
NEAR EAST UNIVERSITY

Faculty Of Engineering

Department Of Computer Engineering

SOFT COMPUTING THEORY AND ITS
APPLICATIONS

GRADUATION PROJECT
COM-400

STUDENT: Hafiz Zulfiqar Ali

SUPERVISOR: Asst.Prof .Dr Rahib Abiyev

Nicosia-2001

ACKNOWLEDGEMENTS

I am happy that Allah Taa'la the Almighty Supreme Being and Hazrat Muhammad

(peace be upon him) has provided me with the strength and courage to complete the task.

I'm extremely grateful- to my parents who nurtured me well and inculcated in me

the sprit and enthusiasm to learn more and more.:

Furthermore, I wish to thank my honorable teacher Asst. Prof Dr Rahib Abiyev, in

Computer Engineering Department atNear East University, who has given me help and

encouragement in my project. He has also provided me with the best environment to learn

about soft computing. I especially want to thank him for his continuing support. Also I am

thankful to Mr. Babar, Awais, Naveed, Faisal, and Shahid who helped us a lot in this

project.

TABLE OF CONTENTS

ACKNOWLEDGEMENT
TABLE OF CONTENTS 11

ABSTRACT v
INTRODUCTION vi
CHAPTER ONE: SOFT COMPUTING AND ITS ROLE IN 1
ARTIFICIAL INTELLIGENCE

1.1. Introduction
1.2. Structure And Constituents Of Soft Computing

CHAPTER TWO: FUZZY SYSTEMS
2.1. Structure of a Fuzzy System
2.2. Preprocessing
2.3. Fuzzification
2 .4. Rule Base

1
3
6
6
6
8
8

8
10
11
11
13
18
18
19
19
20
20
21
22
22
23
26
26
27
27
27
27
28
28
30
30
30
31

2.4.1. Rule Formates
2.4.2. Connectives
2.4.3 Modifiers
2.4.4 Universe
2.4.5 Membership Functions

2. 5 Inference Engine
2.5.1 Aggregation
2.5.2 Activation
2.5.3 Accumulation

2. 6. Defuzzification
2. 6.1 Centre of gravity (COG)
2.6.2 Center of gravity method fro singletons (COGS)
2.6.3 Mean of maxima (MOM)
2.6.4 Leftmost maximum (LM), and rightmost maximum (RM)

2. 7 Post processing
CHATER THREE: NEURAL NETWORKS

3 .1 The Artificial Neuron
3 .2 Threshold functions

3 .2.1 Linear Threshold Function
3 .2.2 Step Threshold Function
3.2.3 Ramp Threshold Function
3.2.4 Sigmoid Threshold Function
3.2.5 Gaussian Threshold Function

3.3 Neural Network Topologies
3.3.1 Layers
3.3.2 Communication and types of connections
3.3.2.1 Inter-layer connections

11

--Y ---,--

3.3.2.2 Intra-layer connections 31
3.4 Single-layer Networks: Auto association, Optimization, and 32

Contrast Enhancement
3.5 Multi-layer Networks: Heteroassociation

approximation
3.6 Neural Network Learning

3.6.1 Supervised vs. Unsupervised Learning
3.6.2 Off-line vs. On-line Learning
3.6.3 Hebbian Correlations
3.6.4 Principle Component Learning
3.6.5 Differential Hebbian Learning
3.6.6 Competitive Learning
3. 6. 7 Min-Max Learning
3.6.8 Error Correction Learning
3.6.9 Reinforcement Learning

3. 7 Error Backpropagation
3. 7. 1 The Algorithm
3.7.2 Matrix Form

CHAPTER FOUR: GENETIC ALGORITHMS
4 .1. Basic Description
4.2. Outline of the Basic Genetic Algorithm
4.3. Operators of GA

4 .3 .1. Encoding of a Chromosome
4.3.2. Crossover
4.3.3. Mutation

4.4. Parameters of Genetic Algorithms
4. 4. 1. Crossover and Mutation Probability
4.4.2. Other Parameters

4.5. Selection
4. 5 .1. Roulette Wheel Selection
4.5.2 Rank Selection
4.5.3. Steady-State Selection
4.5.4. Elitism

4. 6. Encoding
4.6.1. Binary Encoding
4.6.2. Permutation Encoding
4.6.3. Value Encoding
4.6.4. Tree Encoding

4. 7 Crossover and Mutation

ll1

and Function 32

33
33
34
34
35
35
35
36
36
37
38
39
42
44
44
44
45
46
46
47
47
47
48
48
49
49
51
51
51
51
52
53
54
55

- _,, -------·

4. 7.1 Binary Encoding 55
4. 7.1.1. Crossover 55
4.7.1.2 Mutation 56

4. 7.2. Permutation Encoding 56
4.7.2.1 Crossover 56
4.7.2.2 Mutation 57

4.7.3 Value Encoding 57
4.7.3.1 Crossover 57
4.7.3.2 Mutation 57
4. 7.4 Tree Encoding 57
4. 7.4.1 Crossover 57

CHAPTER FIVE: HYBRID SYSTEMS 58

5 .1 Introduction 58
5.1.1 Sequential Hybrid System 58
5.1.2 Auxiliary Hybrid System 58
5.1.3 Incorporated Hybrid System 58

5.2 Neuro Fuzzy Systems 59
5.3 Neuro Genetic Systems 61
5 .4 Fuzzy Neural Networks 62
5.5 Implementation of Neuro-Fuzzy Systems Through Interval Mathematics 62

5.5.1 Interval Mathematics For Fuzzy Numbers 62
5.5.2 A Learning Rule For Neural Networks That Use Fuzzy Numbers 65
5.5.3 The Neuro-fuzzy System Applied To Speaker-independent Speech 70

Recognition

5. 5 .4 Experimental Results
CONCLUSION

REFERENCES

71
73

74

lV

ABSTRACT

Soft computing is a collection of the intelligent paradigms such as Fuzzy logic,

Neural Networks and Genetic Algorithms which deal with pervasive imprecision and all

defending of the real world. Lutfi Zadeh noted that unlike traditional hard computing, soft

computing aims at an accommodation with the pervasive imprecision of the real world.

The project is devoted one of the actual problem of the soft computing elements to

industrial processes. For this reason the structure of Soft Computing, description of it's

main elements are given.

The structure of Fuzzy System, its main blocks and their functioning principles are

given. The different architectures of Neural Networks, their operating principles and

learning algorithms are described. Also Genetic Algorithm description, its main functioning

principle and genetic operators are given.

In the last chapter using Fuzzy Logic, Neural Networks and Genetic Algorithms, the

construction of the hybrid systems are considered. The development of the Neuro Fuzzy,

Neuro Genetic systems are given, the application of these systems to technological

processes and obtained results are discussed.

V

INTRODUCTION

Soft computing differs from conventional (hard) computing in that, unlike hard

computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role

model for soft computing is the human mind. The guiding principle of soft computing is:

Exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability,

robustness and low solution cost.

At this juncture, the principal constituents of soft computing (SC) are fuzzy logic

(FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter

subsuming belief networks, genetic algorithms, chaos theory and parts of learning theory.

What is important to note is that SC is not a combination of FL, NN and PR. Rather, it is a

partnership in which each of the partners contributes a distinct methodology for addressing

problems in its domain. In this perspective, the principal contributions of FL, NN and PR

are complementary rather than competitive.

GA is reminiscent of sexual reproduction in which the genes of two parents

combine to form those of their children. When it is applied to problem solving, the basic

premise is that we can create an initial population of individuals representing possible

solutions to a problem we are trying to solve. Each of these individual has certain

characteristics that make them more or less fit as members of the population. The most fit

members will have a higher probability of mating than the less fit members, to produce

offspring that have a significant chance of retaining the desirable characteristics of their

parents. This method is very effective at finding optimal or near optimal solutions to a

wide variety of problems, because it does not impose many of the limitations required by

traditional methods. It is an elegant generate and test strategy that can identify and exploit

regularities in the environment, and converges on solutions that were globally optimal or

nearly so.

vi

J Fuzzy logic has been applied very successfully in many areas where conventional

model based approaches are difficult or not cost-effective to implement. However, as

system complexity increases, reliable fuzzy rules and membership functions used to

describe the system behavior are difficult to determine. Furthermore, due to the dynamic

nature of economic and financial applications, rules and membership functions must be

adaptive to the changing environment in order to continue to be useful.

Neuro-Fuzzy hybrid systems combine the advantages of fuzzy systems, which deal

with explicit knowledge which can be explained and understood, and neural networks

which deal with implicit knowledge which can be acquired by learning. Neural network

learning provides a good way to adjust the expert's knowledge and automatically generate

additional fuzzy rules and membership functions, to meet certain specifications and reduce

design time and costs. On the other hand, fuzzy logic enhances the generalization

capability of a neural network system by providing more reliable output when

Lxtrapolation is needed beyond the limits of the training data.

vii

- -" -·~·----···--~····- -·-

CHAPTER ONE

SOFT COMPUTING AND ITS ROLE IN ARTIFICIAL

INTELLIGENCE
1.1 Introduction

Artificial intelligence as a science has existing for about 40 years now.

The main problem of this science is recreation of human' s reasoning processes

and behavior with aid of computers and other hand-made devices as well as

construction of machines simulating the decision making by human in case of

imprecise and uncertain environment. In most cases these various areas are

attributed to the artificial intelligence scope, where precise models, methods and

algorithms for solving the problem are not available, the problem being

characterized by uncertainty. Methods of artificial intelligence are based on two

characteristic features:

1. Use of information in symbolic form i.e. letters, words, phrases, signs,

figures.

2. Search with aid of symbolic logic. When processing symbolic

information, the computers convert the words and phrases to the form of binary

digits. Then the computer recognizes or compares consequences of such symbols

(converted to digits).

The classics of artificial intelligence stated that the abilities of

Computers to manipulate symbols as easily as numbers, to compare

consequences of symbols, and then, depending on the results of comparison, do

or don't perform further operations, will allow realization in the machine the

functions typical for the human mind, i.e. functions of deductive logical

reasoning. It may seem that the potential abilities of a computer on the way of

creation of artificial intelligence based on the symbolic information processing

are unlimited. Despite huge successes of artificial intelligence (in the classical

sense) in developing a wide range of systems for solving problems, automatically

proving theorems, recognizing patterns as well as in constructing game systems,

expert systems, natural language understanding systems, the expectations have

not been approved. The traditional artificial intelligence is not capable of solving

problems like a man does with his common sense, and does not accord with the

procedures, which are similar to human abilities of understanding and reasoning.

The traditional artificial intelligence has not managed to exhibit itself in solving

problems for intelligent robotics, computer vision, recognition of speech and

hand-written, machine translation, learning through experience and many other

important real-world problems. The pointed problems as well as many others

have intrinsic imprecision and uncertainty that cannot be neglected. As noted

professor L.Zadeh, the traditional artificial .intelligence could achieve more

successes with its goals if it did not limit itself by processing symbolic

information only and using the first order logic. All traditional artificial

intelligence systems have been realized by using the Hard Computing

technology, which restricts considerably abilities of those systems. Moreover, the

traditional artificial intelligence due to the regularities shown above does not

consider the computational methods important for accounting uncertainty and

imprecision. In this conditions MIQ for traditional artificial intelligent systems

appeared to be not so high. There was a need to increase MIQ for intelligent

systems. Thereat Soft Computing methodology appears implying cooperative

activity rather than autonome one for such new computational approaches as

fuzzy logic, neural networks, evolutionary computation and so on. These

approaches allow solving many important real-world problems, which was

impossible using traditional artificial intelligence methods.

The collection of such intelligent paradigms (used as computational

techniques) as Fuzzy Logic (FL), Neural Networks (NN), Probabilistic

Reasoning (PR), Genetic Algorithms (GA), Chaos Theory (CT) dealing with

pervasive imprecision and ill definedness of the real world is named Soft

Computing (SC). Unlike traditional Hard Computing (HC), SC can tolerate

imprecision and uncertainty and partial truth without the loss of performance and

effectiveness for the end use. It is the matter of time after no more than a decade

2

/)"·.'~.,.,;,; O.''lil,-.'·!:~ '!t"•

we will see that Artificial Intelligence is based on Soft Computing not on

traditional Hard Computing. L.Zadeh noted that unlike the traditional Hard·

Computing, Soft Computing aims at an accommodation with the pervasive

imprecisions of the real world. The guiding principle of Soft Computing is:

exploit the tolerance for imprecision, uncertainty and partial truth to achieve

tractability, robustness and low solution cost. We can easily come to the

conclusion that precision has a cost (unfortunately, this obvious principle often is

neglected). So, in order to solve the problem with an acceptable cost we need to

aim at a decision with only the necessary degree of precision not going over the

requirements. The impressing examples of the aforesaid are problems of landing

a helicopter or parking a car. Let's consider the second case. One can park a car

without doing any distance and angle measurements because the final position of

the car is not specified clearly. If though it is, then the measurements are

necessary, say, in the range of :fractions of millimeter or a few seconds of arc.

This will require many hours of manoeuvres and measurements from the devices

for solving the problem. Moreover, the cost of decision will increase

exponentially as the precision increases. Soft Computing technology is of great

importance for data compression, especially, in HDTV, audio recording, speech

recognition, image understanding and related fields. Actually, soft-computing­

based concepts and techniques are already playing an essential role in the

conception, design and manufacturing of high MIQ products and systems. As

noted Zadeh the perfect model of SC is human brain.

1.2 Structure And Constituents Of Soft Computing

As was mentioned above all traditional artificial intelligent systems

including expert systems widely used in various areas of human activity, have

been realized on the base of Hard Computing, often using computers. But this

base, obviously limits the efficiency and, generally, the possibility of creating

systems of artificial intelligence for different purposes. Currently the significant

increase can be noticed in number of applied artificial intelligence systems based

3

,, ''·•·.i.:l>-:'/',a··--------M,;
---- -·- - . ·-···-

not on numerical (not symbolic) computation and traditional Hard Computing,

but on neural networks, fuzzy computing, evolutionary programming, belief

networks. There is as well a certain increase in number of publications, presented

in proceedings of scientific conferences which are devoted to fuzzy logic, genetic

algorithms, artificial life, biological computing, neural computing etc. This

increase gives the evidence that the focus of the investigations and

implementations of real artificial intelligence systems makes a shift nearer to Soft

Computing. Figure 1.1 shows the structure of Soft Computing technology

forming the basis for computational intelligence.

Computing
technologies

Hard Computing -
base of classical

Artificial
intelligence

Soft Computing - base
of Computational

intelligence with high
MIQ

Hybrid Systems

Figure 1.1. The Main Components Of Soft Computing.

The following main components of Soft Computing are known by now:

fuzzy logic (FL), neural networks theory (NN), probabilistic reasoning (PR),

4

~ ,, ,,r.-i"'° ...i,,,;,;,ti~.;

Genetic Algorithms (GA), and chaos theory (CT) (Figure 1.1). In SC FL is

concerned in the main with imprecision and approximate reasoning, NN - with

learning, PR with uncertainty and propagation of belief, GA with global

optimization and searching and CT with nonlinear dynamics. In large measure

FL, NN and PR are complementary rather that competitive.

5

I"' 1'·)'.'!'Yc"f:.:··'."-i:'l ~

CHAPTER TWO

FUZZY SYSTEMS

2.1 Structure of a Fuzzy System

There are specific components characteristic of a fuzzy controller to

support a design procedure. In the block diagram in figure2.0, the controller

is between a preprocessing block and a post-processing block. The following

explains the diagram block by block.

~•. ,
r----
1 ~-~~--~----: - 1ni.." " ••

Figure 2.1. Blocks of a fuzzy controller

2.2 Preprocessing

The inputs are most often hard or crisp measurements from some measuring

equipment, rather than linguistic. A preprocessor, the first block in Fig. 2.0,

conditions the measurements before they enter the controller. Examples of

preprocessing are:

• Quantisation in connection with sampling or rounding to integers;

• Normalisation or scaling onto a particular, standard range;

• Filtering in order to remove noise;

• Averaging to obtain long term or short term tendencies;

• A combination of several measurements to obtain key indicators; and

• Differentiation and integration or their discrete equivalences.

6

"

A quantiser is necessary to convert the incoming values in order to find the best level

in a discrete universe. Assume, for instance, that the variable error has the value 4.5,

but the universe is u = (-5, -4 ... 0 ... 4,5). The quantiser rounds to 5 to fit it to the

nearest level. Quantisation is a means to reduce data, but if the quantisation is too

coarse the controller may oscillate around the reference or even become unstable.

Nonlinear scaling is an option (Fig. 2.1). In the FL smidth controller the operator is

0
inpul 5

Figure 2.2. Example of nonlinear scaling of an input measurement

asked to enter three typical numbers for a small, medium and large measurement

respectively (Holmblad & Stergaard, 1982). They become break points on a curve

that scales the incoming measurements (circled in the figure). The overall effect can

be interpreted as a distortion of the primary fuzzy sets. It can be confusing with both

scaling and gain factors in a controller, and it makes tuning difficult.

When the input to the controller is error, the control strategy is a static

mapping between input and control signal. A dynamic controller would have

additional inputs, for example derivatives, integrals, or previous values of

measurements backwards in time. These are created in the preprocessor thus making

the controller multi-dimensional, which requires many rules and makes it more

difficult to design.

The preprocessor then passes the data on to the controller.

7

~ •••• ~ •••••••• ~;:;;;;~::c==~1~-~1~n;,,,..;:;J1~·~~-i::;:::~::~~~~~~~::::::::~~~""'

2.3 Fuzzification

The first block inside the controller is fuzzification, which converts

each piece of input data to degrees of membership by a lookup in one or

several membership functions. The fuzzification block thus matches the

input data with the conditions of the rules to determine how well the

condition of each rule matches that particular input instance. There is a

degree of membership for each linguistic term that applies to that input

variable.

2.4 Rule Base

The rules may use several variables both in the condition and the conclusion

of the rules. The controllers can therefore be applied to both multi-input-multi-output

(MIMO) problems and single-input-single-output (SISO) problems. The typical

SISO problem is to regulate a control signal based on an error signal. The controller

may actually need the error, the change in air, and the accumulated error as inputs,

but we will call it single-loop control, because in principle all three are formed from

the error measurement. To simplify, this section assumes that the control objective is

to regulate some process output around a prescribed set point or reference. The

presentation is thus limited to single-loop control.

2.4.1 Rule Formates

Basically a linguistic controller contains rules in the if then format, but they

can be presented in different formats. In many systems, the rules are presented to the

end-user in a format similar to the one below:

1. If error is Neg and change in error is Neg then output is NB

8

2. If error is Neg and change in error is Zero then output is NM

3. If error is Neg and change in error is Pos then output is Zero

4. If error is Zero and change in error is Neg then output is NM

5. If error is Zero and change in error is Zero then output is Zero (2)

6. If error is Zero and change in error is Pos then output is PM

7. If error is Pos and change in error is Neg then output is Zero

8. If error is Pos and change in error is Zero then output is PM

9. If error is Pos and change in error is Pos then output is PB

The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and PM

(negative big, negative medium, positive big, and positive medium respectively).

The same set of rules could be presented in a relational format, a more compact

representation.
CM~h11.ffrar OlqVJt
1w z
Zcr0, 'N
'Ntg NB
Pw PM.
Za!m Zt'lltl

'N~ N
fl'{di PB
'.cro PM
'N~ Ztim

Figure 2.3

The top row is the heading, with the names of the variables. It is understood

that the two leftmost columns are inputs, the rightmost is the output, and each row

represents a rule. This format is perhaps better suited for an experienced user who

wants to get an overview of the rule base quickly. The relational format is certainly

suited for storing in a relational database. It should be emphasised, though, that the

relational format implicitly assumes that the connective between the inputs is always

logical and or logical or for that matter as long as it is the same operation for all

rules and not a mixture of connectives. Incidentally, a fuzzy rule with an or

9

"' ;,);c.-

combination of terms can be converted into an equivalent and combination of terms

using laws of logic (DeMorgan's laws among others). A third format is the tabular
linguistic format. Change in error is given by:

Ermr

Figure 2.4

This is even more compact. The input variables are laid out along the axes,

and the output variable is inside the table. In case the table has an empty cell, it is an

indication of a missing rule, and this format is useful for checking completeness.

When the input variables are error and change in air, as they are here, that format is

also called a linguistic phase plane. In case there are n > 2 input variables involved,
the table grows to an p-dimensional array; rather user-unfriendly.

To accommodate several outputs, a nested arrangement is conceivable. A rule

with several outputs could also be broken down into several rules with one output.

Lastly, a graphical format which shows the fuzzy membership curves is also possible

(Fig. 2.4). This graphical user-interface can display the inference process better than

the other formats, but takes more space on a monitor.

2.4.2 Connectives

In mathematics, sentences are connected with the words and, or, if-then (or

implies), and if and only if, or modifications with the word not. These five are called

connectives. It also makes a difference how the connectives are implemented. The

most prominent is probably multiplication for fuzzy and instead of minimum. So far

10

,, ·;.;:-g~
----~---·- ---

most of the examples have only contained and operations, but a rule like '' If error is

very neg and not zero or change in error is zero then ... " is also possible.

The connectives and or are always defined in pairs, for example,

a and b = min (a,b) minimum

a orb= max (a,b)= maximum

or

a and b =a* b algebraic product
a orb= a+ b - a* b algebraic or probabilistic sum

2.4.3 Modifiers

A linguistic modifier is an operation that modifies the meaning of a term. For

example, in the sentence" very close to O", the word very modifies close to O which

is a fuzzy set. A modifier is thus an operation on a fuzzy set. The modifier very can

be defined as squaring the subsequent membership function, that is

very a= a2

Some examples of other modifiers are

Extremely a = a 3
Slightly a = a

Some what a = moreorless a and not slightly a

A whole family of modifiers is generated by aP where p is any power

between zero and infinity. With p = co the modifier could be named exactly, because

it would suppress all memberships lower than 1.0.

11

'

2.4.4 Universe

Elements of a fuzzy set are taken from a universe of discourse or just

universe. The universe contains all elements that can come into consideration. Before

designing the membership functions it is necessary to consider the universes for the

inputs and outputs. Take for example the rule.

If error is Neg and change in error is Pos then output is 0

Naturally, the membership functions for Neg and Pos must be defined for all

possible values of error and change in error; and a standard universe may be
convenient.

Another consideration is whether the input membership functions should be

continuous or discrete. A continuous membership function is defined on a

continuous universe by means of parameters. A discrete membership function is

defmed in terms of a vector with a finite number of elements. In the latter case it is

necessary to specify the range of the universe and the value at each point. The choice

between fme and coarse resolution is a trade off between accuracy, speed and space

demands. The quantiser takes time to execute, and if this time is too precious,

continuous membership functions will make the quantiser obsolete.

Example 1 (standard universes) Many authors and several commercial

controllers use standard universes.

• The FL smidth controller, for instances, uses the real number interval
[-1,1]

• Authors of the earlier papers on fuzzy control used the integers in (-
6,6]

• Another possibility is the interval [-100,100] corresponding to the

percentages of full scale.

12

--

• Yet another is the integer range [0,5095] corresponding to the output

from a 12 bit analog to digital converter

• A variant is [-2047,2048], where the interval is shifted in order to

accommodate negative numbers

The choice of data types may govern the choices of universe. For

example. The voltage range [-5,5] could be represented as an integer

range [-50,50], or as a floating point range [-5.0,5.0]; a signed byte data

type has an allowable integer range [-128,127]

A way to exploit the range of the universes better is scaling. If a controller

input mostly uses just one term, the scaling factor can be turned up such that

the whole range is used. An advantage is that this allows a standard universe

and it eliminates the need for adding more terms.

2.4.5 Membership Functions

Every element in the universe of discourse is a member of a fuzzy set to some

grade, maybe even zero. The grade of membership for all its members describes a

fuzzy set, such as Neg. In fuzzy sets elements are assigned a grade of membership,

such that the transition from membership to non-membership is gradual rather than

abrupt. The set of elements that have a non-zero membership is called the support of

the fuzzy set. The function that ties a number to each element z of the universe is
called the membership function µ(z) .

The designer is inevitably faced with the question of how to build the term sets.

There are two specific questions to consider; (i) How does one determine the shape

of the sets? and (ii) How many sets are necessary and sufficient? For example, the

error in the position controller uses the family of terms Neg, Zero, and Pos.

13

. ·-~----·"· .. _.,~ ' .•. ·~
--·-- ·-------·-

According to fuzzy set theory the choice of the shape and width is subjective,

but a few rules of thumb apply.

• A term set should be sufficiently wide to allow for noise in the

measurement.

Figure 2.5: Examples of membership functions. Read from top to bottom, left

to right: (a) s - function, (b) 1l - function, (c) z - function, (d-f) triangular

versions, (g-i) trapezoidal versions, G) flat 1l - function, (k) rectangle, (1)
singleton.

• A certain amount of overlap is desirable; otherwise the controller may run

into poorly defmed states, where it does not return a well defined output.

A preliminary answer to questions (i) and (ii) is that the necessary and sufficient

number of sets in a family depends on the width of the sets, and vice versa. A

solution could be to ask the process operators to enter their personal preferences for

the membership curves; but operators also find it difficult to settle on particular

curves.

The manual for the TIL Shell product recommends the following (Hill, Horstkotte &

14

-·-·---,.,~ .•... ----- - -- . _ _. __ , _._. ---- ~-

Teichrow, 1990).

• Start with triangular sets. All membership functions for a particular input or

output should be symmetrical triangles of the same width. The leftmost and

the rightmost should be shouldered ramps.

• The overlap should be at least 50%.The widths should initially be chosen so

that each value of the universe is a member of at least two sets, except

possibly for elements at the extreme ends. If, on the other hand, there is a gap

between two sets no rules fire for values in the gap. Consequently the

controller function is not defined.

Membership functions can be flat on the top, piece-wise linear and triangle

shaped, rectangular, or ramps with horizontal shoulders. Fig2.4 shows some typical

shapes of membership functions.

Strictly speaking, a fuzzy set A is a collection of ordered pairs

A= {(z,µ(z))} (2.1)

Item z belongs to the universe and µ(z) is its grade of membership

in A. A single pair {z,µ(z)} is a fuzzy singleton; singleton output means

replacing the fuzzy sets in the conclusion by numbers (scalars). For example

1. If error is Pos then output is 10 volts

2. If error is Zero then output is O volts

3. If error is Neg then output is · 10 volts

There are at least three advantages to this:

• The computations are simpler;

15

,,.,·.--.-·~
··--------- . -~-----

• it is possible to drive the control signal to its extreme values; and

• it may actually be a more intuitive way to write rules.

The scalar can be a fuzzy set with the singleton placed in a proper position. For

example 10 volts, would be equivalent to the fuzzy set (0,0,0,0,1) defmed on the

universe (-10,-5,0,5,10) volts.

Example 2(membership functions) Fuzzy controllers use a variety of

membership functions. A common example of a function that produces a bell

curve is based on the exponential function.

µ(z) = exp[-(z- Xo)2]
2cr2

(2.2)

This is a standard Gaussian curve with a maximum value of l .x is the

independent variable on the universe, x O is the position of the peak relative to the
universe, and er is the standard deviation. Another defmition that does not use the

exponential is

(2.3)

The FL Smidth controller uses the equation

(2.4)

16

The extra parameter a controls the gradient of the sloping sides. It is

also possible to use other functions, for example the sigmoid known from

neural networks.

A cosine function can be used to generate a variety of membership

functions. The s- curve can be implemented as

(
o J ,x<x1 1 1 x- X,

s(X,XnX)=~-+-cos 1[,X1~X~X,
2 2 X, - Xi

1 ,X > X,

(2.5)

Where X, is the left breakpoint and x, is the right break point. The z- curve is just
a reflection

17

I ! I
I LJ

~ h>,z, I I l I -.,,/

/I I J I
I 11

-1(1) I 100 -100 I 100

I A ti I . J
-5i) -2-~(J 2,,1()

·l'.ll{i

eiror

0

Figure 2.6 Graphical construction of the control signal in a fuzzy PD

controller (generated in the Matlab Fuzzy Logic Toolbox).

{
o J .z <z. _ 1 1 x- Xr < < Z(X,XnX)-1-+-co ;r ,%1-X-Xr

2 2 %, - X,
1 ,% > Xr

(2.6)

Then the ;r - curve can be implemented as a combination of the s- curve and the z­

curve, such that the peak is flat over the interval [x 2 , x 3]

18

(2.7)

2.5 Inference Engine

Figures 2.6 and 2.7are both a graphical construction of the algorithm

in the core of the controller. In Fig. 2.7, each of the nine rows refers to one

rule. For example, the first row says that if the error is negative (row 1,

column 1) and the change in error is negative (row l, column 2) then the

output should be negative big (row 1, column 3). The picture corresponds to

the rule base in (2). The rules reflect the strategy that the control signal

should be a combination of the reference error and the change in error, a

fuzzy proportional-derivative controller. We shall refer to that figure in the

following. The instances of the error and the change in error are indicated by the

vertical lines on the first and second columns of the chart. For each rule, the

inference engine looks up the membership values in the condition of the rule.

2.5.1 Aggregation

The aggregation operation is used when calculating the degree of fulfillment

or firing strength a k of the condition of a rule k. A rule, say rule 1, will generate a

fuzzy membership value µe1 coming from the error and a membership value µeel

coming

from the change in error measurement. The aggregation is their combination,

(2.8)

Similarly for the other rules. Aggregation is equivalent to fuzzification, when there is

only one input to the controller. Aggregation is sometimes also called fulfillment of

the rule or firing strength

19

2.5.2 Activation

The activation of a rule is the deduction of the conclusion, possibly reduced

by its firing strength. Thickened lines in the third column indicate the firing strength

of each rule. Only the thickened part of the singletons are activated, and min or

product (*) is used as the activation operator. It makes no difference in this case,

since the output membership functions are singletons, but in the general case of s- ,

tr - ,and z - functions in the third column, the multiplication scales the membership

curves, thus preserving the initial shape, rather than clipping them as the min

operation does. Both methods work well in general, although the multiplication

results in a slightly smoother control signal. In Fig. 2.4 only rules four and five are

active.

A rule k can be weighted a priori by a weighting factor wk e [0,1], which is its degree

of confidence. In that case the firing strength is modified to

(2.9)

The designer, or a learning program trying determines the degree of confidence to

adapt the rules to some input-output relationship.

2.5.3 Accumulation

All activated conclusions are accumulated, using the max operation,

to the final graph on the bottom right (Fig. 2.5). Alternatively, sum accumulation

counts overlapping areas more than once (Fig.2.6). Singleton output (Fig. 2.5) and

sum accumulation results in the simple output

(2.10)

20

The alpha's are the firing strengths from the n rules and s1 •••••••••••• s;

are the output singletons. Since this can be computed as a vector product,

this type of inference is relatively fast in a matrix oriented language.

There could actually have been several conclusion sets. An example of a

one-input-two outputs rule is II If e , is a then o-1 is x and o-2 is y ". The

inference engine can treat two (or several) columns on the conclusion side in

parallel by applying the firing strength to both conclusion sets. In practice,

one would often implement this situation as two rules rather than one, that

is, 11 If e0is a then o-1 is x, 11 If e, is a then o-2 is y".

2.6 Defuzzification

The resulting fuzzy set (Fig. 2.6, bottom right; Fig. 2.7, extreme right)

must be converted to a number that can be sent to the process as a control

signal. This operation is called defuzzification, and in Fig. 2.6 the x-coordinate

marked by a white, vertical dividing line becomes the control signal. The

resulting fuzzy set is thus defuzzified into a crisp control signal. There are

several defuzzification methods.

2.6.1 Centre of gravity (COG)

The crisp output value p (white line in Fig. 2.6) is the abscissa under
the centre of gravity of the fuzzy set,

(2.11)

21

Here X; is a running point in a discrete universe, and µ(x;) is its

membership value in the membership function. The expression can be

interpreted as the weighted average of the elements in the support set. For the

continuous case, replace the summations by integrals. It is a much used method

although its computational complexity is relatively high. This method is also called

centroid of area.

2.6.2 Center of gravity method fro singletons (COGS)

If the membership functions of the conclusions are singletons (Fig. 7),

the output value is

(2.12)

Here s; is the position of singleton i in the universe, and s(x;) is equal to the

firing strength a; of rule i. This method has a relatively good computational

complexity, and u is differentiable With respect to the singletons Pp, which is
useful in neurofuzzy systems.

(2.13)

22

Here x is the running point in the universe, µ(x) is its membership, Min is

the leftmost value of the universe, and Max is the rightmost value. Its

computational complexity is relatively high, and it can be ambiguous. For

example, if the fuzzy set consists of two singletons any point between the

two would divide the area in two halves; consequently it is safer to say that

in the discrete case, BOA is not defined.

2.6.3 Mean of maxima (MOM)

An intuitive approach is to choose the point with the strongest

possibility, i.e. maximal membership. It may happen, though, that several

such points exist, and a common practice is to take the mean of maxima

(MOM). This method disregards the shape of the fuzzy set, but the

computational complexity is relatively good.

2.6.4 Leftmost maximum (LM), and rightmost maximum (RM)

Another possibility is to choose the leftmost maximum (LM), or the
rightmost maximum (RM). In the case of a robot, for instance, it must choose
between left or right to avoid an obstacle in front of it.

23

Figure 2.7. One input, one output rule base with non-singleton output sets.

The defuzzifier must then choose one or the other, not something in

between. These methods are indifferent to the shape of the fuzzy set, but the

computational complexity is relatively small.

2. 7 Post processing

Output scaling is also relevant. In case the output is defined on a
standard universe this must be scaled to engineering units for instance, volts,
meters, or tons per hour. An example is the scaling from the standard
universe [-1,1] to the physical units [-10,10] volts.
The postprocessing block often contains an output gain that can be tuned,
and sometimes also an integrator.

Example 3(inference) How is the inference in fig 8 implemented using

discrete fuzzy sets?

Behind the scene all universes were divided into 201 points from -100 to

100.But for brevity, let us just use five points. Assume the universe u,

U=
1-1001-50 Io 150 I lOO I is the vector common to all variables,

24

A cosine function can be used to generate a variety of membership functions. The s­

curve can be implemented as

(

O J ,X<X1 1 1 x-xr
s(xi,xr,x) =)-+-cos 7r ,X1 ~ X ~ X,

2 2 z. - %1
1 ,% > X,

(2.14)

where xi is the left break point, and x, is the right breakpoint.The z-curve is

just a reflection

{

1 J ,% < Xi - _!_ _!_ x-x, < < z(x,X,,X) -) + co 1t ,X, - X - X,
2 2 X, - X,

0 ,X > X,

(2.15)

Then the 1r -curve can be implemented as a combination of the s- curve and the z­

curve, such that the peak is flat over the interval [x2, x3]

(2.16)

A family of terms is defined by means of the 1r - function, such that

Neg= 1r (-100, -100, -60,10,u) = 1 0.95 0.05 0 0

Zero= 1r (-90, -20,20,90,u)= 0 0.61 1 0.61 0

Pos = 1r(-10,60,100,100,u) = J O I O I 0.051 0.9511 I

Above we inserted the whole vector u in place of the running point x; the

result is thus a-vector. The figure assumes that error= -50 (the unit is percentages of

full range). This corresponds to the second position in the universe, and the first rule

contributes with a membership neg(2) = 0.95. This firing strength is propagated to

the conclusion side of the rule using min, such that the contribution from this rule is

1
o.95 I o.95 I 0.051 o I o 1

25

CHAPTER THREE

NEURAL NETWORKS

3.1 The Artificial Neuron

The basic unit of neural networks, the artificial neurons, simulates the four

basic functions of natural neurons. Artificial neurons are much simpler than the

biological neuron; the figure below shows the basics of an artificial neuron.

Note that various inputs to the network are represented by the mathematical

symbol. x(n). Each of these inputs are multiplied by a connection weight, these

weights are represented by w(n). In the simplest case, these products are simply

summed, fed through a transfer function to generate a result, and then output.

I=}: Wj x,

Y=f(I) Transfer

Sum I Transfer
output path wn

Processing Element
xn

Figure 3.1. Artificial Neuron

26

Even though all artificial neural networks are constructed from this basic building

block the fundamentals may vary in these building blocks and there are differences.

3.2 Threshold functions

Threshold functions also referred to as activation functions, squashing

functions, or signal functions, map a PE's (possibly) infinite domain to a prespecified

range. Although the number of threshold functions possible is quite varied, there are

five that are regularly employed by the majority of neural- networks:

(1) Linear, (2) Step, (3) ramp, (4) Sigmoid, and (5) Gaussian. With the exception

of the linear threshold function, all of these introduce a non-linearity in the

network dynamics by bounding a PE's output values to a fixed range.

3.2.1 Linear Threshold Function

The linear threshold function (see Figure 2.2(a)), produces a linearly

modulated output from the input x as described by the equation

f(x}=x

Where x ranges over the real numbers and a is a positive scalar, if a=l, it is

equivalent to removing the threshold function completely.

3.2.2 Step Threshold Function

The step threshold function, (see Figure 3.2(b)), produces only two values, j3

and o. If the input to the threshold function, x, equals or exceeds the threshold value,
0, then the step threshold function produces the value 13, otherwise it produces the
value -S, where 13 and a are positive scalars.
3.2.3 Ramp Threshold Function

The ramp threshold function, (see Figure 3.2(c)), is a combination of the

linear and step threshold functions. The ramp threshold function places an upper and

lower bound on the values that the threshold function produces and allows a linear

27

response between the bounds. These saturation points are symmetric around the

origin and are discontinuous at the points of saturation.

3.2.4 Sigmoid Threshold Function

The sigmoid threshold function, (see Figure 3.2(d)), is a continuous version of the

ramp threshold function. The sigmoid (S-shaped) function is a bounded, monotonic,

non-decreasing function that provides a graded, nonlinear response within a

prespecified range.

The most common sigmoid function is the logistic function

f(x)=l/(1 +eax)

Where (a > 0 (usually a = 1). which provides an output value from O to 1.

3.2.5 Gaussian Threshold Function

The Gaussian threshold function, (see Figure 3.l(e)), is a radial function

(symmetric about the origin) that requires a variance value, v >O, to shape the

Gaussian function. In some networks the Gaussian function is used in conjunction

with a dual set of connections.

28

F(X)

(a) X

F(X)

(b) X

F(X)

(C) X

F(X)

(d) X

varianc, F(X)

(e) X

Figure 3.2. Threshold Functions

29

3.3 Neural Network Topologies

The building blocks for neural networks are in place. Neural networks consist of

layer(s) of PEs interconnected by weighted connections. The arrangement of the PEs,

connections and patterns into a neural network is referred to as a topology.

3.3.1 Layers

Biologically, neural networks are constructed in a three dimensional way

from microscopic components. These neurons seem capable of nearly unrestricted

interconnections. This is not true in any man-made network. Artificial neural

networks are the simple clustering of the primitive artificial neurons

Figure 3.3. Layers structure

As the figure above shows, the neurons are grouped into layers. The input layer

consists of neurons that receive input form the external environment.

3.3.2 Communication and types of connections

Neurons are connected via a network of paths carrying the output of one

neuron as input to another neuron. These paths is normally unidirectional, there

30

might however be a two-way connection between two neurons, because there may be

an another path in reverse direction. A neuron receives input from many neurons, but

produce a single output, which is communicated to other neurons.

The neuron in a layer may communicate with each other, or they may not

have any connections. The neurons of one layer are always connected to the neurons

of at least another layer.

3.3.2.1 Inter-layer connections

There are different types of connections used between layers; these

connections between layers are called inter-layer connections.

• Fully connected

• Partially connected

• Feed forward

• Bi-directional.

• Hierarchical

• Resonance

3.3.2.2 Intra-layer connections

In more complex structures the neurons communicate among themselves

within a layer, this is known as intra-layer connections. There are two types of infra­

layer connections.

• Recurrent The neurons within a layer are fully- or partially connected to one

another. After these neurons receive input form another layer, they communicate

their outputs with one another a number of times before they are allowed to send

their outputs to another layer.

• On-center/off surround A neuron within a layer has excitatory connections to

itself and its immediate neighbors, and has inhibitory connections to other neurons.

One can imagine this type of connection as a competitive gang of neurons. Each

31

gang excites itself and its gang members and inhibits all members of other gangs.

After a few rounds of signal interchange, the neurons with an active output value will

win, and is allowed to update its and its gang member's weights.

3.4 Single-layer Networks: Auto association, Optimization, and Contrast

Enhancement

Beyond the instarloutstar neural networks are the single layer intraconnected

neural networks. Figure 3 .4 shows the topology of a one-layer neural network,

which consists of nFx PEs. The connections from each Fx PE to every other Fx PE

and itself, yielding a connection matrix with n2 entries.

Figure 3.4. Single layer Neural Network

One-layer neural networks are used for pattern completion, noise remove

optimization, and contrast enhancement.

3.5 Multi-layer Networks: Heteroassociation and Function approximation

A multi-layer neural network has more than two layers, possibly many more. A

general description of a multi-layer neural network is shown in Figure 2.4, where

there is an input layer of PEs, Fx, L hidden layers of Fy PEs and a final output layer.

Fy, The Fy layers are called hidden layers because there are no direct connections

between the input/output patterns to these PEs, rather they are always accessed

through another set of PEs such as the input and output PEs. The added benefit of

these PEs is not fully understood, but many applications such as prediction and

classification are employing these types of topologies.

32

t.:r, ,.+..,,. ~s __ ;,c· X [; ,.
r~~~~~-=r ·v
).;-~-<:*:=:~
·,i ... y ... U "x
..J_ _J_ _J __
! INl't,JS i
1.,_,. ---·-··---·----···--------.-- .. ,

Figure 3.5. General Multi-layer Neural Network

Multi-layer neural networks are used for pattern classification, pattern matching

and function approximation. This capability allows some very complex decision

regions to be performed for classification and pattern matching problems, as well as

applications that require function approximation.

3.6 Neural Network Learning

Perhaps the most appealing quality of neural networks is their ability to learn.

Learning, in this context, is defined as a change in connection weight values that

results in the capture of information that can later be recalled. There are several

different procedures available for changing the values of connection weights.

3.6.1 Supervised vs. Unsupervised Learning

All learning methods can be classified into two categories- supervised

learning and unsupervised learning. Supervised learning is a process that

incorporates an external teacher and/or global information. The supervised learning

algorithms that will be discussed in the following sections include error correction

learning, reinforcement learning, stochastic learning, and hardwired systems.

Examples of supervised learning include; deciding when to tum off the learning,

deciding how long and how often to present each association for training, and

supplying performance (error) information. Supervised learning is further classified

33

into two subcategories; structural learning and temporal learning. Structural learning

is concerned with finding the best possible input/output relationship for each

individual pattern pair.

Unsupervised learning, also referred to as self-organization, is a process that

incorporates no external teacher and relies upon only local information during the

entire learning process. Supervised learning organizes presented data and discovers

its emergent collective properties. Examples of unsupervised learning that will be

discussed in the following sections includes Hebbian learning, principle component

learning, differential Hebbian learning, min-max learning, and competitive learning.

3.6.2 Off-line vs. On-line Learning

Most learning techniques utilize off-line learning. When the entire pattern set is

used to condition the connections prior to the use of the network, it is called off-line

learning. As an example, the back propagation training algorithm is used to adjust

connections in multilayer neural network, but it requires thousands of cycles through

all the pattern pairs until the desired performance of the network has been achieved.

Once the network is performing adequately, the weights are frozen and the resulting

network is used in recall mode thereafter. Off-line learning systems have the intrinsic

requirement that all the patterns have to be resident for training. Such a requirement

does not make it possible to have new patterns automatically incorporated into the

network as they occur, rather these new patterns must be added to the entire set of

patterns and a retraining of the neural network must be done again.

3.6.3 Hebbian Correlations

The simplest form of adjusting connection weight values in a neural network is

based upon the correlation of PE activation values. The motivation for correlation­

based adjustments has been attributed to Hebb (1949) who hypothesized that the

change in a synapses efficacy (its ability to fire, or as we are simulating it in our

34

neural networks, the connection weight) is prompted by a neuron's ability to produce

an output signal. If a neuron. A, was active, and A's activity caused a connected

neuron, B, to fire, then the efficacy of the synaptic connection between A and B

should be increased.

3.6.4 Principle Component Leaming

There are some neural networks that have learning algorithms designed to

produce, as a set of weights, the principle components of the put data patterns. I he

principle components of a set of data are found by forming the covariance (or

correlation) matrix of a set of patterns and then finding the minimal set of orthogonal

vectors that span the space of the covanance matrix.

3.6.5 Differential Hebbian Leaming

Hebbian learning has been extended to capture the temporal changes that occur

in pattern sequences. This learning law, entitled Differential Hebbian Leaming, has

been independently derived by Klopf (1986) in the discrete time form and by Kosko

(1986) in the continuous time form. The general form, some variants, and some

similar learning laws are outlined in the following sections.

3.6.6 Competitive Leaming

Competitive learning is a method of automatically creating classes for a set of

input patterns. Competitive learning is a two step procedure that couples the recall

process with the learning process in a two layer neural network (see Figure 3.6).

35

Figure 3.6 Competitive learning neural network

3.6. 7 Min-~ax Learning

Min-max classifier systems utilize a pair of vectors for each class For the class

j, represented by the PE y, and defined by the abutting vectors V, (the min vector)

and

(the max vector). Learning in a min-max neural system is done using the equation

for the min vector and

for the max vector. V ij new =max(~ i, Vu old

3.6.8 Error Correction Learning

Error correction learning adjusts the connection weights between PEs in

proportion to the difference between the desired and computed values of each output

layer PE. Two layer error correction learning is able to capture linear mappings

between input and output patterns. Multi-layer error correction learning is able to

capture nonlinear mappings between the inputs and outputs.

36

3.6.9 Reinforcement Learning

Reinforcement learning is similar to error correction learning in that weights are

reinforced for properly performed actions and punished for poorly performed

actions. The difference between these two supervised learning techniques is that

error correction learning utilizes more specific error information by collecting error

values from each output layer PE, while reinforcement learning uses non-specific

error information to determine the performance of the network. Where error­

correction learning has a whole vector of values that it uses for error correction, only

one value is used to describe the output layer's performance during reinforcement

learning. This form of learning is ideal in situations where specific error information

is not available, but overall performance information is, such as prediction and

control.

A two-layer neural network such as the one found in Figure 2.6 serves as a good

framework for the reinforcement learning algorithm. The general reinforcement

learning equation is

W .. new =W··old +a(r-0·)e·· IJ IJ J \J

where, r is the scalar success/failure value provided by the environment, 0, is the

reinforcement threshold value for the j'th Fy PE, e,,; is the canonical eligibility of the

weight from the i'th F., PE to the j'th Fv PE, and O<a< 1 is a constant-valued learning

rate. In error correction learning, gradient descent in error space controlled learning.

In reinforcement learning it is gradient descent in probability space.

37

~ - '
! COMPUTED OUTl'tTS ~ ---

1 , 1 ~ Weight·, - ·'\ A, , , } Adiustment fy~::_ _J;.._ __ ~<~ . l'rur~~, ~~_:.;;,- c; 'x n . . . (f • • •) scalar value Y r . . <lescrihing
: i network's rl ------L-------·-- ·--'-, performance

! l"IPUTS .
--·---.--..J

Figure 3.7. Reinforcement learning Neural Network

The canonical eligibility of Wij is dependant on a previously selected probability

distribution that is used to determine if the computed output value equals the desired

output value and is defined as

Eij=o/(owij)Ingi

where g, is the probability of the desired output equaling the computed output,

defined as

which is read as the probability that yj equals bkj given the input, Ak, and the

corresponding weight vector, Wj,

3. 7 Error Backpropagation
We have already seen how to train linear networks by gradient descent. In trying

to do the same for multi-layer networks we encounter a difficulty: we don't have any
target values for the hidden units. This unsolved question was in fact the reason why
neural networks fell out of favor after an initial period of high popularity in the
1950s. It took 30 years before the error backpropagation (or in short: backprop)
algorithm popularized a way to train hidden units, leading to a new wave of neural
network research and applications.

In principle, backprop provides a way to train networks with any number of

hidden units arranged in any number of layers. (There are clear practical limits,

38

which we will discuss later.) In fact, the network does not have to be organized m

layers - any pattern of connectivity that permits a partial ordering of the nodes from

input to output is allowed.

outputs

hidden

inputs

Figure 3.8 Simple structure of neural network

In other words, there must be a way to order the units such that all connections go
from "earlier" (closer to the input) to "later" ones (closer to the output). This is
equivalent to stating that their connection pattern must not contain any cycles.
Networks that respect this constraint are called feedforward networks; their
connection pattern forms a directed acyclic graph or dag.

3. 7 .1 The Algorithm

We want to train a multi-layer feedforward network by gradient descent to
approximate an unknown function, based on some training data consisting of pairs
(x,t). The vector x represents a pattern of input to the network, and the vector t the

corresponding target (desired output). As we have seen before, the overall gradient
with respect to the entire training set is just the sum of the gradients for each pattern;
in what follows we will therefore describe how to compute the gradient for just a
single training pattern. As before, we will number the units, and denote the weight
from units to unit i by Wij

Definitions:
• the error signal for unitj:

39

• the (negative) gradient for weight w,,

• the set of nodes anterior to unit i:

• the set of nodes posterior to unit j:

The gradient. As we did for linear networks before, we expand the gradient into two

factors by use of the chain rule:

The first factor is the error of unit i. The second is

Putting the two together, we get

To compute this gradient, we thus need to know/ the activity and the error for al!
relevant nodes in the network.

40

Forward activation. The activity of the input units is determined by the network's
external input x. For all other units, the activity is propagated forward:

Y; = J;(Lwiiy1)
JEA;

Note that before the activity of unit i can be calculated,, the activity of all its anterior
nodes (forming the set A,) must be known. Since feedforward networks do not
contain cycles, there is an ordering of nodes from input to output that respects this
condition.

Calculating output error. Assuming that we are using the sum-squared loss

1 2
E=-I(to-Yo)

2 0

the error for output unit o is simply

Error backpropagation, For hidden units, we must propagate the error back from

the output nodes (hence the name of the algorithm). Again using the chain rule, we
can expand the error of a hidden unit in terms of its posterior nodes:

Of the three factors inside the sum, the first is just the error of node i. The second
IS

0Jl1 - oJ;(net) = f/net1)
onet j - Dnet J

while the third is the derivative of node j's activation function:

For hidden units h that use the tanh activation function, we can make use of the
special identity' tanh(u)' = 1 - tanh(u)"", giving us

41

Putting all the pieces together we gel

81 = Jj (net1ff 8iwiJ
=r,

Note that in order to calculate the error for unit j, we must first know the error of

all its posterior nodes (forming the set P,). Again, as long as there are no cycles in

the network, there is an ordering of nodes from the output back to the input that

respects this condition. For example, we can simply use the reverse of the order in

which activity was propagated forward.

3.7.2 Matrix Form

For layered feed forward networks that are fully connected - that is, each node

in a given layer connects to every node in the next layer - it is often more convenient

to write the backprop algorithm in matrix notation rather than using more general

graph form given Above. In this notation, the biases weights, net inputs, activations,

and error signals for all units in a layer are combined into vectors, while all the non­

bias weights from one layer to the next form a matrix W. Layers are numbered from

0 (the input layer) to I- (the output layer). The backprop algorithm then looks as

follows:

Initialize the input layer:

Yo =x

Where bi is the vector of bias weights. Calculate the error in

the output layer:

42

Backpropagation the error: for I= L-1, L-2, 1

where T is the matrix transposition operator. Update the weights ,_,
and biases:

We can see that this notation is significantly more compact than the graph form, even

though it describes exactly the same sequence of operations.

43

CHAPTER FOUR

GENETIC ALGORITHM

4.1 Basic Description

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to a

problem solved by genetic algorithms is evolved.

Algorithm is started with a set of solutions (represented by chromosomes) called

population. Solutions from one population are taken and used to form a new population.

This is motivated by a hope, that the new population will be better than the old one.

Solutions which are selected to form new solutions (offspring) are selected according to

their fitness ,the more suitable they are the more chances they have to reproduce.

This is repeated until some condition (for example number of populations or

improvement of the best solution) is satisfied.

4.2 Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (suitable solutions for the

problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until the

new population is complete

a. [Selection] Select two parent chromosomes from a population

according to their fitness (the better fitness, the bigger chance to be

selected)

b. [Crossover] With a crossover probability cross over the parents to

form a new offspring (children). If no crossover was performed,

offspring is an exact copy of parents.

44

c. [Mutation] With a mutation probability mutate new offspring at each

locus (position in chromosome).

d. [Accepting] Place new offspring in a new population

4. [Replace] Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current

population

6. [Loop] Go to step 2

Some Comments:

As you can see, the outline of Basic GA is very general. There are many things

that can be implemented differently in various problems.

First question is how to create chromosomes, what type of encoding choose. With

this is connected crossover and mutation; the two basic operators of GA. Encoding,

crossover and mutation are introduced in next chapter.

Next questions are how to select parents for crossover. This can be done in many

ways, but the main idea is to select the better parents (in hope that the better parents will

produce better offspring). Also you may think, that making new population only by new

offspring can cause lost of the best chromosome from the last population. This is true, so

so called elitism is often used. This means, that at least one best solution is copied

without changes to a new population, so the best solution found can survive to end of run.

Maybe you are wandering, why genetic algorithms do work. It can be partially

explained by Schema Theorem (Holland), however, this theorem has been criticized in

recent time. If you want to know more, check other resources.

4.3 Operators of GA

As you can see from the genetic algorithm, the crossover and mutation are the

most important part of the genetic algorithm. The performance is influenced mainly by

45

these two operators. Before we can explain more about crossover and mutation, some

information about chromosomes will be given.

4.3.1 Encoding of a Chromosome

The chromosome should in some way contain information about solution that it

represents. The most used way of encoding is a binary string. The chromosome then

could look like this:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome has one binary string. Each bit in this string can represent some

characteristic of the solution. Or the whole string can represent a number - this has been
used in the basic GA.

Of course, there are many other ways of encoding. This depends mainly on the

solved problem. For example, one can encode directly integer or real numbers,

sometimes it is useful to encode some permutations and so on.

4.3.2 Crossover

After we have decided what encoding we will use, we can make a step to

crossover. Crossover selects genes from parent chromosomes and creates a new

offspring. The simplest way how to do this is to choose randomly some crossover point

and everything before this point copy from a first parent and then everything after a

crossover point copy from the second parent.

Crossover can then look like this (I is the crossover point):

Chromosome 1 11011 I 00100110110

Chromosome 2 11011 I 11000011110

Offspring 1 11011 I 11000011110

46

[Offspring 2 00100110110 l I 11011
There are other ways to make crossover, for example we can choose more

crossover points. Crossover can be rather complicated and very depends on encoding of

the encoding of chromosome. Specific crossover made for a specific problem can

improve performance of the genetic algorithm.

4.3.3 Mutation

After a crossover is performed, mutation takes place. This is to prevent falling all

solutions in population into a local optimum of solved problem. Mutation changes

randomly the new offspring. For binary encoding we can switch a few randomly chosen

bits from 1 to O or from O to 1. Mutation can then be following:

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 11 0 11 011 0011 011 0

The mutation depends on the encoding as well as the crossover. For example

when we are encoding permutations, mutation could be exchanging two genes.

4.4 Parameters of Genetic Algorithms

4.4.1 Crossover and Mutation Probability

There are two basic parameters of GA - crossover probability and mutation probability.

Crossover probability says how often will be crossover performed. If there is no

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made

from parts of parents' chromosome. If crossover probability is 100%, then all offspring is

made by crossover. If it is 0%, whole new generation is made from exact copies of

chromosomes from old population (but this does not mean that the new generation is the

same!).Crossover is made in hope that new chromosomes will have good parts of old

47

chromosomes and maybe the new chromosomes will be better. However it is good to

leave some part of population survive to next generation.

Mutation probability says how often will be parts of chromosome mutated. If

there is no mutation, offspring is taken after crossover (or copy) without any change. If

mutation is performed, part of chromosome is changed. If mutation probability is 100%,

whole chromosome is changed, if it is 0%, nothing is changed.

Mutation is made to prevent falling GA into local extreme, but it should not occur very

often, because then GA will in fact change to random search.

4.4.2 Other Parameters

There are also some other parameters of GA. One also important parameter is population

SIZe.

Population size says how many chromosomes are in population (in one

generation). If there are too few chromosomes, GA have a few possibilities to perform

crossover and only a small part of search space is explored. On the other hand, if there

are too many chromosomes, GA slows down. Research shows that after some limit

(which depends mainly on encoding and the problem) it is not useful to increase

population size, because it does not make solving the problem faster.

4.5 Selection

As you already know from the Genetic algorithm outline, chromosomes are

selected from the population to be parents to crossover. The problem is how to select

these chromosomes. According to Darwin's evolution theory the best ones should survive

and create new offspring. There are many methods how to select the best chromosomes,

for example roulette wheel selection, Boltzman selection, tournament selection, rank

selection, steady state selection and some others.

48

4.5.1. Roulette Wheel Selection

Parents are selected according to their fitness. The better the chromosomes are,

the more chances to be selected they have. Imagine a roulette wheel where are placed all

chromosomes in the population, every has its place big accordingly to its fitness function,

like on the following picture.

a Chromosome 1
I Chromosome 2
D Chromosome 3
o Chromosome 4

Then a marble is thrown there and selects the chromosome. Chromosome with biggest

fitness will be selected more times.

Following algorithm can simulate this.

» [Sum] Calculate sum of all chromosome fitness's in population - sum S.

» [Select] Generate random number from interval (O,S) - r.

» [Loop] Go through the population and sum fitness's from O - sums. When the

sums is greater then r, stop and return the chromosome where you are.

Of course, step 1 is performed only once for each population.

4.5.2 Rank Selection

The previous selection will have problems when the fitness's differs very much.

For example, if the best chromosome fitness is 90% of the entire roulette wheel then the

other chromosomes will have very few chances to be selected.

49

Rank selection first ranks the population and then c.

fitness from this ranking. The worst will have fitness 1, seco

will have fitness N (number of chromosomes in population).

You can see in following picture, how the situation changes
to order number.

D Chromosome
I Chromosome
o Chromosome 3
o Chromosome 4

Situation before ranking (graph of fitness's)

D Chromosome 1
I Chromosome 2
o Chromosome 3
o Chromosome 4

Situation after ranking (graph of order numbers)

After this all the chromosomes have a chance to be selected. But this method can

lead to slower convergence, because the best chromosomes do not differ so much from
other ones.

50

4.5.3 Steady-State Selection

This is not particular method of selecting parents. Main idea of this selection is

that big part of chromosomes should survive to next generation.

GA then works in a following way. In every generation is selected a few (good -

with high fitness) chromosomes for creating a new offspring. Then some (bad - with low

fitness) chromosomes are removed and the new offspring is placed in their place. The rest

of population survives to new generation.

4.5.4 Elitism

Idea of elitism has been already introduced. When creating new population by

crossover and mutation, we have a big chance, that we will loose the best chromosome.

Elitism is name of method, which first copies the best chromosome (or a few best

chromosomes) to new population. The rest is done in classical way. Elitism can very

rapidly increase performance of GA, because it prevents losing the best found solution.

4.6 Encoding

Encoding of chromosomes is one of the problems, when you are starting to solve

problem with GA. Encoding very depends on the problem. In this section will be

introduced some encodings, which have been already used with some success.

4.6.1 Binary Encoding

Binary encoding is the most common, mainly because first works about GA used

this type of encoding.

In binary encoding every chromosome is a string of bits, 0 or 1.

J Chromosome A J 101100101100101011100101 j

51

=~

~~£~~~~~~~~~~~~~~~~~

sometimes corrections must be made after crossover and/or mutation.

Example of Problem: Knapsack problem

The problem: There are things with given value and size. The knapsack has given

capacity. Select things to maximize the value of things in knapsack, but do not

extend knapsack capacity.

Encoding: Each bit says, if the corresponding thing is in knapsack.

4.6.2 Permutation Encoding

Permutation encoding can be used in ordering problems, such as travelling

salesman problem or task ordering problem.

In permutation encoding, every chromosome is a string of numbers, which
represents number in a sequence.

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

Example of chromosomes with permutation encoding

Permutation encoding is only useful for ordering problems. Even for this

problems for some types of crossover and mutation corrections must be made to leave the

chromosome consistent (i.e. have real sequence in it).

52

Example of Problem: Travelling salesman problem (TSP)

The problem: There are cities and given distances between them. T.._

salesman has to visit all of them, but he does not to travel very muca

sequence of cities to minimize travelled distance.

Encoding: Chromosome says order of cities, in which salesman will

4.6.3 Value Encoding

Direct value encoding can be used in problems, where some compli

such as real numbers, are used. Use of binary encoding for this type of prob
be very difficult.

In value encoding, every chromosome is a string of some values. Values can

anything connected to problem, form numbers, real numbers or chars to some
complicated objects.

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

Example of chromosomes with value encoding

Value encoding is very good for some special problems. On the other hand, for

this encoding is often necessary to develop some new crossover and mutation specific for
the problem.

Example of Problem: Finding weights for neural network

the problem: There is some neural network with given architecture. Find weights for

inputs of neurons to train the network for wanted output.

Encoding: Real values in chromosomes represent corresponding weights for inputs.

53

4.6.4 Tree Encoding

programming.

In tree encoding every chromosome is a tree of some objects, su

commands in programming language.

Chromosome A Chromosome B

[do until J
l ' .- '" -..l - - \ l step J [waif]

(+x(/5y)) (do until step wall)

Example of chromosomes with tree encoding.

Tree encoding is good for evolving programs. Programing language LISP is often

used to this, because programs in it are represented in this form and can be easily parsed

as a tree, so the crossover and mutation can be done relatively easily.

Example of Problem: Finding a function from given values

the problem: Some input and output values are given. Task is to find a function, which

will give the best (closest to wanted) output to all inputs.

Encoding: Chromosome is a function represented in a tree.

54

4. 7 Crossover and Mutation

Crossover and mutation are two basic operators of GA. Performance of GA very

depends on them. Type and implementation of operators depends on encoding and also

on a problem. There are many ways how to do crossover and mutation. There are onl

some examples and suggestions how to do it for several encoding.

4.7.1 Binary Encoding

4. 7.1.1 Crossover

Single point crossover - one crossover point is selected, binary string from

beginning of chromosome to the crossover point is copied from one parent, the
rest is copied from the second parent .

Parent A Parent B Offspring - - +

11001011+11011111 = 11001111

Two point crossover - two crossover point are selected, binary string from

beginning of chromosome to the first crossover point is copied from one parent,

the part from the first to the second crossover point is copied from the second

parent and the rest is copied from the first parent

Parent A Parent B
+ - -

11001011 + 11011111 = 11011111

Uniform crossover - bits are randomly copied from the first or from the second
parent

55

Parent A Parent B Offspring

+

11001011 + 11011101 = 11011111

Arithmetic crossover - some arithmetic operation is performed to make a new

offspring

Parent A Parent B Offspring - - +
11001011 + 11011111 = 11001001 (AND)

4.7.1.2 Mutation

Bit inversion - selected bits are inverted

After crossover After mutation I• -- =>

11001001 => 10001001

4.7.2 Permutation Encoding

4.7.2.1 Crossover

Single point crossover - one crossover point is selected, till this point the

permutation is copied from the first parent, then the second parent is

scanned and if the number is not yet in the offspring it is added

Note: there are more ways how to produce the rest after crossover point

(123 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (123 4 5 6 8 9 7)

56

4.7.2.2 Mutation

Order changing - two numbers are selected and exchanged

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

4. 7 .3 Value Encoding

4.7.3.1 Crossover

All crossovers from binary encoding can be used

4. 7 .3.2 Mutation

Adding a small number (for real value encoding) - to selected values is

added (or subtracted) a small number

(1.29 5.68 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55)

4. 7 .4 Tree Encoding

4. 7 .4.1 Crossover

Tree crossover - in both parent one crossover point is selected, parents are divided

in that point and exchange part below crossover point to produce new offspring

Parent A Parent B Offspring

- - +

57

CHAPTER FIVE

HYBRID SYSTEMS
5.1 Introduction

Ordinary hybrid systems are defined in many different ways. In a simple way

hybrid system are those composed by more than one intelligent system. Hybrid

systems are expected to be more powerful due to the combining advantages of

different intelligent techniques.

Two or more intelligent systems can be combined to create a unique hybrid system.

The most popular hybrid systems are:

5.1.1 Sequential Hybrid System
This model represent the weakest degree of integration and it is composed of two

intelligent systems connected in serial (Fig.5.1.a). One example of this type of system

may be a pre-processor Fuzzy System activating a Neural Net.

5.1.2 Auxiliary Hybrid System
This model is composed of a sub-system added by another intelligent sub-system.

The integration degree is greater than in the previous case (Fig.5.1.b). An example of

this kind of systems is a Genetic Algorithm used to determine the weights of a Neural

Net.

5.1.3 Incorporated Hybrid System
Incorporated hybrid systems represent the greatest degree of integration. There is no

possible differentiation between the different intelligent systems. We can say that the

first system contains the second one or vice-versa. An example is a Neuro-Fuzzy

system, where a Fuzzy inference system is implemented using a Neural Net structure

(Fig. 5.1.c).

58

A)
Input Subsystem 2

Output

B)
lnp\11 Subsystem 1 L_. Output

Sub$ys!em2

C)

IHJlUI ___J Subsl'!tem 1 ~ Ouiput
Subsystem 2 -

Figure 5.1. Hybrid Systems

Among the most popular hybrid models are the Neuro-Fuzzy systems, Neuro-Genetic

systems and Fuzzy-Genetic systems.

I &••ro Fuzzy Systems

In these, the most widely researched of all the hybrid systems; fuzzy logic provides

a structure within which the learning ability of neural networks is employed. In this

field there are a number of possible uses. Firstly, neural networks can be used to

generate the membership functions for a fuzzy system and to tune them; a schematic

for this is shown in figure5.2.
F,=y system

Nruralnet-...rk

Figure 5.2 Neuro-fuzzy system for tuning a membership function

Fuzzy systems and neural networks may also be combined in series; the neural

network performs a pre-processing or post-processing role in cases where,

respectively, a sensor output is not suitable as a direct input to the fuzzy system, or the

fuzzy system's output is not suitable for direct connection to external devices. In the

latter case the neural network performs a mapping that would not easily be carried out

59

with analytical techniques. Figure 2 shows the pre-processing system; a post­

processing system would simply have the fuzzy system and neural network reversed.

Neiral ne.twirk Fuzz:y system

Figure 5.3 Neuro fuzzy system with neural network in pre-processing role

Parallel systems also exist, and an example of this is a system in which a neural

network fine-tunes the output of a fuzzy system, according to what it has learnt from

the fine adjustments that users have previously made. The schematic for such a

system is shown in figure 3.

correding
1'1:ilUe

Figure 5.4. Parallel neural network/fuzzy system combination for fine-tuning an

output

A system called ANFIS (Adaptive Network-based Fuzzy Inference System), in

which neural networks are used to implement a fuzzy inference system. A fuzzy

inference system consists of three components. Firstly, a rule base contains a selection

of fuzzy rules. Secondly, a database defines the membership functions used in the

rules and, finally, a reasoning mechanism carries out the inference procedure on the

60

rules and given facts. The concept of fuzzy reasoning is straightforward. The truth of

a proposition A infers the truth of a proposition B by the implication.

For example, if A represents "the banana is yellow" and B represents "the banana

is ripe", then if "the banana is yellow" it is inferred that "the banana is ripe". Fuzzy

reasoning then allows the inference that if "the banana is more or less yellow" then

"the banana is more or less ripe".

Neuro-fuzzy systems have become popular in several fields. Control is a notable

example - particularly space and aviation applications, where auto-pilots aim to mimic

human ability to make reasoned judgments. In another example, Lee et al describe a

system for face recognition in which various features are extracted from the face and

fuzzified to make them less sensitive to variation of features of the same person. The

L. fuzzified features are then applied to a neural network for the recognition process.

5.3 Neuro Gentic Systems

The performance of neural networks can be enhanced by the use of genetic

algorithms. Possibilities are evolving networks or the use of the algorithms to change

network parameters.

A suggested use of a neuro-genetic system is in attitude control of a satellite. The

attitude of a satellite is its orientation in space and is important in particular in

avoiding solar and atmospheric damage, to point antennae and to orient rockets for

manoeuvres. A detailed implementation is given, but the essence of the system is that

what is termed a Local Prediction Network learns to predict the future system state

given the previous states and current control inputs. Having been trained, the network

can output thousands of predictions of the effect of a hypothetical control input. The

best possible input is then selected using a genetic algorithm. The genetic controller

could itself use a neural network to carry out the time-consuming task of fitness

evaluation.

61

5.4 Fuzzy Neural Networks

Here, separate neural network layers perform the operations of fuzzification and

defuzzification on crisp input and output data, and implement the fuzzy rules. The

structure is shown in figure 5 .5.

flmifie1 fuzzyriies defuzmr

Figure 5.5. Structure of a fuzzy neural network

Buckley and Hayashi describe applications of such networks to fuzzy regression

(discovering functional relationships between fuzzy data), control, solving fuzzy

matrices (which are used in economics) and in fuzzy classification (described in the

next section).

5.5 Implementation ofNeuro-Fuzzy Systems Through Interval Mathematics

Neural network performance is dependent on the quality and quantity of training

samples presented to the network. Sometimes, when the training data set is small, or

perhaps not fully representative of the possibility space, utilization of fuzzy

techniques improves performance. One way to carry out this improvement is to

represent imprecise data with fuzzy numbers. The neuro-fuzzy system presented is a

neural network that processes fuzzy numbers.

Processing fuzzy numbers can be accomplished in a variety of ways. One of the

most elegant, because of its simplicity, is by using interval methods.

5.5.1 Interval Mathematics For Fuzzy Numbers

Consider a situation where the value of a given input, x E 91, is uncertain or

vague. In this case, it might be logical to express the input as an interval, thereby

indicating that the input is known to exist between two real numbers a, and a2, as

shown in Figure 5.5. The uncertain value, x, belongs to a closed bounded interval [a.,

62

a2]. We can then define an interval number, A, as the set of real numbers x such that

(5.1)

Given that we can express an uncertain input as an interval number, the operations

on this input value are then governed by the interval arithmetic operations. The basic

operations are outlined below:

A

•

Figure 5.6. An interval number, A.

Addition of intervals

A+ B = [a,, a2] + [b,, b2]
= [a, + b., a2 + b2] (5.2)

Subtraction of intervals

A- B = [a1, a2] - [b1, b2]
= [a, - b2, a2 - bi] (5.3)

Multiplication of intervals

A• B = [a1, a2] • [b1, b2]
= [mirua-b], a1b2, a2b1, a2b2),

max (a.b], a1b2, a2b1, a2b2)] (5.4)

Division of intervals

[] • [-1 ,..!...], = a1, a2 b2 b1 (5.5)

63

Fuzzy numbers are a generalization of interval numbers [4]. We can interpret the

exact value of x (expressed as an interval number, A) as being any number in the

given interval, with all values equally possible. The generalization to a fuzzy number,

A, would be that not all values in the interval are equally possible. The degree to
which they are possible can then be interpreted as the membership function, i.e. the

degree to which they are members of the interval. The membership function,

(5.6)

maps numbers in the interval to the interval ofreal numbers from Oto l, inclusive.

X

1.0

a

Figure 5.7. A a-cut of a fuzzy number.

There are many variations in describing fuzzy numbers. We shall confine our

discussion to triangular fuzzy numbers. A triangular fuzzy number, A, is depicted in
Figure 2. It is defined by the membership function

µA(X) = ~ (5.7)

where [a., a2] is the supporting interval and the point (aM, 1) is the peak.

64

An a-cut of a fuzzy number A is an interval number A,_ that contains all the
values of real numbers that have a membership grade in A greater than or equal to the

specified value of a. This can be written as

s; = [a,, a2]
= {xe Al µA(x) z o}. (5.8)

Thus, by taking an a-cut of a fuzzy number, one can process the operations on

fuzzy numbers via the interval operations described in equations 1 through 4. It is

interesting to note that the set of all a-cuts of any triangular fuzzy number is a family

of nested intervals.

The level-set of A is the set of all levels aE[O,lJ that represent distinct a-cuts of

the given fuzzy number A. Formally,

Ax= {al µA(x)=aforsomexEA }, (5.9)

where A A denotes the level set of the fuzzy number A .

5.5.2 A Learning Rule For Neural Networks That Use Fuzzy Numbers

The neural network described here is based on a standard, feed-forward network,

commonly called a multi-layer perceptron. It differs from the perceptron in its use of

fuzzy signals. The difference can be readily examined when the formal definition for

the neuro-fuzzy system (NFS) is given:

NFS=(Fn, Fm, I, 0, A, L, /) (5.10)

where

F, is the input field, an ordered array of neurons

of size n x 1,

Fm is the output field, an ordered array of neurons

of size m x 1,

I is the fuzzy input vector,

(x,, X2, ... , xn) E 9in, where xi corresponds
to the input to neuron i in the input field, Fx,

65

0 is the fuzzy output vector,
(5\, y 2 , ••• , y m) E 9lm , where y\ corresponds
to the output from neuron i in the output field, Fy,

A: 9l" ~9lm is the association function,

L ~ A is the set of learned associations, and

f: 9lk ~9l is the neurons' activation function.

It was originally presented as a neural network that learned from fuzzy If-Then

rules. This network configuration can be used in several ways, the key to which is

taking a-cuts of the fuzzy number in question and utilizing interval mathematics.

The basic structure of the neural network relies on neurons that have weights and

an activation function that are crisp. The input, target and output signals for this

system, then, are described by vectors composed of fuzzy numbers and are processed

by taking a-cuts. The resulting intervals are manipulated using interval mathematics

to adjust the weights. Specifically, each a-cut of the fuzzy input vector is represented

by the interval vector Xp = (Xp1, Xp2, ••• , Xpn)T where

(5.11)

indicate the lower and upper limits of the interval.

The summation of weighted inputs is carried out as

Net~=. t wjio;i + t wiio~ +ei
I I
wji::?:0 wji< 0

(5.12)

and

(5.13)

These calculations are consistent with the interval multiplication operation described

in equation (5.14). The equation for the output can be expressed as

66

(5.14)

The learning algorithm is based on the Generalized Delta rule. That is, there is an

error calculated and backpropagated in order to modify the weights. Specifically, The

error is computed as the difference between the target output, tp, and the actual output,

(5.15)

where

(tpj-Opj)=~

L (tpj - o~), if t, = o.
(5.16)

Succinctly stated, the Generalized Delta rule, indicates that the change in any

weight (in any layer) is

oEP
Aw ji(t+ 1) = ri(- ow ..)+aAw ji (t).

Jl
(5.17)

For units in the output layer, calculation of oEv I ow ji is straightforward, and can
be thought of as four cases based on the value of target output and weight. Note that

in the four equations the value of j in the subscript is fixed (to the output neuron that

had the maximum error). In the first case, the tp =l, and Wji ~ 0 :

(5.18)

67

The third line in the derivation assumes that the neuronal activation function,f (Net),

is the binary sigmoid function, and thus substitutes the values accordingly. The

second case has tp = 1, and Wji < 0 :

(5.19)

where o~ = (tpj -o~)·o~ ·(1-o~). The third case is characterized by tp = 0 and Wji:?: 0:

aEP =-a-[(tpj -0~)21
awji awji 2

o .[(tpj-o~)2] 00~ oNet~ =-u- --u-.--
oopj 2 oNetpj aw ji

u u u u = -(tpj - opj) · opj · (I-op) ·Op;

(5.20)

where o~ = (tpi-o~)·o~ ·(1-o~). The fourth and final case (when tp = 0 and Wji < 0:

(5.21)

The calculation of the partial derivative aEP I aw ii for the hidden layers is based
on back-propagating the error as measured at the output layer. The following

discussion assumes one hidden layer, although subsequent terms could be derived in

the same way for other hidden layers. Since this derivation involves a path of two

neurons (output and hidden layer), there are eight cases. For the first case, tp =I, Wkj ~

0 and Wji:?: 0, where Wkj is the weight on the path from hidden layer neuronj to output

layer neuron k, k fixed:

68

(5.22)

The second case is a variation on the first, in which tp =1, Wkj ~ 0 and Wji < 0, so the

partial derivative becomes:

£JEP --=-o\ ·W ··OL· ·(l L U OW·· P kJ PJ -OP.,;)·O · p • p
(5.23)

The third case is characterized by tp = 1, Wkj < 0 and Wji ~ 0 :

(5.24)

tp =1, Wkj < 0 and Wji < 0 for the fourth case:

(5.25)

The fifth through eighth cases deal with a target value of 0. For the fifth case, tp =O,

wkj ~ 0 and Wji ~ 0 :

ao~ aNet~
. aNet~. awji

69

(5.26)

tp =O, wkj ~ 0 and Wji < 0 for the sixth case:

oEP --- ou u u OW. - - pk. Wkj ·Opj ·(1-0p,;)·OL· ~ , ~ (5.27)

In the seventh case, tp = 0, Wkj ~ 0 and Wji < 0 :

(5.28)

The eighth and final case has tp = 0, Wkj < 0 and Wji < 0 :

(5.29)

Equations (5.18) through (5.29) are used to code the training function in the

simulation. Simulation results are presented in section V.

5.5.3 Tlie Neuro-fuzzy System Applied To Speaker-independent Speech

Recognition
The application problem that will serve as a testbench is speaker-independent

speech recognition of the eleven vowel sounds from multiple speakers. The vowel

data used in this study was originally collected by Deterding, who recorded examples

of the eleven steady state vowels of English spoken by fifteen speakers for a "non­

connectionist" speaker normalization study. Four male and four female speakers were

used to create the training data, and the other four male and three female speakers

were used to create the testing data. Robinson carried out a study comparing

performance of feed-forward networks with different structures using this data.

The speech signals were low pass filtered at 4.7 kHz and digitized to 12 bits with

a 10 kHz sampling rate. Twelfth order linear predictive analysis was carried out on

70

six 512 sample Hamming windowed segments from the steady part of the vowel. The

reflection coefficients were used to calculate 10 log area parameters, giving a 10

dimensional input space. Each speaker thus yielded six frames of speech from eleven

vowels. These results in 528 frames from the eight speakers used for the training set,

and 462 frames from the seven speakers used to create the testing set. 528 samples is

relatively small training set (in standard neural network applications), and thus an

excellent testbench for the neuro-fuzzy system.

5.5.4 EXPERIMENTAL RESULTS AND CONCLUSIONS

Speaker-independent speech recognition is an extremely difficult problem. The

relatively small size of this particular data set make the problem difficult, too. The

Vowel data set has been used in many studies, fraught with poor results. This is true

to such a degree that it caused one researcher to claim that "poor results seem to be

inherent to the dete".
Difficulty notwithstanding, previous studies have obtained recognition rates (best

case) of 51% to 59% [5, 9, 10]. The recognition rate obtained with the neuro-fuzzy

system is 89%. Results of the simulation are summarized in Table 1 below.

Type of Number of Best

Network Hidden Recognition

Neurons Rate

Std. Neural 11 59.3

Network

Std. Neural 22 58.6

Network

Std. Neural 88 51.1

Network

Neuro- 11 88.7

Fuzzy

System

Table 5.1. Best Recognition Rates for Standard Neural Networks and the Neuro­

Fuzzy System

71

A recognition rate of 89% surpassed expectations, especially with a data set as

diverse as the speaker-independent speech (vowel recognition) problem. The results

reinforce the initial claim, that incorporation of fuzzy techniques improves the

performance of neural networks. Fuzzy theory has been used successfully in many

applications. This study shows that it can be used to improve neural network

performance. Furthermore, the simulations presented show that interval mathematics

can be used for successful implementation of such neuro-fuzzy systems.

72

CONCLUSION

The construction of control system on the base of traditional technology for

complicated processes characterizing with non-linearity and uncertainty is not enough to

satisfy such characteristics as high speed, reliability, adequacy, and accuracy of the

model. In this condition one of the perspective way of construction of control system is

the use of soft computing technology, such as neural networks, fuzzy logic and genetic

algorithms.

For this reason in the project architecture, functioning principle of soft

computing elements, neural networks, fuzzy logic and genetic algorithms are described.

The combination of these technologies allows us to create more powerful intelligent

hybrid systems. In the project the development of different hybrid systems techniques

are presented. They have covered the use of neural network structure in Fuzzy system

(implementation) functioning.

The obtained results show that Neuro fuzzy system is able to create an ·

appropriate set of rules for difficult processes. They provide stability of the consttocttngr

system This allows desirable and adaptively control complicated processes.

73

REFERENCES

c- [l] Rahib Abiyev, Softcomputing elements based controllers. Electrical, Electronics

and Computer Engineering Symposium NEU-CEE2001 & Exhibition, Nicosia, TRNC,

Turkey, 2001.
[2] M. Aiken, "Artificial Neural Systems as a Research Paradigm for the Study of

Group Decision Support Systems," Group Decision and Negotiation, in press.

[3] Kelly Fish, James Barnes, M. Aiken,"Artificial Neural Networks: A New

Methodology for Industrial Market Segmentation," Industrial Marketing Management,

Vol. 24, No. 5, 1995

[4] M. Aiken, J. Morrison, J. Paolillo, and L. Motiwalla,"Forecasting Gross Domestic

Product Using a Neural Network," Decision Sciences Conference, November 1995.

[5] Wong, F. & Tan C., "Hybrid Neural, Genetic and Fuzzy Systems," in Trading on

the Edge (Deboeck G. Ed.), John Wiley & Sons, Inc., 1994.

[6] Peters E., Fractal Structure in the Capital Markets, Financial Analyst Journal,

May/June 93 Issue.
[7] Peters E., Fractal Market Analysis, John Wiley & Sons, Inc., 1994. Holland, J.

(1975). Adaptation in natural and artificial systems.

[8] Tan P., "Automatic selection of neural network architectures via genetic

algorithm", MSc thesis in preparation

[9] Tan P., Lim G., Chua K, Wong F, Neo S. "A Comparative Study Among Neural

Networks, Radial Basis Functions and Regression Models", Second International

Conference on Automation, Robotics and Computer Vision (ICARCV'92), Sept., 1992,

Singapore.

[10] Wong, F., "NeuroFuzzy Computing Technology," Guest Editorial, NeuroVe$t

Journal, May-Jun. 1994, pp8-l 0.

[11] Wong, F., Wang, P., Goh T., Quek B.K, "A Fuzzy Neural System for Stock

Selection," Financial Analyst Journal, published by Association for Investment

Management and Research, Jan Feb,. 1992.
[12] Wong F., "Time Series Forecasting Using BackPropagation Neural Networks,"

Neurocomputing, 2 (1990/91) 147 159, Elsevier.

74

(13] Wong F., "FastProp: A Selective Training Algorithm For Fast Error Propagation,"

Proceedings of the IJCNN, 1991, Singapore, pp 2038 2044.
[14] Wong F., Wang P., Goh T., "Fuzzy Neural Systems For Decision Making,"

Proceedings of the International Joint Conference on Neural Networks (IJCNN'91), Nov

1991, Singapore.
[15] Wong F., Tan P., Zhang X., "Neural Networks, Genetic Algorithms and Fuzzy

Logic for Forecasting," Proceedings of the Third International Conference on Advanced

Trading Technologies AI Applications on Wall Street & Worldwide, New York,

Marriott Financial Center, July 1992.
[16] Wong F., "An Integrated Neural Network For Financial Time Series Analysis",

Proceedings of the 24th Hawaii International Conference on System Sciences, Jan.

1991.
[17] Wong F., "NeuroForecaster -- A Neural Network For Time Series Predictive

Analysis," Technical Report, National University of Singapore, May 1990.
[18] Wong F., Lee D., "A Hybrid Neural Network For Stock Selection," Proceedings of

The Second Annual International Conference on ARTIFICIAL INTELLIGENCE

APPLICATIONS ON WALL STREET, April 19-22, 1993, New York, NY USA

[19] Wong F., "Hybrid Systems of Neural Network, Fuzzy Logic and Genetic

Algorithms", in Advanced Technology for Trading, Portfolio and Risk Management,

Edited by Dr. Guido Deboeck, Advanced Analytical Laboratory, Investment Dept.,

World Bank.
[20] Wong F., "Time Series Forecasting Using Backpropagation Neural Network",

Neurocomputing, Elsevier,1990, 147-159
[21] Wong F. and Wang P., "A stock selection strategy using fuzzy neural networks",

Neurocomputing 2 Elsevier (1990/91) 233-242
[22] Wong F. and Wang P.Z., "A Fuzzy Neural Network Approach For Forex

Investment," International Fuzzy Engineering Symposium '91, Nov. 1991, Japan.

[23] Wong, F., "NeuroGenetic Computing," NeuroVe$t Journal, July-August 1994.

[24] Lapedes, A., R. Farber (1987). "How neural nets work" Advances in Neural

Information Systems.
[25] Parker D., "Learning Logic", Report TR 47, MIT Center for Computational

Research in Economics and Management Science.

75

	Page 1
	Titles
	Faculty Of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	TABLE OF CONTENTS
	CHAPTER ONE: SOFT COMPUTING AND ITS ROLE IN 1
	1.1. Introduction
	1.2. Structure And Constituents Of Soft Computing
	CHAPTER TWO: FUZZY SYSTEMS
	2.2. Preprocessing
	2.3. Fuzzification
	2 .4. Rule Base
	2. 6. Defuzzification
	CHATER THREE: NEURAL NETWORKS
	3 .2 Threshold functions
	3.3 Neural Network Topologies

	Images
	Image 1

	Page 4
	Titles
	3.4 Single-layer Networks: Auto association, Optimization, and 32
	3.5 Multi-layer Networks: Heteroassociation
	3.6 Neural Network Learning
	CHAPTER FOUR: GENETIC ALGORITHMS
	4.2. Outline of the Basic Genetic Algorithm
	4.5. Selection
	4. 6. Encoding
	4. 7 Crossover and Mutation

	Tables
	Table 1

	Page 5
	Titles
	CHAPTER FIVE: HYBRID SYSTEMS 58
	REFERENCES

	Page 6
	Titles
	ABSTRACT

	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	CHAPTER ONE
	SOFT COMPUTING AND ITS ROLE IN ARTIFICIAL

	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Page 14
	Titles
	CHAPTER TWO
	~�. ,
	��

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Page 17
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 18
	Titles
	10

	Images
	Image 1

	Page 19
	Titles
	11

	Page 20
	Page 21
	Page 22
	Images
	Image 1

	Page 23
	Titles
	A= {(z,µ(z))}

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	(o J ,x<x1

	Images
	Image 1

	Page 26
	Titles
	0
	{o J .z <z.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 27
	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 31
	Images
	Image 1

	Page 32
	Titles
	1-1001-50 Io 150 I lOO I is the vector

	Images
	Image 1
	Image 2

	Page 33
	Titles
	1 1 x-xr
	2 2 z. - %1
	{1 J ,% < Xi
	- _!_ _!_ x-x, < <

	Images
	Image 1
	Image 2

	Page 34
	Titles
	CHAPTER THREE
	26

	Images
	Image 1
	Image 2
	Image 3

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 38
	Images
	Image 1
	Image 2
	Image 3

	Page 39
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 40
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 41
	Titles
	t.:r, ,.+..,,. ~s __
	r~~~~~-=r ·v

	Images
	Image 1
	Image 2
	Image 3

	Page 42
	Images
	Image 1

	Page 43
	Images
	Image 1

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1

	Page 46
	Titles
	fy~::_ _J;.._ __ ~<~ . l'rur~~,
	~~_:.;;,- c;

	Images
	Image 1
	Image 2

	Page 47
	Images
	Image 1
	Image 2
	Image 3

	Page 48
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 49
	Titles
	Y; = J;(Lwiiy1)
	1 2

	Images
	Image 1
	Image 2
	Image 3

	Page 50
	Titles
	=r,

	Images
	Image 1

	Page 51
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 52
	Titles
	CHAPTER FOUR
	GENETIC ALGORITHM

	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Tables
	Table 1

	Page 55
	Titles
	47

	Images
	Image 1

	Tables
	Table 1

	Page 56
	Images
	Image 1

	Page 57
	Images
	Image 1
	Image 2

	Page 58
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 62
	Titles
	[do until J
	l step J [waif]

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 63
	Titles
	-
	-
	-
	-
	+
	+

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 64
	Titles
	Offspring
	-
	-
	After mutation
	=>
	Parent B
	+
	+
	Parent A
	I� --
	After crossover

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 65
	Titles
	Parent A
	+
	Parent B
	57
	-
	-
	Offspring

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 66
	Titles
	CHAPTER FIVE

	Images
	Image 1

	Page 67
	Titles
	59

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 68
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 69
	Images
	Image 1
	Image 2
	Image 3

	Page 70
	Images
	Image 1
	Image 2

	Page 71
	Titles
	�
	[] � [-1 ,..!...],

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 72
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 73
	Images
	Image 1

	Page 74
	Images
	Image 1
	Image 2
	Image 3

	Page 75
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 76
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 77
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 78
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 79
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 80
	Images
	Image 1

	Page 81
	Titles
	CONCLUSION

	Images
	Image 1

	Page 82
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

	Page 83
	Images
	Image 1
	Image 2

