ByRef cDibTo As cDIBSection) As Boolean

Dim bDibFrom() As Byte

Dim bDibTo() As Byte

Dim tSAFrom As SAFEARRA Y2D

Dim tSA To As SAFEARRA Y2D

'Get the bits in the from DIB section:

With tSAFrom

.cbE!ements = 1

.cDims = 2

.Bounds(O).!Lbound = 0

.Bounds(O).cElements = m_tBI.bmiHeader.biHeight

.Bounds(l).ILbound = 0

.Boundsr 1).cElements = BytesPerScanLine()

.pvData = m_iPtr

End With

CopyMemory ByVal VarPtrArray(bDibFrom()), VarPtr(tSAFrom), 4

' Get the bits in the to DIB section:

With tSATo

.cbE!ements = 1

.cDims = 2

.Bounds(O).ILbound = 0

.Bounds(O).cE!ements = cDibTo.Height

.Bounds(]).!Lbound = 0

.Bounds(1).cE!ements = cDibTo.BytesPerScanLine()

.pvData = cDibTo.DIBSectionBitsPtr
End With

69

CopyMemory ByVal VarPtrArray(bDibTo()), VarPtr(tSATo), 4

Dim xScale As Single

Dim yScale As Single

Dim x As Long, y As Long, xEnd As Long, xOut As Long

Dim fX As Single, fY As Single

Dim ifY As Long, ifX As Long

Dim dX As Single, dy As Single

Dim r As Long, rl As Single, r2 As Single, r3 As Single, r4 As Single

Dim g As Long, g l As Single, g2 As Single, g3 As Single, g4 As Single

Dim b As Long, bl As Single, b2 As Single, b3 As Single, b4 As Single

Dim irl As Long, igl As Long, ibl As Long

Dim ir2 As Long, ig2 As Long, ib2 As Long

xScale = (Width - 1) I cDibTo.Width

_•Scale = (Height - 1) I cDibTo.Height

xEnd = cDibTo. Width - I

For y = 0 To cDibTo.Height - 1

fY = y * yScale
ifY = Int(fY)
dy = fY - ifY

For x = 0 To xEnd

fX = x * xScale
ifX = lnt(fX)
dX = fX - ifX

ifX = ifX * 3
'Interpolate using the four nearest pixels in the source

1 = bDibFrom(ifX, ifY): gl = bDibFrom(ifX + 1, ifY): rl = bDibFrom(ifX + 2, ifY)

_ = bDibFrom(ifX + 3, ifY): g2 = bDibFrom(ifX + 4, ifY): r2 = bDibFrom(ifX + 5, ifY)

= bDibFrom(ifX, ifY + 1): g3 = bDibFrom(ifX + 1, ifY + 1): r3 = bDibFrom(ifX + 2,
. + 1)

= bDibFrom(ifX + 3, ifY + 1): g4 = bDibFrom(ifX + 4, ifY + 1): r4 = bDibFrom(ifX +

s.uv i n

70

' lnterplate in x direction:

irl = rl * (1 - dy) + r3 * dy: igl = gl * (1 - dy) + g3 * dy: ibl = bl * (1 - dy) + b3 * dy
ir2 = r2 * (1 - dy) + r4 * dy: ig2 = g2 * (1 - dy) + g4 * dy: ib2 = b2 * (1 - dy) + b4 * dy
'Interpolate in y:

r = irl * (1 - dX) + ir2 * dX: g = igl * (1 - dX) + ig2 * dX: b = ibl * (1 - dX) + ib2 * dX
' Set output:

If (r < 0) Then r = 0
If (r > 255) Then r = 255
If (g < 0) Then g = 0
If (g > 255) Then g = 255
If (b < 0) Then b = 0
Jf (b > 255) Then

b = 255

End Jf

xOut = x * 3
bDibTo(xOut, y) = b
bDibTo(xOut + 1, y) = g
bDibTo(xOut + 2, y) = r

Next x

Next y

' Clear the temporary array descriptor

'(This does not appear to be necessary, but 'for safety do it anyway)

CopyMemory ByVal VarPtrAn-ay(bDibFrom), O&, 4

CopyMemory ByVal VarPtrAn-ay(bDibTo), O&, 4

End Function

Private Sub Class_ Terminate()

Clear Up

End Sub

71

Add New Form:

Dim Conn As ADODB.Connection

Dim Re As ADODB.Recordset

Dim CMD As ADODB.Command

Dim Lslteml(), Lsltem2(), Lsltem3(), Lsltem4()

Dim LsCount As Integer

Private Sub Command2_Click()

Load frmPriSelect

frmPriSelect.Show vbModal

If Pname <> Empty Then

Textl(5).Text = Pname

Textl(6).Text = Psumame

End If

End Sub

Private Sub Commandl_Click()

Load frmCap

frmCap.Show vbModal

End Sub

Private Sub Comrnand4_Click()

Dim M As Listltem

lf Text2(0).Text = Empty Or Text2(1).Text = Empty Then

MsgBox "Enter all fields!"

Exit Sub

Else

If IsNumeric(Text2(1).Text)= False Then

MsgBox "Amount must be a number!"

Text2(1).Text = Empty

Text2(I).SetFocus

Exit Sub

End If

If Command4.Caption = "Add >>" Then

72

Set M = Ls.Listltems.Add(l,, Text2(0).Text)

M.Subltems(l) = Text2(1).Text

M.Subltems(2) = Combo] .Text

If Optionl.Value = True Then M.Subltems(3) = "In" Else M.Subltems(3) = "Out"

Text2(0).Text = Empty

Text2(1).Text = Empty

Else

Ls.Listitems(Ls.Selectedltem.lndex).Text = Text2(0).Text

Ls.Listltems(Ls.Selectedltem.Index).Subltems(1) = Text2(1).Text

Ls.Listltems(Ls.Selectedltem.Index).Subltems(2) = Combo] .Text

If Optionl.Value = True Then

Ls.Listltems(Ls.Selectedltem.Index).Subltems(3) = "In"

Else

Ls.Listltems(Ls.Selectedltem.lndex).Subltems(3) = "Out"

End If

End If

Tex t2(0).SetFocus

End If

End Sub

Private Sub Command5_Click()

On Error GoTo el:

Dim IDn, mName, mSurname, Root

Dim jDIB As cDIBSection

mName = Textl(O).Text

mSumame = Textl(l).Text

Set Re= New ADODB.Recordset

If EditMode = False Then

Re.Open "table]", Conn, adOpenDynamic, adLockOptimistic

Re.AddNew

Else

73

Re.Open "select * from table} where ID=" & Zid, Conn, adOpenDynamic,

adLockOptimistic, adCmdUnknown

End If

For i = 0 To 8

If Textl(i).Text <> Empty Then Re.Fields(i + 1) = Textl(i).Text Else Re.Fields(i + 1) =

Next

Re.Fields(lO) = Format(Date, "dd.mm.yyyy")

Re.Fields(l l) = Format(Time, "hh:mm")

Re.Update

Re.Close

Re.Open "select JD from table} order by ID", Conn, adOpenStatic, adLock.ReadOnly,

adCmdUnknown

Re.MoveLast

Set jDIB = New cDIBSection

jDIB.CreateFromPicture Image I .Picture

If Image 1.Picture = Empty Then

Image} .Picture= picOutput.Image

End If

Jf EditMode = True Then

If SaveJPG(jDIB, App.Path & "\Data\" & Zid & ".jpg", 80) Then

Else

MsgBox "Failed to save picture."

End If

'SavePicture picOutput.lmage, App.Path & "\Data\" & Zid & ".bmp"

Else

If SaveJPG(jDIB, App.Path & "\Data\" & Re.Fields("ID") & ".jpg", 80) Then

Else

MsgBox "Failed to save picture."

End If

'SavePicture picOutput.Image, App.Path & "\Data\" & Re.Fields("ID") & ".bmp"

74

End If

jDIB.ClearUp

Set jDIB = Nothing
Re.Close

'Command6_ Click

Re.Open "select ID from tablel order by ID", Conn, adOpenStatic, adLockReadOnly,

adCmdUnknown

Re.MoveLast

IDn = Re.Fields(O)
Re.Close

ReDim Lsltem 1 (Ls.Listltems.Count)

ReDim Lsltem2(Ls.Listltems.Count)

ReDim Lsltem3(Ls.Listltems.Count)

ReDim Lsltem4(Ls.Listltems.Count)

For i = 1 To Ls.Listltems.Count

Lslteml (i) = Ls.Listltems(i).Text

Lsltem2(i) = Ls.Listltems(i).Subltems(l)

Lsltem3(i) = Ls.Listltems(i).Subltems(2)

Lsltem4(i) = Ls.Listltems(i).Subltems(3)

Next

LsCount = Ls.Listltems.Count

If LsCount <> 0 Then

If EditMode = True Then

Set CMD = New ADODB.Command

CMD.ActiveConnection = Conn

CMD.CommandText ="delete* from table2 where ID=" & Zid

CMD.Execute

CMD.Cancel

Set CMD = Nothing

End If

75

-- - ~~~~~~~~ ~- -~~~~

Set Re= New ADODB.Recordset

Re.Open "table?", Conn, adOpenDynamic, adLockOptimistic

For i = 1 To LsCount

Re.AddNew

Re.Fields(O) = IDn

Re.Fields(])= mName

Re.Fields(2) = mSurname

Re.Fields(3) = Lslteml(i)

Re.Fields(4) = Lsltem2(i)

Re.Fields(5) = Lsltem3(i)

Re.Fields(6) = Lsltem4(i)

Re.Update

Next

Re.Close

Set Re= Nothing

End If

et Re= Nothing

t.:nload Me

Exit Sub

el:

. .IsgBox Err.Description

End Sub

Private Sub Command6_Click()

For i = 0 To 8
Textl(i).Text = Empty

Textl(i).Enabled = False

_;ext

Command2.Enabled = True

Command5.Enabled = False

Command6.Enabled = False

.. IS I .Enabled = True

76

------ -·

Imagel.Picture = Nothing

Ls.Listltems.Clear

'Load frmMain

'frmMain.Show

Unload Me

End Sub

Private Sub Command7 _Click()

Dim M As Listltem

If Text2(2).Text = Empty Or IsNumeric(Text2(2).Text) = False Then

MsgBox "Please check data!"

Text2(2).Text = Empty

Tex t2(2) .SetFocus

Exit Sub

Else

If Command7.Caption = "Add >>" Then

Set M = Ls.Listltems.Add(l,, "Cash")

M.Subltems(l) = Text2(2).Text

M.Subltems(2) = "YTL"

M.Sub1tems(3) = "in"

Text2(2).Text = Empty

Else

Ls.Listltems(Ls.Selectedltem.Index).Subltems(1) = Text2(2).Text

End If

End If

End Sub

Private Sub Form_Load()

Dim r As Listltem

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source>" & App.Path &

"\Data.mdb;Persist Security Info=False"

Combo 1.Listlndex = 0

77

If EditMode = True Then

Set Re= New ADODB.Recordset

Re.Open "select * from tablel where ID=" & Zid, Conn, adOpenStatic,

adLock.ReadOnly, adCmdUnknown

Imagel .Picture= LoadPicture(App.Path & "\Data\" & Re.Fields(O) & ".JPG")

picOutput.Picture = LoadPicture(App.Path & "\Data\" & Re.Fields(O) & ".JPG ")

For i = 0 To 8

If IsNull(Re.Fields(i + 1)) = False Then Textl(i).Text = Re.Fields(i + 1) Else

Textl(i).Text = Empty

Next

Re.Close

Re.Open "select * from table2 where ID=" & Zid, Conn, adOpenStatic,

adLock.ReadOnly, adCmdUnknown

If Re.RecordCount <> 0 Then

While Not Re.EOF

Set r = Ls.Listltems.Add(l, , Re.Fields(3))

r.Subltems(l) = Re.Fields(4)

r.Subltems(2) = Re.Fields(5)

r.Subltems(3) = Re.Fields(6)

Re.MoveNext

Wend

End If

End If

End Sub

Private Sub Ls_DblClick()

If Ls.Listltems.Count <> 0 Then

LSid = Ls.Selectedltem.Index

If Ls.Listltems(Ls.Selectedltem.Index).Subltems(2) = "YTL" Then
Load frmMonEdit

frmMonEdit.Text2(2).Text = Ls.Listltems(Ls.Selectedltem.Index).Subltems(1)

78

frmMonEdit.Show vbModal

Else

Load frmObjEdit

frmObjEdit.Text2(0).Text = Ls.Listitems(Ls.Selecteditem.lndex).Text

frmObjEdit.Text2(1).Text = Ls.Listltems(Ls.Selecteditem.lndex).Subltems(1)

frmObjEdit.Combol .Text= Ls.Listltems(Ls.Selecteditem.lndex).Subltems(2)

If Ls.Listltems(Ls.Selecteditem.Index).Subltems(3) = "In" Then

frmObjEdit.Optionl .Value= True

Elself Ls.Listltems(Ls.Selectedltem.lndex).Subitems(3) = "Out" Then

frmObjEdit.Option2.Value = True

End If

frmObjEdit.Show vbModal

End If

ReDim Lslteml(Ls.Listitems.Count)

ReDim Lsltem2(Ls.Listltems.Count)

ReDim Lsitem3(Ls.Listltems.Count)

ReDim Lsitem4(Ls.Listltems.Count)

For i = I To Ls.Listitems.Count

Lsltern l (i) = Ls.Listitems(i).Text

Lsitern2(i) = Ls.Listltems(i).Subitems(l)

Lsltem3(i) = Ls.Listitems(i).Subitems(2)

Lsltem4(i) = Ls.Listltems(i).Subitems(3)

Next

LsCount = Ls.Listitems.Count

End If

End Sub

Private Sub Textl_GotFocus(Index As Integer)

Command5.Default = True
End Sub

Private Sub Text2_GotFocus(Index As Integer)

If Index = 0 Or Index = I Then

79

Command4.Default = True

Else

Command7.Default = True

End If

End Sub

Form Capture:

Private Sub Commandl_Click()

frmAddNew.Imagel .Picture= picOutput.Image

frmAddNew .picOutput.Picture = picOutput.Image

End Sub

Private Sub Command2_Click()

Unload Me

End Sub

Private Sub Form_Load()

'cmdStart.Enabled = False

'cmdStop.Enabled = True

mCapHwnd = capCreateCaptureWindow("WebcamCapture", 0, 0, 0, 320, 240, Me.hwnd,

0)

DoEvents: SendMessage mCapHwnd, CONNECT, 0, 0

trnrMain.Enabled = True

End Sub

Private Sub tmrMain_Timer()

On Error Resume Next

SendMessage mCapHwnd, GET _FRAME, 0, 0

SendMessage mCapHwnd, COPY, 0, 0

picOutput.Picture = Clipboard.GetData

Clipboard.Clear

End Sub

80

Form Find:

Private Sub Checkl_Click()

If Checkl .Value= vbChecked Then

DTl .Enabled = True

Else

DTI .Enabled = False

End If

End Sub

Private Sub Commandl_Click()

Adodcl.RecordSource = "select * from table] where dateedatevaluer'" & DTl .Value & "')"

Adodc I .Refresh

MS I .Refresh

End Sub

Private Sub Form_Load()

DTl .Value= Date

DTl .Enabled= False

Adodc 1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source-." &

App.Path & "\Data.mdb;Persist Security lnfoeFalse"

Adodcl.RecordSource = "select * from table}" 'where date=datevaluer'" & Date & '")"

Adodc 1.Refresh

End Sub

Private Sub MS l_DblClick()

If MS 1.Text <> Empty Then

EditMode = True

Zid = MS I.Text

Zname = MS I .Tex tMatrix(MS 1 .Row, 1)

Zsumame = MS 1.TextMatrix(MS 1.Row, 2)

Load frmAddNew

'Me.Hide

frmAddNew.Show vbModal, MDIForml

'Unload Me

81

End If

End Sub

Private Sub TextJ_KeyUp(KeyCode As Integer, Shift As Integer)

DimD

lf Checkl.Value = vbChecked Then

D ="and date=datevalue("' & DTJ.Value & "')"
Else

D = Empty

End If

Adodcl.RecordSource = "select* from table} where name like"' & Textl.Text & "%"'& D
Adodc 1.Refresh

End Sub

Form Login:

Dim Conn As ADODB.Connection

Dim Re As ADODB.Recordset

Private Sub cmdCancel_Click()

End

End Sub

Private Sub cmdOK_Click()

Dim a

Set Re= New ADODB.Recordset

Re.Open "select usemame,password from users where usemame="' & Textl .Text &

Conn, adOpenStatic, adLockReadOnly, adCmdUnknown

If Re.RecordCount = 0 Then

a= MsgBox("User Name Not Found' Try again?", vbExclamation + vbYesNo)
lf a= vb Yes Then

Text] .Text= Empty

Text2.Text = Empty

Text] .SetFocus

Exit Sub

82

Else

End

End If

Else

If UCase(Re!Password) <> UCase(Text2.Text) Then

a= MsgBox("Wrong password! Try again?", vbExclamation + vbYesNo)

If a= vb Yes Then

Text2.Text = Empty

Text2.Setfocus

Exit Sub

Else

End

End If

Else

MDIForml .Picture] .Visible= True

MDIForml .Enabled= True

Unload Me

Load frmMain

frmMain.Show

End If

End If

End Sub

Private Sub Form_Load()

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path &

"\Data.mdb;Persist Security Info=False"

End Sub

Form Main:

Dim Conn As ADODB.Connection

Dim Re As ADO DB .Recordset

83

Private Sub cmdStart_Click()

cmdStart.Enabled = False
cmdStop.Enabled = True ·

mCapHwnd = capCreateCaptureWindow("WebcamCapture", 0, 0, 0, 320, 240, Me.hwnd,

0)

DoEvents: SendMessage mCapHwnd, CONNECT, 0, 0

tmrMain.Enabled = True
End Sub

Private Sub cmdStop_Click()

cmdStart.Enabled = True
cmdStop.Enabled = False

tmrMain.Enabled = False
DoEvents: SendMessage mCapHwnd, DISCONNECT, 0, 0

End Sub

Private Sub Commandl_Click()

Imagel .Picture « picOutput.Image

'cmdStop_Click

End Sub

Private Sub Command2_Click()

'cmdStart_Click

Image 1.Picture = Nothing
For i = 0 To 8
Textl(i).Enabled = True

Textl(i).Text = Empty

Next

Command2.Enabled = False

Command5.Enabled = True
Command6.Enabled = True
EditMode = False
Text 1 (0).SetFocus

MS I .Enabled e False

84

End Sub

Private Sub Comrnand5_Click()

Set Re= New ADODB.Recordset

If EditMode = False Then

Re.Open "table l ", Conn, adOpenDynamic, adLockOptimistic

Re.AddNew

Else

Re.Open "select * from table} where ID="' & MSl.Text & "'", Conn, adOpenDynamic,

adLockOptimistic, adCmdUnknown

End If

For i = 0 To 8
If Textl(i).Text <> Empty Then Re.Fields(i + 1) = Textl(i).Text Else Re.Fields(i + 1) =

Next

Re.Fields(9) = Format(Date, "dd.mm.yyyy")

Re.Fields(} 0) = Format(Time, "hh.mrn")

Re.Update

Re.Close

Adodc I .Refresh

Re.Open "select ID from tablel order by ID", Conn, adOpenStatic, adLockReadOnly,

adCmdUnknown

Re.MoveLast

If Image} .Picture= Empty Then

Image 1.Picture = picOutput.Image

End If

SavePicture picOutput.Image, App.Path & "\Data\" & Re.Fields("ID") & ".bmp"

Re.Close

Set Re = Nothing

Comrnand6_Click

Timer} .Enabled e, True

End Sub

85

Private Sub Command6_Click()

For i = 0 To 8

TextI(i).Text = Empty

TextI(i).Enabled = False

Next

Command2.Enabled = True

Command5.Enabled = False

Command6.Enabled = False

MS I .Enabled = True

Imagel.Picture = Nothing

End Sub

Private Sub enI_Click()

Zid = MS 1 .Text

Load frmOut

frmOut.Show vbModal

Adodc 1 .Refresh

End Sub

Private Sub Form_Load()

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path &

"\Data.mdb;Persist Security Info=False"

Adodc I .ConnectionString = "Provider=Microsoft.Jet.OLEDB .4.0;Data Source>" &

App.Path & "\Data.mdb;Persist Security Info=False"

Adodcl.RecordSource = "select* from table l where date-datevaluei" & Date & "')"

Adodc I .Refresh

_.IS I .ColWidth(O) = I 00

End Sub

Private Sub MSl_Click()

If MSI .Text<> Empty Then

Set Re= New ADODB.Recordset

86

Re.Open "select * from tablel where ID=" & MSl.Text, Conn, adOpenStatic,
adLockReadOnly, adCmdUnknown

Image I .Picture « LoadPicture(App.Path & "\Data\" & Re.Fields(O) & ".JPG")

For i = 0 To 8
If IsNull(Re.Fields(i + I)) = False Then Textl(i).Text = Re.Fields(i + I) Else

Textl(i).Text = Empty

Next

Zid = MS 1.Text

Zname = MSl.TextMatrix(MSI.Row, I)

Zsumame = MSl.TextMatrix(MSl.Row, 2)

End If

End Sub

Private Sub MS l_DblClick()

If MSI .Text<> Empty Then

EditMode = True
Zid = MSl.Text

Zname = MS 1.TextMatrix(MS I .Row, 1)

Zsumame = MSI.TextMatrix(MSI.Row, 2)

Load frmAddNew

frmAddNew.Show vbModal, MDIForml

End If

End Sub

Private Sub MS l_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)

If MSl.TextMatrix(MSI.Row, 13) = Empty Then

If Button = vbRightButton Then
PopupMenu en

End If

End If

End Sub

Private Sub Timerl_Timer()

Adodc I .Refresh

87

End Sub

Form Money Edit:

Private Sub Commandl_Click()

If Text2(2).Text <> Empty Then

If IsNumeric(Text2(2).Text) = True Then
frmAddNew .Ls.Listitems(LSid).Subitems(1) = Tex t2(2). Text
Unload Me

Else

MsgBox "Check Data!", vbCritical

Text2(2).Text = Empty

Text2(2).SetFocus

Exit Sub

End If

Else

MsgBox "Check Data!", vbCritical

Text2(2).Text = Empty

Text2(2).SetFocus

Exit Sub

End If

End Sub

Private Sub Command2_Click()

If MsgBox("are you sure!", vbYesNo + vbQuestion) = vbYes Then

frmAddNew.Ls.ListJtems.Remove (LSid)
Unload Me

End If

End Sub

Private Sub Command3_Click()

Unload Me

End Sub

88

Form Object Edit:

Private Sub Commandl_Click()

If Text2(0).Text <> Empty Or Text2(1).Text <> Empty Then

If IsNumeric(Text2(1).Text) = True Then
frmAddNew.Ls.Listltems(LSid).Text = Text2(0).Text
frmAddNew .Ls.Listltems(LSid).Subltems(1) = Text2(1).Text
frmAddNew.Ls.Listltems(LSid).Subltems(2) = Combol .Text

If Optionl.Value = True Then
frmAddNew.Ls.Listltems(LSid).Subltems(3) = "In"

Else
'·

frmAddNew.Ls.Listltems(LSid).Subltems(3) = "Out"
End If

Unload Me

Else

MsgBox "Check Data!", vbCritical

Text2(0).Text = Empty

Text2(0).SetFocus

Exit Sub

End If

Else

MsgBox "Check Data!", vbCritical

Text2(0).Text = Empty

Text2(0).SetFocus

Exit Sub

End If

End Sub

Private Sub Comrnand2_Click()

If MsgBox("are you sure!", vb YesNo + vbQuestion) = vb Yes Then
frmAddNew .Ls.Listltems.Remove (LSid)

Unload Me

89

End If

End Sub

Private Sub Command3_Click()

Unload Me

End Sub

Form Out:

Dim Conn As ADODB.Connection

Dim Re As ADO DB .Recordset

Private Sub Commandl_Click()

Re.Fields(l 2) = Time

Re.Update

frmMain.Adodc I .Refresh

Unload Me

End Sub

Private Sub Command2_Click()

Unload Me

End Sub

Private Sub Form_Load()

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source>" & App.Path &

"\Data.mdb;Persist Security Info=False"

Set Re= New ADODB.Recordset

Re.Open "select * from table) where ID=" & Zid, Conn, adOpenDynamic,

adLockOptimistic, adCmdUnknown

Imagel.Picture = LoadPicture(App.Path & "\Data\" & Re.Fields(O) & ".JPG")

If IsNull(Re.Fields(l)) = False Then Text 1 (0).Text = Re.Fields(}) Else Text 1 (0).Text =

Empty

If IsNull(Re.Fields(2)) = False Then Textl(l).Text = Re.Fields(2) Else Textl(O).Text =

Empty

90

If IsNull(Re.Fields(6)) = False Then Textl(S).Text = Re.Fields(6) Else Textl(S).Text =
Empty

If IsNull(Re.Fields(7)) = False Then Text1(6).Text = Re.Fields(7) Else Textl(6).Text =
Empty

End Sub

Form Prison:

Dim Conn As ADODB.Connection

Dim Re As ADODB.Recordset

Private Sub Commandl_Click()

Load frmPriAdd

frmPriAdd.Show vbModal, MDIForml

End Sub

Private Sub Command2_Click()

Load frmPriFind

frmPriFind.Show vbModal

EditMode2 = False

End Sub

Private Sub Form_Load()

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path &

"\Data.mdb;Persist Security Info=False"

Adodcl .ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source-." &

App.Path & "\Data.mdb;Persist Security Info=False"

Adodcl .RecordSource = "select * from pri order by name,surname"
Adodc I .Refresh

MS 1.ColWidth(O) = I 00

End Sub

Private Sub MSI_DblClick()

EditMode2 = True

Pid = MSI .Text

91

- - - - -- - -- --- ~- - - - - -- - -

Load frmPriAdd

frmPriAdd.Show vbModal

Timerl .Enabled = True

EditMode2 = False

End Sub

Private Sub Timerl_Timer()

Adodcl.RecordSource = "select* from pri order by name,sumame"

Adodc I .Refresh

End Sub

Form Prison Add:

Dim Conn As ADODB.Connection

Dim Re As ADO DB .Recordset

Private Sub Command]_Click(lndex As Integer)

1f Index = 0 Then

Set Re= New ADODB.Recordset

If EditMode2 = False Then

Re.Open "pri", Conn, adOpenDynamic, adLockOptimistic

Re.AddNew

Else

Re.Open "select * from pri where ID=" & Pid, Conn, adOpenDynamic,

adLockOptimistic, adCmdUnknown

End 1f

Re.Fields(l) = Text] (0).Text

Re.Fields(2) = Text](l).Text

Re.Fields(3) = DTPickerl(O).Value

Re.Fields(4) = DTPicker1(]).Value

Re.Fields(5) = Combo I .Text

Re.Fields(6) = Text1(2).Text

Re.Update

Re.Close

92

End 1f

frmPri.Adodc I .Refresh

Unload Me

End Sub

Private Sub Command2_Click()

If MsgBox("Are you sure? YES/NO", vbQuestion + vbYesNo) = vb Yes Then
Set Re= New ADODB.Recordset

Re.Open "delete * from pri where ID=" & Pid, Conn, adOpenDynamic,
adLockOptimistic, adCmdUnknown

frmPri .Adodc I .Refresh

Unload Me

End If

End Sub

Private Sub Form_Load()

ComboI .Listlndex = 0

Set Conn = New ADODB.Coru1ection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path &

"\Data.mdb;Persist Security Info=False"

If EditMode2 = True Then

Set Re= New ADODB.Recordset

Re.Open "select * from pri where ID=" & Pid, Conn, adOpenStatic, adLockReadOnly,
adCmdUnknown

For i = 0 To 1

If IsNull(Re.Fields(i + I)) = False Then Text] (i).Text = Re.Fields(i + I) Else
TextI(i).Text = Empty

Next

If IsNull(Re.Fields(6)) = False Then Textl(2).Text = Re.Fields(6) Else Textl(2).Text =
Empty

Combol .Text= Re.Fields(5)

DTPickerI(O).Value = Re.Fields(3)

DTPickerI(l).Value = Re.Fields(4)

93

Re.Close

Command2.Enabled = True

End 1f

Form Find Prison:

Private Sub Checkl_Click()

1f Checkl .Value= vbChecked Then

Combol .Enabled e True

Else

Combo I .Enabled = False

End 1f

End Sub

Private Sub Commandl_Click()

Adodc 1.RecordSource = "select * from pri order by name.surname"
Adodc 1.Refresh

MS I .Refresh

End Sub

Private Sub Form_Load()

Adodc 1. Connections tring = "Pro vi der=Mi crosof t.J et. OLED B .4 .O;Data Source=" &

App.Path & "\Data.mdb;Persist Security lnfo=False"

Adodcl .RecordSource = "select * from pri order by name, surname" ' where
date=datevalue("' & Date & "')"

Adodc I .Refresh

End Sub

Private Sub MS l_DblCiick()

1f MS1.Text <> Empty Then

EditMode2 = True

Pict= MSl.Text

Load frmPriAdd

frmPriAdd.Show vbModal, MDJForml

End 1f

94

------.----==-=---- _- -

End Sub

Private Sub Textl_KeyUp(KeyCode As Integer, Shift As Integer)

DimD

If Checkl.Value = vbChecked Then

D ="and status="' & Combol.Text & "')"

Else

D = Empty

End If

Adodcl.RecordSource ="select* from pri where name like." & Textl.Text & "%"' & D

Adodc 1 .Refresh

End Sub

Private Sub Timerl_Timer()

Adodc 1 .Refresh

End Sub

End Sub

Form Prison Select:

Private Sub Commandl_Click()

Pname = Empty

Psumame = Empty

Unload Me

End Sub

Private Sub Command2_Click()

If MS 1 .Text <> Empty Then

Pname = MSl.TextMatrix(MSl.Row, 2)

Psumame = MS l.TextMatrix(MS l.Row, 3)

Unload Me

End If

End Sub

Private Sub Form_Load()

95

Adodc l. Connecti onStrin g ~ "Pro vi der-, Microsoft.Jet. 0 LED B .4. O;Data Source~" &
App.Path & "\Data.mdb;Persist Security lnfo=False"

Adodcl.RecordSource ~ "select ID,namc,sumamc from pri order by name, surname" '
where date=datevalue("' & Date & '")"
Ad ode I .Refresh

End Sub

Private Sub MSl_DblClick()

If MSl .Text<> Empty Then

Pname = MSl .TextMatrix(MSJ .Row, 2)

Psumame = MS J. TextMatrix(MS J .Row, 3)
Unload Me

End If

End Sub

Private Sub TextJ_KeyUp(KeyCode As Integer, Shift As Jnteger)
DimD

Adodcl.RccordSource ~ "select * from pri where name like "' & Textl.Tcxr & "%' and
status='Normal'"

Adodc J .Refresht

End Sub

Form Reports:

Dim DJ, D2, D3, D4 As Date

Private Sub CheckJ_Click()
End Sub

Private Sub Check2_C1ick()

If Check2. Value = vbChecked Then

DTPicker1(0).Enab1ed = True

DTPicker 1 (1).Enabled = True
Else

DTPickerl(O).Enabled = False

DTPickerl (1).Enabled = False

96

End If

End Sub

Private Sub Commandl_Click()

Dimx

If Combol.Text = "All" Then

x = Empty

Else

x = "where status='" & Combol .Text & "'"

End If

Adodcl.RecordSource = "select ID, Name ,Surname .Indate as [In Date],outdate as [Out
Date],Status from Pri " & x

Adodc 1 .Refresh

End Sub

Private Sub Command2_Click()

Set DataRepo112.DataSource = Adodcl

DataReport2.DataMember = Adodcl .Recordset.DataMember

DataReport2.Show

End Sub

Private Sub Comrnand3_Click()

Set DataReport l .DataSource = Adodc 1

DataReportl .DataMember = Adodcl .Recordset.DataMember

DataReportl .Show

End Sub

Private Sub Comrnand4_Click()

D3 = DTPicker1(2).Value

D4 = DTPicker1(3).Value

'If Checkl(l).Value = vbChecked Then

' DI = DTPickerl (0).Value

· D2 = DTPickerl(l).Value

'Else

· Dl = DTPickerl(O).Value

97

' D2 = DTPickerI(l).Value

'End If

Adodcl.RecordSource = "select ID, name as [Visitor Name],surname as [Visitor

Surname],toname as [Prisoner Name],tosurname as [Prisoner Surname],date as [Date], time

as [Visit Time], out as [Out Time] from table I where date between datevalue("' & D3 & '")

and datevalue("' & D4 & "')"

Adodc I .Refresh

End Sub

Private Sub DTPickerl_Click(Index As Integer)

If Index = 0 Then

DTPickerI(l).Value = DTPickerl(O).Value

End If

End Sub

Private Sub DTPickerl_CloseUp(lndex As Integer)

If Index = 0 Then

DTPickerl(l).Value = DTPickerI(O).Value

End If

DI = DTPickerI(O).Value

D2 = DTPickerI (1).Value

End Sub

Private Sub DTPickerI_KeyPress(lndex As Integer, KeyAscii As Integer)

If Index = 0 Then

DTPickerI(l).Value = DTPickerl(O).Value

End If

DI = DTPickerI(O).Value

D2 = DTPickerl(l).Value

End Sub

Private Sub Form_Load()

Combo 1.Listlndex = 0

Adodcl.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\Data.mdb;Persist Security Info=False"

98

End Sub

Private Sub Optionl_Click()

If Option 1. Value= True Then

Frame 1.Enabled = True

Frame2.Enabled = False

Else

Framel.Enabled = False

Frame2.Enabled = True

End If

End Sub

Private Sub Option2_Click()

If Option2.Value = True Then

Frame2.Enabled = True

Framel .Enabled= False

Else

Frame2.Enabled = False

Frame 1.Enabled = False

End If

End Sub

Form Users:

Dim Conn As ADODB.Connection

Dim Re As ADODB.Recordset

Dim User

Private Sub Commandl_Click()

Unload Me

End Sub

Private Sub Command2_Click()

For i = 0 To 4

If Textl (i).Text = Empty Then

MsgBox "Please enter all fields!", vbExclamation

99

Text} (I).SetFocus

Exit Sub

End If

Next

If IsNumeric(Textl (0).Text) = True Then

MsgBox "You can not use numeric user names!", vbCritical

Textl (0).Text = Empty

Text 1 (0).SetFocus

Exit Sub

End If

Set Re= New ADODB.Recordset

Re.Open "select * from users where usernamee." & Textl(O).Text & ""', Conn,

adOpenStatic, adLockReadOnly, adCmdUnknown

If Re.RecordCount = 0 Then

If Textl(3).Text <> Text1(4).Text Then

MsgBox "Check the password!", vbExclamation

Textl (3).Text = Empty

Text1(4).Text = Empty

Textl (3).SetFocus

Exit Sub

End If

Set Re= New ADODB.Recordset

Re.Open C'users"), Conn, adOpenDynamic, adLockOptimistic, adCmdTable

Re.AddNew

For i = 0 To 3

Re.Fields(i) = Textl(i).Text

Textl(i).Text = Empty

Next

Text1(4).Text = Empty

Re.Fields(4) = Combol .Text

Re.Update

100

Else

MsgBox "This User Name already exist!", vbCritical

Textl(O).Text = Empty

Text 1 (0).SetFocus

End If

RefreshList

End Sub

Private Sub Command3_Click()

If LCase(Listl .Text)= "adrnin" And LCase(Textl(O).Text) <> "admin" Then

MsgBox "You can not change [admin] user name!", vbCritical

Exit Sub

Elself Listl .Text= "admin" And Combol .Text<> "Administrator" Then

MsgBox "You can not change this user type!", vbCritical

Exit Sub

End If

For i = 0 To 4

If Textl(i).Text = Empty Then

MsgBox "Please enter all fields I", vbExclamation

Text 1 (i).SetFocus

Exit Sub

End If

Next

If IsNumeric(Text 1 (0).Text) = True Then

MsgBox "You can not use numeric user names!", vbCritical

Textl(O).Text = Empty

Textl (0).SetFocus

Exit Sub

End If

Set Re= New ADODB.Recordset

Re.Open "select * from users where usemame=" & Textl(O).Text &

adOpenDynamic, adLockOptirnistic, adCmdUnknown

101

Conn,

If LCase(Textl(O).Text) = LCase(Listl.Text) And Re.RecordCount <> 0 Then

MsgBox "This User Name already exist!", vbCritical

Textl(O).Text = Empty

Text 1 (O).SetFocus

Exit Sub

Else

If Text 1 (3).Text <> Textl (4).Text Then

MsgBox "Check the password!", vbExclamation

Text1(3).Text = Empty

Text1(4).Text = Empty

Text 1 (3).SetFocus

Exit Sub

End If

Set Re= New ADODB.Recordset

Re.Open "select * from users where usemamev'" & Listl .Text &

adOpenKeyset, adLockOptimistic, adCmdUnknown

For i = 0 To 3

Re.Fields(i) = Text 1 (i).Text

Next

Re.Fields(4) = Combol .Text

Re.Update

RefreshList

End If

Command3.Enabled = False

End Sub

Private Sub Command4_Click()

If LCase(Listl .Text)<> "adrnin" Then

Set Re= New ADODB.Recordset

Re.Open "select * from users where username>" & Listl .Text & "'" Corm,

adOpenDynamic, adLockOptimistic, adCmdUnknown

Conn.

Re.Delete

102

RefreshList

For i = 0 To 4

Text] (i).Text = Empty

Next

Else

MsgBox "You can not delete [admin] user.", vbCritical

End If

End Sub

Private Sub Command5_Click()

For i = 0 To 4

Textl(i).Text = Empty

Next

Text 1 (1).SetFocus

End Sub

Private Sub Form_Load()

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path &

"\Data.mdb;Persist Security Info=False"

Refreshl.ist

End Sub

Private Sub Listl_Click()

On Error Resume Next

Set Re= New ADODB.Recordset

Re.Open "select* from users where usemamee " & Listl.Text & ""', Conn

For i = 0 To 3

Textl(i).Text = Re.Fields(i)

Next

Text1(4).Text = Re.Fields(3)

Combol.Text = Re.Fields(4)

User= Textl(O).Text

Command3.Enabled = True

103

End Sub

Private Sub RefreshList()

Listl.Clear

Set Re= New ADODB.Recordset

Re.Open "select* from users order by usemame", Conn

If Re.Record Count <> 0 Then

Re.MoveFirst

While Not Re.EOF

Listl .Addltem Re!UserName

Re.MoveNext

Wend

End If

End Sub

mCAPTURE:

Option Explicit

'***

'mCapture

'Written By : Shawn K. Hall [Reliable Answers.com]

'Description : Visual Basic Screen Capture Routines

'Requires : Reference to "Standard OLE Types"

'***

'[Types]

Private Type PALETTEENTRY

peRed As Byte

peGreen As Byte

peBlue As Byte

peFlags As Byte

104

End Type

Private Type LOGPALETTE

pa1Version As Integer

pa1NumEntries As Integer

pa1Pa1Entry(2S5) As PALETTEENTRY

End Type

Private Type GUID

Data 1 As Long

Data2 As Integer

Data3 As Integer

Data4(7) As Byte

End Type

Private Type RECT

Left As Long

Top As Long

Right As Long

Bottom As Long

End Type

Private Type PicBmp

Size As Long

Type As Long

hBmp As Long

hPa1 As Long

Reserved As Long

End Type

'[Declares]

Private Declare Function CreateCompatibleDC _

Lib "gdi I?" _

(ByVal hdc As Long)_

As Long

Private Declare Function CreateCompatibleBitmap _

105

Lib "gdi32" _

(ByVal hdc As Long,_

ByVal nWidth As Long,_

ByVal nHeight As Long)_

As Long

Private Declare Function GetDeviceCaps _

Lib "gdi32" _

(ByVal hdc As Long,_

ByVal iCapabilitiy As Long)_

As Long

Private Declare Function GetSystemPaletteEntries _

Lib "gdi32" _

(ByVal hdc As Long,_

ByVal wStartlndex As Long,_

ByVal wNumEntries As Long,_

lpPaletteEntries As PALETTEENTRY) _

As Long

· Private Declare Function CreatePalette

Lib "gdi32" _

(lpLogPalette As LOGPALETTE) _

As Long

Private Declare Function SelectObject _

Lib "gdi32" _

(ByVal hdc As Long,_

ByVal hObjecl As Long)_

As Long

Private Declare Function BitBlt

Lib "gdi32" _

(ByVal hDCDest As Long,_

ByVal XDest As Long,_

ByVal YDest As Long,_

106

ByVal nWidth As Long,_

ByVal nHeight As Long,_

ByVal hDCSrc As Long,_

ByVal xSrc As Long,_

ByVal ySrc As Long,_

ByVal dwRop As Long)_

As Long

Private Declare Function DeleteDC

Lib "gdi32" _

(ByVal hdc As Long)_

As Long

Private Declare Function GetForegroundWindow _

Lib "USER32" () _

As Long

Private Declare Function SelectPalette

Lib "gdi32" _

(By Val hdc As Long, _

ByVal hPalette As Long,_

ByVal bForceBackground As Long)_

As Long

Private Declare Function RealizePalette

Lib "gdi32" _

(By Val hdc As Long) _

As Long

Private Declare Function Get Window DC

Lib "USER32" _

(ByVal hwnd As Long)_

As Long

Private Declare Function GetDC

Lib "USER32"

(ByVal hwnd As Long) __

107

As Long

Private Declare Function GetWindowRect

Lib "USER32"

(ByVal hwnd As Long,_

lpRect As RECT) _

As Long

Private Declare Function ReleaseDC

Lib "USER32"

(ByVal hwnd As Long,_

ByVal hdc As Long)_

As Long

Private Declare Function GetDesktop Window_

Lib "USER32" () _

As Long

Private Declare Function OJeCreatePicturelndirect

Lib "olepro32.dll" _

(PicDesc As PicBmp, _

ReflID As GUID,

ByVal fFictureOwnsHandle As Long,_

IPic As IPicture) _

As Long

'[Constants J

Private Const RASTERCAPS As Long= 38

Private Const RC_PALETTE As Long= &HJOO

Private Const SIZEPALETTE As Long = 104
'[Code]

'***

'CreateBitmapPicture

'Inputs : ByVal hBmp& = Handle to a bitmap

: ByVal hPal& = Handle to a Palette -

null if no palette

108

'Returns : Picture= containing the bitmap

'Description : Creates a bitmap type Picture object from

: a bitmap and palette

'***

Public Function

CreateBitmapPicture(_

ByVal hBmp As Long,_

ByVal hPal As Long)_

As Picture

On Error GoTo proc_err

'Variables

Dim r&, Pie As PicBmp

Dim IPic As IPicture, IID_IDispatch As GUID

'Fill in with !Dispatch Interface ID.

With IID_IDispatch

.Data] = &H20400

.Data4(0) = &HCO

.Data4(7) = &H46

End With

'Fill Pie with necessary parts.

With Pie

.Size= Len(Pic) 'Length of structure .

. Type= vbPicTypeBitmap 'Type of Picture (bitmap) .

. hBmp = hBmp ' Handle to bitmap .

. hPal = hPal 'Handle to palette (may be null).

End With

' Create Picture object.

r = OleCreatePictureindirect(Pic, IID _IDispatch, 1, IPic)

' Return the new Picture object.

Set CreateBitmapPicture = IPic

proc_exit:

109

Exit Function

procerr:

MsgBox Err.Number & " - " & Err.Description,_

vbExclamation, _

"Error: CaptureBitmapPicture()"

Resume proc_exit

Resume

End Function

'***

' Capture Window

'Written By : Shawn K. Hall [Reliable Answers.com]
'Inputs : ByVal hWndSrc& = Handle to the window

to be captured

: ByVal Client:B = Capture the client

area of the window

: ByVal LeftSrc& = Area of window to

capture, in pixels

: ByVal TopSrc& =

: ByVal WidthSrc& = .

: ByVal HeightSrc& = .

'Returns : Picture= bitmap of the specified portion

of the window that was captured

'Description : Captures any portion of a window

'***

Public Function

Capture Window(_

ByVal hWndSrc As Long,_

ByVal Client As Boolean,_

ByVal LeftSrc As Long,_

ByVal TopSrc As Long,_

ByVal WidthSrc As Long,_

110

ByVal HeightSrc As Long)_

As Picture

On Error GoTo proc_err

'Variables

Dim hDCMemory&, hBmp, hBmpPrev&, r&, hDCSrc&

Dim hPal&, hPalPrev&, RasterCapsScm&, HasPaletteScm&

Dim PaletteSizeScrn&, LogPal As LOGPALETTE

' Depending on the value of Client get the proper device context.

If Client Then

'Get device context for client area.

hDCSrc = GetDC(hWndSrc)

Else

'Get device context for entire window.

hDCSrc = Get Window DC(h WndSrc)

End If

'Create a memory device context for the copy process.

hDCMemory = CreateCompatibleDC(hDCSrc)

' Create a bitmap and place it in the memory DC.

hBmp = CreateCornpatibleBitrnap(hDCSrc, WidthSrc, HeightSrc)

hBmpPrev = SelectObject(hDCMernory, hBmp)

'Get screen properties.

RasterCapsScrn = GetDeviceCaps(hDCSrc, RASTERCAPS) ' Raster capabilities.

HasPaletteScm = RasterCapsScrn And RC_PALETTE 'Palette support.

PaletteSizeScrn = GetDeviceCaps(hDCSrc, SIZEPALETTE) ' Size of palette.

' If the screen has a palette make a copy and realize it.

If HasPaletteScrn And (PaletteSizeScm = 256) Then

' Create a copy of the system palette.

LogPal.palVersion = &H300

LogPal.palNurnEntries = 256
r = GetSysternPaletteEntries(hDCSrc, 0, 256, LogPal.palPalEntry(O))

hPal = CreatePalette(LogPal)

111

' Select the new palette into the memory DC and realize it.

hPalPrev == SelectPalette(hDCMemory, hPal, 0)

r == RealizePalette(hDCMemory)

End If

' Copy the on-screen image into the memory DC.

r == BitBlt(hDCMemory, 0, 0, WidthSrc, HeightSrc, hDCSrc, LeftSrc, TopSrc,
vbSrcCopy)

' Remove the new copy of the on-screen image.

hBmp == SelectObject(hDCMemory, hBmpPrev)

' If the screen has a palette get back the palette that was

' selected in previously.

If HasPaletteScm And (PaletteSizeScm == 256) Then

hPal == SelectPalette(hDCMemory, hPalPrev, 0)

End If

'Release the device context resources back to the system.

r == DeleteDC(hDCMemory)

r == ReleaseDC(h WndSrc, hDCSrc)

' Call CreateBitmapPicture to create a picture object from the

' bitmap and palette handles. Then return the resulting Picture
'object.

Set Capture Window == CreateBitmapPicture(hBmp, hPal)
proc_exit:

Exit Function

procerr:

MsgBox Err.Number & " - " & Err.Description,_

vbExclamation, _

"Error: Capture Window()"

Resume proc_exit

Resume

End Function

112

'***

· CaptureScreen

· Written By : Shawn K. Hall [Reliable Answers.com]
' Inputs : NI A

'Returns : Picture = bitmap of the screen

'Description : Captures the entire screen

'***
Public Function

CaptureScreen() _

As Picture

On Error GoTo proc_err

· Variables

Dim h WndScreen&

· Get a handle to the desktop window.

h WndScreen = GetDesktop Window()

' Call Capture Window to capture the entire desktop give the Handle

· and return the resulting Picture object.

Set CaptureScreen = _
Capture Window(_

h WndScreen, False, 0, 0, _

Screen.Width\ Screen.TwipsPerPixelX, _

Screen.Height\ Screen.TwipsPerPixelY)
proc_exit:

Exit Function

proc_err:

MsgBox Err.Number & " - " & Err.Description,_
vbExclamation, _

"Error: CaptmeScreen()"

Resume proc_exit

Resume

End Function

113

'***

' CaptureForm

' Written By : Shawn K. Hall [Reliable Answers.com]

' Inputs : frmSrc : Form = object to capture
' Returns : Picture = bitmap of the entire form

'Description : Captures an entire form including title

: bar and border

'***

Public Function

CaptureForm(_

frmSrc As Form)_

As Picture

On Error GoTo proc_err

'Call Capture Window to capture the entire form given its window

'handle and then return the resulting Picture object.

Set CaptureForm = _

Capture Window(_

frmSrc.hwnd, False, 0, 0, _

frmSrc.ScaleX(_

frmSrc. Width, _

vbTwips, _

vbPixels), _

frmSrc.ScaleY(_

frmSrc.Height, _

vbTwips, _

vbPixels) _

)

proc_exit:

Exit Function

proc_err:

MsgBox Err.Number & " - " & Err.Description, _

114

vbExclamation, _

"Error: CaptureForm()"

Resume proc_exit

Resume

End Function

'***

' CaptureClient

'Written By : Shawn K. Hall [Reliable Answers.com]

' Inputs : frmSrc : Form = object to capture
'Returns : Picture = bitmap of frrrrSrc's client area

' Description : Captures the client area of a form

'***

Public Function

CaptureClient(_

frmSrc As Form) _

As Picture

On Error GoTo proc_err

' Call Capture Window to capture the client area of the form given

' its window handle and return the resulting Picture object.

Set CaptureClient = _
Capture Window(_

frmSrc.hwnd, True, 0, 0, _

frmSrc.ScaleX(_

frmSrc.Scale Width, _

frmSrc.ScaleMode, _

vbPixels), _

frmSrc.ScaleY(_

frmSrc.ScaleHeight, _

frmSrc.ScaleMode, _

vbPixels) _

)

115

proc_exit:

Exit Function

proc_err:

MsgBox Err.Number & " - " & Err.Description, _

vbExclamation, _

"Error: CaptureClient()"

Resume proc_exit

Resume

End Function

'***

' CaptureActive Window

' Written By : Shawn K. Hall [Reliable Answers.com]

'Returns : Picture = bitmap of the active window

'Description : Captures the currently active window

'***

Public Function

CaptureActive Window() _

As Picture

On Error GoTo proc_err

'Variables

Dim h WndActive&, r&, RectActive As RECT

'Get a handle to the active/foreground window.

h WndActive = GetForegroundWindow()

' Get the dimensions of the window.

r = GetWindowRect(h WndActive, RectActive)

' Call Capture Window to capture the active window given its

'handle and return the Resulting Picture object.

Set Capture Active Window = _

Capture Window(_

h WndActive, False, 0, 0, _

RectActive.Right - RectActive.Left, _

U6

RectActive.Bottom - RectActive.Top)

proc_exit:

Exit Function

proc_err:

MsgBox Err.Number & " - " & Err.Description,_

vbExclamation, _

"Error: CaptureActive Window()"

Resume proc_exit

Resume

End Function

'***

' PrintPictureToFitPage

'Written By : Shawn K. Hall [Reliable Answers.com]

' Inputs : Pm : Printer = Destination Printer object

: Pie : Picture = Source Picture object

' Returns : NI A

'Description : Prints a Picture object as large as

: possible

'***

Public Sub

PrintPictureToFitPage(_

Pm As Printer,_

Pie As Picture)

On Error GoTo proc_err

'Variables

Dim PicRatio#, Pm Width#, PmHeight#

Dim PmRatio#, PmPicWidth#, PmPicHeight#

' Determine if picture should be printed in landscape or

' portrait and set the orientation.

If Pie.Height >= Pie. Width Then

Pm.Orientation = vbPRORPortrait 'Taller than wide.

117

Else

Pm.Orientation = vbPRORLandscape ' Wider than tall.

End If

' Calculate device independent Width-to-Height ratio for picture.

PicRatio = Pie.Width I Pie.Height

' Calculate the dimentions of the printable area in Hilvletric.

Pm Width= Prn.ScaleX(Prn.ScaleWidth, Prn.ScaleMode, vbHimetric)

PrnHeight = Prn.ScaleY(Prn.ScaleHeight, Prn.ScaleMode, vbHimetric)

' Calculate device independent Width to Height ratio for printer.

PmRatio = Prn Width I PrnHeight

' Scale the output to the printable area.

If PicRatio >= PrnRatio Then

' Scale picture to fit full width of printable area.

PrnPicWidth = Prn.ScaleX(PrnWidth, vbHimetric, Prn.ScaleMode)

PrnPicHeight = Prn.ScaleY(PrnWidth I PicRatio, vbHimetric, Prn.ScaleMode)

Else

' Scale picture to fit full height of printable area.

PrnPicHeight = Prn.ScaleY(PrnHeight, vbHimetric, Pm.ScaleMode)

PmPicWidth = Pm.ScaleX(PrnHeight * PicRatio, vbHimetric, Pm.ScaleMode)

End If

' Print the picture using the PaintPicture method.

Pm.PaintPicture Pie, 0, 0, PmPicWidth, PrnPicHeight

procexit:

Exit Sub

proc_err:

MsgBox Err.Number & " - " & Err.Description, _

vbExclamation, _

"Error: PrintPictureToFitPage()"

Resume proc_exit

Resume

End Sub

118

mDIFORMl:

Dim Conn As ADODB.Connection

Dim Re As ADO DB .Recordset

Private Sub CommandlO_Click()

End

End Sub

Private Sub Command9_Click()

Dim a

Set Re= New ADODB.Recordset

Re.Open "select usemame,password from users where username>'" & Text} .Text &

Conn, adOpenStatic, adLockReadOnly, adCmdUnknown

If Re.RecordCount = 0 Then

a= MsgBox("User Name Not Found! Try again?", vbExclamation + vbYesNo)

If a= vb Yes Then

Text} .Text= Empty

Text2.Text = Empty

Text 1.SetFocus

Exit Sub

Else

End

End If

Else

If UCase(Re'Password) <> UCase(Text2.Text) Then

a= MsgBox("Wrong password! Try again?", vbExclamation + vbYesNo)

If a= vb Yes Then

Text2.Text = Empty

Text2.SetFocus

Exit Sub

Else

End

119

End If

Else

'MDIForml .Enabled = True

'Unload Me

'Load frmMain

'frmMain.Show

Picture2.Picture = LoadPicture(App.Path & "\Slcin\back2.jpg")

Picture2. Visibte = False
Picture]. Visible= True

Textl .Text= Emq_t\/,

1'ext2.1'ext = Empty

End If

End If

End Sub

Private Sub Imagel_Click(Index As Integer)

Unload frmUsers

Unload frmPri

Unload frmAddNew

Unload frmReports

Unload frmFind

Load frmMain

frmMain.Show

End Sub

Private Sub Imagel_MouseMove(Index As Integer, Button As Integer, Shift As Integer, x
As Single, y As Single)

Imagel(O).Visible = False

Image] (!).Visible= True

If Image2(0).Visible = False Then

Image2(0).Visible = True

Image2(1).Visible = False

End If

120

If Image3(0).Visible = False Then

Image3(0).Visible = True

Image3(1).Visible = False

End If

If Image4(0).Visible = False Then

Image4(0).Visible = True

Image4(1). Visible = False

End If

If Image5(0).Visible = False Then

Image5(0).Visible = True

Image5(1).Visible= False

End If

If Image6(0).Visible = False Then

Image6(0).Visible = True

Image6(1). Visible = False
End If

If Image7(0).Visible = False Then

Image7(0).Visible = True

Image7(1).Visible = False

End If

If Image8(0).Visible = False Then

Image8(0).Visible = True

Image8(1). Visible= False

End If

End Sub

Private Sub Image2_Click(lndex As Integer)

Unload frmMain

Unload frmPri

Unload frmReports

Unload frmUsers

Unload frmFind

121

EditMode = False

Load frmAddNew

frmAddNew.Show, Me

End Sub

Private Sub Image2_MouseMove(lndex As Integer, Button As Integer, Shift As Integer, x

As Single, y As Single)

Image2(0).Visible = False
Image2(1).Visible = True
If Image I (0).Visible = False Then

Imagel (0).Visible = True
Imagel(l).Visible = False

End If

If Image3(0).Visible = False Then

Image3(0).Visible = True

Image3(1).Visible = False

End If

If Image4(0).Visible = False Then

Image4(0).Visible = True

Image4(1).Visible= False

End If

If Image5(0).Visible = False Then

Image5(0).Visible = True

Image5(1).Visible= False

End If

If lmage6(0).Visible = False Then

Image6(0).Visible = True

Image6(1).Visible = False

End If

If Image7(0).Visible = False Then

Image7(0).Visible = True

Image7(1).Visible = False

122

End If

If Image8(0).Visible = False Then
Image8(0).Visible = True
Image8(1). Visible = False

End If

End Sub

Private Sub Image3_Click(lndex As Integer)

Unload frmUsers

Unload frmMain

Unload frmAddNew

Unload frmReports

Unload frmPri

Load frmFind

frmFind.Show vbModal, MDlForml

End Sub

Private Sub Image3_MouseMove(lndex As Integer, Button As Integer, Shift As Integer, x

As Single, y As Single)

Image3(0).Visible = False

Image3(1).Visible= True

If Imagel (0).Visible = False Then

Image} (O).Visible = True

Image 1 (1). Visible = False

End If

If Image2(0).Visible = False Then

Image2(0).Visible = True

Image2(1).Visible= False

End If

If Image4(0).Visible = False Then

Image4(0).Visible = True

Image4(1).Visible = False

End If

123

If Image5(0).Visible = False Then

Image5(0).Visible = True

Image5(1). Visible = False

End If

If Image6(0).Visible = False Then

Image6(0). Visible= True

Image6(1). Visible = False

End If

If Image7(0).Visible = False Then

Image7(0). Visible= True

Image7(1).Visible = False

End If

If Image8(0).Visible = False Then

Image8(0).Visible = True

Image8(1).Visible = False

End If

End Sub

Private Sub Image4_Click(Index As Integer)

Unload frmUsers

Unload frmMain

Unload frmAddNew

Unload frmReports

Unload frmFind

Load frmPri

fm1Pri.Show vbModal, MDIForm]

End Sub

Private Sub Image4_MouseMove(lndex As Integer, Button As Integer, Shift As Integer, x
As Single, y As Single)

Image4(0). Visible= False

Image4(1).Visib]e = True

Ifimage I (0). Visible = False Then

124

Image 1 (0). Visible = True

Imagel (}).Visible= False

End If

If Image2(0).Visible = False Then

Image2(0).Visible == True

Image2(1).Visible == False

End If

If Image3(0).Visible = False Then

Image3(0).Visible = True

Image3(1). Visible== False

End If

If Image5(0).Visible = False Then

Image5(0).Visible = True

Image5(1). Visible = False

End If

lflmage6(0).Visible = False Then

Image6(0).Visible = True

Image6(1). Visible = False

End If

If Image7(0).Visible == False Then

Image7(0). Visible= True

Image7(1).Visible = False

End If

If Image8(0).Visible = False Then

Image8(0).Visible = True

Image8(1).Visible = False

End If

End Sub

Private Sub Image5_Click(Index As Integer)

Unload frmUsers

Unload frmMain

125

Unload frmAddNew

Unload frmPri

Unload frmFind

Load frmReports

frrnReports.Show

End Sub

Private Sub Image5_MouseMove(lndex As Integer, Button As Integer, Shift As Integer, x

As Single, y As Single)

Image5(0).Visible = False

lmage5(1).Visible = True

If Image I (0). Visible = False Then

Imagel(O).Visible = True

Image] (1).Visible= False

End If

If Image2(0).Visible = False Then

lmage2(0).Visible = True

Image2(1).Visible = False

End If

If Image3(0).Visible = False Then

Image3(0).Visible = True

Image3(1).Visible= False

End If

If Image4(0).Visible = False Then

Image4(0).Visible = True

lmage4(1).Visible= False

End If

If Image6(0).Visible = False Then

Image6(0).Visible = True

Image6(1).Visible= False

End If

If Image7(0).Visible = False Then

126

Image7(0).Visible = True
Image7(1).Visible = False

End If

If Image8(0).Visible = False Then
Image8(0).Visible = True
Image8(1).Visible = False

End If

End Sub

Private Sub Image6_Click(Index As Integer)

Unload frmReports

Unload frmMain

Unload frrnAddNew

Unload frmPri

Unload frmFind

Load frmUsers

frmUsers.Show

End Sub

Private Sub Image6_MouseMove(lndex As Integer, Button As Integer, Shift As Integer, x
As Single, y As Single)

Image6(0).Visible = False
Image6(1).Visible = True
If Imagel(O).Visible = False Then

Imagel(O).Visible = True
Imagel(l).Visible = False

End If

If Image2(0).Visible = False Then
Image2(0).Visible = True
Image2(1).Visible = False

End If

If Image3(0).Visible = False Then

Image3(0).Visible = True

127

Image3(1).Visible = False
End If

If Image4(0).Visible = False Then
Image4(0). Visible = True
Image4(1).Visible = False

End If

If Image5(0).Visible = False Then
Image5(0).Visible = True

Image5(1).Visible = False
End If

If Image7(0).Visible = False Then
Image7(0).Visible = True
Image7(1).Visible = False

End If

If Image8(0).Visible = False Then
Image8(0).Visible = True

Image8(1). Visible = False
End If

End Sub

Private Sub Image7 _Click(Index As Integer)

Unload frmUsers

Unload frmMain

Unload frmAddNew

Picture2.Picture = LoadPicture(App.Path & "\Skin\backl .jpg")

Picturel.Yisible = False
Picture2.Yisible = True
'Load frmLogin

'frmLogin.Show vbModal, MDIForml

End Sub

Private Sub Image7 _MouseMove(Index As Integer, Button As Integer, Shift As Integer, x

As Single, y As Single)

128

Image7(0).Visible = False

Image7(1).Visible = True

If Image! (0).Visible = False Then

Imagel(O).Visible = True

Imagel(l).Visible = False

End If

If Image2(0).Visible = False Then

Image2(0).Visible = True

Image2(1).Visible = False

End If

If Image3(0).Visible = False Then

Image3(0).Visible = True

Image3(]).Visible= False

End If

If Image4(0).Visible = False Then

Image4(0).Visible = True

Image4(1).Visible= False

End If

If Image5(0).Visible = False Then

Image5(0).Visible = True

Image5(1).Visible = False

End If

If Image6(0).Visible = False Then

Image6(0).Visible = True

Image6(1).Visible = False

End If

If Image8(0).Visible = False Then

Image8(0).Visible = True

Image8(1).Visible= False

End If

End Sub

129

Private Sub Image8_Click(lndex As Integer)

End

End Sub

Private Sub Image8_MouseMove(lndex As Integer, Button As Integer, Shift As Integer, x

As Single, y As Single)

Image8(0).Visible = False

lmage8(1).Visible = True
If Imagel(O).Visible = False Then

Image! (0).Visible = True
Imagel(]).Visible = False

End If

If lmage2(0).Visible = False Then
lmage2(0).Visible = True

Image2(1).Visible = False

End If

If lmage3(0).Visible = False Then

Image3(0).Visible = True
lmage3(1).Visible = False

End If

lf lmage4(0).Visible = False Then

lmage4(0).Visible = True

lmage4(1).Visible = False

End If

If Image5(0).Visible = False Then
lmage5(0).Visible = True
lmage5(1).Visible = False

End If

If Image6(0). Visible = False Then

Image6(0).Visible = True

lmage6(1).Visible = False
End If

130

If Image7(0).Visible = False Then

Image7(0).Visible = True

Image7(1).Visible = False

End If

End Sub

Private Sub MDIForm_Load()

Set Conn= New ADODB.Connection

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path
"\Data.mdb;Persist Security Info=False"

'Load frmLogin

'frmLogin.Show, MDIForml

End Sub

Private Sub PictureJ_MouseMove(Button As Integer, Shift As Integer, x As Single, y As
Single)

Iflmage 1 (0). Visible = False Then
Image] (0).Visible = True

Imagel(]).Visible = False

End If

If Image2(0).Visible = False Then

Image2(0).Visible = True

Image2(]).Visible = False
End If

If Image3(0).Visible = False Then

Image3(0).Visible = True

Image3(1).Visible = False

End If

If Image4(0).Visible = False Then

Image4(0).Visible = True

Image4(1).Visible = False

End If

If Image5(0).Visible = False Then

131

Image5(0).Visible = True

Image5(1).Visible= False

End If

If Image6(0).Visible = False Then

Image6(0).Visible = True

Image6(1).Visible = False

End If

If Image7(0).Visible = False Then

Image7(0).Visible = True

Image7(1).Visible= False

End If

If Image8(0).Visible = False Then

Image8(0).Visible = True

Image8(1).Visible = False

End If

End Sub

mINTELJPEGLIBRARY:

Option Explicit

--- --

'Filename: mlntelJPEGLibrary.bas

'Author: Steve McMahon

' Date: 1 S March 1999

'Requires: cDIBSection.cls (vbAccelerator)

IJLl 1.DLL (Intel)

'An interface to Intel's IJL (Intel JPG Library) for use in VB.

' Copyright © 1999 Steve McMahon for vbAccelerator

132

' http:l lvbaccelerator.com/

' Modifications

' 16 Jan 2000 SPM

'* Modified to declares to access vl.l. of Intel's IJL DLL

' * SaveJPG - if you were overwriting an existing JPG, the file could never be

reduced in size, only increased. Old bytes were simply left trailing as

' an unnecessary payload at the JPG. The JPG could be loaded, but this was

' not ideal. The new version ensures the file size is always set.

' * LoadJPGFromPtr - new function, allows you to read a JPG from a memory

' address (e.g. resource etc)

' Copyright.

' IJL.DLL is a copyright © Intel, which is a registered trade mark of the Intel

'Corporation.

'Note.

' Intel are not responsible for any errors in this code and should not be

'mentioned in any Help, About or support in any product using the Intel library.

--====================---

' IJL Declares:

Private Enum IJLERR

'II The following "error" values indicate an "OK" condition.

IJL_OK = 0

133

IJL_INTERRUPT_OK = 1

IJL_ROI_OK = 2

'II The following "error" values indicate an error has occurred.

IJL_EXCEPTION_DETECTED = -1

IJL_INVALID_ENCODER = -2

IJL_UNSUPPORTED_SUBSAMPLING = -3

lJL_UNSUPPORTED_BYTES_PER_PIXEL = -4

IJL_MEMORY _ERROR= -5

IJL_BAD_HUFFMAN_TABLE = -6

IJL_BAD _QUANT_ TABLE = - 7

IJL_INVALID_JPEG_PROPERTIES = -8

IJL_ERR_FlLECLOSE = -9

IJL_INVALID_FlLENAME = -10

IJL_ERROR_EOF = -11

IJL_PROG_NOT _SUPPORTED= - 12

IJL_ERR_NOT _JPEG = -13

IJL_ERR_COMP = -14

IJL_ERR_SOF = -15

IJL_ERR_DNL = -16
IJL_ERR_NO_HUF = -17

IJL_ERR_NO_QUAN = -18

IJL_ERR_NO_FRAME = -19

IJL_ERR_MULT_FRAME = -20

IJL_ERR_DATA = -21

IJL_ERR_NO_IMAGE = -22

IJL_FILE_ERROR = -23

IJL_INTERNAL_ERROR = -24

IJL_BAD_RST_MARKER = -25

IJL_THUMBNAIL_DIB_TOO_SMALL = -26

IJL_THUMBNAIL_DIB_ WRONG_COLOR = -27

IJL_RESERVED = -99

134

End Enum

Private Enum IJLIOTYPE

IJL_SETUP = -1 &

"II Read JPEG parameters (i.e., height, width, channels,

"II sampling, etc.) from a JPEG bit stream.

IJL_JFILE_READPARAMS = O&

IJL_JBUFF_READPARAMS = 1&

"II Read a JPEG Interchange Format image.

IJL_JFILE_READWHOLEIMAGE = 2&

IJL_JBUFF _READWHOLEIMAGE = 3&

"II Read JPEG tables from a JPEG Abbreviated Format bit stream.

IJL_JFILE_READHEADER = 4&

IJL_JBUFF _READHEADER = 5&

"II Read image info from a JPEG Abbreviated Format bit stream.

IJL_JFILE_READENTROPY = 6&

IJL_JBUFF _READENTROPY = 7 &

"II Write an entire JFIF bit stream.

IJL_JFILE WRITE'vVHOLEIMAGE = 8&

IJL_JBUFF _ WRITEWHOLEIMAGE = 9&

"II Write a JPEG Abbreviated Format bit stream.

IJL_JFILE_ WRITEHEADER = 1 O&

IJL_JBUFF _ WRITEHEADER = 11 &

"II Write image info to a JPEG Abbreviated Format bit stream.

IJL_JFILE_ WRITEENTROPY = 12&

IJL_JBUFF_ WRITEENTROPY = 13&

"II Scaled Decoding Options:

"II Reads a JPEG image scaled to 112 size.

IJL_JFILE_READONEHALF = 14&

IJL_JBUFF _READONEHALF = 15&

"I I Reads a JPEG image scaled to 114 size.

135

IJL_JFILE_READONEQUARTER = 16&

IJL_JBUFF_READONEQUARTER = 17&

"I I Reads a JPEG image scaled to 1/8 size.

IJL_JFILE_READONEEIGHTH = 18&

IJL_JBUFF _READONEEIGHTH = 19&

"II Reads an embedded thumbnail from a JFIF bit stream.

IJL_JFILE_READTHUMBNAIL = 20&

IJL_JBUFF_READTHUMBNAIL = 21&

End Enum

Private Type JPEG_CORE_PROPERTIES_ VB ' Sadly, due to a limitation in VB (UDT

variable count)

' we can't encode the full JPEG CORE_PROPERTIES structure

UseJPEGPROPERTIES As Long 'II default= 0

'II DIB specific VO data specifiers.

DIBBytes As Long'; 'II default= NULL 4

DIBWidth As Long';

DIBHeight As Long ';

DIBPadBytes As Long';

'II default= 0 8

'II default= 0 12

'II default= 0] 6

DIBChannels As Long '; '//default= 3 20

DIBColor As Long ';

DIBSubsampling As Long '

'II default= IJL_BGR 24

'II default= IJL_NONE 28

'II JPEG specific VO data specifiers.

JPGFile As Long 'LPTSTR JPGFile; 32 'II default = NULL

JPGBytes As Long'; 'II default= NULL 36

JPGSizeBytes As Long';

JPGWidth As Long ';

JPGHeight As Long ';

JPGChannels As Long';

JPGColor As Long

JPGSubsampling As Long '

JPGThumb Width As Long ' ;

'II default= 0 40

'II default = 0 44

'II default = 0 48

'II default = 3

'II default= IJL_ YCBCR

'II default = IJL_ 411

'II default= 0

136

JPGThumbHeight As Long ';

'II JPEG conversion properties.

cconversion_reqd As Long'; 'II default= TRUE

upsampling_reqd As Long '; 'II default = TRUE

'II default = 0

jquality As Long'; 'II default= 75. 100 is my preferred quality setting.

'II Low-level properties - 20,000 bytes. If the whole structure

' is written out then VB fails with an obscure error message

'"Too Many Local Variables" '

' These all default if they are not otherwise specified so there

' is no trouble to just assign a sufficient buffer in memory:

jprops(O To 19999) As Byte

End Type

Private Declare Function ijllnit Lib "ijl 11.dll" (jcprops As Any) As Long

Private Declare Function ijlFree Lib "ijll 1.dll" (jcprops As Any) As Long

Private Declare Function ijlRead Lib "ijll l.dll" (jcprops As Any, ByVal ioType As Long)

As Long

Private Declare Function ijlWrite Lib "ijll l .dll" (jcprops As Any, By Val ioType As Long)

As Long

Private Declare Function ijlGetLibVersion Lib "ijll l.dll" () As Long

Private Declare Function ijlGetErrorString Lib "ijl 11.dll" (By Val code As Long) As Long

'Win32 Declares

Private Declare Sub Copy Memory Lib "kemel32" Alias "RtlMoveMemory" (_

lpvDest As Any, lpvSource As Any, ByVal cbCopy As Long)

Private Declare Function GlobalAlloc Lib "kernel32" (ByVal wFlags As Long, ByVal

dwBytes As Long) As Long

Private Declare Function GlobalFree Lib "kemel32" (By Val hMem As Long) As Long

Private Declare Function GlobalLock Lib "kemel32" (ByVal hMem As Long) As Long

Private Declare Function GlobalUnlock Lib "kemel32" (ByVal hMem As Long) As Long

Private Const GMEM_DDESHARE = &H2000

Private Const GMEM_DISCARDABLE = &H 100

137

Private Const GMEM_DISCARDED = &H4000

Private Const GMEM_FIXED = &HO

Private Const GMEM_INVALID_HANDLE = &H8000

Private Const GMEM_LOCKCOUNT = &HFF

Private Const GMEM_MODIFY = &H80

Private Const GMEM_MOVEABLE = &H2

Private Const GMEM_NOCOMPACT = &HlO

Private Const GMEM_NODISCARD = &H20

Private Const GMEM_NOT_BANKED = &HlOOO

Private Const GMEM_NOTIFY = &H4000

Private Const GMEM_SHARE = &H2000

Private Const GMEM_ VALID_FLAGS = &H7F72

Private Const GMEM_ZEROINIT = &H40

Private Const GPTR = (GMEM_FIXED Or GMEM_ZEROINIT)

'Stuff for replacing a file when you have to Kill the original:

Private Const MAX_PATH = 260
Private Type FILETIME

dw Low Date Time As Long

dwHighDateTime As Long

End Type

Private Type WIN32_FIND_DATA

dw FileAttributes As Long

ftCreationTime As FILETIME

ftLastAccessTime As FILETIME

ftLastWriteTime As FILETIME

nFileSizeHigh As Long

nFileSizeLow As Long

dwReservedO As Long

dwReservedl As Long

cFileName As String* MAX_PATH

cAltemate As String * 14

138

End Type

Private Declare Function FindFirstFile Lib "kernel32" Alias "FindFirstFileA" (By Val

lpFileName As String, lpFindFileData As WIN32_FIND_DATA) As Long

Private Declare Function !open Lib "kemel32" Alias "_!open" (ByVal lpPathName As

String, ByVal iReadWrite As Long) As Long

Private Declare Function lclose Lib "kernel32" Alias "_]close" (ByVal hFile As Long) As

Long

Private Declare Function SetFileTime Lib "kemel32" (ByVal hFile As Long,

lpCreationTime As FILETIME, lpLastAccessTime As FILETIME, lpLastWriteTime As

FILETIME) As Long

Private Declare Function SetFileAttributes Lib "kernel32" Alias "SetFileAttributesA"

(ByVal lpFileName As String, ByVal dwFileAttributes As Long) As Long

Private Const OF_ WRITE= &HJ

Private Const OF _SHARE_DENY _WRITE= &H20

Private Const GENERIC_ WRITE= &H40000000

Private Const GENERIC_READ = &H80000000

Private Const FILE_SHARE_ WRITE= &H2

Private Const CREATE_ALWA YS = 2

Private Const FILE_BEGJN = 0

Private Const SECTION_MAP _WRITE= &H2

Public Function LoadJPG(_

By Ref cDib As cDIBSection, _

ByVal sFile As String_

) As Boolean

' Dim tJ As JPEG_CORE PROPERTIES VB

Dim bFile() As Byte

Dim JR As Long

Dim !Ptr As Long

Dim IJPGWidth As Long, lJPGHeight As Long

lR = ijllnit(tJ)

If JR= IJL_OK Then

139

' Write the filename to the jcprops.JPGFile member:

bFile = StrConv(sFile, vbFromUnicode)

ReDim Preserve bFile(O To UBound(bFile) + 1) As Byte
bFile(UBound(bFile)) = 0
lPtr = V arPtr(bFile(O))

Copy Memory tJ .JPGFile, lPtr, 4

'Read the JPEG file parameters:

IR= ijlRead(tJ, IJL_JFILE_READPARAMS)

If IR <> IJL_ OK Then

' Throw error

MsgBox "Failed to read JPG", vbExclamation

Else

' set JPG color

If tJ .JPGChannels = 1 Then

tJ.JPGColor = 4& 'IJL_G

Else

tJ.JPGColor = 3& 'UL_ YCBCR

End If

' Get the JPGWidth ...

JJPGWidth = tJ.JPGWidth

' .. & JPGHeight member values:

JJPGHeight = tJ .JPGHeight

' Create a buffer of sufficient size to hold the image:

If cDib.Create(lJPGWidth, JJPGHeight) Then

'Store DIBWidth:

tJ.DIBWidth = JJPGWidth

'Very important: tell IJL how many bytes extra there

'are on each DIB scan line to pad to 32 bit boundaries:

tJ.DIBPadBytes = cDib.BytesPerScanLine - JJPGWidth * 3
' Store DIBHeight:

tJ.DIBHeight = -JJPGHeight

140

' Store Channels:

tJ.DIBChannels = 3&

' Store DIBBytes (pointer to uncompressed JPG data):

tJ.DIBBytes = cDib.DIBSectionBitsPtr

'Now decompress the JPG into the DIBSection:

IR= ijlRead(tJ, IJL_JFILE_READWHOLEIMAGE)

If IR= IJL_OK Then

'That's it! cDib now contains the uncompressed JPG.

LoadJPG = True

Else

' Throw error:

MsgBox "Cannot read Image Data from file.", vbExclamation
End If

Else

'failed to create the DIB ...

End If

End If

'Ensure we have freed memory:

ij1Free tJ

Else

' Throw error:

MsgBox "Failed to initialise the IJL library: " & IR, vbExclamation
End If

End Function

Public Function LoadJPGFromPtr(_

ByRef cDib As cDIBSection, _

ByVal lPtr As Long,_

ByVal]Size As Long_

) As Boolean

Dim tJ As JPEG_CORE_PROPERTIES_ VB

Dim bFile() As Byte

141

Dim JR As Long

Dim IJPGWidth As Long, lJPGHeight As Long

JR = ijllnit(tJ)

If JR= IJL_OK Then

' set JPEG buff er

tJ.JPGBytes = lPtr

tJ.JPGSizeBytes = ISize

'Read the JPEG parameters:

JR= ijJRead(tJ, IJL_JBUFF_READPARAMS)

If JR<> IJL_OK Then

' Throw error

MsgBox "Failed to read JPG", vbExclamation

Else

' set JPG color

If tJ .JPGChannels = 1 Then

tJ .JPGColor = 4& ' IJL_ G

Else

tJ.JPGColor = 3& 'JJL_ YCBCR

End If

' Get the JPGWidth ...

IJPGWidth = tJ.JPGWidth

' .. & JPGHeight member values:

lJPGHeight = tJ.JPGHeight

' Create a buff er of sufficient size to hold the image:

If cDib.Create(lJPGWidth, lJPGHeight) Then

'Store DIBWidth:

tJ.DIBWidth = lJPGWidth

' Very important: tell JJL how many bytes extra there

'are on each DIB scan line to pad to 32 bit boundaries:

tJ .DIBPadBytes = cDib.BytesPerScanLine - JJPGWidth * 3
' Store DIBHeight:

142

tJ.DIBHeight = -JJPGHeight
' Store Channels:

tJ.DIBChannels = 3&

'Store DIBBytes (pointer to uncompressed JPG data):

tJ.DIBBytes = cDib.DIBSectionBitsPtr

' Now decompress the JPG into the DIBSection:

IR= ij!Read(tJ, IJL_JBUFF_READWHOLEIMAGE)

If IR= IJL_OK Then

'That's it! cDib now contains the uncompressed JPG.

Load.JPGFromPtr = True

Else

' Throw error:

MsgBox "Cannot read Image Data from file.", vbExclamation

End If

Else

'failed to create the DIB ...

End If

End If

' Ensure we have freed memory:

ijlFree tJ

Else

' Throw error:

MsgBox "Failed to initialise the IJL library: " & IR, vbExclamation

End If

End Function

Public Function SaveJPG(_

ByRef cDib As cDIBSection, _

ByVal sFile As String,_

Optional ByVal !Quality As Long= 90 _

) As Boolean

Dim tJ As JPEG CORE_PROPERTIES_ VB

143

Dim bFile() As Byte

Dim JPtr As Long

Dim JR As Long

Dim tFnd As WIN32 FJND_DATA

Dim hFile As Long

Dim bFileExisted As Boolean

Dim lFileSize As Long

hFile = -1

JR= ijllnit(tJ)

If JR= IJL_OK Then

t Check if we're attempting to overwrite an existing file.

'If so hFile <> INV ALID_FJLE_HANDLE:

bFileExisted = (FindFirstFile(sFile, tFnd) <> -1)

If bFileExisted Then

Kill sFile

End If

'Set up the DIB information:

'Store DIBWidth:

tJ.DIBWidth = cDib.\Vidth
' Store DIBHeight:

tJ.DIBHeight = -cDib.Height

'Store DIBBytes (pointer to uncompressed JPG data):

tJ.DIBBytes = cDib.DIBSectionBitsPtr

' Very important: tell IJL how many bytes extra there

'are on each DIB scan line to pad to 32 bit boundaries:

tJ.DIBPadBytes = cDib.BytesPerScanLine - cDib.Width * 3
' Set up the JPEG information:

' Store JPGFile:

bFile = StrConv(sFile, vbFromUnicode)

ReDim Preserve bFile(O To UBound(bFile) + 1) As Byte

bFile(UBound(bFile)) = 0

144

•

!Ptr = VarPtr(bFile(O))

Copy Memory tJ .JPGFile, lPtr, 4

'Store JPGWidth:

tJ.JPGWidth = cDib.Width

' .. & JPGHeight member values:

tJ .JPGHeight = cDib.Height

' Set the quality/compression to save:

tJ.jquality =]Quality

' Write the image:

JR= ijlWrite(tJ, IJL_JFJLE_ WRJTEWHOLEIMAGE)

'Check for success:

If JR= JJL_OK Then

'Now if we are replacing an existing file, then we want to

' put the file creation and archive information back again:

If bFileExisted Then

hFile = lopen(sFile, OF_ WRITE Or OF _SHARE_DENY _ WRITE)

If hFile = 0 Then

'problem

Else

SetFileTime

tFnd.ftLastWriteTime

!close hFile

SetFileAttributes sFile, tFnd.dw FileAttributes

End If

hFile, tFnd.ftCreationTime, tFnd.ftLastAccessTime,

End If

lFileSize = tJ.JPGSizeBytes - tJ.JPGBytes

'Success:

SaveJPG = True

Else

' Throw error

145

I

Err.Raise 26001, A pp.EXEN ame & ".mlnteJJPEGLibrary", "Failed to save to JPG "

& JR, vbExclamation

End If

' Ensure we have freed memory:

ijlFree tJ

Else

' Tnrow error:

Err.Raise 26001, App.EXEName & ".mlnteJJPEGLibrary", "Failed to initialise the IJL

library: " & JR

End If

End Function

Public Function SaveJPGToPtr(_

By Ref cDib As cDIBSection, _

ByVal lPtr As Long,_

By Ref JBufSize As Long,_

Optional ByVal]Quality As Long= 90 _

) As Boolean

Dim tJ As JPEG CORE_PROPERTIES_ VB

Dim bFile() As Byte

Dim JR As Long

Dim tFnd As WIN32 FIND _DAT A

Dim hFile As Long

Dim bFileExisted As Boolean

Dim b As Boolean

hFile = -1

JR = ijllnit(tJ)

If JR= IJL_OK Then

' Set up the DIB information:

'Store DIBWidth:

tJ.DIBWidth = cDib.Width

' Store DIBHeight:

146

tJ.DIBHeight = -cDib.Height

'Store DIBBytes (pointer to uncompressed JPG data):

tJ.DIBBytes = cDib.DIBSectionBitsPtr

'Very important: tell IJL how many bytes extra there

' are on each DIB scan line to pad to 32 bit boundaries:

tJ.DIBPadBytes = cDib.BytesPerScanLine - cDib.Width * 3
' Set up the JPEG information:

'Store JPGWidth:

tJ.JPGWidth = cDib.Width

' .. & JPGHeight member values:

tJ.JPGHeight = cDib.Height

' Set the quality/compression to save:

tJ .jquality =]Quality

' set JPEG buff er

tJ.JPGBytes = lPtr

tJ .JPGSizeBytes = lBufSize

' Write the image:

JR= ijlWrite(tJ, IJL_JBUFF _ WRITEWHOLEJMAGE)

' Check for success:

1f JR= IJL_OK Then

lBufSize = tJ.JPGSizeBytes

'Success:

SaveJPGToPtr = True

Else

' Throw error

Err.Raise 26001, App.EXEName & ".mlnte!JPEGLibrary", "Failed to save to JPG "

& JR, vbExclamation

End 1f

' Ensure we have freed memory:

ijlFree tJ

Else

147

' Throw error:

Err.Raise 26001, App.EXEName & ".mlnteJJPEGLibrary", "Failed to initialise the IJL

library: " & IR

End If

End Function

mODWEBCA.i\1:

Public Declare Function SendMessage Lib "USER32" Alias "SendMessageA" (ByVal

hwnd As Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Any) As Long

Public Declare Function capCreateCapture Window Lib "avicap32.dll" Alias

"capCreateCaptureWindowA" (By Val lpszWindowName As String, ByVal dwStyle As

Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, By Val nHeight As

Long, ByVal hwndParent As Long, ByVal nJD As Long) As Long

Public mCapHwnd As Long

Public Const CONNECT As Long = 1034

Public Const DISCONNECT As Long = 1035
Public Const GET _FRAME As Long = 1084
Public Const COPY As Long= l 054

Global Zname, Zsumame, mName, Msurnam, Zid

Global LSid As Integer

Global EditMode As Boolean

Global EditMode2 As Boolean, Pid, Pname, Psurname

148

APPENDIX B

TABLE OF THE DAT ABASE

This table, Pri shows for prisoners. It has included the prisoner's name, surname, in date,

out date, status and information about his/her.

2 Mehmet Kami I 02 06.2008 02.06.2038 Normai Needs Care
3 Timu, Citak 02 06.2008 02.06.2038 Normal
4 Metin Kemal 02.06.2008 02 06.2038 Transferred
5 idris Oral 02.06 2008 02.06.2038 Transferred Killer
5 Mesut Oral 02 06.2008 02.05.2038 Transferred Mad
7 Senol Bilgin 02 06.2008 02 06.2038 In Hospital
8 Muslum Oglan 02.06.2008 02 06.2038 Normal Crazy
9 Ozan Pas a 02 06.2008 02.06 2038 In Hospital Crazy

10 Terkan Sanatci 02 06.2008 02.06.2038 Normal Mad

Figure 1. Prisoner data table

149

This table, tablel shows all the current records of the visitors came in and out in the current

day. lt shows information such as the visitor's name and surname, his/hers JD number,

mobile, address, to who they came, the reason of the visit, date and finally their in and out
time.

Reson Date r Time I Out I
02 06 XI08 19·2600 1928J1l 2 Andrew fuller 222222 Timur Cnak 02.06.?JOs 1926:00 t 3 Janet Leverling 33333333 Metin ;Kemal D206.Ml8 19:26:00 192754/ 4 Margaret Peacock 444444444 Se not Bil gin 02 06 2008 1926:00 t 5 Steven Buchanan 55555555 Iimn Citak 02 06 2008 19 26 DO I 6 Michael Suyama 66666666 Senol :Bil.gin 02D6)1Xl8 1926:00

19:27 581
7 Robert King 77777777 Ah met /Nar 02 D6.21Xl8 192600 8 Laura Callahan 888888 Mehmet Kam ii D2.06.2IXJ8 192600 1928 28i 9 Anne Dodsworth 999999999 Ozan · Pasa 02.06 21Xl8 19:2600 1928211 oz 021345 021548 cnne Terkan ·sanatci avukat odrlls O][I; :>mR m-1-:.i-m

Figure 2. Visitors and prisoners information data table

150

This table table2 contains the visitors objects to bring inside and take outside with visitors

name, surname, object types (piece, packet, box, money), amounts and root directions.

Name r Surnarn~ J Object I Amount I Type 1 Hasan 02 book 2 piece m 2 Ayse 901 cigaret 3 pack et m 3 Ali uzun cash 100 YTL m 4 Ali uzun clothes out

Figure 3. Visitor's objects to bring inside and taking outside

151

The table of users including the administrators and users first name, last name, passwords

and types. For entering the program, needed this database table.

UserName -[--Fname --,---Lna~ne T-Password] Type
ad min adrnin adrnin · adrnin Administrator
hat ice hat ice ozsaltik neu0076 user
idris idris oral oralgt270 user

urnit soy er soyer155 user
~

Figure 4. User name and password data table

152

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 1
	Titles
	ABSTRACT

	Images
	Image 1
	Image 2

	Page 1
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT 1
	ABSTRACT ii
	TABLE OF CONTENTS iii
	INTRODUCTION I
	CHAPTER I: VISA UL BASIC
	1.1. Overview 3
	1.2. What is Programming Language? 3
	1.3. Introduction to the Visual Basic Programming Language 3
	1.4. How to Install Visual Basic 4
	1.5. How Visual Basic Programming Works 5
	1.6. Introducing Visual Studio 9
	1.7. Summary 13
	CHAPTER 2: MICROSOFT ACCESS AND DATABASES
	2.1. Overview 4
	2.2. Introduction to Microsoft Access 4
	2.3. What is Database? 18
	2.4. Summary 24

	Page 2
	Page 3
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 4
	Titles
	2

	Page 5
	Titles
	CHAPTER 1
	1.1 Overview
	1.2 What is Programming Language?
	1.3 Introduction to the Visual Basic Programming Language
	3

	Images
	Image 1
	Image 2

	Page 6
	Titles
	1.4 How to Install Visual Basic

	Images
	Image 1
	Image 2

	Page 7
	Titles
	1.5 How Visual Basic Programming Works
	1.5.1 Representing Words, Numbers, and Values with Variables in VB
	s

	Images
	Image 1

	Page 8
	Tables
	Table 1

	Page 9
	Titles
	1.5.3 Arrays: Variables That Represent More Than One Value

	Tables
	Table 1

	Page 10
	Titles
	1.5.4 What To Do When Something Goes Wrong: Handling Errors

	Images
	Image 1

	Page 11
	Titles
	1.6 Introducing Visual Studio
	1.6.1 Visual Studio Highlights

	Images
	Image 1

	Page 12
	Titles
	1.6.2 About Visual Studio Team System

	Page 1
	Titles
	1.6.3 Description The .NET Framework
	1.6.4 What is .NET
	l l

	Page 2
	Titles
	1.6.5 What is Visual Studio .NET
	12

	Images
	Image 1

	Page 3
	Titles
	1.7 Summary

	Page 4
	Titles
	CHAPTER 2
	MICROSOFT ACCESS AND DATABASES
	2.1 Overview
	2.2 Introduction to Microsoft Access
	2.2.1 History of Microsoft Access

	Images
	Image 1

	Page 5
	Titles
	2.2.2 Uses of Access
	2.2.3 Features of Access

	Page 6
	Titles
	2.2.4 Development of Access
	16

	Images
	Image 1
	Image 2

	Page 7
	Tables
	Table 1

	Page 8
	Titles
	2.3 What is a Database?

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Page 10
	Titles
	2.3.2 Database Models

	Images
	Image 1

	Page 11
	Titles
	21

	Images
	Image 1

	Page 12
	Titles
	2.3.4 DBMS Internals

	Images
	Image 1

	Page 13
	Titles
	2.3.5 Applications of Databases
	2.4 Summary

	Images
	Image 1

	Page 14
	Titles
	CHAPTER3
	3.1 Overview
	3.2 What is SQL?
	3.2.1 Tables Basic

	Images
	Image 1

	Page 15
	Titles
	The SELECT statement has the following parts:
	26

	Images
	Image 1

	Page 1
	Titles
	The SELECT statement has the foJJowing parts:
	26

	Images
	Image 1

	Page 2
	Titles
	3.2.2 Selecting Data

	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 4
	Titles
	3.2.3 Creating Tables

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Images
	Image 1

	Page 6
	Titles
	31
	3.2.4 Inserting into a Table
	3.2.5 Updating Records

	Images
	Image 1
	Image 2

	Page 7
	Titles
	3.2.6 Deleting Records
	3.2.7 Removing Tables
	_.J Summary

	Images
	Image 1

	Page 8
	Titles
	CHAPTER4
	ACTIVEX DATA OBJECTS (ADO)
	4.1 Overview
	4.2 What is ADO?
	33

	Images
	Image 1
	Image 2

	Page 9
	Titles
	4.3 About Universal Data Access
	.Ł.

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	4.4 ADO Existing Technologies
	-ts Why ADO?

	Images
	Image 1

	Page 1
	Titles
	4.6 Data Providers and Data Consumers
	4.7 New Features of ADO
	ADO 2.5

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	ADO 2.6
	. 8 ADO Connection Object
	37

	Images
	Image 1

	Page 3
	Titles
	r
	!

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 4
	Titles
	-------------------·-""·--· ··-·--+.----· .. ···----·---........................ -·---·-······ ...
	i I ,
	-t9 ADO Attributes Property

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 5
	Titles
	4.IO ADO Database Connection
	. IO.I Create a DSN-Jess Database Connection
	.10.2 Create an ODBC Database Connection
	--·-···-·····l ···-···-··-··""""'--·'-·-·-···-··---·- ··--·- ··-·-···--··-··-·····- ·-·- !
	i

	Images
	Image 1

	Page 6
	Titles
	4.11 ADO Recordset

	Images
	Image 1

	Page 7
	Titles
	4.12 ADO Recordset Object

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	13 Summary

	Images
	Image 1

	Page 10
	Titles
	CHAPTERS
	AUTOMATION SYSTEM FOR MANAGING PRISON VISITATION
	5.1 Overview
	5.2 Project Explanation
	5.2.1 Explanation of Login Window

	Images
	Image 1

	Page 11
	Titles
	Figure 5.1 Shows the Login window

	Images
	Image 1
	Image 2

	Page 12
	Titles
	The Today Window
	I
	i I
	,.
	!
	11·

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 1
	Titles
	I
	The Add New Record Window

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 2
	Titles
	Prisoner Select Window
	Capture Window

	Images
	Image 1

	Tables
	Table 1

	Page 3
	Titles
	The Find Record Window
	L

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 4
	Titles
	The Prisoners Window
	51

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 5
	Titles
	Add New Prisoner

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 6
	Titles
	Find Prisoner
	To find a prisoner to be modified the user can search the database by using this window.
	-- . ·-·-·------·---
	53
	Figure 5.9 Shows the Find prisoner window

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 7
	Titles
	The Reports Window

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 8
	Titles
	The Users Management Window
	..2:SJ
	r
	r
	5.3 Summary

	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	CONCLUSION

	Images
	Image 1

	Page 10
	Titles
	REFERENCES
	·57

	Images
	Image 1

	Page 11
	Titles
	APPENDIX A

	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	0, 0)

	Images
	Image 1

	Page 3
	Titles
)
	64

	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Titles
	67

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	70

	Images
	Image 1

	Page 10
	Titles
	71

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	Form Find:
	81

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	91

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Titles
	100

	Images
	Image 1

	Page 8
	Titles
	101

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	104

	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	107

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	113

	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	--====================---
	133

	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	140

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	' Throw error

	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Titles
	Ł

	Images
	Image 1

	Page 9
	Titles
	I

	Images
	Image 1

	Page 10
	Page 11
	Titles
	' Throw error:
	mODWEBCA.i\1:

	Page 12
	Titles
	APPENDIX B
	TABLE OF THE DAT ABASE
	This table, Pri shows for prisoners. It has included the prisoner's name, surname, in date,
	Figure 1. Prisoner data table
	149

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 13
	Images
	Image 1

	Tables
	Table 1

	Page 14
	Images
	Image 1

	Tables
	Table 1

	Page 15
	Images
	Image 1

	Tables
	Table 1

