
Student:

•

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

CHILD NURSERY PROGRAM

Graduation Project
COM-400

ERSiN TEKATA~

NUMBER:20020388

Supervisor: Mr. Umit SOYER

Nicosia - 2008

•

ACKNOWLEDGEMENTS

"Firstly, I would like to thank to my supervisorMr Umit SOYER Mr Elbrus

IMANOV,Dr.Kaan UYAR, Okan DONANGIL, Umit ILHAN for his great advise and

recomendation for finishing my project properly also, teaching and guiding me in

others lectures

I am greatly indepted to my family for their endless support from my starting day in

my educational life until today. I will never forget the things that my father Mr.

Sahseddin Tekatas did for me during my educational life, also I want to say thanks to

my mother Mrs. Minuriye Tekatas. I dedicate my project to them.

I thank all the staff of the faculty of engineering for giving facilities to practise,

teaching and solving problem in my complete undergraduation program

I thank my friends Turgut AYDIN Emin KENDIRLI Semih YAZAR Murat OLCEN Murat

KARAOGUL Kemal KOSEOGLU for their help, they get tired with me, and they

helped me and give morale evertime.

I thank them with my all

Finally, I promise to do my best in my life as an bachelor of engineer after finishing

my undergraduate program "

•

ABSTRACT

The aim of this project is to register child store program that contain

registration, all applications and also customer and child application. The program was

prepared by using Delphi programming and using database.

This project consist of so many forms and menues. The main form of the arrive

the others forms . Which are include information about the child, customers.

First time i thing this program form my friend's childs for help register. So this

program is real life prepare to Sirinler.

To show results show the efficiency of the program of child in program of the

using in other chapters

11

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION

CHAPTERl

1. BASIC CONCEPT OF DELPHI
1.1. Introduction to Delphi
1.2. What is Delphi?

1.2.1. Delphi Compliers
1.2.2. What kind of programming can you do with Delphi?
1.2.3. History Of Delphi
1.2.4. Advantages&Disadvantages Delphi

1.3. Delphi 6 Editions
1.3.1. Delphi 6 Archite
1.3.2. Installation Delphi 6

1.4. A Tour Of The Environment
1.4.1. Running Delphi For The First Time
1.4.2. The Delphi IDE
1.4.3. The Menus & Toolbar
1.4.4. The Component Palette
1.4.5. The Code Editor
1.4.6. The Object Inspector
1.4.7. The Object TreeView
1.4.8. Class Completion
1.4.9. Debugging applications
1.4.10. Exploring databases
1.4.11. Templates and the Object Repository

1.5. Programming With Delphi
1.5.1. Starting a New Application

L5.l.l. Setting Property Values
1.5.2. Adding objects to the form
1.5.3. Add a Table and a StatusBar to the form
1.5.4. Connecting to a Database

CHAPTER2
2. DATA BASE SYSTEM

2.1. INTRODUCTION TO DATABASE
2.2. HISTORY
2.3. DATABASE MODELS

2.3.1. Flat model

iii

11

111

V

1
2
2
3
5
6
7
7
10
11
11
13
13
14
15
16

17
18
19
20
21
21
23
24
24
26

30
31
32
33

..•
2.3.2. Hierarchical model 33

2.3.3. Network model 33

2.3.4. Relational model 34

2.3.4.1. Relational operations 35

2.3.5. Dimensional model 36

2.3.6. Object database models 37

2.4. DATABASE INTERNALS 37

2.4.1. 1 Indexing 38

2.4.2. Transactions and concurrency 38

2.4.3. Replication 39

2.5. APLICATIONS OF DATABASE 39

CHAPTER 3
3. (Description abouth project) 40

3.1. Password Menu 40

3.2. Password Menu 41

3.3. Main Menu 42

3.4. Payment Menu 43

3.5. Introduction Menu 44

3.6. Daily Report Menu 45

3.7 Paradox7 Database Menu 46

3.8. Paradox7 Database (For Designs) Menu 47

CHAPTER4
CONCLUSION 48

REFERENCES 49

4.1.APPENDIX 50

iv

•
INTRODUCTION

This project is register child which uses P ARADOX7 quarries. This program was

prepared by using Borland Delphi 6 and P ARADOX7.

The subjects chapter by chapter so let us go through the overview the chapters in breif:

In the first Borland Delphi 6 programming language is described, its properties,
components and some examples, I used Borland Delphi 6 in my project, because I find
it easy and I liked its coding system. Borland Delphi 6 for applications

In the Second Chapter I described Database system, I used P ARADOX7 data
base system in my program with Borland Delphi 6.

Third Chapter is About the project , how we create it, its forms and using the
program

Finally, the last chapter is the explanation of the program followed by the
Appendices. So by developing and moderating of technology our program can be
developed and updated. Also new properties could be added in to the program in the
future.

V

•
CHAPTER 1

l .BASIC CONCEPT OF DELPHI

1.1.Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums

I thought it was time to write a good introductory article for Delphi

1.2.What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the tools

you need to develop, test and deploy Windows applications, including a large number of

so-called reusable components.

Borland Delphi, provides a cross platform solution when used with Borland Kylix -

Borland's RAD tool for the Linux platform.

1

•
1.2.1.Delphi Compliers

There are two types complier for Delphi

• Turbo Delphi : Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own Visual Component Framework.

• Turbo Delphi for .NET: Free industrial strength Delphi application

development environment and compiler for the Microsoft .NET platform.

1.2.2. What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

2

•

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3.History Of Delphi

Delphi was one of the first of what came to be known as "RAD" tools, for Rapid

Application Development, when released in 1995 for the 16-bit Windows 3.1 . Delphi

2, released a year later, supported 32-bit Windows environments, and a C++ variant,

C++ Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was Anders

Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on Visual

J++ and subsequently became the chief designer of C Sharp programming languagelC#

and a key participant in the creation of the Microsoft .NET Framework.

In 2001 a Linux version known as Kylix programming toolJKylix became available.

However, due to low quality and subsequent lack of interest, Kylix was abandoned after

version 3.

Support for Linux and Windows cross platform development (through Kylix and the

CLX component library) was added in 2002 with the release of Delphi 6.
3

Delphi 8, released December 2003, was a .NET -only release that allowed devel

to compile Delphi Object Pascal code into .NET Microsoft Intermediate

Languagellvlxll. . It was also significant in that it changed its IDE for the first t:i:r

from the multiple-floating-window-on-desktop style IDE to a look and feel sun

Microsoft's Visual Studio.NET.

Although Borland fulfilled one of the biggest requests from developers (.NET S1.:

it was criticized both for making it available too late, when a lot of former Delp}:

developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 als

significant high-level features of the c sharplC# language, as well as many of th

appealing features of Microsoft's Visual Studio IDE. (There were also concerns

the future of Delphi Win32 development. Because Delphi 8 did not support Win

Delphi 7 .1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET develoj

in a single IDE, reiterating Borland's commitment to Win32 developers. Delphi:

includes design-time manipulation oflive data from a database. It also includes.

improved IDE and added a "for ... in" statement (like C#'s foreach) to the lang

However, it was criticized by some for its bugs; both Delphi 8 and Delphi 2005 l

stability problems when shipped, which were only partially resolved in service p

In late 2005 , Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable

Delphi 8 or Delphi 2005 when shipped, and improved even more after the servi

and several hotfixes.

On February 8, 2006, Borland announced that it was looking for a buyer for it

and database line of products, which include Delphi, to concentrate on its Appli

Lifecycle Management.Al.M line. The news met with voluble optimism from th

remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of then

spun off company) of Borland Software Corporation released single language ve
4

•
of Borland Developer Studio, bringing back the popular "Turbo" moniker. The Turbo

product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo C++, and

Turbo C#. Each version is available in two editions: "Explorer"—a free

downloadable version—and "Professional"—a relatively cheap (US$399)

version which opens access to thousands of third-party components. Unlike earlier

"Personal" editions of Delphi, new "Explorer" editions can be used for commercial

development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

1.2.4.Advantages&Disadvantages Delphi

== Advantages==

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low­

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL
. . . versiomng issues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source compatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily

enabling dual-platform development and deployment

5

• Cross FBC - a sister project to CrossKylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programmingjpolymorphism

•

Disadvantages

• Limited cross-platform capability for Delphi itself. Compatibles provide

more architecture/OS combinations

• Access to platform and third party libraries require header files to be

translated to Pascal. This creates delays and introduces the possibilities of
errors in translation.

• There are fewer published books on Delphi than on other popular

programming languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonality and predictability have suffered

1.3. Delphi 6 Editions

There are 3 editions in Delphi 6 :

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows

development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily

integrate Web Services into client-side applications.

6

•
• Delphi Enterprise - includes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a

snap.

This Program will concentrate on the Enterprise edition ..

1.3.1. Delphi 6 Archite

Delphi 6 Architect is designed for professional enterprise developers who need to adapt

quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

facing Web applications with executable state diagrams, object-relational mapping, and

transparent persistence.

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and includes

the complete ECO III framework, including new support for ECO State Machines

powered by State Chart visual diagrams, and simultaneous persistence to multiple and

mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2.Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install, you only have one choice "Delphi 6":

7

A

"' ~~ "" ~
,~Rhi;~:~tiJl11ili~i~~ite~ef;!:!HbU.!](!~'.r, , . . ""' j,, • , • ,, ., , , ,·,<', , , , • .Jill

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key

(the two you got from inside a Cd rom driver).

Please enter the serial number and authorization key found on your Delphi CD,

~er.ial Number:

I l:~I ~WI I
cfl_iJthorization,Key: .c=J-c=J

[< Back J [11Je_;;t2]J [Cancel I

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen will popup:
8

•

license .' Agreement

Please read the following license agreement carefully.

BORI.Jl,.ND DELPHI ENTERPRISE VERSION 6

BOPJ . .i:.,.ND NO-NONSENSE LICENSE ST A TEMENT AND LIMITED W AP,.Ri·,NTY

IMPORT ANT - READ CAREFULLY

l·This license statement and limitedwananty constitutes a legal agreement ("License
Agreement") between you (either as an individual 01 a single entity) and Borland
Is oftware Corp oration ("Borland") for the soft ware pro duct ("Software") identified

! above, including·any software, media, and accompanying on-line or printed
documentation.

O:r accept thia,\~erms in theJic:ense,a,gr.eiment

I do-not :accept the terms.n the license ·agreement

-
> 1 Cancel] ·---=-

Figure 1.3 Lisanse Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

Choose the setup type that best suits your needs,

Pieeseselect ·a ·setup type,

'®Typical
Program,will be.instelled-wtth the.rnost.coromon-options" .. 'Recommended

,,f.or;most.:users. , ,

a.compact
·· Pror;ir am will.bedmstalled,with .the;:minimum r ecuir ed.options.

Ocustom
· Chcose-which- pr.ogram features you want,installed and where 'they.will
be iiastalled. Recommended for .advanced users.

Bc4t.'land ----------·

j < Back][. Next> ~ J Cancel j

Figure 1.4.SetUp Type

9

,,i\~ory~!'Jl!~~ljif!J,~ ·,, .llPJ}i~J;1tit,iip1,1, -it.~~t,mn -!lt~~n ~, . ~f§J~J ,
j

Choose \lisiBroker
Choose the version of VisiBroker which should be installed, D

•.. . ··i·· ... '.·,,. '™!

@ \lisiBroker4·(IDL2PA5;C:ORBA solution)
install· VisiBr.okerd and:IDL2PASDelphi components. DII .support .is not .provided. This.will
detect and, if necessary, vJilkinstallJava .. Ruritime.Environmel'ltT;-2.2:

CWisiBroker .3,3 .(OJI CORBA solution)
InstcillsNisiBr'oker -3 :3-for'Delphi · andDelphLCORBA-.components .':T:his optlon.provldes
swpportcfori.DII and client'. and,severssii;le,IDL2Pas.

0No ",\lisiBroker /rnRBA Suppqr.t

Figure 1.5 Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu in the

Programs section of the Start menu, leading to the main Delphi 6 Enterprise program

plus some additional tools.

fm Borland Delphi 6 ~
- -------·- ---·=------ . ~ Help ~ \LS.Start Menu Screen

Delphi 6
Image Editor
Register Mow

Figure 1.6.Start Menu

For a faster access to Delphi, create a shortcut on the Windows Desktop.

1.4. A Tour Of The Environment

10

•
This chapter explains how to start Delphi and gives you a quick tour of the main parts

and tools of the Integrated Development Environment(IDE)

1.4.1. Running Delphi For The First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) if

a folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

011 Borland Delphi 6 l!iliJ 13
=·

file. I.dit Yi~w," I,ao F.2vorites J:ielp

Borland Delphi 6
r.~ - {illi
Help Delphi 6 Image Editor Register Now

Figure 1.7.Borland Delphi 6 Folder

1.4.2. The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs I Borland

Delphi 6 I Delphi 6 from the Windows Start menu.

11

When Delphi· starts (it could even take one full minute to start - depending on your ·

hardware performance) you are presented with the IDE: the user interface where you

can design, compile and debug your Delphi projects.
·--\

Figure 1.8.IDE

Like most other development tools (and unlike other Windows applications), Delphi

IDE comprises a number of separate windows.

Some of the facilities that are included in the "Integrated Development Environment"

(IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

12

1.4.3. The Menus & Toolbar ,,

The main window, positioned on the top of the screen, contains the main menu, toolbar

and Component palette.

.. -.

component palette

Figure 1.9.Menu ,Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll see in

some of the future chapters what exactly is a Delphi project). The menu bar includes a

dozen drop-down menus - we'll explain many of the options in these menus later

through this course. The toolbar provides a number of shortcuts to most frequently used

operations and commands - such as running a project, or adding a new form to a project.

To find out what particular button does, point your mouse "over" the button and wait for

the tooltip. As you can see from the tooltip (for example, point to [Toggle Form/Unit]),

many toolbuttons have keyboard shortcuts ((F12]).

The menus and toolbars are freely customizable. I suggest you to leave the default

arrangemen,t while working through the chapters of this course.

1.4.4. The Component Palette

You are probably familiar with the fact that any window in a standard Windows
application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components).Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

13

•
click to see Win32 controls

click the arrow to see more controls on a page

Figure 1.10.Component Palatte

Depending on the version of Delphi (assumed Delphi 6 Personal through this course),

you start with more than 85 components at your disposal - you can even add more

components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the function they

perform. Each page tab in the Component palette displays a group of icons representing

the components you can use to design your application interface. For example, the

Standard and Additional pages include controls such as an edit box, a button or a scroll

box.

To see all components on a particular page (for example on the Win32 page) you simply

click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

1.4.5. The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Forml. This form can be renamed, resized

and moved, it has a caption and the three standard minimize, maximize and close

buttons. As you can see a Delphi form is a regular Windows window

14

TForml.FormCreate(Sencter: TObject);

[end ,

Fig.1.11.Code Editor Window

If the Forml is the active window and you press [F12], the Code Editor window will be

placed on top. As you design user interface of your application, Delphi automatically

generates the underlying Object Pascal code. More lines will be added to this window as

you add your own code that drives your application. This window displays code for the

current form (Forml); the text is stored in a (so-called) unit - Unitl. You can open

multiple files in the Code Editor. Each file opens on a new page of the Code editor, and

each page is represented by a tab at the top of the window.

1.4.6. The Object Inspector

Each component and each form, has a set of properties - such as color, size, position,

caption - that can be modified in the Delphi IDE or in your code, and a collection of

events - such as a mouse click, keypress, or component activation - for which you can

specify some additional behavior. The Object Inspector displays the properties and

events (note the two tabs) for the selected component and allows you to change the

property value or select the response to some event.

15

Figure 1.11.0bject Inspector

For example, each form has a Caption (the text that appears on it's title bar). To change

the caption of Forml first activate the form by clicking on it. In the Object Inspector

find the property Caption (in the left column), note that it has the 'Forml' value (in the

right column). To change the caption of the form simply type the new text value, like

'My Form' (without the single quotes). When you press [Enter] the caption of the form

will change to My Form.

Note that some properties can be changed more simply, the position of the form on the

screen can be set by entering the value for the Left and Top properties - or the form can

be simply dragged to the desired location.

1.4.7. The Object TreeView

Above the Object Inspector you should see the Object TreeView window. For the

moment it's display is pretty simple. As you add components to the form, you'll see that

it displays a component's parent-child relationships in a tree diagram. One of the great

features of the Object Tree View is the ability to drag and drop components in order to

change a component container without losing connections with other components.

16

l±l--~ Default {Session}
/,---~ Edit1
; ··laJ Edit2
1--lli!I Edit3
!····l2J lmage1
(-~ lmage3
L .. ~ lmage4
!····19 lmage5
i-···4 lmagelist1
L .. 4 lmagelist2
I···· tfil Label1
,---~ Label?
i .; Label3
L. .. J~I I :.holA

Figure 1.12.0bject Tree View

The Object Tree View, Object Inspector and the Form Designer (the Forml window

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focussed in the Object Tree View.

1.4.8.Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere wi.thi

a class declaration; then press ctrl+Shift+c, or right-click and select Complete Clas

at Cursor. Delphi automatically adds private read and write specifiers to the

declarations for any properties that require them, then creates skeleton code for all the

class's methods. You can also use Class Completion to fill in class declarations for

methods you've already implemented.

To configure Class Completion, choose Toolsjlinvironment Options and click the

Explorer tab.

17

•

Typelibrary I EnvironmentVariables l DelphiDcecl I Internet l
Prelerences I '.Designer I Obiecl inspector I Palette J Library Explorer

Explorer options
P' $utomatically_show_Explorei

P' H ighlighl jncomplete class items

r show ,!eclar a lion syntax

.Explorer cajegories:

~
21 Protected
0 Public
~ Published
[~r Field
it] Properties

Methods
Classes

@ Interfaces
0 Procedures
I~ 'Types
~ Vanables/Conslanls
~ Uses

f Class·completion option -----1

I~ E'.~s_h_in_c~:~le~e~r~~~-rt_ie_s __ J

[~ti~l:~~::er;e_~_~_i;~-----·~-r~- ~§:lobals J
0 ti Virluals
0 ,, Statics

Inherited
Introduced

(,' .Eroiecl symbols only
(' A]I symbols

I __ DK 'Cancel]::!elp

Fig.1.13.Class

1.4.9.Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in your

code. The debugger lets you control program execution, watch variables, and modify

data values while your application is running. You can step through your code line by

line, examining the state of the program at each breakpoint.

18

~ t Run

~ Attach to Process.,,

TfJ Parameters .. ,

Ix_ Register Active>:: Server
~ Unreg15ter Active>:: Serve1

Install COM+ Otqect:;

F9

jl Choose any of the debugging
commands from the Run menu.

Some commands are also
available on the toolbar.

· o" Step Over

5 Trace Into
~~ Trace to Next Source Line

I]~ Run to Cursor
6' Run Until Return
•Ii Show Execution Point

II Program Pause

ml Program Reset

F8 f
F7

Shift+F7

F4

Shift+FS

Ctrl+F2

' Inspect .. ,
~ Evaluate/Modify,, ,

~ Add Watch.,.

Add Breakpoint

Ctrl+F7

Ctrl+FS

Figurel.14.Run

To use the debugger, you must compile your program with debug information. Choose

ProjectfOptions, select the Compiler page, and check Debug Information. Then you can

begin a debugging session by running the program from the IDE. To set debugger

options, choose ToolsfDebugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,

Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing

ViewfDebug Windows. To learn how to combine debugging windows for more

convenient use, see "Docking tool windows".

1.4.10.Exploring databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you work

directly with a remote database server during application development. For example,

you can create, delete, or restructure tables, and you can import constraints while you

are developing a database application.

19

•

Object Edit View Options Help

(a, X .. --:, a

,_,, _
All Database Aliases

D alabases I Configur a lion !
J Definition of ridvan

Definition · I
E!· ~ Databases

I£ ·o dBASE Files
:fr ~~ DBDEMOS
Fi! ·~~ DelaullDD
it @' Excel Files
B:l·"A'~ IBLocal
i:fr·o MS Access Database
ct+,·A'tjl'.B

STANDARD
PARADOX

Type
DEFAULT DRIVER
ENABLE BCD
PATH

FALSE
C: \Documents and Sellings\l\dminislralor\D esklop\com400\dala

Figure 1.15.SQL Explorer

1.4.11.Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose Filejl-lew to

display the New Items dialog when you begin a project. Check the Repository to see if

it contains an object that resembles one you want to create.

20

•

Data.Modules I Business I WebSnap l \.VebS.ervices I - Corbe r
N .ew />.cfiveX I Mtlltitier I Projecti I forms I Dialogs I Projects I

ii
Batch File CL>(Component Console

Application Application

Control Panel Control Panel Data Module DLL Wizard Form
Application Module

~I
~

Frame Package Project Group Report Resource D LL
Wizard

I OK !
GP C

Cancel

Figure 1.16.New Item

You can add your own objects to the Repository to facilitate reusing them and sharing

them with other developers. Reusing objects lets you build families of applications with

common user interfaces and functionality; building on an existing foundation also

reduces development time and improves quality. The Object Repository provides a

central location for tools that members of a development team can access over a

network.

1.5.Programming With Delphi

The following section provide an overwiew of software development with Delphi.

1.5.1.Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder called Seniha in the Projects directory off the main Delphi

directory.

2. Open a new project.

21

Object Edit View Options Help

All Database Aliases

Databases j Configuration j Definition j
a-~ Databases

1£ :'§' dB ASE Files
Ef: ~e DBDEMOS
1+1-ie DetaultDD
i± @' Excel Files
1±1--fe IBLocal
[±] -@' MS Access Database
Etl··,A'~-

Type
DEFAULT DRIVER
ENABLE BCD
PATH

STANDARD
PARADOX
FALSE
[:\Documents and Sellings\Administrator\Desktop\com400\data

I

Figure 1.15.SQL Explorer

1.4.11. Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose FilejNew to

display the New Items dialog when you begin a project. Check the Repository to see if
it contains an object that resembles one you want to create.

20

•

DateModules I Business I WebSncip I WebServices I .Corba f
Ne.w AdiveX I Multitier I 2 Project1 I Forms I D.ialogs I Projects I
II ii Cl ~

·~

arm Batch File CL>< Component Console
Application .t..pplication

w
Control Panel Control Panel Data Module DLL wizerd Form
Application Module

~I
~

Frame F' a ck age Project Group Report Resource DLL
Wizard

r: Goov r Jnheril r

I= 'OK ·~ Cancel I J:!elp, ,·1,

Figure 1.16.New Item

You can add your own objects to the Repository to facilitate reusing them and sharing

them with other developers. Reusing objects lets you build families of applications with

common user interfaces and functionality; building on an existing foundation also

reduces development time and improves quality. The Object Repository provides a

central location for tools that members of a development team can access over a

network.

1.5.Programming With Delphi

The following section provide an overwiew of software development with Delphi.

1.5.1.Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder called Seniha in the Projects directory off the main Delphi

directory.

2. Open a new project.

21

Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose Filelblew Application to

create a new project.

When you open a new project, Delphi automatically creates the following files.

• Projectl .DPR: a source-code file associated with the project. This is called a

project file.

• Unitl .PAS : a source-code file associated with the main project form. This is

called a unit file.

• Unitl .DFM : a resource file that stores information about the main project form.

This is called a form file.

Each form has its own unit and form files.

3. Choose File!Save All to save your files to disk. When the Save dialog appears,

navigate to your Seniha folder and save each file using its default name.

Later on, you can save your work at any time by choosing Filelxave All.

When you save your project, Delphi creates additional files in your project directory.

You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named Forml

by default. You'll create the user interface and other parts of your application by placing

components on this form.

22

Figure 1.17.Form Screen

The default form has maximize , minimize buttons and a close button , and a control

menu

Next to the form, you'll see the Object Inspector, which you can use to set property

values for the form and components you place on it.

The drop-down list at the top of the Object Inspector shows the current selected

object.when an object is sellected the Object Inspector show its properties.

1.5.1.1. Setting Property Values

When you use the Object Inspector to set properties, Delphi maintains your source code

for you. The values you set in the Object Inspector are called design-time settings.

For Example; Set the background color of Form I to Aqua.

Find the form's Color property in the Object Inspector and click the drop-down list

displayed to the right of the property. Choose clAqua from the list.

23

1.5.2. Adding objects to the form •

The Component palette represents components by icons grouped onto tabbed pages.

Add a component to a form by selecting the component on the palette, then clicking on

the form where you want to place it. You can also double-click a component to place it
in the middle of the form.

,1r_0"_ r;d,~ 2earch ~iew .~roie~. &~n .. ~omponent_Qataba:8_ Iools ~ndow _t!elp.J _fl~~~:'. ..•.•... ~J~~~J
i CD ~ • ·~ I"~:~ !;~c~/ i<~I ·. tanda'.d lA~!=n~~j VJi~32l Sv.st:j Dat~Accessl Dat:C.on~id dbEx~~~sl!;'.aSnao,\BD! j ADO j lnterBase ~
.!1 J§il \TI l:tE I · -~ · II I to ~Et d l ·~ Jg ·!ff ·! 'A Jabf i ® ,,ix @, ~,j~ = LJ l~Ji Ori

11

Componont palette tabs
Components

Figure 1.18.Standart Button

1.5.3.Add a Table and a StatusBar to the form:

Drop a Table component onto the form.
•t.1

Click the BDE tab on the Component palette. To find the Table component, point at an

icon on the palette for a moment; Delphi displays a Help hint showing the name of the
component.

Fig.1.19.BDE Component palette

When you find the Table component, click it once to select it, then click on the form to

place the component. The Table component is nonvisual, so it doesn't matter where you

24

e object Tablel by default. (When you point.to the component on

its name--Tablel--and the type of object it is=TTahle.t

. ' ' ~·· ' ' ' ...

• ': '.'41",•.
. '·1/r,' •·.,

·f

··•··. t

... •.•:•·"" .t.'·

.,

._.t,_ ·•\ ,·_/4

•"#,• •••

• ...

• •. -.I,.

Figure 1.20.Table In The Form

Each Delphi component is a class; placing a component on a form creates an instance of

that class. Once the component is on the form, Delphi generates the code necessary to
construct an instance object when your application is running.

Set the DatabaseName property ofTablel to DBDEMOS. (DBDEMOS is an alias to the
sample database that you're going to use.)

Select Tablel on the form, then choose the DatabaseName property in the Object
Inspector. Select DBDEMOS from the drop-down list.

25

Properties I· Events J

J •.•.... {~~0h~:&;ttJtf ::.-··········· ::::·························· ~, ~- C~nstrai~t·~········) iT.Ch~;;ki:~·~,st·r~i~,t-~j
ro;;;tabaseN amei DB DEMOS
' Defaultlndex dBASE Files

"E:~;;i~~y~~'"-- .. <~ tEt;1i•ffirllil
ill, · Fi.;;ldb.;;{;· DefaultDD · ····· ···················· Excel Files

Filtered IBLocal I~
j@fl''.iiti~Q.~ti~:n.s. "' ~e~i~~cess Database ·

, I ndexD efs .
:•r::·:::~:t•:t~:tf~·"·····t\~:;ct.;;~Fii.;;-;j:·····"······

·lndexName
"'t0.~:~~.e·;fiei~i:~4
l'v1 ,::1sterS ource
E~~.;; ··:::~:: . Jf:;;;bi;;,T :::::: .. J~

llliAII ~1-.~.,,~ ---------------)

Filter

Fig.1.21.Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component palette.

This adds a status bar to the bottom of the application.

Set the Auto Hint property of the status bar to True. The easiest way to do this is to

double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to

True allows Help hints to appear in the status bar at runtime.)

1.5.4. Connecting to a Database

The next step is to add database controls and a DataSource to your form.

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is nonvisual, so it doesn't

matter where you put it on the form. Set its DataSet property to Tablel.

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

then expand it by dragging its upper right comer.

26

•
If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure :

The Data Control page on Component palette holds components that let you view
database tables.

't "''·
jl',• •••. , ••.••

, . . ~,·

.. B

•.••.•.•• •c>-•. •.•
. .;r;,,;.

,. • "·' •·•. t • + "'· • • • •1·

"1 ,.,

, .

Figure 1.22.DBGrid In The Form

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them

all to True.

4. Set the DataSource property ofDBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Table] object you placed on the form earlier.

27

••
5. Select the Tablel object on the form, then set its TableName property to

BIOLIFE.DB. (Name is still Tablel .) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB database

table. If the grid doesn't display data, make sure you've correctly set the properties of all

the objects on the form, as explained in the instructions above. (Also verify that you

copied the sample database files into your ... \Borland Shared\Data directory when you

installed Delphi.)

: 'IF:§1: EJ-tl: :;.·, . . ~. ,._·,,I· ---' . _:_:J .

·· 1·

Figure 1.23.Show Table

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

28

•
points to a DataSource object, which in tum points to a dataset object (in this

case, a Table). Finally, the dataset (Tablel) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

data-aware control
(Grid)

dataset
(Table) BDE database DataSource

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

29

•
CHAPTER 2

2.1 INTRODUCTION TO DATABASE

A database is an organized collection of data. The term originated within thecomputer

industry, but it s meaning has been broadened by popular use to the extent that the European

Database Directive includes non-electronic databases within its definition. This. article is

confined to a more technical use of the term; though even amongst computing professionals

some attach a much wider meaning to the word than others.

One possible definition is that a database is a collaction of records stored in a computer in a

systematic way, so that a computer program can consult it to answer questions. For better

retrieval and sorting , each record is usually organized as a set of data elements. The items

retrieved in answer to queries become information that can be used to make decisions. The

computer program used to manage and query a database is known as a database management

system (DBMS). The properties and design of database system are included in the study of

information science.

The central concept of a database is that of a collection of records, or pieces of knowledge.

Typically, for a given database, there is a structural description of the type of facts held in that

database: this description is known as a schema. The schema describes the objects that are

represented in the database, and the relationships among them. There are a number of

different ways of organizing a schema, that is, of modeling the database structure: these are

known as database models (or data models). The model in most common use today is the

relational model, which in layman's terms represents all information in the form of multiple

related tables each consisting of rows and columns (the true definition uses mathematical

terminology). This model represents relationships by the use of values common to more than

one table. Other models such as the hierarchical model and the network model use a more

explicit representation of relationships.

The term database refers to the collection of related records, and the software should be

referred to as the database management system or DBMS. When the context is unambiguous,

however, many database administrators and programmers use the term database to cover both

meanmgs.

30

•
Many professionals would consider a collection of data to constitute a database only if it has

certain properties: for example, if the data is managed to ensure its integrity and quality, if it

allows shared access by a community of users, if it has a schema, or if it supports a query

language. However, there is no agreed definition of these properties.

Database management systems are usually categorized according to the data model that they

support: relational, object-relational, network, and so on. The data model will tend to

determine the query languages that are available to access the database. A great deal of the

internal engineering of a DBMS, however, is independent of the data model, and is concerned

with managing factors such as performance, concurrency, integrity, and recovery from

hardware failures. In these areas there are large differences between products.

2.2 HISTORY

The earliest known use of the term 'data base' was in June 1963, when the System

Development Corporation sponsored a symposium under the title Development and

Management of a Computer-centered Data Base. Database as a single word became common

in Europe in the early 1970s and by the end of the decade it was being used in major

American newspapers. (Databank, a comparable term, had been used in the Washington Post

newspaper as early as 1966.)

The first database management systems were developed in the 1960s. A pioneer in the field

was Charles Bachman. Bachman's early papers show that his aim was to make more effective

use of the new direct access storage devices becoming available: until then, data processing

had been based on punched cards and magnetic tape, so that serial processing was the

dominant activity. Two key data models arose at this time: CODASYL developed the network

model based on Bachman's ideas, and (apparently independently) the hierarchical model was

used in a system developed by North American Rockwell, later adopted by IBM as the

cornerstone of their IMS product.

The relational model was proposed by E. F. Codd in 1970. He criticized existing models for

confusing the abstract description of information structure with descriptions of physical

access mechanisms. For a long while, however, the relational model remained of academic

interest only. While CODASYL systems and IMS were conceived as practical engineering

solutions taking account of the technology as it existed at the time, the relational model took a

31

•
much more theoretical perspective, arguing (correctly) that hardware and software technology

would catch up in time. Among the first implementations were Michael Stonebraker's Ingres

at Berkeley, and the System R project at IBM. Both of these were research prototypes,

announced during 1976. The first commercial products, Oracle and DB2, did not appear until

around 1980. The first successful database product for microcomputers was dBASE for the

CP/M and PC-DOS/MS-DOS operating systems.

During the 1980s, research activity focused on distributed database systems and database

machines, but these developments had little effect on the market. Another important

theoretical idea was the Functional Data Model, but apart from some specialized applications

in genetics, molecular biology, and fraud investigation, the world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some success in fields

where it was necessary to handle more complex data than relational systems could easily cope

with, such as spatial databases, engineering data (including software engineering repositories),

and multimedia data. Some of these ideas were adopted by the relational vendors, who

integrated new features into their products as a result.

The 2000s, the fashionable area for innovation is the XML database. As with object

databases, this has spawned a new collection of startup companies, but at the same time the

key ideas are being integrated into the established relational products. XML databases aim to

remove the traditional divide between documents and data, allowing all of an organization's

information resources to be held in one place, whether they are highly structured or not.

2.3 DATABASE MODELS

Various techniques are used to model data structure. Most database systems are built around

one particular data model, although it is increasingly common for products to offer support for

more than one model. For any one logical model various physical implementations may be

possible, and most products will offer the user some level of control in tuning the physical

implementation, since the choices that are made have a significant effect on performance. An

example of this is the relational model: all serious implementations of the relational model

allow the creation of indexes which provide fast access to rows in a table if the values of

certain columns are known.

32

A data model is not just a way of structuring data: it also defines a set of operations that can

be performed on the data. The relational model, for example, defines operations such as

select, project, and join. Although these operations may not be explicit in a particular query

language, they provide the foundation on which a query language is built.

2.3.1 Flat model

This may not strictly qualify as a data model, as defined above. The flat (or table) model

consists of a single, two-dimensional array of data elements, where all members of a given

column are assumed to be similar values, and all members of a row are assumed to be related

to one another. For instance, columns for name and password that might be used as a part

of a system security database. Each row would have the specific password associated with an

individual user. Columns of the table often have a type associated with them, defining them as

character data, date or time information, integers, or floating point numbers. This model is,

incidentally, a basis of the spreadsheet.

2.3.2 Hierarchical model

In a hierarchical model, data is organized into a tree-like structure, implying a single upward

link in each record to describe the nesting, and a sort field to keep the records in a particular

order in each same-level list. Hierarchical structures were widely used in the early mainframe

database management systems, such as the Information Management System (IMS) by IBM,

and now describe the structure of XML documents. This structure allows one 1 :N relationship

between two types of data. This structure is very efficient to describe many relationships in

the real world; recipes, table of contents, ordering of paragraphs/verses, any nested and sorted

information. However, the hierarchical structure is inefficient for certain database operations

when a full path (as opposed to upward link and sort field) is not also included for each

record.

2.3.3 Network model

The network model (defined by the CODASYL specification) organizes data using two

fundamental constructs, called records and sets. Records contain fields (which may be

organized hierarchically, as in the programming language COBOL). Sets (not to be confused

with mathematical sets) define one-to-many relationships between records: one owner, many

members. A record may be an owner in any number of sets, and a member in any number of

sets.

33

•
The operations of the network model are navigational in style: a program maintains a current

position, and navigates from one record to another by following the relationships in which the

record participates. Records can also be located by supplying key values.

Although it is not an essential feature of the model, network databases generally implement

the set relationships by means of pointers that directly address the location of a record on disk.

This gives excellent retrieval performance, at the expense of operations such as database

loading and reorganization.

2.3.4 Relational model

The relational model was introduced in an academic paper by E. F. Codd in 1970 as a way to

make database management systems more independent of any particular application. It is a

mathematical model defined in terms of predicate logic and set theory.

The products that are generally referred to as relational databases in fact implement a model

that is only an approximation to the mathematical model defined by Codd. The data structures

in these products are tables, rather than relations: the main differences being that tables can

contain duplicate rows, and that the rows (and columns) can be treated as being ordered. The

same criticism applies to the SQL language which is the primary interface to these products.

There has been considerable controversy, mainly due to Codd himself, as to whether it is

correct to describe SQL implementations as "relational": but the fact is that the world does so,

and the following description uses the term in its popular sense.

A relational database contains multiple tables, each similar to the one in the "flat" database

model. Relationships between tables are not defined explicitly; instead, keys are used to match

up rows of data in different tables. A key is a collection of one or more columns in one table

whose values match corresponding columns in other tables: for example, an Employee table

may contain a column named Location which contains a value that matches the key of a

Location table. Any column can be a key, or multiple columns can be grouped together into a

single key. It is not necessary to define all the keys in advance; a column can be used as a key

even if it was not originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key. Typically

one of the unique keys is the preferred way to refer to a row; this is defined as the table's

primary key.

34

• A key that has an external, real-world meaning (such as a person's name, a book's ISBN, or a

car's serial number) is sometimes called a "natural" key. If no natural key is suitable (think of

the many people named Brown), an arbitrary key can be assigned (such as by giving

employees ID numbers). In practice, most databases have both generated and natural keys,

because generated keys can be used internally to create links between rows that cannot break,

while natural keys can be used, less reliably, for searches and for integration with other

databases. (For example, records in two independently developed databases could be matched

up by social security number, except when the social security numbers are incorrect, missing,

or have changed.)

2.3.4.1 Relational operations

Users (or programs) request data from a relational database by sending it a query that is

written in a special language, usually a dialect of SQL. Although SQL was originally intended

for end-users, it is much more common for SQL queries to be embedded into software that

provides an easier user interface. Many web sites, perform SQL queries when generating
pages.

In response to a query, the database returns a result set, which is just a list of rows containing

the answers. The simplest query is just to return all the rows from a table, but more often, the

rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a join. Conceptually, this is

done by taking all possible combinations of rows (the Cartesian product), and then filtering

out everything except the answer. In practice, relational database management systems rewrite

("optimize") queries to perform faster, using a variety of techniques.

There are a number of relational operations in addition to join. These include project (the

process of eliminating some of the columns), restrict (the process of eliminating some of the

rows), union (a way of combining two tables with similar structures), difference (which lists

the rows in one table that are not found in the other), intersect (which lists the rows found in

35

• both tables), and product (mentioned above, which combines each row of one table with each

row of the other). Depending on which other sources you consult, there are a number of other

operators - many of which can be defined in terms of those listed above. These include semi­

join, outer operators such as outer join and outer union, and various forms of division. Then

there are operators to rename columns, and summarizing or aggregating operators, and if you

permit relation values as attributes (RVA - relation-valued attribute), then operators such as

group and ungroup. The SELECT statement in SQL serves to handle all of these except for
the group and ungroup operators.

The flexibility of relational databases allows programmers to write queries that were not

anticipated by the database designers. As a result, relational databases can be used by multiple

applications in ways the original designers did not foresee, which is especially important for

databases that might be used for decades. This has made the idea and implementation of
relational databases very popular with businesses.

2.3.5 Dimensional model

The dimensional model is a specialized adaptation of the relational model used to represent

data in data warehouses in a way that data can be easily summarized using OLAP queries. In

the dimensional rmodel, a database consists of a single large table of facts that are described

using dimensions and measures. A dimension provides the context of a fact (such as who

participated, when and where it happened, and its type) and is used in queries to group related

facts together. Dimensions tend to be discrete and are often hierarchical; for example, the

location might include the building, state, and country. A measure is a quantity describing the

fact, such as revenue. It's important that measures can be meaningfully aggregated - for

example, the revenue from different locations can be added together.

In an OLAP query, dimensions are chosen and the facts are grouped and added together to
create a summary.

The dimensional model is often implemented on top of the relational model using a star

schema, consisting of one table containing the facts and surrounding tables containing the

dimensions. Particularly complicated dimensions might be represented using multiple tables,
resulting in a snowflake schema.

36

•
A data warehouse can contain multiple star schemas that share dimension tables, allowing

them to be used together. Corning up with a standard set of dimensions is an important part of

dimensional modeling.

2.3.6 Object database models

In recent years, the object-oriented paradigm has been applied to database technology,

creating a new programming model known as object databases. These databases attempt to

bring the database world and the application programming world closer together, in particular

by ensuring that the database uses the same type system as the application program. This aims

to avoid the overhead (sometimes referred to as the impedance mismatch) of converting

information between its representation in the database (for example as rows in tables) and its

representation in the application program (typically as objects). At the same time object

databases attempt to introduce the key ideas of object programming, such as encapsulation

and polymorphism, into the world of databases.

A variety of these ways have been tried for storing objects in a database. Some products have

approached the problem from the application programming end, by making the objects

manipulated by the program persistent. This also typically requires the addition of some kind

of query language, since conventional programming languages do not have the ability to find

objects based on their information content. Others have attacked the problem from the

database end, by defining an object-oriented data model for the database, and defining a

database programming language that allows full programming capabilities as well as

traditional query facilities.

Object databases suffered because of a lack of standardization: although standards were

defined by ODMG, they were never implemented well enough to ensure interoperability

between products. Nevertheless, object databases have been used successfully in many

applications: usually specialized applications such as engineering databases or molecular

biology databases rather than mainstream commercial data processing. However, object

database ideas were picked up by the relational vendors and influenced extensions made to

these products and indeed to the SQL language.

2.4 DATABASE INTERNALS

37

•
. 1 Indexing

of these kinds of database can take advantage of indexing to increase their speed, and this

hnology has advanced tremendously since its early uses in the 1960s and 1970s. The most

on kind of index is a sorted list of the contents of some particular table column, with

inters to the row associated with the value. An index allows a set of table rows matching

me criterion to be located quickly. Various methods of indexing are commonly used; B­

s, hashes, and linked lists are all common indexing techniques.

elational DBMSs have the advantage that indexes can be created or dropped without

hanging existing applications making use of it. The database chooses between many different

strategies based on which one it estimates will run the fastest. In other words, indexes are

transparent to the application or end user querying the database; while they affect

performance, any SQL command will run with or without indexes existing in the database.

Relational DBMSs utilize many different algorithms to compute the result of an SQL

statement. The RDBMS will produce a plan of how to execute the query, which is generated

by analyzing the run times of the different algorithms and selecting the quickest. Some of the

key algorithms that deal with joins are Nested Loops Join, Sort-Merge Join and Hash Join.

Which of these is chosen depends on whether an index exists, what type it is, and its

cardinality.

2.4.2 Transactions and concurrency

In addition to their data model, most practical databases ("transactional databases") attempt to

enforce a database transaction model that has desirable data integrity properties. Ideally, the

database software should enforce the ACID rules, summarized here:

Atomicity: Either all the tasks in a transaction must be done, or none of them. The transaction

must be completed, or else it must be undone (rolled back).

Consistency: Every transaction must preserve the integrity constraints - the declared

consistency rules - of the database. It cannot place the data in a contradictory state.

Isolation: Two simultaneous transactions cannot interfere with one another. Intermediate

results within a transaction are not visible to other transactions.

38

•
Durability: Completed transactions cannot be aborted later or their results discarded. They

must persist through (for instance) restarts of the DBMS after crashes

In practice, many DBMS's allow most of these rules to be selectively relaxed for better

performance.

Concurrency control is a method used to ensure that transactions · are executed in a safe

manner and follow the ACID rules. The DBMS must be able to ensure that only serializable,

recoverable schedules are allowed, and that no actions of committed transactions are lost

while undoing aborted transactions.

2.4.3 Replication

Replication of databases is closely related to transactions. If a database can log its individual

actions, it is possible to create a duplicate of the data in real time. The duplicate can be used to

improve performance or availability of the whole database system. Common replication

concepts include:

Master/Slave Replication: All write requests are performed on the master and then replicated

to the slaves

Quorum: The result of Read and Write requests is calculated by querying a "majority" of

replicas.

Multimaster: Two or more replicas sync each other via a transaction identifier.

2.5 APPLICATIONS OF DATABASES

Databases are used in many applications, spanning virtually the entire range of computer

software. Databases are the preferred method of storage for large multi user applications,

where coordination between many users is needed. Even individual users find them

convenient, though, and many electronic mail programs and personal organizers are based on

standard database technology. Software database drivers are available for most database

platforms so that application software can use a common application programming interface

(API) to retrieve the information stored in a database. Two commonly used database APis are

JDBC and ODBC. A database is also a place where you can store data and then arrange that

data easily and efficiently.

39

CHAPTER3

Description About Project

Figure 3.l(password menu)

3.1 Password Menu
In this section we must enter our password for starting the program.Password of the

program is ersin.

40

Figure 3.2(password menu)

3.2 Password Menu
If we entered wrong password we will this warning message box.We clicking ok and

try the password again.

41

Figure 3.3(main menu)

3.3 Main Menu
In this section we register the child.We enter all details about child in this part. We

save child's physical situation, ability,first coming date and end of date. We have lots of

registered so we add tc number and father name for making search easily.

42

'

Close
}

.•. , •. , ,····.'
;,'<. . . -

. ' ~,.

Figure 3.4(paymentmenu)

3.4 Payment Menu
We can see payment plan, also update,delete,add and take report in this section .. And

again we can use tc number ,we see all the details of payments.

43

,;~· ...• ·~

;..- .. ·"""' •
. ~~

•

Figure 3.5(Introduction menu)

3.5 Introduction Menu

In this part we can see all the details (tc number,name,sumame,mother name,father

name,birth date,birth date,birth place,country) of child,mother and father.We can

make,adding,delete and update processing.And using tc number for finding details.

44

.,.

··~-c·······.· .
.. .

:.:.• . -,

r

Figure 3.6(daily report menu)

3.6 Daily Report Menu
In this part we making search with tc number.And wee see all the details about child.

Like name,surname,decripton about child,coming date,out of time,healthy situation,come with

whom? and out with whom.We can take daily report from this part and adding photos of

child.

45

Figure 3.7(Paradox7 menu)

3.7 Paradox? Database Menu
We can see the tables with the program of paradox database. And making processing

like adding,deleting and updating ..

46

r ·1. Required Field

2 .. Minimum value·

'3. MaXimum value:

·-4..Delaull value:

AssiSt.:. :: ·J

'cancel I Help"

Figure 3.8(Paradox7 Design menu)

3.8 Paradox7 Database (For Design) Menu
In this part we can add,delete column from tables with the program of paradox.And

designate characteristics of the tables.

47

•

CONCLUSION

Crash Program is a useful program for child register and customer register. By using

this program they can record and control childs register and customers register.

The program is easy in use, and everything is in detail, I used borland Delphi 6

Programming Language in building it, also PARADOX7 Database for storing information's.
The program records register operation.

I used many forms in this Project. The program records everything, we can see who is

work in our child and we can see abouth this. Also we can see all information about child.

48

REFERENCES

[1] Yiiksel Inan - Nihat Demirli Delphi 7 Learning Book

[2] Ihsan Karagiille Delphi 7 Edition Book

[3] Memik Yanik Borland Delphi- Sistem Yayincilik

[4] http://www.google.com

[5] http://www.wikipedia.org

[6]Ezel Balkan Borland Delphi

[7] http://www.lkeydata.com/sql

49

•.';

•
APENDIX

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, jpeg, ExtCtrls, StdCtrls;

type
TForml = class(TForm)
Image 1: Timage;
Label 1 : TLabel;
Editl: TEdit;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
procedure Labell Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml: TForml;

implementation

uses Unit2;

{$R *.dfm}

procedure TF orm I .Label 1 Click(Sender: TObj ect);
begin
if editl .text='ersin' then
begin
form2.show;
form 1. visible:=false;
end
else
begin
showmessage('Wrong Password');
editl.Text:=";

50

end;
end;

•

procedure TForml.FormCreate(Sender: TObject);
begin
editl.Text:=";
end;

end.

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, jpeg, ExtCtrls, DB, DBTables, ComCtrls;

type
TForm2 = class(TForm)
Image 1: Timage;
DBEditl: TDBEdit;
DBEdit2:. TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label9: TLabel;
Labell 0: TLabel;
DBMemol: TDBMemo;
Label14: TLabel;
DBEdit9: TDBEdit;
Label 15: TLabel;
DBComboBoxl: TDBComboBox;
Label16: TLabel;
DBMemo2: TDBMemo;
Label20: TLabel;
DBComboBox3: TDBComboBox;
DBEditl 0: TDBEdit;
Label23: TLabel;
Label24: TLabel;
DBEditl 1: TDBEdit;
Label?: TLabel;
Label6: TLabel;

51

DBEdit7: TDBEdit;
Label8: TLabel;
Label 11: TLabel;
DBEdit8: TDBEdit;
DBEdit12: TDBEdit;
Label13: TLabel;
Label12: TLabel;
Label26: TLabel;
Label27: TLabel;
Label28: TLabel;
ComboBox 1 : TComboBox;
Label18: TLabel;
Query 1 : TQuery;
DataSource 1: TDataSource;
Labell 9: TLabel;
Label29: TLabel;
Label30: TLabel;
Label 1 7: TLabel;
Editl: TEdit;
Label21: TLabel;
Edit2: TEdit;
DateTimePickerl: TDateTimePicker;
Timerl: TTimer;
procedure Label6Click(Sender: TObject);
procedure Label24Click(Sender: TObject);
procedure ComboBoxl Change(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Label19Click(Sender: TObject);
procedure Label29Click(Sender: TObject);
procedure Label30Click(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Edit2Change(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

var
F orm2: TF orm2;

implementation

uses Unitl, Unit3, Unit4, Unit6;

{$R *.dfm}

procedure TForm2.Label6Click(Sender: TObject);
begin

52

queryl .Append;
end;

procedure TForm2.Label24Click(Sender: TObject);
begin
Form 1. Close;
end;

procedure TF orm2. Combo Box 1 Change(Sender: TObj ect);
begin
if (combo box 1.Itemlndex=O) then

begin
form3.Show;
form2.close;
end;

if (combo box 1.Itemlndex= 1) then
begin
form4.Show;
form2.close;

end;

if (combo box 1.Itemlndex=2) then
begin
form6.Show;
form2.close;
end;

end;

procedure TForm2.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARDl ';
Queryl .requestlive:=true;
queryl .SQL.Text:='select * from info';
queryl .Active:=true;
editl.Text:=";
edit2.Text:=";
comboboxl.Text:='Select Category';
end;

procedure TForm2.Label19Click(Sender: TObject);
begin
queryl .Prior;
end;

rocedure TForm2.Label29Click(Sender: TObject);
gm

query 1.N ext;

•

•
end;

procedure TForm2.Label30Click(Sender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are You Sure ?','Waming',36);
if (a=IDYES) then
begin
query 1.Delete;
end;
end;

procedure TForm2.Timerl Timer(Sender: TObject);
begin
datetimepicker l .F ormat:=datetostr(date);
end;

procedure TForm2.Editl Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl .sql.add('select * from info where ctcno like'+#39+(editl .text)+'%'+#39);
queryl .Open;

end;

procedure TForm2.Edit2Change(Sender: TObject);
begin
queryl .close;
queryl.SQL.Clear;
queryl.sql.add('select * from info where fName like'+#39+(editl.text)+'%'+#39);
query 1. Open;

end;

end.

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, jpeg, ExtCtrls, ComCtrls, Mask, DBCtrls, DB, DB Tables,
frxClass, frxDBSet;

type
TForm3 = class(TForm)

54

Imagel: Tlmage;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
DBEdit2: TDBEdit;
Label?: TLabel;
Label8: TLabel;
Label 11 : TLabel;
Label12: TLabel;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
Label9: TLabel;
DBEdit7: TDBEdit;
LabellO: TLabel;
DBEdit8: TDBEdit;
Label6: TLabel;
DateTimePickerl: TDateTimePicker;
ComboBoxl: TComboBox;
Timer2: TTimer;
Query 1 : TQuery;
DataSource 1: TDataSource;
Editl: TEdit;
Label14: TLabel;
Edit2: TEdit;
Label 13: TLabel;
Label 15: TLabel;
Label16: TLabel;
Label 1 7: TLabel;
Labell 8: TLabel;
Label19: TLabel;
frxDBDatasetl: TfrxDBDataset;
frx.Report 1 : Tfrx.Report;
procedure Labell Click(Sender: TObject);
procedure Label2Click(Sender: TObject);
procedure Combo Box 1 Change(Sender: TObj ect);
procedure FormCreate(Sender: TObject);
procedure Timer2Timer(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Label4Click(Sender: TObject);
procedure Label 15Click(Sender: TObject);
procedure Label 16Click(Sender: TObj ect);
procedure Labell 7Click(Sender: TObject);
procedure Edit2Change(Sender: TObj ect);
procedure Label 13 Click(Sender: TObj ect);
procedure Label 18Click(Sender: TObj ect);
procedure Label19Click(Sender: TObject);

55

•

private
{ Private declarations }

public
{ Public declarations }

end;

var
F orm3: TF orm3;

implementation

uses Unit2, Unit4, Unit6, Unitl;

{$R *.dfm}

procedure TF orm3 .Label 1 Click(Sender: TObject);
·begin

form 1. Close;
end;

procedure TForm3.Label2Click(Sender: TObject);
begin
form4.show;
form3. Close;
end;

procedure TForm3.ComboBox1Change(Sender: TObject);
begin
begin
if (comboboxl .Itemlndex=O) then

begin
form2.Show;
form3.close;
end;

begin
if (combo box 1.Itemlndex= 1) then
begin
form4.Show;
form3.close;

end;
begin

if (combo box 1.ltemlndex=2) then
begin
form6.Show;
form3 .close;

end;
end;
end;
end;

56

•

end; •

procedure TForm3.FormCreate(Sender: TObject);
begin
Queryl.DatabaseName:='STANDARDl';
Query l .requestlive:=true;
queryl.SQL.Text:='select * from info';
query I .Active:=true;
editl .Text:=";
edit2. Text:=";
combo box 1. Text:='Select Category';
end;

procedure TForm3.Timer2Timer(Sender: TObject);
begin
datetimepicker l .F ormat:=datetostr(date);
end;

procedure TForm3.Edit1Change(Sender: TObject);
begin
query I .close;
queryl .SQL.Clear;
queryl.sql.add('select * from info where ctcno like'+#39+(editl.text)+'%'+#39);
queryl .Open;

end;

procedure TForm3.Label4Click(Sender: TObject);
begin
queryl .Append;
end;

procedure TForm3.Label15Click(Sender: TObject);
begin
query I .Prior;
end;

procedure TForm3.Label16Click(Sender: TObject);
begin
query I .Next;
end;

procedure TForm3.Labell 7Click(Sender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are You Sure ?','Warning',36);
if (a=IDYES) then
begin
query I .Delete;

57

•
end;
end;

procedure TF orm3 .Edit2Change(Sender: TObj ect);
begin
queryl .close;
queryl .SQL.Clear;
queryl .sql.add('select * from info where fname like'+#39+(edit2.text)+'%'+#39);
query 1. Open;

end;

procedure TForm3.Labe113Click(Sender: TObject);
begin
if dbedit4.text=" then
dbedit4.Text:='O';
dbedit6. Text:=inttostr(strtoint(dbedit7. Text)- (strtoint(dbedit2. text)+ strtoint(dbedit4. text)));
end;

procedure TForm3.Label18Click(Sender: TObject);
begin
frxReportl .ShowReport(true);
end;

procedure TForm3 .Label 19Click(Sender: TObject);
begin
frxreportl .Print;
end;

end.

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, jpeg, ExtCtrls, Mask, DBCtrls, DB, DBTables;

type
TForm4 = class(TForm)
Imagel: Tlmage;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
DBEditl: TDBEdit;

58

Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: TLabel;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
Label 11: TLabel;
DBEdit7: TDBEdit;
Label12: TLabel;
DBEdit8: TDBEdit;
Label13: TLabel;
Label14: TLabel;
Label 15: TLabel;
Labell 6: TLabel;
Label 1 7: TLabel;
Label18: TLabel;
Labell 9: TLabel;
Label20: TLabel;
Label2 l: TLabel;
Label22: TLabel;
Label23: TLabel;
Label24: TLabel;
Label25: TLabel;
Label26: TLabel;
Label27: TLabel;
DBEdit9: TDBEdit;
DBEditl 0: TDBEdit;
DBEditl 1: TDBEdit;
DBEditl2: TDBEdit;
DBEditl 3: TDBEdit;
DBEditl4: TDBEdit;
DBEditl5: TDBEdit;
DBEditl 6: TDBEdit;
DBEditl 7: TDBEdit;
DBEditl8: TDBEdit;
DBEditl 9: TDBEdit;
DBEdit20: TDBEdit;
DBEdit2 l: TDBEdit;
DBEdit22: TDBEdit;
DBEdit23: TDBEdit;
DBEdit24: TDBEdit;
Label30: TLabel;
Label28: TLabel;
ComboBoxl: TComboBox;
Query 1: TQuery;
DataSourcel: TDataSource;

•

59

Editl: TEdit;
Label29: TLabel;
Label3 l: TLabel;
Label32: TLabel;
Label33: TLabel;
Label34: TLabel;
procedure Labell Click(Sender: TObject);
procedure Label29Click(Sender: TObject);
procedure ComboBoxlChange(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Label3 l Click(Sender: TObject);
procedure Label32Click(Sender: TObject);
procedure Label33Click(Sender: TObject);
procedure Label34Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form4: TForm4;

implementation

uses Unit3, Unit5, Unit2, Unit6, Unitl;

{$R *.dfm}

procedure TF orm4.Label 1 Click(Sender: TObject);
begin

forml .close;
end;

procedure TForm4.Label29Click(Sender: TObject);
begin
form5.show;
form4.close;
end;

procedure TForm4.ComboBox1Change(Sender: TObject);
begin
if (combo box 1.Itemlndex=O) then

begin
form2.Show;
form4.close;
end;

60

•

if (combo box 1.Itemlndex= 1) then
begin
form3.Show;
form4.close;

end;

•

if (combo box 1.Itemlndex=2) then
begin
form6.Show;
form4.close;
end;

end;

procedure TForm4.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARD 1 ';
Query 1.requestlive:=true;
queryl.SQL.Text:='select * from info';
queryl .Active:=true;
editl.Text:=";
combo box 1. Text:='Select Category';
end;

procedure TForm4.Editl Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from info where ctcno like'+#39+(editl.text)+'%'+#39);
query 1. Open;

end;

procedure TForm4.Label31 Click(Sender: TObject);
begin
query I .Append;
end;

procedure TForm4.Label32Click(Sender: TObject);
begin
query I .Prior;
end;

procedure TForm4.Label33Click(Sender: TObject);
begin
Queryl.Next;
end;

procedure TForm4.Label34Click(Sender: TObject);
var
a:word;

61

•
begin
a:=application.MessageBox('Are You Sure ?','Waming',36);
if (a=IDYES) then
begin
query 1.Delete;
end;
end;

end.

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, jpeg, ExtCtrls, ComCtrls, DB, DBTables,
ExtDlgs, frx.Class, frxDBSet;

type
TForm6 = class(TForm)
Image 1: Tlmage;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
Label5: TLabel;
Label6: TLabel;
Label?: TLabel;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
Label8: TLabel;
DBComboBoxl: TDBComboBox;
Label9: TLabel;
DBEdit7: TDBEdit;
Labell 0: TLabel;
DBMemol: TDBMemo;
Label 11: TLabel;
Label 12: TLabel;
Label 13: TLabel;
Label14: TLabel;
Label 15: TLabel;
Label16: TLabel;
Label 1 7: TLabel;
DateTimePickerl: TDateTimePicker;

62

• Label 18: TLabel;
Labell 9: TLabel;
ComboBox 1: TComboBox;
Label20: TLabel;
Image2: Tlmage;
Timerl: TTimer;
Timer2: TTimer;
Label21: TLabel;
DBEdit8: TDBEdit;
Query 1: TQuery;
DataSourcel: TDataSource;
Editl: TEdit;
OpenPictureDialogl: TOpenPictureDialog;
Label22: TLabel;
DBEditl: TDBEdit;
frxDBDatasetl: TfrxDBDataset;
frx.Report 1 : Tfrx.Report;
procedure Labell 7Click(Sender: TObject);
procedure ComboBoxlChange(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Timer2Timer(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Labell 1 Click(Sender: TObject);
procedure DataSourcelDataChange(Sender: TObject; Field: TField);
procedure Label12Click(Sender: TObject);
procedure Label 14Click(Sender: TObj ect);
procedure Label20Click(Sender: TObj ect);
procedure Label13Click(Sender: TObject);
procedure Label16Click(Sender: TObject);
procedure Label15Click(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

var
Form6: TForm6;

implementation

uses Unit5, Unit2, Unit3, Unit4, Unitl;

{$R *.dfm}

procedure TForm6.Labell 7Click(Sender: TObject);
begin
forml.Close;

63

end;

procedure TForm6.ComboBox1Change(Sender: TObject);
begin
if (comboboxl .Itemlndex=O) then

begin
form2.Show;
form6.close;
end;

begin
if (combo box 1.Itemlndex= 1) then
begin
form3.Show;
form6.close;

end;
begin

if (combo box 1.Itemlndex=2) then
begin
form4.Show;
form6.close;

end;
end;
end;
end;

procedure TForm6.Timerl Timer(Sender: TObject);
begin
label 18.caption:=timetostr(time);
end;

procedure TForm6.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARD 1 ';
Queryl .requestlive:=true;
queryl.SQL.Text:='select * from info';
queryl .Active:=true;
editl. Text:=";

combo box 1. Text:='Select Category';
end;

procedure TForm6.Timer2Timer(Sender: TObject);
begin
datetimepicker l .F ormat:=datetostr(date);
end;

•

procedure TForm6.Editl Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from info where ctcno like'+#39+(editl.text)+'%'+#39);

64

query 1. Open;

end;

procedure TForm6.Labell 1 Click(Sender: TObject);
begin
queryl .Append;
end;

procedure TForm6.DataSource1DataChange(Sender: TObject; Field: TField);
var
pic:string;
begin
pic:=Queryl .fieldbyname('Picture').AsString;
if pie<>" then
if fileexists (pie) then
image2.Picture.loadfromfile(pic)
else
showmessage ('Dont find picture');
end;

procedure TForm6.Label12Click(Sender: TObject);
begin
query I .Prior;
end;

procedure TForm6.Label14Click(Sender: TObject);
begin
queryl .Next;
end;

procedure TForm6.Label20Click(Sender: TObject);
begin
if openpicturedialogl .Execute then
begin
Queryl .Edit;
Image2.picture.loadfromfile(openpicturedialogl.filename);
Query l .FieldB yN ame('picture') .asstring:=openpicturedialog 1.FileN ame;
Queryl .post;
end;
end;

procedure TForm6.Label13Click(Sender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are You Sure ?','Waming',36);
if (a=IDYES) then
begin
queryl .Delete;

65

end;
end;

procedure TForm6.Labell 6Click(Sender: TObject);
begin
frxreportl .Print;
end;

procedure TForm6.Label15Click(Sender: TObject);
begin
frxReport 1. Show Report(true);
end;

end.

66

•

	Page 1
	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	CHAPTERl
	CHAPTER2
	2.3. DATABASE MODELS
	iii
	3
	6

	Page 1
	Images
	Image 1

	Tables
	Table 1

	Page 2
	Titles
	INTRODUCTION

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	CHAPTER 1
	l .BASIC CONCEPT OF DELPHI
	1.1.Introduction to Delphi
	1.2.What is Delphi?

	Page 4
	Page 5
	Page 6
	Page 7
	Titles
	. . .

	Page 8
	Page 9
	Page 10
	Titles
	I l:~I ~WI I
	.c=J-c=J

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	Ł
	-
	·---=-

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	,,i\~ory~!'Jl!~~ljif!J,~ ·,, .llPJ}i~J;1tit,iip1,1, -it.~~t,mn -!lt~~n ~, . ~f§J~J ,
	D Ł... ··i·· ...
	'.·,,. 'Ž!
	- -------·- ---·=------ .
	1.4. A Tour Of The Environment
	10

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 13
	Titles
	Borland Delphi 6
	r.~ -
	{illi

	Images
	Image 1
	Image 2

	Page 14
	Titles
	·--\

	Images
	Image 1
	Image 2

	Page 15
	Titles
	.. -.

	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Titles
	; ··laJ Edit2
	1--lli!I Edit3
	!····l2J lmage1
	!····19 lmage5

	Images
	Image 1
	Image 2

	Page 5
	Titles
	Ł
	1.4.9.Debugging applications
	I __ DK
	18

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	1.4.11.Templates and the Object Repository

	Images
	Image 1
	Image 2

	Page 8
	Titles
	ii
	~I
	1.5.Programming With Delphi

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 9
	Titles
	I
	1.4.11. Templates and the Object Repository

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 10
	Titles
	Ł
	~I
	1.5.Programming With Delphi

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 11
	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Titles
	Ł
	.!1 J§il \TI l:tE I · -~ · II I to ~Et d l ·~ Jg ·!ff ·! 'A Jabf i ® ,,ix @, ~,j~ = LJ l~Ji Ori 11

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13
	Image 14

	Page 15
	Titles
	J Ł.Ł.... {~~0h~:&;ttJtf ::.-··········· ::::·························· ~,

	Images
	Image 1
	Image 2

	Page 16
	Titles
	.. B

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 1
	Titles
	. ~. ,._·,,I·
	. ---' . _:_:J .

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	data-aware control
	DataSource
	dataset
	BDE
	database

	Images
	Image 1

	Page 3
	Titles
	CHAPTER 2

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Page 6
	Titles
	2.3.1 Flat model
	2.3.2 Hierarchical model
	2.3.3 Network model

	Page 7
	Titles
	2.3.4 Relational model

	Page 8
	Titles
	Ł
	2.3.4.1 Relational operations

	Images
	Image 1

	Page 9
	Titles
	2.3.5 Dimensional model

	Images
	Image 1

	Page 10
	Titles
	2.3.6 Object database models

	Images
	Image 1

	Page 11
	Titles
	. 1 Indexing
	2.4.2 Transactions and concurrency

	Images
	Image 1

	Page 12
	Titles
	2.4.3 Replication

	Images
	Image 1

	Page 13
	Titles
	CHAPTER3
	Description About Project
	3.1 Password Menu

	Images
	Image 1

	Page 14
	Titles
	3.2 Password Menu

	Images
	Image 1
	Image 2

	Page 15
	Titles
	3.3 Main Menu

	Images
	Image 1

	Page 1
	Titles
	Close
	.Ł. , Ł. , ,····.'
	3.4 Payment Menu

	Images
	Image 1
	Image 2

	Page 2
	Titles
	,;~· ...Ł
	;..- .. ·"""' Ł
	Ł
	3.5 Introduction Menu

	Images
	Image 1
	Image 2

	Page 3
	Titles
	··~-c·······.· .
	3.6 Daily Report Menu

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	3.7 Paradox? Database Menu

	Images
	Image 1
	Image 2

	Page 5
	Titles
	3.8 Paradox7 Database (For Design) Menu

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	CONCLUSION

	Images
	Image 1

	Page 7
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

	Page 8
	Titles
	50

	Images
	Image 1

	Page 9
	Titles
	Ł

	Page 10
	Page 11
	Titles
	Ł

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	Ł

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	Ł

	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	Ł

	Images
	Image 1

	Page 21
	Page 22
	Titles
	Ł

	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24

