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ABSTRACT 

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing 

area of artificial intelligence. As you can guess, genetic algorithms are inspired by Darwin's 

ry about evolution. Simply said, solution to a problem solved by genetic algorithms is 

evolved. 

Optimization is a branch of mathematics with many real-world applications. Many problems 

in industry and in scientific fields involve finding the "best" value for a particular function, 

given a set of restrictions that must not be violated. Formally, the function that has to be 

ptimized" (generally maximized or minimized) is called the objective function. The factors 

.hich affect the value of the function are called the decision variables, and the restrictions 

(whether on the decision variables or the objective function itself) are called constraints 

In the following chapters I will present in detailed information about both GENETIC 

ALGORITHM and OPTIMIZATION PROBLEM. 
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INTRODUCTION 

GENETIC ALGORITHMS were invented to rmrmc some of the processes 

served in natural evolution. Many people, biologists included, are astonished that life 

at the level of complexity that we observe could have evolved in the relatively short 

time suggested by the fossil record. The father of the original Genetic Algorithm was 

John Holland who invented it in the early 1970's. 

The study of genetic algorithms originated with John Holland in the mid-1970s. 

His original genetic algorithm is approximately the same as the '' Simple Genetic 

Algorithm" now found in the literature. Since this GENETIC ALGOTIHM is used as a 
r 

starting point for almost all new work, it is worth describing it in detail. 

A simple GENETIC ALGOTIHM represents solutions using strings of bits. 

These bits may encode integers, real numbers, sets, or whatever else is appropriate to 

the problem. Advocates argue that the use of bit-strings as a universal representation 

allows for a uniform set of simple operators, and simplify the task of analyzing 

GENETIC ALGOTIHM properties theoretically. Detractors argue that bitwise operators 

are often not appropriate for particular problems, and that analytic ease is too high a 

price to pay for performance. Today, most practical GENETIC ALGOTIHM systems 

use problem-specific representations (integers to represent integers, character strings to 

represent sets, and so on), and customize operations for these representations. 

The operators provided by the simple GENETIC ALGOTIHM were I-point 

crossover, mutation, and inversion. These were inspired directly by natural systems. 

Today, inversion has largely been dropped, and several different forms of crossover and 

mutation are used. Selection in the simple GENETIC ALGOTIHM was based directly 

on fitness: given a population of individuals, the probability of a particular individual 

passing its genes into the next generation was directly proportional to its fitness. 

Various ranking and selection schemes are now used instead of raw fitness in order to 

ensure that genetic drift does not occur, i.e. that good genes are less likely to disappear 

because of a bad accident. 

As the previous paragraph hinted, simple GENETIC ALGOTIHM systems use 

generational update schemes. These are like the life cycles of many plant and insect 
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species: each generation produces the next and then dies off, so that an individual in 

generation g never has a chance to breed with one in generation g+ 1. As we shall see, 

continuous update schemes are also possible, in which children are gradually mixed into 

a single, continuously-evolving, population. 
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CHAPTER ONE 

GENETIC ALGQRITHMs 

1.1. What is Genetic Algorithms? 

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the 

evolutionary ideas of natural selection and genetics. As such they represent an 

intelligent exploitation of a random search used to solve optimization problems. 

Although randomised, GAs are by no means random, instead · they exploit historical 

information to direct the search into the region of better performance within the search 

space. The basic techniques of the GAs are designed to simulate processes in natural 

systems necessary for evolution, specially those follow the principles first laid down by 

Charles Darwin of II survival of the fittest. 11• Since in nature, competition among 

individuals for scanty resources results in the fittest individuals dominating over the . 

weaker ones. 

1.2.Why Genetic Algorithms? 

It is better than conventional AI in that it is more robust. Unlike older AI 

systems, they do not break easily even if the inputs changed slightly, or in the presence 

of reasonable noise. Also, in searching a large state-space, multi-modal state-space, or 

n-dimensional surface, a genetic algorithm may offer significant benefits over more 

typical search of optimization techniques. (linear programming, heuristic, depth-first, 

breath-first, and praxis.) 

1.3. Who can benefit from GAs? 

Nearly everyone can gain benefits from Genetic Algorithms, once he can encode 

solutions of a given problem to chromosomes in GA, and compare the relative 

performance (fitness) of solutions. An effective GA representation and meaningful 

fitness evaluation are the keys of the success in GA applications. The appeal of GAs 

comes from their simplicity and elegance as robust search algorithms as well as from 

their power to discover good solutions rapidly for difficult high-dimensional problems. 
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GAs are useful and efficient when: 

1. The search space is large, complex or poorly understood. 

2. Domain knowledge is scarce or expert knowledge is difficult to encode to narrow the 

search space. 

3. No mathematical analysis is available. 

4. Traditional search methods fail. 

The advantage of the GA approach is the ease with which it can handle arbitrary 

kinds of constraints and objectives; all such things can be handled as weighted 

components of the fitness function, making it easy to adapt the GA scheduler to the 

particular requirements of a very wide range of possible overall objectives. 

GAs have been used for problem-solving and for modelling. GAs are applied to many 

scientific, engineering problems, in business and entertainment, including: 

Optimization: GAs have been used in a wide variety of optimisation tasks, including 

numerical optimisation, and combinatorial optimisation problems such as traveling 

salesman problem (TSP), circuit design [Louis 1993] , job shop scheduling [Goldstein 

1991] and video & sound quality optimisation. 

Automatic Programming: GAs have been used to evolve computer programs for 

specific tasks, and to design other computational structures, for example, cellular 

automata and sorting networks. 

chine and robot learning: GAs have been used for many machine- learning 

plications, including classificationa and prediction, and protein structure prediction. 

GAs have also been used to design neural networks, to evolve rules for learning 

ifier systems or symbolic production systems, and to design and control robots. 

omic models: GAs have been used to model processes of innovation, the 

.elopment of bidding strategies, and the emergence of economic markets. 
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Immune system models: GAs have been used to model various aspects of the natural 

immune system, including somatic mutation during an individual's lifetime and the 

discovery of multi-gene families during evolutionary time. 

Ecological models: GAs have been used to model ecological phenomena such as 

biological arms races, host-parasite co-evolutions, symbiosis and resource flow m 

ecologies. 

Population genetics models: GAs have been used to study questions in population 

genetics, such as "under what conditions will a gene for recombination be evolutionarily 

viable?" 

Interactions between evolution and learning: GAs have been used to study how 

individual learning and species evolution affect one another. 

Models of social systems: GAs have been used to study evolutionary aspeots of social 

systems, such as the evolution of cooperation [Chughtai 1995], the evolution of 

communication, and trail-following behaviour in ants. 

1.4. Difference between GA and traditional methods 

Most traditional optimization methods used in science and engmeenng 

applications can be divided into two broad classes: direct search methods requiring only 

the objective function values and gradient search methods requiring gradient 

information either exactly or numerically. 

These methods work on point-by-point basis. They start with an initial guess and a new 

solution is found iteratively. 

- Most of them are not guaranteed to find the global optimal solutions. The termination 

criterion is the value of gradient of objective function becomes close to zero. 

They work with coding of the parameter set, not the parameters themselves. 

Advantage of working with a coding of variable space is that the coding discretizes the 

search spaces even though the function may be continuous. 

5 



~ Since function values at various discrete solutions are required, a discrete or 

discontinuous function may be tackled using GAs. 

They search from a population of points, not single point so it is very likely that the 

expected GA solution maybe a global solution 

They use objective function values and not derivatives. 

Probabilistic transition rules are used, not deterministic. The search can proceed in any 

direction. 

1.5. Brief Overview 

GAs were introduced as a computational analogy of adaptive systems. They are 

modelled loosely on the principles of the evolution via natural selection, employing a 

population of individuals that undergo selection in the presence of variation-inducing 

operators such as mutation and recombination ( crossover). A fitness function is used to 

evaluate individuals, and reproductive success varies with fitness. 

The Algorithms 

Randomly generate an initial population M(O) 

-· Compute and save the fitness u(m) for ~ach individual min the current population M(t) 

Define selection probabilities p(m) for each individual m in M(t) so that p(m) is 

proportional to u(m) 

Generate M(t+ 1) by probabilistically selecting individuals from M(t) to produce 

offspring via genetic operators 

__ Repeat step 2 until satisfying solution is obtained. 

The paradigm of GAs descibed above is usually the one applied to solving most of the 

oblems presented to GAs. Though it might not find the best solution. more often than 

it would come up with a partially optimal solution. 
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CHAPTER TWO 

OPERATIONS OF GENETIC ALGORITHMS 

2.1. Chromosome 

All living organisms consist of cells. In each cell there is the same set of 

chromosomes. Chromosomes are strings of DNA and serves as a model for the whole 

organism. A chromosome consists of genes, blocks of DNA Each gene encodes a 

particular protein. Basically can be said, that each gene encodes a trait, for example 

color of eyes. Possible settings for a trait ( e.g. blue, brown) are called alleles. Each gene 

has its own position in the chromosome. This position is called locus. 

Complete set of genetic material (all chromosomes) is called genome. Particular set of 

genes in genome is called genotype. The genotype is with later development after birth 

base for the organism's phenotype, its physical and mental characteristics, such as eye 

color, intelligence etc. 

2.1.1. Reproduction 

During reproduction, first occurs recombination ( or crossover). Genes from 

parents form in some way the whole new chromosome. The new created offspring can 

then be mutated. Mutation means, that the elements of DNA are a bit changed. This 

changes are mainly caused by errors in copying genes from parents. 

The fitness of an organism is measured by success of the organism in its life. 

2.2. Search Space 

2.2.1. Search Space 

If we are solving some problem, we are usually looking for some solution, 

which will be the best among others. The space of all feasible solutions (it means 

objects among those the desired solution is) is called search space (also state space), 

Each point in the search space represents one feasible solution. Each feasible solution 
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can be "marked" by its value or fitness for the problem. We are looking for our solution, 

which is one point ( or more) among feasible solutions - that is one point in the search 

space. 

The looking for a solution is then equal to a looking for some extreme (minimum or 

maximum) in the search space. The search space can be whole known by the time of 

solving a problem, but usually we.know only a few points from it and we are generating 

other points as the process of finding solution continues. 

Example of a search space 

The problem is that the search can be very complicated. One does not know 

where to look for the solution and where to start. There are many methods, how to find 

some suitable solution (i.e. not necessarily the best solution), for example hill climbing, 

tabu search, simulated annealing and genetic algorithm. The solution found by this 

method is often considered as a good solution, because it is not often possible to prove 

what is the real optimum. 

2.2.2. NP-hard Problems 

Examples of difficult problems, which cannot be solved in the "traditional" way, 

are NP problems. 

There are many tasks for which we know fast (polynomial) algorithms. There are also 

some problems that are not possible to be solved algorithmically. For some problems 

was proved that they are not solvable in polynomial time. 

But there are many important tasks, for which it is very difficult to find a solution, but 

once we have it, it is easy to check the solution. This fact led to NP-complete problems. 

3P stands for no deterministic polynomial and it means that it is possible to "guess" the 
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solution (by some no deterministic algorithm) and then check it, both in polynomial 

time. If we had a machine that can guess, we would be able to find a solution in some 

reasonable time. 

Studying of NP-complete problems is for simplicity restricted to the problems, where 

the answer can be yes or no. Because there are tasks with complicated outputs, a class 

of problems called NP-hard problems has been introduced. This class is not as limited 

as class of NP-complete problems. 

For NP-problems is characteristic that some simple algorithm to find a solution is 

obvious at a first sight just trying all possible solutions. But this algorithm is very slow 

(usually O (2/\n)) and even for a bit bigger instances of the problems it is not usable at 

all. 

Today nobody knows if some faster exact algorithm exists. Proving or disproving this 

remains as a big task for new researchers (and maybe you). Today many people think, 

that such an algorithm does not exist and so they are looking for some alternative 

methods, example of these methods are genetic algorithms. 

Examples of the NP problems are satisfiability problem, traveling salesman problem or 

knapsack problem. Compendium of NP problems is available. 

2.3. Parameters of Genetic Algorithms 

2.3.1. Crossover and Mutation Probability 

There are two basic parameters of GA - crossover probability and mutation 

probability. Crossover probability says how often will be crossover performed. If there 

is no crossover, offspring is exact copy of parents. If there is a crossover, offspring is 
' made from parts of parents' chromosome. If crossover probability is 100%, then all 

' 
offspring is made by crossover. If it is 0%, whole new generation is made from exact 

copies of chromosomes from old population (but this does not mean that the new 

generation is the same!).Crossover is made in hope that new chromosomes will have 

good parts of old chromosomes and maybe the new chromosomes will be better. 

However it is good to leave some part of population survive to next generation. 
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Mutation probability says how often will be parts of chromosome mutated. If there is no 

mutation, offspring is taken after crossover ( or copy) without any change. If mutation is 

performed, part of chromosome is changed. If mutation probability is 100%, whole 

chromosome is changed, if it is 0%, nothing is changed. 

Mutation is made to prevent falling GA into local extreme, but it should not occur very 

often, because then GA will in fact change to random search. 

2.3.2. Other Parameters 

There are also some other parameters of GA One also important parameter is 

population size. Population size says how many chromosomes are in population (in one 

generation). If there are too few chromosomes, GA have a few possibilities to perform 

crossover and only a small part of search space is explored. On the other hand, if there 

are too many chromosomes, GA slows down. Research shows that after some limit 

(which depends mainly on encoding and the problem) it is not useful to increase 

population size, because it does not make solving the problem faster. 

2.4. Selection 

As you already know from the Genetic algorithm outline, chromosomes are 

selected from the population to be parents to crossover. The problem is how to select 

these chromosomes. According to Darwin's evolution theory the best ones should 

survive and create new offspring. There are many methods how to select the best 

chromosomes, for example roulette wheel selection, Boltzman selection, tournament 

selection, rank selection, steady state selection and some others. 

2.4.1. Roulette Wheel Selection 

Parents are selected according to their fitness. The better the chromosomes are, 

the more chances to be selected they have. Imagine a roulette wheel where are placed all 

chromosomes in the population, every has its place big accordingly to its fitness 

function, like on the following picture. 
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D Chromosome 1 
• Chromosome 2 
o Chromosome 3 
o Chromosome 4 

Then a marble is thrown there and selects the chromosome. Chromosome with biggest 

fitness will be selected more times. 

Following algorithm can simulate this. 

l. [Sum] Calculate sum of all chromosome fitness's in population - sum S. 

[Select] Generate random number from interval (O,S) - r . 

.J. [Loop] Go through the population and sum fitness's from O - sums. When the sums is 

greater then r, stop and return the chromosome where you are. 

Of course, step 1 is performed only once for each population. 

2.4.2. Rank Selection 

The previous selection will have problems when the fitness's differs very much. 

For example, if the best chromosome fitness is 90% of the entire roulette wheel then the 

other chromosomes will have very few chances to be selected. 

Rank selection first ranks the population and then every chromosome receives fitness 

from this ranking. The worst will have fitness 1, second worst 2 etc. and the best will 

have fitness N (number of chromosomes in population). You can see in following 

picture, how the situation changes after changing fitness to order number. 

ituation before ranking (graph of fitness's) 

o Chromosome 1 
• Chromosome 2 
D Chromosome 3 
o Chromosome 4 
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D Chromosome 1 
11 Chromosome 2 
D Chromosome 3 
D Chromosome 4 

Situation after ranking (graph of order numbers) 

After this all the chromosomes have a chance to be selected. But this method can lead to 

slower convergence, because the best chromosomes do not differ so much from other 

ones. 

2.4.3. Steady-State Selection 

This is not particular method of selecting parents. Main idea of this selection is 

that big part of chromosomes should survive to next generation. 

GA then works in a following way. In every generation is selected a few (good - with 

high fitness) chromosomes for creating a new offspring. Then some (bad - with low 

fitness) chromosomes are removed and the new offspring is placed in their place. The 

rest of population survives to new generation. 

2.4.4. Elitism 

Idea of elitism has been already introduced. When creating new population by 

crossover and mµtation, we have a big chance, that we will loose the best chromosome. 

Elitism is name of method, which first copies the best chromosome ( or a few best 

chromosomes) to new population. The rest is done in classical way. Elitism can very 

rapidly increase performance of GA, because it prevents losing the best found solution. 

2.5. Encoding 

Encoding of chromosomes is one of the problems, when you are starting to solve 

problem with GA Encoding very depends on the problem. In this section will be 

introduced some encodings, which have been already used with some success. 
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2.5.1. Binary Encoding 

Binary encoding is the most common, mainly because first works about GA 

used this type of encoding. 

In binary encoding every chromosome is a string of bits, 0 or 1. 

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 

Example of chromosomes with binary encoding 

Binary encoding gives many possible chromosomes even with a small number of 

alleles. On the other hand, this encoding is often not natural for many problems and 

sometimes corrections must be made after crossover and/or mutation. 

Example of Problem: Knapsack problem 

The problem: There are things with given value and size. The knapsack has given 

capacity. Select things to maximize the value of things in knapsack, but do not extend 

knapsack capacity. 

Encoding: Each bit says, if the corresponding thing is in knapsack. 

2.5.2. Permutation Encoding 

Permutation encoding can be used in ordering problems, such as travelling 

salesman problem or task ordering problem. 

In permutation encoding, every chromosome is a string of numbers, which represertts 

number in a sequence. 

Chromosome A 1 5 3 2 6 4 7 9 8 

Chromosome B 8 5 6 7 2 3 1 4 9 
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Example of chromosomes with permutation encoding 

Permutation encoding is only useful for ordering problems. Even for this 

problems for some types of crossover and mutation corrections must be made to leave 

the chromosome consistent (i.e. have real sequence in it). 

Example of Problem: Travelling salesman problem (TSP) 

The problem: There are cities and given distances between them. Travelling salesman 

has to visit all of them, but he does not to travel v~ry much. Find a sequence of cities to 

rmrurruze travelled distance. 

Encoding: Chromosome says order of cities, in which salesman will visit them. 

2.5.3. Value Encoding 

Direct value encoding can be used in problems, where some complicated values, 

such as real numbers, are used. Use of binary encoding for this type of problems would 

be very difficult. In value encoding, every chromosome is a string of some values. 

Values can be anything connected to problem, form numbers, real numbers or chars to 

some complicated objects. 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 

Example of chromosomes with value encoding 

Value encoding is very good for some special problems. On the other hand, for this 

encoding is often necessary to develop some new crossover and mutation specific for 

the problem. 
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Example of Problem: Finding weights for neural network 

the problem: There is some neural network with given architecture. Find weights for 

inputs of neurons to train the network for wanted output. 

Encoding: Real values in chromosomes represent corresponding weights for inputs. 

2.5.4 Tree Encoding 

Tree encoding is used mainly for evolving programs or expressions, for genetic 

programming. In tree encoding every chromosome is a tree of some· objects, such as 

functions or commands in programming language. 

Chromosome A Chromosome B 

do until 
,1 

(+x(/5y)) ( do until step wall ) 

Example of chromosomes with tree encoding. 

Tree encoding is good for evolving programs. Programing language LISP is 

often used to this, because programs in it are represented in this form and can be easily 

parsed as a tree, so the crossover and mutation can be done relatively easily. 

Example of Problem: Finding a function from given values 

the problem: Some input and output values are given, Task is to find a function, which 

will give the best ( closest to wanted) output to all inputs. 

Encoding: Chromosome is a function represented in a tree. 
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2.6. Crossover and Mutation 

Crossover and mutation are two basic operators of GA Performance of GA very 

depends on them. Type and implementation of operators depends on encoding and also 

on a problem. There are many ways how to do crossover and mutation. There are only 

some examples and suggestions how to do it for several encoding. 

2.6.1. Binary Encoding 

2.6.1.1. Crossover 

Single point crossover - one crossover point is selected, binary string from 

beginning of chromosome to the crossover point is copied from one parent, the rest is 

copied from the second parent . 

Parent A Parent B Offspring 

+ - - 
11001011+11011111 = 11001111 

Two point crossover - two crossover point are selected, binary string from 

beginning of chromosome to the first crossover point is copied from one parent, the part 

from the first to the second crossover point is copied from the second parent and the rest 

is copied from the first parent 

Parent A Parent B Offspring 

+ - - 
11001011 + 11011111 = 11011111 

Uniform crossover -bits are randomly copied from the first or from the second parent 

Parent A Parent B Offspring 

+ 

11001011 + 11011101 = 11011111 
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Arithmetic crossover - some arithmetic operation is performed to make a new offspring 

Parent A Parent B Offspring 

+ - - 
11001011 + 11011111 = 11001001 (AND) 

2.6.1.2. Mutation 

Bit inversion - selected bits are inverted 

After crossover After mutation 

Utill3 => 

11001001 => 10001001 

2.6.2. Permutation Encoding 

2.6.2.1. Crossover 

Single point crossover - one crossover point is selected, till this point the 

permutation is copied from the first parent, then the second parent is scanned and if the 

number lS not yet m the offspring it lS added 

Note: there are more ways how to produce the rest after crossover point 

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7) 

2.6.2.2 . Mutation 

Order changing - two numbers are selected and exchanged 

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7) 

17 



2.6.3. Value Encoding 

2.6.3.1. Crossover 

All crossovers from binary encoding can be used. 

2.6.3.2~ Mutation 

Adding a small number (for real value encoding) - to selected values is added 

( or subtracted) a small number 

(1.29 5.68 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55) 

2.6.4. Tree Encoding 

2.6.4.1. Crossover 

Tree crossover - in both parent one crossover point is selected, parents are 

divided in that point and exchange part below crossover point to produce new offspring 

Parent A Parent B Offspring 

+ - - 
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2.6.4.2. Mutation 

Changing operator, number - selected nodes are changed 

2. 7. Recommendations 

.2.7.1. Parameters of GA 

This chapter should give you some basic recommendations if you have decided 

to implement your genetic algorithm. These recommendations are very general. 

Probably you will want to experiment with your own GA for specific problem, because 

today there is no general theory which would describe parameters of GA for any 

problem. 

Recommendations are often results of some empiric studies of GAs, which were often 

performed only on binary encoding. 

Cross-over-rate 

Crossover rate generally should be high, about 800/o-95%. (However some results show 

that for some problems crossover rate about 60% is the best.) 

Mutation-rate 

On the other side, mutation rate should be very low. Best rates reported are about 0.5%- 

1%. 

s. Population-size 

It may be surprising, that very big population size usually does not improve 

performance of GA (in meaning of speed of finding solution). Good population size is 

about 20-30, however sometimes sizes 50-100 are reported as best. Some research also 

shows, that best population size depends on encoding, on size of encoded string. It 

means, if you have chromosome with 32 bits, the population should be say 32, but 

surely two times more than the best population size for chromosome with 16 bits. 

Selection 

Basic roulette wheel selection can be used, but sometimes rank selection can be better. 

There are also some more sophisticated method, which changes parameters of selection 

during run of GA. Basically they behaves like simulated annealing. But surely elitism 

should be used (if you do not use other method for saving the best found solution). You 

can also try steady state selection. 
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5. Encoding 
Encoding depends on the problem and also on the size of instance of the problem. 

Operators depend on encoding and on the problem. 

2. 7.2 - Applications of GA 

Genetic algorithms have been used for difficult problems (such as NP-hard 

problems), for machine learning and also for evolving simple programs. They have been 

also used for some art, for evolving pictures and music. 

Advantage of GAs is in their parallelism. GA is travelling in a search space with more 

individuals (and with genotype rather than phenotype) so they are less likely to get 

stuck in a local extreme like some other methods. 

They are also easy to implement. Once you have some GA, you just have to write new 

chromosome (just one object) to solve another problem. With the same encoding you 

just change the fitness function and it is all. On the other hand, choosing encoding and 

fitness function can be difficult. 

Disadvantage of GAs is in their computational time. They can be slower than some 

other methods. But with todays computers it is not so big problem. 

to get an idea about problems solved by GA, here is a short list of some applications: 

Nonlinear dynamical systems - predicting, data analysis 

Designing neural networks, both architecture and weights 

_;_ Robot trajectory 

Evolving LISP programs (genetic programming) 

'" Strategy planning 

Finding shape of protein molecules 

TSP and sequence scheduling 

Functions for creating images 
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CHAPTER THREE 

OPTIMIZATION PROBLEM 

3. What Is Optimization 

Optimization problems are made up of three basic ingredients: 

1. An objective function which we want to minimize or maximize. For instance, in a 

manufacturing process, we might want to maximize the profit or minimize the cost. In 

fitting experimental data to a user-defined model, we might minimize the total deviation 

of observed data from predictions based on the model. In designing an automobile 

panel, we might want to maximize the strength. 

2. A set of unknowns or variables which affect the value of the objective function. In the 

manufacturing problem, the variables might include the amounts of different resources 

used or the time spent on each activity. In fitting-the-data problem, the unknowns are 

the parameters that define the model. In the panel design problem, the variables used 

define the shape and dimensions of the panel. 

3. A set of constraints that allow the unknowns to take on certain values but exclude 

others. For the manufacturing problem, it does not make sense to spend a negative 

amount of time on any activity, so we constrain all the "time" variables to be non­ 

negative. In the panel design problem, we would probably want to limit the weight of 

the product and to constrain its shape. 

The Optimization Tree is an online guide to the field of numerical optimization. It 

introduces the different subfields of optimization and includes outlines of the major 

algorithms in each area, with pointers to software packages where appropriate. The 

connections between the Tree's web pages mirrors the relationships between these 

different areas. Follow the pathways through the tree to see how everything hangs 

together! 
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3.1. Multi-Objective Optimization 

3.1.1 - Introduction 

Most realistic optimization problems, particularly those in design, require the 

simultaneous optimization of more than one objective function. Some examples: 

In bridge construction, a good design is characterized by low total mass and high 

stiffness. 

Aircraft design requires simultaneous optimization of fuel efficiency, payload, and 

weight. · 

In chemical plant design, or in design of a groundwater remediation facility, objectives 

to be considered include total investment and net operating costs. 

A good sunroof design in a car could aim to minimize the noise the driver hears and 

maximize the ventilation. 
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The traditional portfolio optimization problem attempts to simultaneously minimize the 

risk and maximize the fiscal return. In these and most other cases, it is unlikely that the 

different objectives would be optimized by the same alternative parameter choices. 

Hence, some trade-off between the criteria is needed to ensure a satisfactory design. 

Multicriteria optimization has its roots in late-nineteenth-century welfare economics, in 

the works of Edgeworth and Pareto. A mathematical.description is as follows: 

min F(x) = 
xeC 

fi(x) 
f:.i(x) 

... (MOP) 

fit(x) 

where n >= 2 and 

C = { x : h(x) = O, g(x) < 0, a< x < b} 

denotes the feasible set constrained by equality and inequality constraints and explicit 

variable bounds. The space in which the objective vector belongs is called the objective 

space and image of the feasible set under Fis called the attained set. 

The scalar concept of " optimality" does not apply directly in the multiobjective setting. 
x"' EC 

A useful replacement is the notion of Pareto optimality. Essentially, a vector is 

xEC 
said to be Pareto optimal for (MOP) if all other vectors have a higher value for at 

least one of the objective functions A ( · )' or else have the same value for all objectives. 

Formally speaking, we have the following definition: 

x"' EC 
A point is said to be (glob ally) Pareto optimal or a (globally) efficient solution 

xEC 
or a non-dominated or a non-inferior point for (MOP) if and only if there is no 

fi(x) < fi(x"') t E {1, 2, ... , n} . . . . 
such that for all , with at least one stnct mequahty. 

Pareto optimal points are also known as efficient, non-dominated, or non-inferior points. 
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We can also speak of locally Pareto optimal points, for which the definition is the same 

as the one just given, except that we restrict attention to a feasible neighborhood of x"'. 

That is, if B ( x"'? J) denotes a ball of radius i5around the point 

We can also speak of locally Pareto optimal points, for which the definition is the same 

as the one just given, except that we restrict attention to a feasible neighborhood of z". 

That is, if B(x\ J)denotes a ball of radius i5around the point x"', we require that for 
rS > o x E c n B ( x -, rS) 

some , there is no such that 

for all i = {1? 2? ... ? n} 

with at least one strict inequality. 

Typically, there is an entire curve or surface of Pareto points, whose shape indicates the 

nature of the tradeoff between different objectives. 

3.2. Integer Programming 

In many applications, the solution of an optimization problem makes sense only 

if certain of the unknowns are integers. Integer linear programming problems have the 

general form 

(1.1) 

where Zn is the set of n-dimensional integer vectors. In mixed-integer linear programs, 

some components of x are' allowed to be real. We restrict ourselves to the pure integer 

case, bearing in mind that the software can also handle mixed problems with little 

additional complication of the underlying algorithm. 

Integer programming problems, such as the fixed-charge network flow problem and the 

famous traveling salesman problem, are often expressed in terms of binary variables. 

The fixed-charge network problem modifies the minimum-cost network flow paradigm 
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by adding a term f .. yto the cost, where the binary variable y .. is set to 1 if arc 
I} lj I} 

(i, j) carries a nonzero flow X ; it is set to zero otherwise. 
lj 

In other words, there is a fixed overhead cost for using the arc at all. In the traveling 

salesman problem, we need to find a tour of a number of cities that are connected by 

directed arcs, so that each city is visited once and the time required to complete the tour 

is minimized. One binary variable is assigned to each directed arc; a variable Xis set 
lj 

to 1 if city i immediately follows city j on the tour, and to zero otherwise. 

3.2.1. Branch and Bound 

Although a number of algorithms have been proposed for the integer linear 

programming problem, the branch-and-bound technique is used in almost all of the 

software in our survey. This technique has proven to be reasonably efficient on practical . 
problems, and it has the added advantage that it solves continuous linear programs as 

subproblems, that is, linear programming problems without integer restrictions. 

The branch-and-bound technique can be outlined in simple terms. An enumeration tree 

of continuous linear programs is formed, in which each problem has the same 

constraints and objective as (1.1) except for some additional bounds on certain 

components of x . At the root of this tree is the problem ( 1.1) with the requirement 

x E znremoved. The solution ,rto this root problem will not, in general,have all 

integer components. We now choose some noninteger solution component Xi and 
define J 

1 
to be the integer part of X 

1 
, that is, J 1 = lx) This gives rise to two 

subproblems. The left-child problem has the additional constraint X 
1 
~ J 1, whereas in 

the right-child problem we impose z1 ~ /1 + 1. This branching process can be carried 

out recursively; each of the two new problems will give rise to two more problems 

when we branch on one of the noninteger components of their solution. It follows from 

this construction that the enumeration tree is binary. 
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Eventually, after enough new bounds are placed on the variables, integer solutions 

x E z n are obtained. The value z opt of er x for the best integer solution found so far is 
retained and used as a basis for pruning the tree. If the continuous problem at one of the 

nodes of the tree has a final obiective value greater than z ,so do all of its J opt 

descendants, since they have smaller feasible regions and hence even larger optimal 

objective values. The branch emanating from such a node cannot give rise to a better 

integer solution than the one obtained so far, so we consider it no further; that is, we 

prune it. Pruning also occurs when we have added so many new bounds to some 

continuous problem that its feasible region disappears altogether. 

The preferred strategy for solving the node problems in the enumeration tree is of the 

depth-first type: When two child nodes ate generated from the current node, we choose 

one of these two children as the next problem to solve. One reason for using this 

strategy is that on practical problems the optimal solution usually occurs deep in the 

tree. There is also a computational advantage: If the dual simplex algorithm is used to 

solve the linear program at each node, the solution of the child problem can be found by 

a simple update to the basis matrix factorization obtained at the parent node. The linear 

algebra costs are trivial. 

Two important questions remain: How do we select the noninteger component on 

which to branch, and how do we choose the next problem to solve if the branch we are 

currently working on is pruned? The answer to both questions depends on maintaining a 

lower bound / on the objective value for the continuous linear program at node I , and 

an estimate z1 of the objective value of the best integer solution for the problem at 
! mt 

node I . Both values can be calculated when the problem at node I is generated as the 

child of another problem. After the current branch has reached a dead end, there are two 

common strategies for selecting the next problem: Choose the one for which / is least 

or choose the one for which z1 is least. Other strategies use some criterion function mt 

bi I I d that com mes z , z int an Z opt 

In many codes, the user is allowed to specify a branching order to guide the choice of 

components on which to branch. By the nature of the problem, some components of 
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may be more significant than others; the algorithms can use this knowledge to make 

branching decisions that lead to the solution more quickly. In the absence of such an 

ordering, the degradations in the objective value are estimated by forcing each 

component in turn to its next highest or next lowest integer. The branching variable is 

often chosen to be the one for which the degradation is greatest. 

The CPLEX, FortLP, LAMPS, LINDO, MIP III, OSL, and PC-PROG packages use the 

branch-and-bound technique to solve mixed-integer linear programs. The NAG Fortran 

Library (Chapter H) contains a branch-and-bound subroutine, and also an earlier 

implementation of a cutting plane algorithm due to Gomory. (The latter code is 

scheduled for removal from the library in the near future.) GAMS interfaces with a 

number of mixed-integer linear programming solvers, and even with a mixed-integer 

nonlinear programming solver. LINDO has two other front-end systems: LINGO 

provides a modeling interface to it, while What'sBest! provides a'. variety of spreadsheet 

interfaces. 

The CPLEX integer programming system can be used either as a stand-alone system or 

as a subroutine that is called from the user's code. CPLEX also implements a branch­ 

and-cut strategy, in which the bounds on optimal objective values are tightened by 

adding additional inequality constraints 

to the problem. The matrix F and vector f are chosen so that all integer vectors 

x satisfying the original constraints Ax= b, X ::::: 0 also satisfy F x ~ f. These extra 

constraints (cuts) have the effect of reducing the size of the set of real vectors that is 

being considered at each node. 

The QOISUBS package contains routines to solve the quadratic zero-one programming 

problem 
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where Q may be indefinite, while the QAPP package solves the assignment problem 

with a quadratic objective. Both algorithms use a branch-and-bound methodology 

similar to the techniques described above. 

3.3. Bound-constrained optimization 

Bound-constrained optimization problems play an important role in the 

development of software for the general constrained problem because many constrained 

codes reduce the solution of the general problem to the solution of a sequence of bound­ 

constrained problems. The development of software for this problem, which we state as 

min {J (x) : l ::; X ::; u} 

is also important in applications because parameters that describe physical quantities are 

often constrained to lie in a given range. 

Algorithms for the solution of bound-constrained problems seek a local minimizer 
• • X of f . The standard first-order necessary condition for a local minimizer' X can be 

expressed in terms of the binding set 

• 
at X by requiring that 

There are other ways to express this condition, but this form brings out the importance 
• 

of the binding constraints. A second-order sufficient condition for X to be a local 

minimizer of the bound-constrained problem is that the first-order condition hold and 

that 
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for all vectors {J) with w -::t- 0 
• 

i E Bs(X )where W;=O, 

is the strictly binding set at X 

Given any set of.free variables f, we can define the reduced gradient and the reduced 

Hessian matrix, respectively, as the gradient of f and the Hessian matrix off with 

respect to the free variables. In this terminology, the second-order condition requires 

that the reduced gradient be zero and that the reduced Hessian matrix be positive 

definite when the set F of free variables consists of all the variables that are not strictly 
• 

binding at X . As we shall see, algorithms for the solution of bound-constrained 

problems use unconstrained minimization techniques to explore the reduced problem 

defined by a set f k of free variables. Once this exploration is complete, a new set of 

free variables is chosen with the aim of driving the reduced gradient to zero. 

3.3.1 Newton Methods 

IMSL, LANCELOT, MATLAB, NAG ( NAG Fortran, or NAG C) OPTIMA, 

PORT 3, TN/TNBC , and VE08 implement quasi-Newton, truncated Newton, and 

Newton algorithms for bound-constrained optimization. The NEOS SERVER's bound­ 

constrained minimization facility also implements a quasi-Newton algorithm. All these 

codes implement line-search and trust-region versions of unconstrained minimization 

algorithms, so our discussion here is brief, emphasizing the differences between the 

unconstrained and bound-constrained cases. 

A line-search method for bound-constrained problems generates a sequence of iterates 

by setting 
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where X k is a feasible approximation to the solution, d k is a search direction, and 
ak > O is the step. The direction is dk obtained as an approximate minimizer of the 

subproblem 

(1.1) 

where Wk is the working set and Bk is an approximation to the Hessian matrix of at 

X k . All variables in the working set Wk are fixed during this iteration, while all other 
variables are in the free set F k . We can express this subproblem in terms of the free 

variables by noting that it is equivalent to the unconstrained problem 

where mk is the number of free variables, Ak is the matrix obtained from Bk by taking 
those rows and columns whose indices correspond to the free variables, and g k: is 

obtained from VJ{x J by taking the components whose indices correspond to the free 

variables, 

The main requirement on wk1s that d, be a feasible direction, that is, 

X k +ad k satisfies the constraints for all a > 0 sufficiently small. This is certainly the 

case if Wk= A{zJ, 

where 

is the set of active constraints at x . As long as progress is being made with the current 
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wk, the next working set Wk+i is obtained by merging A(x kJwith wk. This updating 
process is continued until the function cannot be reduced much further with the current 

working set. At this point, the classical strategy is to drop a constraint in wk for which 

a; J(x J has the wrong sign, that is, i E wk but i E BX k , where the binding set 

is defined as before. In general it is advantageous to drop more than one constraint, in 

the hope that the algorithm will make more rapid progress towards the optimal binding 

set. However, all dropping strategies are constrained by the requirement that the 

solution dk of the subproblem be a feasible direction. 

An implementation of a line-search method based on subproblem (1.1) must cater to the 

situation in which the reduced Hessian matrix Ak is indefinite, because in this case the 
subproblem does not have a solution. This situation may arise, for example, if Bk is the 
Hessian matrix or an approximation obtained by differences of the gradient. Here, it is 

necessary to specify d k by other means. For example, we can use the modified 

Cholesky factorization. 

Quasi-Newton methods for bound-constrained problems update an approximation to the 

reduced Hessian matrix since, as already noted, only the reduced Hessian matrix is 

likely to be positive definite. The updating process is not entirely satisfactory because 

there are situations in which a positive definite update that satisfies the quasi-Newton 

condition does not exist. Moreover, complications arise because the dimension of the 

reduced matrix changes when the working set wk changes. Quasi-Newton methods are 

usually beneficial when the working set remains fixed during consecutive iterations. 

The choice of line-search parameter a k is quite similar to the unconstrained case. If 

subproblem (1.1) has a solution and X k + d k violates one of the constraints, then we 

compute the largest µk E (0,1) such that 
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is feasible. A standard strategy for choosing ak is to seek an ak E (o, µJthat satisfies 

the sufficient decrease and curvature conditions. We are guaranteed the existence of 

such an ak unless µk satisfies the sufficient decrease condition and 

This situation is likely to happen if, for example, f is strictly decreasing on the line 

segment Ix k, X k + µ k d J In this case it is safe to set a k = µ k . 

3.3.2. Gradient-Projection Methods 

Active set methods have been criticized because the working set changes slowly; 

at each iteration at most one constraint is added to or dropped from the working set. If 

there are k; constraints active at the initial Wo, but ks constraints active at the 
solution, then at least lks - kol iterations are required for convergence. Thi_s property 
can be a serious disadvantage in large problems if the working set at the starting point is 

vastly different from the active set at the solution. Consequently, recent investigations 

have led to algorithms that allow the working set to undergo radical changes at each 

iteration and to interior-point algorithms that do not explicitly maintain a working set. 

The gradient-projection algorithm is the prototypical method that allows large changes 

in the working set at each iteration. Given X k , this algorithm searches along the 

piecewise linear path 

where p is the projection onto the feasible set. A new point 
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is obtained when .a suitable ak > 0 is found. For bound-constrained problems, the 

projection can be easily computed by setting 

where mid{}is the middle (median) element of a set. The search for ak has to be done 
carefully since the function 

<l>(a) = J(pf.xk - aVJ{xJD 

is only piecewise differentiable. 

If properly implemented, the gradient-projection method is guaranteed to identify the 

active set at a solution in a finite number of iterations. After it has identified the correct 

active set, the gradient-projection algorithm reduces to the steepest-descent algorithm 

on the subspace of free variables. As a result, this method is invariably used in 

conjunction with other methods with faster rates of convergence. 

Trust-region algorithms can be extended to bound-constrained problems. The main 

difference between the unconstrained and the bound-constrained version is that we now 

require the step 8k to be an approximate solution of the subproblem 

min~ k (s) : IID k sll ::;; ~k, l ::;; X k + 8 ::;; u} 

where 

An accurate solution to this subproblem is not necessary, at least on early iterations. 

Instead, we use the gradient-projection algorithm to predict a step s: (the Cauchy step) 
and then require merely that our step, 8k, satisfies the constraints in the trust-region 
subproblem with q k (gJ::;; q k (g:). An approach along these lines is used by VE08 and 
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PORT 3. In the bound-constrained code in LANCELOT the trust region is defined by 

the / 
00_ 

norm and Dk = I, yielding the equivalent subproblem 

where e is the vector of all ones. 

The advantage of strategies that combine the gradient-projection method with trust­ 

region methods is that the working set is allowed to change rapidly, and yet eventually 

settle into the working set for the solution. LANCELOT uses this approach, together 

with special data structures that exploit the (group) partially separable structure off, to 

solve large bound-constrained problems. 

3.4. Stochastic Programming 

3.4.1. Introduction 

All of the model formulations that you have encountered thus far in the 

Optimization Tree have assumed that the data for the given problem are known 

accurately. However, for many actual problems, the problem data cannot be known 

accurately for a variety of reasons. The first reason is due to simple measurement error 

The second and more fundamental reason is that some data represent information about 

the future ( e.g., product demand or price for a future time period) and simply cannot be 

known with certainty. We will discuss a few ways of taking this uncertainty into 

account and, specifically, illustrate how stochastic programming can be used to make 

some optimal decisions. 

3.4.2. Recourse 

The fundamental idea behind stochastic linear programming is the concept of 

recourse. Recourse is the ability to take corrective action after a random event has taken 

place. A simple example of two-stage recourse is the following: 

Choose some variables, x, to control what happens today. 

Overnight, a random event happens. 
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Tomorrow, take some recourse action, y, to correct what may have gotten messed up by 

the random event. 

We can formulate optimization problems to choose x and y in an optimal way. In this 

example, there are two periods; the data for the first period are known with certainty 

and some data for the future periods are stochastic, that is, random. 

3.4.3. Example 

You are in charge of a local gas company. When you buy gas, you typically 

deliver some to your customers right away and put the rest in storage. When you sell 

gas, you take it either from storage or from newly-arrived supplies. Hence, your 

decision variables are 1) how much gas to purchase and deliver, 2) how much gas to 

purchase and store, and 3) how much gas to take from storage and deliver to customers. 

Your decision will depend on the price of gas both now and in future time periods, the 

storage cost, the size of your storage facility, and the demand in each period. You will 

decide these variables for each time period considered in the problem. This problem can 

be modelled as a simple linear program with the objective to minimize overall cost. The 

solution is valid if the problem data are known with certainty, that is, if the future events . 

unfold as planned. 

More than likely, the future will not be precisely as you have planned; you don't know 

for sure what the price or demand will be in future periods though you can make good 

guesses. For example, if you deliver gas to your customers for heating purposes, the 

demand for gas and its purchase price will be strongly dependent on the weather. 

Predicting the weather is rarely an exact science; therefore, not taking this uncertainty 

into account may invalidate the results from your model. Your '' optimal" decision for 

one set of data may not be optimal for the actual situation. 

3.4.4. Scenarios 

Suppose in our example that we are experiencing a normal winter and that the 

next winter can be one of three scenarios: normal, cold, or very cold. To formulate this 

problem as a stochastic linear program, we must first characterize the uncertainty in the 
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model. The most common method is to formulate scenarios and assign a probability to 

each scenario. Each of these scenarios has different data as shown in the following 

table: 

] Probability! Gas Cost ($) !Demand ( units )I 
j 113 1 s.o 1100 I 

[scenario 

[Normal 

!Cold 1113 16.0 11so I 
Jvery Cold! 1/3 17.5 1180 I 

Both the demand for gas and its cost increase as the the weather becomes colder. The 

storage cost is constant, say, 1 unit of gas is $1 per year. If we solve the linear program 

for each scenario separately, we arrive at three purchase/storage strategies: 

Normal - Normal 

'jv~ar jPurchase to Use jPurchase to Store jstorage jcost 

r1100 1° rro 
f [100 __ . jo r.-F 

Total Cost= $1000 

Normal - Cold 

jv ear jPurchase to Use !Purchase to Store jstorage jcost 

r1100 .I° fF 
pj1so jo ff° 

Total Cost = $1400 
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Normal- Very Cold 

Total Cost= $1580 

We do not know which of the three scenarios will actually occur next year, but we 

would like our current purchasing decision to put is in the best position to minimize our 

expected cost. Bear in mind that by the time we make our second purchasing decision, 

we will know which of the three scenarios has actually happened. 

3.5. Formulating a Stochastic Linear Program 

Stochastic programs seek to minimize the cost of the first-period decision plus 

the expected cost of the second-period recourse decision. 

mm subject to T e x+ EwQ(x,w) 
A =b 

X 

X?: 0 where 

Q(x,w) = min subject to 
T d(m) Y 

T(w)x + W(w)y(w) = h(y) 

The first linear program minimizes the first-period direct costs, cTx plus the expected 

recourse cost, over all of the possible scenarios while meeting the first-period 

constraints, Ax = b 
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The recourse cost Q depends both on x, the first-period decision, and on the random 

event, to . The second LP describes how to choose y( OJ) ( a different decision for each 

random scenario ca ). It minimizes the cost dTy subject to some recourse function, Tx 

+ Wy = h. This constraint can be thought of as requiring some action to correct the 
\ 

system after the random event occurs. In our example, this constraint would require the 

purchase of enough gas to supplement the original amount o.n hand in order to meet the 

demand. 

One important thing to notice in stochastic programs is that the first-period decision, x, 

is independent of which second-period scenario actually occurs. This is called the 

nonanticipativity property. The future is uncertain and so today's decision cannot take 

advantage of knowledge of the future. 

3.6. Determistic Equivalet 

The formulation above looks a lot messier than the deterministic LP formulation 

that we discuss elsewhere. However, we can express this problem in a deterministic for 

by introducing a different second-period y variable for each scenario, This formulation 

is called the deterministic equivalent. 

mm T + "N =l dT ex L.i Pi i Yi 
subject to 

=b 

=h.i=' 'N i' - , ... , 

0 

0 

where N is the number of scenarios and is the probability of the scenario's occurrence. 
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For our three-scenario problem, we have 

. min 
s. t. A =b 

X 

Notice that the nonanticipativity constraint is met. There is only one first-period 

decision, x, whereas there are N second-period decisions, one for each scenario. The 

first-period decision cannot anticipate one scenario over another and must be feasible 

for each scenario. That is, Ax= band Tix+ Wi yi = hi for i = l, ... ,N Because we solve 

for all the decisions, x and yi simultaneously, we are choosing x to be (in some sense) 

optimal over all the scenarios. 

Another feature of the deterministic equivalent is worth noting. Because the T and W 

matrices are repeated for every scenario in the model, the size of the problem increases 

linearly with the number of scenarios. Since the structure of the matrices remains the 

same and because the constraint matrix has a special shape, solution algorithms can take 

advantage of these properties. Taking uncertainty into account leads to more robust 

solutions but also requires more computational effort to obtain the solution. 

3.7. Comparisons with Other Formulations 

Because stochastic programs require more data and computation to solve, most 

people have opted for simpler solution strategies. One method requires the solution of 

the problem for each scenario. The solutions to these problems are then examined to 

find where the solutions are similar and where they are different. Based on this 

information, subjective decisions can be made to decide the best strategy. 
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3.7.1. Expected-Value Formulation 

A more quantifiable approach is to solve the original LP where all the random 

data have been replaced with their expected values. Hopefully in this approach we will 

do all right on average. For our example then, we consider the (expected value) problem 

data to be 

ly ear jGas cost ($) j»emand 

f115.0 F 
fl6.167 F 

Solving this problem gives the following result: 

jYear jPurchase to Use jPurchase to Store !Storage !Cost 

r,100 
1143.33 1143.33 11360 

fl0 1° FF 

Cost= $1360.00 

Let's compute what happens in each scenario if we implement the expected value 

solution: 

jscenario !Recourse ~ction jRecourse Cost [Total Cost 

jNormal jstore 43.33 excess@ $1 per unit 143.33 11403.33 

jcold ,,Buy 6.67 units@$6 per unit 140 ~ 

!Very Cold ,~uy 36.67 units@ $7.5 per unit 1275 11635 
1 

The expected total cost over all scenarios is .!_ 1403 .3 3 + .!_ 1400 + .!_ 163 5 = $14 79,44 3 3 . 3 
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3. 7.2. Stochastic Programming Solution 

Forming and solving the stochastic linear program gives the following solution: 

!Year jPurchase to Use jPurchase to Store !Storage !Cost 

11 Normal 1100 1100 ~,1100 

12 Normaqo [o _ ~r 
j2 Cold j5o 10 r---1300 

12 Normal 180 jo f [6oo 

1 1 Cost= 1100+-300+-600=1400 $ 
3 3 

Similarly we can compute the costs for the stochastic programming solution for each 

scenano: 

jscenario !Recourse Action jRecourse Cost f Total Cost 

!Normal jNone - jo ·11100 

jcold [Buy 50 units@ $6 per unit 1300 11400 

'Very Cold jBuy 80 units @ $7. 5 per unit 1600 ,-17_0_0 __ 

- 
i 

I 

The expected total cost over all scenarios is ! 1100 + ! 1400 + ! 1700 = $1400 
3 3 3 

The difference in these average costs ($79.44) is the value of the stochastic solution 

over the expected-value solution. Also notice that the cost of the stochastic solution is 

greater than or equal to the optimal solution for each scenario solved separately 

1100 ~ 1100,1400 ~ 1400 and 1635 ~ 1580. By solving each scenario alone, one 

assumes perfect information about the future to obtain a minimum cost. The stochastic 

solution is minimizing over a number of scenarios and, as a result, sacrifices the 

mmimum cost for each scenario in order to obtain a robust solution over all the 

scenanos. 
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Conclusion 

Randomness in problem data poses a serious challenge for solving many linear 

programming problems. The solutions obtained are optimal for the specific problem but 

may not be optimal for the situation that actually occurs. Being able to take this 

randomness into account is critical for many problems where the essence of the problem 

is dealing with the randomness in some optimal way. Stochastic programming enables 

the modeller to create a solution that is optimal over a set of scenarios. 

3. 7 .3. Solution Techniques 

The multiobjective problem is almost always solved by combining the multiple 

objectives into one scalar objective whose solution is a Pareto optimal point for the 

original MOP. Most algorithms have been developed in the linear framework (i.e. linear 

objectives and linear constraints), but the techniques described below are also 

applicable to nonlinear problems. 

3.8 - Minimizing Weighted Sums of Functions 

A standard technique for MOP is to minimize a positively weighted convex sum 

of the objectives, that is, 

n E friJi(~)? 
i=l 

It is easy to prove that the minimizer of this combined function is Pareto optimal. It is 

up to the user to choose appropriate weights. Until recently, considerations of 

computational expense forced users to restrict themselves to performing only one such 

minimization. Newer, more ambitious approaches aim to minimize convex sums of the 

objectives for various settings of the convex weights, therefore generating various 

points in the Pareto set. Though computationally more expensive, this approach gives 

an idea of the shape of the Pareto surface and provides the user with more information 

about the trade-off among the various objectives. However, this method suffers from 

two drawbacks. First, the relationship between the vector of weights and the Pareto 

curve is such that a uniform spread of weight parameters rarely produces a uniform 

spread of points on the Pareto set. Often, all the points found are clustered in certain 
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parts of the Pareto set with no point in the interesting '' middle part" of the set, thereby 

providing little insight into the shape of the trade-off curve. The second drawback is that 

non-convex parts of the Pareto set cannot be obtained by minimizing convex 

combinations of the objectives (note though that non-convex Pareto sets are seldom 

found in actual applications). 

3.9. Homotopy Techniques 

Homotopy techniques aim to trace the complete Pareto curve in the bi-objective 

case (n=2). By tracing the full curve, they overcome the sampling deficiencies of the 

weighted-sum approach. The main drawback is that this approach does not generalize to 

the case of more than two objectives. For more information, see Rao and Papalambros 

and Rakowska, Haftka, and Watson . 

3.10. Goal Programming 

In the goal programming approach, we minimize one objective while 

constraining the remaining objectives to be less than given target values. This method is 

especially useful if the user can afford to solve just one optimization problem. However, 

it is not always easy to choose appropriate '' goals" for the constraints. Goal 

programming cannot be used to generate the Pareto set effectively, particularly if the 

number of objectives is greater than two. 

3.11. Normal-Boundary Intersection (NBI) 

The normal-boundary intersection method uses a geometrically intuitive 

parametrization to produce an even spread of points on the Pareto surface, giving an 

accurate picture of the whole surface. Even for poorly scaled problems (for which the 

relative scalings on the objectives are vastly different), the spread of Pareto points 

remains uniform. Given any point generated by NBI, it is usually possible to find a set 

of weights such that this point minimizes a weighted sum of objectives, as described 

above. Similarly, it is usually possible to define a goal programming problem for which 

the NBI point is a solution. NBI can also handle problems where the Pareto surface is 

discontinuous or non-smooth, unlike homotopy techniques. Unfortunately, a point 

generated by NBI may not be a Pareto point if the boundary of the attained set in the 
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objective space containing the Pareto points is nonconvex or 'folded' (which happens 

rarely in problems arising from actual applications). 

NBI requires the individual minimizers of the individual functions at the outset, which 

can also be viewed as a drawback. 

3.12. Multilevel Programming 

Multilevel programming is a one-shot optimization technique and is intended to 

find just one '' optimal" point as opposed to the entire Pareto surface. The first step in 

multilevel programming involves ordering the objectives in terms of importance. Next, 

xEC we find the set of points for which the minimum value of the first objective 

. function is attained. We then find the points in this set that minimize the second most 

important objective. The method proceeds recursively until all objectives have been 

optimized on successively smaller sets. 

Multilevel programming is a useful approach if the hierarchical order among the 

objectives is of prime importance and the user is not interested in the continuous trade­ 

off among the functions. However, problems lower down in the hierarchy become very 

tightly constrained and often become numerically infeasible, so that the les~ important 

objectives have no influence on the final result. Hence, multilevel programming should 

surely be avoided by users who desire a sensible compromise solution among the 

various objectives. 

3.13. Multi-Objective Optimization 

3.13.1. Introduction 

Most realistic optimization problems, particularly those in design, require the 

simultaneous optimization of more than one objective function. Some examples: 

In bridge construction, a good design is characterized by low total mass and high 

stiffness. 

Aircraft design requires simultaneous optimization of fuel efficiency, payload, and 

weight. 
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In chemical plant design, or in design of a groundwater remediation facility, objectives 

to be considered include total investment and net operating costs. 

A good sunroof design in a car could aim to minimize the noise the driver hears and 

maximize the ventilation. 

The traditional portfolio optimization problem attempts to simultaneously minimize the 

risk and maximize the fiscal return. 

In these and most other cases, it is unlikely that the different objectiv,es would be 

optimized by the same alternative parameter choices. Hence, some trade-off between 

the criteria is needed to ensure a satisfactory design. 

Multicriteria optimization has its roots in late-nineteenth-century welfare economics, in 

the works of Edgeworth and Pareto. A mathematical description is as follows: 

min F(x) = 
xEC 

fi(x) 
b(x) 

... (MOP) 

where n >= 2 and 

C = { X : h(x) = o? g(x) < o? a< X < b} 

denotes the feasible set constrained by equality and inequality constraints and explicit 

variable bounds. The space in which the objective vector belongs is called the objective 

space and image of the feasible set under Fis called the attained set. 

The scalar concept of " optimality" does not apply directly in the multiobjective setting. 
x"' EC 

A useful replacement is the notion of Pareto optimality. Essentially, a vector is 

xEC 
said to be Pareto optimal for (MOP) if all other vectors have a higher value for at 

least one of the objective functions Ii ( · )' or else have the same value for all objectives. 
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Formally speaking, we have the following definition: 

x"'EC 
A point is said to be (glob ally) Pareto optimal or a (globally) efficient solution 

X EC 
or a non-dominated or a non-inferior point for (MOP) if and only if there is no 

/i(x) < /i(x•) i E {1, 2, ... 7 n} . . . . 
such that for all , with at least one stnct mequahty. 

Pareto optimal points are also known as efficient, non-dominated, or non-inferior 

points. 

We can also speak of locally Pareto optimal points, for which the definition is the same 

as the one just given, except that we restrict attention to a feasible neighborhood of z" . 

. That is, if B ( x"', !5) denotes a ball of radius t5around the point z", we require that for 
t5 > o x E c n B ( x "', t5) 

some , there is no such that 

for all i = {17 2, ... 7 n} 

with at least one strict inequality. 

Typically, there is an entire curve or surface of Pareto points, whose shape indicates the 

nature of the tradeoff between different objectives. 

The optimization problem is then: 

Find values of the variables that minimize or maximize the objective function while 

satisfying the constraints. 

Are All these ingredients necessary? 
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3.13.2. Objective Function 

Almost all optimization problems have a single objective function. (When they 

don't they can often be reformulated so that they do!) The two interesting exceptions 

are: 

1. No objective function. In some cases (for example, design of integrated circuit layouts), 

the goal is to find a set of variables that satisfies the constraints of the model. The user 

does not particularly want to optimize anything so there is no reason to define an 

objective function. This type of problems is usually called a feasibility problem. 

2. Multiple objective functions. Often, the user would actually like to optimize a number 

of different objectives at once. For instance, in the panel design problem, it would be 

nice to minimize weight and maximize strength simultaneously. Usually, the different 

objectives are not compatible; the variables that optimize one objective may be far from 

optimal for the others. In practice, problems with multiple objectives are reformulated 

as single-objective problems by either forming a weighted combination of the different 

objectives or else replacing some of the objectives by constraints. These approaches and 

others are.described in our section on multi-objective optimization. 

3.14. Unconstrained Optimization 

The unconstrained optimization problem is central to the development of 

optimization software. Constrained optimization algorithms are often extensions of 

unconstrained algorithms, while nonlinear least squares and nonlinear equation 

algorithms tend to be specializations. In the unconstrained optimization problem, we 

seek a local minimizer of a real-valued function, f(x), where x is a vector of real 

variables. In other words, we seek a vector, x*, such that f(x*) <= f(x) for all x close to 

x*. 

Global optimization algorithms try to find an x* that minimizes f over all possible 

vectors x. This is a much harder problem to solve. We do not discuss it here because, at 

present, no efficient algorithm is known for performing this task. For many applications, 

local minima are good enough, particularly when the user can draw on his/her own 

experience and provide a good starting point for the algorithm. 
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Newton's method gives rise to a wide and important class of algorithms that require 

computation of the gradient vector 

[
a !Cx)J 

fif(x) = aJx) 
and the Hessian matrix, 

V2 f(x) = (ajaif(x)) 
Although the computation or approximation of the Hessian can be a time-consuming 

operation, there are many problems for which this computation is justified. W,e describe 

algorithms in which the user supplies the Hessian explicitly before moving on to a 

discussion of algorithms that don't require the Hessian. 

Newton's method forms a quadratic model of the objective function around the current 
' 

iterate Xk . The model function is defined by 

In the basic Newton method, the next iterate is obtained from the minimizer of q k. 

When the Hessian matrix, \72 f (X k) , is positive definite, the quadratic model has a 

unique minimizer that can be obtained by solving the symmetric n x n linear system: 

The next iterate is then 

Convergence is guaranteed if the starting point is sufficiently close to a local minimizer 

x* at which the Hessian is positive definite. Moreover, the rate of convergence is 

quadratic, that is, 
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for some positive constant /3 . 

In most circumstances, however, the basic Newton method has to be modified to 

achieve convergence. 

These codes obtain convergence when the starting point is not close to a minimizer by 

using either a line-search or a trust-region approach. 

The line-search variant modifies the search direction to obtain another a downhill, or 

descent direction for f. It then tries different step lengths along this direction until it 

finds a step that not only decreases f, but also achieves at least a small fraction of this 

direction's potential. 

The trust-region variant uses the original quadratic model function, but they constrain 

the new iterate to stay in a local neighborhood of the current iterate. To find the step, 

then, we have to minimize the quadratic subject to staying in this neighborhood, which 

is generally ellipsoidal in shape. 

Line-search and trust-region techniques are suitable if the number of variables n is not 

too large, because the cost per iteration is of order nx . Codes for problems with a large 

number of variables tend to use truncated Newton methods, which usually settle for an 

approximate minimizer of the quadratic model. 

So far, we have assumed that the Hessian matrix is available, but the algorithms are 

unchanged if the Hessian matrix is replaced by a reasonable approximation. Two kinds 

of methods use approximate Hessians in place of the real thing: 

The first possibility is to use difference approximations to the exact Hessian. We exploit 

the fact that each column of the Hessian can be approximated by taking the difference 

between two instances of the gradient vector evaluated at two nearby points. For sparse 

Hessians, we can often approximate many columns of the Hessian with a single gradient 

evaluation by choosing the evaluation points judiciously. 
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Quasi-Newton Methods build up an approximation to the Hessian by keeping track of 

the gradient differences along each step taken by the algorithm. Various conditions are 

imposed on the approximate Hessian. For example, its behavior along the step just taken 

is forced to mimic the behavior of the exact Hessian, and it is usually kept positive 

definite. 

Finally, we mention two other approaches for unconstrained problems that are not so 

closely related to Newton's method: 

Nonlinear conjugate gradient methods are motivated by the success of the linear 

conjugate gradient method in minimizing quadratic functions with positive definite 

Hessians. They use search directions that combine the negative gradient direction with 

another direction, chosen so that the search will take place along a direction not 

previously explored by the algorithm. At least, this property holds for the quadratic 

case, for which the minimizer is found exactly within just n iterations. For nonlinear 

problems, performace is problematic, but these methods do have the advantage that they 

require only gradient evaluations and do not use much storage. 

The nonlinear Simplex method (not to be confused with the simplex method for linear 

programming) requires neither gradient nor Hessian evaluations. Instead, it performs a 

rattern search based only on function values. Because it makes little use of information 

about f, it typically requires a great many iterations to find a solution that is even in the 

ballpark. It can be useful when f is nonsmooth or when derivatives are impossible to 

find, but it is unfortunately often used when one of the algorithms above would be more 

appropriate. 

3.15. NON-LINEAR OPTIMIZATION 

3.15.1. Non-linear optimization 

The general constrained optimization problem is to minmuze a nonlinear function 

subject to nonlinear constraints. Two equivalent formulations of this problem are useful 

for describing algorithms. They are 

min {J(x): c, (x) :S: O,i E T,c, (x) = O,i Es} (3.1) 
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Where each c, is a mapping from inn to in, and T and & are index sets for inequality and 

equality constraints, respectively; and 

min {J(x);c(x) = O,l :s;; x :s;; u} (3.2) 

Where c maps mn to mm, and the lower- and upper-bound vectors, 1 and u , may 

contain some infinite components. The main techniques that have been proposed for 

solving constrained optimization problems are reduced-gradient methods, sequential 

linear and quadratic programming methods, and methods based on augmented 

Lagrangians and exact penalty functions. Fundamental to the understanding of these 

algorithms is the Lagrangian function, which for formulation (3.1) is defined as: 

1E1UB 

The Lagrange is used to express first-order and second-order conditions for a local 

minimizer. We simplify matters by stating just first-order necessary and second-order 

sufficiency conditions without trying to make the weakest possible assumptions. The 

first-order necessary conditions for the existence of a local minimizer x • of the 

constrained optimization problem (3 .1) require the existence of Lagrange multipliers.I", 

such that 

V XL(x·,x )=VJ~·)+ L1;vci(x· )= 0 
iEA• 

Is the active set at x • , and { ~ 0 if i E A· n I . This result requires a constraint 

qualification to ensure that the geometry of the feasible set is adequately captured by a 

linearization of the constraints about x * . A standard constraint qualification requires 
the constraint normal, V c, (x ·) for i E A·, to be linearly independent. 
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The second-order sufficiency condition requires that (x ·, ,t) satisfies the first-order 
condition and that the Hessian of the Lagrangian 

V2xxL~*,X)= V2 J(x·)+ L2;v2c;(x·) 
iEA• 

Satisfies the condition 

For all nonzero (J) in the set 

Where 

The previous condition guarantees that the optimization problem is well behaved 

near x • ; in particular, if the second-order sufficiency condition holds, then x • is a strict 

local minimizer of the constrained problem. An important ingredient in the convergence 

analysis of a constrained algorithm is its behavior in the vicinity of a point 

that satisfies the second-order sufficiency condition. 

3.15.2. The sequential quadratic programming algorithm 

It is a generalization of Newton's method for unconstrained optimization in that 

it finds a step away from the current point by minimizing a quadratic model of the 

problem. A number of packages, including NPSOL, NLPQL, OPSYC, OPTIMA, 

MATLAB, and SQP, are founded on this approach. In its purest form, the sequential QP 

algorithm replaces the objective function with the quadratic approximation 
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and replaces the constraint functions by linear approximations. For the formulation 

(3 .1 ), the step d k is calculated by solving the quadratic subprogram 

(3.3) 

The local convergence properties of the sequential QP approach are well understood 

when (x" ,,f) satisfies the second-order sufficiency conditions. If the starting point x0 

is sufficiently close to x ·, and the Lagrange multiplier estimates {Ak} remain 

sufficiently close to .. t, then the sequence generated by setting xk+i = xk + d, converges 
to x * at a second-order rate. These assurances cannot be made in other cases. Indeed, 

codes based on this approach must modify the sub-problem (3.3) when the quadratic qk 

is unbounded below on the feasible set or when the feasible region is empty. 

The Lagrange multiplier estimates that are needed to set up the second-order term in 

qk can be obtained by solving an auxiliary problem or by simply using the optimal 

multipliers for the quadratic sub-problem at the previous iteration. Although the first 

approach can lead to more accurate estimates, most codes use the second approach. 

The strategy based on (3.3) makes the decision about which of the inequality constraints 

appear to be active at the solution internally during. the solution of the quadratic 

program. A somewhat different algorithm is obtained by making this decision prior to 

formulating the quadratic program. This variant explicitly maintains a working set Wk of 

apparently active indices and solves the quadratic programming problem 

To find the step d., The contents of Wk updated at each iteration by examining the 

Lagrange multipliers for the sub-problem (3.4) and by examining the values of 

c;(xk + 1) at the new iterate xk + 1 for i (l. Wk. This approach is usually called the EQP 

( equality-based QP) variant of sequential QP, to distinguish it from the IQP (inequality­ 

based QP) variant described above. 
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The sequential QP approach outlined above requires the computation of V\,xL(xk, Jk ) . 

Most codes replace this matrix with the BFGS approximation Bk , which is updated at 

each iteration. An obvious update strategy ( consistent with the BFGS update for 

unconstrained optimization) would be to define 

and update the matrix Bk by using the BFGS formula 

However, one of the properties that make Broyden-class methods appealing for 

unconstrained problems-its maintenance of positive definiteness in Bk is no longer 

assured, since V~L(x.,J.)is usually positive definite only in a subspace. This 

difficulty may be overcome by modifying Yk . Whenever Y: 8 k is not sufficiently 

positive, Yk is reset to 

Where ()k E [o,l)is the number closest to 1 such that Y: 8k ~ a-8~ Bk8k for some 

a- E (0,1). The SQP and NLPQL codes use an approach of this type. 

The convergence properties of the basic sequential QP algorithm can be improved by 

using a line search. The choice of distance to move along the direction generated by the 

sub-problem is not as clear as in the unconstrained case, where we simply choose a step 

length that approximately minimizes f along the search direction. For constrained 

problems we would like the next iterate not only to decrease f but also to come closer to 

satisfying the constraints. Often these two aims conflict, so it is necessary to weigh their 

relative importance and define a merit or penalty function, which we can use as a 
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criterion for determining whether or not one point is better than another. The 11 merit 

function 

r; (x;v) = f(x) + L>,\c;(x)\ + Lv, max(c,(x),O), (3.5) 
iES iET 

Where v, )0 are penalty parameters, is used in the NLPQL, MATLAB, and SQP codes, 

while the augmented Lagrangian merit function 

Whete 

Is used in the NLPQL, NPSOL, and OPTIMA codes. The OPSYC code for equality­ 

constrained problems (for which T =<I>) uses the merit function 

I 

f(x) + L..1,c,cx) + ( L v,c,2(x) )2 
iE& iES 

Which combines features of Pi and LA . 

An important property of the 11 merit function is that if (x ·, X) satisfies the second­ 

order sufficiency condition, then x • is a local minimizer of Pi , provided the penalty 

parameters are chosen so that v, >J{J. Although this is an attractive property, the use 
of~ requires care. The main difficulty is that P, is not differentiable at any 

xwith c.Ixj= O. Another difficulty is that although x·is a local minimizer of~' it is 

still possible for the function to be unbounded below. Thus, minimizing P. does not 

always lead to a solution of the constrained problem. 

The merit function LA has similar properties. If ( x ·, X) satisfies the second-order 

sufficiency condition and ,1 = ..1·, then x is a local minimizer of P, , provided.{~. --.;;-:, (:··:- 
!: • ..fJ ·~\ 
I.-::;• '?$:'<' fi!u· ~.1 \,2 :...Sj--:_,...RY -< 



penalty parameters v; are sufficiently large. If J -:t:- J*, then we can say only that LA has 

a minimizer x(J) near x • and that x(J) approaches x • as J converges to J*. Note that 

in contrast to P, , the merit function LA is differentiable. The Hessian matrix of LA is 

discontinuous at any x with Ji + vici (x) = 0 for i ET, but, at least in the case T; = <1>, 
these points tend to occur far from the solution. 

The use of these merit functions by NLPQL is typical of other codes. Given an iterate 

x, and the search direction dk, NLPQL sets xk+i = xk + akdk, where the step length 

a k approximately minimizes ( x k + ad k; v) . If the merit function LA is selected, the step 

length chosen to approximately mimrmze 

LA(xk +adk,Jk +a(Jk+i -Jk);v), where dkis a solution of the quadratic programming 

sub-problem (3.3) and Jk+i is the associated Lagrange multiplier. 

3.15.3. Augmented Lagrangian algorithms 

These are based on successive minimization of the augmented Lagrangian 

LA with respect to x , with updates of J and possibly v occurring between iterations. 

An augmented Lagrangian algorithm for the constrained optimization problem 

computes xk+i as an approximate minimizer of the sub-problem 

Includes only the equality constraints. Updating of the multipliers usually takes the form 

This approach is relatively easy to implement because the main computational operation 

at each iteration is minimization of the smooth function LA with respect to x , subject 

only to bound constraints. A large-scale implementation of the augmented Lagrangian 

approach can be found in the LANCELOT package, which solves the bound­ 

constrained sub-problem by using special data structures to exploit the (group partially 
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separable) structure of the underlying problem. The OPTIMA and OPTP ACK libraries 

also contain augmented Lagrangian codes. 

3.15.3. Reduced-gradient algorithms 

These avoid the use of penalty parameters by searching along curves that stay 

near the feasible set. Essentially, these methods take the formulation (3 .2) and use the 

equality constraints to eliminate a subset of the variables, thereby reducing the original 

problem to a bound-constrained problem in the space of the remaining variables. If x B is 

the vector of eliminated or basic variables, and xN is the vector of no basic variables, 

then 

Where the mapping h is defined implicitly by the equation 

(We have assumed that the components of have been arranged so that the basic 

variables come first.) In practice, xB = h(xN) 

Can be recalculated using Newton's method whenever xN changes. Each Newton 

iteration has the form 

Where a Be is the Jacobian matrix of c with respect to the basic variables. The original 

constrained problem is now transformed into the bound-constrained problem. 

Algorithms for this reduced sub-problem subdivide the no basic variables into two 

categories. These are the fixed variables xF, which usually include most of the 

variables that are at either their upper or lower bounds and that are to be held constant 

on the current iteration, and the super basic variables x s , which are free to move on 
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this iteration. The standard reduced-gradient algorithm, implemented in CONOPT, 

searches along the steepest-descent direction in the super basic variables. The 

generalized reduced-gradient codes GRG2 and LSGRG2 use more sophisticated 

approaches. They either maintain a dense BFGS approximation of the Hessian of f 
with respect to x8 or use limited-memory conjugate gradient techniques. MINOS also 

uses a dense approximation to the super basic Hessian matrix. The main difference 

between MINOS and the other three codes is that MINOS does not apply the reduced­ 

gradient algorithm directly to problem (3.1), but rather uses it to solve a linearly 

constrained sub-problem to find the next step. The overall technique is known as a 

projected augmented Lagrangian algorithm. 

Operations involving the inverse of 88c(x8,xN) are frequently required in reduced­ 

gradient algorithms. These operations are facilitated by an LU factorization of the 

matrix. GRG2 performs a dense factorization, while CON OPT, MINOS, and LSGRG2 

use sparse factorization techniques, making them more suitable for large-scale 

problems. 

When some of the components of the constraint functions are linear, most algorithms 

aim to retain feasibility of all iterates with respect to these constraints. The optimization 

problem becomes easier in the sense that there is no curvature term corresponding to 

these constraints that must be accounted for and, because of feasibility; these constraints 

make no contribution to the merit function. Numerous co.des, such as NPSOL, MINOS 

and some routines from the NAG (NAG Fortran or NAG C) library, are able to take 

advantage of linearity in the constraint set. Other codes, such as those in the IMSL, 

PORT 3, and PROC NLP libraries, are specifically designed for linearly constrained 

problems. The IMSL codes are based on a sequential quadratic programming algorithm 

that combines features of the EQP and IQP variants. At each iteration, this algorithm 

determines a set Nkofnear-active indices defined by: 
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Where the tolerances rj tend to decrease on later iterations. The step d K is obtained 

by solving the sub-problem. 

Where 

And BK is a BFGS approximation to V2 f(xK). This algorithm is designed to avoid the 

short steps that EQP methods sometimes produce, without taking many unnecessary 

constraints into account, as IQP methods do. 

3.13.4 - Feasible sequential quadratic programming algorithms 

Finally, we mention feasible sequential quadratic programming algorithms, which, as 

their name suggests, constrain all iterates to be feasible. They are more expensive than 

standard sequential QP algorithms, but they are useful when the objective function f 
is difficult or impossible to calculate outside the feasible set, or when termination of the 

algorithm at an infeasible point (which may happen with most algorithms) is 

undesirable. The code FSQP solves problems of the form 

min{/(x): c(x) :s; O,Ax = b} 

In this algorithm, the step is defined as a combination of the sequential QP direction, a 

strictly feasible direction (whi~h points into the interior of the feasible set) and, 

possibly, a second-order correction direction. This mix of directions is adjusted to 

ensure feasibility while retaining fast local convergence properties. Feasible algorithms 

have the additional advantage that the objective function f can be used as a merit 

function, since, by definition, the constraints are - always satisfied. FSQP also solves 

problems in which f is not itself smooth, but is rather the maximum of a finite set of 

smooth functions 
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CHAPTER FOUR 

GENETIC ALGORITHMS BASED ON OPTIMIZATION 

4.1 Optimization based on Genetic Algorithms 

Genetic algorithms were formally introduced in the United States in the 1970s 

by John Holland at University of Michigan. The continuing price/performance 

improvements of computational systems have made them attractive for some types of 

optimization. In particular, genetic algorithms work very well on mixed ( continuous and 

discrete), combinatorial problems. They are less susceptible to getting 'stuck' at local 

optima than gradient search methods. But they tend to be computationally expensive. 

To use a genetic algorithm, you must represent a solution to your problem as a genome 

(or chromosome). The genetic algorithm then creates a population of solutions and 

applies genetic operators such as mutation and crossover to evolve the solutions in order 

to find the best one. 

This presentation outlines some of the basics of genetic algorithms. The three most 

important aspects of using genetic algorithms are: 

Definition of the objective function. 

Definition and implementation of the genetic representation. 

Definition and implementation of the genetic operators, Once these three have been 
' defined, the generic genetic algorithm should work fairly well. Beyond that you can try 

many different variations to improve performance, find multiple optima (species - if 

they exist), or parallelism the algorithms, 

Genetic algorithm (GA) uses the principles of evolution, natural selection, and genetics 

from natural biological systems in a computer algorithm to simulate evolution. 

Essentially, the genetic algorithm is an optimization technique that performs a parallel, 

stochastic, but directed search to. evolve the most fit population. In this section we will 

introduce the genetic algorithm and explain how it can be used for design of fuzzy 

systems. The genetic algorithm borrows ideas from and attempts to simulate Darwin's 
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theory on natural selection and Mendel's work in genetics on inheritance. The genetic 

algorithm is an optimization technique that evaluates more than one area of the search 

space and can discover more than one solution to a problem. In particular, it provides a 

stochastic optimization method where if it "gets stuck" at a local optimum, it tries to 

simultaneously find other parts of the search space and jump out" of the local optimum 

to a global one. 

start 

l r analysis program 

merit functi1 evaluation 

(loop) l 

L convergence test__. end 

modificatio:algorithm 

Figure 4.1 Characteristics common to all optimizers 

4.2. Main Features for Optimization 

1. probabilistic algorithms for searching and optimization 

2. mimic natural evolution process 

3. capable of handling nonlinear, non-convex problem 

4. optimization procedure does not require differentiation operation 

5. capable of locating global and local optima within search domain 

6. Optimization is based on population instead of a single point. 

let's consider a simple problem of maximization of the function F(x)=x2 , where 

xE[0,31] (see Fig). 

F(x) 
961 

625 
400 
225 
100 

5 10 15 20 25 
31 X 
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In order to use GA we should first code variables in to bit strings as any integer number 

between Oto 31 may be represented in binary number 5 symbols between (00000)=0 

and ( 11111 )=31 the length of chromosomes will be five. 

Lets take 4 chromosomes with random set of genes as an initial population as: 

01101 

11000 

01000 

10011 

then define their fitness inserting appropriate real values into the function as: 

f(01000)2 = f(8=64 

thus the fitness of all individuals in calculated then accordance with the formula 

Pi5 =fi/Dj=1Fi5, i = 1..4 

Survival probability for each individual is calculated where as cumulatives 

Picum =Elj=I Pi 5 i = 1..4 

Let's enter all the calculated values in table 

Initial Their integer F(x)=x2 PS Pcu Num after 

Population values m Selection 

01101 13 169 0.14 0.14 1 
,, 

11000 24 576 0.49 0.63 2 

01000 8 64 0.06 0.69 0 

10011 19 361 0.31 1 1 
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----- 

Average 293 0.25 1 

Maximum 576 . 0.49 2 

Sum 1170 1 4 

For the selection process we generate 4 random numbers from the range [0,1]. Suppose, 

that we generated 0.1; 0.25; 0.5 and 0.8. 

Comparing these values with cumulative probabilities, we obtaining the following 

0.1< Picum 

Plcum < 0.25< P2cum 

Pl cum <0.5 < P2cum 

P3cum <0.8 < P4cum 

Looking at the right sides of these inequalities, one can easily see, that the first and the 

fourth chromosomes have passed the selection, each four taking a place in the new 

generation, the second chromosome-the most highly fitted has got 2 copies, while the 

third one did not survive at all.These indices are written in the right column of table 3-1. 

Then crossover operation is applied. If the probability of crossover Pc=l is given, it 

means that, 4.1 =4 chromosomes will participate in crossover process. 

Let's choose them at random. Suppose that the first and the second strings mate from 

crossover point 4, and the third with the forth-from crossover point 2. 
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0110 I 1 

1100 Io 

11 looo 

oo I 011 

Population Crossover New Value ofX F(x)=X2 
after selection Population 

01101 4 01100 12 144 

11000 4 11001 25 625 

11000 2 11011 27 729 

10011 2 10000 16 256 

Table 3-1 

Average 439 

Maximum 729 

Sum 1754 

Having compared both of the tables we see, for ourselves, that the population fitness is 

improved and we have come close to the solution. The next recombination operator, 

mutation, is performed on a bit-by-bit basis. If Pm=0.05 is given, it means that only one 

of twenty bits in population will be changed: 20· 0.05=1. Suppose, that the third bit of 

the fourth string undergoes mutation. I.e. x4=10100. Repeating these operations in a 

finite number of generations we will get the chromosome (11111) corresponding to 
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problem optimal solution. It is necessary to mention, that GA is especially effective for 

multi-extreme problems in the global solution search process. For example, ·if the 

junction is of the type shown . it is rather difficult to find its global maximum by means 

of traditional methods. Suppose that the junction is defined as [ 1] 

f(x)=x· sin(l On· x) + 1. 

The problem is to find x from the range [-1,2], which maximizes the function f, i.e., to 

find xO such that 

f(xO) ~f(x), for all XE [-1,2]. 

It is relatively easy to analyse the junction f. The zeros of the first derivative f should 

be determined 

F(x)=sin(l01t· x)+ 101t· x · cosfl On- x)=O 

The formula is equivalent to 

tan(l01t· x)= (l01t· x) 

It is clear that the above equation has an infinite number of solutions, 

. 2i-1 
x1=--+¢ 20 i, 

for i=l, 2, ... , 

xO = 0, 

. 2i +1 
x1=--+¢ 20 l, 

for i= 1, -2, ... , 

where terms ~ 1 represent decreasing sequences of real numbers ( for i= 1, 2, ... , and i=- 

1, -2, ... ) approaching zero. Note also that the function f reaches its local maxima for x, 

it i is an odd integer, and its local minima for x, if i is an even integer . Since the domain 

of the problem is xE[-1,2], the function reaches its maximum for 

. 37 i 
X19 = -+ ~19 = 1.85 + s19, 

20 
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Where f(xl9) is slightly larger than 

F(l.85)=1.85 · sin(l8n+n/2)=1.0::;:2.85. 

Assume that we wish to construct a genetic algorithm to solve the above problem, ,I.e.,. 

to maximize the function f 

4.2.1. Representation 

We use a binary vector as a chromosome to represent real values of the variable 

x. The length of the vector depends on the required precision, which, in this example, is 

six places after the decimal point. The domain of the variable x has lingth 3; the 

precision requirement implies that the range [-1,2] should be divided into at least 3 · 

1000000 equal size ranges. This means that 22 bits are required as a binary vector 

(chromosome): 

2097152=23 l < 3000000:::;; 233 = 4194304 

the mapping from a binary (b2 l b20 bO) string into a real number x from the range [- 

1,2] is straightforward and is completed in two steps: 

Convert the binary string (b21 b20 bO) from the base 2 to base 10: 

(<b21 b20b0>)2= (i>i ·2;J =x 
1=0 10 

Find a corresponding real number x: 

X 
3 

-10 + X· 222 -1' 

where -1, 0 is the left boundary of the domain and 3 is the length of the domain. 

For example, a chromosome 

(1000101110110101000111) 
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represents the number 0.637197, since 

x'=(1000101110110101000111)3 = 2288967 and 

x=l.0+2288967 · 
3 = 0.637197. 

4194303 

of course, the chromosomes 

(OOOOOOOOOOOOOOOOOOOOOO)and (1111111111111111111111) 

represent boundaries of the domain-1.0 and 2.0, respectively. 

Initial population. The initialization process is very simple; we create a population of 

chromosomes, where each chromosome is a binary vector of 22 bits. All 22 bits for each 

chromosome are initialized randomly. 

Evaluation function. Evaluation function eval for binary vectors v is equivalent to the 

function f: 

Evaltvj=ftx), 

Where the chromosome v represents the real value x. 

As noted earlier, the evaluation junction plays the role of the environment, rating 

potential solutions in terms of their fitness. For example, three chromosomes: 

V1=(1000101110110101000111) 

V2=(0000001110000000010000) 

V3=(1110000000111111000101) 

Correspond to values x=0.637197, x=0.958973 and x3=1.627888, respectively. 
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Consequently, the evaluation function would rate them as follows: 

Eval(vl )=f(xl )=1.586345 

Eval(v2)=f(x2)=0.078878 

Eval(v3)=f(x3)=2.250650 

Clearly, the chromosome v3 is the best of the three chromosomes, since its evalution 

returns the highest value. 

During the reproduction phase of the genetic algorithm we would use two classical 

genetic operators; mutation and crossover. 

As mentioned earlier, mutation alters one or more genes (positions in a chromosome) 

with a probability equal to the mutation rate. Assume that the fifth gene from the v3 

chromosome was selected for a mutation. Since the fifth gene in this chromosome is 0, 

it would be flipped into 1. So the chromosome v3 after this mutation would be 

V3=(1110100000111111000101) 

This chromosome represents the value x3=1.721638 and f(x3)=-0.082257. This means 

that this particular mutation resulted in a significant decrease of the value of the 

chromosome v3 . On the other hand, if the 10th gene was selected for mutation in the 

chromosome v3 them 

V3=(1110000001111111000101) 

The corresponding value x3=1.630818 and f(x3)=2.343555, an improve-ment over the 

original value of f(x3)=2.250650. 
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Let us illustrate the crossover operator on chromosomes v2 and v3 . Assume that the 

crossover point was (randomly) selected after the 5th gene: 

v2=coooooio1110000000010000) 

V3=(11100!00000111111000101) 

The two resulting off spring are 

V'2=(00000/00000111111000101) 

V'3=(11100io1110000000010000) 

These offspring evaluate to 

F(v'2)=f(-0.998113)=0.940865. 

F(v'3)=f(l.666028)=2.459245 

Note that the second offspring has a better evaluation than both of its parents. 

Parameters. For this particular problem we have used the following parameters 

population size ps=50, probability of crossover pc =0.25, probability of mutation pm 

=0.01. The following section presents some experimental results for such a genetic 

system. 

Experimental results. we provide the generation number for which we noted an 

improvement in the evaluation function together with the value of the function. The best 

chromosome after 150 generations was 

Vmax=(l 111001101000100000101); 

Which corresponds to a value xmax=l.850773 

AS exprected, xmax=l.85+~ and f(xmax) is slightly larger than 2.85. 

{} ~ {f(x)} xlt [1] IE<?:'. · ~ 1t 
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Generation Number Fitness Function 
- 

1 1.441942 
5 2.250003 
8 2.250283 
9 2.250284 
10 2.250363 
12 2.328077 
36 2.344251 
40 ' 2.345087 
51 2.738930 
99 2.849246 
137 2.850217 
145 2.850227 

4.3. Genetic Algorithm Structural Optimization 

Atomistic models of materials can provide accurate total energies. For problems 

where the structures are not known, however, discovering the lowest energy geometry is 

difficult. This is particularly true for atomic clusters, whose structure may vary 

dramatically with a small change in the number of atoms. For this type of problem, the 

number of possible stable structures increases exponentially fast with the number of 

atoms. Furthermore, there is considerable experimental difficulty in determining the 

structure of an atomic cluster. We have been able to 'address this problem using a novel 

approach to applying genetic algorithms. The Darwinian evolution process inspires 

these algorithms. A population of structures is maintained, and "mating" structures and 

selecting out the lowest energy geometries produce new generations. 

The key to a successful genetic algorithm is to design a mating process that allows for 

the good parts of the parent structures to be inherited by the next generation. Such a 

process allows for efficient searching of the possible stable structures. A poor mating 

algorithm is no better than a random search. We have designed a new mating process, 

depicted at left. Two structures are chosen as "parent" structures, Each one is divided 

into two halves by a cleavage plane. A new structure is generated by connecting half of 

each parent into a new cluster, followed by atomic relaxation to a local minimum. We 

have successfully applied our "cut and paste" approach to a number of challenging 

problems, including: (12). 
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4.4. Genetic Algorithm 

4.4.1. Basic Description 

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to 

a problem solved by genetic algorithms is evolved. 

Algorithm is started with a set of solutions (represented by chromosomes) called 

population. Solutions from one population are taken and used to form a new population. 

This is motivated by a hope, that the new population will be better than the old one. 

Solutions which are selected to form new solutions ( offspring) are selected according to 

their fitness ,the more suitable they are the more chances they have to reproduce. 

This is repeated until some condition (for example number of populations or 

improvement of the best solution) is satisfied. 

4.4.2. Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem) 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

3. [New population] Create a new population by repeating following steps until the new 

population is complete 

a. [Selection] Select two parent chromosomes from a population according to their fitness 

(the better fitness, the bigger chance to be selected) 
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b. [Crossover] With a crossover probability cross over the parents to form a new offspring 

( children). If no crossover was performed, offspring is an exact copy of parents. 

c. [Mutation] With a mutation probability mutate new offspring at each locus (position in 

chromosome). 

d. [ Accepting] Place new offspring in a new population 

4. [Replace] Use new generated population for a further run of algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

6. [Loop] Go to step 2 

Some Comments: 

As you can see, the outline of Basic GA is very general. There are many things 

that can be implemented differently in. various problems. 

First question is how to create chromosomes, what type of encoding choose. With this is 

connected crossover and mutation; the two basic operators of GA Encoding, crossover 

and mutation are introduced in next chapter. 

Next questions are how to select parents for crossover. This can be done in many ways, 

but the main idea is to select the better parents (in hope that the better parents will 

produce better offspring). Also you may think, that making new population only by new 

offspring can cause lost of the best chromosome from the last population. This is true, 
r 

so so called elitism is often used. This means, that at least one best solution is copied 

without changes to a new population, so the best solution found can survive to end of 

run. Maybe you are wandering, why genetic algorithms do work. It can be partially 

explained by Schema Theorem (Holland), however, this theorem has been criticized in 

recent time. If you want to know more, check other resources. 
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CHAPTER FIVE 

TRAVELLING SALESMAN PROBLEM 

5.1 History Of Travelling Salesman Problem 

The traveling salesman problem, or TSP for short, is this: given a finite number 

of '' cities" along with the cost of travel between each pair of them, find the cheapest 

way of visiting all the cities and returning to your starting point. . 

Mathematical problems related to the traveling salesman problem were treated in the 

1800s by the Irish mathematician Sir William Rowan Hamilton and by the British 

mathematician Thomas Penyngton Kirkman. The picture below is a photograph of 

Hamilton's Icosian Game that requires players to complete tours through the 20 points 

using only the specified connections. A nice discussion of the early work of Hamilton 

and Kirkman can be found in the book Graph Theory 1736-1936 by N. L. Biggs, E. K. 

LLoyd, and R. J. Wilson, Clarendon Press, Oxford, 1976. 

The general form of the TSP appears to be have been first studied by mathematicians 

starting in the 1930s by Karl Menger in Vienna and Harvard. The problem was later 

promoted by Hassler Whitney and Merrill Flood at Princeton. A detailed treatment of 

the connection between Menger and Whitney, and the growth of the TSP as a topic of 

study can be found in Alexander Schrijver's paper '' On the history of combinatorial 

optimization (till 1960)". 

5.2 Travellin Versus Travelling 

Julia Robinson's 1949 paper "On the Hamiltonian Game (A Traveling Salesman 

Problem)" begins with t,he sentence: "The purpose of this note is to give a method for 

solving a problem related to the traveling salesman problem." Although the problem 

was apparently well known at that time, there does not appear to be any earlier reference 

in the literature. Solution methods began to appear in papers in the mid-1950s; these 

early papers used a variity of minor variations of the name traveling salesman problem. 
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Dantzig, Fulkerson, and Johnson (1954) referred to the "traveling-salesman problem", 

Heller (1954) used "travelling salesman's problem", and Morton and Land (1955) 

preferred "the 'travelling salesman' problem" (and write that they orginally called it the 

"laundry van problem"). 'We will follow Robinson and use "traveling salesman 

problem". The sixth edition of The Concise Oxford Dictionary offers some support, 

writing "travelling-bag", "travelling-cap", and "travelling clock" all with two l's, but 

"traveling salesman" with a single l. The second edition of The Oxford English 

Dictionary does make this distinction, however, writing "travelling salesman problem" 

( despite a reference to Dantzig, Fulkerson, and Johnson (1954). 

5.3. Traveling Salesman Problem 

In the Travelling Salesman Problem, the goal is to find the shortest distance 

between N different cities. The path that the salesman takes is called a tour. 

Testing every possibility for an N city tour would be N! math additions. A 30 city tour 

would be 2.65 X 1032 additions. Assuming 1 billion additions per second, this would 

take over. 8,000,000,000,000,000 years. Adding one more city would cause the number 

of additions to increase by a factor of 31. Obviously, this is an impossible solution. 

A genetic algorithm can be used to find a solution is much less time. Although it 

probably will not find the best solution, it can find a near perfect solution in less than a 

minute. There are two basic steps to solving the travelling salesman problem using a 

GA First, create a group of many random tours in what is called a population. These 

tours are stored as a sequence of numbers. Second, pick 2 of the better (shorter) tours 

parents in the population and combine them, using crossover, to create 2 new solutions 

children in the hope that they create an even better solution. Crossover is performed by 

picking a random point in the parent's sequences and switching every number in the 

sequence after that point. 

The idea of Genetic Algorithms is to simulate the way nature uses evolution. The GA 

uses Survival of the Fittest with the different solutions in the population. The -good 

solutions reproduce to form new and hopefully better solutions in the population, while 

the bad solutions are removed. 
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Eventually, the GA will make every solution look identical. This is not ideal. There are 

two ways around this. The first is to use a very large initial population so that it takes 

the GA longer to make all of the solutions the same. The second method is mutation. 

Mutation is when the GA randomly changes one of the solutions. Sometimes a mutation 

can lead to a better solution that a crossover would not have found. 

The difficulty in the TSP using a GA is encoding the solutions. The encoding cannot 

simply be the list of cities in the order they are travelled. As shown below, the crossover 

operation will not work. The crossover point is the 3rd number. Every number in parent 

1 before the crossover point is copied into the same position in child 1. Then, every 

number after the crossover point in parent 2 is put into child 1. The opposite is done for 

child 2. 

Parent 1 123 4 5 

Parent 2 35214 

Child 1 1 2 3 1 4 
i 

Child 1 352451 

As you can see, the city I is used twice and city 5 is missing in child 1. A more 

complicated form of encoding ( or a more complicated crossover) must be used. This 

form of encoding should ensure that that city adjacencies in the list are preserved from 

the parents to the children. This method should also realize that the tours 1 2 3 4 5 and 3 

2 1 5 4 are the same. The method I have used does both. 

Time for some technical jargon. 

In my GA, the tours are encoded as a 2-dimensional array (a NxN matrix) of bits that 

store city adjacencies in both directions. A set bit indicates a city connection. If element 

[ X, Y] is set, then city X connects to city Y. Only 2 bits will be set in every row and 

column. 

Every iteration, a number of tours are chosen from the list of tours. This is the 

tournament set. The best 2 of these tours from the tournament will be combined to form 
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2 new tours using crossover. These two new solutions will replace the worst 2 tours 

from the tournament. 

A greedy crossover operation combines the 2 tours to hopefully form 2 better tours. All 

adjacencies that are shared by the parent are placed in both children. This is done by 

performing a binary AND on the two parent matrices. When the parents disagree, the 

children alternate which parent they will get an adjacency from. If an adjacency 

produces a conflict ( city used twice or incomplete tour ), then a random city is used 

instead. 

Due to the complexity of the encoding method, no mutation is done. 

There is also a graphical display with the program where the current best solution is 

displayed as a bunch of lines connecting different cities. 
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CONCLUSION 

In this project I researched GENETIC ALGORITHM BASE OPTIMIZATION. 

Because GENETIC ALGORITHM is much wide an deep suject. But I only research the 

small points that is BASED OPTIMIZATION of GENETIC ALGORITHM. By this 

way I also touched GENETIC ALGORITHM little bit. 

I hope that this project will be usefull for both future life and the other people who are 

interested in GENETIC ALGORITH BASE OPTIMIZATION. 

/ 
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