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ABSTRACT 

Soft computing is a collection of the intelligent paradigms such as Fuzzy logic, 

Neural Networks and Genetic Algorithms which deal with pervasive imprecision and all 

defending of the real world. Lutfi Zadeh noted that unlike traditional hard computing, soft 

computing aims at an accommodation with the pervasive imprecision of the real world. 

The project is devoted one of the actual problem of the soft computing elements to 

industrial processes. For this reason the structure of Soft Computing, description of it's 

main elements are given. 

The structure of Fuzzy System, its main blocks and their functioning principles are 

given. The different architectures of Neural Networks, their operating principles and 

learning algorithms are described. Also Genetic Algorithm description, its main functioning 

principle and genetic operators are given. 

In the last chapter using Fuzzy Logic, Neural Networks and Genetic Algorithms, the 

construction of the hybrid systems are considered. The development of the Neuro Fuzzy, 

Neuro Genetic systems are given, the application of these systems to technological 

processes and obtained results are discussed. 
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INTRODUCTION 

Soft computing differs from conventional (hard) computing in that, unlike hard 

computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role 

model for soft computing is the human mind. The guiding principle of soft computing is: 

Exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, 

robustness and low solution cost. 

At this juncture, the principal constituents of soft computing (SC) are fuzzy logic 

(FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter 

subsuming belief networks, genetic algorithms, chaos theory and parts of learning theory. 

What is important to note is that SC is not a combination of FL, NN and PR. Rather, it is a 

partnership in which each of the partners contributes a distinct methodology for addressing 

problems in its domain. In this perspective, the principal contributions of FL, NN and PR 

are complementary rather than competitive. 

GA is reminiscent of sexual reproduction in which the genes of two parents 

combine to form those of their children. When it is applied to problem solving, the basic 

premise is that we can create an initial population of individuals representing possible 

solutions to a problem we are trying to solve. Each of these individual has certain 

characteristics that make them more or less fit as members of the population. The most fit 

members will have a higher probability of mating than the less fit members, to produce 

offspring that have a significant chance of retaining the desirable characteristics of their 

parents. This method is very effective at finding optimal or near optimal solutions to a 

wide variety of problems, because it does not impose many of the limitations required by 

traditional methods. It is an elegant generate and test strategy that can identify and exploit 

regularities in the environment, and converges on solutions that were globally optimal or 

nearly so. 

vi 



J Fuzzy logic has been applied very successfully in many areas where conventional 

model based approaches are difficult or not cost-effective to implement. However, as 

system complexity increases, reliable fuzzy rules and membership functions used to 

describe the system behavior are difficult to determine. Furthermore, due to the dynamic 

nature of economic and financial applications, rules and membership functions must be 

adaptive to the changing environment in order to continue to be useful. 

Neuro-Fuzzy hybrid systems combine the advantages of fuzzy systems, which deal 

with explicit knowledge which can be explained and understood, and neural networks 

which deal with implicit knowledge which can be acquired by learning. Neural network 

learning provides a good way to adjust the expert's knowledge and automatically generate 

additional fuzzy rules and membership functions, to meet certain specifications and reduce 

design time and costs. On the other hand, fuzzy logic enhances the generalization 

capability of a neural network system by providing more reliable output when 

Lxtrapolation is needed beyond the limits of the training data. 

vii 
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CHAPTER ONE 

SOFT COMPUTING AND ITS ROLE IN ARTIFICIAL 

INTELLIGENCE 
1.1 Introduction 

Artificial intelligence as a science has existing for about 40 years now. 

The main problem of this science is recreation of human' s reasoning processes 

and behavior with aid of computers and other hand-made devices as well as 

construction of machines simulating the decision making by human in case of 

imprecise and uncertain environment. In most cases these various areas are 

attributed to the artificial intelligence scope, where precise models, methods and 

algorithms for solving the problem are not available, the problem being 

characterized by uncertainty. Methods of artificial intelligence are based on two 

characteristic features: 

1. Use of information in symbolic form i.e. letters, words, phrases, signs, 

figures. 

2. Search with aid of symbolic logic. When processing symbolic 

information, the computers convert the words and phrases to the form of binary 

digits. Then the computer recognizes or compares consequences of such symbols 

(converted to digits). 

The classics of artificial intelligence stated that the abilities of 

Computers to manipulate symbols as easily as numbers, to compare 

consequences of symbols, and then, depending on the results of comparison, do 

or don't perform further operations, will allow realization in the machine the 

functions typical for the human mind, i.e. functions of deductive logical 

reasoning. It may seem that the potential abilities of a computer on the way of 

creation of artificial intelligence based on the symbolic information processing 

are unlimited. Despite huge successes of artificial intelligence (in the classical 

sense) in developing a wide range of systems for solving problems, automatically 

proving theorems, recognizing patterns as well as in constructing game systems, 



expert systems, natural language understanding systems, the expectations have 

not been approved. The traditional artificial intelligence is not capable of solving 

problems like a man does with his common sense, and does not accord with the 

procedures, which are similar to human abilities of understanding and reasoning. 

The traditional artificial intelligence has not managed to exhibit itself in solving 

problems for intelligent robotics, computer vision, recognition of speech and 

hand-written, machine translation, learning through experience and many other 

important real-world problems. The pointed problems as well as many others 

have intrinsic imprecision and uncertainty that cannot be neglected. As noted 

professor L.Zadeh, the traditional artificial .intelligence could achieve more 

successes with its goals if it did not limit itself by processing symbolic 

information only and using the first order logic. All traditional artificial 

intelligence systems have been realized by using the Hard Computing 

technology, which restricts considerably abilities of those systems. Moreover, the 

traditional artificial intelligence due to the regularities shown above does not 

consider the computational methods important for accounting uncertainty and 

imprecision. In this conditions MIQ for traditional artificial intelligent systems 

appeared to be not so high. There was a need to increase MIQ for intelligent 

systems. Thereat Soft Computing methodology appears implying cooperative 

activity rather than autonome one for such new computational approaches as 

fuzzy logic, neural networks, evolutionary computation and so on. These 

approaches allow solving many important real-world problems, which was 

impossible using traditional artificial intelligence methods. 

The collection of such intelligent paradigms (used as computational 

techniques) as Fuzzy Logic (FL), Neural Networks (NN), Probabilistic 

Reasoning (PR), Genetic Algorithms (GA), Chaos Theory (CT) dealing with 

pervasive imprecision and ill definedness of the real world is named Soft 

Computing (SC). Unlike traditional Hard Computing (HC), SC can tolerate 

imprecision and uncertainty and partial truth without the loss of performance and 

effectiveness for the end use. It is the matter of time after no more than a decade 

2 
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we will see that Artificial Intelligence is based on Soft Computing not on 

traditional Hard Computing. L.Zadeh noted that unlike the traditional Hard· 

Computing, Soft Computing aims at an accommodation with the pervasive 

imprecisions of the real world. The guiding principle of Soft Computing is: 

exploit the tolerance for imprecision, uncertainty and partial truth to achieve 

tractability, robustness and low solution cost. We can easily come to the 

conclusion that precision has a cost (unfortunately, this obvious principle often is 

neglected). So, in order to solve the problem with an acceptable cost we need to 

aim at a decision with only the necessary degree of precision not going over the 

requirements. The impressing examples of the aforesaid are problems of landing 

a helicopter or parking a car. Let's consider the second case. One can park a car 

without doing any distance and angle measurements because the final position of 

the car is not specified clearly. If though it is, then the measurements are 

necessary, say, in the range of :fractions of millimeter or a few seconds of arc. 

This will require many hours of manoeuvres and measurements from the devices 

for solving the problem. Moreover, the cost of decision will increase 

exponentially as the precision increases. Soft Computing technology is of great 

importance for data compression, especially, in HDTV, audio recording, speech 

recognition, image understanding and related fields. Actually, soft-computing­ 

based concepts and techniques are already playing an essential role in the 

conception, design and manufacturing of high MIQ products and systems. As 

noted Zadeh the perfect model of SC is human brain. 

1.2 Structure And Constituents Of Soft Computing 

As was mentioned above all traditional artificial intelligent systems 

including expert systems widely used in various areas of human activity, have 

been realized on the base of Hard Computing, often using computers. But this 

base, obviously limits the efficiency and, generally, the possibility of creating 

systems of artificial intelligence for different purposes. Currently the significant 

increase can be noticed in number of applied artificial intelligence systems based 

3 
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not on numerical (not symbolic) computation and traditional Hard Computing, 

but on neural networks, fuzzy computing, evolutionary programming, belief 

networks. There is as well a certain increase in number of publications, presented 

in proceedings of scientific conferences which are devoted to fuzzy logic, genetic 

algorithms, artificial life, biological computing, neural computing etc. This 

increase gives the evidence that the focus of the investigations and 

implementations of real artificial intelligence systems makes a shift nearer to Soft 

Computing. Figure 1.1 shows the structure of Soft Computing technology 

forming the basis for computational intelligence. 

Computing 
technologies 

Hard Computing - 
base of classical 

Artificial 
intelligence 

Soft Computing - base 
of Computational 

intelligence with high 
MIQ 

Hybrid Systems 

Figure 1.1. The Main Components Of Soft Computing. 

The following main components of Soft Computing are known by now: 

fuzzy logic (FL), neural networks theory (NN), probabilistic reasoning (PR), 

4 
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Genetic Algorithms (GA), and chaos theory (CT) (Figure 1.1). In SC FL is 

concerned in the main with imprecision and approximate reasoning, NN - with 

learning, PR with uncertainty and propagation of belief, GA with global 

optimization and searching and CT with nonlinear dynamics. In large measure 

FL, NN and PR are complementary rather that competitive. 
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CHAPTER TWO 

FUZZY SYSTEMS 

2.1 Structure of a Fuzzy System 

There are specific components characteristic of a fuzzy controller to 

support a design procedure. In the block diagram in figure2.0, the controller 

is between a preprocessing block and a post-processing block. The following 

explains the diagram block by block. 

~ ......•. , 
r---- 
1 ~-~~--~----: - 1ni.." " •• 

Figure 2.1. Blocks of a fuzzy controller 

2.2 Preprocessing 

The inputs are most often hard or crisp measurements from some measuring 

equipment, rather than linguistic. A preprocessor, the first block in Fig. 2.0, 

conditions the measurements before they enter the controller. Examples of 

preprocessing are: 

• Quantisation in connection with sampling or rounding to integers; 

• Normalisation or scaling onto a particular, standard range; 

• Filtering in order to remove noise; 

• Averaging to obtain long term or short term tendencies; 

• A combination of several measurements to obtain key indicators; and 

• Differentiation and integration or their discrete equivalences. 

6 
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A quantiser is necessary to convert the incoming values in order to find the best level 

in a discrete universe. Assume, for instance, that the variable error has the value 4.5, 

but the universe is u = (-5, -4 ... 0 ... 4,5). The quantiser rounds to 5 to fit it to the 

nearest level. Quantisation is a means to reduce data, but if the quantisation is too 

coarse the controller may oscillate around the reference or even become unstable. 

Nonlinear scaling is an option (Fig. 2.1 ). In the FL smidth controller the operator is 

0 
inpul 5 

Figure 2.2. Example of nonlinear scaling of an input measurement 

asked to enter three typical numbers for a small, medium and large measurement 

respectively (Holmblad & Stergaard, 1982). They become break points on a curve 

that scales the incoming measurements ( circled in the figure). The overall effect can 

be interpreted as a distortion of the primary fuzzy sets. It can be confusing with both 

scaling and gain factors in a controller, and it makes tuning difficult. 

When the input to the controller is error, the control strategy is a static 

mapping between input and control signal. A dynamic controller would have 

additional inputs, for example derivatives, integrals, or previous values of 

measurements backwards in time. These are created in the preprocessor thus making 

the controller multi-dimensional, which requires many rules and makes it more 

difficult to design. 

The preprocessor then passes the data on to the controller. 

7 
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2.3 Fuzzification 

The first block inside the controller is fuzzification, which converts 

each piece of input data to degrees of membership by a lookup in one or 

several membership functions. The fuzzification block thus matches the 

input data with the conditions of the rules to determine how well the 

condition of each rule matches that particular input instance. There is a 

degree of membership for each linguistic term that applies to that input 

variable. 

2.4 Rule Base 

The rules may use several variables both in the condition and the conclusion 

of the rules. The controllers can therefore be applied to both multi-input-multi-output 

(MIMO) problems and single-input-single-output (SISO) problems. The typical 

SISO problem is to regulate a control signal based on an error signal. The controller 

may actually need the error, the change in air, and the accumulated error as inputs, 

but we will call it single-loop control, because in principle all three are formed from 

the error measurement. To simplify, this section assumes that the control objective is 

to regulate some process output around a prescribed set point or reference. The 

presentation is thus limited to single-loop control. 

2.4.1 Rule Formates 

Basically a linguistic controller contains rules in the if then format, but they 

can be presented in different formats. In many systems, the rules are presented to the 

end-user in a format similar to the one below: 

1. If error is Neg and change in error is Neg then output is NB 
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2. If error is Neg and change in error is Zero then output is NM 

3. If error is Neg and change in error is Pos then output is Zero 

4. If error is Zero and change in error is Neg then output is NM 

5. If error is Zero and change in error is Zero then output is Zero (2) 

6. If error is Zero and change in error is Pos then output is PM 

7. If error is Pos and change in error is Neg then output is Zero 

8. If error is Pos and change in error is Zero then output is PM 

9. If error is Pos and change in error is Pos then output is PB 

The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and PM 

(negative big, negative medium, positive big, and positive medium respectively). 

The same set of rules could be presented in a relational format, a more compact 

representation. 
CM~h11.ffrar OlqVJt 
1w z 
Zcr0, 'N 
'Ntg NB 
Pw PM. 
Za!m Zt'lltl 

'N~ N 
fl'{di PB 
'.cro PM 
'N~ Ztim 

Figure 2.3 

The top row is the heading, with the names of the variables. It is understood 

that the two leftmost columns are inputs, the rightmost is the output, and each row 

represents a rule. This format is perhaps better suited for an experienced user who 

wants to get an overview of the rule base quickly. The relational format is certainly 

suited for storing in a relational database. It should be emphasised, though, that the 

relational format implicitly assumes that the connective between the inputs is always 

logical and or logical or for that matter as long as it is the same operation for all 

rules and not a mixture of connectives. Incidentally, a fuzzy rule with an or 

9 



"' ;,);c.- 

combination of terms can be converted into an equivalent and combination of terms 

using laws of logic (DeMorgan's laws among others). A third format is the tabular 
linguistic format. Change in error is given by: 

Ermr 

Figure 2.4 

This is even more compact. The input variables are laid out along the axes, 

and the output variable is inside the table. In case the table has an empty cell, it is an 

indication of a missing rule, and this format is useful for checking completeness. 

When the input variables are error and change in air, as they are here, that format is 

also called a linguistic phase plane. In case there are n > 2 input variables involved, 
the table grows to an p-dimensional array; rather user-unfriendly. 

To accommodate several outputs, a nested arrangement is conceivable. A rule 

with several outputs could also be broken down into several rules with one output. 

Lastly, a graphical format which shows the fuzzy membership curves is also possible 

(Fig. 2.4). This graphical user-interface can display the inference process better than 

the other formats, but takes more space on a monitor. 

2.4.2 Connectives 

In mathematics, sentences are connected with the words and, or, if-then (or 

implies), and if and only if, or modifications with the word not. These five are called 

connectives. It also makes a difference how the connectives are implemented. The 

most prominent is probably multiplication for fuzzy and instead of minimum. So far 

10 
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most of the examples have only contained and operations, but a rule like '' If error is 

very neg and not zero or change in error is zero then ... " is also possible. 

The connectives and or are always defined in pairs, for example, 

a and b = min ( a,b) minimum 

a orb= max (a,b)= maximum 

or 

a and b =a* b algebraic product 
a orb= a+ b - a* b algebraic or probabilistic sum 

2.4.3 Modifiers 

A linguistic modifier is an operation that modifies the meaning of a term. For 

example, in the sentence" very close to O", the word very modifies close to O which 

is a fuzzy set. A modifier is thus an operation on a fuzzy set. The modifier very can 

be defined as squaring the subsequent membership function, that is 

very a= a2 

Some examples of other modifiers are 

Extremely a = a 3 
Slightly a = a 

Some what a = moreorless a and not slightly a 

A whole family of modifiers is generated by aP where p is any power 

between zero and infinity. With p = co the modifier could be named exactly, because 

it would suppress all memberships lower than 1.0. 

11 
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2.4.4 Universe 

Elements of a fuzzy set are taken from a universe of discourse or just 

universe. The universe contains all elements that can come into consideration. Before 

designing the membership functions it is necessary to consider the universes for the 

inputs and outputs. Take for example the rule. 

If error is Neg and change in error is Pos then output is 0 

Naturally, the membership functions for Neg and Pos must be defined for all 

possible values of error and change in error; and a standard universe may be 
convenient. 

Another consideration is whether the input membership functions should be 

continuous or discrete. A continuous membership function is defined on a 

continuous universe by means of parameters. A discrete membership function is 

defmed in terms of a vector with a finite number of elements. In the latter case it is 

necessary to specify the range of the universe and the value at each point. The choice 

between fme and coarse resolution is a trade off between accuracy, speed and space 

demands. The quantiser takes time to execute, and if this time is too precious, 

continuous membership functions will make the quantiser obsolete. 

Example 1 (standard universes) Many authors and several commercial 

controllers use standard universes. 

• The FL smidth controller, for instances, uses the real number interval 
[-1,1] 

• Authors of the earlier papers on fuzzy control used the integers in (- 
6,6] 

• Another possibility is the interval [-100,100] corresponding to the 

percentages of full scale. 

12 
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• Yet another is the integer range [0,5095] corresponding to the output 

from a 12 bit analog to digital converter 

• A variant is [-2047,2048], where the interval is shifted in order to 

accommodate negative numbers 

The choice of data types may govern the choices of universe. For 

example. The voltage range [-5,5] could be represented as an integer 

range [-50,50], or as a floating point range [-5.0,5.0]; a signed byte data 

type has an allowable integer range [ -128,127] 

A way to exploit the range of the universes better is scaling. If a controller 

input mostly uses just one term, the scaling factor can be turned up such that 

the whole range is used. An advantage is that this allows a standard universe 

and it eliminates the need for adding more terms. 

2.4.5 Membership Functions 

Every element in the universe of discourse is a member of a fuzzy set to some 

grade, maybe even zero. The grade of membership for all its members describes a 

fuzzy set, such as Neg. In fuzzy sets elements are assigned a grade of membership, 

such that the transition from membership to non-membership is gradual rather than 

abrupt. The set of elements that have a non-zero membership is called the support of 

the fuzzy set. The function that ties a number to each element z of the universe is 
called the membership function µ(z) . 

The designer is inevitably faced with the question of how to build the term sets. 

There are two specific questions to consider; (i) How does one determine the shape 

of the sets? and (ii) How many sets are necessary and sufficient? For example, the 

error in the position controller uses the family of terms Neg, Zero, and Pos. 

13 
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According to fuzzy set theory the choice of the shape and width is subjective, 

but a few rules of thumb apply. 

• A term set should be sufficiently wide to allow for noise in the 

measurement. 

Figure 2.5: Examples of membership functions. Read from top to bottom, left 

to right: (a) s - function, (b) 1l - function, (c) z - function, (d-f) triangular 

versions, (g-i) trapezoidal versions, G) flat 1l - function, (k) rectangle, (1) 
singleton. 

• A certain amount of overlap is desirable; otherwise the controller may run 

into poorly defmed states, where it does not return a well defined output. 

A preliminary answer to questions (i) and (ii) is that the necessary and sufficient 

number of sets in a family depends on the width of the sets, and vice versa. A 

solution could be to ask the process operators to enter their personal preferences for 

the membership curves; but operators also find it difficult to settle on particular 

curves. 

The manual for the TIL Shell product recommends the following (Hill, Horstkotte & 

14 
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Teichrow, 1990). 

• Start with triangular sets. All membership functions for a particular input or 

output should be symmetrical triangles of the same width. The leftmost and 

the rightmost should be shouldered ramps. 

• The overlap should be at least 50%.The widths should initially be chosen so 

that each value of the universe is a member of at least two sets, except 

possibly for elements at the extreme ends. If, on the other hand, there is a gap 

between two sets no rules fire for values in the gap. Consequently the 

controller function is not defined. 

Membership functions can be flat on the top, piece-wise linear and triangle 

shaped, rectangular, or ramps with horizontal shoulders. Fig2.4 shows some typical 

shapes of membership functions. 

Strictly speaking, a fuzzy set A is a collection of ordered pairs 

A= {(z,µ(z))} (2.1) 

Item z belongs to the universe and µ(z) is its grade of membership 

in A. A single pair {z,µ(z)} is a fuzzy singleton; singleton output means 

replacing the fuzzy sets in the conclusion by numbers (scalars). For example 

1. If error is Pos then output is 10 volts 

2. If error is Zero then output is O volts 

3. If error is Neg then output is · 10 volts 

There are at least three advantages to this: 

• The computations are simpler; 

15 
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• it is possible to drive the control signal to its extreme values; and 

• it may actually be a more intuitive way to write rules. 

The scalar can be a fuzzy set with the singleton placed in a proper position. For 

example 10 volts, would be equivalent to the fuzzy set (0,0,0,0,1) defmed on the 

universe (-10,-5,0,5,10) volts. 

Example 2( membership functions) Fuzzy controllers use a variety of 

membership functions. A common example of a function that produces a bell 

curve is based on the exponential function. 

µ(z) = exp[-(z- Xo)2] 
2cr2 

(2.2) 

This is a standard Gaussian curve with a maximum value of l .x is the 

independent variable on the universe, x O is the position of the peak relative to the 
universe, and er is the standard deviation. Another defmition that does not use the 

exponential is 

(2.3) 

The FL Smidth controller uses the equation 

(2.4) 
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The extra parameter a controls the gradient of the sloping sides. It is 

also possible to use other functions, for example the sigmoid known from 

neural networks. 

A cosine function can be used to generate a variety of membership 

functions. The s- curve can be implemented as 

(
o J ,x<x1 1 1 x- X, 

s(X,XnX)=~-+-cos 1[ ,X1~X~X, 
2 2 X, - Xi 

1 ,X > X, 

(2.5) 

Where X, is the left breakpoint and x, is the right break point. The z- curve is just 
a reflection 
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Figure 2.6 Graphical construction of the control signal in a fuzzy PD 

controller (generated in the Matlab Fuzzy Logic Toolbox). 

{
o J .z <z. _ 1 1 x- Xr < < Z(X,XnX)-1-+-co ;r ,%1-X-Xr 

2 2 %, - X, 
1 ,% > Xr 

(2.6) 

Then the ;r - curve can be implemented as a combination of the s- curve and the z­ 

curve, such that the peak is flat over the interval [ x 2 , x 3 ] 
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(2.7) 

2.5 Inference Engine 

Figures 2.6 and 2.7are both a graphical construction of the algorithm 

in the core of the controller. In Fig. 2.7, each of the nine rows refers to one 

rule. For example, the first row says that if the error is negative (row 1, 

column 1) and the change in error is negative (row l, column 2) then the 

output should be negative big (row 1, column 3). The picture corresponds to 

the rule base in (2). The rules reflect the strategy that the control signal 

should be a combination of the reference error and the change in error, a 

fuzzy proportional-derivative controller. We shall refer to that figure in the 

following. The instances of the error and the change in error are indicated by the 

vertical lines on the first and second columns of the chart. For each rule, the 

inference engine looks up the membership values in the condition of the rule. 

2.5.1 Aggregation 

The aggregation operation is used when calculating the degree of fulfillment 

or firing strength a k of the condition of a rule k. A rule, say rule 1, will generate a 

fuzzy membership value µe1 coming from the error and a membership value µeel 

coming 

from the change in error measurement. The aggregation is their combination, 

(2.8) 

Similarly for the other rules. Aggregation is equivalent to fuzzification, when there is 

only one input to the controller. Aggregation is sometimes also called fulfillment of 

the rule or firing strength 

19 



---- 

2.5.2 Activation 

The activation of a rule is the deduction of the conclusion, possibly reduced 

by its firing strength. Thickened lines in the third column indicate the firing strength 

of each rule. Only the thickened part of the singletons are activated, and min or 

product (*) is used as the activation operator. It makes no difference in this case, 

since the output membership functions are singletons, but in the general case of s- , 

tr - ,and z - functions in the third column, the multiplication scales the membership 

curves, thus preserving the initial shape, rather than clipping them as the min 

operation does. Both methods work well in general, although the multiplication 

results in a slightly smoother control signal. In Fig. 2.4 only rules four and five are 

active. 

A rule k can be weighted a priori by a weighting factor wk e [0,1], which is its degree 

of confidence. In that case the firing strength is modified to 

(2.9) 

The designer, or a learning program trying determines the degree of confidence to 

adapt the rules to some input-output relationship. 

2.5.3 Accumulation 

All activated conclusions are accumulated, using the max operation, 

to the final graph on the bottom right (Fig. 2.5). Alternatively, sum accumulation 

counts overlapping areas more than once (Fig.2.6). Singleton output (Fig. 2.5) and 

sum accumulation results in the simple output 

(2.10) 
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The alpha's are the firing strengths from the n rules and s1 •••••••••••• s; 

are the output singletons. Since this can be computed as a vector product, 

this type of inference is relatively fast in a matrix oriented language. 

There could actually have been several conclusion sets. An example of a 

one-input-two outputs rule is II If e , is a then o-1 is x and o-2 is y ". The 

inference engine can treat two (or several) columns on the conclusion side in 

parallel by applying the firing strength to both conclusion sets. In practice, 

one would often implement this situation as two rules rather than one, that 

is, 11 If e0is a then o-1 is x, 11 If e, is a then o-2 is y". 

2.6 Defuzzification 

The resulting fuzzy set (Fig. 2.6, bottom right; Fig. 2.7, extreme right) 

must be converted to a number that can be sent to the process as a control 

signal. This operation is called defuzzification, and in Fig. 2.6 the x-coordinate 

marked by a white, vertical dividing line becomes the control signal. The 

resulting fuzzy set is thus defuzzified into a crisp control signal. There are 

several defuzzification methods. 

2.6.1 Centre of gravity (COG) 

The crisp output value p (white line in Fig. 2.6) is the abscissa under 
the centre of gravity of the fuzzy set, 

(2.11) 

21 



Here X; is a running point in a discrete universe, and µ(x;) is its 

membership value in the membership function. The expression can be 

interpreted as the weighted average of the elements in the support set. For the 

continuous case, replace the summations by integrals. It is a much used method 

although its computational complexity is relatively high. This method is also called 

centroid of area. 

2.6.2 Center of gravity method fro singletons (COGS) 

If the membership functions of the conclusions are singletons (Fig. 7), 

the output value is 

(2.12) 

Here s; is the position of singleton i in the universe, and s(x;) is equal to the 

firing strength a; of rule i. This method has a relatively good computational 

complexity, and u is differentiable With respect to the singletons Pp, which is 
useful in neurofuzzy systems. 

(2.13) 
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Here x is the running point in the universe, µ(x) is its membership, Min is 

the leftmost value of the universe, and Max is the rightmost value. Its 

computational complexity is relatively high, and it can be ambiguous. For 

example, if the fuzzy set consists of two singletons any point between the 

two would divide the area in two halves; consequently it is safer to say that 

in the discrete case, BOA is not defined. 

2.6.3 Mean of maxima (MOM) 

An intuitive approach is to choose the point with the strongest 

possibility, i.e. maximal membership. It may happen, though, that several 

such points exist, and a common practice is to take the mean of maxima 

(MOM). This method disregards the shape of the fuzzy set, but the 

computational complexity is relatively good. 

2.6.4 Leftmost maximum (LM), and rightmost maximum (RM) 

Another possibility is to choose the leftmost maximum (LM), or the 
rightmost maximum (RM). In the case of a robot, for instance, it must choose 
between left or right to avoid an obstacle in front of it. 
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Figure 2.7. One input, one output rule base with non-singleton output sets. 

The defuzzifier must then choose one or the other, not something in 

between. These methods are indifferent to the shape of the fuzzy set, but the 

computational complexity is relatively small. 

2. 7 Post processing 

Output scaling is also relevant. In case the output is defined on a 
standard universe this must be scaled to engineering units for instance, volts, 
meters, or tons per hour. An example is the scaling from the standard 
universe [-1,1] to the physical units [-10,10] volts. 
The postprocessing block often contains an output gain that can be tuned, 
and sometimes also an integrator. 

Example 3(inference) How is the inference in fig 8 implemented using 

discrete fuzzy sets? 

Behind the scene all universes were divided into 201 points from -100 to 

100.But for brevity, let us just use five points. Assume the universe u, 

U= 
1-1001-50 Io 150 I lOO I is the vector common to all variables, 
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A cosine function can be used to generate a variety of membership functions. The s­ 

curve can be implemented as 

(

O J ,X<X1 1 1 x-xr 
s(xi,xr,x) = )-+-cos 7r ,X1 ~ X ~ X, 

2 2 z. - %1 
1 ,% > X, 

(2.14) 

where xi is the left break point, and x, is the right breakpoint.The z-curve is 

just a reflection 

{

1 J ,% < Xi - _!_ _!_ x-x, < < z(x,X,,X) - ) + co 1t ,X, - X - X, 
2 2 X, - X, 

0 ,X > X, 

(2.15) 

Then the 1r -curve can be implemented as a combination of the s- curve and the z­ 

curve, such that the peak is flat over the interval [ x2, x3] 

(2.16) 

A family of terms is defined by means of the 1r - function, such that 

Neg= 1r (-100, -100, -60,10,u) = 1 0.95 0.05 0 0 

Zero= 1r (-90, -20,20,90,u)= 0 0.61 1 0.61 0 

Pos = 1r(-10,60,100,100,u) = J O I O I 0.051 0.9511 I 

Above we inserted the whole vector u in place of the running point x; the 

result is thus a-vector. The figure assumes that error= -50 ( the unit is percentages of 

full range). This corresponds to the second position in the universe, and the first rule 

contributes with a membership neg(2) = 0.95. This firing strength is propagated to 

the conclusion side of the rule using min, such that the contribution from this rule is 

1 
o.95 I o.95 I 0.051 o I o 1 
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CHAPTER THREE 

NEURAL NETWORKS 

3.1 The Artificial Neuron 

The basic unit of neural networks, the artificial neurons, simulates the four 

basic functions of natural neurons. Artificial neurons are much simpler than the 

biological neuron; the figure below shows the basics of an artificial neuron. 

Note that various inputs to the network are represented by the mathematical 

symbol. x(n). Each of these inputs are multiplied by a connection weight, these 

weights are represented by w(n). In the simplest case, these products are simply 

summed, fed through a transfer function to generate a result, and then output. 

I=}: Wj x, 

Y=f(I) Transfer 

Sum I Transfer 
output path wn 

Processing Element 
xn 

Figure 3.1. Artificial Neuron 
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Even though all artificial neural networks are constructed from this basic building 

block the fundamentals may vary in these building blocks and there are differences. 

3.2 Threshold functions 

Threshold functions also referred to as activation functions, squashing 

functions, or signal functions, map a PE's (possibly) infinite domain to a prespecified 

range. Although the number of threshold functions possible is quite varied, there are 

five that are regularly employed by the majority of neural- networks: 

(1) Linear, (2) Step, (3) ramp, (4) Sigmoid, and (5) Gaussian. With the exception 

of the linear threshold function, all of these introduce a non-linearity in the 

network dynamics by bounding a PE's output values to a fixed range. 

3.2.1 Linear Threshold Function 

The linear threshold function (see Figure 2.2(a)), produces a linearly 

modulated output from the input x as described by the equation 

f(x}=x 

Where x ranges over the real numbers and a is a positive scalar, if a=l, it is 

equivalent to removing the threshold function completely. 

3.2.2 Step Threshold Function 

The step threshold function, (see Figure 3.2(b)), produces only two values, j3 

and o. If the input to the threshold function, x, equals or exceeds the threshold value, 
0, then the step threshold function produces the value 13, otherwise it produces the 
value -S, where 13 and a are positive scalars. 
3.2.3 Ramp Threshold Function 

The ramp threshold function, (see Figure 3.2(c)), is a combination of the 

linear and step threshold functions. The ramp threshold function places an upper and 

lower bound on the values that the threshold function produces and allows a linear 
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response between the bounds. These saturation points are symmetric around the 

origin and are discontinuous at the points of saturation. 

3.2.4 Sigmoid Threshold Function 

The sigmoid threshold function, (see Figure 3.2(d)), is a continuous version of the 

ramp threshold function. The sigmoid (S-shaped) function is a bounded, monotonic, 

non-decreasing function that provides a graded, nonlinear response within a 

prespecified range. 

The most common sigmoid function is the logistic function 

f(x)=l/(1 +eax) 

Where ( a > 0 ( usually a = 1 ). which provides an output value from O to 1. 

3.2.5 Gaussian Threshold Function 

The Gaussian threshold function, (see Figure 3.l(e)), is a radial function 

(symmetric about the origin) that requires a variance value, v >O, to shape the 

Gaussian function. In some networks the Gaussian function is used in conjunction 

with a dual set of connections. 
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F(X) 

(a) X 

F(X) 

(b) X 

F(X) 

(C) X 

F(X) 

(d) X 

varianc, F(X) 

(e) X 

Figure 3.2. Threshold Functions 
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3.3 Neural Network Topologies 

The building blocks for neural networks are in place. Neural networks consist of 

layer(s) of PEs interconnected by weighted connections. The arrangement of the PEs, 

connections and patterns into a neural network is referred to as a topology. 

3.3.1 Layers 

Biologically, neural networks are constructed in a three dimensional way 

from microscopic components. These neurons seem capable of nearly unrestricted 

interconnections. This is not true in any man-made network. Artificial neural 

networks are the simple clustering of the primitive artificial neurons 

Figure 3.3. Layers structure 

As the figure above shows, the neurons are grouped into layers. The input layer 

consists of neurons that receive input form the external environment. 

3.3.2 Communication and types of connections 

Neurons are connected via a network of paths carrying the output of one 

neuron as input to another neuron. These paths is normally unidirectional, there 
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might however be a two-way connection between two neurons, because there may be 

an another path in reverse direction. A neuron receives input from many neurons, but 

produce a single output, which is communicated to other neurons. 

The neuron in a layer may communicate with each other, or they may not 

have any connections. The neurons of one layer are always connected to the neurons 

of at least another layer. 

3.3.2.1 Inter-layer connections 

There are different types of connections used between layers; these 

connections between layers are called inter-layer connections. 

• Fully connected 

• Partially connected 

• Feed forward 

• Bi-directional. 

• Hierarchical 

• Resonance 

3.3.2.2 Intra-layer connections 

In more complex structures the neurons communicate among themselves 

within a layer, this is known as intra-layer connections. There are two types of infra­ 

layer connections. 

• Recurrent The neurons within a layer are fully- or partially connected to one 

another. After these neurons receive input form another layer, they communicate 

their outputs with one another a number of times before they are allowed to send 

their outputs to another layer. 

• On-center/off surround A neuron within a layer has excitatory connections to 

itself and its immediate neighbors, and has inhibitory connections to other neurons. 

One can imagine this type of connection as a competitive gang of neurons. Each 
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gang excites itself and its gang members and inhibits all members of other gangs. 

After a few rounds of signal interchange, the neurons with an active output value will 

win, and is allowed to update its and its gang member's weights. 

3.4 Single-layer Networks: Auto association, Optimization, and Contrast 

Enhancement 

Beyond the instarloutstar neural networks are the single layer intraconnected 

neural networks. Figure 3 .4 shows the topology of a one-layer neural network, 

which consists of nFx PEs. The connections from each Fx PE to every other Fx PE 

and itself, yielding a connection matrix with n2 entries. 

Figure 3.4. Single layer Neural Network 

One-layer neural networks are used for pattern completion, noise remove 

optimization, and contrast enhancement. 

3.5 Multi-layer Networks: Heteroassociation and Function approximation 

A multi-layer neural network has more than two layers, possibly many more. A 

general description of a multi-layer neural network is shown in Figure 2.4, where 

there is an input layer of PEs, Fx, L hidden layers of Fy PEs and a final output layer. 

Fy, The Fy layers are called hidden layers because there are no direct connections 

between the input/output patterns to these PEs, rather they are always accessed 

through another set of PEs such as the input and output PEs. The added benefit of 

these PEs is not fully understood, but many applications such as prediction and 

classification are employing these types of topologies. 
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Figure 3.5. General Multi-layer Neural Network 

Multi-layer neural networks are used for pattern classification, pattern matching 

and function approximation. This capability allows some very complex decision 

regions to be performed for classification and pattern matching problems, as well as 

applications that require function approximation. 

3.6 Neural Network Learning 

Perhaps the most appealing quality of neural networks is their ability to learn. 

Learning, in this context, is defined as a change in connection weight values that 

results in the capture of information that can later be recalled. There are several 

different procedures available for changing the values of connection weights. 

3.6.1 Supervised vs. Unsupervised Learning 

All learning methods can be classified into two categories- supervised 

learning and unsupervised learning. Supervised learning is a process that 

incorporates an external teacher and/or global information. The supervised learning 

algorithms that will be discussed in the following sections include error correction 

learning, reinforcement learning, stochastic learning, and hardwired systems. 

Examples of supervised learning include; deciding when to tum off the learning, 

deciding how long and how often to present each association for training, and 

supplying performance (error) information. Supervised learning is further classified 
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into two subcategories; structural learning and temporal learning. Structural learning 

is concerned with finding the best possible input/output relationship for each 

individual pattern pair. 

Unsupervised learning, also referred to as self-organization, is a process that 

incorporates no external teacher and relies upon only local information during the 

entire learning process. Supervised learning organizes presented data and discovers 

its emergent collective properties. Examples of unsupervised learning that will be 

discussed in the following sections includes Hebbian learning, principle component 

learning, differential Hebbian learning, min-max learning, and competitive learning. 

3.6.2 Off-line vs. On-line Learning 

Most learning techniques utilize off-line learning. When the entire pattern set is 

used to condition the connections prior to the use of the network, it is called off-line 

learning. As an example, the back propagation training algorithm is used to adjust 

connections in multilayer neural network, but it requires thousands of cycles through 

all the pattern pairs until the desired performance of the network has been achieved. 

Once the network is performing adequately, the weights are frozen and the resulting 

network is used in recall mode thereafter. Off-line learning systems have the intrinsic 

requirement that all the patterns have to be resident for training. Such a requirement 

does not make it possible to have new patterns automatically incorporated into the 

network as they occur, rather these new patterns must be added to the entire set of 

patterns and a retraining of the neural network must be done again. 

3.6.3 Hebbian Correlations 

The simplest form of adjusting connection weight values in a neural network is 

based upon the correlation of PE activation values. The motivation for correlation­ 

based adjustments has been attributed to Hebb (1949) who hypothesized that the 

change in a synapses efficacy (its ability to fire, or as we are simulating it in our 
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neural networks, the connection weight) is prompted by a neuron's ability to produce 

an output signal. If a neuron. A, was active, and A's activity caused a connected 

neuron, B, to fire, then the efficacy of the synaptic connection between A and B 

should be increased. 

3.6.4 Principle Component Leaming 

There are some neural networks that have learning algorithms designed to 

produce, as a set of weights, the principle components of the put data patterns. I he 

principle components of a set of data are found by forming the covariance ( or 

correlation) matrix of a set of patterns and then finding the minimal set of orthogonal 

vectors that span the space of the covanance matrix. 

3.6.5 Differential Hebbian Leaming 

Hebbian learning has been extended to capture the temporal changes that occur 

in pattern sequences. This learning law, entitled Differential Hebbian Leaming, has 

been independently derived by Klopf (1986) in the discrete time form and by Kosko 

(1986) in the continuous time form. The general form, some variants, and some 

similar learning laws are outlined in the following sections. 

3.6.6 Competitive Leaming 

Competitive learning is a method of automatically creating classes for a set of 

input patterns. Competitive learning is a two step procedure that couples the recall 

process with the learning process in a two layer neural network (see Figure 3.6). 
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Figure 3.6 Competitive learning neural network 

3.6. 7 Min-~ax Learning 

Min-max classifier systems utilize a pair of vectors for each class For the class 

j, represented by the PE y, and defined by the abutting vectors V, (the min vector) 

and 

(the max vector). Learning in a min-max neural system is done using the equation 

for the min vector and 

for the max vector. V ij new =max( ~ i, Vu old 

3.6.8 Error Correction Learning 

Error correction learning adjusts the connection weights between PEs in 

proportion to the difference between the desired and computed values of each output 

layer PE. Two layer error correction learning is able to capture linear mappings 

between input and output patterns. Multi-layer error correction learning is able to 

capture nonlinear mappings between the inputs and outputs. 
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3.6.9 Reinforcement Learning 

Reinforcement learning is similar to error correction learning in that weights are 

reinforced for properly performed actions and punished for poorly performed 

actions. The difference between these two supervised learning techniques is that 

error correction learning utilizes more specific error information by collecting error 

values from each output layer PE, while reinforcement learning uses non-specific 

error information to determine the performance of the network. Where error­ 

correction learning has a whole vector of values that it uses for error correction, only 

one value is used to describe the output layer's performance during reinforcement 

learning. This form of learning is ideal in situations where specific error information 

is not available, but overall performance information is, such as prediction and 

control. 

A two-layer neural network such as the one found in Figure 2.6 serves as a good 

framework for the reinforcement learning algorithm. The general reinforcement 

learning equation is 

W .. new =W··old +a(r-0· )e·· IJ IJ J \J 

where, r is the scalar success/failure value provided by the environment, 0, is the 

reinforcement threshold value for the j'th Fy PE, e,,; is the canonical eligibility of the 

weight from the i'th F., PE to the j'th Fv PE, and O<a< 1 is a constant-valued learning 

rate. In error correction learning, gradient descent in error space controlled learning. 

In reinforcement learning it is gradient descent in probability space. 
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Figure 3.7. Reinforcement learning Neural Network 

The canonical eligibility of Wij is dependant on a previously selected probability 

distribution that is used to determine if the computed output value equals the desired 

output value and is defined as 

Eij=o/(owij )Ingi 

where g, is the probability of the desired output equaling the computed output, 

defined as 

which is read as the probability that yj equals bkj given the input, Ak, and the 

corresponding weight vector, Wj, 

3. 7 Error Backpropagation 
We have already seen how to train linear networks by gradient descent. In trying 

to do the same for multi-layer networks we encounter a difficulty: we don't have any 
target values for the hidden units. This unsolved question was in fact the reason why 
neural networks fell out of favor after an initial period of high popularity in the 
1950s. It took 30 years before the error backpropagation (or in short: backprop) 
algorithm popularized a way to train hidden units, leading to a new wave of neural 
network research and applications. 

In principle, backprop provides a way to train networks with any number of 

hidden units arranged in any number of layers. (There are clear practical limits, 
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which we will discuss later.) In fact, the network does not have to be organized m 

layers - any pattern of connectivity that permits a partial ordering of the nodes from 

input to output is allowed. 

outputs 

hidden 

inputs 

Figure 3.8 Simple structure of neural network 

In other words, there must be a way to order the units such that all connections go 
from "earlier" (closer to the input) to "later" ones (closer to the output). This is 
equivalent to stating that their connection pattern must not contain any cycles. 
Networks that respect this constraint are called feedforward networks; their 
connection pattern forms a directed acyclic graph or dag. 

3. 7 .1 The Algorithm 

We want to train a multi-layer feedforward network by gradient descent to 
approximate an unknown function, based on some training data consisting of pairs 
(x,t). The vector x represents a pattern of input to the network, and the vector t the 

corresponding target (desired output). As we have seen before, the overall gradient 
with respect to the entire training set is just the sum of the gradients for each pattern; 
in what follows we will therefore describe how to compute the gradient for just a 
single training pattern. As before, we will number the units, and denote the weight 
from units to unit i by Wij 

Definitions: 
• the error signal for unitj: 
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• the (negative) gradient for weight w,, 

• the set of nodes anterior to unit i: 

• the set of nodes posterior to unit j: 

The gradient. As we did for linear networks before, we expand the gradient into two 

factors by use of the chain rule: 

The first factor is the error of unit i. The second is 

Putting the two together, we get 

To compute this gradient, we thus need to know/ the activity and the error for al! 
relevant nodes in the network. 
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Forward activation. The activity of the input units is determined by the network's 
external input x. For all other units, the activity is propagated forward: 

Y; = J;(Lwiiy1) 
JEA; 

Note that before the activity of unit i can be calculated,, the activity of all its anterior 
nodes (forming the set A,) must be known. Since feedforward networks do not 
contain cycles, there is an ordering of nodes from input to output that respects this 
condition. 

Calculating output error. Assuming that we are using the sum-squared loss 

1 2 
E=-I(to-Yo) 

2 0 

the error for output unit o is simply 

Error backpropagation, For hidden units, we must propagate the error back from 

the output nodes (hence the name of the algorithm). Again using the chain rule, we 
can expand the error of a hidden unit in terms of its posterior nodes: 

Of the three factors inside the sum, the first is just the error of node i. The second 
IS 

0Jl1 - oJ;(net) = f/net1) 
onet j - Dnet J 

while the third is the derivative of node j's activation function: 

For hidden units h that use the tanh activation function, we can make use of the 
special identity' tanh(u)' = 1 - tanh(u)"", giving us 
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Putting all the pieces together we gel 

81 = Jj (net1ff 8iwiJ 
=r, 

Note that in order to calculate the error for unit j, we must first know the error of 

all its posterior nodes (forming the set P,). Again, as long as there are no cycles in 

the network, there is an ordering of nodes from the output back to the input that 

respects this condition. For example, we can simply use the reverse of the order in 

which activity was propagated forward. 

3.7.2 Matrix Form 

For layered feed forward networks that are fully connected - that is, each node 

in a given layer connects to every node in the next layer - it is often more convenient 

to write the backprop algorithm in matrix notation rather than using more general 

graph form given Above. In this notation, the biases weights, net inputs, activations, 

and error signals for all units in a layer are combined into vectors, while all the non­ 

bias weights from one layer to the next form a matrix W. Layers are numbered from 

0 (the input layer) to I- (the output layer). The backprop algorithm then looks as 

follows: 

Initialize the input layer: 

Yo =x 

Where bi is the vector of bias weights. Calculate the error in 

the output layer: 
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Backpropagation the error: for I= L-1, L-2, 1 

where T is the matrix transposition operator. Update the weights ,_, 
and biases: 

We can see that this notation is significantly more compact than the graph form, even 

though it describes exactly the same sequence of operations. 
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CHAPTER FOUR 

GENETIC ALGORITHM 

4.1 Basic Description 

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to a 

problem solved by genetic algorithms is evolved. 

Algorithm is started with a set of solutions (represented by chromosomes) called 

population. Solutions from one population are taken and used to form a new population. 

This is motivated by a hope, that the new population will be better than the old one. 

Solutions which are selected to form new solutions ( offspring) are selected according to 

their fitness ,the more suitable they are the more chances they have to reproduce. 

This is repeated until some condition (for example number of populations or 

improvement of the best solution) is satisfied. 

4.2 Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem) 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

3. [New population] Create a new population by repeating following steps until the 

new population is complete 

a. [Selection] Select two parent chromosomes from a population 

according to their fitness (the better fitness, the bigger chance to be 

selected) 

b. [Crossover] With a crossover probability cross over the parents to 

form a new offspring ( children). If no crossover was performed, 

offspring is an exact copy of parents. 
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c. [Mutation] With a mutation probability mutate new offspring at each 

locus (position in chromosome). 

d. [ Accepting] Place new offspring in a new population 

4. [Replace] Use new generated population for a further run of algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

6. [Loop] Go to step 2 

Some Comments: 

As you can see, the outline of Basic GA is very general. There are many things 

that can be implemented differently in various problems. 

First question is how to create chromosomes, what type of encoding choose. With 

this is connected crossover and mutation; the two basic operators of GA. Encoding, 

crossover and mutation are introduced in next chapter. 

Next questions are how to select parents for crossover. This can be done in many 

ways, but the main idea is to select the better parents (in hope that the better parents will 

produce better offspring). Also you may think, that making new population only by new 

offspring can cause lost of the best chromosome from the last population. This is true, so 

so called elitism is often used. This means, that at least one best solution is copied 

without changes to a new population, so the best solution found can survive to end of run. 

Maybe you are wandering, why genetic algorithms do work. It can be partially 

explained by Schema Theorem (Holland), however, this theorem has been criticized in 

recent time. If you want to know more, check other resources. 

4.3 Operators of GA 

As you can see from the genetic algorithm, the crossover and mutation are the 

most important part of the genetic algorithm. The performance is influenced mainly by 
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these two operators. Before we can explain more about crossover and mutation, some 

information about chromosomes will be given. 

4.3.1 Encoding of a Chromosome 

The chromosome should in some way contain information about solution that it 

represents. The most used way of encoding is a binary string. The chromosome then 

could look like this: 

Chromosome 1 1101100100110110 

Chromosome 2 1101111000011110 

Each chromosome has one binary string. Each bit in this string can represent some 

characteristic of the solution. Or the whole string can represent a number - this has been 
used in the basic GA. 

Of course, there are many other ways of encoding. This depends mainly on the 

solved problem. For example, one can encode directly integer or real numbers, 

sometimes it is useful to encode some permutations and so on. 

4.3.2 Crossover 

After we have decided what encoding we will use, we can make a step to 

crossover. Crossover selects genes from parent chromosomes and creates a new 

offspring. The simplest way how to do this is to choose randomly some crossover point 

and everything before this point copy from a first parent and then everything after a 

crossover point copy from the second parent. 

Crossover can then look like this ( I is the crossover point): 

Chromosome 1 11011 I 00100110110 

Chromosome 2 11011 I 11000011110 

Offspring 1 11011 I 11000011110 
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[ Offspring 2 00100110110 l I 11011 
There are other ways to make crossover, for example we can choose more 

crossover points. Crossover can be rather complicated and very depends on encoding of 

the encoding of chromosome. Specific crossover made for a specific problem can 

improve performance of the genetic algorithm. 

4.3.3 Mutation 

After a crossover is performed, mutation takes place. This is to prevent falling all 

solutions in population into a local optimum of solved problem. Mutation changes 

randomly the new offspring. For binary encoding we can switch a few randomly chosen 

bits from 1 to O or from O to 1. Mutation can then be following: 

Original offspring 1 1101111000011110 

Original offspring 2 1101100100110110 

Mutated offspring 1 1100111000011110 

Mutated offspring 2 11 0 11 011 0011 011 0 

The mutation depends on the encoding as well as the crossover. For example 

when we are encoding permutations, mutation could be exchanging two genes. 

4.4 Parameters of Genetic Algorithms 

4.4.1 Crossover and Mutation Probability 

There are two basic parameters of GA - crossover probability and mutation probability. 

Crossover probability says how often will be crossover performed. If there is no 

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made 

from parts of parents' chromosome. If crossover probability is 100%, then all offspring is 

made by crossover. If it is 0%, whole new generation is made from exact copies of 

chromosomes from old population (but this does not mean that the new generation is the 

same!).Crossover is made in hope that new chromosomes will have good parts of old 

47 



chromosomes and maybe the new chromosomes will be better. However it is good to 

leave some part of population survive to next generation. 

Mutation probability says how often will be parts of chromosome mutated. If 

there is no mutation, offspring is taken after crossover (or copy) without any change. If 

mutation is performed, part of chromosome is changed. If mutation probability is 100%, 

whole chromosome is changed, if it is 0%, nothing is changed. 

Mutation is made to prevent falling GA into local extreme, but it should not occur very 

often, because then GA will in fact change to random search. 

4.4.2 Other Parameters 

There are also some other parameters of GA. One also important parameter is population 

SIZe. 

Population size says how many chromosomes are in population (in one 

generation). If there are too few chromosomes, GA have a few possibilities to perform 

crossover and only a small part of search space is explored. On the other hand, if there 

are too many chromosomes, GA slows down. Research shows that after some limit 

(which depends mainly on encoding and the problem) it is not useful to increase 

population size, because it does not make solving the problem faster. 

4.5 Selection 

As you already know from the Genetic algorithm outline, chromosomes are 

selected from the population to be parents to crossover. The problem is how to select 

these chromosomes. According to Darwin's evolution theory the best ones should survive 

and create new offspring. There are many methods how to select the best chromosomes, 

for example roulette wheel selection, Boltzman selection, tournament selection, rank 

selection, steady state selection and some others. 
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4.5.1. Roulette Wheel Selection 

Parents are selected according to their fitness. The better the chromosomes are, 

the more chances to be selected they have. Imagine a roulette wheel where are placed all 

chromosomes in the population, every has its place big accordingly to its fitness function, 

like on the following picture. 

a Chromosome 1 
I Chromosome 2 
D Chromosome 3 
o Chromosome 4 

Then a marble is thrown there and selects the chromosome. Chromosome with biggest 

fitness will be selected more times. 

Following algorithm can simulate this. 

» [Sum] Calculate sum of all chromosome fitness's in population - sum S. 

» [Select] Generate random number from interval (O,S) - r. 

» [Loop] Go through the population and sum fitness's from O - sums. When the 

sums is greater then r, stop and return the chromosome where you are. 

Of course, step 1 is performed only once for each population. 

4.5.2 Rank Selection 

The previous selection will have problems when the fitness's differs very much. 

For example, if the best chromosome fitness is 90% of the entire roulette wheel then the 

other chromosomes will have very few chances to be selected. 
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Rank selection first ranks the population and then c. 

fitness from this ranking. The worst will have fitness 1, seco 

will have fitness N (number of chromosomes in population). 

You can see in following picture, how the situation changes 
to order number. 

D Chromosome 
I Chromosome 
o Chromosome 3 
o Chromosome 4 

Situation before ranking (graph of fitness's) 

D Chromosome 1 
I Chromosome 2 
o Chromosome 3 
o Chromosome 4 

Situation after ranking (graph of order numbers) 

After this all the chromosomes have a chance to be selected. But this method can 

lead to slower convergence, because the best chromosomes do not differ so much from 
other ones. 
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4.5.3 Steady-State Selection 

This is not particular method of selecting parents. Main idea of this selection is 

that big part of chromosomes should survive to next generation. 

GA then works in a following way. In every generation is selected a few (good - 

with high fitness) chromosomes for creating a new offspring. Then some (bad - with low 

fitness) chromosomes are removed and the new offspring is placed in their place. The rest 

of population survives to new generation. 

4.5.4 Elitism 

Idea of elitism has been already introduced. When creating new population by 

crossover and mutation, we have a big chance, that we will loose the best chromosome. 

Elitism is name of method, which first copies the best chromosome ( or a few best 

chromosomes) to new population. The rest is done in classical way. Elitism can very 

rapidly increase performance of GA, because it prevents losing the best found solution. 

4.6 Encoding 

Encoding of chromosomes is one of the problems, when you are starting to solve 

problem with GA. Encoding very depends on the problem. In this section will be 

introduced some encodings, which have been already used with some success. 

4.6.1 Binary Encoding 

Binary encoding is the most common, mainly because first works about GA used 

this type of encoding. 

In binary encoding every chromosome is a string of bits, 0 or 1. 

J Chromosome A J 101100101100101011100101 j 
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sometimes corrections must be made after crossover and/or mutation. 

Example of Problem: Knapsack problem 

The problem: There are things with given value and size. The knapsack has given 

capacity. Select things to maximize the value of things in knapsack, but do not 

extend knapsack capacity. 

Encoding: Each bit says, if the corresponding thing is in knapsack. 

4.6.2 Permutation Encoding 

Permutation encoding can be used in ordering problems, such as travelling 

salesman problem or task ordering problem. 

In permutation encoding, every chromosome is a string of numbers, which 
represents number in a sequence. 

Chromosome A 1 5 3 2 6 4 7 9 8 

Chromosome B 8 5 6 7 2 3 1 4 9 

Example of chromosomes with permutation encoding 

Permutation encoding is only useful for ordering problems. Even for this 

problems for some types of crossover and mutation corrections must be made to leave the 

chromosome consistent (i.e. have real sequence in it). 
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Example of Problem: Travelling salesman problem (TSP) 

The problem: There are cities and given distances between them. T.._ 

salesman has to visit all of them, but he does not to travel very muca 

sequence of cities to minimize travelled distance. 

Encoding: Chromosome says order of cities, in which salesman will 

4.6.3 Value Encoding 

Direct value encoding can be used in problems, where some compli 

such as real numbers, are used. Use of binary encoding for this type of prob 
be very difficult. 

In value encoding, every chromosome is a string of some values. Values can 

anything connected to problem, form numbers, real numbers or chars to some 
complicated objects. 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 

Example of chromosomes with value encoding 

Value encoding is very good for some special problems. On the other hand, for 

this encoding is often necessary to develop some new crossover and mutation specific for 
the problem. 

Example of Problem: Finding weights for neural network 

the problem: There is some neural network with given architecture. Find weights for 

inputs of neurons to train the network for wanted output. 

Encoding: Real values in chromosomes represent corresponding weights for inputs. 
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4.6.4 Tree Encoding 

programming. 

In tree encoding every chromosome is a tree of some objects, su 

commands in programming language. 

Chromosome A Chromosome B 

[ do until J 
l ' .- '" -..l - - \ l step J [waif] 

(+x(/5y)) ( do until step wall ) 

Example of chromosomes with tree encoding. 

Tree encoding is good for evolving programs. Programing language LISP is often 

used to this, because programs in it are represented in this form and can be easily parsed 

as a tree, so the crossover and mutation can be done relatively easily. 

Example of Problem: Finding a function from given values 

the problem: Some input and output values are given. Task is to find a function, which 

will give the best ( closest to wanted) output to all inputs. 

Encoding: Chromosome is a function represented in a tree. 
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4. 7 Crossover and Mutation 

Crossover and mutation are two basic operators of GA. Performance of GA very 

depends on them. Type and implementation of operators depends on encoding and also 

on a problem. There are many ways how to do crossover and mutation. There are onl 

some examples and suggestions how to do it for several encoding. 

4.7.1 Binary Encoding 

4. 7.1.1 Crossover 

Single point crossover - one crossover point is selected, binary string from 

beginning of chromosome to the crossover point is copied from one parent, the 
rest is copied from the second parent . 

Parent A Parent B Offspring - - + 

11001011+11011111 = 11001111 

Two point crossover - two crossover point are selected, binary string from 

beginning of chromosome to the first crossover point is copied from one parent, 

the part from the first to the second crossover point is copied from the second 

parent and the rest is copied from the first parent 

Parent A Parent B 
+ - - 

11001011 + 11011111 = 11011111 

Uniform crossover - bits are randomly copied from the first or from the second 
parent 

55 



Parent A Parent B Offspring 

+ 

11001011 + 11011101 = 11011111 

Arithmetic crossover - some arithmetic operation is performed to make a new 

offspring 

Parent A Parent B Offspring - - + 
11001011 + 11011111 = 11001001 (AND) 

4.7.1.2 Mutation 

Bit inversion - selected bits are inverted 

After crossover After mutation I• -- => 

11001001 => 10001001 

4.7.2 Permutation Encoding 

4.7.2.1 Crossover 

Single point crossover - one crossover point is selected, till this point the 

permutation is copied from the first parent, then the second parent is 

scanned and if the number is not yet in the offspring it is added 

Note: there are more ways how to produce the rest after crossover point 

(123 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (123 4 5 6 8 9 7) 
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4.7.2.2 Mutation 

Order changing - two numbers are selected and exchanged 

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7) 

4. 7 .3 Value Encoding 

4.7.3.1 Crossover 

All crossovers from binary encoding can be used 

4. 7 .3.2 Mutation 

Adding a small number ( for real value encoding) - to selected values is 

added ( or subtracted) a small number 

(1.29 5.68 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55) 

4. 7 .4 Tree Encoding 

4. 7 .4.1 Crossover 

Tree crossover - in both parent one crossover point is selected, parents are divided 

in that point and exchange part below crossover point to produce new offspring 

Parent A Parent B Offspring 

- - + 
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CHAPTER FIVE 

HYBRID SYSTEMS 
5.1 Introduction 

Ordinary hybrid systems are defined in many different ways. In a simple way 

hybrid system are those composed by more than one intelligent system. Hybrid 

systems are expected to be more powerful due to the combining advantages of 

different intelligent techniques. 

Two or more intelligent systems can be combined to create a unique hybrid system. 

The most popular hybrid systems are: 

5.1.1 Sequential Hybrid System 
This model represent the weakest degree of integration and it is composed of two 

intelligent systems connected in serial (Fig.5.1.a). One example of this type of system 

may be a pre-processor Fuzzy System activating a Neural Net. 

5.1.2 Auxiliary Hybrid System 
This model is composed of a sub-system added by another intelligent sub-system. 

The integration degree is greater than in the previous case (Fig.5.1.b). An example of 

this kind of systems is a Genetic Algorithm used to determine the weights of a Neural 

Net. 

5.1.3 Incorporated Hybrid System 
Incorporated hybrid systems represent the greatest degree of integration. There is no 

possible differentiation between the different intelligent systems. We can say that the 

first system contains the second one or vice-versa. An example is a Neuro-Fuzzy 

system, where a Fuzzy inference system is implemented using a Neural Net structure 

(Fig. 5.1.c). 
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A) 
Input Subsystem 2 

Output 

B) 
lnp\11 Subsystem 1 L_. Output 

Sub$ys!em2 

C) 

IHJlUI ___J Subsl'!tem 1 ~ Ouiput 
Subsystem 2 - 

Figure 5.1. Hybrid Systems 

Among the most popular hybrid models are the Neuro-Fuzzy systems, Neuro-Genetic 

systems and Fuzzy-Genetic systems. 

I &••ro Fuzzy Systems 

In these, the most widely researched of all the hybrid systems; fuzzy logic provides 

a structure within which the learning ability of neural networks is employed. In this 

field there are a number of possible uses. Firstly, neural networks can be used to 

generate the membership functions for a fuzzy system and to tune them; a schematic 

for this is shown in figure5.2. 
F,=y system 

Nruralnet-...rk 

Figure 5.2 Neuro-fuzzy system for tuning a membership function 

Fuzzy systems and neural networks may also be combined in series; the neural 

network performs a pre-processing or post-processing role in cases where, 

respectively, a sensor output is not suitable as a direct input to the fuzzy system, or the 

fuzzy system's output is not suitable for direct connection to external devices. In the 

latter case the neural network performs a mapping that would not easily be carried out 
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with analytical techniques. Figure 2 shows the pre-processing system; a post­ 

processing system would simply have the fuzzy system and neural network reversed. 

Neiral ne.twirk Fuzz:y system 

Figure 5.3 Neuro fuzzy system with neural network in pre-processing role 

Parallel systems also exist, and an example of this is a system in which a neural 

network fine-tunes the output of a fuzzy system, according to what it has learnt from 

the fine adjustments that users have previously made. The schematic for such a 

system is shown in figure 3. 

correding 
1'1:ilUe 

Figure 5.4. Parallel neural network/fuzzy system combination for fine-tuning an 

output 

A system called ANFIS (Adaptive Network-based Fuzzy Inference System), in 

which neural networks are used to implement a fuzzy inference system. A fuzzy 

inference system consists of three components. Firstly, a rule base contains a selection 

of fuzzy rules. Secondly, a database defines the membership functions used in the 

rules and, finally, a reasoning mechanism carries out the inference procedure on the 
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rules and given facts. The concept of fuzzy reasoning is straightforward. The truth of 

a proposition A infers the truth of a proposition B by the implication. 

For example, if A represents "the banana is yellow" and B represents "the banana 

is ripe", then if "the banana is yellow" it is inferred that "the banana is ripe". Fuzzy 

reasoning then allows the inference that if "the banana is more or less yellow" then 

"the banana is more or less ripe". 

Neuro-fuzzy systems have become popular in several fields. Control is a notable 

example - particularly space and aviation applications, where auto-pilots aim to mimic 

human ability to make reasoned judgments. In another example, Lee et al describe a 

system for face recognition in which various features are extracted from the face and 

fuzzified to make them less sensitive to variation of features of the same person. The 

L. fuzzified features are then applied to a neural network for the recognition process. 

5.3 Neuro Gentic Systems 

The performance of neural networks can be enhanced by the use of genetic 

algorithms. Possibilities are evolving networks or the use of the algorithms to change 

network parameters. 

A suggested use of a neuro-genetic system is in attitude control of a satellite. The 

attitude of a satellite is its orientation in space and is important in particular in 

avoiding solar and atmospheric damage, to point antennae and to orient rockets for 

manoeuvres. A detailed implementation is given, but the essence of the system is that 

what is termed a Local Prediction Network learns to predict the future system state 

given the previous states and current control inputs. Having been trained, the network 

can output thousands of predictions of the effect of a hypothetical control input. The 

best possible input is then selected using a genetic algorithm. The genetic controller 

could itself use a neural network to carry out the time-consuming task of fitness 

evaluation. 
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5.4 Fuzzy Neural Networks 

Here, separate neural network layers perform the operations of fuzzification and 

defuzzification on crisp input and output data, and implement the fuzzy rules. The 

structure is shown in figure 5 .5. 

flmifie1 fuzzyriies defuzmr 

Figure 5.5. Structure of a fuzzy neural network 

Buckley and Hayashi describe applications of such networks to fuzzy regression 

(discovering functional relationships between fuzzy data), control, solving fuzzy 

matrices (which are used in economics) and in fuzzy classification (described in the 

next section). 

5.5 Implementation ofNeuro-Fuzzy Systems Through Interval Mathematics 

Neural network performance is dependent on the quality and quantity of training 

samples presented to the network. Sometimes, when the training data set is small, or 

perhaps not fully representative of the possibility space, utilization of fuzzy 

techniques improves performance. One way to carry out this improvement is to 

represent imprecise data with fuzzy numbers. The neuro-fuzzy system presented is a 

neural network that processes fuzzy numbers. 

Processing fuzzy numbers can be accomplished in a variety of ways. One of the 

most elegant, because of its simplicity, is by using interval methods. 

5.5.1 Interval Mathematics For Fuzzy Numbers 

Consider a situation where the value of a given input, x E 91, is uncertain or 

vague. In this case, it might be logical to express the input as an interval, thereby 

indicating that the input is known to exist between two real numbers a, and a2, as 

shown in Figure 5.5. The uncertain value, x, belongs to a closed bounded interval [a., 
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a2]. We can then define an interval number, A, as the set of real numbers x such that 

(5.1) 

Given that we can express an uncertain input as an interval number, the operations 

on this input value are then governed by the interval arithmetic operations. The basic 

operations are outlined below: 

A 

• 

Figure 5.6. An interval number, A. 

Addition of intervals 

A+ B = [a,, a2] + [b,, b2] 
= [a, + b., a2 + b2] (5.2) 

Subtraction of intervals 

A- B = [a1, a2] - [b1, b2] 
= [a, - b2, a2 - bi] (5.3) 

Multiplication of intervals 

A• B = [a1, a2] • [b1, b2] 
= [mirua-b], a1b2, a2b1, a2b2), 

max (a.b], a1b2, a2b1, a2b2)] (5.4) 

Division of intervals 

[ ] • [-1 ,..!... ], = a1, a2 b2 b1 (5.5) 
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Fuzzy numbers are a generalization of interval numbers [4]. We can interpret the 

exact value of x (expressed as an interval number, A) as being any number in the 

given interval, with all values equally possible. The generalization to a fuzzy number, 

A, would be that not all values in the interval are equally possible. The degree to 
which they are possible can then be interpreted as the membership function, i.e. the 

degree to which they are members of the interval. The membership function, 

(5.6) 

maps numbers in the interval to the interval ofreal numbers from Oto l, inclusive. 

X 

1.0 

a 

Figure 5.7. A a-cut of a fuzzy number. 

There are many variations in describing fuzzy numbers. We shall confine our 

discussion to triangular fuzzy numbers. A triangular fuzzy number, A, is depicted in 
Figure 2. It is defined by the membership function 

µA(X) = ~ (5.7) 

where [a., a2] is the supporting interval and the point (aM, 1) is the peak. 
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An a-cut of a fuzzy number A is an interval number A,_ that contains all the 
values of real numbers that have a membership grade in A greater than or equal to the 

specified value of a. This can be written as 

s; = [a,, a2] 
= {xe Al µA(x) z o}. (5.8) 

Thus, by taking an a-cut of a fuzzy number, one can process the operations on 

fuzzy numbers via the interval operations described in equations 1 through 4. It is 

interesting to note that the set of all a-cuts of any triangular fuzzy number is a family 

of nested intervals. 

The level-set of A is the set of all levels aE[O,lJ that represent distinct a-cuts of 

the given fuzzy number A. Formally, 

Ax= {al µA(x)=aforsomexEA }, (5.9) 

where A A denotes the level set of the fuzzy number A . 

5.5.2 A Learning Rule For Neural Networks That Use Fuzzy Numbers 

The neural network described here is based on a standard, feed-forward network, 

commonly called a multi-layer perceptron. It differs from the perceptron in its use of 

fuzzy signals. The difference can be readily examined when the formal definition for 

the neuro-fuzzy system (NFS) is given: 

NFS=(Fn, Fm, I, 0, A, L, /) (5.10) 

where 

F, is the input field, an ordered array of neurons 

of size n x 1, 

Fm is the output field, an ordered array of neurons 

of size m x 1, 

I is the fuzzy input vector, 

(x,, X2, ... , xn) E 9in, where xi corresponds 
to the input to neuron i in the input field, Fx, 
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0 is the fuzzy output vector, 
(5\, y 2 , ••• , y m) E 9lm , where y\ corresponds 
to the output from neuron i in the output field, Fy, 

A: 9l" ~9lm is the association function, 

L ~ A is the set of learned associations, and 

f: 9lk ~9l is the neurons' activation function. 

It was originally presented as a neural network that learned from fuzzy If-Then 

rules. This network configuration can be used in several ways, the key to which is 

taking a-cuts of the fuzzy number in question and utilizing interval mathematics. 

The basic structure of the neural network relies on neurons that have weights and 

an activation function that are crisp. The input, target and output signals for this 

system, then, are described by vectors composed of fuzzy numbers and are processed 

by taking a-cuts. The resulting intervals are manipulated using interval mathematics 

to adjust the weights. Specifically, each a-cut of the fuzzy input vector is represented 

by the interval vector Xp = (Xp1, Xp2, ••• , Xpn)T where 

(5.11) 

indicate the lower and upper limits of the interval. 

The summation of weighted inputs is carried out as 

Net~=. t wjio;i + t wiio~ +ei 
I I 
wji::?:0 wji< 0 

(5.12) 

and 

(5.13) 

These calculations are consistent with the interval multiplication operation described 

in equation (5.14). The equation for the output can be expressed as 
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(5.14) 

The learning algorithm is based on the Generalized Delta rule. That is, there is an 

error calculated and backpropagated in order to modify the weights. Specifically, The 

error is computed as the difference between the target output, tp, and the actual output, 

(5.15) 

where 

(tpj-Opj)=~ 

L (tpj - o~), if t, = o. 
(5.16) 

Succinctly stated, the Generalized Delta rule, indicates that the change in any 

weight (in any layer) is 

oEP 
Aw ji(t+ 1) = ri(- ow .. )+aAw ji (t). 

Jl 
(5.17) 

For units in the output layer, calculation of oEv I ow ji is straightforward, and can 
be thought of as four cases based on the value of target output and weight. Note that 

in the four equations the value of j in the subscript is fixed (to the output neuron that 

had the maximum error). In the first case, the tp =l, and Wji ~ 0 : 

(5.18) 
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The third line in the derivation assumes that the neuronal activation function,f (Net), 

is the binary sigmoid function, and thus substitutes the values accordingly. The 

second case has tp = 1, and Wji < 0 : 

(5.19) 

where o~ = (tpj -o~)·o~ ·(1-o~). The third case is characterized by tp = 0 and Wji:?: 0: 

aEP =-a-[(tpj -0~)21 
awji awji 2 

o .[(tpj-o~)2] 00~ oNet~ =-u- --u-.-- 
oopj 2 oNetpj aw ji 

u u u u = -(tpj - opj) · opj · (I-op) ·Op; 

(5.20) 

where o~ = (tpi-o~)·o~ ·(1-o~). The fourth and final case (when tp = 0 and Wji < 0: 

(5.21) 

The calculation of the partial derivative aEP I aw ii for the hidden layers is based 
on back-propagating the error as measured at the output layer. The following 

discussion assumes one hidden layer, although subsequent terms could be derived in 

the same way for other hidden layers. Since this derivation involves a path of two 

neurons (output and hidden layer), there are eight cases. For the first case, tp =I, Wkj ~ 

0 and Wji:?: 0, where Wkj is the weight on the path from hidden layer neuronj to output 

layer neuron k, k fixed: 
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(5.22) 

The second case is a variation on the first, in which tp =1, Wkj ~ 0 and Wji < 0, so the 

partial derivative becomes: 

£JEP --=-o\ ·W ··OL· ·(l L U OW·· P kJ PJ -OP.,;)·O · p • p 
(5.23) 

The third case is characterized by tp = 1, Wkj < 0 and Wji ~ 0 : 

(5.24) 

tp =1, Wkj < 0 and Wji < 0 for the fourth case: 

(5.25) 

The fifth through eighth cases deal with a target value of 0. For the fifth case, tp =O, 

wkj ~ 0 and Wji ~ 0 : 

ao~ aNet~ 
. aNet~. awji 
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(5.26) 

tp =O, wkj ~ 0 and Wji < 0 for the sixth case: 

oEP --- ou u u OW. - - pk. Wkj ·Opj ·(1-0p,;)·OL· ~ , ~ (5.27) 

In the seventh case, tp = 0, Wkj ~ 0 and Wji < 0 : 

(5.28) 

The eighth and final case has tp = 0, Wkj < 0 and Wji < 0 : 

(5.29) 

Equations (5.18) through (5.29) are used to code the training function in the 

simulation. Simulation results are presented in section V. 

5.5.3 Tlie Neuro-fuzzy System Applied To Speaker-independent Speech 

Recognition 
The application problem that will serve as a testbench is speaker-independent 

speech recognition of the eleven vowel sounds from multiple speakers. The vowel 

data used in this study was originally collected by Deterding, who recorded examples 

of the eleven steady state vowels of English spoken by fifteen speakers for a "non­ 

connectionist" speaker normalization study. Four male and four female speakers were 

used to create the training data, and the other four male and three female speakers 

were used to create the testing data. Robinson carried out a study comparing 

performance of feed-forward networks with different structures using this data. 

The speech signals were low pass filtered at 4.7 kHz and digitized to 12 bits with 

a 10 kHz sampling rate. Twelfth order linear predictive analysis was carried out on 
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six 512 sample Hamming windowed segments from the steady part of the vowel. The 

reflection coefficients were used to calculate 10 log area parameters, giving a 10 

dimensional input space. Each speaker thus yielded six frames of speech from eleven 

vowels. These results in 528 frames from the eight speakers used for the training set, 

and 462 frames from the seven speakers used to create the testing set. 528 samples is 

relatively small training set (in standard neural network applications), and thus an 

excellent testbench for the neuro-fuzzy system. 

5.5.4 EXPERIMENTAL RESULTS AND CONCLUSIONS 

Speaker-independent speech recognition is an extremely difficult problem. The 

relatively small size of this particular data set make the problem difficult, too. The 

Vowel data set has been used in many studies, fraught with poor results. This is true 

to such a degree that it caused one researcher to claim that "poor results seem to be 

inherent to the dete". 
Difficulty notwithstanding, previous studies have obtained recognition rates (best 

case) of 51% to 59% [5, 9, 10]. The recognition rate obtained with the neuro-fuzzy 

system is 89%. Results of the simulation are summarized in Table 1 below. 

Type of Number of Best 

Network Hidden Recognition 

Neurons Rate 

Std. Neural 11 59.3 

Network 

Std. Neural 22 58.6 

Network 

Std. Neural 88 51.1 

Network 

Neuro- 11 88.7 

Fuzzy 

System 

Table 5.1. Best Recognition Rates for Standard Neural Networks and the Neuro­ 

Fuzzy System 
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A recognition rate of 89% surpassed expectations, especially with a data set as 

diverse as the speaker-independent speech (vowel recognition) problem. The results 

reinforce the initial claim, that incorporation of fuzzy techniques improves the 

performance of neural networks. Fuzzy theory has been used successfully in many 

applications. This study shows that it can be used to improve neural network 

performance. Furthermore, the simulations presented show that interval mathematics 

can be used for successful implementation of such neuro-fuzzy systems. 
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CONCLUSION 

The construction of control system on the base of traditional technology for 

complicated processes characterizing with non-linearity and uncertainty is not enough to 

satisfy such characteristics as high speed, reliability, adequacy, and accuracy of the 

model. In this condition one of the perspective way of construction of control system is 

the use of soft computing technology, such as neural networks, fuzzy logic and genetic 

algorithms. 

For this reason in the project architecture, functioning principle of soft 

computing elements, neural networks, fuzzy logic and genetic algorithms are described. 

The combination of these technologies allows us to create more powerful intelligent 

hybrid systems. In the project the development of different hybrid systems techniques 

are presented. They have covered the use of neural network structure in Fuzzy system 

(implementation) functioning. 

The obtained results show that Neuro fuzzy system is able to create an · 

appropriate set of rules for difficult processes. They provide stability of the consttocttngr 

system This allows desirable and adaptively control complicated processes. 
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