
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

LPG DISTRIBUTOR STOCK & SALE SYSTEM

Graduation Project

COM 400

Student: AhmetÖZBEK

Supervisor : Assoc. Prof. Rahib ABİYEV

Nicosia1 - 2008

ACKNOWLEDGEMENTS

"Firstly, I would like to thank to my supervisor Mr Rahib ABIYEV, Elbrus IMAN OV,

Dr.Kaan UYAR, Okan DONANGİL, Ümit İLHAN for their great advise and

recomendation for finishing my project properly also, teaching and guiding me in

others lectures.

I am greatly indepted to my family for their endless support from my starting day in

my educational life until today. I will never forget the things that my brother Mahmut

ÖZBEK and my uncle Ahmet Şerif ÇULCU did for me during my educational life,

also I want to say thanks to my mother Saliha ÖZBEK. I dedicate my project to them.

I thank all' the staff of the faculty of engineering for giving facilities to practise,

teaching and solving problem in my complete undergraduation program

I thank my friends Burak MELEK and Kerim ALTANHAN for their help, they get tired

with me, and they helped me and give morale everytime.

I thank them with my all

Finally, I promise to do my best in my life as an bachelor of engineer after finishing

my undergraduate program"

CONCLUSION

REFERENCES

APPENDIX

69

70

71

TABLE OF CONTENTS

ACKNOWLEDGEMENT
TABLE OF CONTENTS ii
ABSTRACT iii

INTODUCTION 1

CHAPTER ONE-MICROSOFT ACCESS DATABASE 2
1.1 Microsoft Access Database Fundamentals 2

1 .2 Microsoft Access Reports Tutorial 5
1.3Creating a Simple Query in Microsoft Access 11

1.4Creating Forms in Microsoft Access 16
1 .5 How do I encrypt an Access 2007 database? 18

CHAPTER ONE - DELPHI PROGRAMMING LANGUAGE 19
2.1 A brief history of Borland's Delphi 19

2.2Delp~i For Beginners: 21
2.3A Glossary of Delphi Programming Technical Terms 23

2.4Unders(anding Delphi Project Files (.DPR) 37
2.4.1 New: Delphi Project 37

2.4.2 Project File 37

2.4.3 Project Unit 38
2.4.4 An Example: Hide Main Form I Hide Taskbar Button 39

2.5 Understanding the Birth, Life and Death of a Delphi Form 40

2.6 Understanding and Using.Functions and Procedures 43

2.7 Understanding and Using Loops 50
2.8 Understanding Typed Constants in Delphi , 54

2.9 Running Delphi Applications With Parameters 57
CHAPTER THREE - DEVELOPMENT OF LPG DISTRIBUTOR STOCK & 60

SALE SYSTEM

ii

ABSTRACT

The aim of this project is to register petrol station program that contain

registration, all applications and also customers, sales, stocks and lpg application.

The program was prepared by using Delphi programming and using MS Access

database.

This project consist of so many forms and menus. The main form of the

arrive the others forms . Which are include information about the sales,stocks and

customers.

I think to give this system to GAPGAZ A.Ş.

To show results, show the efficiency of the program of LPG sale and stock in

program of the using in other chapters.

iii

INTRODUCTION

Information technology (IT), as defined by the Information Technology

Association of America (ITAA), is "the study, design, development, implementation,

support or management of computer-based information systems, particularly

software applications and computer hardware." IT deals with the use of electronic

computers and computer software to convert, store, protect, process, transmit and

retrieve information, securely.

Recently it has become popular to broaden the term to explicitly include the

field of electroniç communication so that people tend to use the abbreviation ICT

(Information and Communications Technology), it is common for this to be referred to

as IT & T in the Australasia region, standing for Information Technology and

Telecommunications.

Today, the term information technology has ballooned to encompass many

aspects of computing and technology, and the term is more recognizable than ever
-

before. The information technology umbrella can be quite large, covering many fields.

IT professionals perform a variety of duties that range from installing applications to

designing complex computer networks and information databases. A few of the

duties that IT professionals perform may include data management, networking,

engineering computer hardware, database and software design, as well as the

management and administration of entire systems.

"The aim of this project is to develop a simple Stock Management System for
small companies. The project consists of introduction,three chapters and conclusion.

Chapter One; describes general terms of Microsoft Access Database and the
processes of creating a database.

Chapter Two; describes the main lines of Borland Delphi Programming
Language such as reserved words, simple codes, methods and basic events.

Chapter Three; is the User's Manual of the program that gives information
about the system developed as Stock Management System.

1

Microsoft Access Database Fundamentals

Are you overwhelmed by the large quantities of data that need to be tracked in your

organization? Perhaps you're currently using a paper filing system, text documents or

a spreadsheet to keep track of your critical information. If you're searching for a more

flexible data management system, a database might be just the salvation you're

looking for.

What is a database? Quite simply, it's an organized collection of data. A database

management system (DBMS) such as Access, FileMaker Pro, Oracle or SOL Server

provides you with the software tools you need to organize that data in a flexible

manner. It includes facilities to add, modify or delete data from the database, ask

questions (or queries) about the data stored in the database and produce reports

summarizing selected contents.

Microsoft Access provides users with one of the simplest and most flexible DBMS

solutions on the market today: Regular users of Microsoft products will enjoy the

familiar Windows "look and feel" as well as the tight integration with other Microsoft

Office family products. Arı abundance · of wizards lessen the complexity of

administrative tasks and the ever-present Microsoft Office Helper (you know... the

paper clip!) is available for those who care to use it. Before purchasing Access, be

sure that your system meets Microsoft's minimum system requirements. To further

our discussion, let's first examine three of the major components of Access that most
database users will encounter - tables, queries, forms. Once we've completed that

we'll look at the added benefits ot reports, web integration and SOL Server
('

integration.

Tables comprise the fundamental building blocks of any database. If you're familiar

with spreadsheets, you'll find database tables extremely similar.

2

The table above contains the employee information for our organization -­

characteristics like name, date of birth and title. Examine the construction of the table

and you'll find that each column of the table corresponds to a specific employee

characteristic (or attribute in database terms). Each row corresponds to one

particular employee and contains his or her information. That's all there is to it! If it

helps, think of each one of these tables as a spreadsheet-style listing of information.

Reports provide the capability to quickly produce attractively formatted summaries of

the data contained in one or more tables and/or queries. Through the use of wizards,

database users can create reports in literally a matter of minutes. As an example,

let's return to our Northwind database. In this case, suppose that our company

wishes to produce a catalog to share our product information with current and

prospective clients. In previous sections, we learned that this sort of information

3

Beverages
Soft drinks., ccffees,
teas, beer::,, and ales

could be retrieved from our database through the judicious use of queries. However,

recall that this information was presented in a tabular form -- not exactly the most
attractive marketing material! Reports allow the inclusion of graphics, attractive

formatting and pagination. Take a look at the sample report in the illustration below:

Clı.ai l 1 O box es x 20 bags $18 .00

Chang 2 24 - 12 oz bottles $19.00

CJı.artreuseverte 39 7 50 cc per bottle $18 .00

Côte de Blaye 38 12 - 75 cl bottles $263.50

G uarana Fan tastica 24 1 2 - 35 5 ml cans $4.50

, Ip oh Coffee 43 1 6 - 50 O g tins $46 .00

Lakk:alikööri 76 500 ml $18 .00

Laughing LumberjackLager 67 24 - 12 oz bottles $14.00

Microsoft Access also provides native support for the World Wide Web. Posting data

to the web is a breeze. If you have a formatted report that you would like to share

with Internet or Intranet users, you can pimply export it to an HTML file and publish it
to your organization's web server. For those with more complex tastes, the
advanced features of Access 2000 provide interactive data manipulation capabilities

to web users.

Finally, no discussion of Microsoft Access is complete without mentioning it's

capability to tightly integrate with SOL Server, Microsoft's professional database

server product. If you're in an organization that utilizes SOL Server, you'll be pleased

to learn that you can retrieve, manipulate and work with the data stored on your

organization's database server within the Microsoft Access environment. For more

on this, view Microsoft's page on SOL Server/Office integration.

4

Microsoft Access Reports Tutorial

Part 1: Getting Started

In our previous tutorials, you've learned a good deal about Microsoft Access.

Together, we created a query, modified the query to make it more complex, and

created a data entry form. We've learned the skills necessary to put information into

a database and selectively remove the exact information we're seeking. In this

tutorial, we're going to go a step further and learn how to create professionally

formatted reports automatically from our database information. Returning to our
familiar Northwind Company, we're going to design a nicely-formatted listing of

employee home telephone numbers for the use of management.

The sample images in this tutorial were created using Access 2000. If you are

running an earlier version of Access, your screen images may appear slightly

different. However, the same general principles still apply and you should be able to

follow along. l,f you need a quick-start on the basics of Access before getting started,

take a look at the article "Microsoft Access Fundamentals."

Once again, we're going to use the Northwind sample database. Before we get

started, open up Microsoft Access and then open the Northwind database. If you

need help with this step, please read the article "How to Install the Northwind Sample
,-'

Database."

1. Choose the Reports menu. Once you've opened Northwind, you'll be presented
"with the main database menu shown below. Go ahead and click on the "Reports"

selection and you'll see a list of the various reports Microsoft included in the sample.
database. If you'd like, feel free to double-click on a few of these and get a feel for

what reports look like and the various types of information that they contain.

2. Create a new report. After you've satisfied your curiosity, go ahead and click on

the "New" button and we'll begin the process of creating a report from scratch.

5
s

~ •• (re . Lrt by using wizard~
Ill! Alphabetical List of Products

Ill! Catalog

Ill! Catalog Subreport

Ill! Customer Labels

Ill! Employee Salesby Country

Ill! Invoice

Ill! Products by Category

Ill! Sales by Category

Ill! Salesby Category Subrep,ort

Ill! Sales by Year

8 Salesby Year Subreport

Summary of Sales by Quarter

Summary of Sales by Year

Create a new report

3. Select the Report Wizard. The next screen that appears will ask you to select the

method you wish to use to. create the report. We're going to use the Report Wizard

which will walk us through the creation process step-by-step. After you've mastered
the wizard, you might want to return to this step and explore the flexibility provided by

the other creation methods.

4. Choose a table or query. Before leaving this screen, we want to choose the
source of data for our report. If you want to retrieve information from a single table,

you can select it from the drop-down box below. Alternatively, for more complex

reports, we can choose to base our report on the output of a query that we previously

designed. For our example, all of the data we need is contained within the

Employees table, so choose this table and click on OK.

6

7

Select a creation method

Next, we'll select exactly which table data to include in the report and learn how to

apply formatting to our finished product. Read on!

Microsoft Access Reports Tutorial Part 2: Selecting the Data

5. Select the fields to include. Use the '>' button to move over the desired fields.
Note that the order you place the fields in the right column determines the default

order they will appear in your report. Remember that we're creating an employee

telephone directory for our senior management. Let's keep the information contained

in it simple -- the first and last name of each employee, their title and their home

telephone number. Go ahead and select these fields. When you are satisfied, click

the Next button.

6. Select the grouping levels. At this stage, you can select one or more grouping

levels to refine the order in which our report data is presented. For example, we may

wish to break down our telephone directory by department so that all of the members

of each department are listed separately. However, due to the small number of

employees in our database, this is not necessary for our report. Go ahead and

simply click on the Next button to bypass this step. You may wish to return here later
)

and experiment with grouping levels.

Selectthe fields to include

Choose the grouping levels

8

7. Choose your sorting options. In order to make reports useful, we often want to

sort our results by one or more attributes. In the case of our telephone directory, the

logical choice is to sort by the last name of each employee. Select this attribute from

the first drop-down box and then click the Next button to continue.

Choose the sorting options

Microsoft Access Reports Tutorial Part 3: Finishing Touches

Create report by using wızerd

Alphabetical List of Products

Catalog

Catalog Subreport

Sales Tota ls by Amount

Summary of Salesby Quarter

Summary of Salesby Year

Invoice)

Products by Category

Salesby Categor·1

Salesby Category Subreport

Sales by Year

9

In this example, as with all of our Access tutorials, we will use Access 2000 and the

Northwind sample database included on the installation CD-ROM. If you're using an

earlier version of Access, you may find that some of the menu choices and wizard

screens are slightly different. However, the same basic principles apply to all

versions of Access (as well as most database systems).

Creating a Simple Query in Microsoft Access

Have you ever wanted to combine information from multiple tables in your database

in an efficient manner? Microsoft Access offers a powerful query function with an

easy-to-learn interface that makes it a snap to extract exactly the information you

need from your database. In this tutorial we'll explore the creation of a simple query.

Let's explore the process step-by-step. Our goal in this tutorial is to create a query

listing the names of all of our company's products, current inventory levels and the

name and phone number of each product's supplier.

1. Open your database. If you haven't already installed the Northwind sample
database, these instructions will assist you. Otherwise, go to the File tab, select

Open and locate the Northwind database on your computer.

2. Select the queries tab. This will bring up a listing of the existing queries that

Microsoft included in the sample database along with two options to create new

queries.

3. Double-click on "create query t5y using wizard". The query wizard simplifies

the creation of new queries. We'll use it in this tutorial to introduce the concept of

query creation. In later tutorials we'll examine the Design view which facilitates the

creation of more sophisticated queries.

10

Create query by using wızard

roducts Query

Current Product List

Customers and Suppliers by City

Employee Sales by Country

Employees Query

Invoices

Invoices Filter

Order Details Extended

..ı..ıu.ttr'

..ı..ıu.ttr'
[§il Products Above Avereçe Price

[§il Products by Category

[§il Quarterly Orders

!lw Quarterly Orders by Product

[§il Sales by Category

[§il Sales by Year

[§il Ten Most Expensive Products

4. Select the appropriate table from the pull-down menu. When you select the

pull-down menu, you'll be presented with a listing of all the tables and queries

currently stored in your Access database. These are the valid data sources for your

new query. In this example, we want to first select the Products table which contains

information about the products we keep in our inventory.

Table: Categories
Table: Customers
Table: Employees
Table: Order Details
Table: Orders

11

5. Choose the fields you wish to appear in the query results. by either double­

clicking on them or by single clicking first on the field name and then on the 11>11 icon.
As you do this, the fields will move from the Available Fields listing to the Selected

Fields listing. Notice that there are three other icons offered. The 11>>11 icon will
select all available fields. The "<" icon allows you to remove the highlighted field

from the Selected Fields list while the "<<" icon removes all selected fields. In this

example, we want to select the ProductName, UnitslnStock, and UnitsOnOrder from

the Product table.

ProductID
SupplierID
Category ID
QuantityPerUnit
UnitPrice

6. Repeat steps 4 and 5 to addl'information from additional tables, as desired.
In our example, we wanted to include information about the supplier. That

"

information wasn't included in the Products table -- it's in the Suppliers table. Here's
the power of a query! You can combine information from multiple tables and easily

show relationships. In this example, we want to include the CompanyName and

Phone fields from the Suppliers table. All you have to do is select the fields -- Access

will line up the fields for you!

Note that this works because the Northwind database has predefined relationships

between tables. If you're creating a new database, you'll need to establish these

12

relationships yourself. Read the article "Defining Relationships in Microsoft Access"

for more information on this topic.

7. Click on Next.

8. Choose the type of results you would like to produce. We want to produce a

full listing of products and their suppliers, so choose the Detail option here.

r

9. Click on Next.

1 O. Give your query a title. You'r~ almost done! On the next screen you can give

your query a title. Select something descriptive that will help you recognize this

query later. We'll call this query "Product Supplier Listing."

13

Product Sales for 1 997

11. Click on Finish. You'll be presented with the two windows below. The first

window is the Query tab that we started with. Notice that there's one additional listing

now -- the Product Supplier Listing we created. The second window contains our
results -- a list of our company products, inventory levels and the supplier's name and

telephone number!

Create qGery in Design view

Create query by using wizard
~

Alphabetical List of Products

G§} -Alphabetical List of Products Query

G§l Category Sales for 1997

G§} Current Product List

Customers and Suppliers by City

Employee Sales by Country

Employees Query

Invoices

Invoices Filter

Order Details Extended

14

Product Supplıer Lıstıng

Products Above Average Price

Products by Category ~

G§} • Quarterly Orders

RE] Quarterly Orders by Product

G§} Sales by Category

G§} Sales by Year

G§} Ten Most Expensive Products

Louisiana Fiery Hot Perpl 76,_ , , -.
uisiana_ Hot Spjced O kıl ··--· ... 4, .. ·-----·· 1001 New Orlea~ Cajun Delighls

ngt'lıa's E3oyse,nqe,rry.ı: 120 P.Gra~dt'lıa Ke,lly'§ tıot'lıe,§tea
cıe E3qb'sQrga~i~prie,I 1 s Q.Gra~gt'lıaye,ııy·stıot'lıe,§t

hl/Y99,9.§ ... cr,_aD.~.e,rrx ...§~. 6 • Q•...G.r.~~9.t'lı_a ...Ke,.ı}y'.§ .. tıo.t'0e,,§!
ishi Kobe Niku 29'.- ·- QToky~Trader§ ····-··········

Ol Tokvo Traders

Congratulations! You've successfully created your first query using Microsoft

Access! Now you're armed with a powerful tool to apply to your database needs.

Creating Forms in Microsoft Access

Open your database
Microsoft Access forms provide a quick and easy way to modify and insert records

r
into your databases. They offer an intuitive, graphical environment easily navigated

by anyone familiar with standard computer techniques. Creating a form is a quite
simple, pleasant experience. In this example, as with all of our Access tutorials, we

I

will use Access 2003 and the Northwind sample database included on the installation

CD-ROM. If you're using an earlier version of Access, you may find that some of the
' ~

menu choices and wizard screens are slightly different. However, the same basic

principles apply to all versions of Access (as well as most database..systems). Let's
begin! Our goal for this tutorial is to create a simple form that will allow data entry

operators in our company to easily add new customers to our sales database.

If you haven't already installed the Northwind sample database, these instructions will

assist you. Otherwise, go to the Help menu, then choose Sample Databases and

Northwind Sample Databases.

15

Click on the Forms tab under Objects

This will bring up a list of the form objects currently stored in your database. Notice
that there are a large number of pre-defined forms in this sample database. After you

complete this tutorial, you might want to return to this screen and explore some of the

more advanced features included in these forms.

Click on the New icon to create a new form
Click on the New icon to create a new form

Select the creation method you wish to use
Next, we're presented with a variety of different methods we can use to create a
form. The AutoForm options quickly create a form based upon a table or query.

Design View allows for the creation and formatting of elaborate forms using Access'

form editing interface. The Chart Wizard and PivotTable Wizard create forms

revolving around those two Microsoft formats. In this tutorial, we'll use the Form

Wizard to walk through the process step-by-step.

Select the data source and click OK.
You can choose from any of the queries and tables in your database. If you recall our
scenario, we wish fo create a form to facilitate the addition of customers to our

database. In order to accomplish this, we're going to select the Customers table from

the pull-down menu.

Select the form fields to be used and click Next.
Next, you'll be presented with the screen below. Use this form to select the

table/query fields you wish to appear on your form. To add fields one at a time, either

double-click the field name or single-click the field name and single click the ">"

button. To add all the fields at once, simply click the ">>" button. The "<" and "<<"

buttons work in a similar manner to remove fields from the form. For our example, we

will add all of the table's fields to the form.

Select the form layout and click Next
You can choose from either a columnar, tabular, datasheet or justified form layout.

We'll use the justified layout to produce an organized form with a clean layout. You

may wish to come back to this step later and explore the various layouts available.

16

Edit Properties
Click the Properties icon. This will bring up a menu of user-definable attributes that
apply to our form. Edit the properties as necessary. Recall that our original goal was

to create a form for data entry purposes. Most likely, we don't want to grant data

entry employees full access to view or edit customer records. Setting the "Data Entry"

property to Yes will only allow users to insert new records and modify records created

during that session.

Select the form style and click Next.
Microsoft Access includes a number of built-in styles to give your forms an attractive

appearance. Click on each of the style names to see a preview of your form and

choose the one you find most appealing.

Provide a title for your form
Select something easily recognizable -- this is how your form will appear in the

database menu. Let's call our form "Customers" in this case. Select the next action

and click Finish. You may open the form as a user will see it and begin viewing,

modifying and/or entering new data. Alternatively, you may open the form in design
view to make modifications to the form's appearance and properties. Let's do the

latter and explore some of the options available to us.

Encrypting an Access Database

Security-conscious database users have long called for the ability to use strong

encryption in Microsoft Access. With the release of Access 2007, Microsoft answered
il

these pleas and introduced a robust encryption feature that allows for the simple

addition of a great deal of security to Access databases.

What is encryption?

Encryption provides you with the ability to protect your database file from prying eyes.

It transforms the way data is stored on your disk so that individuals who do not know

the database password can not open the database or use other techniques to view

the file contents. Security professionals recommend the use of encryption to protect

sensitive information.

17

Note that this feature is not available for database stored in the older MOB format.

You may find the following articles useful when attempting to encrypt an Access

database:

How do I encrypt an Access 2007 database?

Access 2007 users may encrypt databases stored in ACCDB format by password­

protecting them.

• Password-protecting an Access 2007 Database, Step-by-Step

• ACCDB Database Format
• Convert older Access databases to Access 2007

How do I decrypt an Access 2007 database?

If you want to open an encrypted database for use and then reencrypt it when you

are finished, Microsoft Access will handle the mechanics for you. Simply open the

database as you normally would and enter the database password when prompted.

Access will decrypt the database for your use and then save a new encrypted copy

when you make changes.

If you want to remove encryption from an encrypted Access database, open the

database in exclusive mode and then click "Decrypt Database" in the Database Tools

group.

What type of encryption does Access 2007 use?
"

Access 2007 uses the Microsoft Cryptographic API. This means that it will support

any cryptographic algorithm available within Windows as a Cryptographic Service

Provider (CSP). This is a great improvement over earlier versions of Access, which

only supported a built-in, weak encryption algorithm.

18

A brief history of Borland's Delphi

Pascal

Delphi uses the language Pascal, a third generation structured language. It is what is

called a highly typed language. This promotes a clean, consistent programming style,

and, importantly, results in more reliable applications. Pascal has a considerable

heritage:

Beginnings

Pascal appeared relatively late in the history of programming languages. It probably

benefited from this, learning from Fortran, Cobol and IBM's PU1 that appeared in the

early 1960's. Niklaus Wirth is claimed to have started developing Pascal in 1968, with a

first implementation appearing on a CDC 6000 series computer in 1970.

Curiously enough, the C language did not appear until 1972. C sought to serve quite

different needs to Pascal. C was designed as a high level language that still provided

the low level access that assembly languages gave. Pascal was designed for the

development of structured, maintainable applications.

The 1970's

In 1975, Wirth teamed up with Jensen to produce the definitive Pascal reference book

"Pascal User Manual and Report". Wirth moved on from Pascal in 1977 to work on

Modula - the successor to' Pascal. \'

The 1980's

In 1982 ISO Pascal appears. The big event is in November 1983, when Turbo Pascal
is released in a blaze of publicity. Turbo Pascal reaches release 4 by 1987. Turbo
Pascal excelled on speed of compilation and execution, leaving the competition in its

wake.

19

From Turbo Pascal to Delphi

Delphi, Borland's powerful Windows? and Linux? programming development tool first

appeared in 1995. It derived from the Turbo Pascal? product line.

As the opposition took heed of Turbo Pascal, and caught up, Borland took a gamble on

an Object Oriented version, mostly based on the Pascal object orientation extensions.

The risk paid off, with a lot of the success due to the thought underlying the design of the

IDE (Integrated Development Environment), and the retention of fast compilation and

execution.

This first version of Delphi was somewhat limited when compared to today's
heavyweights, but succeeded on the strength of what it did do. And speed was certainly

a key factor. Delphi went through rapid changes through the 1990's.

Delphi for Microsoft .Net

From that first version, Delphi went through 7 further iterations before Borland decided to

embrace the competition in the form of the Microsoft? .Net architecture with the

stepping stone Delphi 8 and then fully with Delphi 2005 and 2006. Delphi however still
remains, in the opinion of the author, the best development tool for stand alone Windows

and Linux applications. Pascal is a cleaner and much more disciplined language than

Basic, and adapted much better to Object Orientation than Basic.
o../ ' "

20

A new direction

Delphi is now provided by a development tools only company.

Delphi For Beginners:
Your guide will try to explain exactly what is Delphi and what can it do for you.

Dateline: 1999

Preparations.
First of all, I will presume that you know what computers are, what can you do with them,

and finally what does programming mean, in general. It would also be great if you

already have basic knowledge of programming (Pascal perhaps?).

If this is not true, you wouldn't be here anyway (am I right?). I'll be very glad if I'm not!

So sit back, relax and enjoy reading this article.

Delphi
Borland Delphi is a development tool for Microsoft Windows applications. Delphi is

powerful and easy to use tool for generating stand-alone graphical user interface (GUI)

programs or 32-bit console applications (programs that have no GUI presence but

instead run in what is commonly referred to as a "DOS box.")

When paired with Borland Kylix, Delphi users can build single-source applications for
both Windows and Linux, which opens new opportunities and increases the potential

return on development investrnents" Use the Cross-platform CLX component library and

visual designers to build high-performance portable applications for Windows that can be

easily re-compiled on Linux.

Delphi is the first programming language to shatter the barrier between high-level, easy­

to-use rapid application development environments and low-level bits-and-bytes power

tools.

When creating GUI applications with Delphi, you have all the power of a true compiled

programming language (Object Pascal) wrapped up in a RAD environment. All the
common parts of the Windows graphical user interface, like forms, buttons and lists

21

objects, are included in Delphi as components. This means that you don't have to write

any code when adding them to your application. You simply draw them onto your form

like in a paint program. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi allows the

developer to design the entire interface visually, and quickly implement an event driven

code with the click of the mouse.

Delphi ships in a variety of configurations aimed at both departmental and enterprise

needs. With Delphi, you can write Windows programs more quickly and more easily than

was possible ever before.

Pascal
The best way of describing Delphi is an Object Pascal-based visual development

environment. Delphi's environment is based on Object Pascal, a language that is as
object oriented as C++, and in some cases, better. For developers with no Pascal

experience, its templates for Pascal program structures speed the process of learning

the language.

The compiler produces applications packaged in compact executable files, with no need

for bulky runtime libraries (DLL's)-a notable benefit, I must say.

VCL
Visual Component Library (self-contained binary piece of software that performs some

specific predefined function), or VCL, is Delphi's object-oriented framework. In this rich
d

library, you'll find classes for Windows objects such as windows, buttons, etc, and you'll

also find classes for custom controls such as gauge, timer and multimedia player, along

with non-visual objects such as string lists, database tables, and streams.

Databases
Delphi can access many types of databases. Using forms and reports that you create,

the BOE (Borland Database Engine) can access local databases, like Paradox and

DBase, network SQL server databases, like lnterBase, and SysBase, and any data

source accessible though ODBC (open database connectivity).

22

Hello World!
At the end let's see one of the smallest Delphi applications: the famous 'Hello World!'

program.

This example is not for beginners - there is no main form of application or something like

that. This is only a demonstration. In some of the future articles I will focus on topics like

Delphi for Beginners - How to get started.

r··

program HelloWorld;

\uses dialogs;

begin
ShowMessage('Hello World!');

ıe;~d.

A Glossary of Delphi Programming Technical Terms
Definitions of terms having to do with Delphi programming, Pascal, OOP, BOE and

programming in general

"Self"
Definition: Within the implementation of a method, the identifier Self references the

object in which the method is called.

type
TCar = Class
color : TColor;

procedure ChangeColor(newColor : TColor) ;

end;

procedure TCar.ChangeColor(newColor : TColor) ;

begin
//self is "this" instance

23

Self .color := newColor;

end;

In class methods the identifier Self represents the class where the method is called.

"Constructor"
Definition: A constructor is a special method that creates and initializes instance

objects. The declaration of a constructor looks like a procedure declaration, but it

begins with the reserved word constructor.

A class can have more than one constructor, but most have only one. It is

conventional to call the constructor Create.

To create an object, call the constructor method on a class type.

type

TCar = Class

constructor Create;

end;

car :»TCar.Create;

"Reserved Word"
"Definition: A special word reserved by a programming language or by a program.

You are not allowed to use reserved words as variable names.

A partial list of Delphi reserved words:

• and

• array

• as

• asm

• begin

24

• case

• class

• const

• constructor

• destructor

• dispinterface

• div

• do

• downto

• else

• end

• except

• exports

• file

• finalization

• finally

• for

• function

• goto

• if

• implementation
l, in•
• inherited

• initialization

• interface

• in

• is

• library

• nil

• not

• object

• of

• or

• out

25

• packed

• procedure

• program

• property

• raise

• record

• repeat

• resourcestring

• set

• string

• then

• to

• try

• type

• unit

• until

• uses

• var

• while

• with

In addition to the words above, private, protected, public, published, and automated
act as reserved words within object type declarations, but are otherwise treated as

directives.

"Class Method"
Definition: A class method is a method that operates on classes instead of objects.

The definition of a class method must begin with the reserved word class.

The most common used class method in Delphi language is the "Create" constructor.

In the defining declaration of a class method, the identifier Self represents the class

where the method is called (which could be a descendant of the class in which it is

26

Most methods operate on objects that are instances of a certain class.

defined). If the method is called in the class TCar, then Self is of the type class of

TCar.

"Method"
Definition: Procedure or function (routine) associated with a particular object.

Different classes may define methods with the same name (Car.Drive or

Scooter.Drive).

A class method is a method (other than a constructor) that operates on classes

instead of objects.

A call to a method specifies the object (or, if it is a class method, the class) that the

method should operate on.

Examples:

type

TCar = Class

I/method procedure

procedure Drive;

//method (function)
function ChangeGear(newGear : integer) ;

end;

"Object"
Definition: An object is a variable of class. More generally, a variable of any type.

An instance of a class or object, is a self-contained entity that consists of both

properties, events and methods to manipulate the data.

Each object has its own values for the instance variables of its class and can respond

to the methods as wel as raise events defined by its class.

27

lso Known As: Instance variable

~Canvas"

Definition: Canvas is the graphical drawing surface of an object. The canvas has a

brush, a pen, a font, and an array of pixels. The canvas encapsulates the Windows

device context.

In Delphi, the TCanvas class provides an abstract drawing space for objects that

must render their own images.

"Class"
Definition: A list of features representing data and associated code assembled into

single entity. A class includes not only features listed in its definition but also features

inherited from ancestors.

The terms class and type are usually (but not always) interchangeable; a class is a

slightly different concept that a type, in that it emphasizes the classifications of

structure and behavior.

Also Known As: Object Type

Classes are related in a class hierarchy. One class may be a specialisation (a

"subclass") of another (one of its "superclasses"). A class may be an abstract class

or a concrete class.

The Visual Component Library (CVL) is a class hierarchy of Delphi components and

object types. ~

Examples:

type

TCar = Class

Year: integer;

Color : TColor;

end;

28

"Run Time"

Definition: Run time is any time you are actually running the application in the

operating system and interacting with the application as the user would.

In Delphi, "dynamically creating ... " means "creating at run-time".

"RTL"

Definition: The raw power of Delphi is based on a considerable amount of its Run

Time Library functions and procedures.

RTL is the collection of functions and procedures that are built into Delphi.

Also Known As: Run Time Library; VCL Routines

"Routine"

Definition: Self-contained statement blocks that can be called from different locations

in a program. In Delphi: function or procedure.

Also Known As: Subroutine

"Recursion"

Definition: Recursion is a very simple, yet useful and powerful programmer's tool. As

we know, routines can, and frequently do, call other routines.

A routine that activates/calls itself is called recursive. Recursion is a general method
"of solving problems by reducing them to simpler problems of a similar type.

A recursive subroutine constantly calls itself, each time in a simpler situation, until it

gets to the trivial case, at which point it stops.

"Procedure"

Definition: A procedure is a routine that does not return a value (unlike a function).

Procedure header gives the name of a procedure followed by a list of formal

parameters.

29

a unit, a routine may have a header declared in the interface part, and then again

he implementation part. The second appearance of the header may be an exact

plicate of the header in the interface part, or may be only the name of the routine.

Examples: [blockquote shadeeyes] procedure TestMe(parameter: TCustomType[br]

egin[br] ... end; [/blockquote]_z_delphi_z_);

·Pointer"
Definition: A pointer is a variable that holds the address of another variable (or

routine) in memory.

A pointer can be used to indirectly manipulate the object.

"Parameter"
Definition: Represents one value that is supplied by one function (the calling function)

that wishes to make use of the services of another function (the called function).

In Delphi, every parameter is classified as value, variable, constant, or out.

Also Known As: Argument

Examples: [blockquote] "year" and "name" are parameters for the "TestMe" function

procedure TestMe(const year: integer; var name : string) ; [/blockquote]

"OLE"
Definition: OLE is a compound document standard developed by Microsoft

Corporation. It enables you to create objects with one application and then link or

embed them in a second application. Embedded objects retain their original format

and links to the application that created them.

With OLE, data from a server application is stored in a container application. The

data is stored in an OLE Object.

Also Known As: Object Linking and Embedding

30

"MDI"
Definition: A Windows API that enables programmers to easily create applications

with multiple windows.

Each MDI application has a single main (frame) window, and any number of child

windows (documents). All child windows are displayed within the main window - this

is common in applications such as spreadsheets or word processors.
The child window's document title merges with the parent window's title bar when the

child window is maximized.

Although many programmers still use MDI, Microsoft recommends using a newer API

called Single Document Interface (SDI).

Also Known As: Multiple Document Interface

"IDE"
Definition: IDE (Integrated Development Environment) is the user interface (GUI)

where you can design, compile and debug your Delphi projects.

Also Known As: Integrated Development Environment

"GUI"
Definition: A GUI (usually pronounced GOO-ee) is a graphical (rather than purely

textual) user interface to a computer.

Applications typically use the elements of the GUI that come with the operating

system and add their own graphical user interface elements and ideas. When

creating an application, Delphi facilitate writing a graphical user interface.

Each GUI element (for example a Button or an EditBox) is defined as a class from

which you can create object instances for your application.

Also Known As: Graphical User Interface

Alternate Spellings: goo-ee

31

Function"
efinition: A function is a routine that returns a value when it executes.

can be passed and it can return a value. Functions that are part of a class are

sually called methods.

You can code your own functions or use built-in functions provided by Delphi RTL

(run time library).'

Examples:

function YearsOld(const BirthYear:integer): integer;

var

Year, Month, Day: Word;

begin

DecodeDate(Date, Year, Month, Day) ;

Result := Year - BirthYear;

end;

"Freeware"
Definition: Copyrighted software given away for free by the author. Although it is

available for free, the author retains the copyright, which means that you cannot do
anything with 'it that is not expressly allowed by the author. Usually, the author allows

people to use the software, but not sell it.

"Exception"
Definition: An event happening during execution of a program that disrupts the

normal flow of control. Exceptions are raised when a runtime error occurs in an

application, such as attempting to divide by zero.

Also, an exception is an object that contains information about what error occurred

and where it happened.

32

33

Design Time"
inition: We work with forms and controls, set their properties, and write code for

,eir events at design time, which is any time we're building an application in the

lphi's IDE.

esign-time is when you use the IDE to design your application, using the form, the

bject Inspector, Component palette, Code editor, and so forth; as opposed to run­

ime, when the application you design is actually running.

·compiler"
Definition: A compiler is a program that performs the process of compilation. When

you press F9 in Delphi IDE your current project gets compiled and run.

"Compilation"
Definition: Compilation is the process of translating source code into an object

program, which is composed of machine instructions along with the data needed by

those instructions. Virtually all of the software on your computer was created by this

process.

Compiled programs (Delphi applications for example) run faster then "interpreted" -

which is the line-by-line translation of source code to machine instructions (Visual

Basic applications for example).

"Comment"
Definition: The purpose of adding comments to Delphi code is to provide more

program readability using understandable description of what your code is doing.

A comment is a note to yourself or another programmer; it is ignored by the compiler.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }

(* Text between a left-parenthesis-plus-asterisk and an asterisk-plus-right­

parenthesis also constitutes a comment. *)

Any text between a double-slash and the end of the line constitutes a comment.

lso Known As: REM meaning "Remark in Basic"

COM"
Definition: The Component Object Model (COM) enables programmers to develop

objects that can be accessed by any COM-compliant application. Both OLE and

ActiveX are based on COM.

The key aspect of COM is that it enables communication between clients and servers

through interfaces. Information about these interfaces is usually included in a type

library.

COM allows you to create COM objects that are not specific to any language, and in

some cases, even platforms. For instance, COM objects can be ported to a Unix
system. COM also allows you to create COM Objects that will be instantiated on a

different machine across the world if you so desired.

Although often associated with Microsoft, COM is an open standard that specifies

how components work together and interoperate.

Also Known As: Component Object Model

"Callback Routine"
Definition: A callback routine is a routine (function or procedure) in your program that

Windows calls. More generally, a callback is a means of sending a function as a
parameter into another function. When the callback function has completed, control is

passed back to the original function.

For example, EnumFonts is a Windows routine that calls a given callback function for

every font installed in the system.

"BOE"
Definition: The core database engine and connectivity software behind Borland

products, as well as Paradox for Windows and Visual dBASE for Windows. The

34

ded set of database drivers enables consistent access to standard data sources:

dox, dBASE, FoxPro, Access, and text databases.

y Delphi components use this database engine to access and deliver data. BOE

intains information about your PC's environment in the BOE configuration file
sually called IDAPI.CFG). Use the BOE Administrator to change the settings in this

nfiguration file.

so Known As: Borland Database Engine, IDAPI

•Application"
Definition: An application is the executable file and all related files that a program

eeds to function which serve a common purpose or purposes, as distinguished from

he design and source code of the project.

Software applications cacn be divided into two general classes: systems software and

applications software. Systems software consists of low-level programs that interact

with the computer at a very basic level. This includes operating systems, compilers,

and utilities for managing computer resources.

In contrast, applications software (also called end-user programs) includes database

programs, word processors, spreadsheets, etc. Figuratively speaking, applications

software sits on top of systems software because it is unable to run without the

operating system and system utilities.

In general we use Delphi to produce applications software.

"API"
Definition: A set of routines, protocols, and tools for building software applications.

A wide variety of software from operating systems to individual components are said

to have an API.

A good API makes it easier to develop a program by providing all the building blocks.

A programmer puts the blocks together.

Also Known As: Application Programming Interface

35

las"
finition: A name that specifies the location of database tables accessed using the
E. The terms alias and database are *synonymous* when talking about the BOE.

alias specifies driver parameters and database locations, such as Driver Type,

rver Name, User Name and others.

•Algorithm"
Definition: An algorithm is a set of precisely defined steps guaranteed to arrive at an

answer to a problem or set of problems. As this implies, a set of steps that might
ever end is not an algorithm. In mathematics and computer science, an algorithm

sually means a small procedure that solves a recurrent problem.

"ActiveX"
Definition: A technology that allows various software components to communicate
and interact, even though they are not written in the same language. ActiveX controls

can be embedded in Web pages to produce animation and other multimedia effects,

interactive objects and sophisticated applications.

An ActiveX control is a COM-based software component that integrates into and

extends the functionality of any host application. ActiveX controls implement a set of

predefined COM interfaces.

The ActiveX page of the component palette includes several ActiveX controls. You

can use them like any standard VCL component, dropping them on forms and setting
~

their properties using the Object Inspector.

"ASCII"
Definition: ASCII assigns each English character and basic punctuation mark its own

number from O to 127. Since the code is standard, every computer should be able to

translate it into serviceable, if unglamorous, copy. So, when you're unsure what
program - or what computer - is on the receiving end of a document, your safest bet

is to save your file as plain ASCII text.

36

-

Examples: The capital letter A has an ASCII value of 65. The ASCII code for a space

is 32.

You can reference a character by its ASCII code prefixed with a number sign (#).

Example: To put the symbol for American cents into a character C, for example, you

could code "c := #155;".

Pronunciation: ask-ee

Also Known As: American Standard Code for Information Interchange

Understanding Delphi Project Files (.DPR)

New: Delphi Project

Since it is quite common for Delphi applications to share code or previously

customized forms, Delphi organizes applications into what is called projects.

A project is made up of the visual interface along with the code that activates the

interface. Each project can have multiple forms, allowing us to build applications that

have multiple windows. The code that is needed for a form in our project is stored in

a separate Unit file that Delphi automatically associates to the form. General code

that we want to be shared by all the forms in our application is placed in unit files as

well. Simply put, a Delphi project is a collection of files that make up an application.

What this means is that each project is made of one or more Form files (files with the

.dfm extension) and one or more Unit files (.pas extension).

We can also add resource files, and they are compiled into .RES files and linked

when we compile the project.

Project File

Each project is made up of a single project file (.dpr). Project files contain directions

for building an application. This is normally a set of simple routines which open the

main form and any other forms that are set to be opened automatically and then

starts the program by calling the Initialize, CreateForm and Run methods of the

37

38

al Application object (which is actually a form of zero width and height, so it never

ally appears on the screen).

e: The global variable Application, of type TApplication, is in every Delphi

dows application. Application encapsulates your application as well as provides

ny functions that occur in the background of the program. For instance,

plication would handle how you would call a help file from the menu of your

ogram.

roject Unit

se Project - View Source to display the project file for the current project.

thogh you can look and edit the Project File, in most cases, you'll let Delphi

aintain the DPR file. The main reason to view the project file is so we can see the

nits and forms that make up the project, and which form is specified as the

application's main form.

Another reason to work with the project file is when we are creating a DLL rather than

a stand-alone application or need some start-up code, such as a splash screen

before the main form is created by Delphi.

Here is the default project file for a new application (containing one form: "Form1"):

program Project1;

uses
Forms,
Unit1 in 'Unit1.pas' {Form1};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1) ;

Application.Run;

end.

The program [link url=/od/delphiprogrammingglossary/g/reservedword.htm]keyword

identifies this unit as a program's main source unit. You can see that the unit name,

elphi reads the uses clause of the project file to determine which units are part of a

reject.

oject1, follows the program keyword (Delphi gives the project a default name until

u save the project with a more meaningful name). When we run a project file from
e IDE, Delphi uses the name of the Project file for the name of the EXE file that it

reates.

The .dpr file is linked with the .pas file with the compile directive {$R *.RES} (in this

case '*' represents the root of the .pas filename rather than "any file"). This compiler

directive tells Delphi to include this project's resource file. The project's resource file

contains such items as the project's icon image.

The begin..end block is the main source-code block for the project.

Although Initialize is the first method called in the main project source code, it is not

the first code that is executed in an application. The application first executes the

"initialization" section of all the units used by the application.

The Application.CreateForm statement loads the form specified in its argument.

Delphi adds an Application.CreateForm statement to the project file for each form you
'add to the project. This code's job is to first allocate memory for the form. The

statements are listed in the order the forms are added to the project. This is the order
that the forms will be created in memory at runtime. If you want to change this order,

do not edit the project source code. Use the ProjectlOptions menu command.

The Application.Run statement starts your application. This instruction tells the

predeclared object called Application to begin processing the events that occur

during the run of a program.

An Example: Hide Main Form I Hide Taskbar Button

The Application object's ShowMainForm property determines whether or not a form

will show at startup. The only condition of setting this property is that it has to be

called before the Application.Run line.

39

Birth

'/Presume: Form1 is the MAIN FORM

Application.CreateForm(TForm1, Form1) ;

Application.ShowMainForm := False;

Application.Run;

Understanding the Birth, Life and Death of a Delphi Form

Life-Cycle of a Delphi Form

In Windows, most elements of the user interface are windows. In Delphi, every
project has at least one window - program's main window. All windows of a Delphi

application are based on TForm object.

Form

Form objects are the basic building blocks of a Delphi application, the actual windows

with which a user interacts when they run the application. Forms have their own

properties, events, and methods with which you can control their appearance and
behavior. A form is actually a Delphi component, but unlike other components, a form

doesn't appear on the component palette.

We normally create a form object by starting a new application (File I New

Application). This newly created form will be, by default, the application's main form -

the first form created at runtime.

Note: To add an additional form to Delphi project, we select File!New Form.

There are, of course, other ways to add a "new" form to a Delphi project.

OnCreate
The OnCreate event is fired when a TForm is first created, that is, only once. The

statement responsible for creating the form is in the project's source (if the form is set

to be automatically created by the project). When a form is being created and its

Visible property is True, the following events occur in the order listed: OnCreate,

OnShow, OnActivate, OnPaint.

40

You should use the OnCreate event handler to do, for example, initialization chores

like allocating string lists.

Any objects created in the OnCreate event should be freed by the OnDestroy event.

OnCreate -> OnShow -> OnActivate -> OnPaint -> OnResize -> OnPaint ...

OnShow
This event indicates that the form is being displayed. OnShow is called just before a

form becomes visible. Besides main forms, this event happens when we set forms

Visible property to True, or call the Show or ShowModal method.

OnActivate
This event is called when the program activates the form - that is, when the form
receives the input focus. Use this event to change which control actually gets focus if

it is not the one desired.

OnPaint, OnResize
Events like OnPaint and OnResize are always called after the form is initially created,

but are also called repeatedly. OnPaint occurs before any controls on the form are

painted (use it for special painting on the form).

Life

As we have seen the birth of a form is not so interesting as the life and death can be.

When your form is created and all the controls are waiting for events to handle, the
!I>

program is running until someone tries to close the form!

Death

An event-driven application stops running when all its forms are closed and no code

is executing. If a hidden form still exists when the last visible form is closed, your
application will appear to have ended (because no forms are visible), but will in fact

continue to run until all the hidden forms are closed. Just think of a situation where

the main form gets hidden early and all other forms are closed.

... OnCloseQuery -> OnClose -> OnDeactivate -> OnHide -> OnDestroy

41

• caNone. The form is not allowed to close. Just as if we have set the CanClose
"

to False in the OnCloseQuery.
• caHide. Instead of closing the form you hide it. ~
• caFree. The form is closed, so it's allocated memory is freed by Delphi.

• caMinimize. The form is minimized, rather than closed. This is the default

action for MDI child forms. Note: When a user shuts down Windows, the
OnCloseQuery event is activated, not the OnClose. If you want to prevent

Windows from shuting down, put your code in the OnCloseQuery event

handler, of course CanClose=False will not do the trick.

CloseQuery
en we try to close the form using the Close method or by other means (Alt+F4),

e OnCloseQuery event is called. Thus, event handler for this event is the place to

ercept a form's closing and prevent it. We use the OnCloseQuery to ask the users

they are sure that they realy want the form to close.

ocedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean) ;

begin
if MessageDlg('Really close this window?', mtConfirmation, [mbOk, mbCancel], O)=

rCancel then CanClose := False;

end;

n OnCloseQuery event handler contains a CanClose variable that determines

whether a form is allowed to close. The OnCloseQuery event handler may set the
value of CloseQuery to False (via the CanClose parameter), thus aborting the Close

method.

OnClose
If OnCloseQuery indicates that the form should be closed, the OnClose event is

called.

The OnClose event gives us one last chance to prevent the form from closing. The

OnClose event handler has an Action parameter, with the following four possible

values:

42

Destroy
er the OnClose method has been processed and the form is to be closed, the

Destroy event is called. Use this event for operations opposite to those in the

Create event. OnDestroy is therefore used to deallocate objects related to the

and free the corresponding memory.

course, when the main form for a project closes, the application terminates.

nderstanding and Using Functions and Procedures

ave you ever found yourself writing the same code over and over to perform some

mmon task within event handlers? Yes! It's time for you to learn about programs

ithin a program. Let's call those mini programs subroutines.

Intro to subroutines

Subroutines are an important part of any programming language, and Delphi is no

exception. In Delphi, there are generally two types of subroutines: a function and a

procedure. The usual difference between a function and a procedure is that a
function can return a value, and a procedure generally will not do so. A function

is normally called as a part of an expression.

Take a look at the following examples:

procedure SayHello(const sWhat:string) ;

begin "'
ShowMessage('Hello ' + sWhat) ;

end;

function YearsOld(const BirthYear:integer): integer;

var
Year, Month, Day : Word;

begin
DecodeDate(Date, Year, Month, Day) ;

43

ult:= Year - BirthYear;

ce subroutines have been defined, we can call them one or more times:

cedure TForm1.Button1Click(Sender: TObject) ;

in
SayHello('Delphi User') ;

d·
'

ocedure TForm1.Button2Click(Sender: TObject) ;

begin
SayHello('Zarko Gajic') ;
ShowMessage('You are'+ lntToStr(Years01d(1973)) +' years old!') ;

end;

Functions and Procedures

As we can see, both functions and procedures act like mini programs.

In particular, they can have their own type, constants and variable declarations inside

them.

Take a closer look at a (miscellaneous) SomeCalc function:

function SomeCalc
(const sStr: string;
const iYear, iMonth: integer;

var iDay:integer): boolean;

begin

end;

Every procedure or function begins with a header that identifies the procedure or

function and lists the parameters the routine uses, if any. The parameters are listed

within parentheses. Each parameter has an identifying name and usually has a type.

A semicolon separates parameters in a parameter list from one another.

44

• Add Unit1 to the uses clause of Unit2
• Place a copy of the header of the subroutine in the interface section of the

Unit1.

r, iYear and iMonth are called constant parameters. Constant parameters cannot

changed by the function (or procedure). The iDay is passed as a var parameter,

we can make changes to it, inside the subroutine.

ctions, since they return values, must have a return type declared at the end of

header. The return value of a function is given by the (final) assignment to its

e. Since every function implicitly has a local variable Result of the same type as

e functions return value, assigning to Result has the same effect as assigning to

e name of the function.

Positioning and Calling Subroutines

Subroutines are always placed inside the implementation section of the unit. Such

subroutines can be called (used) by any event handler or subroutine in the same unit

at is defined after it.

ote: the uses clause of a unit tells you which units it can call. If we want a specific

subroutine in a Unit1 to be usable by the event handlers or subroutines in another

unit (say Unit2), we have to:

This means that subroutines whose headers are given in the interface section are

global in scope.

When we call a function (or a procedure) inside its own unit, we use its name with

whatever parameters are needed. On other hand, if we call a global subroutine

(defined in some other unit, e.g. MyUnit) we use the name of the unit followed by a

period.

//SayHelfo procedure is defined inside this unit

SayHello('Delphi User') ;
//YearsOld function is defined inside MyUnit unit

45

begin
1/lsSmall can only be uses inside Button 1 OnClick event

if lsSmall(Edit1 .Text) then
ShowMessage('AII small caps in Edit1 .Text')

else
ShowMessage('Not all small caps in Edit1 .Text') ;

end;

nctions or procedures can have their own subroutines embedded inside

. An embedded subroutine is local to the container subroutine and cannot be

by other parts of the program. Something like:

•ocedure TForm1 .Button1 Click(Sender: TObject) ;

ction lsSmall(const sStr:string):boolean;

in
·sSma/1 returns True if sStr is in lowercase, False otherwise

esult:=LowerCase(sStr)=sStr;

end;

Understanding and Using Decisions
if language = Delphi then

begin

Use(language)

end

else

Skip(language) ;

Branching
If you want to control the flow of code execution depending on what the program

has already done or what it has just encountered you need to use one of the two

Delphi Pascal branching statements: if statements and case statements.

46

IF THEN ELSE statement

statement is used to test for a condition and then execute sections of code

based on whether that condition is True or False. The condition is described with a

lean expression, If the condition is True, the code flow branches one way. If the

dition is False, the flow branches in another direction. Let's see this behavior on

example:

iNumber : Integer;

in
'some value must be

assigned to iNumber here!

·• iNumber = O then
ShowMessage('Zero value encountered!') ;

end;

If the number (assigned to iNumber variable) is O, the expression iNumber = O
evaluates to True and the message is displayed; otherwise, nothing is displayed.

If we want more than one thing to happen when the tested condition is True, we can

write multiple statements in a begin ... end block.

var iNumber : Integer;

begin
//some value must be

//assigned to iNumber here!

if iNumber = O then
begin
ShowMessage('Zero value encountered!') ;

Exit;// exit from the current procedure

end;
/lif iNumber is O the folowing
//code will never be executed
ShowMessage('Nobody likes O, ha!') ;

end;
More often, we will want to process multiple statements if a condition is True or

False.
47

umber: Integer;

me value must be

'assigned to iNumber here!

umber < O then
in

'statements ...

ShowMessage('Your number is negative!') ;

'!statements ...

end
else
begin
//statements ...
ShowMessage('Your number is positive or zero!') ;

//statements ...

end;
end;

ote: Each statement in the begin..end block ends with a semicolon. We cannot have

a semicolon before or after the else keyword. The if-then-else statement, is a single

statement, therefore we cannot place a semicolon in the middle of it.

An if statement can be quite complex. The condition can be turned into a series of

conditions (using the and, or and not Boolean operators), or the if statement can nest

a second if statement.

var

iNumber : Integer;

begin
if iNumber = O then
begin
ShowMessage('Zero number not allowed!') ;

exit;

end
else

48

e CASE statement

I/no need to use begin-end here

•• iNumber < O then
ShowMessage('Your number is negative!')

else
ShowMessage('Your number is positive!') ;

d;
te: When you write nested if statements choose a consistent, clear indentation

le. This will help you and anyone else who reads your code see the logic of the if

atement and how the code flows when your application runs.

hough, we can use the if statement for very complex (nested) condition testing, the

case statement is usually easier to read (debug!) and the code runs more quickly.

The case statement makes it clear that a program has reached a point with many

ranches; multiple if-then statements do not.

var
iNumber : Integer;

begin
/Isome value must be
I/assigned to iNumber here!

case iNumber of
O : ShowMessage('Zero value') ;
1 .. 1 O : ShowMessage('Less than 11, greater than O') ;

-1, -2, -3: ShowMessage('Number is -1 or -2 or -3') ;

else
ShowMessage('I do not care') ;

end;
end;

What follows the case keyword is usually called the selector. The selector is a

variable or expression taken from either the char type or any integer type (an ordinal

49

e). String type are invalid!. However, the StringToCaseSelect custom function
"' ~ I.

ables you to use the Case statement with string type variables ~::.: ..::::: ,:,'

s you can see, the individual case statements use a single constant, a group of

nstants (separated by comma), or a range of constants (double dot separated). We

can even add an else keyword to take care of all the remaining cases at once.

ote 1: Only one case statement will be executed, we cannot have overlapping

conditions in the case statements.

ote 2: If you want to include more than one statement in the part following the colon

(:), place the begin and end keywords around the multiple statements.

Understanding and Using Loops

Repeating operations in Delphi Pascal

The loop is a common element in all programming languages. Object Pascal has

three control structures that execute blocks of code repeatedly: for, repeat ... until

and while ... do.

The FOR loop

Suppose we need to repeat an operation a fixed number of times.

II show 1,2,3,4,5 message boxes

var j: integer;

begin
for j := 1 to 5 do
begin
ShowMessage('Box: '+lntToStr(j)) ;

end;
end;

The value of a control variable (j), which is really just a counter, determines how

many times a for statement runs. The keyword for sets up a counter. In the preceding

example, the starting value for the counter is set to 1.

50

\

e ending value is set to 5.
hen the for statement begins running the counter variable is set to the starting

alue. Delphi than checks whether the value for the counter is less than the ending

alue. If the value is greater, nothing is done (program execution jumps to the line of

ode immediately following the for loop code block). If the starting value is less than

e ending value, the body of the loop is executed (here: the message box is

displayed). Finally, Delphi adds 1 to the counter and starts the process again.

Sometimes it is necessary to count backward. The downto keyword specifies that

he value of a counter should be decremented by one each time the loop executes (it

is not possible to specify an increment I decrement other than one). An example of a

for loop that counts backward.

var j: integer;

begin
for j := 5 downto 1 do
begin
ShowMessage('T minus'+ lntToStr(j) + 'seconds') ;

end;
ShowMessage('For sequence executed!') ;

end;

Note: it's important that you never change the value of the control variable in the

middle of the loop. Doing so will cause errors.

Nested FOR loops

Writing a for loop within another for loop (nesting loops) is very useful ~hen you want

to fill I display data in a table or a grid.

var k,j: integer;

begin
/!this double loop is executed 4x4= 16 times

for k:= 1 to 4 do
for j:= 4 downto 1 do
ShowMessage('Box: '+ lntToStr(k)+ ',' + lntToStr(j)) ;

end;

51

e FOR-IN loop

rule for nesting for-next loops is simple: the inner loop (j counter) must be

pleted before the next statement for the outer loop is encountered (k counter).

e can have triply or quadruply nested loops, or even more.

ote: Generally, the begin and end keywords are not strictly required, as you can

see. If begin and end are not used, the statement immediately following the for

atement is considered the body of the loop.

you have Delphi 2005 or any newer version, you can use the "new" for-element-in­

ollection style iteration over containers. The following example demonstrates

eration over string expressions: for each char in string check if the character is

either 'a' or 'e' or 'i'.

con st
s = 'About Delphi Programming';

var

c: char;

begin

for cins do

begin

if cin ['a','e','i'] then

begin

II do something
end;

end;

end;

The WHILE and REPEAT loops

Sometimes we won't know exactly how many times a loop should cycle. What if we

want to repeat an operation until we reach a specific goal?

The most important difference between the while-do loop and the repeat-until loop is

that the code of the repeat statement is always executed at least once.

52

general pattern when we write a repeat (and while) type of loop in Delphi is as

ws:

at

begin

statements;

end;

ntil condition = true

hile condition = true do

begin

statements;

end;

ere is the code to show 5 successive message boxes using repeat-until:

var

j: integer;

begin

j:=0;

repeat

begin

j := j + 1;
ShowMessage('Box:'+lntToStr(j)) ;

end;

until j > 5;

end;
As you can see, the repeat statement evaluates a condition at the end of the loop

(therefore repeat loop is executed for sure at least once).

The while statement, on the other hand, evaluates a condition at the beginning of the

loop. Since the test is being done at the top, we will usually need to make sure that

the condition makes sense before the loop is processed, if this is not true the

compiler may decide to remove the loop from the code.

var j: integer;

begin

53

reak and Continue

:=0;

hile j < 5 do
begin

i=l+1;
ShowMessage('Box:'+lntToStr(j)) ;

end;
d·

'

e Break and Continue procedures can be used to control the flow of repetitive

statements: The Break procedure causes the flow of control to exit a for, while, or

epeat statement and continue at the next statement following the loop statement.

Continue allows the flow of control to proceed to the next iteration of repeating

operation.

Understanding Typed Constants in Delphi

How to implement persistent values between function calls.

When Delphi invokes an event handler, the old values of local variables are wiped

out. What if we want to keep track of how many times a button has been clicked? We

could have the values persist by using a unit-level variable, but it is generally a good

idea to reserve unit-level variables only for sharing information. What we need are

usually called static variables or typed constants in Delphi.

Variable or constant?

Typed constants can be compared to initialized variables-variables whose values are

defined on entry to their block (usually event handler). Such a variable is initialized

only when the program starts running. After that, the value of a typed constant

persists between successive calls to their procedures.

Using typed constants is a very clean way of implementing automatically initialized

variables.

54

mplement these variables without typed constants, we'll need to create an

lization section that sets the value of each initialized variable.

iabte typed constants

ough we declare typed constants in the const section of a procedure, it is

ortant to remember that they are not constants. At any point in your application, if

have access to the identifier for a typed constant you'll be able to modify its

ue.

see typed constants at work, put a button on a blank form, and assign the

llowing code to the OnClick event handler:

ocedure TForm1 .Button1 Click(Sender: TObject) ;

const

clicks : Integer = 1; !!not a true constant
begin

Form1 .Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;

Notice that every time you click on the button, forms caption increments steadily.

Now try the following code:

procedure TForm1 .Button1 Click(Sender: TObject) ;

var

clicks : Integer;

begin

Form1 .Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;
We are now using uninitialized variable for the clicks counter. Notice that weird value

in the forms caption after you click on the button.

55

56

nstant typed constants

ou have to agree that idea of modifiable constants sound a bit strange. In 32 bit

rsions of Delphi Borland decided to discourage their use, but support them for

lphi 1 legacy code.

e can enable or disable Assignable typed constants on the Compiler page of the

reject Options dialog box.

you've disabled Assignable typed constants for a given project, when you attempt

o compile previous code Delphi will give you 'Left side cannot be assigned to' error
pon compilation. You can, however, create assignable typed constant by declaring:

'SJ+)
const clicks : Integer = 1;

'SJ-}

Therefore, the first example code looks like:
procedure TForm1.Button1Click(Sender: TObject) ;

const
{$J+}

clicks : Integer= 1; I/not a true constant

{$J-}

begin
Form1.Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;

w to pass command-line parameters to your application and how to handle

m.

nning Delphi Applications With Parameters

the days of DOS it was a common practice run applications (command line

ograms) with some kind of parameters that will specify want we want to do. Even

w, in the world of Windows, we can go to MS-Dos prompt and run MS-DOS based

ogram like DIR /?. That '/?' after program name (DIR) will give us some help

regarding the usage of the DIR command.

this article, we will find out how to respond to command line parameters passed to

a Delphi application.

Parameters

We can pass the parameter from the command line in Windows or from the

development environment in Delphi under Run-Parameters menu option.

We will use Parameters dialog box to pass command-line parameters to an

application when we run it (for testing purposes - from within Delphi), just as if we

were running the application from the Windows Explorer.

ParamCount, ParamStr()

Simply put, the ParamCount function returns the number of parameters passed to the

program on the command line, and ParamStr returns a specified parameter from the

command-line.

While application is running, the parameters are available to us so we can retrieve

them within a specific section of the application (usually from the OnActivate event

handler of the main form).

Note: In a program, the Cmdline variable contains a string with command-line

arguments specified when the application was started. We can use Cmdline to

access the entire paramstring passed to an application.

57

58

start with a simple application. Start up a new project and place a Button

ponent on Form. In the button's OnClick event handler, write the following code:

edure

rm1 .Button1Click(Sender: TObject) ;

in
owMessage(ParamStr(O)) ;

en you run the program and click the button, a message box appears with the

th and file name of the executing program.

e can see, that even if we haven't passed any parameters to our application

aramStr function "works", the reason is that the array value O stores the file name of

e executable application including path information.

ow, choose Parameters from the Run Menu and add 'Delphi Programming' to the

rop down list (without apostrophes).

ote: when you pass parameters to your application separate them with spaces or

abs. Use double quotes to wrap multiple words as one parameter (such as long file

names containing spaces).

We will be looping through the amount of parameters using ParamCount() to get the

value of parameters passed, with ParamStr(i).

Change the button's OnClick event handler to:

procedure TForm1.Button1Click(Sender: TObject) ;

var
j:integer;

begin

for j := 1 to ParamCount do

ShowMessage(ParamStr(j)) ;

end;

hen you run the program and click the button, a message box appears displaying

elphi' (first parameter) and 'Programming' (second parameter).

ate: Working with parameters passed to the console mode application is the same.

at's it, simple as only Delphi can be!

59

CHAPTER THREE

DEVELOPMENT OF LPG DISTRIBUTOR STOCK & SALE SYSTEM

e software development of LPG distributor stock & sale system is considered.The
stem is designed using delphi programme.

ain Menu

Taniimlamalar

t,ltlsteri

ı .. 1.PG
,S

Ürünler

'LPG Satış ve Stok Sistemi

Adres : Dereboyu Okay 9 no 15

Te1efon : +90 (533} 864 71 96

Kasa
,Mail : a ozbek 190.S@hotmailcom

Raporlar
,iL ., ,;-,si

Hazırlayan : Ahmet Özbek

Hakkind!a

Ka.pat

After we run the program main window welcomes us. In this window there are some
menu items on the left.

This buttons helps us to navigate the system easily.

60

Ürü:niler Ürün.N,o,: 1

roducts Window

Ürüntufa:

Müs,teri

Kapat

After we clicked the "products" button an inline window appears on the content panel.
In this window we can record the stocks with all the details and we can search
products.

61

Customers Window

~ ::Pal Enerov ...,,..ech - Ba'{ı Stoh Kontrol f .erscn Beta 1 ı -

TanimJıunallar;_

ÜrünJer M [J;ste:ri N<ı :
,A-1::lres::

Telefon:

fük:js<I fökjS-h fs-jh fs,jfhsdjft
firma Adi:

Müsteri Mu,steti .A_di Soyadi :

To collect the orders properly we need to record the customers. So we can record
whom we sold the products.

62

Orders Window

,..., ~a! En~rçv ech - Bayi ~to~ Kontrol ı versorı Beta 1: - v

Tanmla,ma:lar

Kasi?
ÜrünN:Cı: 1

Alis ÜrünAdi : Gapgıaz 25 Kg

Açiklanıa : Ev Tü:pü. 25 kg

Satis Birim Ftyat : 35

StoJ; r,Hktari : 990

Kredi Karti

Aç:ildama

ÖdemeTarihi Durum

In this window we record the orders. First we choose the product by searching with
any information and select customer from the combo box. And then we click the~
"confirm" button. Now we can enter the quantity, unit price and payment type. Then
we click the confirm button twice. After all we select the payment date and payment
situation.

63

Purchase Window

- ·: "•:al Energy ~ech - Bayı Sto\ Kontrol ı·,ersıon Beta '; -

Alis

ıürunNo: 1
Arama,

.AJis Ürün Adil : Gapg:az 25 Kg:

Açiklama, : EvTüı,u. 25 kg

Sa;tis
Birirn Fiyat : 3'5

Stoif: Mif:tari : 990

DUTUif!l

Ra;p;orlar

Hakkinı:ta

In this window we record the purchses. First we choose the product by searching with
any information. And then we click the "confirm" button. Now we can enter the
quantity, unit price and payment type. Then we click the confirm button twice. After all
we select the payment date and payment situation.

64

ut window

ÜrünJecr

)
.. '-.i.·• ,PG

a

LPGSatış ve Stok Sistemi

Adres : Dereboyu Okay 9 no 15

Telefon : +90 {533} 864 71 96

Kasa
Mail : a ozbek t905@hotınaiL.com

Hazırlayan : Ahmet Özbek

About window has the same view of the main window. Here we can see some texts
about the program and programmer.

65

0006.ZOıOB

erywindow

Tafih, Araligi

fisiierii.fii.ri.iiii! 1ı0.06.2008

Ö1le\rrıe Tarih,i

li

We use this window both on "purchase reports" and "sale reports". Either we select
-process date" or "payment date". Then we select the date of process and click on
he "query". As result system generates the report.

66

Musteri No: AnmAdi:

Melek A.P

Yetkili Adi:

Burak Melek

Telefon:

5338662213

Faks:

omers List

Müsteri Listesi

e list of customers.

67

ks List

Stok r«ı :

1

2

e list of Stocks

StokAdi:

Gapgaz 25 Kg

LPG ıu

Stok Listesi

Acildilıııa :

Ev Tüpü 25 kg

Litre ile Satyp

68

Birim Fıyat (Yll}: Stok Mild:ari :

35 990

100000

CONCLUSION

HNOLOGY HAS AFFECTED THE REFERENCE and information culture in

ries. With the increasing scope of information transfer, users have higher service

ctations of library and information science professionals. The emergence of a

al information environment has changed the century-old role of the reference

essional. After the rise of the Internet, many skeptics foresaw the end of a need

librarians, particularly those working in traditional positions such as reference.
vertheless, data from the Bureau of Labor Statistics indicates an increase in the

mber of information professionals by the year 2008. Reference professionals are

oming more--not less--essential. Graduate programs must examine the

rriculum for reference and information access professionals. Greater access to
ormation sources by users has highlighted the need for reference and information

rofessionals to develop new skills including more technological knowledge, a better

nderstanding of user information-seeking, new instructional techniques, and better

communication skills. In addition to live classroom instruction, most schools offer

eference and information access courses to a more diverse student body by

employing distance-learning technologies.

69

REFERENCES

] Mastering Borland Delphi 2005 (Mastering) by Marco Cantu' (Paperback - Aug 19,

2005)

2] Inside Delphi 2006 (Wordware Delphi Developer's Library) by Ivan Hladni

Paperback - Nov 25, 2005)

3] Introducing Delphi Programming: Theory through Practice by John Barrow, Linda

iller, Katherine Malan, and Helene Gelderblom

4] www.delphiturk.com

5] http://www.torry.net

6] www.about.com

70

APPENDIX

it Unit1;

teriace

ses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, bsSkinData, BusinessSkinForm,·bsSkinCtrls, bsSkinGrids,

bsDBGrids, DB, ADODB, ComCtrls, bsSkinTabs, StdCtrls, Mask,

bsSkinBoxCtrls, bsdbctrls, bsMessages, OleCtrls,

ShockwaveFlashObjects_TLB, ExtCtrls, jpeg;

type

TForm1 = class(TForm)

bsBusinessSkinForm1: TbsBusinessSkinForm;

bsSkinData1: TbsSkinData;

bsCompressedStoredSkin1: TbsCompressedStoredSkin;

71

bsSkinButtonsBar1: TbsSkinButtonsBar;

bsSkinPageControl1: TbsSkinPageControl;

bsSkinTabSheet1: TbsSkinTabSheet;

bsSkinTabSheet2: TbsSkinTabSheet;

AD0Connection1: TAD0Connection;

AD0Table1: TADOTable;

DataSource1: TDataSource;

bsSkinDBGrid1: TbsSkinDBGrid;

bsSkinScrollBar1: TbsSkinScrollBar;

bsSkinPanel1: TbsSkinPanel;

bsSkinTextlabel1: TbsSkinTextlabel;

bsSkinDBText1: TbsSkinDBText;

bsSkinDBEdit1: TbsSkinDBEdit;

bsSkinDBEdit2: TbsSkinDBEdit;

~
bsSkinDBCurrencyEdit1: TbsSkinDBCurrencyEdit;

bsSkinDBSpinEdit1: TbsSkinDBSpinEdit;

bsSkinButton1: TbsSkinButton;

bsSkinButton2: TbsSkinButton;

bsSkinButton3: TbsSkinButton;

bsSkinButton4: TbsSkinButton;

72

bsSkinButton5: TbsSkinButton;

bsSkinStdlabel1: TbsSkinStdlabel;

bsSkinComboBox1: TbsSkinComboBox;

bsSkinEdit1: TbsSkinEdit;

bsSkinPanel2: TbsSkinPanel;

bsSkin Textlabel2: Tbs SkinTextlabel;

bsSkinDBText2: TbsSkinDBText;

bsSkinDBEdit3: TbsSkinDBEdit;

bsSkinDBEdit4: TbsSkinDBEdit;

bsSkinButton6: TbsSkinButton;

bsSkinButton8: TbsSkinButton;

bsSkinButton9: TbsSkinButton;

bsSkinButton1 O: TbsSkinButton;

bsSkinComboBox2: TbsSkinComboBox;

bsSkinStdlabel2: TbsSkinStdlabel;

bsSkinEdit2: TbsSkinEdit;

bsSkinDBGrid2: TbsSkinDBGrid;

bsSkinMessage1: TbsSkinMessage;

bsSkinButton7: TbsSkinButton;

AD0Table2: TADOTable;

73

DataSou rce2: TDataSou rce;

bsSkinStdlabel3: TbsSkinStdlabel;

bsSkinDBMemo1: TbsSkinDBMemo;

bsSkinStdlabel4: TbsSkinStdlabel;

bsSkinDBMemo2: TbsSkinDBMemo;

bsSkinDBEdit5: TbsSkinDBEdit;

bsSkinDBEdit6: TbsSkinDBEdit;

bsSkinPageControl2: TbsSkinPageControl;

bsSkin TabSheet3: TbsSkin TabSheet;

bsSkinTabSheet4: TbsSkinTabSheet;

bsSkinPanel3: TbsSkinPanel;

bsSkinPanel4: TbsSkinPanel;

bsSkinPanel5: TbsSkinPanel;

bsSkinTextlabel3: TbsSkinTextlabel;

bsSkinStdlabel5: TbsSkinStdlabel;

bsSkinComboBox3: TbsSkinComboBox;

bsSkinEdit3: TbsSkinEdit;

bsSkin DBText3: TbsSkin O BText;

bsSkinDBText4: TbsSkinDBText;

bsSkinDBText5: TbsSkinDBText;

74

bsSkinDBText6: TbsSkinDBText;

bsSkinDBText7: TbsSkinDBText;

bsSkinButton11: TbsSkinButton;

ADOTable3: TADOTable;

DataSource3: TDataSource;

bsSkinDBSpinEdit2: TbsSkinDBSpinEdit;

bsSkinStdlabel6: TbsSkinStdlabel;

bsSkinDBCurrencyEdit2: TbsSkinDBCurrencyEdit;

bsSkinStdlabel7: TbsSkinStdlabel;

bsSkinDBCurrencyEdit3: TbsSkinDBCurrencyEdit;

bsSkinDBComboBox1: TbsSkinDBComboBox;

bsSkinStdlabel8: TbsSkinStdlabel;

bsSkinStdlabel9: TbsSkinStdlabel;

bsSkinDBMemo3: TbsSkinDBMemo;

bsSkinButton12: TbsSkinButton;

bsSkinButton13: TbsSkinButton;

bsSkinButton14: TbsSkinButton;

bsSkinButton15: TbsSkinButton;

AD0Table4: TADOTable;

DataSource4: TDataSource;

75

bsSkinDBDateEdit1: TbsSkinDBDateEdit;

bsSkinStdlabel1 O: TbsSkinStdlabel;

bsSkinDBComboBox2: TbsSkinDBComboBox;

bsSkinStdlabel11: TbsSkinStdlabel;

bsSkinButton 16: TbsSkinButton;

bsSkinButton17: TbsSkinButton;

bsSkinPanel8: TbsSkinPanel;

bsSkinStdlabel12: TbsSkinStdlabel;

bsSkinStdlabel13: TbsSkinStdlabel;

bsSkinButton18: TbsSkinButton;

bsSkinD8DateEdit2: TbsSkinDBDateEdit;

bsSkinD8ComboBox3: TbsSkinDBComboBox;

bsSkinButton19: TbsSkinButton;

bsSkinButton20: TbsSkinButton;

bsSkinPanel7: TbsSkinPanel;

bsSkinStdlabel14: TbsSkinStdlabel;

bsSkinStdlabel15: TbsSkinStdlabel;

bsSkinStdlabel16: TbsSkinStdlabel;

bsSkinStdlabel17: TbsSkinStdlabel;

bsSkinDBSpinEdit3: TbsSkinDBSpinEdit;

76

kinDBCurrencyEdit4: TbsSkinDBCurrencyEdit;

kinDBCurrencyEdit5: TbsSkinDBCurrencyEdit;

kinDBComboBox4: TbsSkinDBComboBox;

kinDBMemo4: TbsSkinDBMemo;

sSkinButton21: TbsSkinButton;

bsSkinButton22: TbsSkinButton;

bsSkinButton23: TbsSkinButton;

bsSkinPanel6: TbsSkinPanel;

bsSkin Textlabel4: Tbs SkinText Label;

bsSkinStdlabel18: TbsSkinStdlabel;

bsSkinDBText8: TbsSkinDBText;

bsSkinDBText9: TbsSkinDBText;

bsSkinDBText1 O: TbsSkinDBText;

bsSkinDBText11: TbsSkinDBText;

bsSkinDBText12: TbsSkinDBText; l\

bsSkinComboBox4: TbsSkinComboBox;

bsSkinEdit4: TbsSkinEdit;

bsSkinButton24: TbsSkinButton;

AD0Table5: TADOTable;

DataSource5: TDataSource;

77

DataSource6: TDataSource;

AD0Table6: TADOTable;

AD0Table7: TADOTable;

DataSource7: TDataSource;

bsSkinDBLookupComboBox1: TbsSkinDBLookupComboBox;

bsSkinStdlabel19: TbsSkinStdlabel;

bsSkin Panel9: TbsSkin Panel;

bsSkinTextlabel5: TbsSkinTextlabel;

bsSkinlinklabel2: TbsSkinlinklabel;

bsSkinButton25: TbsSkinButton;

lmage1: Tlmage;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormCreate(Sender: TObject);

procedure bsSkinButton1 Click(Sender: TObject);

procedure bsSkinButton2Click(Sender: TObject);

procedure bsSkinButton4Click(Sender: TObject);

procedure bsSkinButton5Click(Sender: TObject);

procedure bsSkinButton3Click(Sender: TObject);

procedure bsSkinComboBox1 Change(Sender: TObject);

procedure bsSkinEdit1 Change(Sender: TObject);

78

procedure bsSkinButton6Click(Sender: TObject);

procedure bsSkinButton7Click(Sender: TObject);

procedure bsSkinButton8Click(Sender: TObject);

procedure bsSkinButton9Click(Sender: TObject);

procedure bsSkinButton1 OClick(Sender: TObject);

procedure bsSkinComboBox2Change(Sender: TObject);

procedure bsSkinEdit2Change(Sender: TObject);

procedure bsSkinButtonsBar1 SectionsOltemsOClick(Sender: TObject);

procedure bsSkinButtonsBar1 Sections01tems1 Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections1 ltemsOClick(Sender: TObject);

procedure bsSkinButtonsBar1 Sections1 ltems1 Click(Sender: TObject);

procedure bsSkinComboBox3Change(Sender: TObject);

procedure bsSkinEdit3Change(Sender: TObject);

procedure bsSkinButton11 Click(Sender: TObject);

procedure bsSkinDBSpinEdit2Change(Sender: TObject);

procedure bsSkinDBCurrencyEdit2Change(Sender: TObject);

procedure bsSkinButton12Click(Sender: TObject);

procedure bsSkinButton13Click(Sender: TObject);

procedure bsSkinButton14Click(Sender: TObject);

procedure bsSkinButton16Click(Sender: TObject);

79

-

procedure bsSkinButton17Click(Sender: TObject);

procedure bsSkinComboBox4Change(Sender: TObject);

procedure bsSkinEdit4Change(Sender: TObject);

procedure bsSkinButton24Click(Sender: TObject);

procedure bsSkinDBSpinEdit3Change(Sender: TObject);

procedure bsSkinButton21 Click(Sender: TObject);

procedure bsSkinButton22Click(Sender: TObject);

procedure bsSkinButton23Click(Sender: TObject);

procedure bsSkinButton19Click(Sender: TObject);

procedure bsSkinDBCurrencyEdit4Change(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems3Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems2Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems0Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems1 Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections'{3Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections4Click(Sender: TObject);

procedure bsSkinButton25Click(Sender: TObject);

private

{ Private declarations }

public

80

{ Public declarations }

end;

ar

Form 1 : TForm 1 ;

implementation

uses Unit3, Unit4, Unit5, Unit2;

{$R *.dfm}

procedure TForm1 .FormClose(Sender: TObject; var Action: TCloseAction);

begin

if bsskinmessage1 .MessageDlg('Programi kapatmak istediginize emin misiniz

?',mtconfirmation,[mbyes,mbno],O)=mryes then

application.Terminate

else

application. Run;

form2.hide;

end;

81

adoconnection 1 .Connected:=false;

rocedure TForm1 .FormCreate(Sender: TObject);

ar

tmpstr:string;

begin

TmpStr:=ExtractFileDir(ParamStr(O));

if TmpStr[Length(TmpStr)]<>'\' Then TmpStr:= TmpStr+'\';

adoconnection1 .ConnectionString:='Provider=Microsoft.Jet.OLEDB.4.0;Data

Source='+tmpstr+'db.mdb;Persist Security lnfo=False';

adocon nection 1 . Connected: =true;

adotable1 .Active:=true;

adotable2.Active:=true;

adotable3 .Active: =true;

adotable4.Active:=true;

adotable5.Active:=true;

adotable6.Active:=true;

adotable 7 .Active:=true;

II stok grid duzenlemeler II

bsskindbgrid 1 . Columns[O]. Visible:=false;

82

bsskindbgrid1 .Columns[1].Title.caption:='Ürün Adi';

bsskindbgrid1 .Co/umnsf1 J.Width:=100;

bsskindbgrid1 .Columns[2].Title.caption:='Açiklama';

bsskindbgrid1 .Columns[2].Width:=150;

bsskindbgrid1 .Columns[3].Title.caption:='Birim Fiyat';

bsskindbgrid1 .Columns[3].Width:=90;

bsskindbgrid 1 . Columns[4]. Title.caption :='Stok Miktar';

bsskindbgrid1 .Columns[4].Width:=90;

II musteri grid duzenlemeler II

bsskindbgrid2.Columns[O].Visible:=false;

bsskindbgrid2.Columns[1].Title.caption:='Yetkili Adi';

bsskindbgrid2.Columns[1].Width:=150;

bsskindbgrid2.Columns[2].Title.caption:='Firma Adi';

bsskindbgrid2.Columns[2].Width:=100;

bsskindbgrid2.Columns[3].Title.caption:;'Telefon';

bsskindbgrid2.Columns[3].Width:=90;

bsskindbgrid2.Columns[4].Title.caption:='Faks';

bsskindbgrid2.Columns[4].Width:=90;

bsskindbgrid2.Columns[5].Visible:=false;

bsskindbgrid2.Columns[6].Visible:=false;

83

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

LPG DISTRIBUTOR STOCK & SALE SYSTEM

Graduation Project

COM 400

Student: AhmetÖZBEK

Supervisor : Assoc. Prof. Rahib ABİYEV

Nicosia1 - 2008

ACKNOWLEDGEMENTS

"Firstly, I would like to thank to my supervisor Mr Rahib ABIYEV, Elbrus IMAN OV,

Dr.Kaan UYAR, Okan DONANGİL, Ümit İLHAN for their great advise and

recomendation for finishing my project properly also, teaching and guiding me in

others lectures.

I am greatly indepted to my family for their endless support from my starting day in

my educational life until today. I will never forget the things that my brother Mahmut

ÖZBEK and my uncle Ahmet Şerif ÇULCU did for me during my educational life,

also I want to say thanks to my mother Saliha ÖZBEK. I dedicate my project to them.

I thank all' the staff of the faculty of engineering for giving facilities to practise,

teaching and solving problem in my complete undergraduation program

I thank my friends Burak MELEK and Kerim ALTANHAN for their help, they get tired

with me, and they helped me and give morale everytime.

I thank them with my all

Finally, I promise to do my best in my life as an bachelor of engineer after finishing

my undergraduate program"

CONCLUSION

REFERENCES

APPENDIX

69

70

71

TABLE OF CONTENTS

ACKNOWLEDGEMENT
TABLE OF CONTENTS ii
ABSTRACT iii

INTODUCTION 1

CHAPTER ONE-MICROSOFT ACCESS DATABASE 2
1.1 Microsoft Access Database Fundamentals 2

1 .2 Microsoft Access Reports Tutorial 5
1.3Creating a Simple Query in Microsoft Access 11

1.4Creating Forms in Microsoft Access 16
1 .5 How do I encrypt an Access 2007 database? 18

CHAPTER ONE - DELPHI PROGRAMMING LANGUAGE 19
2.1 A brief history of Borland's Delphi 19

2.2Delp~i For Beginners: 21
2.3A Glossary of Delphi Programming Technical Terms 23

2.4Unders(anding Delphi Project Files (.DPR) 37
2.4.1 New: Delphi Project 37

2.4.2 Project File 37

2.4.3 Project Unit 38
2.4.4 An Example: Hide Main Form I Hide Taskbar Button 39

2.5 Understanding the Birth, Life and Death of a Delphi Form 40

2.6 Understanding and Using.Functions and Procedures 43

2.7 Understanding and Using Loops 50
2.8 Understanding Typed Constants in Delphi , 54

2.9 Running Delphi Applications With Parameters 57
CHAPTER THREE - DEVELOPMENT OF LPG DISTRIBUTOR STOCK & 60

SALE SYSTEM

ii

ABSTRACT

The aim of this project is to register petrol station program that contain

registration, all applications and also customers, sales, stocks and lpg application.

The program was prepared by using Delphi programming and using MS Access

database.

This project consist of so many forms and menus. The main form of the

arrive the others forms . Which are include information about the sales,stocks and

customers.

I think to give this system to GAPGAZ A.Ş.

To show results, show the efficiency of the program of LPG sale and stock in

program of the using in other chapters.

iii

INTRODUCTION

Information technology (IT), as defined by the Information Technology

Association of America (ITAA), is "the study, design, development, implementation,

support or management of computer-based information systems, particularly

software applications and computer hardware." IT deals with the use of electronic

computers and computer software to convert, store, protect, process, transmit and

retrieve information, securely.

Recently it has become popular to broaden the term to explicitly include the

field of electroniç communication so that people tend to use the abbreviation ICT

(Information and Communications Technology), it is common for this to be referred to

as IT & T in the Australasia region, standing for Information Technology and

Telecommunications.

Today, the term information technology has ballooned to encompass many

aspects of computing and technology, and the term is more recognizable than ever
-

before. The information technology umbrella can be quite large, covering many fields.

IT professionals perform a variety of duties that range from installing applications to

designing complex computer networks and information databases. A few of the

duties that IT professionals perform may include data management, networking,

engineering computer hardware, database and software design, as well as the

management and administration of entire systems.

"The aim of this project is to develop a simple Stock Management System for
small companies. The project consists of introduction,three chapters and conclusion.

Chapter One; describes general terms of Microsoft Access Database and the
processes of creating a database.

Chapter Two; describes the main lines of Borland Delphi Programming
Language such as reserved words, simple codes, methods and basic events.

Chapter Three; is the User's Manual of the program that gives information
about the system developed as Stock Management System.

1

Microsoft Access Database Fundamentals

Are you overwhelmed by the large quantities of data that need to be tracked in your

organization? Perhaps you're currently using a paper filing system, text documents or

a spreadsheet to keep track of your critical information. If you're searching for a more

flexible data management system, a database might be just the salvation you're

looking for.

What is a database? Quite simply, it's an organized collection of data. A database

management system (DBMS) such as Access, FileMaker Pro, Oracle or SOL Server

provides you with the software tools you need to organize that data in a flexible

manner. It includes facilities to add, modify or delete data from the database, ask

questions (or queries) about the data stored in the database and produce reports

summarizing selected contents.

Microsoft Access provides users with one of the simplest and most flexible DBMS

solutions on the market today: Regular users of Microsoft products will enjoy the

familiar Windows "look and feel" as well as the tight integration with other Microsoft

Office family products. Arı abundance · of wizards lessen the complexity of

administrative tasks and the ever-present Microsoft Office Helper (you know... the

paper clip!) is available for those who care to use it. Before purchasing Access, be

sure that your system meets Microsoft's minimum system requirements. To further

our discussion, let's first examine three of the major components of Access that most
database users will encounter - tables, queries, forms. Once we've completed that

we'll look at the added benefits ot reports, web integration and SOL Server
('

integration.

Tables comprise the fundamental building blocks of any database. If you're familiar

with spreadsheets, you'll find database tables extremely similar.

2

The table above contains the employee information for our organization -­

characteristics like name, date of birth and title. Examine the construction of the table

and you'll find that each column of the table corresponds to a specific employee

characteristic (or attribute in database terms). Each row corresponds to one

particular employee and contains his or her information. That's all there is to it! If it

helps, think of each one of these tables as a spreadsheet-style listing of information.

Reports provide the capability to quickly produce attractively formatted summaries of

the data contained in one or more tables and/or queries. Through the use of wizards,

database users can create reports in literally a matter of minutes. As an example,

let's return to our Northwind database. In this case, suppose that our company

wishes to produce a catalog to share our product information with current and

prospective clients. In previous sections, we learned that this sort of information

3

Beverages
Soft drinks., ccffees,
teas, beer::,, and ales

could be retrieved from our database through the judicious use of queries. However,

recall that this information was presented in a tabular form -- not exactly the most
attractive marketing material! Reports allow the inclusion of graphics, attractive

formatting and pagination. Take a look at the sample report in the illustration below:

Clı.ai l 1 O box es x 20 bags $18 .00

Chang 2 24 - 12 oz bottles $19.00

CJı.artreuseverte 39 7 50 cc per bottle $18 .00

Côte de Blaye 38 12 - 75 cl bottles $263.50

G uarana Fan tastica 24 1 2 - 35 5 ml cans $4.50

, Ip oh Coffee 43 1 6 - 50 O g tins $46 .00

Lakk:alikööri 76 500 ml $18 .00

Laughing LumberjackLager 67 24 - 12 oz bottles $14.00

Microsoft Access also provides native support for the World Wide Web. Posting data

to the web is a breeze. If you have a formatted report that you would like to share

with Internet or Intranet users, you can pimply export it to an HTML file and publish it
to your organization's web server. For those with more complex tastes, the
advanced features of Access 2000 provide interactive data manipulation capabilities

to web users.

Finally, no discussion of Microsoft Access is complete without mentioning it's

capability to tightly integrate with SOL Server, Microsoft's professional database

server product. If you're in an organization that utilizes SOL Server, you'll be pleased

to learn that you can retrieve, manipulate and work with the data stored on your

organization's database server within the Microsoft Access environment. For more

on this, view Microsoft's page on SOL Server/Office integration.

4

Microsoft Access Reports Tutorial

Part 1: Getting Started

In our previous tutorials, you've learned a good deal about Microsoft Access.

Together, we created a query, modified the query to make it more complex, and

created a data entry form. We've learned the skills necessary to put information into

a database and selectively remove the exact information we're seeking. In this

tutorial, we're going to go a step further and learn how to create professionally

formatted reports automatically from our database information. Returning to our
familiar Northwind Company, we're going to design a nicely-formatted listing of

employee home telephone numbers for the use of management.

The sample images in this tutorial were created using Access 2000. If you are

running an earlier version of Access, your screen images may appear slightly

different. However, the same general principles still apply and you should be able to

follow along. l,f you need a quick-start on the basics of Access before getting started,

take a look at the article "Microsoft Access Fundamentals."

Once again, we're going to use the Northwind sample database. Before we get

started, open up Microsoft Access and then open the Northwind database. If you

need help with this step, please read the article "How to Install the Northwind Sample
,-'

Database."

1. Choose the Reports menu. Once you've opened Northwind, you'll be presented
"with the main database menu shown below. Go ahead and click on the "Reports"

selection and you'll see a list of the various reports Microsoft included in the sample.
database. If you'd like, feel free to double-click on a few of these and get a feel for

what reports look like and the various types of information that they contain.

2. Create a new report. After you've satisfied your curiosity, go ahead and click on

the "New" button and we'll begin the process of creating a report from scratch.

5
s

~ •• (re . Lrt by using wizard~
Ill! Alphabetical List of Products

Ill! Catalog

Ill! Catalog Subreport

Ill! Customer Labels

Ill! Employee Salesby Country

Ill! Invoice

Ill! Products by Category

Ill! Sales by Category

Ill! Salesby Category Subrep,ort

Ill! Sales by Year

8 Salesby Year Subreport

Summary of Sales by Quarter

Summary of Sales by Year

Create a new report

3. Select the Report Wizard. The next screen that appears will ask you to select the

method you wish to use to. create the report. We're going to use the Report Wizard

which will walk us through the creation process step-by-step. After you've mastered
the wizard, you might want to return to this step and explore the flexibility provided by

the other creation methods.

4. Choose a table or query. Before leaving this screen, we want to choose the
source of data for our report. If you want to retrieve information from a single table,

you can select it from the drop-down box below. Alternatively, for more complex

reports, we can choose to base our report on the output of a query that we previously

designed. For our example, all of the data we need is contained within the

Employees table, so choose this table and click on OK.

6

7

Select a creation method

Next, we'll select exactly which table data to include in the report and learn how to

apply formatting to our finished product. Read on!

Microsoft Access Reports Tutorial Part 2: Selecting the Data

5. Select the fields to include. Use the '>' button to move over the desired fields.
Note that the order you place the fields in the right column determines the default

order they will appear in your report. Remember that we're creating an employee

telephone directory for our senior management. Let's keep the information contained

in it simple -- the first and last name of each employee, their title and their home

telephone number. Go ahead and select these fields. When you are satisfied, click

the Next button.

6. Select the grouping levels. At this stage, you can select one or more grouping

levels to refine the order in which our report data is presented. For example, we may

wish to break down our telephone directory by department so that all of the members

of each department are listed separately. However, due to the small number of

employees in our database, this is not necessary for our report. Go ahead and

simply click on the Next button to bypass this step. You may wish to return here later
)

and experiment with grouping levels.

Selectthe fields to include

Choose the grouping levels

8

7. Choose your sorting options. In order to make reports useful, we often want to

sort our results by one or more attributes. In the case of our telephone directory, the

logical choice is to sort by the last name of each employee. Select this attribute from

the first drop-down box and then click the Next button to continue.

Choose the sorting options

Microsoft Access Reports Tutorial Part 3: Finishing Touches

Create report by using wızerd

Alphabetical List of Products

Catalog

Catalog Subreport

Sales Tota ls by Amount

Summary of Salesby Quarter

Summary of Salesby Year

Invoice)

Products by Category

Salesby Categor·1

Salesby Category Subreport

Sales by Year

9

In this example, as with all of our Access tutorials, we will use Access 2000 and the

Northwind sample database included on the installation CD-ROM. If you're using an

earlier version of Access, you may find that some of the menu choices and wizard

screens are slightly different. However, the same basic principles apply to all

versions of Access (as well as most database systems).

Creating a Simple Query in Microsoft Access

Have you ever wanted to combine information from multiple tables in your database

in an efficient manner? Microsoft Access offers a powerful query function with an

easy-to-learn interface that makes it a snap to extract exactly the information you

need from your database. In this tutorial we'll explore the creation of a simple query.

Let's explore the process step-by-step. Our goal in this tutorial is to create a query

listing the names of all of our company's products, current inventory levels and the

name and phone number of each product's supplier.

1. Open your database. If you haven't already installed the Northwind sample
database, these instructions will assist you. Otherwise, go to the File tab, select

Open and locate the Northwind database on your computer.

2. Select the queries tab. This will bring up a listing of the existing queries that

Microsoft included in the sample database along with two options to create new

queries.

3. Double-click on "create query t5y using wizard". The query wizard simplifies

the creation of new queries. We'll use it in this tutorial to introduce the concept of

query creation. In later tutorials we'll examine the Design view which facilitates the

creation of more sophisticated queries.

10

Create query by using wızard

roducts Query

Current Product List

Customers and Suppliers by City

Employee Sales by Country

Employees Query

Invoices

Invoices Filter

Order Details Extended

..ı..ıu.ttr'

..ı..ıu.ttr'
[§il Products Above Avereçe Price

[§il Products by Category

[§il Quarterly Orders

!lw Quarterly Orders by Product

[§il Sales by Category

[§il Sales by Year

[§il Ten Most Expensive Products

4. Select the appropriate table from the pull-down menu. When you select the

pull-down menu, you'll be presented with a listing of all the tables and queries

currently stored in your Access database. These are the valid data sources for your

new query. In this example, we want to first select the Products table which contains

information about the products we keep in our inventory.

Table: Categories
Table: Customers
Table: Employees
Table: Order Details
Table: Orders

11

5. Choose the fields you wish to appear in the query results. by either double­

clicking on them or by single clicking first on the field name and then on the 11>11 icon.
As you do this, the fields will move from the Available Fields listing to the Selected

Fields listing. Notice that there are three other icons offered. The 11>>11 icon will
select all available fields. The "<" icon allows you to remove the highlighted field

from the Selected Fields list while the "<<" icon removes all selected fields. In this

example, we want to select the ProductName, UnitslnStock, and UnitsOnOrder from

the Product table.

ProductID
SupplierID
Category ID
QuantityPerUnit
UnitPrice

6. Repeat steps 4 and 5 to addl'information from additional tables, as desired.
In our example, we wanted to include information about the supplier. That

"

information wasn't included in the Products table -- it's in the Suppliers table. Here's
the power of a query! You can combine information from multiple tables and easily

show relationships. In this example, we want to include the CompanyName and

Phone fields from the Suppliers table. All you have to do is select the fields -- Access

will line up the fields for you!

Note that this works because the Northwind database has predefined relationships

between tables. If you're creating a new database, you'll need to establish these

12

relationships yourself. Read the article "Defining Relationships in Microsoft Access"

for more information on this topic.

7. Click on Next.

8. Choose the type of results you would like to produce. We want to produce a

full listing of products and their suppliers, so choose the Detail option here.

r

9. Click on Next.

1 O. Give your query a title. You'r~ almost done! On the next screen you can give

your query a title. Select something descriptive that will help you recognize this

query later. We'll call this query "Product Supplier Listing."

13

Product Sales for 1 997

11. Click on Finish. You'll be presented with the two windows below. The first

window is the Query tab that we started with. Notice that there's one additional listing

now -- the Product Supplier Listing we created. The second window contains our
results -- a list of our company products, inventory levels and the supplier's name and

telephone number!

Create qGery in Design view

Create query by using wizard
~

Alphabetical List of Products

G§} -Alphabetical List of Products Query

G§l Category Sales for 1997

G§} Current Product List

Customers and Suppliers by City

Employee Sales by Country

Employees Query

Invoices

Invoices Filter

Order Details Extended

14

Product Supplıer Lıstıng

Products Above Average Price

Products by Category ~

G§} • Quarterly Orders

RE] Quarterly Orders by Product

G§} Sales by Category

G§} Sales by Year

G§} Ten Most Expensive Products

Louisiana Fiery Hot Perpl 76,_ , , -.
uisiana_ Hot Spjced O kıl ··--· ... 4, .. ·-----·· 1001 New Orlea~ Cajun Delighls

ngt'lıa's E3oyse,nqe,rry.ı: 120 P.Gra~dt'lıa Ke,lly'§ tıot'lıe,§tea
cıe E3qb'sQrga~i~prie,I 1 s Q.Gra~gt'lıaye,ııy·stıot'lıe,§t

hl/Y99,9.§ ... cr,_aD.~.e,rrx ...§~. 6 • Q•...G.r.~~9.t'lı_a ...Ke,.ı}y'.§ .. tıo.t'0e,,§!
ishi Kobe Niku 29'.- ·- QToky~Trader§ ····-··········

Ol Tokvo Traders

Congratulations! You've successfully created your first query using Microsoft

Access! Now you're armed with a powerful tool to apply to your database needs.

Creating Forms in Microsoft Access

Open your database
Microsoft Access forms provide a quick and easy way to modify and insert records

r
into your databases. They offer an intuitive, graphical environment easily navigated

by anyone familiar with standard computer techniques. Creating a form is a quite
simple, pleasant experience. In this example, as with all of our Access tutorials, we

I

will use Access 2003 and the Northwind sample database included on the installation

CD-ROM. If you're using an earlier version of Access, you may find that some of the
' ~

menu choices and wizard screens are slightly different. However, the same basic

principles apply to all versions of Access (as well as most database..systems). Let's
begin! Our goal for this tutorial is to create a simple form that will allow data entry

operators in our company to easily add new customers to our sales database.

If you haven't already installed the Northwind sample database, these instructions will

assist you. Otherwise, go to the Help menu, then choose Sample Databases and

Northwind Sample Databases.

15

Click on the Forms tab under Objects

This will bring up a list of the form objects currently stored in your database. Notice
that there are a large number of pre-defined forms in this sample database. After you

complete this tutorial, you might want to return to this screen and explore some of the

more advanced features included in these forms.

Click on the New icon to create a new form
Click on the New icon to create a new form

Select the creation method you wish to use
Next, we're presented with a variety of different methods we can use to create a
form. The AutoForm options quickly create a form based upon a table or query.

Design View allows for the creation and formatting of elaborate forms using Access'

form editing interface. The Chart Wizard and PivotTable Wizard create forms

revolving around those two Microsoft formats. In this tutorial, we'll use the Form

Wizard to walk through the process step-by-step.

Select the data source and click OK.
You can choose from any of the queries and tables in your database. If you recall our
scenario, we wish fo create a form to facilitate the addition of customers to our

database. In order to accomplish this, we're going to select the Customers table from

the pull-down menu.

Select the form fields to be used and click Next.
Next, you'll be presented with the screen below. Use this form to select the

table/query fields you wish to appear on your form. To add fields one at a time, either

double-click the field name or single-click the field name and single click the ">"

button. To add all the fields at once, simply click the ">>" button. The "<" and "<<"

buttons work in a similar manner to remove fields from the form. For our example, we

will add all of the table's fields to the form.

Select the form layout and click Next
You can choose from either a columnar, tabular, datasheet or justified form layout.

We'll use the justified layout to produce an organized form with a clean layout. You

may wish to come back to this step later and explore the various layouts available.

16

Edit Properties
Click the Properties icon. This will bring up a menu of user-definable attributes that
apply to our form. Edit the properties as necessary. Recall that our original goal was

to create a form for data entry purposes. Most likely, we don't want to grant data

entry employees full access to view or edit customer records. Setting the "Data Entry"

property to Yes will only allow users to insert new records and modify records created

during that session.

Select the form style and click Next.
Microsoft Access includes a number of built-in styles to give your forms an attractive

appearance. Click on each of the style names to see a preview of your form and

choose the one you find most appealing.

Provide a title for your form
Select something easily recognizable -- this is how your form will appear in the

database menu. Let's call our form "Customers" in this case. Select the next action

and click Finish. You may open the form as a user will see it and begin viewing,

modifying and/or entering new data. Alternatively, you may open the form in design
view to make modifications to the form's appearance and properties. Let's do the

latter and explore some of the options available to us.

Encrypting an Access Database

Security-conscious database users have long called for the ability to use strong

encryption in Microsoft Access. With the release of Access 2007, Microsoft answered
il

these pleas and introduced a robust encryption feature that allows for the simple

addition of a great deal of security to Access databases.

What is encryption?

Encryption provides you with the ability to protect your database file from prying eyes.

It transforms the way data is stored on your disk so that individuals who do not know

the database password can not open the database or use other techniques to view

the file contents. Security professionals recommend the use of encryption to protect

sensitive information.

17

Note that this feature is not available for database stored in the older MOB format.

You may find the following articles useful when attempting to encrypt an Access

database:

How do I encrypt an Access 2007 database?

Access 2007 users may encrypt databases stored in ACCDB format by password­

protecting them.

• Password-protecting an Access 2007 Database, Step-by-Step

• ACCDB Database Format
• Convert older Access databases to Access 2007

How do I decrypt an Access 2007 database?

If you want to open an encrypted database for use and then reencrypt it when you

are finished, Microsoft Access will handle the mechanics for you. Simply open the

database as you normally would and enter the database password when prompted.

Access will decrypt the database for your use and then save a new encrypted copy

when you make changes.

If you want to remove encryption from an encrypted Access database, open the

database in exclusive mode and then click "Decrypt Database" in the Database Tools

group.

What type of encryption does Access 2007 use?
"

Access 2007 uses the Microsoft Cryptographic API. This means that it will support

any cryptographic algorithm available within Windows as a Cryptographic Service

Provider (CSP). This is a great improvement over earlier versions of Access, which

only supported a built-in, weak encryption algorithm.

18

A brief history of Borland's Delphi

Pascal

Delphi uses the language Pascal, a third generation structured language. It is what is

called a highly typed language. This promotes a clean, consistent programming style,

and, importantly, results in more reliable applications. Pascal has a considerable

heritage:

Beginnings

Pascal appeared relatively late in the history of programming languages. It probably

benefited from this, learning from Fortran, Cobol and IBM's PU1 that appeared in the

early 1960's. Niklaus Wirth is claimed to have started developing Pascal in 1968, with a

first implementation appearing on a CDC 6000 series computer in 1970.

Curiously enough, the C language did not appear until 1972. C sought to serve quite

different needs to Pascal. C was designed as a high level language that still provided

the low level access that assembly languages gave. Pascal was designed for the

development of structured, maintainable applications.

The 1970's

In 1975, Wirth teamed up with Jensen to produce the definitive Pascal reference book

"Pascal User Manual and Report". Wirth moved on from Pascal in 1977 to work on

Modula - the successor to' Pascal. \'

The 1980's

In 1982 ISO Pascal appears. The big event is in November 1983, when Turbo Pascal
is released in a blaze of publicity. Turbo Pascal reaches release 4 by 1987. Turbo
Pascal excelled on speed of compilation and execution, leaving the competition in its

wake.

19

From Turbo Pascal to Delphi

Delphi, Borland's powerful Windows? and Linux? programming development tool first

appeared in 1995. It derived from the Turbo Pascal? product line.

As the opposition took heed of Turbo Pascal, and caught up, Borland took a gamble on

an Object Oriented version, mostly based on the Pascal object orientation extensions.

The risk paid off, with a lot of the success due to the thought underlying the design of the

IDE (Integrated Development Environment), and the retention of fast compilation and

execution.

This first version of Delphi was somewhat limited when compared to today's
heavyweights, but succeeded on the strength of what it did do. And speed was certainly

a key factor. Delphi went through rapid changes through the 1990's.

Delphi for Microsoft .Net

From that first version, Delphi went through 7 further iterations before Borland decided to

embrace the competition in the form of the Microsoft? .Net architecture with the

stepping stone Delphi 8 and then fully with Delphi 2005 and 2006. Delphi however still
remains, in the opinion of the author, the best development tool for stand alone Windows

and Linux applications. Pascal is a cleaner and much more disciplined language than

Basic, and adapted much better to Object Orientation than Basic.
o../ ' "

20

A new direction

Delphi is now provided by a development tools only company.

Delphi For Beginners:
Your guide will try to explain exactly what is Delphi and what can it do for you.

Dateline: 1999

Preparations.
First of all, I will presume that you know what computers are, what can you do with them,

and finally what does programming mean, in general. It would also be great if you

already have basic knowledge of programming (Pascal perhaps?).

If this is not true, you wouldn't be here anyway (am I right?). I'll be very glad if I'm not!

So sit back, relax and enjoy reading this article.

Delphi
Borland Delphi is a development tool for Microsoft Windows applications. Delphi is

powerful and easy to use tool for generating stand-alone graphical user interface (GUI)

programs or 32-bit console applications (programs that have no GUI presence but

instead run in what is commonly referred to as a "DOS box.")

When paired with Borland Kylix, Delphi users can build single-source applications for
both Windows and Linux, which opens new opportunities and increases the potential

return on development investrnents" Use the Cross-platform CLX component library and

visual designers to build high-performance portable applications for Windows that can be

easily re-compiled on Linux.

Delphi is the first programming language to shatter the barrier between high-level, easy­

to-use rapid application development environments and low-level bits-and-bytes power

tools.

When creating GUI applications with Delphi, you have all the power of a true compiled

programming language (Object Pascal) wrapped up in a RAD environment. All the
common parts of the Windows graphical user interface, like forms, buttons and lists

21

objects, are included in Delphi as components. This means that you don't have to write

any code when adding them to your application. You simply draw them onto your form

like in a paint program. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi allows the

developer to design the entire interface visually, and quickly implement an event driven

code with the click of the mouse.

Delphi ships in a variety of configurations aimed at both departmental and enterprise

needs. With Delphi, you can write Windows programs more quickly and more easily than

was possible ever before.

Pascal
The best way of describing Delphi is an Object Pascal-based visual development

environment. Delphi's environment is based on Object Pascal, a language that is as
object oriented as C++, and in some cases, better. For developers with no Pascal

experience, its templates for Pascal program structures speed the process of learning

the language.

The compiler produces applications packaged in compact executable files, with no need

for bulky runtime libraries (DLL's)-a notable benefit, I must say.

VCL
Visual Component Library (self-contained binary piece of software that performs some

specific predefined function), or VCL, is Delphi's object-oriented framework. In this rich
d

library, you'll find classes for Windows objects such as windows, buttons, etc, and you'll

also find classes for custom controls such as gauge, timer and multimedia player, along

with non-visual objects such as string lists, database tables, and streams.

Databases
Delphi can access many types of databases. Using forms and reports that you create,

the BOE (Borland Database Engine) can access local databases, like Paradox and

DBase, network SQL server databases, like lnterBase, and SysBase, and any data

source accessible though ODBC (open database connectivity).

22

Hello World!
At the end let's see one of the smallest Delphi applications: the famous 'Hello World!'

program.

This example is not for beginners - there is no main form of application or something like

that. This is only a demonstration. In some of the future articles I will focus on topics like

Delphi for Beginners - How to get started.

r··

program HelloWorld;

\uses dialogs;

begin
ShowMessage('Hello World!');

ıe;~d.

A Glossary of Delphi Programming Technical Terms
Definitions of terms having to do with Delphi programming, Pascal, OOP, BOE and

programming in general

"Self"
Definition: Within the implementation of a method, the identifier Self references the

object in which the method is called.

type
TCar = Class
color : TColor;

procedure ChangeColor(newColor : TColor) ;

end;

procedure TCar.ChangeColor(newColor : TColor) ;

begin
//self is "this" instance

23

Self .color := newColor;

end;

In class methods the identifier Self represents the class where the method is called.

"Constructor"
Definition: A constructor is a special method that creates and initializes instance

objects. The declaration of a constructor looks like a procedure declaration, but it

begins with the reserved word constructor.

A class can have more than one constructor, but most have only one. It is

conventional to call the constructor Create.

To create an object, call the constructor method on a class type.

type

TCar = Class

constructor Create;

end;

car :»TCar.Create;

"Reserved Word"
"Definition: A special word reserved by a programming language or by a program.

You are not allowed to use reserved words as variable names.

A partial list of Delphi reserved words:

• and

• array

• as

• asm

• begin

24

• case

• class

• const

• constructor

• destructor

• dispinterface

• div

• do

• downto

• else

• end

• except

• exports

• file

• finalization

• finally

• for

• function

• goto

• if

• implementation
l, in•
• inherited

• initialization

• interface

• in

• is

• library

• nil

• not

• object

• of

• or

• out

25

• packed

• procedure

• program

• property

• raise

• record

• repeat

• resourcestring

• set

• string

• then

• to

• try

• type

• unit

• until

• uses

• var

• while

• with

In addition to the words above, private, protected, public, published, and automated
act as reserved words within object type declarations, but are otherwise treated as

directives.

"Class Method"
Definition: A class method is a method that operates on classes instead of objects.

The definition of a class method must begin with the reserved word class.

The most common used class method in Delphi language is the "Create" constructor.

In the defining declaration of a class method, the identifier Self represents the class

where the method is called (which could be a descendant of the class in which it is

26

Most methods operate on objects that are instances of a certain class.

defined). If the method is called in the class TCar, then Self is of the type class of

TCar.

"Method"
Definition: Procedure or function (routine) associated with a particular object.

Different classes may define methods with the same name (Car.Drive or

Scooter.Drive).

A class method is a method (other than a constructor) that operates on classes

instead of objects.

A call to a method specifies the object (or, if it is a class method, the class) that the

method should operate on.

Examples:

type

TCar = Class

I/method procedure

procedure Drive;

//method (function)
function ChangeGear(newGear : integer) ;

end;

"Object"
Definition: An object is a variable of class. More generally, a variable of any type.

An instance of a class or object, is a self-contained entity that consists of both

properties, events and methods to manipulate the data.

Each object has its own values for the instance variables of its class and can respond

to the methods as wel as raise events defined by its class.

27

lso Known As: Instance variable

~Canvas"

Definition: Canvas is the graphical drawing surface of an object. The canvas has a

brush, a pen, a font, and an array of pixels. The canvas encapsulates the Windows

device context.

In Delphi, the TCanvas class provides an abstract drawing space for objects that

must render their own images.

"Class"
Definition: A list of features representing data and associated code assembled into

single entity. A class includes not only features listed in its definition but also features

inherited from ancestors.

The terms class and type are usually (but not always) interchangeable; a class is a

slightly different concept that a type, in that it emphasizes the classifications of

structure and behavior.

Also Known As: Object Type

Classes are related in a class hierarchy. One class may be a specialisation (a

"subclass") of another (one of its "superclasses"). A class may be an abstract class

or a concrete class.

The Visual Component Library (CVL) is a class hierarchy of Delphi components and

object types. ~

Examples:

type

TCar = Class

Year: integer;

Color : TColor;

end;

28

"Run Time"

Definition: Run time is any time you are actually running the application in the

operating system and interacting with the application as the user would.

In Delphi, "dynamically creating ... " means "creating at run-time".

"RTL"

Definition: The raw power of Delphi is based on a considerable amount of its Run

Time Library functions and procedures.

RTL is the collection of functions and procedures that are built into Delphi.

Also Known As: Run Time Library; VCL Routines

"Routine"

Definition: Self-contained statement blocks that can be called from different locations

in a program. In Delphi: function or procedure.

Also Known As: Subroutine

"Recursion"

Definition: Recursion is a very simple, yet useful and powerful programmer's tool. As

we know, routines can, and frequently do, call other routines.

A routine that activates/calls itself is called recursive. Recursion is a general method
"of solving problems by reducing them to simpler problems of a similar type.

A recursive subroutine constantly calls itself, each time in a simpler situation, until it

gets to the trivial case, at which point it stops.

"Procedure"

Definition: A procedure is a routine that does not return a value (unlike a function).

Procedure header gives the name of a procedure followed by a list of formal

parameters.

29

a unit, a routine may have a header declared in the interface part, and then again

he implementation part. The second appearance of the header may be an exact

plicate of the header in the interface part, or may be only the name of the routine.

Examples: [blockquote shadeeyes] procedure TestMe(parameter: TCustomType[br]

egin[br] ... end; [/blockquote]_z_delphi_z_);

·Pointer"
Definition: A pointer is a variable that holds the address of another variable (or

routine) in memory.

A pointer can be used to indirectly manipulate the object.

"Parameter"
Definition: Represents one value that is supplied by one function (the calling function)

that wishes to make use of the services of another function (the called function).

In Delphi, every parameter is classified as value, variable, constant, or out.

Also Known As: Argument

Examples: [blockquote] "year" and "name" are parameters for the "TestMe" function

procedure TestMe(const year: integer; var name : string) ; [/blockquote]

"OLE"
Definition: OLE is a compound document standard developed by Microsoft

Corporation. It enables you to create objects with one application and then link or

embed them in a second application. Embedded objects retain their original format

and links to the application that created them.

With OLE, data from a server application is stored in a container application. The

data is stored in an OLE Object.

Also Known As: Object Linking and Embedding

30

"MDI"
Definition: A Windows API that enables programmers to easily create applications

with multiple windows.

Each MDI application has a single main (frame) window, and any number of child

windows (documents). All child windows are displayed within the main window - this

is common in applications such as spreadsheets or word processors.
The child window's document title merges with the parent window's title bar when the

child window is maximized.

Although many programmers still use MDI, Microsoft recommends using a newer API

called Single Document Interface (SDI).

Also Known As: Multiple Document Interface

"IDE"
Definition: IDE (Integrated Development Environment) is the user interface (GUI)

where you can design, compile and debug your Delphi projects.

Also Known As: Integrated Development Environment

"GUI"
Definition: A GUI (usually pronounced GOO-ee) is a graphical (rather than purely

textual) user interface to a computer.

Applications typically use the elements of the GUI that come with the operating

system and add their own graphical user interface elements and ideas. When

creating an application, Delphi facilitate writing a graphical user interface.

Each GUI element (for example a Button or an EditBox) is defined as a class from

which you can create object instances for your application.

Also Known As: Graphical User Interface

Alternate Spellings: goo-ee

31

Function"
efinition: A function is a routine that returns a value when it executes.

can be passed and it can return a value. Functions that are part of a class are

sually called methods.

You can code your own functions or use built-in functions provided by Delphi RTL

(run time library).'

Examples:

function YearsOld(const BirthYear:integer): integer;

var

Year, Month, Day: Word;

begin

DecodeDate(Date, Year, Month, Day) ;

Result := Year - BirthYear;

end;

"Freeware"
Definition: Copyrighted software given away for free by the author. Although it is

available for free, the author retains the copyright, which means that you cannot do
anything with 'it that is not expressly allowed by the author. Usually, the author allows

people to use the software, but not sell it.

"Exception"
Definition: An event happening during execution of a program that disrupts the

normal flow of control. Exceptions are raised when a runtime error occurs in an

application, such as attempting to divide by zero.

Also, an exception is an object that contains information about what error occurred

and where it happened.

32

33

Design Time"
inition: We work with forms and controls, set their properties, and write code for

,eir events at design time, which is any time we're building an application in the

lphi's IDE.

esign-time is when you use the IDE to design your application, using the form, the

bject Inspector, Component palette, Code editor, and so forth; as opposed to run­

ime, when the application you design is actually running.

·compiler"
Definition: A compiler is a program that performs the process of compilation. When

you press F9 in Delphi IDE your current project gets compiled and run.

"Compilation"
Definition: Compilation is the process of translating source code into an object

program, which is composed of machine instructions along with the data needed by

those instructions. Virtually all of the software on your computer was created by this

process.

Compiled programs (Delphi applications for example) run faster then "interpreted" -

which is the line-by-line translation of source code to machine instructions (Visual

Basic applications for example).

"Comment"
Definition: The purpose of adding comments to Delphi code is to provide more

program readability using understandable description of what your code is doing.

A comment is a note to yourself or another programmer; it is ignored by the compiler.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }

(* Text between a left-parenthesis-plus-asterisk and an asterisk-plus-right­

parenthesis also constitutes a comment. *)

Any text between a double-slash and the end of the line constitutes a comment.

lso Known As: REM meaning "Remark in Basic"

COM"
Definition: The Component Object Model (COM) enables programmers to develop

objects that can be accessed by any COM-compliant application. Both OLE and

ActiveX are based on COM.

The key aspect of COM is that it enables communication between clients and servers

through interfaces. Information about these interfaces is usually included in a type

library.

COM allows you to create COM objects that are not specific to any language, and in

some cases, even platforms. For instance, COM objects can be ported to a Unix
system. COM also allows you to create COM Objects that will be instantiated on a

different machine across the world if you so desired.

Although often associated with Microsoft, COM is an open standard that specifies

how components work together and interoperate.

Also Known As: Component Object Model

"Callback Routine"
Definition: A callback routine is a routine (function or procedure) in your program that

Windows calls. More generally, a callback is a means of sending a function as a
parameter into another function. When the callback function has completed, control is

passed back to the original function.

For example, EnumFonts is a Windows routine that calls a given callback function for

every font installed in the system.

"BOE"
Definition: The core database engine and connectivity software behind Borland

products, as well as Paradox for Windows and Visual dBASE for Windows. The

34

ded set of database drivers enables consistent access to standard data sources:

dox, dBASE, FoxPro, Access, and text databases.

y Delphi components use this database engine to access and deliver data. BOE

intains information about your PC's environment in the BOE configuration file
sually called IDAPI.CFG). Use the BOE Administrator to change the settings in this

nfiguration file.

so Known As: Borland Database Engine, IDAPI

•Application"
Definition: An application is the executable file and all related files that a program

eeds to function which serve a common purpose or purposes, as distinguished from

he design and source code of the project.

Software applications cacn be divided into two general classes: systems software and

applications software. Systems software consists of low-level programs that interact

with the computer at a very basic level. This includes operating systems, compilers,

and utilities for managing computer resources.

In contrast, applications software (also called end-user programs) includes database

programs, word processors, spreadsheets, etc. Figuratively speaking, applications

software sits on top of systems software because it is unable to run without the

operating system and system utilities.

In general we use Delphi to produce applications software.

"API"
Definition: A set of routines, protocols, and tools for building software applications.

A wide variety of software from operating systems to individual components are said

to have an API.

A good API makes it easier to develop a program by providing all the building blocks.

A programmer puts the blocks together.

Also Known As: Application Programming Interface

35

las"
finition: A name that specifies the location of database tables accessed using the
E. The terms alias and database are *synonymous* when talking about the BOE.

alias specifies driver parameters and database locations, such as Driver Type,

rver Name, User Name and others.

•Algorithm"
Definition: An algorithm is a set of precisely defined steps guaranteed to arrive at an

answer to a problem or set of problems. As this implies, a set of steps that might
ever end is not an algorithm. In mathematics and computer science, an algorithm

sually means a small procedure that solves a recurrent problem.

"ActiveX"
Definition: A technology that allows various software components to communicate
and interact, even though they are not written in the same language. ActiveX controls

can be embedded in Web pages to produce animation and other multimedia effects,

interactive objects and sophisticated applications.

An ActiveX control is a COM-based software component that integrates into and

extends the functionality of any host application. ActiveX controls implement a set of

predefined COM interfaces.

The ActiveX page of the component palette includes several ActiveX controls. You

can use them like any standard VCL component, dropping them on forms and setting
~

their properties using the Object Inspector.

"ASCII"
Definition: ASCII assigns each English character and basic punctuation mark its own

number from O to 127. Since the code is standard, every computer should be able to

translate it into serviceable, if unglamorous, copy. So, when you're unsure what
program - or what computer - is on the receiving end of a document, your safest bet

is to save your file as plain ASCII text.

36

-

Examples: The capital letter A has an ASCII value of 65. The ASCII code for a space

is 32.

You can reference a character by its ASCII code prefixed with a number sign (#).

Example: To put the symbol for American cents into a character C, for example, you

could code "c := #155;".

Pronunciation: ask-ee

Also Known As: American Standard Code for Information Interchange

Understanding Delphi Project Files (.DPR)

New: Delphi Project

Since it is quite common for Delphi applications to share code or previously

customized forms, Delphi organizes applications into what is called projects.

A project is made up of the visual interface along with the code that activates the

interface. Each project can have multiple forms, allowing us to build applications that

have multiple windows. The code that is needed for a form in our project is stored in

a separate Unit file that Delphi automatically associates to the form. General code

that we want to be shared by all the forms in our application is placed in unit files as

well. Simply put, a Delphi project is a collection of files that make up an application.

What this means is that each project is made of one or more Form files (files with the

.dfm extension) and one or more Unit files (.pas extension).

We can also add resource files, and they are compiled into .RES files and linked

when we compile the project.

Project File

Each project is made up of a single project file (.dpr). Project files contain directions

for building an application. This is normally a set of simple routines which open the

main form and any other forms that are set to be opened automatically and then

starts the program by calling the Initialize, CreateForm and Run methods of the

37

38

al Application object (which is actually a form of zero width and height, so it never

ally appears on the screen).

e: The global variable Application, of type TApplication, is in every Delphi

dows application. Application encapsulates your application as well as provides

ny functions that occur in the background of the program. For instance,

plication would handle how you would call a help file from the menu of your

ogram.

roject Unit

se Project - View Source to display the project file for the current project.

thogh you can look and edit the Project File, in most cases, you'll let Delphi

aintain the DPR file. The main reason to view the project file is so we can see the

nits and forms that make up the project, and which form is specified as the

application's main form.

Another reason to work with the project file is when we are creating a DLL rather than

a stand-alone application or need some start-up code, such as a splash screen

before the main form is created by Delphi.

Here is the default project file for a new application (containing one form: "Form1"):

program Project1;

uses
Forms,
Unit1 in 'Unit1.pas' {Form1};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1) ;

Application.Run;

end.

The program [link url=/od/delphiprogrammingglossary/g/reservedword.htm]keyword

identifies this unit as a program's main source unit. You can see that the unit name,

elphi reads the uses clause of the project file to determine which units are part of a

reject.

oject1, follows the program keyword (Delphi gives the project a default name until

u save the project with a more meaningful name). When we run a project file from
e IDE, Delphi uses the name of the Project file for the name of the EXE file that it

reates.

The .dpr file is linked with the .pas file with the compile directive {$R *.RES} (in this

case '*' represents the root of the .pas filename rather than "any file"). This compiler

directive tells Delphi to include this project's resource file. The project's resource file

contains such items as the project's icon image.

The begin..end block is the main source-code block for the project.

Although Initialize is the first method called in the main project source code, it is not

the first code that is executed in an application. The application first executes the

"initialization" section of all the units used by the application.

The Application.CreateForm statement loads the form specified in its argument.

Delphi adds an Application.CreateForm statement to the project file for each form you
'add to the project. This code's job is to first allocate memory for the form. The

statements are listed in the order the forms are added to the project. This is the order
that the forms will be created in memory at runtime. If you want to change this order,

do not edit the project source code. Use the ProjectlOptions menu command.

The Application.Run statement starts your application. This instruction tells the

predeclared object called Application to begin processing the events that occur

during the run of a program.

An Example: Hide Main Form I Hide Taskbar Button

The Application object's ShowMainForm property determines whether or not a form

will show at startup. The only condition of setting this property is that it has to be

called before the Application.Run line.

39

Birth

'/Presume: Form1 is the MAIN FORM

Application.CreateForm(TForm1, Form1) ;

Application.ShowMainForm := False;

Application.Run;

Understanding the Birth, Life and Death of a Delphi Form

Life-Cycle of a Delphi Form

In Windows, most elements of the user interface are windows. In Delphi, every
project has at least one window - program's main window. All windows of a Delphi

application are based on TForm object.

Form

Form objects are the basic building blocks of a Delphi application, the actual windows

with which a user interacts when they run the application. Forms have their own

properties, events, and methods with which you can control their appearance and
behavior. A form is actually a Delphi component, but unlike other components, a form

doesn't appear on the component palette.

We normally create a form object by starting a new application (File I New

Application). This newly created form will be, by default, the application's main form -

the first form created at runtime.

Note: To add an additional form to Delphi project, we select File!New Form.

There are, of course, other ways to add a "new" form to a Delphi project.

OnCreate
The OnCreate event is fired when a TForm is first created, that is, only once. The

statement responsible for creating the form is in the project's source (if the form is set

to be automatically created by the project). When a form is being created and its

Visible property is True, the following events occur in the order listed: OnCreate,

OnShow, OnActivate, OnPaint.

40

You should use the OnCreate event handler to do, for example, initialization chores

like allocating string lists.

Any objects created in the OnCreate event should be freed by the OnDestroy event.

OnCreate -> OnShow -> OnActivate -> OnPaint -> OnResize -> OnPaint ...

OnShow
This event indicates that the form is being displayed. OnShow is called just before a

form becomes visible. Besides main forms, this event happens when we set forms

Visible property to True, or call the Show or ShowModal method.

OnActivate
This event is called when the program activates the form - that is, when the form
receives the input focus. Use this event to change which control actually gets focus if

it is not the one desired.

OnPaint, OnResize
Events like OnPaint and OnResize are always called after the form is initially created,

but are also called repeatedly. OnPaint occurs before any controls on the form are

painted (use it for special painting on the form).

Life

As we have seen the birth of a form is not so interesting as the life and death can be.

When your form is created and all the controls are waiting for events to handle, the
!I>

program is running until someone tries to close the form!

Death

An event-driven application stops running when all its forms are closed and no code

is executing. If a hidden form still exists when the last visible form is closed, your
application will appear to have ended (because no forms are visible), but will in fact

continue to run until all the hidden forms are closed. Just think of a situation where

the main form gets hidden early and all other forms are closed.

... OnCloseQuery -> OnClose -> OnDeactivate -> OnHide -> OnDestroy

41

• caNone. The form is not allowed to close. Just as if we have set the CanClose
"

to False in the OnCloseQuery.
• caHide. Instead of closing the form you hide it. ~
• caFree. The form is closed, so it's allocated memory is freed by Delphi.

• caMinimize. The form is minimized, rather than closed. This is the default

action for MDI child forms. Note: When a user shuts down Windows, the
OnCloseQuery event is activated, not the OnClose. If you want to prevent

Windows from shuting down, put your code in the OnCloseQuery event

handler, of course CanClose=False will not do the trick.

CloseQuery
en we try to close the form using the Close method or by other means (Alt+F4),

e OnCloseQuery event is called. Thus, event handler for this event is the place to

ercept a form's closing and prevent it. We use the OnCloseQuery to ask the users

they are sure that they realy want the form to close.

ocedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean) ;

begin
if MessageDlg('Really close this window?', mtConfirmation, [mbOk, mbCancel], O)=

rCancel then CanClose := False;

end;

n OnCloseQuery event handler contains a CanClose variable that determines

whether a form is allowed to close. The OnCloseQuery event handler may set the
value of CloseQuery to False (via the CanClose parameter), thus aborting the Close

method.

OnClose
If OnCloseQuery indicates that the form should be closed, the OnClose event is

called.

The OnClose event gives us one last chance to prevent the form from closing. The

OnClose event handler has an Action parameter, with the following four possible

values:

42

Destroy
er the OnClose method has been processed and the form is to be closed, the

Destroy event is called. Use this event for operations opposite to those in the

Create event. OnDestroy is therefore used to deallocate objects related to the

and free the corresponding memory.

course, when the main form for a project closes, the application terminates.

nderstanding and Using Functions and Procedures

ave you ever found yourself writing the same code over and over to perform some

mmon task within event handlers? Yes! It's time for you to learn about programs

ithin a program. Let's call those mini programs subroutines.

Intro to subroutines

Subroutines are an important part of any programming language, and Delphi is no

exception. In Delphi, there are generally two types of subroutines: a function and a

procedure. The usual difference between a function and a procedure is that a
function can return a value, and a procedure generally will not do so. A function

is normally called as a part of an expression.

Take a look at the following examples:

procedure SayHello(const sWhat:string) ;

begin "'
ShowMessage('Hello ' + sWhat) ;

end;

function YearsOld(const BirthYear:integer): integer;

var
Year, Month, Day : Word;

begin
DecodeDate(Date, Year, Month, Day) ;

43

ult:= Year - BirthYear;

ce subroutines have been defined, we can call them one or more times:

cedure TForm1.Button1Click(Sender: TObject) ;

in
SayHello('Delphi User') ;

d·
'

ocedure TForm1.Button2Click(Sender: TObject) ;

begin
SayHello('Zarko Gajic') ;
ShowMessage('You are'+ lntToStr(Years01d(1973)) +' years old!') ;

end;

Functions and Procedures

As we can see, both functions and procedures act like mini programs.

In particular, they can have their own type, constants and variable declarations inside

them.

Take a closer look at a (miscellaneous) SomeCalc function:

function SomeCalc
(const sStr: string;
const iYear, iMonth: integer;

var iDay:integer): boolean;

begin

end;

Every procedure or function begins with a header that identifies the procedure or

function and lists the parameters the routine uses, if any. The parameters are listed

within parentheses. Each parameter has an identifying name and usually has a type.

A semicolon separates parameters in a parameter list from one another.

44

• Add Unit1 to the uses clause of Unit2
• Place a copy of the header of the subroutine in the interface section of the

Unit1.

r, iYear and iMonth are called constant parameters. Constant parameters cannot

changed by the function (or procedure). The iDay is passed as a var parameter,

we can make changes to it, inside the subroutine.

ctions, since they return values, must have a return type declared at the end of

header. The return value of a function is given by the (final) assignment to its

e. Since every function implicitly has a local variable Result of the same type as

e functions return value, assigning to Result has the same effect as assigning to

e name of the function.

Positioning and Calling Subroutines

Subroutines are always placed inside the implementation section of the unit. Such

subroutines can be called (used) by any event handler or subroutine in the same unit

at is defined after it.

ote: the uses clause of a unit tells you which units it can call. If we want a specific

subroutine in a Unit1 to be usable by the event handlers or subroutines in another

unit (say Unit2), we have to:

This means that subroutines whose headers are given in the interface section are

global in scope.

When we call a function (or a procedure) inside its own unit, we use its name with

whatever parameters are needed. On other hand, if we call a global subroutine

(defined in some other unit, e.g. MyUnit) we use the name of the unit followed by a

period.

//SayHelfo procedure is defined inside this unit

SayHello('Delphi User') ;
//YearsOld function is defined inside MyUnit unit

45

begin
1/lsSmall can only be uses inside Button 1 OnClick event

if lsSmall(Edit1 .Text) then
ShowMessage('AII small caps in Edit1 .Text')

else
ShowMessage('Not all small caps in Edit1 .Text') ;

end;

nctions or procedures can have their own subroutines embedded inside

. An embedded subroutine is local to the container subroutine and cannot be

by other parts of the program. Something like:

•ocedure TForm1 .Button1 Click(Sender: TObject) ;

ction lsSmall(const sStr:string):boolean;

in
·sSma/1 returns True if sStr is in lowercase, False otherwise

esult:=LowerCase(sStr)=sStr;

end;

Understanding and Using Decisions
if language = Delphi then

begin

Use(language)

end

else

Skip(language) ;

Branching
If you want to control the flow of code execution depending on what the program

has already done or what it has just encountered you need to use one of the two

Delphi Pascal branching statements: if statements and case statements.

46

IF THEN ELSE statement

statement is used to test for a condition and then execute sections of code

based on whether that condition is True or False. The condition is described with a

lean expression, If the condition is True, the code flow branches one way. If the

dition is False, the flow branches in another direction. Let's see this behavior on

example:

iNumber : Integer;

in
'some value must be

assigned to iNumber here!

·• iNumber = O then
ShowMessage('Zero value encountered!') ;

end;

If the number (assigned to iNumber variable) is O, the expression iNumber = O
evaluates to True and the message is displayed; otherwise, nothing is displayed.

If we want more than one thing to happen when the tested condition is True, we can

write multiple statements in a begin ... end block.

var iNumber : Integer;

begin
//some value must be

//assigned to iNumber here!

if iNumber = O then
begin
ShowMessage('Zero value encountered!') ;

Exit;// exit from the current procedure

end;
/lif iNumber is O the folowing
//code will never be executed
ShowMessage('Nobody likes O, ha!') ;

end;
More often, we will want to process multiple statements if a condition is True or

False.
47

umber: Integer;

me value must be

'assigned to iNumber here!

umber < O then
in

'statements ...

ShowMessage('Your number is negative!') ;

'!statements ...

end
else
begin
//statements ...
ShowMessage('Your number is positive or zero!') ;

//statements ...

end;
end;

ote: Each statement in the begin..end block ends with a semicolon. We cannot have

a semicolon before or after the else keyword. The if-then-else statement, is a single

statement, therefore we cannot place a semicolon in the middle of it.

An if statement can be quite complex. The condition can be turned into a series of

conditions (using the and, or and not Boolean operators), or the if statement can nest

a second if statement.

var

iNumber : Integer;

begin
if iNumber = O then
begin
ShowMessage('Zero number not allowed!') ;

exit;

end
else

48

e CASE statement

I/no need to use begin-end here

•• iNumber < O then
ShowMessage('Your number is negative!')

else
ShowMessage('Your number is positive!') ;

d;
te: When you write nested if statements choose a consistent, clear indentation

le. This will help you and anyone else who reads your code see the logic of the if

atement and how the code flows when your application runs.

hough, we can use the if statement for very complex (nested) condition testing, the

case statement is usually easier to read (debug!) and the code runs more quickly.

The case statement makes it clear that a program has reached a point with many

ranches; multiple if-then statements do not.

var
iNumber : Integer;

begin
/Isome value must be
I/assigned to iNumber here!

case iNumber of
O : ShowMessage('Zero value') ;
1 .. 1 O : ShowMessage('Less than 11, greater than O') ;

-1, -2, -3: ShowMessage('Number is -1 or -2 or -3') ;

else
ShowMessage('I do not care') ;

end;
end;

What follows the case keyword is usually called the selector. The selector is a

variable or expression taken from either the char type or any integer type (an ordinal

49

e). String type are invalid!. However, the StringToCaseSelect custom function
"' ~ I.

ables you to use the Case statement with string type variables ~::.: ..::::: ,:,'

s you can see, the individual case statements use a single constant, a group of

nstants (separated by comma), or a range of constants (double dot separated). We

can even add an else keyword to take care of all the remaining cases at once.

ote 1: Only one case statement will be executed, we cannot have overlapping

conditions in the case statements.

ote 2: If you want to include more than one statement in the part following the colon

(:), place the begin and end keywords around the multiple statements.

Understanding and Using Loops

Repeating operations in Delphi Pascal

The loop is a common element in all programming languages. Object Pascal has

three control structures that execute blocks of code repeatedly: for, repeat ... until

and while ... do.

The FOR loop

Suppose we need to repeat an operation a fixed number of times.

II show 1,2,3,4,5 message boxes

var j: integer;

begin
for j := 1 to 5 do
begin
ShowMessage('Box: '+lntToStr(j)) ;

end;
end;

The value of a control variable (j), which is really just a counter, determines how

many times a for statement runs. The keyword for sets up a counter. In the preceding

example, the starting value for the counter is set to 1.

50

\

e ending value is set to 5.
hen the for statement begins running the counter variable is set to the starting

alue. Delphi than checks whether the value for the counter is less than the ending

alue. If the value is greater, nothing is done (program execution jumps to the line of

ode immediately following the for loop code block). If the starting value is less than

e ending value, the body of the loop is executed (here: the message box is

displayed). Finally, Delphi adds 1 to the counter and starts the process again.

Sometimes it is necessary to count backward. The downto keyword specifies that

he value of a counter should be decremented by one each time the loop executes (it

is not possible to specify an increment I decrement other than one). An example of a

for loop that counts backward.

var j: integer;

begin
for j := 5 downto 1 do
begin
ShowMessage('T minus'+ lntToStr(j) + 'seconds') ;

end;
ShowMessage('For sequence executed!') ;

end;

Note: it's important that you never change the value of the control variable in the

middle of the loop. Doing so will cause errors.

Nested FOR loops

Writing a for loop within another for loop (nesting loops) is very useful ~hen you want

to fill I display data in a table or a grid.

var k,j: integer;

begin
/!this double loop is executed 4x4= 16 times

for k:= 1 to 4 do
for j:= 4 downto 1 do
ShowMessage('Box: '+ lntToStr(k)+ ',' + lntToStr(j)) ;

end;

51

e FOR-IN loop

rule for nesting for-next loops is simple: the inner loop (j counter) must be

pleted before the next statement for the outer loop is encountered (k counter).

e can have triply or quadruply nested loops, or even more.

ote: Generally, the begin and end keywords are not strictly required, as you can

see. If begin and end are not used, the statement immediately following the for

atement is considered the body of the loop.

you have Delphi 2005 or any newer version, you can use the "new" for-element-in­

ollection style iteration over containers. The following example demonstrates

eration over string expressions: for each char in string check if the character is

either 'a' or 'e' or 'i'.

con st
s = 'About Delphi Programming';

var

c: char;

begin

for cins do

begin

if cin ['a','e','i'] then

begin

II do something
end;

end;

end;

The WHILE and REPEAT loops

Sometimes we won't know exactly how many times a loop should cycle. What if we

want to repeat an operation until we reach a specific goal?

The most important difference between the while-do loop and the repeat-until loop is

that the code of the repeat statement is always executed at least once.

52

general pattern when we write a repeat (and while) type of loop in Delphi is as

ws:

at

begin

statements;

end;

ntil condition = true

hile condition = true do

begin

statements;

end;

ere is the code to show 5 successive message boxes using repeat-until:

var

j: integer;

begin

j:=0;

repeat

begin

j := j + 1;
ShowMessage('Box:'+lntToStr(j)) ;

end;

until j > 5;

end;
As you can see, the repeat statement evaluates a condition at the end of the loop

(therefore repeat loop is executed for sure at least once).

The while statement, on the other hand, evaluates a condition at the beginning of the

loop. Since the test is being done at the top, we will usually need to make sure that

the condition makes sense before the loop is processed, if this is not true the

compiler may decide to remove the loop from the code.

var j: integer;

begin

53

reak and Continue

:=0;

hile j < 5 do
begin

i=l+1;
ShowMessage('Box:'+lntToStr(j)) ;

end;
d·

'

e Break and Continue procedures can be used to control the flow of repetitive

statements: The Break procedure causes the flow of control to exit a for, while, or

epeat statement and continue at the next statement following the loop statement.

Continue allows the flow of control to proceed to the next iteration of repeating

operation.

Understanding Typed Constants in Delphi

How to implement persistent values between function calls.

When Delphi invokes an event handler, the old values of local variables are wiped

out. What if we want to keep track of how many times a button has been clicked? We

could have the values persist by using a unit-level variable, but it is generally a good

idea to reserve unit-level variables only for sharing information. What we need are

usually called static variables or typed constants in Delphi.

Variable or constant?

Typed constants can be compared to initialized variables-variables whose values are

defined on entry to their block (usually event handler). Such a variable is initialized

only when the program starts running. After that, the value of a typed constant

persists between successive calls to their procedures.

Using typed constants is a very clean way of implementing automatically initialized

variables.

54

mplement these variables without typed constants, we'll need to create an

lization section that sets the value of each initialized variable.

iabte typed constants

ough we declare typed constants in the const section of a procedure, it is

ortant to remember that they are not constants. At any point in your application, if

have access to the identifier for a typed constant you'll be able to modify its

ue.

see typed constants at work, put a button on a blank form, and assign the

llowing code to the OnClick event handler:

ocedure TForm1 .Button1 Click(Sender: TObject) ;

const

clicks : Integer = 1; !!not a true constant
begin

Form1 .Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;

Notice that every time you click on the button, forms caption increments steadily.

Now try the following code:

procedure TForm1 .Button1 Click(Sender: TObject) ;

var

clicks : Integer;

begin

Form1 .Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;
We are now using uninitialized variable for the clicks counter. Notice that weird value

in the forms caption after you click on the button.

55

56

nstant typed constants

ou have to agree that idea of modifiable constants sound a bit strange. In 32 bit

rsions of Delphi Borland decided to discourage their use, but support them for

lphi 1 legacy code.

e can enable or disable Assignable typed constants on the Compiler page of the

reject Options dialog box.

you've disabled Assignable typed constants for a given project, when you attempt

o compile previous code Delphi will give you 'Left side cannot be assigned to' error
pon compilation. You can, however, create assignable typed constant by declaring:

'SJ+)
const clicks : Integer = 1;

'SJ-}

Therefore, the first example code looks like:
procedure TForm1.Button1Click(Sender: TObject) ;

const
{$J+}

clicks : Integer= 1; I/not a true constant

{$J-}

begin
Form1.Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;

w to pass command-line parameters to your application and how to handle

m.

nning Delphi Applications With Parameters

the days of DOS it was a common practice run applications (command line

ograms) with some kind of parameters that will specify want we want to do. Even

w, in the world of Windows, we can go to MS-Dos prompt and run MS-DOS based

ogram like DIR /?. That '/?' after program name (DIR) will give us some help

regarding the usage of the DIR command.

this article, we will find out how to respond to command line parameters passed to

a Delphi application.

Parameters

We can pass the parameter from the command line in Windows or from the

development environment in Delphi under Run-Parameters menu option.

We will use Parameters dialog box to pass command-line parameters to an

application when we run it (for testing purposes - from within Delphi), just as if we

were running the application from the Windows Explorer.

ParamCount, ParamStr()

Simply put, the ParamCount function returns the number of parameters passed to the

program on the command line, and ParamStr returns a specified parameter from the

command-line.

While application is running, the parameters are available to us so we can retrieve

them within a specific section of the application (usually from the OnActivate event

handler of the main form).

Note: In a program, the Cmdline variable contains a string with command-line

arguments specified when the application was started. We can use Cmdline to

access the entire paramstring passed to an application.

57

58

start with a simple application. Start up a new project and place a Button

ponent on Form. In the button's OnClick event handler, write the following code:

edure

rm1 .Button1Click(Sender: TObject) ;

in
owMessage(ParamStr(O)) ;

en you run the program and click the button, a message box appears with the

th and file name of the executing program.

e can see, that even if we haven't passed any parameters to our application

aramStr function "works", the reason is that the array value O stores the file name of

e executable application including path information.

ow, choose Parameters from the Run Menu and add 'Delphi Programming' to the

rop down list (without apostrophes).

ote: when you pass parameters to your application separate them with spaces or

abs. Use double quotes to wrap multiple words as one parameter (such as long file

names containing spaces).

We will be looping through the amount of parameters using ParamCount() to get the

value of parameters passed, with ParamStr(i).

Change the button's OnClick event handler to:

procedure TForm1.Button1Click(Sender: TObject) ;

var
j:integer;

begin

for j := 1 to ParamCount do

ShowMessage(ParamStr(j)) ;

end;

hen you run the program and click the button, a message box appears displaying

elphi' (first parameter) and 'Programming' (second parameter).

ate: Working with parameters passed to the console mode application is the same.

at's it, simple as only Delphi can be!

59

CHAPTER THREE

DEVELOPMENT OF LPG DISTRIBUTOR STOCK & SALE SYSTEM

e software development of LPG distributor stock & sale system is considered.The
stem is designed using delphi programme.

ain Menu

Taniimlamalar

t,ltlsteri

ı .. 1.PG
,S

Ürünler

'LPG Satış ve Stok Sistemi

Adres : Dereboyu Okay 9 no 15

Te1efon : +90 (533} 864 71 96

Kasa
,Mail : a ozbek 190.S@hotmailcom

Raporlar
,iL ., ,;-,si

Hazırlayan : Ahmet Özbek

Hakkind!a

Ka.pat

After we run the program main window welcomes us. In this window there are some
menu items on the left.

This buttons helps us to navigate the system easily.

60

Ürü:niler Ürün.N,o,: 1

roducts Window

Ürüntufa:

Müs,teri

Kapat

After we clicked the "products" button an inline window appears on the content panel.
In this window we can record the stocks with all the details and we can search
products.

61

Customers Window

~ ::Pal Enerov ...,,..ech - Ba'{ı Stoh Kontrol f .erscn Beta 1 ı -

TanimJıunallar;_

ÜrünJer M [J;ste:ri N<ı :
,A-1::lres::

Telefon:

fük:js<I fökjS-h fs-jh fs,jfhsdjft
firma Adi:

Müsteri Mu,steti .A_di Soyadi :

To collect the orders properly we need to record the customers. So we can record
whom we sold the products.

62

Orders Window

,..., ~a! En~rçv ech - Bayi ~to~ Kontrol ı versorı Beta 1: - v

Tanmla,ma:lar

Kasi?
ÜrünN:Cı: 1

Alis ÜrünAdi : Gapgıaz 25 Kg

Açiklanıa : Ev Tü:pü. 25 kg

Satis Birim Ftyat : 35

StoJ; r,Hktari : 990

Kredi Karti

Aç:ildama

ÖdemeTarihi Durum

In this window we record the orders. First we choose the product by searching with
any information and select customer from the combo box. And then we click the~
"confirm" button. Now we can enter the quantity, unit price and payment type. Then
we click the confirm button twice. After all we select the payment date and payment
situation.

63

Purchase Window

- ·: "•:al Energy ~ech - Bayı Sto\ Kontrol ı·,ersıon Beta '; -

Alis

ıürunNo: 1
Arama,

.AJis Ürün Adil : Gapg:az 25 Kg:

Açiklama, : EvTüı,u. 25 kg

Sa;tis
Birirn Fiyat : 3'5

Stoif: Mif:tari : 990

DUTUif!l

Ra;p;orlar

Hakkinı:ta

In this window we record the purchses. First we choose the product by searching with
any information. And then we click the "confirm" button. Now we can enter the
quantity, unit price and payment type. Then we click the confirm button twice. After all
we select the payment date and payment situation.

64

ut window

ÜrünJecr

)
.. '-.i.·• ,PG

a

LPGSatış ve Stok Sistemi

Adres : Dereboyu Okay 9 no 15

Telefon : +90 {533} 864 71 96

Kasa
Mail : a ozbek t905@hotınaiL.com

Hazırlayan : Ahmet Özbek

About window has the same view of the main window. Here we can see some texts
about the program and programmer.

65

0006.ZOıOB

erywindow

Tafih, Araligi

fisiierii.fii.ri.iiii! 1ı0.06.2008

Ö1le\rrıe Tarih,i

li

We use this window both on "purchase reports" and "sale reports". Either we select
-process date" or "payment date". Then we select the date of process and click on
he "query". As result system generates the report.

66

Musteri No: AnmAdi:

Melek A.P

Yetkili Adi:

Burak Melek

Telefon:

5338662213

Faks:

omers List

Müsteri Listesi

e list of customers.

67

ks List

Stok r«ı :

1

2

e list of Stocks

StokAdi:

Gapgaz 25 Kg

LPG ıu

Stok Listesi

Acildilıııa :

Ev Tüpü 25 kg

Litre ile Satyp

68

Birim Fıyat (Yll}: Stok Mild:ari :

35 990

100000

CONCLUSION

HNOLOGY HAS AFFECTED THE REFERENCE and information culture in

ries. With the increasing scope of information transfer, users have higher service

ctations of library and information science professionals. The emergence of a

al information environment has changed the century-old role of the reference

essional. After the rise of the Internet, many skeptics foresaw the end of a need

librarians, particularly those working in traditional positions such as reference.
vertheless, data from the Bureau of Labor Statistics indicates an increase in the

mber of information professionals by the year 2008. Reference professionals are

oming more--not less--essential. Graduate programs must examine the

rriculum for reference and information access professionals. Greater access to
ormation sources by users has highlighted the need for reference and information

rofessionals to develop new skills including more technological knowledge, a better

nderstanding of user information-seeking, new instructional techniques, and better

communication skills. In addition to live classroom instruction, most schools offer

eference and information access courses to a more diverse student body by

employing distance-learning technologies.

69

REFERENCES

] Mastering Borland Delphi 2005 (Mastering) by Marco Cantu' (Paperback - Aug 19,

2005)

2] Inside Delphi 2006 (Wordware Delphi Developer's Library) by Ivan Hladni

Paperback - Nov 25, 2005)

3] Introducing Delphi Programming: Theory through Practice by John Barrow, Linda

iller, Katherine Malan, and Helene Gelderblom

4] www.delphiturk.com

5] http://www.torry.net

6] www.about.com

70

APPENDIX

it Unit1;

teriace

ses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, bsSkinData, BusinessSkinForm,·bsSkinCtrls, bsSkinGrids,

bsDBGrids, DB, ADODB, ComCtrls, bsSkinTabs, StdCtrls, Mask,

bsSkinBoxCtrls, bsdbctrls, bsMessages, OleCtrls,

ShockwaveFlashObjects_TLB, ExtCtrls, jpeg;

type

TForm1 = class(TForm)

bsBusinessSkinForm1: TbsBusinessSkinForm;

bsSkinData1: TbsSkinData;

bsCompressedStoredSkin1: TbsCompressedStoredSkin;

71

bsSkinButtonsBar1: TbsSkinButtonsBar;

bsSkinPageControl1: TbsSkinPageControl;

bsSkinTabSheet1: TbsSkinTabSheet;

bsSkinTabSheet2: TbsSkinTabSheet;

AD0Connection1: TAD0Connection;

AD0Table1: TADOTable;

DataSource1: TDataSource;

bsSkinDBGrid1: TbsSkinDBGrid;

bsSkinScrollBar1: TbsSkinScrollBar;

bsSkinPanel1: TbsSkinPanel;

bsSkinTextlabel1: TbsSkinTextlabel;

bsSkinDBText1: TbsSkinDBText;

bsSkinDBEdit1: TbsSkinDBEdit;

bsSkinDBEdit2: TbsSkinDBEdit;

~
bsSkinDBCurrencyEdit1: TbsSkinDBCurrencyEdit;

bsSkinDBSpinEdit1: TbsSkinDBSpinEdit;

bsSkinButton1: TbsSkinButton;

bsSkinButton2: TbsSkinButton;

bsSkinButton3: TbsSkinButton;

bsSkinButton4: TbsSkinButton;

72

bsSkinButton5: TbsSkinButton;

bsSkinStdlabel1: TbsSkinStdlabel;

bsSkinComboBox1: TbsSkinComboBox;

bsSkinEdit1: TbsSkinEdit;

bsSkinPanel2: TbsSkinPanel;

bsSkin Textlabel2: Tbs SkinTextlabel;

bsSkinDBText2: TbsSkinDBText;

bsSkinDBEdit3: TbsSkinDBEdit;

bsSkinDBEdit4: TbsSkinDBEdit;

bsSkinButton6: TbsSkinButton;

bsSkinButton8: TbsSkinButton;

bsSkinButton9: TbsSkinButton;

bsSkinButton1 O: TbsSkinButton;

bsSkinComboBox2: TbsSkinComboBox;

bsSkinStdlabel2: TbsSkinStdlabel;

bsSkinEdit2: TbsSkinEdit;

bsSkinDBGrid2: TbsSkinDBGrid;

bsSkinMessage1: TbsSkinMessage;

bsSkinButton7: TbsSkinButton;

AD0Table2: TADOTable;

73

DataSou rce2: TDataSou rce;

bsSkinStdlabel3: TbsSkinStdlabel;

bsSkinDBMemo1: TbsSkinDBMemo;

bsSkinStdlabel4: TbsSkinStdlabel;

bsSkinDBMemo2: TbsSkinDBMemo;

bsSkinDBEdit5: TbsSkinDBEdit;

bsSkinDBEdit6: TbsSkinDBEdit;

bsSkinPageControl2: TbsSkinPageControl;

bsSkin TabSheet3: TbsSkin TabSheet;

bsSkinTabSheet4: TbsSkinTabSheet;

bsSkinPanel3: TbsSkinPanel;

bsSkinPanel4: TbsSkinPanel;

bsSkinPanel5: TbsSkinPanel;

bsSkinTextlabel3: TbsSkinTextlabel;

bsSkinStdlabel5: TbsSkinStdlabel;

bsSkinComboBox3: TbsSkinComboBox;

bsSkinEdit3: TbsSkinEdit;

bsSkin DBText3: TbsSkin O BText;

bsSkinDBText4: TbsSkinDBText;

bsSkinDBText5: TbsSkinDBText;

74

bsSkinDBText6: TbsSkinDBText;

bsSkinDBText7: TbsSkinDBText;

bsSkinButton11: TbsSkinButton;

ADOTable3: TADOTable;

DataSource3: TDataSource;

bsSkinDBSpinEdit2: TbsSkinDBSpinEdit;

bsSkinStdlabel6: TbsSkinStdlabel;

bsSkinDBCurrencyEdit2: TbsSkinDBCurrencyEdit;

bsSkinStdlabel7: TbsSkinStdlabel;

bsSkinDBCurrencyEdit3: TbsSkinDBCurrencyEdit;

bsSkinDBComboBox1: TbsSkinDBComboBox;

bsSkinStdlabel8: TbsSkinStdlabel;

bsSkinStdlabel9: TbsSkinStdlabel;

bsSkinDBMemo3: TbsSkinDBMemo;

bsSkinButton12: TbsSkinButton;

bsSkinButton13: TbsSkinButton;

bsSkinButton14: TbsSkinButton;

bsSkinButton15: TbsSkinButton;

AD0Table4: TADOTable;

DataSource4: TDataSource;

75

bsSkinDBDateEdit1: TbsSkinDBDateEdit;

bsSkinStdlabel1 O: TbsSkinStdlabel;

bsSkinDBComboBox2: TbsSkinDBComboBox;

bsSkinStdlabel11: TbsSkinStdlabel;

bsSkinButton 16: TbsSkinButton;

bsSkinButton17: TbsSkinButton;

bsSkinPanel8: TbsSkinPanel;

bsSkinStdlabel12: TbsSkinStdlabel;

bsSkinStdlabel13: TbsSkinStdlabel;

bsSkinButton18: TbsSkinButton;

bsSkinD8DateEdit2: TbsSkinDBDateEdit;

bsSkinD8ComboBox3: TbsSkinDBComboBox;

bsSkinButton19: TbsSkinButton;

bsSkinButton20: TbsSkinButton;

bsSkinPanel7: TbsSkinPanel;

bsSkinStdlabel14: TbsSkinStdlabel;

bsSkinStdlabel15: TbsSkinStdlabel;

bsSkinStdlabel16: TbsSkinStdlabel;

bsSkinStdlabel17: TbsSkinStdlabel;

bsSkinDBSpinEdit3: TbsSkinDBSpinEdit;

76

kinDBCurrencyEdit4: TbsSkinDBCurrencyEdit;

kinDBCurrencyEdit5: TbsSkinDBCurrencyEdit;

kinDBComboBox4: TbsSkinDBComboBox;

kinDBMemo4: TbsSkinDBMemo;

sSkinButton21: TbsSkinButton;

bsSkinButton22: TbsSkinButton;

bsSkinButton23: TbsSkinButton;

bsSkinPanel6: TbsSkinPanel;

bsSkin Textlabel4: Tbs SkinText Label;

bsSkinStdlabel18: TbsSkinStdlabel;

bsSkinDBText8: TbsSkinDBText;

bsSkinDBText9: TbsSkinDBText;

bsSkinDBText1 O: TbsSkinDBText;

bsSkinDBText11: TbsSkinDBText;

bsSkinDBText12: TbsSkinDBText; l\

bsSkinComboBox4: TbsSkinComboBox;

bsSkinEdit4: TbsSkinEdit;

bsSkinButton24: TbsSkinButton;

AD0Table5: TADOTable;

DataSource5: TDataSource;

77

DataSource6: TDataSource;

AD0Table6: TADOTable;

AD0Table7: TADOTable;

DataSource7: TDataSource;

bsSkinDBLookupComboBox1: TbsSkinDBLookupComboBox;

bsSkinStdlabel19: TbsSkinStdlabel;

bsSkin Panel9: TbsSkin Panel;

bsSkinTextlabel5: TbsSkinTextlabel;

bsSkinlinklabel2: TbsSkinlinklabel;

bsSkinButton25: TbsSkinButton;

lmage1: Tlmage;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormCreate(Sender: TObject);

procedure bsSkinButton1 Click(Sender: TObject);

procedure bsSkinButton2Click(Sender: TObject);

procedure bsSkinButton4Click(Sender: TObject);

procedure bsSkinButton5Click(Sender: TObject);

procedure bsSkinButton3Click(Sender: TObject);

procedure bsSkinComboBox1 Change(Sender: TObject);

procedure bsSkinEdit1 Change(Sender: TObject);

78

procedure bsSkinButton6Click(Sender: TObject);

procedure bsSkinButton7Click(Sender: TObject);

procedure bsSkinButton8Click(Sender: TObject);

procedure bsSkinButton9Click(Sender: TObject);

procedure bsSkinButton1 OClick(Sender: TObject);

procedure bsSkinComboBox2Change(Sender: TObject);

procedure bsSkinEdit2Change(Sender: TObject);

procedure bsSkinButtonsBar1 SectionsOltemsOClick(Sender: TObject);

procedure bsSkinButtonsBar1 Sections01tems1 Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections1 ltemsOClick(Sender: TObject);

procedure bsSkinButtonsBar1 Sections1 ltems1 Click(Sender: TObject);

procedure bsSkinComboBox3Change(Sender: TObject);

procedure bsSkinEdit3Change(Sender: TObject);

procedure bsSkinButton11 Click(Sender: TObject);

procedure bsSkinDBSpinEdit2Change(Sender: TObject);

procedure bsSkinDBCurrencyEdit2Change(Sender: TObject);

procedure bsSkinButton12Click(Sender: TObject);

procedure bsSkinButton13Click(Sender: TObject);

procedure bsSkinButton14Click(Sender: TObject);

procedure bsSkinButton16Click(Sender: TObject);

79

-

procedure bsSkinButton17Click(Sender: TObject);

procedure bsSkinComboBox4Change(Sender: TObject);

procedure bsSkinEdit4Change(Sender: TObject);

procedure bsSkinButton24Click(Sender: TObject);

procedure bsSkinDBSpinEdit3Change(Sender: TObject);

procedure bsSkinButton21 Click(Sender: TObject);

procedure bsSkinButton22Click(Sender: TObject);

procedure bsSkinButton23Click(Sender: TObject);

procedure bsSkinButton19Click(Sender: TObject);

procedure bsSkinDBCurrencyEdit4Change(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems3Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems2Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems0Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections21tems1 Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections'{3Click(Sender: TObject);

procedure bsSkinButtonsBar1 Sections4Click(Sender: TObject);

procedure bsSkinButton25Click(Sender: TObject);

private

{ Private declarations }

public

80

{ Public declarations }

end;

ar

Form 1 : TForm 1 ;

implementation

uses Unit3, Unit4, Unit5, Unit2;

{$R *.dfm}

procedure TForm1 .FormClose(Sender: TObject; var Action: TCloseAction);

begin

if bsskinmessage1 .MessageDlg('Programi kapatmak istediginize emin misiniz

?',mtconfirmation,[mbyes,mbno],O)=mryes then

application.Terminate

else

application. Run;

form2.hide;

end;

81

adoconnection 1 .Connected:=false;

rocedure TForm1 .FormCreate(Sender: TObject);

ar

tmpstr:string;

begin

TmpStr:=ExtractFileDir(ParamStr(O));

if TmpStr[Length(TmpStr)]<>'\' Then TmpStr:= TmpStr+'\';

adoconnection1 .ConnectionString:='Provider=Microsoft.Jet.OLEDB.4.0;Data

Source='+tmpstr+'db.mdb;Persist Security lnfo=False';

adocon nection 1 . Connected: =true;

adotable1 .Active:=true;

adotable2.Active:=true;

adotable3 .Active: =true;

adotable4.Active:=true;

adotable5.Active:=true;

adotable6.Active:=true;

adotable 7 .Active:=true;

II stok grid duzenlemeler II

bsskindbgrid 1 . Columns[O]. Visible:=false;

82

bsskindbgrid1 .Columns[1].Title.caption:='Ürün Adi';

bsskindbgrid1 .Co/umnsf1 J.Width:=100;

bsskindbgrid1 .Columns[2].Title.caption:='Açiklama';

bsskindbgrid1 .Columns[2].Width:=150;

bsskindbgrid1 .Columns[3].Title.caption:='Birim Fiyat';

bsskindbgrid1 .Columns[3].Width:=90;

bsskindbgrid 1 . Columns[4]. Title.caption :='Stok Miktar';

bsskindbgrid1 .Columns[4].Width:=90;

II musteri grid duzenlemeler II

bsskindbgrid2.Columns[O].Visible:=false;

bsskindbgrid2.Columns[1].Title.caption:='Yetkili Adi';

bsskindbgrid2.Columns[1].Width:=150;

bsskindbgrid2.Columns[2].Title.caption:='Firma Adi';

bsskindbgrid2.Columns[2].Width:=100;

bsskindbgrid2.Columns[3].Title.caption:;'Telefon';

bsskindbgrid2.Columns[3].Width:=90;

bsskindbgrid2.Columns[4].Title.caption:='Faks';

bsskindbgrid2.Columns[4].Width:=90;

bsskindbgrid2.Columns[5].Visible:=false;

bsskindbgrid2.Columns[6].Visible:=false;

83

end;

procedure TForm1 .bsSkinButton1 Click(Sender: TObject);

begin

adotable1 .Insert;

bsskinbutton1 .Enabled:=false;

bsskinbutton2.Enabled:=false;

bsskinbutton4.Enabled:=false;

bsskinbutton3.Enabled:=true;

bsskinbutton5.Enabled:=true;

bsskinpanel1.Enabled:=true;

end;

procedure TForm1 .bsSkinButton2Clic'k(Sender: TObject);

begin

adotable1 .Edit;

bsskinbutton1 .Enabled:=false;

bsskinbutton2.Enabled:=false;

bsskinbutton4.Enabled:=false;

84

sskinpanel1.Enabled:=true;

,sskinbutton3.Enabled:=true;

sskinbuttonô. Enabled :=true;

end;

procedure TForm1 .bsSkinButton4Click(Sender: TObject);

begin

if bsskinmessage1 .MessageDlg('Kaydi silmek istediginize emin misiniz

?',mtwarning,[mbyes,mbno],O) = mryes then

adotable1 .Delete;

end;

procedure TForm1 .bsSkinButton5Click(Sender: TObject);

begin

if bsskinmessage1 .MessageDlg('Kaydi iptal etmek istediginize emin misiniz
!l

?' ,mtwarning,lmbyes,mbno1,0)= mryes then begin

adotable1.cancel;

bsskinbutton1.Enabled.=true:

bsskinbutton2.Enabled:=true;

bsskinbutton4.Enabled:=true;

bsskinbutton3.Enabled:=false;

85

kinbutton5.Enabled:=false;

kinpanel1.Enabled:=false;

end;

end;

procedure TForm1 .bsSkinButton3Click(Sender: TObject);

begin

(bsskindbedit1 .Text=") or (bsskindbedit2.Text=")if
(bsskindbcurrencyedit1 .Value<=O) or (bsskindbspinedit1 .Value<=O) then

bsskinmessage1 .MessageDlg('Tüm

ediniz' ,mtwarning,[mbok],O)

verilerinizin tutarliligini

else begin

adotable1 .post;

bsskinbutton1 .Enabled:=true;

bsskinbutton2. Enabled:=true;

bsskinbutton4.Enabled:=true;

bsskinbutton3.Enabled:=false;

bsskinbutton5.Enabled:=false;

bsskinpanel1.Enabled:=false;

end;

end;

86

or

kontrol

procedure TForm1 .bsSkinComboBox1 Change(Sender: TObject);

begin

if bsskinedit1 .Text-c-" then begin

if bsskincombobox1 .lternlndexeü then

begin

adotable1 .Filtered.efalse;

adotable1 .Filter:='s_no='+bsskinedit1 .Text;

adotable1 .Filtered.etrue;

end;

if bsskincombobox1 .lternlndexe l then

begin

adotable1 .Filtered:=false;

adotable1 .Filter:='Adi like '+#39+bsskinedit1 .Text+'%'+#39;

adotable1 .Fittered.etrue;

end;

end;

end;

procedure TForm1 .bsSkinEdit1 Change(Sender: TObject);

begin

87

·· bsskinedit1 .Text-o-" then begin

·• bsskincombobox1 .ltemlndex=O then

begin

adotable1 .Piltered.efalse:

adotable1 .Filter:='s_no='+bsskinedit1 .Text;

adotable1 .Filtered.etrue:

end;

if bsskincombobox1 .lternlndexe l then

begin

adotable1 .Filtered:=false;

adotable1 .Filter:='Adi like '+#39+bsskinedit1 .Text+'%'+#39;

adotable1 .Filtered:=true;

end;

end;

end;

procedure TForm1 .bsSkinButton6Click(Sender: TObject);

begin

adotable2.lnsert;

bsskinbutton6.Enabled:=false;

bsskinbutton 7.Enabled: =fa ise;

88

bsskinbutton8.Enabled:=false;

bsskinbutton9. Enabled:=true;

bsskinbutton1 O.Enabled:=true;

bsskinpanel2.Enabled:=true;

end;

procedure TForm1 .bsSkinButton7Click(Sender: TObject);

begin

adotable2.Edit;

bsskinbutton6. Enabled: =false;

bsskinbutton7.Enabled:=false;

bsskinbutton8.Enabled:=false;

bsskinbutton9.Enabled:=true;

bsskinbutton1 O.Enabled:=true;

bsskinpanel2.Enabled:=true;

end;

procedure TForm1 .bsSkinButton8Click(Sender: TObject);

begin

if bsskinmessage1 .MessageDlg('Kaydi silmek istediginize emin misiniz

?',mtwarning,[mbyes,mbno],O) = mryes then

89

rocedure TForm1 .bsSkinButton9Click(Sender: TObject);

adotable2. Delete;

end;

egin

·• (bsskindbedit3.Text=") or (bsskindbedit4.Text=") or (bsskindbedit5.text=") or

(bsskindbmemo1.Text=") then

bsskinmessage1 .MessageDlg('Tüm

ediniz' ,mtwarning,[mbok],O)

verilerinizin tutarliligini kontrol

else begin

adotable2.post;

bsskinbutton6. Enabled: =true;

bsskinbutton7. Enabled:=true;

bsskinbutton8.Enabled:=true;

bsskinbutton9. Enabled :=fa ise;

bsskinbutton10.Enabled:=false;

bsskinpanel2.Enabled:=false;

end;

end;

procedure TForm1 .bsSkinButton1 OClick(Sender: TObject);

90

begin

if bsskinmessage1 .MessageDlg('Kaydi iptal etmek istediginize emin misiniz

?',mtwarning,[mbyes,mbno],O) = mryes then begin

adotable2.cancel;

bsskinbutton6.Enabled:=true;

bsskinbutton7.Enabled:=true;

bsskinbutton8. Enabled:=true;

bsskin button9. Enabled: =fa ise;

bsskinbutton1 O.Enabled.efalse:

bsskinpanel2.Enabled:=false;

end;

end;

procedure TForm1 .bsSkinComboBox2Change(Sender: TObject);

begin

if bsskinedit2.Texk>" then begin

if bsskincombobox2.ltemlndex=0 then

begin

adotable2. Filtered: =fa ise;

adotable2.Filter:='[Firma Adi] like '+#39+bsskinedit2.Text+'%'+#39;

adotable2.Filtered:=true;

91

-

end;

if bsskincombobox2.ltemlndex=1 then

begin

adotable2.Filtered:=false;

adotable2. Filter:='Adi_Soyadi like '+#39+bsskinedit2. Text+'%' +#39;

adotable2.Filtered:=true;

end;

end;

end;

procedure TForm1 .bsSkinEdit2Change(Sender: TObject);

begin

if bsskineditz.Text-c>" then begin

if bsskincombobox2.ltemlndex=0 then

begin

adotable2.Filtered:=false;

adotable2.Filter:='[Firma Adi] like '+#39+bsskinedit2.Text+'%'+#39;

adotable2. Filtered: =true;

end;

if bsskincombobox2.ltemlndex=1 then

92

begin

adotable2. Filtered: =false;

adotable2. Filter:='Adi_Soyadi like '+#39+bsskinedit2. Text+'%' +#39;

adotable2. Filtered: =true;

end;

end;

end;

procedure TForm1 .bsSkinButtonsBar1 SectionsOltemsOClick(Sender: TObject);

begin

bsskinpagecontrol1.BringToFront;

bsskinpagecontrol1.Tablndex:=0;

end;

procedure TForm1 .bsSkinButtonsBar1 Sections01tems1 Click(Sender: TObject);

begin

bsskinpagecontrol1.BringToFront;

bsskinpagecontrol1.Tablndex:=1;

end;

93

procedure TForm1 .bsSkinButtonsBar1 Sections1 ltemsOClick(Sender: TObject);

begin

bsskinpagecontrol2.BringToFront;

bsskinpagecontrol2.Tablndex:=0;

end;

procedure TForm1 .bsSkinButtonsBar1 Sections1 ltems1 Click(Sender: TObject);

begin

bsskinpagecontrol2.BringToFront;

bsskinpagecontrol2.Tablndex:=1;

end;

procedure TForm1 .bsSkinComboBox3Change(Sender: TObject);

begin

if bsskinedit3.Texk>" then begin

if bsskincomboboxô.ltemlndex=O then

begin

adotable1 .Filtered:=false;

adotable 1 . Filter:='s_no='+bsskinedit3. Text;

adotable1 .Filtered.etrue;

94

end;

if bsskincombobox3.ltemlndex=1 then

begin

adotable1 .Flltered.efalse:

adotable1 .Filter:='Adi like '+#39+bsskinedit3.Text+'%'+#39;

adotable1 .Filtered:=true;

end;

end;

end;

procedure TForm1 .bsSkinEdit3Change(Sender: TObject);

begin

if bsskinedit3.Text<>" then begin

if bsskincombobox3.ltemlndex=0 then

begin

adotable1 .Filtered:=false;

adotable1 .Filter:='s_no='+bsskinedit3.Text;

adotable1 .Filtered:=true;

end;

if bsskincombobox3.ltemlndex=1 then

95

begin

adotable1 .Filtered.efalse:

adotable1 .Filter.e'Adi like '+#39+bsskinedit3.Text+'%'+#39;

adotable1 .Flltered.etrue:

end;

end;

end;

procedure TForm1 .bsSkinButton11 Click(Sender: TObject);

begin

if bsskindbtext3.Caption=" then

bsskinmessage1 .MessageDlg('Ürün Seçmediniz',mtwarning,[mbok],O)

else begin

bsskinpanel3.Enabled:=false;

bsskirıpanel-l.Enabled.etrue:

adotable3.lnsert;

end;

end;

procedure TForm1 .bsSkinDBSpinEdit2Change(Sender: TObject);

96

--

end;

begin

if (bsskindbspinedit2.Value>0) and (bsskindbcurrencyedit2.Value>0) then

bsskindbcurrencyedit3.Value:=bsskindbspinedit2.Value*bsskindbcurrencyedit2.Value

procedure TForm1 .bsSkinDBCurrencyEdit2Change(Sender: TObject);

begin

if (bsskindbspinedit2.Value>0) and (bsskindbcurrencyedit2.Value>0) then

bsskindbcurrencyedit3.Value:=bsskindbspinedit2.Value*bsskindbcurrencyedit2.Value

end;

procedure TForm1.bsSkinButton12Click(Sender: TObject);

var

a:integer;

begin

datasource3.DataSet.FieldByName('Tarih').AsDateTime:=now;

datasou rce3. Dataset. FieldByName(' Saat') .AsDate Time: =now;

datasou rce3. Dataset. FieldByName(' Stok_adi') .AsString :=bsskindbtext4. Caption;

97

datasource3.DataSet.FieldByName('Toplam_tutar').AsFloat:=bsskindbcurrencyedit3.

value;

datasource3.DataSet.FieldByName('Alis_Miktari').Aslnteger:=strtoint(bsskindbspinedi

t2.text);

adotable3.Post;

hssklnpanel-ı.Enabled.efalse;

a.edatasou rce 1 . Dataset. FieldByN ame(' Stok_M iktar') .Asi nteger;

adotable1 .Edit;

a:=a+strtoint(bsskindbspinedit2.text);

datasource1 .DataSet.FieldByName('Stok_Miktar').Aslnteger:=a;

adotable1 .Post;

bsskinpanelô.Enabted.=true:

adotable4.lnsert;

end;

procedure TForm1.bsSkinButton13Click(Sender: TObject);

begin

adotable3.Cancel;

end;

procedure TForm1.bsSkinButton14Click(Sender: TObject);

98

begin

adotable3. Cancel;

bsskinpanel4.Enabled:=false;

bsskinpanel5. Enabled :=fa ise;

bsskinpanel3.Enabled:=true;

end;

procedure TForm1.bsSkinButton16Click(Sender: TObject);

begin

datasou rce4. Dataset. FieldByName('Alis_No') .AsString: =datasou rce3. Dataset. FieldB

yName('Alis_No').AsString;

datasou rce4. Dataset. FieldByName('Verecek_ Tutar') .AsFloat:=datasou rce3. Dataset.

FieldByName('Toplam_ Tutar') .AsFloat;

datasource4. Dataset. FieldByName('Odeme_ Turu') .AsString:=datasou rce3. Data Set.

FieldByName('Odeme_turu').AsString;

datasource4.DataSet.FieldByName('Odeme Tarihi').AsDateTime:=bsskindbdateedit1- -

.Date;

datasou rce3. Dataset. FieldByN ame(' Alis_No') .AsString;

datasource4.DataSet.FieldByName('Durum').AsString:=bsskindbcombobox2.Text;

adotable4.Post;

bsskinpanel5.Enabled:=false;

bsskinpanel4.Enabled:=false;

99

asklnpanelô.Enabled.etrue;

sskinmessage1 .MessageDlg('islem basariyla tamamlandi',mtinformation,[mbok],O);

sskincombobox3.SetFocus;

end;

procedure TForm1.bsSkinButton17Click(Sender: TObject);

begin

adotable4.Cancel;

bsskinpanel5. Enabled :=fa ise;

bsskinpanel-ı.Enabledc=true;

end;

procedure TForm1 .bsSkinComboBox4Change(Sender: TObject);

begin

if bsskinedita.Text-c>" then begin

if bsskincombobox-l.lternlndex=O then

begin

adotable1 .Filtered.efalse;

adotable 1 . Filter:='s_no=' +bsskinedit4.Text;

adotable1 .Filtered.etrue;

100

end;

if bsskincombobox4.ltemlndex=1 then

begin

adotable1 .Filtered:=false;

adotable1 .Filter:='Adi like '+#39+bsskinedit4.Text+'%'+#39;

adotable1 .Filtered.etrue:

end;

end;

end;

procedure TForm1 .bsSkinEdit4Change(Sender: TObject);

begin

if bsskinedit4.Texk>" then begin

if bsskincombobox4.ltemlndex=0 then

begin

adotable1 .Filtered:=false;

adotable 1 . Filter:='s_no='+bsskinedit4. Text;

adotable1 .Filtered:=true;

end;

if bsskincombobox4.ltemlndex=1 then

101

begin

adotable1 .Filtered.efalse;

adotable1 .Filter:='Adi like '+#39+bsskinedit4.Text+'%'+#39;

adotable1 .Filtered.etrue;

end;

end;

end;

procedure TForm1 .bsSkinButton24Click(Sender: TObject);

begin

if (bsskindbtext8.Caption=") or (bsskindblookupcombobox1 .Texte") then

bsskinmessage1 .MessageDlg('Ürün veya Müsteri Seçmediniz',mtwarning,[mbok],O)

else begin

bsskinpanel6.Enabled:=false;

bsskinpanel7.Enabled:=true;

adotable6.lnsert;

end;

end;

procedure TForm1 .bsSkinDBSpinEdit3Change(Sender: TObject);

102

datasource6.DataSet.FieldByName('Satis_Miktari').Aslnteger:=strtoint(bsskindbspine

dit3.text);

begin

if (bsskindbspinedit3.Value>0) and (bsskindbcurrencyedit4.Value>0) then

bsskindbcurrencyedit5.Value:=bsskindbspinedit3.Value*bsskindbcurrencyedit4.Value

end;

procedure TForm1 .bsSkinButton21 Click(Sender: TObject);

var

a:integer;

begin

datasou rce6. Dataset. FieldByName('T arih ') .AsDateTime :=now;

datasou rce6. Dataset. FieldByName(' Saat') .AsDate Time: =now;

datasource6.DataSet.FieldByName('Stok_adi').AsString:=bsskindbtext9.Caption;

datasource6.DataSet.FieldByName('Toplam_tutar').AsFloat:=bsskindbcurrencyedit5.

value;

adotable6. Post;

bsskinpanel7.Enabled:=false;

a:=datasource1 .DataSet.FieldByName('Stok_Miktar').Aslnteger;

103

adotable1 .Edit;

a:=a-strtoint(bsskindbspinedit3.text);

datasource1 .DataSet.FieldByName('Stok_Miktar').Aslnteger:=a;

adotable1 .Post;

bsskinpanelô.Enabled=true:

adotable5. Insert;

end;

procedure TForm1 .bsSkinButton22Click(Sender: TObject);

begin

adotable6.Cancel;

end;

procedure TForm1 .bsSkinButton23Click(Sender: TObject);

begin

adotable6.Cancel;

bsskinpanel7. Enabled :=fa ise;

bsskinpanel8.Enabled:=false;

bsskinpanel6.Enabled:=true;

end;

104

procedure TForm1.bsSkinButton19Click(Sender: TObject);

begin

datasou rce5. Dataset. FieldByN ame(' Satis_No') .AsString :=datasou rce6. Dataset. Field

ByName('Satis_No').AsString;

datasource5. Dataset. FieldByName('Alacak_ Tutar') .AsFloat:=datasource6. Dataset. Fi

eldByName('T op lam_Tutar') .AsFloat;

datasource5.DataSet.FieldByName('Odeme_ Turu').AsString:=datasource6.DataSet.

FieldByName('Odeme_turu').AsString;

datasou rce5. Dataset. FieldByName('Odeme _Tarihi') .AsDate Time: =bsskindbdateedit2

.Date;

datasource5.DataSet.FieldByName('Durum').AsString:=bsskindbcombobox3.Text;

adotable5. Post;

bsskinpanel8.Enabled:=false;

bsskinpanel7. Enabled:=false;

bsskinpanel6.Enabled:=true;

bsskinmessage1 .MessageDlg('islem basariyla tamamlandi',mtinformation,[mbok],O);

bsskincom bobox4. SetF ocus;

end;

procedure TForm1 .bsSkinDBCurrencyEdit4Change(Sender: TObject);

begin

105

if (bsskindbspinedit3.Value>0) and (bsskindbcurrencyedit4.Value>0) then

bsskindbcu rrencyedit5. Value:=bsskindbspinedit3. Value *bsskindbcu rrencyedit4. Value

end;

procedure TForm1 .bsSkinButtonsBar1 Sections21tems3Click(Sender: TObject);

begin

form4.showmodal;

end;

procedure TForm1 .bsSkinButtonsBar1 Sections21tems2Click(Sender: TObject);

begin

form5.ShowModal;

end;

procedure TForm1 .bsSkinButtonsBar1 Sections21tems0Click(Sender: TObject);

begin

form3.QuickRep4.ReportTitle:='Mevcut Stok Durumu';

form 3. QuickRep4. Preview;

end;

106

procedure TForm1 .bsSkinButtonsBar1 Sections21tems1 Click(Sender: TObject);

begin

form3.QuickRep3.ReportTitle:='Müsteri Listesi';

form3.QuickRep3.Preview;

end;

procedure TForm1 .bsSkinButtonsBar1 Sections3Click(Sender: TObject);

begin

bsskinpanel9. BringToFront;

end;

procedure TForm1 .bsSkinButtonsBar1 Sections4Click(Sender: TObject);

begin

if bsskinmessage1 .MessageDlg('Programi kapatmak istediginize emin misiniz

?',mtconfirmation,[mbyes,mbno],O)=mryes then

application.Terminate;

end;

procedure TForm1 .bsSkinButton25Click(Sender: TObject);

107

sql.Add('SELECT Alacak.*, Satis.* FROM Alacak, Satis Where

egin

ith form3.adoquery1 do begin

close;

sqI.Clear;

Alacak. Satis_N o=Satis. Satis_No');

sql.Add(' and Musteri_Adi='+#39+bsskindbtext2.caption+#39);

open;

end;

form3.QuickRep1 .ReportTitle:=bsskindbedit3.text+' adli firmaya yapilan satis raporu';

form3.QuickRep1 .Preview;

end;

end.

unit Unit2;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

108

Dialogs, jpeg, ExtCtrls;

type

TForm2 = class(TForm)

Timer1: TTimer;

lmage1: Tlmage;

procedure FormCreate(Sender: TObject);

procedure Timer1Timer(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form2: TForm2;

implementation

uses Unit1;

109

var

i:integer;

{$R *.dfm}

procedure TForm2.FormCreate(Sender: TObject);

begin

timer1 .Enabled.etrue:

i:=0;

end;

procedure TForm2.Timer1Timer(Sender: TObject);

begin

if i=150 then begi~

form1 .show;

••

form2.Hide;

timer1 .Enabled:=false;

end

else

i:=i+1;

110

end;

end.

unit Unit4;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, bsSkinCtrls, StdCtrls, Mask, bsSkinBoxCtrls, BusinessSkinForm;

~

type

TForm4 = class(TForm)

bsBusinessSkinForm1: TbsBusinessSkitıForm;

bsSkinGroupBox1: TbsSkinGroupBox;

bsSkinCheckRadioBox1: TbsSkinCheckRadioBox;

bsSkinCheckRadioBox2: TbsSkinCheckRadioBox;

bsSkfnDateEdit1: TbsSkinDateEdit;

bsSkinDateEdit2: TbsSkinDateEdit;

111

bsSkinButton1: TbsSkinButton;

bsSkinButton2: TbsSkinButton;

bsSkinStdlabel2: TbsSkinStdlabel;

procedure bsSkinButton1 Click(Sender: TObject);

procedure bsSkinButton2Click(Sender: TObject);

procedure FormShow(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form4: TForm4;

implementation

uses unit1, Unit3;

{$R *.dfm}

procedure TForm4.bsSkinButton1 Click(Sender: TObject);

112

var

tar1 ,tar2:string;

begin

tar1 :=formatdatetime('dd-mm-yyyy' ,bsskindateedit1 . Date);

tar2:=formatdatetime('dd-mm-yyyy' ,bsskindateedit2. Date);

if bsskincheckradiobox1 .Checked=true then begin

with form3.adoquery1 do begin

close;

sql.Clear;

sql.Add('SELECT Alacak.*, Satis.*

Alacak. Satis_No=Satis. Satis_No');

FROM

sql.Add(' and Tarih between #'+tar1 +'# and #'+tar2+'#');

open;

end;

end

else begin

with form3.adoquery1 do begin

close;

sql.Clear;

sql.Add('SELECT Alacak.*, Satis.*

Alacak. Satis_No=Satis. Satis_No');

FROM

113

Alacak,

Alacak,

Satis

Satis

Where

Where

sql.Add(' and Odeme_ Tarihi between #'+tar1 +'# and #'+tar2+'#');

open;

end;

end;

form3.QuickRep1 .Report'Iitle'<tar l +' ve '+tar2+' tarihleri arasindaki satis raporu';

form3.QuickRep1 .Preview;

end;

procedure TForm4.bsSkinButton2Click(Sender: TObject);

begin

form4.Close;

end;

procedure TForm4.FormShow(Sender: TObject);

begin

bsskindateedit1 .Date:=now-1;

bsskindateedit2.Date:=now+ 1;

end;

end.

114

unit Unit5;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, BusinessSkinForm, bsSkinCtrls, StdCtrls, Mask, bsSkinBoxCtrls;

type

TForm5 = class(TForm)

bsSkinStdlabel2: TbsSkinStdlabel;

bsSkinGroupBox1: TbsSkinGroupBox;

bsSkinCheckRadioBox1: TbsSkinCheckRadioBox;

bsSkinCheckRadioBox2: TbsSkinCheckRadioBox;

"bsSkinDateEdit1: TbsSkinDateEdit;

bsSkinDateEdit2: TbsSkinDateEdit;

bsSkinButton1: TbsSkinButton;

bsSkinButton2: TbsSkinButton;

bsBusinessSkinForm1: TbsBusinessSkinForm;

procedure bsSkinButton1Click(Sender: TObject);

115

procedure FormShow(Sender: TObject);

procedure bsSkinButton2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form5: TForm5;

implementation

uses unit1, Unit3;

{$R *.dfm}

..

procedure TForm5.bsSkinButton1 Click(Sender: TObject);

var

tar1 ,tar2:string;

begin

tar1 :=formatdatetime('dd-mm-yyyy' ,bsskindateedit1 .Date);

116

tar2:=formatdatetime('dd-mm-yyyy', bsskindateedit2. Date);

bsskincheckradiobox1 .Checksdetrue then begin

ith form3.adoquery2 do begin

close;

sql.Clear;

sql.Add('SELECT Verecek.*, Alis.* FROM

Verecek.Alis_No=Alis.Alis_No');

sql.Add(' and Tarih between #'+tar1 +'# and #'+tar2+'#');

open;

end;

end

else begin

with form3.adoquery2 do begin

close;

sq I.Clear;

sql.Add('SELECT Verecek.*, Alis.* FROM

Verecek.Alis_No=Alis .Alis_No');

Verecek,

Verecek,

sql.Add(' and Odeme_ Tarihi between #'+tar1 +'# and #'+tar2+'#');

open;

end;

end;

117

Alis

Alis

Where

Where

form3.QuickRep2.ReportTitle:=tar1 +' ve '+tar2+' tarihleri arasindaki alis raporu';

form3.QuickRep2.Preview;

end;

procedure TForm5.FormShow(Sender: TObject);

begin

bsskindateedit1 .Date.enow-t:

bsskindateedit2.Date:=now+ 1;

end;

procedure TForm5.bsSkinButton2Click(Sender: TObject);

begin

close;

end;

end.

118

