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ABSTRACT

The technological processes and problems are solved in such a way that the

solutions are too complex and unpredicted. Because of that the deterministic models do

not describe the solutions or processes enough. As a result controlling of the system

becomes difficult. In these conditions using fuzzy technology bring us independent

solutions for different models and adequately of the model.

The aim of thesis is to develop fuzzy control systems. To develop fuzzy control

systems the structure and operation principle of fuzzy control system must be

considered.

When analysing fuzzy control system the main problem is the synthesis of the

fuzzy knowledge base for PD-like fuzzy controller. Processing mechanisms of fuzzy

rules are described. Using max-min fuzzy processing of Zade the inference mechanism

of fuzzy system must be realizied.

The fuzzy controller for control temperature of technological processes ıs

modelled.

Obtained results and simulation shows the efficiency of application of fuzzy

technology for the industry.
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INTRODUCTION

Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can

be described simply as "computing with words rather than numbers", fuzzy control can

be described simply as "control with sentences rather than equations". A fuzzy

controller can include empirical rules, and that is especially usefull in operator

controlled plants.

Fuzzy controllers are used to control consumer products, such as washing

machines, video cameras, and rice cookers, as well as industrial processes, such as

cement kilns, underground trains, and robots.

In this project the development of fuzzy controller for technological processes is

considered. The project consists of introduction, 4 chapters and conclusion.

Chapter One describes the structure of fuzzy controllers. The structure of

general fuzzy systems, the functions of its main blocks are described. The structure of

PD-like is described.

Chapter Two represents the algorithms of fuzzy controllers. The description of

fuzzifıcation, linguistic rules, their characteristics, fuzzy rules, inference mechanism and

defuzzifıcation are described.

Chapter Three describes the development of fuzzy controllers for technological

process control. The developments of PD-like fuzzy controller and design example of

fuzzy controller for inverted pendulum are presented.

Chapter Four describes the development of fuzzy controller for control of

temperature. And the modeling of fuzzy system for control of temperature is given.
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CHAPTER ONE: THE STRUCTURE OF FUZZY CONTROLLER

1.1.Structure Of General Fuzzy System

There are specific components characteristic of a fuzzy controller to support a

design procedure, in the block diagram in Fig. 1, the controller is between a

preprocessing block and a post-processing block. The following explains the·diagram

block by block.

Input signals entering to the preprocessing unit after scaling and performing some

operation are enter to the fuzzifıcation block. On the output of fuzzification block the

fuzzy values of input signals are determined: Inference engine using these fuzzy input

signal and rule base block mane decision. Obtained·output signals after defuzzifıcation

are entered to the postprocessing unit , where the scaling of the output signal is carried

out

ı---------------.
I

~I -Pr-:a-pro-__ s~ı ı
_,., oos~ng

Fozzı~
tııootıon

Rule
bas~

lnfer-en:oe
engine ..____-JI

I
I

Postpr-o~
c essing

Figure 1.1. Blocks of a fuzzy controller

1.2 Structure of PD-Like Fuzzy controller

The most simple fuzzy feedback control systems contain a fuzzy logic controller

(FLC) in the form of a table of linguistic rules (or fuzzy relations matrix) and input­

output interfaces. A linguistic rule consists of one or more premises and one or more

consequences, f .i. in the form:

IF (premises:a and b and c... ) hold

THEN(consequences:x and y and z... ) hold too.
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A controller (see Fig. l)presents and informationloop with:-an input signal gas

an advising set-point(for example, a quality control);

-a comparatorwhich checks, if the emitted process output x is the correct reaction to the

set-point g,and which emits himself an error signal e as an input to the decision element

TLR,in order to report him,how much the process output x deviatesfrom the preset

value of g;

-a decision element TLR which emits for each value of e an output u which, on his side,

becomes an input to a process with output x to be controlled.

A fuzzy logic controller is a synthesis of both, a controller's loop and a set of

linguistic rules which are the content of the decision elementof the controller. The

purpose of the input interface is to convert the non-fuzzy signals of error,either

derivative(e"')or sum error(or both) into those input fuzzy sets which serve as premises

in the correspondent linguistic rule of the FLC. The output fuzzy set(or the consequent

of the linguistic rule)is converted by the output interface to the non-fuzzy control

actionwhich is transferred to the input of an indistrial process.

1 2 3

5 ~ LJ_r L!.JFunr ~ ' 1e
relation UI Arg
matrix -

ı 2 I
Ke~ E (I'LR)

Process y

Fig.1.2 A structure of a fuzzy controller

The transient performance demonstrated by these controllers as well as the noise

immunity and robustness were essentially better then that of usual PID (Proportional,

Integral, Differential) controllers. At the same time,the practical use of fuzzy control

systems revealed the following problems:

a.there is not yet a satisfactory approach to the construction of input-output interfaces

being sufficientlysupported by logical evidence;
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b.there is no definitive agreement about how to proceed wıth an incomplete table of

linguistic rule(TLR). Thus, no actualrule in the TLR can be applied to a concrete

decision case,if the features of parameters p of this caseappear nowhere in the TLR as

premises.Then, a new consequent c, as the missing term of a new rule r(p,c)must be

introduced(this is done,for instance,by interviewing the human process operator). On

the other hand ,the broadened TLR demands an expensivestudy of the processand does

not guarantee a desirable transient performance of the system in the case of a time

variant process.

Moreover , the efficiency of fuzzy systems deoends on the competence of the

experts interviewed during the Knowladge elicitation process. Therefore , a wide

application of single-loop fuzzy control systems is restiricted, because of their inability

to cope with complex decision cases.
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CHAPTER T\VO: ALGORITHl\iS OF FUZZY CONTROLLER

2.1 Fuzzifıcation

The first block inside the controller is füzzifıcation, which converts each piece

of input data to degrees of membership by a lookup in one or several membership

functions. The fuzzification block thus matches the input data with the conditions of the

rules to determine how well the condition of each mie matches that particular input

instance. There is a degree of membership for each linguistic term that applies to that

input variable.

2.2 Linguistic Variables

To specify rules for the rule-base, the expert will use a "linguistic description";

hence, unliguistic expressions are needed for the inputs and outputs and the

characteristics of the inputs and outputs. We will use "linguistic variables" (constant

symbolic descriptions of what are in general time-varying quantities) to describe fuzzy

system inputs and outputs. For our fuzzy system, linguistic variables denoted by i- are

used to describe the inputs u ı. Similarly, linguistic variables denoted by 5- are used to

describe outputs YI. For instance, an input to the füzzy system may be described as ü1 

="position error" or ü2 =="velocity error," and an output from the fuzzy system may be

-i -="voltage in.

2.3 Rule Base

The rules may use several variables both in the condition and the conclusion of

the niles. The controllers can therefore be applied to both multi-input-multi-output

(MIMO) problems and single-input-single-output (SISO) problems. The typical 5150

problem is to regulate a control signal based on an error signal. The controller may

actually need both the error, the change in error, a.nd the accumulated error as inputs,

but we will call it single-loop control, because in principle all three are formed from the

error measurement. To simplify, this section assumes that the control objective is to
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regulate some process output around a prescribed setpoint or reference. The

presentation is thus limited to single-loop control.

Rule formats Basically a linguistic controller contains rules in the if-then

format, but they can be presented in different formats. In many systems, the rules are

presented to the end-user in a format similar to the one below,

1. If error is Neg and change in error is Neg then output is NB

2. If error is Neg and change in error is Zero then output is NM

3. If error is Neg and change in error is Pos then output is Zero

4. If error is Zero and change in error is Neg then output is NM

5. If error is Zero and change in error is Zero then output is Zero

6. If error is Zero and change in error is Pos then output is PM

7. If error is Pos and change in error is Neg then output is Zero

8. If error is Pos and change in error is Zero then output is PM

9. If error is Pos and change in error is Pos then output is PB

The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and

PM (negative big, negative medium, positive big, and positive medium respectively).

The same set of rules could he presented in a relational format, a more compact

representation.

Error Output
N.e(t.. ı:ı,

Neg
Neg
Zero
Zero
Zero
Pos
Pos
Pos

Pos
Zero
Neg
Pos
Zero
Neg
Pes
Zero
Neg

Zero
~1

··B.; ..

PM
Zero
NM
PB
Prfl,fıvı.

Zero

The top row is the heading. with the names of the variables. It is understood that

the two leftmost columns are inputs, the rightmost is the output, and each row

represents a rule. This format is perhaps better suited for an experienced user who wants

to get an overview of the rule base quickly The relational format is certainly suited for
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storing in a relational database. It should be emphasised, though. that the relational

format implicitly assumes that the connective between the inputs is always logical and

- or logical or for that matter as long as it is the same operation for all rules - and not

a mixture of connectives. Incidentally, a fuzzy rule with an or combination of terms can

be converted into an equivalent and combination of terms using laws of logic

(DeMorgan's laws among others). A third format is the tabular linguistic format.

Neg
Error Zero

Pos

Change in error
Neg Zero Pos
NB NM: Zero

.
NM Zero P~ı.l
Zero Ptvf PB

This is even more compact. The input variables are laid out along the axes, and

the output variable is inside the table. In case the table has an empty cell, it is an

indication of a missing rule, and this format is useful for checking completeness. When

the input variables are error and change in error, as they are here, that format is also

called a linguistic phase plane. in case there are n > 2 input variables involved, the table

grows to an n-dimensional array; rather user-un friendly.

To accommodate several outputs, a nested arrangement is conceivable. A rule

with several outputs could also be broken down into several rules with one output.

Lastly, a graphical format which shows the fuzzy membership curves is also possible

(Fig. 3). This graphical user-interface can display the inference process better than the

other formats, but takes more space on a monitor.

Connectives In mathematics, sentences are connected with the words and. or,

if- then (or implies), and if and only if, or modifications with the word not. These five

are called connectives. It also makes a difference how the connectives are implemented.

The most prominent is probably multiplication for fuzzy and instead of minimum. So

far most of the examples have only contained and operations, but a rule like "If error is

very neg and not zero or change in error is zero then ... '' is also possible.

The connectives and and or are always defined in pairs, for example,

a and b = min (a. b) mınımum

a orb= max (a. b) maxımum
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or

a or b = a + b - a * b

algebraic product

algebraic or probabilistic sum

a and b= a* b

There are other examples (e.g., Zimmermann. 1991, 31 32),but they are more complex.

Modifiers A linguistic modjfier, is an operation that modifies the meaning of a

term. For example, in the sentence "very close to O". the word very modifies Close to O

which is a fuzzy set. A modifier is thus an operation on a fuzzy set. The modifier very

can be defined as squaring the subsequent membership function, that is

very a= a2

Some examples of other modifiers are

(2)

extreınely a= a3

1 . h 1 113s ıg t ya =a

soınewhat a = ınoreorless a and not slightly a

A whole family of modifiers is generated by aP where p is any power between

zero and infinity With p =oo the modifier could be named exactly, because it would

suppress all memberships lower than 1.0.

Universes Elements of a fuzzy set are taken from a universe oldiscourse oriust

universe. The universe contains all elements that can come into consideration. Before

designing the membership functions it is necessary to consider the universes for the

inputs and outputs. Take for example the rule

If error is Neg and change in error is Pos then output is O

Naturally, the membership functions for Neg and Pos must be defined for all

possible values of error and change in error, and a standard universe may be

convenient.

Another consideration is whether the input membership functions should be

continuous or discrete. A continuous membership function is defined on a continuous

universe by means of parameters. A discrete membership function is defined in terms of

a vector with a finite number of elements. In the latter case it is necessary to specify the

range of the universe and the value at each point. The choice between fine and coarse
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resolution is a trade off between accuracy, speed and space demands. The quantiser

takes time to execute, and if this time is too precious, continuous membership functions

will make the quantiser obsolete.

Example 1 (standard universes) Many authors and several commercial
controllers use standard universes.

• The FL Smidth controller, for instance, uses the real number interval [-1, 1}.

• Authors of the earlier papers onfuzzv control used the integers in [-6. 6}.

• Another possibiliti ' is the interval [- 100, 100] corresponding to percentages of

full scale.

• Yet another is the integer range [O, 4095] corresponding to the output from a 12

bit analog to digital converter

• A variant is [-2047. 2048], where the interval is shifted in order to accommodate

negative numbers.

The choice of datatypes may govern the choice of universe. For example, the voltage

range [-5,5] could be represented as an integer range [-50,50], or as a floating point

range [-5.0, 5.0], a signed byte datatvpe has an allowable integer range·[-128, 127].

A way to exploit the range of the universes better is scaling. If a controller input

mostly uses just one term, the scaling factor can be turned up such that the whole range

is used. An advantage is that this allows a standard universe and it eliminates the need

for adding more terms.

Membership functions Every element in the universe of discourse is a

member of a fuzzy set to some grade, maybe even zero. The grade of membership for

all its members describes a fuzzy set, such as Neg. In fuzzy sets elements are assigned a

grade of membership, such that the transition from membership to non-membership is

gradual rather than abrupt. The set of elements that have a non-zero membership is

called the support of the fuzzy set. The function that ties a number to each element.x of

the universe is called the membership function µ (x).

The designer is inevitably faced with the question of how to build the term sets. There
are two specific questions to consider:

(i) How does one determine the shape of the sets? and (ii) How many sets are necessary

and sufficient? For example, the error in the position controller uses the family of terms

9



Neg, Zero, and Pos. According to fuzzy set theory the choice of the shape and width is

subjective, but a few rules of thumb apply.

• A term set should be sufficiently wide to allow for noise in the measurement.

• A certain amount of overlap is desirable; otherwise the controller may run into

poorly defined states, where it does not return a well defined output.

A preliminary answer to questions (i) and (ii) is that the necessary and sufficient

number of sets in a family depends on the width of the sets, and vice versa. A solution

could be to ask the process operators to enter their personal preferences for the

membership curves; but operators also find it difficult to settle on particular curves.

The manual for the TIL Shell product recommends the following (Hill, Horstkotte &

Teichrow, 1990).

l

o,s

(if'. } 

(e)

100 ~ıoo o
(f)

(g)

(h)

100 ~100 o
(i)

(j)

(k)

o
{l)

H)O

Figure 2.2: Examples of membership functions. Read from top to bottom, left to right:

(a) s-function, (b) n- function, (c) z-function, (d-f) triangular versions, (g-i)

trapezoidal versions, (j) flat n- function. (k) rectangle. (I) singleton.
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• Start with triangular sets: All membership functions for a particular input or

output should be symmetrical triangles of the same width. The leftmost and the

rightmost should be shouldered ramps.

• The overlap should be at least 50%. The widths should initially be chosen so

that each value of the universe is a member of at least two sets, except possibly for

elements at the extreme ends. If, on the other hand, there is a gap between two sets no

rules fire for values in the gap. Consequently the controller function is not defined.

Membership functions can be flat on the top, piece-wise linear and triangle

shaped, rectangular, or ramps with horizontal shoulders. Fig. 2 shows some typical

shapes of membership functions.

Strictly speaking, a fuzzy set A is a collection of ordered pairs

A={(x, µ (x))} (3)

Item x belongs to the universe andµ (x) is its grade of membership in A A single pair

(x, µ(x)) is a fuzzy singleton; singleton output means replacing the fuzzy sets in the con­

clusion by numbers (scalars). For example

1. If error is Pos then output is 1 O volts

2. If error is Zero then output is O volts

3. If error is Neg then output is -1 O volts

There are at least three advantages to this:

• The computations are simpler;

• it is possible to drive the control signal to its extreme values; and

• it may actually be a more intuitive way to write rules.

The scalar can be a fuzzy set with the singleton placed in a proper position. For

example 10 volts, would be equivalent to the fuzzy set (0,0,0,0,1) defined on the

unıverse

(-10,-5,0,5,10) volts.

Example 2 (membership functions) Fuzzy controllers use a variety of

membership functions. A common example of a function that produces a bell curve is

based on the exponential function,

µ (x) = exp [ - ( x - x O )
2

]
2 C, 2

(4)
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This is a standard Gaussian curve with a maximum value of 1 ,x is the independent

variable on the universe, x to is the position of the peak relative to the universe, and o is

the standard deviation. Another definition which does not use the exponential is

(5)

The FL Smidth controller uses the equation

µ(x)-1-exp [{~JJ (6)

The extra parameter a controls the gradient of the sloping sides. It is also possible to

use otherfunctions, for example the sigmoid knownfrom neural networks.

A cosine function can be used to generate a variety of membership functions. The s­

curve can be implemented as

o X-< X1 

( ) -<. I I ( x - x, J X1 :s; X :s; X7 >- (7)S X1,X0X = -+-COS
2 2 x, -xi

1 X >- X7

where x1 is the left breakpoint, and Xr, is the right breakpoint. The z-curve is just a

reflection,

12
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Figure2.3 :Graphical construction of the control signal in a fuzzy PD

controller(generated in the Matlab Fuzzy Logic Toolbox).

1 X-< X1 

( )- ~ I I { x-x,. ) X1 ~ X < x, >- (8)Z Xz,XnX - -+-CO TC 
2 2 x, -X1 

o X >- x,

Then the x-curve can be implemented as a combination of the s-curve and the z-curve,

such that the peak is fiat over the interval [x2,x3]

(9)
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2.4 Inference Engine

Figures 2.3 and 2.4 are both a graphical construction of the algorithm in the core

of the controiler In Fig. 2. 3. each of the nine rows refers to one rule. For example, the

first row says that if the error is negative (row 1, column 1) and the change in error is

negative (row 1, column 2) then the output should be negative big (row 1, column 3).

The picture corresponds to the rule base in (2). The rules reflect the strategy that the

control signal should be a combination of the reference error and the change in error, a

fuzzy proportional-derivative controller. We shall refer to that figure in the following.

The vertical lines on the first and second columns of the chart indicate the instances of

the error and the change in error. For each rule, the inference engine looks up the

membership values in the condition of the rule.

Aggregation The aggregation operation is used when calculating the degree of

falfillment or firing strength ak . of the condition of a rule k. A rule, say rule 1, will

generate a fuzzy membership value µel coming from the error and a membership value

µeel coming from the change in error measurement. The aggregation is their

combination,

~ı and µceı (10)

Similarly for the other rules. Aggregation is equivalent to fuzzification, when

there is only one input to the controller. Aggregation is sometimes also calledfulfilment

of the rule orfiring strength.

Activation The activation of a rule is the deduction of the conclusion, possibly

reduced by its firing strength. Thickened lines in the third column indicate the firing

strength of each rule. Only the thickened part of the singletons are activated, and min or

product(*) is used as the activation operator. It makes no difference in this case, since

the output membership functions are singletons, but in the general case of s-. n-, and

z- functions in the third column, the multiplication scales the membership curves, thus

preserving the initial shape, rather than clipping them as the min operation does. Both

methods work well in general, although the multiplication results in a slightly smoother

control signal. In Fig. 2.3, only rules four and five are active.

14



A rule k can he weighted a priori by a weighting factor mk C [O, 1]. which is its degree

of confidence. In that case the firing strength is modified to

(11)

The degree of confidence is determined by the designer, or a learning program trying to

adapt the rules to some input-output relationship.

Accumulation All activated conclusions are accumulated, using the max 

operation, to the final graph on the bottom right (Fig. 2.3). Alternatively, sum 

accumulation counts overlapping areas more than once (Fig. 2.4). Singleton output (Fig.

2.3) and sum accumulation results in the simple output

a 1 * S1 + a 2 * S2 + + an * Sn (12)

The alpha's are the firing strengths from then rules and sı, ... Sn, are the output

singletons. Since this can be computed as a vector product, this type of inference is

relatively fast in a matrix oriented language.

There could actually have been several conclusion sets. An example of a one­

input-two-outputs rule is "ıf ea is a then Oı is x and 02 is y" The inference engine can

treat two (or several) columns on the conclusion side in parallel by applying the firing

strength to both conclusion sets. In practice, one would often implement this situation as

two rules rather than one, that is, "If ea is a then oı is x", "If ea is a then 02 is y".

2.5 Defuzzifıcation

The resulting fuzzy set (Fig. 2.3, bottom right; Fig. 2.4, extreme right) must be

converted to a number that can be sent to the process as a control signal. This operation

is called defuzzification, and in Fig. 2.4 the x-coordinate marked by a white, vertical

dividing line becomes the control signal. The resulting fuzzy set is thus defuzzified into

a crisp control signal. There are several defuzzification methods.

Centre of gravity (COG) The crisp output value u (white line in Fig.2.4) is the

abscissa under the centre of gravity of the fuzzy set,

15



µ (xi )xi
u

i µ (x i )

(13)

Here Xi is a running point in a discrete universe, and µ (xi) is its membership

value in the membership function. The expression can be interpreted as the weighted

average of the elements in the support set. For the continuous case, replace the

summations by integrals. It is a much used method although its computational

complexity is relatively high. This method is also called centroid of area.

Centre of gravity method for singletons (COGS) If the membership functions

of the conclusions are singletons (Fig. 2.3), the output value is

u
L ; µ (s; )s;
I i µ (si) (14)

Here Si is the position of singleton i in the universe. and µ (si) is equal to the firing

strength a i of rule i. This method has a relatively good computational complexity and u
is differentiable with respect to the singletons Si, which is useful in neurofuzzy systems.

Bisector of area (BOA) This method picks the abscissa of the vertical line that

divides the area under the curve in two equal halves. In the continuous case,

u { xi Lµ (x }ix rax µ(x}dx} (15)

Here xis the running point in the universe, µ (x) is its membership.

Min is the leftmost value of the universe, and Max is the rightmost value. Its

computational complexity is relatively high, and it can be ambiguous. For example. if

the fuzzy set consists of two singletons any point between the two would divide the area

in two halves; consequently it is safer to say that in the discrete case. BOA is not

defined.

Mean of maxima (MOM) An intuitive approach is to choose the point with the

strongest possibility i.e. maximal membership. It may happen. though, that several such

16



points exist, and a common practice is to take the mean of maxima (MOM). This

method disregards the shape of the fuzzy set, but the computational complexity is

relatively good.

Leftmost maximum (LM), and rightmost maximum (RM) Another

possibility is to choose the leftmost maximum (LM), or the rightmost maximum (RM).

In the case of a robot, for instance, it must choose between left or right to avoid an

obstacle in front of it.

ceısull

o 100
pos

TT
0.5

o
I-·100 o 100

Emıar
00 

Figure2.4:0ne input, one output rule base with non-singleton output sets.

The defuzzifıer must then choose one or the other, not something in between.

These methods are indifferent to the shape of the fuzzy set, but the computational

complexity is relatively small.

Example 3(inference) 

discretefuzzy sets?

Behind the scene all universes were divided into 201 points from - 100 to 100. but for

How is the inference in Fig. 8 implemented using

brevity , let us just use five points. Assume the universe u, common to all variables, is

the vector

U= -JOO -50 o 50 JOO
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A cosine function can be used to generate a variety of membership functions. The s­

curve can be implemented as:

s(x ,x ,x)=
o
1 + -cos(- 1r)

1

X -<X 

X ::,:; x::,:; X (16)

X>- X 

where xı is the left breakpoint, and x, is the right breakpoint. The z-curve is just a

reflection,

1 X-< X1 

z(x1,x"x) = -< I I [ x~x J ),--+-cos 1 *1r X1::,:; X::,:; X, (17)
2 2 X, -X1 

o X >- X, 

Then then-curve (see for example Fig. 2.2 ( j )) can be implemented as a combination

of the s-curve and the z-curve, such that the peak is flat over the interval [x2,x3]

(18)

A familv of terms is defined bv means of the n-function, such that

neg = 1r c- ıoo, -ıoo, -oo, ıo, u) = ı ı ı o.95 I o.o5 I o ı o I
., -c- """ ,ozero = 1r (-90, -20) 20, 90, u) = O 0.61 ı lUH

pos = rı (-10, 60, 100, 100, u) = O O 0.05 0.95 l

Above we inserted the whole vector u in place of the running point x; the result is

thus a vector. The figure assumes that error = -50 (the unit is percentages of full

range). This corresponds to the second position in the universe, and the first rule

contributes with a membership neg(2) = 0.95. Thisfiring strength is propagated to the

conclusion side of the rule using min, such that the contributionfrom this rule is
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0.95 min neg = ! 0.95 ! 0.95 ! 0.05 ! O ! O l
The activation operation was min here. Apply the same pmcedure to the two remaining

rules, and stack all three contributions on top of each other,

O.-EJ5 0.95 0.05 o o 
o 0.61 0.61 0.61 o 
o o o o o 

Tofind the accumulated output set, perform a max operation down each column. The

result is the vector

0.95 min neg = ! 0.95 j 0.95 ! 0.05 ! O ! O J

The centre ofgravity methodyields

u = L i µ (xi )xi
L i µ (xi) (19)

_ o.95*(-100)+0.95*(-50)+0.61 *0+0.61 *50+0*100
0.95 + 0.95 + 0.61 + 0.61 + O

(20)

= -35.9 (21)

which is the control signal (beforepostprocessing).



CHAPTER THREE: DEVELOPMENT OF FUZZY CONTROL 
SYSTEM 

3. 1 Fuzzy Control System Architecture for Inverted Pendulum

Consider each of the components of the fuzzy controller for a problem of

balancing an inverted pendulum on a cart, as shown in Figure 3. 1. Here, y denotes the

angle that the pendulum makes with the vertical (in radians), 1 is the half-pendulum

length (in meters), and u is the force input that moves the cart (in Newtons). The r is

used to denote the desired angular position of the pendulum. The goal is to balance the

pendulum in the upright position (i.e., r = O) when it initially starts with some nonzero

angle off the vertical (i.e., y<>O).This is a very simple and academic nonlinear control

problem, and many good techniques already exist for its solution..

Reference
input

r--------------------------: 
ı Inputs

Deff I: U(t) --
uzifı ~

Output
Y(t)Fuz

-----.ı-zifı
catio

Inference
Engine

Process
catio
nn

Rule-base 

lJ

Fig 3. 1 Inverted pendulm on a cart.

20



3 .2 Choosing Fuzzy Controller Inputs and Outputs

The fuzzy controller is to be designed to automate how a human expert who is

successful at this task would control the system. First, the designers of the fuzzy

controller tell what information human will use as inputs to the decision-making

process. Suppose that for the inverted pendulum, the expert says that people will use

E(t)=r(t)-y(t) 
and

de(t)/dt 

as the variables on which to base decisions. Certainly, there are many other choices

(e.g., the integral of the error e could also be used) but this choice makes good intuitive

sense. Next, consider identify the controlled variable. For the inverted pendulum, for

controled only the force that moves the cart, so the choice here is simple.

For more complex applications, the choice of the inputs to the controller and

outputs of the controller (inputs to the plant) can be more difficult. If the designer

believes that proper information is not available.for making control decisions, people

may have to invest in another sensor that can provide a measurement of another system

variable. Alternatively, the designer may implement some filtering or other processing

of the plant outputs.

Once the fuzzy controller inputs and outputs are chosen, it should determine what

the reference inputs are. For the inverted pendulum, the choice of the reference input r

= O is clear. In some situations, however, the designer may want to choose r as some

nonzero constant to balance the pendulum in the off vertical position. To do this, the

controller must maintain the cart at a constant velocity so that the pendulum will not

fall.

After all the inputs and outputs are defined for the fuzzy controller, the fuzzy

control system could be specify. The fuzzy control system for the inverted pendulum is

shown in Figure 3 .2. Let us consider a description of control process. The choice of the

inputs and outputs of the controller places certain constraints on the remainder of the

fuzzy control design process. If the proper information is not provided to the fuzzy

controller, there will be little hope for being able to design a good rule-base or inference
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mechanism. Moreover, even if the proper information is available to make control

decisions, this will be of little use if the controller is not able to properly affect the

process variables via the process inputs. It must be understood that the choice of the

controller inputs and outputs is a fundamentally important part of the control design

process.

Fuzzy ı u ı Inverted
Controller llııı pedelum

e y

de/dt

Fig. 3.2 Fuzzy controller for an inverted pendulum on a cart.

3.3 Linguistic Descriptions ofKnowledge

Suppose that the human expert shown provides a description of how best to

control the plant in some natural language (e.g., English). It consider to take this

"linguistic" description and load it into the fuzzy controller, as indicated by the arrow

in Figure 3.2

The linguistic description provided by the expert can generally be broken into several

parts. There will be "linguistic variables" that describe each of the time-varying fuzzy

controller inputs and outputs. For the inverted pendulum,

"error" describes e(t)

"change-in-error" describes de(t)ldtt;

"force" describes u (t)

The linguistic descriptions as short as possible (e.g., using "ett)" as the linguistic

variable for e(t)), yet accurate enough so that they adequately represent the variables

Suppose for the pendulum example that "error," "change-in-error," and "force"

take on the following values:
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"neglarge"

"negsmall"

"zero"

"possmall"

"poslarge"

Note that used "negsmall" as an abbreviation for "negative small in size" and so on

for the other variables. Such abbreviations help keep the linguistic descriptions short yet

precise. Here neg is negative, pos is positive. Every linguistic value nicely represent that

the variable has a numeric quality.

The linguistic variables and values provide a language for the expert to express

designer ideas about the control decision-making process in the context of the

framework established by choosen of fuzzy controller inputs and outputs. Recall that

for the inverted pendulum

r = O and e = r - y so that

e= -y

and

de/dt = -dy/dt.

since dr/dt = O. First, how the certain dynamic behaviors with linguistics can be

quantified will studied.

For the inverted pendulum each of the following statements quantifies a different

configuration of the pendulum :

• The statement "error is poslarge" can represent the situation where the

pendulum is at a significant angle to the left of the vertical.

• The statement "error is negsmall" can represent the situation where the

pendulum is just slightly to the right of the vertical, but not too close to the

vertical to justify quantifying it as "zero" and not too far away to justify

quantifying it as "neglarge."

• The statement "error is zero" can represent the situation where the pendulum is

very near the vertical position (a linguistic quantification is not precise, hence

we are willing to accept any value of the error around e(t) = O as being

23



quantified linguistically by "zero" since this can be considered a better

quantification than "possmall" or "negsmall").

• The statement "error is poslarge and change-in-error is "possmall" can

represent the situation where the pendulum is to the left of the vertical and,

since dy/dt<O, the pendulum is moving away from the upright position (note

that in this case the pendulum is moving counterclockwise).

• The statement "error is negsmall and change-in-error is possmall" can

represent the situation where the pendulum is slightly to the right of the vertical

and, since dy/dt<O,the pendulum is moving toward the upright position (note

that in this case the pendulum is also moving counterclockwise).

3.3.1 Rules

Next, consider the above linguistic quantification to specify a set of rules that

captures the expert's knowledge about how to control the plant. In particular, for the

inverted pendulum in the three positions shown in Figure 3.3, we have the following

rules

1.Jferror is neglarge and change-in-error is neglarge Then force isposlarge

This rule quantifies the situation in Figure 3.3(a) where the pendulum has a large

positive angle and is moving clockwise; hence it is clear that we should apply a strong

positive force (to the right) so that we can try to start the pendulum moving in the

proper direction.

2. If error is zero and change-in-error ispossmall Then force is negsmall

This rule quantifies the situation in Figure3.3(b) where the pendulum has nearly a

zero angle with the vertical (a linguistic quantification of zero does not imply that e(t)

= O exactly) and is moving counterclockwise; hence we should apply a small negative

force (to the left) to counteract the movement so that it moves toward zero (a positive

force could result in the pendulum overshooting the desired position).

3. If error isposlarge and change-in-error is negsmall Then force is negsmall

This rule quantifies the situation in Figure 3.3(c) where the pendulum is far to the left

of the vertical and is moving clockwise; hence we should apply a small negative force
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(to the left) to assist the movement, but not a big one since the pendulum is already

moving in the proper direction.

Each of the three rules listed above is a "linguistic rule" since it is formed solely

from linguistic variables and. values. Since linguistic values are not precise

representations of the

(a) (b) (c)

Figure 3.3) inverted pendulum in various positions

underlying quantities that they describe, linguistic rules are not precise either. They are

simply abstract ideas about how to achieve good control that could mean somewhat

different things to different people.

The general form of the linguistic rules listed above

ıs

If premise Then consequent

From the three rules listed above, the premises (which are sometimes called

"antecedents") are associated with the fuzzy controller inputs and are on the left-hand­

side of the rules. The consequents (sometimes called "actions") are associated with the

fuzzy controller outputs and are on the right-hand-side of the rules.

3.3.2 Rule-Bases

Using the above approach, the rules for the pendulum problem for all possible cases

could be written. Note that since consider only specify a finite number of linguistic

variables and linguistic values, there is only a finite number of possible rules. For the

pendulum problem, with two inputs and five linguistic values for each of these, there

are at most 52 = 25 possible rules.
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A tabular representation of one possible set of rules for the inverted pendulum is

shown in Table 1. Notice that the body of the table lists the linguistic-numeric

consequents of the rules, and the left column and top row of the table contain the

linguistic-numeric premise terms. Then, for instance, the (2, -1) position (where the "2"

represents the row having "2" for a numeric-linguistic value and the "-1" represents the

column having "-1" for a numeric-linguistic value) has a -1 ("negsmall") in the body of

the table and represents the rule

If error is poslarge and change-in-error is negsmall Then force is negsmall

which is rule 3 above. Table 1 represents abstract knowledge that the expert has about

how to control the pendulum given the error and its derivative as inputs.

Table 1 
· force Change-in-error e' 
u NI. NS z PS PL
Error NI. PL PL PL PS z
e NS PL PL PS z NS 

z PL PS z NS NI. 
PS PS z NS NL NL

PL z NS NL NL NL

Notice the diagonal of zeros and viewing the body of the table as a matrix as

seeing that it has a certain symmetry to it. This symmetry that emerges when the rules

are tabulated is no accident and is actually a representation of abstract knowledge about

how to control the pendulum; it arises due to a symmetry in the system's dynamics.

3.4 Fuzzy Quantification of Knowledge

3.4.1 Membership Functions

The membership function quantifies, in a continuous manner, whether values of

e(t) belong to (are members of) the set of values that are "possmall," and hence it

quantifies the meaning



µ

"possmall"
I.O

0.5

1r I 4 7r /2 e(t), (rad)

fig 3.4 ) membership function for linguistic value "possmall."

of the linguistic statement "error is possmall." This is why it is called a

membership function. It is important to recognize that the membership function in

Figure3.4 is only one possible definition of the meaning of "error is possmall''; also

could use a bell-shaped function, a trapezoid, or many others.

µ

I.O "possmall "

n 'i

1r I 4 Jr /2 e(t),(rad)

a)Trapezoid
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µ

"possmall "
1.0

0.5 

tı I 4 ti I 2 e(t),(rad)

(b) Gaussian

µ 

"possmall "
1.0

0.5 

~I
.1r I 4 Jr /2 e(t),(rad)

(c) Sharp peak

"possmall "
1.0

0.5 

te I 4 -ır I 2 3-ır/4 e(t),(rad)

(d) Skewed triangle

Fig 3.5) A few membership function choices for representing "error is posmall."
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Depending on the application and the designer (expert), many different choices

of membership functions are possible.

A "crisp" (as contrasted to "fuzzy") quantification of "possmall" can also be

specified, but via the membership function shown in Figure 3.6. This membership

function is simply an alternative representation for the interval on the real line. and.it

indicates that this interval of numbers represents "possmall." Clearly, this

characterization of crisp sets is simply another way to represent a normal interval (set)

of real numbers.

Now the membership functions for all 15 linguistic values (five for each input

and five for the output) of inverted pendulum example cab be specified. Figure3. 7 for

one choice of membership functions.

µ •
I.O -+-

0.5 -+-

l

.nl4
..r

Jr/2

....
e(t),(rad)

Fig.3.6 Membership runcrıon for a crisp set.

-2
"neglarge"

-1
"negsmall"

I
"possmall"

2
"poslarge"

o
"zero"

- Jr./4 JI/4 ..1[ /2
e(t),(ra,
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-2
"neglarge"

-1
"neg small" o 1 2

"pos small" "poslarge""zero"

-n/4 In/8 n/4-n/8 Jr /16
de(t)/dt, (rad/sec

-2
"neglarge"

-1
"negsmall" o 1

"possmall"
2

"poslarge"

-30 -20 -10 2010 30
u(t), (1 

Fig3. 7) Membership functions for an inverted pendulum on a cart.

For the output u, the membership functions at the outermost edges cannot be

saturated for the fuzzy system to be properly defined.

The rule-base of the fuzzy controller holds the linguistic variables, linguistic values,

their associated membership functions, and the set of all linguistic rules (shown in

Table 1), so the the description of the simple inverted pendulum is completed.
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3.4.2 Fuzzifıcation

It is actually the case that for most fuzzy controllers the fuzzification block in

Figure 1 can be ignored since this process is so simple. For now, the reader should

simply think of the fuzzification process as the act of obtaining a value of an input

variable (e.g., e(t )) and finding the numeric values of the membership function(s) that

are defined for that variable. For example, if e(t) = n/4 and de(t)/dt = n/16, the

fuzzification process amounts to finding the values of the input membership functions

for these. In this case

µ possmal (e(t)) = 1

(with all others zero) and

µzero(de(t)/dt)=µ possmaı(de(t)/dt)=0.5.

Some think of the membership function values as an "encoding" of the fuzzy

controller numeric input values. The encoded information is then used in the fuzzy

inference process that starts with "matching."

3. 5 Matching: Determining Which Rules to Use

1. The premises of all the rules are compared to the controller inputs to determine

which rules apply to the current situation. This "matching" process involves

determining the certainty that each rule applies, and typically controller will more

strongly take into account the recommendations of rules that who is more certain

apply to the current situation.

2. The conclusions (what control actions to take) are determined using the rules that

have been determined to apply at the current time. The conclusions are characterized

with a fuzzy set (or sets) that represents the certainty that the input to the plant

should take on various values.
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3.6 Premise Quantification via Fuzzy Logic

To perform inference it is needed to quantify the meaning of the premises of the

rules that are composed of several terms, each of which involves a fuzzy controller

input. Consider Figure 9, where listed two terms from the premise of the rule

If error is zero and change-in-error ispossmall Then force is negsmall

Above, quantified the meaning of the linguistic terms "error is zero" and "change­

in- error is possmall" via the membership functions shown in Figure 8 is quantified.

Now search to quantify the linguistic premise "error is zero and change-in-error is

possmall." Hence, the main item to focus on is how to quantify the logical "and"

operation that combines the meaning of two linguistic terms. When the designer used

to standard Boolean logic to combine these linguistic terms, since who quantified them

more precisely with fuzzy sets (i.e., the membership functions), could used these.

To see how to quantify the "and" operation, begin by supposing that e(t)=n/8 and

de(t)/dt=n/32, so that using Figure3.7 (or Figure3.8) let's see that

"error is zero

l
Change-in-error is possmall"

ıand

quantified with quantified with.

Fig.3.8) membership functions of premise terms. 1
"possmall"

o

µ
possnıall

"zero"

zero

-1r I 4 e(lj, (rad.) 1rI 4 dett/dtı.ıra.7l" 116 1r/81rI 4
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µzero (e(t))=0.5 and µpossmaı(de/dt)=O.5

What, for these values of e(t) and de(t)ldt, is the certainty of the statement

"error is zero and change-in-error is possmall"

that is the premise from the above rule? Denoted this certainty by µpremise- There are
actually several ways to define it:

~ Minimum: Deine µpremise=min{0.5,0.25}=0.25,tht is, using the minimum of the
two membership values.

~ Product: Deine µpremise=(0.5)(0.25)=0.125,that is, using the product of the two
membership values.

Notice that both ways of quantifying the "and" operation in the premise indicate

that you can be no more certain about the conjunction of two statements than controller

about the individual terms that make them up (note that O~µpremise:",;ı for either case)..

While how to quantify the "and" operation for one value of e(t) and de(t)ldt is

shown, if consider all possible e(t) and de(t)/dt values, it will obtained a

multidimensional membership function µpremise(e(t), de(t)ldt) that is a function of e(t)

and de(t)ldt for each rule. For example, if choosen the minimum operation to

represent the "and" in the premise, then we get the multidimensional membership

function µpremise(e(t),de(t)/dt). Notice that if we pick values for e(t) and de(t)ldt, the

value of the premise certainty µpremise(e(t),de(t)ldt) represents how certain we are that
the rule

If error is zero and change-in-error is possmall Then force is negsmall

is applicable for specifying the force input to the plant. As e(t) and de(t)ldt change, the

value of µpremise(e(t),de(t)ldt) changes according to Figure3.9, and the controller

become less or more certain of the applicability of this rule.
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µpremise

-n/4

Jr I 4 eıı), (rad)

n/4

de(t)ldt, (rad/sec)

Fig.3.9 Membership function of the premise for a single rule.

3. 7 Determining Which Rules Are On

Determining the applicability of each rule is called "matching." Consider that a

rule is "on at time t" if its premise membership function µprenme(e(t),de(t)ldt) > O.

Hence, the inference mechanism seeks to determine which rules are on to fınd out

which rules are relevant to the current situation. Consider, for the inverted pendulum

example, how compute the rules that are on. Suppose that

e(t)=O and de(t)/dt= n/8-n/32(=0.294)

Figure I I shows the membership functions for the inputs and indicates with thick black

vertical lines the values above for e(t) and de(t)ldt. Notice that f-izera(e(t))=I but that the

other membership functions for the e(t) input are all "off" (i.e., their values are zero).

For the de(t)ldt input like that f-izera(de(t)ldt)=0.25and µpossmaı(de(t)ldt) = 0.75 and that

all the other membership functions are off This implies that rules that have the premise
terms
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"error is zero"

"change-in-error is zero"

"change-in-error is possmall"

are on (all other rules have µpremise(e(t),de(t)!dt)= O. So, which rules are these? Using

Table 1 on, fınded that the rules that are on are the following:

1. If error is zero and change-in-error is zero Then force is zero

2. If error is zero and change-in-error is possmall Then force is negsmall

Note that since for the pendulum example there are at most two membership

functions over- lapping, the designer will never have more than four rules on at one

time (this concept generalizes to many inputs). Actually, for this system the designer

will either have one, two, or four rules on at any one time. To get only one rule on

choose, for example, e(t) = O and de(t)ldt=n/8 so that only rule 2 above is on. What

values would you choose for e(t) and de(t)/dt to get four rules on? For this system, to
have exactly three rules on?

-2
"neglarge"

-1
"negsmall" o 1

"possmall"
2

"poslarge""zero"

e(t),(raı
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-2
"neglarge"

-1
"negsmall" o 1 2

"possmall" "poslarge""zero"

-n/4 -Tr /8 tr /16 In/8 n/4
de(t)ldt, (rad/sec

Fig 3.10.Input membeship functions with input values

It is useful to consider pictorially which rules are on. Consider Table 2, which is

a copy of Table 1 with boxes drawn around the consequents of the rules that are on

(notice that these

Table 2 

force Change-in-error e' 
u NL NS z PS PL 
Error NL PL PL PL PS z
e NS PL PL PS z NS 

z PL PS ız l ~ NL 
PS PS z NS NL NL 
PL z NS NL NL NL 

are the same two rules listed above). Notice that since e(t) = O(e(t) is directly in the

middle between the membership functions for "possmall" and "negsmall") both these

membership functions are off If perturbed e(t) slightly positive (negative), then the

controller would have the two rules below (above) the two highlighted ones on also.
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3.8 Inference Step: Determining Conclusions

The consider how to determine which conclusions should be reached when the

rules that are on are applied to deciding what the force input to the cart carrying the

inverted pendulum should be. To do this, first consider the recommendations of each

rule independently. Then later combine all the recommendations from all the rules to
determine the force input to the cart.

3. 9 Recommendation from One Rule

Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then force is zero

which for convenience the controller will refer to as "rule (1 ). " Using the minimum to
represent the premise, we have

µp,emisel =min{O.25, 1} =O. 25

(the notation Jlpreınisel represents µpremise for rule (1)) so that it has 0.25 certain that this

rule applies to the current situation. The rule indicates that if its premise is true then the

action indicated by its consequent should be taken. For rule (1) the consequent is "force

is zero" (this makes sense, for here the pendulum is balanced, so the controller should

not apply any force since this would tend to move the pendulum away from the

vertical). The membership function for this consequent is shown in Figure 3. ll(a). The

membership function for the conclusion rea_ched by rule (1), which is denoted by µ1,

is shown in Figure 3 .11 (b) and is given by

µ1(u) =min{0.25, /.lzero(u)}

this membership function defines the "implied fuzzy set'" for rule (1) (i.e., it is the
conclusion that is implied by rule (1)).

Notice that the membership function µ1(u) is a function of u and that the

minimum operation will generally "chop off the top" of the /.lzero(u) membership

function to produce uıtut). For different values of e(t) and de(t)/dt there will be

37



different values of the premise certainty µpremise(e(t),de(t)ldt) for rule (1) and hence

different/unctions µ1(u) obtained (i.e., it will chop off the top at different points).

That µ1(u) is in general a time-varying function that quantifies how certain

rule (1) is that the force input u should take on certain values. It is most certain that the

force input should lie in a region around zero (see Figure 3. ll(b)), and it indicates that

it is certain that the force input should not be too large in either the positive or negative

direction-this makes sense if the designer consider the linguistic meaning of the rule.

The membership function µJ(u) quantifies the conclusion reached by only rule (1) and

only for the current e(t) and de(t)/dt. It is important that the reader be able to picture

how the shape of the implied fuzzy set changes as the rule's premise certainty changes

over time.

-10 1010
a)

Fig3. l l (a) Consequent membership function and (b) implied fuzzy set with

membership function µ1(u) for rule (1). Recall that the units for u(t) are Newtons (N).

3 .1 O Recommendation From Another Rule

Consider the conclusion reached by the other rule that is on,

If error is zero and change-in-error is possmall Then force is negsmall

which for convenience we will refer to as "rule (2)." Using the minimum to represent

the premise, considering

µpreıniseı(u)=min{O.75,J}=O.75

so that by 0.75 rule is applied to the current situation. Notice that consider much more

certain that rule (2) applies to the current situation than rule (1 ). For rule (2) the

consequent is "force is negsmall" (this makes sense, for here the pendulum is perfectly

balanced but is moving in the counterclockwise direction with a small velocity). The

membership function for this consequent is shown in Figure3.12 (a). The membership
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function for the conclusion reached by rule (2), which is denoted by µ2(u), is shown in

Figure 3.12(b) (the shaded region) and is given by

µ2(u)=min{O. 75, µnegsmazz(u)

this membership function defines the implied fuzzy set for rule (2) (i.e., it is the

conclusion that is reached by rule (2)). Once again, for different values of e(t) and

de(t)ldt there will be different values of µpremise2(e(t),de(t)ldt) for rule (2) and hence

different functions µ2(u) obtained. Rule (2) is quite certain that the control output

(process input) should be a small negative value. This makes sense since if the

pendulum has some counterclockwise velocity then the controller would want to apply

a negative force (i.e., one to the left). As rule (2) has a premise membership function
that has higher certainty than for rule (1).

-1 -1

0.75

-20 -10
a)

u(t) -20 -10
b)

u(t)

fıg3.12

This completes the operations of the inference mechanism in Figure 1. While the

input to the inference process is the set of rules that are on, its output is the set of

implied fuzzy sets that represent the conclusions reached by all the rules that are on.

For this example, there are at most four conclusions reached since there are at most

four rules on at any one time. (In fact, you could say that there are always four

conclusions reached for our example, but that the implied fuzzy sets for some of the

rules may have implied membership functions that are zero for all values.)

3. 1 1 Converting Decisions into Actions

Defuzzifıcation operates on the implied fuzzy sets produced by the inference

mechanism and combines their effects to provide the "most certain" controller output

(plant input). Some think of defuzzifıcation as "decoding" the fuzzy set information

produced by the inference process (i.e., the implied fuzzy sets) into numeric fuzzy
controller outputs.
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There are actually many approaches to defuzzification.

3 .12 Combining Recommendations

Due to its popularity, first consider the "center of gravity" (COG) 

defuzzification method for combining the recommendations represented by the implied

fuzzy sets from all the rules. Let bi denote the center of the membership function (i.e.,

where it reaches its peak for example) of the consequent of rule (i). For this example it
has

bj=O and bs= l O

-20 -ıot O 10 u(t)
-6.81

Fig.3.13

as shown in Figure3.13 Let fA
denote the area under the membership function u; . The COG method computes ucrisp to
be

r-r-. i
U crısp = --'-L-f µ-i

I

(1)

This is the classical formula for computing the center of gravity. In this case it is for

com- puting the center of gravity of the implied fuzzy sets. Three items about Equation
(1) are important to note:

1. Practically, the controller cannot have output membership functions that have

infinite area since even though they may be "chopped off in the minimum operation

for the implication (or scaled for the product operation) they can still end up with

infinite area. This is the reason controller do not allow infinite area membership

functions for the linguistic values for the controller output (e.g., we did not allow the
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saturated membership functions at the outermost edges as controller had for the
inputs shown in Figure 3.7).

2. The controller must be careful to define the input and output membership functions

so that the sum in the denominator of Equation (1 ) is not equal to zero no matter

what the inputs to the fuzzy controller are. Essentially, this means that controller must

have some sort of conclusion for all possible control situations controller may
encounter.

3. While at first glance it may not appear so, fA is easy to compute for this example.

For the case where controller have symmetric triangular output membership

functions that peak at one and have a base width of w, simple geometry can be used

to show that the area under a triangle "chopped oft' at a height of h (such as the ones
in Figures3. 11 and 3. 12) is equal to

Given this, the computations needed to compute e=are not too significant.

Seeing that the property of membership functions being symmetric for the output is

important since in this case no matter whether the minimum or product is used to

represent the implication, it will be the case that the center of the implied fuzzy set will

be the same as the center of the consequent fuzzy set from which it is computed. If the

output membership functions are not symmetric, then their centers, which are needed in

the computation of the COG, will change depending on the membership value of the

premise. This will result in the need to recompute the center at each time instant.

Using Equation (1) with Figure 3. 13 it consider

Ucrisp = (0)(4.375)+(-10)(9.375) = _6_81
4.375 + 9.375

as the input to the pendulum for the given e(t) and de(t)ldt (seefig3. J3).



3. 13 Other Ways to Compute and Combine Recommendations

As another example, it is interesting to consider how to compute, by hand, the

operations that the fuzzy controller takes when used the product to represent the

implication or the "center-average" defuzzifıcation method.

Consider Figure3.14, where the controller have drawn the output membership

functions for "negsmall" and "zero" as dotted lines. The implied fuzzy set from rule (1)

is given by the membership function

µ1 (u) =O. 25 /lzera(u)

shown in Figure 15 as the shaded triangle; and the implied fuzzy set for rule (2) is given

by the membership function

µ2(u)=O. 75µnegsmazz(u)

shown in Figure3.14 as the dark triangle. Notice that computation of the COG is easy

since used 1/2 wh as the area for a triangle with base width w and height h. When the

controller useproduct to represent the implication, which is obtain

Ucrisp = (0)(2.5) + (-10)(7.5) = _7_5
2.5+7.5
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which also makes sense
-1

"negsmall" o
"zero"

0.75

0.25

-30 20 30

fig3.14) implied fuzzy sets when the product is used to represent the implication

As another example of how to combine recommendations, it is consider the

'center-average" method for defuzzification. For this method used:

L biµ premise,
crisp - i

U - Lµpremise;
(2)

where to compute µp,emisei used, for example, minimum. It called the "center-average"

method since Equation (2) is a weighted average of the center values of the output

membership function centers. Basically, the center-average method replaces the areas

of the implied fuzzy sets that are used in COG with the values of µpremisei . This is a

valid replacement since the area of the implied fuzzy set is generally proportional to

µp,emisei since µpremisei is used to chop the top off (minimum) or scale (product) the

triangular output membership function when COG is used for our example. For the

above example, it consider
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ucrisp = (0)(0.5)+(-10)(0.75)= -7.5
0.25+ 0.75

which just happens to be the same value as above. Some like the center-average

defuzzifıcation method because the computations needed are simpler than for COG and

because the output membership functions are easy to store since the only relevant

information they provide is their center values (b; ) (i.e., their shape does not matter,
just their center value).

Notice that while both values computed for the different inference and

defuzzifıcation methods provide reasonable command inputs to the plant, it is difficult

to say which is best without further investigations (e.g., simulations or

implementation). This ambiguity about how to define the fuzzy controller actually

extends to the general case and also arises in the specification of all the other fuzzy

controller components, as its discussed below. Some would call this "ambiguity" a

design flexibility, but unfortunately there are not too many guidelines on how best to

choose the inference strategy and defuzzifıcation method, so such flexibility is of
questionable value.

3 .14 Graphical Depiction of Fuzzy Decision Making

In fıgure3.15 the calculation of fuzzy controller output is given. Here, the

controller used the minimum operator to represent the "and" in the premise and the

implication and COG defuzzifıcation. The reader is advised to study each step in this

diagram to gain a fuller understanding of the operation of the fuzzy controller. To do

this, develop a similar diagram for the case where the product operator is used to

represent the "and" in the premise and the implication, and choose values of e(t) and

de(t)/dt that will result in four rules being on. Then, repeat the process when center­

average de(t)!dt defuzzifıcation is used with either minimum or product used for the

premise. Also, learn how to picture in your mind how the parameters of this graphical

representation of the fuzzy controller operations change as the fuzzy controller inputs
change.
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"zero"
"zero"

+II \
I \

I \
I \

/ \ 0.25I

e(t) -7[ /8 1r/16 1r/8 dldte(t) -10 10 utt,

If error is zero and change-in-error is zero Then force is zero

"possmall" "negsmall""zero"

e(t) 1r I4 dldte(t) -20 -10
U(t)

If error is zero and change-in-error is possmall Then force is negsmall

U crisp=-6.81 

Fig. 3. 15 Graphical representation of fuzzy controller operations
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CHAPTER 4. FUZZY CONTROLLER FOR TECHNOLOGICAL 
PROCESSES CONTROL 

4. I. Development of fuzzy controller for control of temperature

The aim of the initial oil refinery process is to obtain a wide fraction of light

products, such as gasoline, kerosine and others. The main block of the initial oil

refinery unit is a multicomponent rectifying tower K-2 (see Fig. I ). The products of K-

2 are cuts fr-1, fr-2 and fr-3 which are removed from the tower in the form of side-cut

distillates to the strippers K-6, K-7 and K-9.

K-2 

K-6 fr 1

fr?.K-7 
fr 1

K-9

4

Computer

Fig. I. The sheme of the initial oil-refinery unit
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The quality and quantity of the cuts are being controlled by the top temperature

K-2 (xl) and by the temperatures of the side-cut distillates to the strippers K-6 (x2),

K-7 (x3)and K-9 (x4) . At the same time , the process parameters xl, i = 1,4 are

controlled by the reflow rates to K-2 (u l ), K-6 (u2), K-7 (u3) and K-9 (u4).

The structure of the control system is given in Fig.1. Here 1 is the

electropneumatic transducer; 2 is the emf/current converter ; 3 is the AID converter; 4

is the DlA converter ; 5 is the active program of the multivariate fuzzy control system.

The fuzzy description of the process with respect to the control and disturbance

channels is obtained in the form of linguistic rules. For example,

"IF Ll: is negative medium AND X, is negative medium THEN Xij is zero, OR ,

"IF Ilı is negative medium AND Xj is negative small THEN Xij is negative

small, OR

"IF Il: is negative medium AND Xj is zero THEN Xii is negative medium",

(see table 1) ,
Table 1

x,
NM NS ZE PS PM

Uı NM ZE NS NM NB NVB

NS PS ZE NS NM NB

ZE PM PS ZE NS NM

PS PB PM PS ZE NS

PM PVB PB PM PS ZE 

x,

NVB: negative very big
PVB: positive very big
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here Ih , Xj and Xij , i,j=l.4 are the process inputs, outputs and derivatives,

respectively. The extended term-sets of cooresponding linguistic variables Ui and Xj

contain five terms while the term-set of Xij contains nine terms. For example, terms of

Ui are,

Negative medium (NM) ={(Uı, µ11 (U)) [u E U}

Negative small (NS)= {(Uı, µ12 (U)) hı E U}

Zero(ZE)= {(Uı, µ13 (U)) hı E U}

Positive small (PS)= {(Uı, fiı4 (U)) [u E U}

Positive medium (PM)= {(Uı, µ15 (U)) [u E U}

Where

µlk(U) = exp -g1k • [u- sik I)

And Sık are the elements of corresponding fuzzy sets with membership grade equal to

unity. Obtained values of pairs (g,s) for all linguistic variables are given in the tables

2,3 and 4.

Table 2

l J, TJ2 l J1 l J4
s g s g s g s g

NM -0.15 33 -0.16 30 -0. 18 29 -0.20 28
NS -0.08 25 -0.10 24 -0.11 23 -0.12 22
ZE 0.00 25 0.00 24 0.00 23 0.00 22
PS 0.08 25 0.10 24 0.11 23 0.12 22
PM 0.15 33 0.16 30 0.18 29 0.20 28
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Table 3 Table 4

f

s g

NM -5.0 0.4 
NS -3.0 0.5 
ZE O.O 1.0 
PS 3.0 0.5 
PM 5.0 0.4 

X

s g

NM -4.0 2.6 
NS -2.0 4.0 
ZE O.O 10. 
PS 2.0 4.0 
PM 4.0 2.6 

The investigations of the process revealed an essential dependence among

temperatures of side-cut distillates ( X2 and XJ) on the one hand and crude rate (f) and

temperature of side-cut distillate to K-9 (X4) on the other hand. The letter circumstance

forced to provide conditions of invariance and non-interaction while controlling the

temperatures of side-cut distillates X iJ=l,4. This system structure contains the

following tables of linguistic rules.

TLR, i=l,4 are tables offuzzy feedback controllers;

TL&ı and TLR23 are tables of fuzzy compensators which provide conditions of

non-interaction while controlling X2 and X3 ; TLR provides invariance of X4 relative

to f; TLR;j and TLR.r represent the fuzzy description of the process.

TL&ı , TLR23 and TLR.r may be obtained using the described approach. At first,

using TLR44 and TLR.r we developed the fuzzy relations matrices R44 (U4, X4, X4) and

Rr (f, X4, X4). Further , on the base of invariance conditions the matrix of the

compensator (Rr (f, U4)) is calculated as a result of an inverse composition:
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0,20 0,70 0,80 0,20 0,04 0,04

0,10 0,30 0,90 0,30 0,10 0,04

Rs (f, U4) = I 0,04 0,20 0,80 0,80 0,20 0,04

0,04 0,20 0,80 0,80 0,20 0,04

0,04 0,10 0,30 0,90 0,30 0,10

0,04 0,04 0,20 0,80 0,70 0,20
'-

, ı '.
The pairs (g,s) ofRr {f, U4) are calculated, for instance, by:

Fı =NM= { 1.00/-5 + 0.45/-3 + 0.20/-1 + 0.09/1 + 0.04/3 + 0.02/5 }

Ur ı = Fı. Rf= { 0.20/-0.2 + 0.70/-0.12 + 0.80/-0.04 + 0.30/0.04 + 0.20/0.12 +

+ 0.04/0.2}

All parameters (s,g) of TL&2 and TLRı3 are calculated analogically (see Table

,5).

Table 5

U23 U32 Ur
s g s g s g

NM -0.07 15 -0.06 25 -O.OS 50
NS -0.03 50 -0.03 50 -0.03 50
ZE 0.00 50 0.00 50 0.00 25
PS 0.03 50 0.03 50 0.03 25
PM 0.07 15 0.06 25 0.06 50
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4.2) Modeling of Fuzzy system for Control of Temperature

Some results of the system's software simulation are shown in Fig.J; the

efficiency of the constructed compensator is evident.

No disturbance disturbance

w C I T x4 I o
T M

H p

o E

u N

T s
T
R

C Al
o T
M T

I .4. x,

p A
E C
N H
s E
T D
R

Fig.3. Results of software simulation
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CONCLUSION 

In a fuzzy controller the data passes through a preprocessing block, a controller,

and a postprocessing block.. Preprocessing consist of a linear or non-linear scaling as

well as a quantisation in case the membership functions are discretised.

The analysis of some industrial and non-industrial processes show, that they

are characterized with uncertainty of their functioning principle, fuzziness of

information. In these condition the fuzzy system is effective mathematical tool for

modeling and control both industrial and non-industrial processes.

The structure of fuzzy system for technological processes control is given. The

functions of its main blocks- fuzzifıcation, inference engine, rule base, defuzzifıcation

are described.

The development of fuzzy PD-like controller is performed. Using desired time

response characteristic of system and fuzzy model of the processes the fuzzy

knowledge base for this controller is developed. Defuzzifıcation mechanizm is realised

by using "center of gravity" algorithm.

The modeling of fuzzy system for control of temperature is carried out.In the

result of simulation obtained characteristics of system show the efficiency of

application of fuzzy controller in complicated process.
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