
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Inventory Control System

Graduation Project

COM-400

Student: Adem ATÇEKEN(20010705)

Supervisor: Mr. Umit iLHAN

Nicosia - 2006

ACKNOWLEDGEMENTS

Firstly I would like to thank my Instructor Mr. Umit Ilhan and my best friends

who have contributed in the preparation of my project to complete it successfully. I

would also like to thanks all instructors of department of Computer Engineering for

their support.

I am also grately endebted to codeproject.com administrators, when I have stack

in my project, I write my problems to them, they gave their precious time to help me

and giving me their ever devotion and all valuable information which I really need to

complete my project.

Finally, I give my best regards to my family for providing me financial support

during all my educational life and for their psychological support in all parts of my life

by providing me comfort. Especially my father he resisted to send me payments during

University life and encoureged me to study and complete studing.s

I

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
CHAPTER ONE: WHAT IS THE VISUAL BASIC .NET?

1. 1 Introduction

1. 1. 1 What Is Visual Basic .NET?

1. 1 .2 Why Should You Move to Visual Basic.NET?

1. 1 .3 What Can We Do with VB .NET?

1 .2 The Visual Basic .NET Language

1.2. 1 Source Files

1 .2.2 Identifiers

1 .2.3 Keywords

1.2.4 Literals

1 .2.5 Numeric Literals

1 .2.6 String Literals

1.2.7 Character Literals

1.2.8 Date Literals

1 .2.9 Boolean Literals

1.2.10 Nothing

1 .3 Fundamental Types

1.3.1 Custom Types

1.3.2 Arrays

1 .3 .3 Namespaces

1.3.4 The Namespace Statement

1 .4 The Imports Statement

1.5 Variables

1.5.1 Scope

1 .6 Arithmetic Operators

1. 7 Relational Operators

I

II

V

1

2

2

2

3

3

4

4

5

5

6

6

6

7

7

7

8

8

11

11

12

13

15

16

16

17

19

II

1 .8 Logical Operators

1.9.1 A class definition

1 . 1 O Interfaces

1. 1 1 Inheritance

1. 12 Method parameters

1. 13 What About On Error?

1.14 Events

21

22

23

23

24

24

24

25

25

25

25

26

26

27

27

28

28

29

30

30

31

32

32

CHAPTER TWO: OBJECT ORIENTATION AND VB

2. 1 History of Object Orientation and VB

2.1. 1 Object-Oriented Language

2. 1 .2 Why Learn Object-Oriented Techniques?

2.1.3 Principles of Object-Oriented Programming

2. 1 .4 Advantages of Object-Oriented Design

3.1 Major VB.NET Changes

3. 1 . 1 General Changes

3. 1 .2 Subs and Functions Require Parentheses

3.1.3 Changes to Boolean Operators

3. 1 .4 Declaration Changes

3. 1 .5 Support for New Assignment Operators

3.1.6 ByVal Is Now the Default

3.1.7 Block-Level Scope

3.1.8 While ...Wend Becomes While ...End While

3 .2 Procedure Changes

3 .2. 1 Optional Arguments Require a Default Value

3.2.2 Static Not Supported on Subs or Functions

3.3 Array Changes

3 .3. 1 Lower Boundary Is Always Zero

3 .4 Data Type Changes

3.4.1 All Variables Are Objects

3.4.2 Automatic String/Numeric Conversion Not Supported

3.4.3 Fixed-Length Strings Not Supported

3.5 Structured Error Handling

CHAPTER FOUR: SQL SERVER 2000
4. 1 Introduction

32

33

33

34

34

35

35

35

36

38

III

4.2 SQL Server 2000 Editions for Special Uses 38

4.3 New and Enhanced Features of SQL Server 2000 39

4.3.1 XML Support 40

4.3.2 User-Defined Functions 40

4.4 How Will SQL Server 2000 Benefit into Organization? 41

4.4. 1 Will SQL Server 2000 Fit into Organization? 42

CHAPTER FIVE: SQL DATABASE DESIGN OF THE PROGRAM 43

5. Database table Design of The Program 43

CONCLUSION 60
REFERENCES 61

APPENDIX A: PROGRAM CODES 62

APPENDIX B: SQL DATABASE TABLES 128

IV

ABSTRACT

The Adventory Control System is a program that solves problems that made by

hand manually but by the way of this program we can do it by machine in faster, easy

and more reliable way.

The program provides, manage and take hold of business transactions' record,

personnel records, company records, stock records, customer records, at a small or

medium computer store. A scheduled user manual prepared for helping the users to

select a suitable action.

I took this project because, firms sold electronic products especially computer

products that company need a software to use in their workplace, when they work

manual works it takes a lot of time and needes more worker. Therefore I decided to

make a program to satisfy their software needs. If there be an oportunuty for me to

market and sale this program, I will devolop my project and then sale this sofware to the

purchaser.

The Adventory Control System have two different accesing module, default

access is trial 30 days version. This version devoid some properties, in trial program

user cannot access the extras forms. This form shows the extra summary information

with datagrid. If the user enter the serial number on the registration page to deserve

these best properties. Registration controls with windows registry systems. The

Adventory Control System aim's to help company manager, company personnel and

customers, the system provides easy, quick and more reliable process on company

works.

V

INTRODUCTION

The companies were doing their processes manually, such as hold record of

customers and suppliers, stock controlling, accounting, and other business transactions.

This is unreliable and waste workers time. But recently IT (Information Technology)

started to help companies or firms. Then it has been very popular because it is faster,

cheaper than manually and so easy work with IT.

It is necessary to companies work with computer programs in their work to more

valuable present and more efficiently working. Managers, workers and customers feel

their self they are really in a technological company when they work or being in a

program like this.

At this point Computer Stock Control System will .provide easiness and

quickness of company processes that are customer records, purchased and sold

products, stock controlling, accounting records, personnel records. Also system has a

authorization steps to determine and control the access levels, to use this feature every

user have different authorization levels that given by managers with usemame and

password.

I prepared this program by using Visual Basic .Net programming language and

Database was established by using Microsoft Sql Server 2000 that connected with Ado

.net program. Which includes every .net platform.

This system designed for using at Windows Operating System. This program

have an easily setup package. This setup package created in Vb.net setup project

application.

1

CHAPTERl

1. Visual Basic .Net

1.1 Introduction

With its release for the .NET platform, the Visual Basic language has undergone

dramatic changes. For example:

• The language itself is now fully object-oriented.

• Applications and components written in Visual Basic .NET have full access to

the .NET Framework, an extensive class library that provides system and application

servıces.
• All applications developed using Visual Basic .NET run within a managed

runtime environment, the .NET common language runtime. In this introduction, I

briefly discuss these changes and other changes before showing you three very simple,

but complete, Visual Basic .NET applications.

1.1.l What ls Visual Basic .NET?
T

Visual Basic .NET is the next generation of Visual Basic, but it is also a

significant departure from previous generations. Experienced Visual Basic 6 developers

will feel comfortable with Visual Basic .NET code and will recognize most of its

constructs. However, Microsoft has made some changes to make Visual Basic .NET a

better language and an equal player in the .NET world. These include such additions as

a Class keyword for defining classes and an Inherits keyword for object inheritance,

among others. Visual Basic 6 code can't be compiled by the Visual Basic .NET

compiler without significant modification.

2

1.1.2 Why Should You Move to Visual Basic.NET?

One of the most common questions today is, "Why should I move to .NET?''

.NET is new, and there are many questions about what it can do for you. From a Visual

Basic standpoint, it's important to understand some of the dramatic benefits that can be

achieved by moving to VB.NET.

1.1.3 What Can We Do with VB .NET?

With its language enhancements and its tight integration into the .NET

Framework, Visual Basic is a thoroughly modernized language that will likely become

the premier development tool for creating a wide range of .NET applications. In the

past, Visual Basic was often seen as a "lightweight" language that could be used for

particular kinds of tasks, but was wholly unsuitable for others. (It was often argued,

sometimes incorrectly, that you couldn't create such things as Windows dynamic link

libraries or shell extensions using Visual Basic.) In the .NET Framework, VB .NET

emerges as an equal player.
Microsoft's claim of language independence?that programming language should

be a lifestyle choice, rather than a choice forced on the developer by the character of a

project?is realized in the .NET platform. This means that VB .NET can be used to create

a wide range of applications and components, including the following:

Windows console mode applications

Standard Windows applications

Windows services

Windows controls and Windows control libraries

Web (ASP.NET) applications

Web services

Web controls and web control libraries

.NET classes and namespaces

Accessing application object models

3

Microsoft Office suite) using COM automation Most importantly, for the first

time with the release of VB .NET, Visual Basic becomes an all-purpose development

environment for building Internet applications, an area in which it has traditionally been

weak. This means that the release of this newest version should revitalize Visual Basic,

allowing it to remain the tool of choice for developing state-of-the-art software for the

next generation of software development.

1.2 The Visual Basic .NET Language

This chapter discusses the syntax of the Visual Basic .NET language, including

basic concepts such as variables, operators, statements, classes, etc. Some material that

you'd expect to find in this chapter will seem to be missing. For example, mathematical

functions, file VO, and form declarations are all very much a part of developing Visual

Basic .NET applications, yet they are not introduced in this chapter because they are not

intrinsic to the Visual Basic .NET language. They are provided by the .NET Framework

and will be discussed in subsequent chapters. Additionally, Visual Basic .NET functions

that exist merely for backward compatibility with Visual Basic 6 are not documented in

this chapter.

1.2.1 Source Files

Visual Basic .NET source code is saved in files with a .vb extension. The

exception to this rule is when Visual Basic .NET code is embedded in ASP.NET web

page files. Such files have an .aspx extension. Source files are plain-text files that can be

created and edited with any text editor, including our old friend, Notepad. Source code

can be broken into as many or as few files as desired. When you use Visual Studio

.NET, source files are listed in the Solution Explorer window, and all source is included

from these files when the solution is built. When you are compiling from the command

line, all source files must appear as command-line arguments to the compile command.

The location of declarations within source files is unimportant. As long as all referenced

declarations appear somewhere in a source file being compiled, they will be found.

Unlike previous versions of Visual Basic, no special file extensions are used to indicate

various language constructs (e.g., .els for classes, .frm for forms, etc.). Syntax has been

4

added to the language to differentiate various constructs. In addition, the

pseudolanguage for specifying the graphical layout of forms has been removed. Form

layout is specified by setting properties of form objects explicitly within code. Either

this code can be written manually, or the WYSIWYG form designer in Visual Studio

.NET can write it.

1.2.2 Identifiers

Identifiers are names given to namespaces (discussed later in this chapter), types

(enumerations, structures, classes, standard modules, interfaces, and delegates), type

members (methods, constructors, events, constants, fields, and properties), and

variables. Identifiers must begin with either an alphabetic or underscore character (_),

may be of any length, and after the first character must consist of only alphanumeric and

underscore characters. Namespace declarations may be declared either with identifiers

or qualified identifiers. Qualified identifiers consist of two or more identifiers connected

with the dot character (.). Only namespace declarations may use qualified identifiers.

Consider this code fragment:

Imports System

Namespace ORelly.ProgVBNet

Public Class Hello

Public Shared Sub Neareast()

Console.WriteLine("Near, East")

End Sub

End Class

End Namespace

1.2.3 Keywords

Keywords are words with special meaning in a programming language. In

Visual Basic .NET, keywords are reserved; that is, they cannot be used as tokens for

such purposes as naming variables and subroutines

5

1.2.4 Literals

Literals are representations of values within the text of a program. For example,

in the following line of code, 1 O is a literal, but x and y are not:

X = y * 10

Literals have data types just as variables do. The 1 O in this code fragment is

interpreted by the compiler as type Integer because it is an integer that falls within the

range of the Integer type.

1.2.5 Numeric Literals

Any integer literal that is within the range of the Integer type (-2147483648

through 2147483647) is interpreted as type Integer, even if the value is small enough to

be interpreted as type Byte or Short. Integer literals that are outside the Integer range but

are within the range of the Long type (-9223372036854775808 through

9223372036854775807) are interpreted as type Long. Integer literals outside the Long

range cause a compile-time error. Numeric literals can also be of one of the floating

point types-Single, Double, and Decimal. For example, in this line of code, 3.14 is a

literal of type Double: z = y * 3.14

In the absence of an explicit indication of type (discussed shortly), Visual Basic

.NET interprets floating point literals as type Double. If the literal is outside the range of

the Double type (- 1.7976931348623157E308 through 1.7976931348623157E308), a

compile-time error occurs. Visual Basic .NET allows programmers to explicitly specify

the types of literals. Table 2-2 (shown later in this chapter) lists Visual Basic .NET's

intrinsic data types, along with the method for explicitly defining a literal of each type.

Note that for some intrinsic types, there is no way to write a literal.

1.2.6 String Literals

Literals of type String consist of characters enclosed within quotation-mark

characters. For example, in the following line of code, "hello, world" is a literal of type

String:

6

Console.WriteLine("hello, world") String literals are not permitted to span

multiple source lines. In other words, this is not permitted: ' Wrong

Console.WriteLine("hello, world") To write a string literal containing quotation-mark

characters, type the character twice for each time it should appear. For example:

Console.WriteLine("So then Dave said, ""hello, world"".") This line produces the

following output: So then Dave said, "hello, world".

1.2.7 Character Literals

Visual Basic .NET's Char type represents a single character. This is not the same

as a one-character string; Strings and Chars are distinct types. Literals of type Char

consist of a single character enclosed within quotation-mark characters, followed by the

character c. For example, in the following code, "A"c is a literal of type Char: Dim

MyChar As Char

MyChar = "A"c
To emphasize that this literal is of a different data type than a single-character

string, note that this code causes a compile-time error if Option strict is on:

'Wrong

Dim MyChar As Char

MyChar= "A"

The error is:
Option Strict On disallows implicit conversions from 'String' to 'Char'.

1.2.8 Date Literals

Literals of type Date are formed by enclosing a date/time string within number-

sign characters. For example:

Dim MyDate As Date

MyDate = #11/15/2001 3:00:00 PM#
Date literals in Visual Basic .NET code must be in the format m/d/yyyy,

regardless of the regional settings of the computer on which the code is written.

1.2.9 Boolean Literals

7

The keywords True and False are the only Boolean literals. They represent the

true and 'false

Boolean states, respectively (of course!). For example:

Dim MyBoolean As Boolean

MyBoolean = True

1.2.10 Nothing

There is one literal that has no type: the keyword Nothing. Nothing is a special

symbol that represents an uninitialized value of any type. It can be assigned to any

variable and passed in any parameter. When used in place of a reference type, it

represents a reference that does not reference any object. When used in place of a value

type, it represents an empty value of that type. For numeric types, this is O or O.O. For

the String type, this is the empty string(""). For the Boolean type, this is False. For the

Char type, this is the Unicode character that has a numeric code of O. For
programmer-defined value types, Nothing represents an instance of the type that

has been created but has not been assigned a value.

1.3 Fundamental Types

Visual Basic .NET has several built-in types. Each of these types is an alias for a

type supplied by the .NET architecture. Because Visual Basic .NET types are equivalent

to the corresponding underlying .NET-supplied types, there are no type-compatibility

issues when passing arguments to components developed in other languages. In code, it

makes no difference to the compiler whether types are specified using the keyword

name for the type or using the underlying .NET type name. For example, the test in this

code fragment succeeds:

Dim x As Integer

Dim y As System.Int32

If x.GetType() Is y.GetType() Then

Console.WriteLine("They're the same type!")

Else
Console.WriteLine("They're not the same type.")

8

End If

Boolean

The Boolean type is limited to two values: True and False. Visual Basic .NET

includes many logical operators that result in a Boolean type. For example:

Public Shared Sub MySub(ByVal x As Integer, ByVal y As Integer)

Dim b As Boolean = x > y

'other code

End Sub ' MySub

The result of the greater-than operator (>) is of type Boolean. The variable b is

assigned the
value True if the value in x is greater than the value in y and False if it is not.

The underlying .NET type is System.Boolean.

Byte
The Byte type can hold a range of integers from O through 255. It represents the

values that can be held in eight bits of data. The underlying .NET type is System.Byte.

Char
The Char type can hold any Unicode[l] character. The Char data type is new to

Visual
Basic .NET. The underlying .NET type is System.Char.

Date
The Date type holds values that specify dates and times. The range of values is

from midnight on January 1, 0001 (0001-01-01 T00:00:00) through 1 second before

midnight on December 31, 9999 (9999-12-31123:59:59). The Date type contains many

members for accessing, comparing, and manipulating dates and times. The underlying

.NET type is System.DateTime.

9

Decimal
The Decimal type holds decimal numbers with a precision of 28 significant

decimal digits. Its purpose is to represent and manipulate decimal numbers without the

rounding errors of the Single and Double types. The Decimal type replaces Visual Basic

6's Currency type. The underlying .NET type is System.Decimal.

Double

The Double type holds a 64-bit value that conforms to IEEE standard 754 for

binary floating point arithmetic. The Double type holds floating point numbers in the

range
-1.7976931348623157E308 through 1.7976931348623157E308. The smallest

nonnegative number (other than zero) that can be held in a Double ıs

4.94065645841247E-324. The underlying .NET type is System.Double. Integer
The Integer type holds integers in the range -2147483648 through 2147483647.

The Visual Basic .NET Integer data type corresponds to the VB 6 Long data type. The

underlying .NET type is System.Int32.

Long

The Long type holds integers in the range -9223372036854775808 through

922337203685477580. In Visual Basic .NET, Long is a 64-bit integer data type. The

underlying .NET type is System.Int64.

Object

The Object type is the base type from which all other types are derived. The

Visual Basic .NET Object data type replaces the Variant in VB 6 as the universal data

type. The underlying .NET type is System.Object.

Short

10

The Short type holds integers in the range -32768 through 32767. The Short data

type corresponds to the VB 6 Integer data type. The underlying .NET type is

System.Intl 6 ..

Single

The Single type holds a 32-bit value that conforms to IEEE standard 754 for

binary floating
point arithmetic. The Single type holds floating point numbers in the range -

3.40282347E38 through 3.40282347E38. The smallest nonnegative number (other than

zero) that can be held in a Double is 1.401298E-45. The underlying .NET type is

System.Single.

String
The String type holds a sequence of Unicode characters. The underlying .NET

type is System.String. Of the fundamental types, Boolean, Byte, Char, Date, Decimal,

Double, Integer, Long, Short, and Single (that is, all of them except Object and String)

are value types. Object and String are reference types.

1.3.1 Custom Types

Visual Basic .NET provides rich syntax for extending the type system.

Programmers can define both new value types and new reference types. Types declared

with Visual Basic .NET's Structure and Enum statements are value types, as are all

.NET Framework types that derive from System.ValueType. Reference types include

Object, String, all types declared with Visual Basic .NET's Class, Interface, and

Delegate statements, and all .NET Framework types that don't derive from

System.ValueType.

1.3.2 Arrays

Array declarations in Visual Basic .NET are similar to those in Visual Basic 6

and other languages. For example, here is a declaration of an Integer array that has five

elements:

11

Dim a(4) As Integer

The literal 4 in this declaration specifies the upper bound of the array. All arrays

in Visual Basic .NET have a lower bound of O, so this is a declaration of an array with

five elements, having indexes O, 1, 2, 3, and 4. The previous declaration is of a variable

named a, which is of type "array of Integer." Array types implicitly inherit from the

.NET Framework's Array type (defined in the System namespace) and, therefore, have

access to the methods defined in that type. For example, the following code displays the

lower and upper bounds of an array by calling the Array class's GetLowerBound and

GetUpperBound methods:

Dim a(4) As Integer

Console.WriteLine("LowerBound is " & a.GetLowerBound(O).ToString())

Console.WriteLine("UpperBound is" & a.GetUpperBound(O).ToString())

The output is:

LowerBound is O

UpperBound is 4
Note that the upper bound of the array is dynamic: it can be changed by methods

available in the Array type. Array elements are initialized to the default value of the

element type. A type's default value is determined as follows:

'!<or numeric types, the default value is O.

'!<or the Boolean type, the default value is False.

'!<or the Char type, the default value is the character whose Unicode value is O.

'!<or structure types (described later in this chapter), the default value is an

instance of the
structure type with all of its fields set to their default values.

? For enumeration types (described later in this chapter), the default value

is an instance of the enumeration type with its internal representation set to O, which

may or may not correspond to a legal value in the enumeration.

For reference types (including String), the default value is Nothing. You can

access array elements by suffixing the array name with the index of the desired element

enclosed in parentheses, as shown here:

For i = O To 4

Console.WriteLine(a(i))

Next

12

Arrays can be multidimensional. Commas separate the dimensions of the array

when used in declarations and when accessing elements. Here is the declaration of a

three-dimensional array, where each dimension has a different size:

Dim a(5, 10, 15) As Integer As with single-dimensional arrays, array elements

are initialized to their default values.

1.3.3 Namespaces

Thousands of types are defined in the .NET Framework. In addition,

programmers can define new types for use in their programs. With so many types, name

clashes are inevitable. To prevent name clashes, types are considered to reside inside of

namespaces. Often, this fact can be ignored. For example, in Visual Basic .NET a class

may be defined like this:

Public Class SomeClass

End Class
This class definition might be in a class library used by third-party customers, or

it might be in the same file or the same project as the client code. The client code that

uses this class might look something like this:

Dim x As New SomeClass()

x.DoSomething()

Now consider what happens if the third-party customer also purchases another

vendor's class library, which also exposes a SomeClass class. The Visual Basic .NET

compiler can't know which definition of SomeClass will be used. The client must

therefore use the full name of the type, also known as its fully qualified name . Code

that needs to use both types might look something like this: ' The namespace is

"FooBarCorp.SuperFoo2100".
Dim x As New FooBarCorp.SuperFoo2100.SomeClass()

x.DoSomething()

'The namespace is "MegaBiz.ProductivityTools.WizardMaster".

13

Dim y As New MegaBiz.ProductivityTools.WizardMaster.SomeClass()

y.DoSomethingElse()

Note that a namespace name can itself contain periods (.). When looking at a

fully qualified type name, everything prior to the final period is the namespace name.

The name after the final period is the type name. Microsoft recommends that

namespaces be named according to the format CompanyName.TechnologyName. For

example, "Microsoft. VisualBasic".

1.3.4 The Namespace Statement

So how does a component developer specify a type's namespace? In Visual

Basic .NET, this can be done several ways. One is to use the Namespace keyword, like

this: Namespace MegaBiz.ProductivityTools.WizardMaster Public Class SomeClass

End Class

End Namespace
Note that it is permissible for different types in the same source file to have

different namespaces.

A second way to provide a namespace is to use the /rootnamespace switch on

the VisualBasic .NET command-line compiler. All types defined within the compiled

file(s) then have the given namespace. If you're compiling in the Visual Studio .NET

IDE, the root namespace is specified in the Project Property Pages dialog box, which

can be reached by right-clicking the project name in the Solution Explorer window of

the IDE, then choosing Properties (see Figure 2-1 for the resulting WizardMaster

Property Pages dialog). By default, Visual Studio .NET sets the root namespace equal to

the name of the project.

14

lttı.;t<rt;
Hei'1$i;rıc"'# Pa4\
MronçN¥<>t

11:ıeI~!Aı
Ci%llı,,ııJiatı:ııı f!ı~ı,14

Figure 1-3. Setting the root namespace in the Visual Studio .NET

1.4 The Imports Statement

So far, the discussion has implied that it's not necessary for the user of a type to

specify the type's full name unless there is a name clash. This isn't exactly true. The

CLR deals with types only in terms of their full names. However, because humans don't

like to deal with long names, Visual Basic .NET offers a shortcut. As an example, the

.NET Framework provides a drawing library, in which a type called Point is defined.

This type's namespace is called System.Drawing, so the type's fully qualified name is

System.Drawing.Point. Code that uses this type might look like this:

Dim pt As System.Drawing.Point

pt.X = 10

pt.Y = 20

Typing the full name of every type whenever it is used would be too

cumbersome, though, so Visual Basic .NET offers the Imports statement. This statement

15

indicates to the compiler that the types from a given namespace will appear without

qualification in the code. For example:

' At the top of the source code file:

Imports System.Drawing

' Somewhere within the source code file:

Dim pt As Point

pt.X = 10

pt.Y = 20

To import multiple namespaces, list each one in its own Imports statement. It's

okay if multiple imported namespaces have some name clashes. For the types whose

names clash, the full name must be specified wherever the type is used. The Imports

statement is just a convenience for the developer. It does not set a reference to the

assembly in which the types are defined. See the discussion of assemblies in Chapter 3

to learn how to reference assemblies that contain the types you need.
Finally, note that namespaces, too, are just a convenience for the developer

writing source code. To the runtime, a type is not "in" a namespace-a namespace is

just another part of a type name. It is perfectly acceptable for any given assembly to

have types in different namespaces, and more than one assembly can define types in a

single namespace.

1.5 Variables

A variable is an identifier that is declared in a method and that stands for a value

within that method. Its value is allowed to change within the method. Each variable is of

a particular type, and that type is indicated in the declaration of the variable. For

example, this line declares a variable named i whose type is Integer:

Dimi As Integer

The keyword Dim indicates a variable declaration. Dim is short for dimension and

dates back to the original days of the BASIC programming language in the late 1960s.

In that language, variables were not declared; they were just used where needed (except

16

for arrays). Because of how arrays were laid out in memory, the BASIC language

interpreter had to be told of the dimensions of an array before the array was used. This

was the purpose of the Dim statement. In later years, when declaration of all variables

was agreed upon to be a good thing, the use of the Dim statement was broadened to

include all variable declarations.

Variable identifiers may be suffixed with type characters that serve to indicate the

variable's type. For example, this line declares a variable of type Integer:
Dim x%

The effect is precisely the same as for this declaration:
Dim x As Integer

The set of type characters is shown in Table 2-4; note that not all data types

have a type character

1.5.1 Scope
Scope refers to the so-called visibility of identifiers within source code. That is,

given a particular identifier declaration, the scope of the identifier determines where it is

legal to reference that identifier in code. For example, these two functions each declare

a variable coffeeBreaks. Each declaration is invisible to the code in the other method.

The scope of each variable is the method in which it is declared.

Public Sub MyFirstMethod()

Dim CoffeeBreaks As Integer

End Sub

Public Sub MySecondMethod()

Dim CoffeeBreaks As Long

End Sub

Unlike previous versions of Visual Basic, Visual Basic .NET has block scope.

Variables declared withina set of statements ending with End, Loop, or Next are local to

that block. For example:

Dim i As Integer

Fori= 1 To 100

17

Dim j As Integer

Forj = 1 To 100

Next

Next

'j is not visible here

Visual Basic .NET doesn't permit the same variable name to be declared at both

the method level and the block level. Further, the life of the block-level variable is equal

to the life of the method. This means that if the block is re-entered, the variable may

contain an old value (don't count on this behavior, as it is not guaranteed and is the kind

of thing that might change in future versions of Visual Basic).

1.6 Arithmetic Operators

The arithmetic operators perform the standard arithmetic operations on numeric

values. The arithmetic operators supported by Visual Basic .NET are:

* (Multiplication)
The multiplication operator is defined for all numeric operands. The result is the

product of the operands.

I (Regular division)
The regular division operator is defined for all numeric operands. The result is

the value of the first operand divided by the second operand.

\ (Integer division)
The integer division operator is defined for integer operands (Byte, Short,

Integer, and Long). The result is the value of the first operand divided by the second

operand, then rounded to the integer nearest to zero.

Mod (Modulo)

The modulo operator is defined for integer operands (Byte, Short, Integer, and

Long). The result is the remainder after the integer division of the operands.

"' (Exponentiation)
The exponentiation operator is defined for operands of type Double. Operands

of other numeric types are converted to type Double before the result is calculated. The

result is the value of the first operand raised to the power of the second operand.

+ (Addition)

18

V

The addition operator is defined for all numeric operands and operands of an

enumerated type. The result is the sum of the operands. For enumerated types, the sum

is calculated on the underlying type, but the return type is the enumerated type. See the

discussion of enumerated types in the "Enumerations" section later in this chapter for

more information on the types that can underlie an enumerated type. See also Section

2. 12.4 later in this section.

- (Subtraction)
The subtraction operator is defined for all numeric operands and operands of an

enumerated type. The result is the value of the first operand minus the second operand.

For enumerated types, the subtraction is calculated on the underlying type, but the

return type is the enumerated type.

1. 7 Relational Operators

The relational operators all perform some comparison between two operands and

return a Boolean value indicating whether the operands satisfy the comparison. The

relational operators supported by Visual Basic .NET are:

= (Equality)
The equality operator is defined for all primitive value types and all reference

types. For primitive value types and for the String type, the result is True if the values

of the operands are equal; False if not. For reference types other than String, the result

is True if the references refer to the same object; False if not. If the operands are of

type Object and they reference primitive value types, value comparison is performed

rather than reference comparison.

<> (Inequality)
The inequality operator is defined for all primitive value types and for reference

types. For primitive value types and for the String type, the result is True if the values

of the operands are not equal; False if equal. For reference types other than String, the

result is True if the references refer to different objects; False if they refer to the same

object. If the operands are of type Object and they reference primitive value types, value

comparison is performed rather than reference comparison.

< (Less than)

19

The less-than operator is defined for all numeric operands and operands of an

enumerated type. The result is True if the first operand is less than the second; False

if not. For enumerated types, the comparison is performed on the underlying type.

> (Greater than)
The greater-than operator is defined for all numeric operands and operands that

are of an enumerated type. The result is True if the first operand is greater than the

second; False if not. For enumerated types, the comparison is performed on the

underlying type.
<= (ILess than or equal to)
The less-than-or-equal-to operator is defined for all numeric operands and

operands of an enumerated type. The result is True if the first operand is less than or

equal to the second operand; False if not.

>= (Greater than or equal to)

The greater-than-or-equal-to operator is defined for all numeric operands and

operands of an enumerated type. The result is True if the first operand is greater than or

equal to the second operand; False if not. TypeOf ... ls The TypeOf ... Is operator is

defined to take a reference as its first parameter and the name of a type as its second

parameter. The result is True if the reference refers to an object that is type-compatible

with the given type-name; False if the reference is Nothing or if it refers to an object

that is not type-compatible with the given type name.
Use the Typeüf...Is operator to determine whether a given object: Is an instance of a

given class Is an instance of a class that is derived from a given class Exposes a given

interface In any of these cases, the Typeüf expression returns True.Is
The Is operator is defined for all reference types. The result is True if the

references refer to the same object; False if not.

Like
The Like operator is defined only for operands of type String. The result is True

if the first operand matches the pattern given in the second operand; False if not. The

rules for matching are: The ? (question mark) character matches any single character.

The * (asterisk) character matches zero or more characters. The # (number sign)

character matches any single digit.
A sequence of characters within [] (square brackets) matches any single

character in the sequence.

20

Within such a bracketed list, two characters separated by a - (hyphen) signify a

range of Unicode characters, starting with the first character and ending with the second

character. A - character itself can be matched by placing it at the beginning or end of the

bracketed sequence.

Preceding the sequence of characters with an ! (exclamation mark) character

matches any single character that does not appear in the sequence.

• The ? , *, #, and [characters can be matched by placing them within (J

in the pattern string. Consequently, they cannot be used in their wildcard

sense within [J.

• The J character does not need to be escaped to be explicitly matched.

However, it can't be used within (J •

1.8 Logical Operators

Logical operators are operators that require Boolean operands. They are:

And

The result is True if and only if both of the operands are True; otherwise, the

result is False.

Or
The result is True if either or both of the operands is True; otherwise, the result

is False.

The result is True if one and only one of the operands is True; otherwise, the

result is False.

Not

This is a unary operator. The result is True if the operand is False; False if

the operand is True.

21

1.9 Classes

Most Visual Basic developers are familiar with classes. Classes are definitions

or blueprints of objects that will be created at runtime. Classes define the properties,

methods, fields, and events of objects. If the term fields is new to you, it simply means

public variables exposed by the class; fields are the "lazy way" to do properties.

Together, properties, methods, fields, and events are generically called members of the

class. If a class has one or more methods that do not contain any implementation, the

class is said to be abstract. In VB.NET, you cannot instantiate abstract classes directly;

Instead, you must inherit from them. In VB6, it was possible to create a class

that was just method definitions and then to use the Implements keyword to inherit the

interface. You could actually instantiate the interface in VB6, but because it did not

have any implementation code, there was no point in doing so. In VB.NET, you can

create a class that has implementation code instead of just the interface, and then mark

the class as abstract. Now, other classes can inherit from that abstract class and use the

implementation in it or override the implementation as needed. These are new concepts

to VB developers. In the past, VB had only interface inheritance, but VB.NET has

"real" inheritance, known as implementation inheritance.
In VB.NET, interfaces are separate from classes. In VB6, you created interfaces

by creating classes with method definitions, but no implementation code inside those

methods. You will see more on interfaces in the next section, but realize that although a

VB.NET class can implement any number of interfaces, it can inherit from only one

base class. This will be examined in more detail throughout the book. Classes have a

number of possible characteristics that can be set, and that are stored in the metadata. In

addition, members can have characteristics. These characteristics include such items as

whether or not the class or member is inheritable.

1.9.1 A class definition

Public Class Employee

Public EmployeeNumber As Integer

Public FamilyName As String

Public GivenName As String
22

Public Dateüffiirth As Date

Public Salary As Decimal

Public Function Format() As String

Return GivenName & " " & FamilyName

End Function

End Class

Example Using a class
Dim emp As New Employee()

emp.EmployeeNumber = 1 O

emp.FamilyName = "Rodriguez"

emp.GivenName = "Celia"

emp.Dateüffiirth = #1/28/1965#

emp.Salary = 115000

Console.WriteLine("Employee Name: " & emp.Format())

Console.WriteLine("Employee Number: " & emp.EmployeeNumber)

Console.WriteLine("Date of Birth: " & emp.DateüfBirth.ToString("D",

Nothing))
Console.WriteLine("Salary: " & emp.Salary.ToString("C", Nothing)

1.10 Interfaces

Interfaces in VB.NET are like the interfaces in previous versions of VB: They

are definitions of a class without the actual implementation. Because there is no

implementation code, you cannot instantiate an interface, but must instead implement it

in a class. There is one exception to the "no implementation code in an interface" rule:

In VB.NET, you can define what are called static members.

1.11 Inheritance

Visual Basic allows true inheritance of objects. So, what does this really mean?

Inheritance is a relationship where one object is derived from another object.When an

object is inherited, all of its properties and methods are automatically included in the

23

new object. Let's take our car example a little further and create a new object for a

specific type of vehicle, a truck:

Truck Object

Inherits Vehicle Object

BedLength

End Vehicle Object
This new truck object will now have the same properties as the vehicle object

(number of wheels and doors as well as color), but we have now added how long the

truck bed is without have to recreate the other properties. As you can see, this can be a

powerful tool for code reuse.You don't have to rewrite code just to tweak it to your

specific needs.

1.12 Method parameters

Methods can be defined to take arguments. As already shown, method

definitions can take an optional parameter list. A parameter list looks like this:

parameter { , parameter }

1.13 What About On Error?

Visual Basic 6 did not have exception objects and Try...Catch blocks. Instead, it

used the On Error statement to specify a line within the current procedure to which

execution should jump if an error occurred. The code at that point in the procedure

could then examine the Err intrinsic object to determine the error that had occurred. For

compatibility with previous versions, Visual Basic .NET continues to support the On

Error and related statements, but they should not be used in new development, for the

following reasons:
• Structured exception handling is more flexible.
• Structured exception handling does not use error codes. (Applicationdefined

error codes often clashed with error codes defined by other applications.)

• Structured exception handling exists at the .NET Framework level, meaning

that regardless of the language in which each component is written, exceptions can be

thrown and caught across component boundaries.

24

1.14 Events

An event is a callback mechanism. With it, objects can notify users that

something interesting has happened. If desired, data can be passed from the object to the

client as part of the notification. Throughout this section, I use the terms event producer,

producer class, and producer object to talk about a class (and its instances) capable of

raising events. I use the terms event consumer, consumer class, and consumer object to

talk about a class (and its instances) capable of receiving and acting on events raised by

an event producer.

Chapter 2

2.1 History of Object Orientation and VB

Visual Basic has been best described as an object-based language, rather than an

object-oriented one, because it did not support true inheritance from one object to

another. Programmers have used different methods to simulate Inheritance since VB

5.0, specifically by using the Implements interface. Although this feature didn't actually

bring functionality of a parent class, at least it defined a set of methods that would need

to be coded. However, there was not an effective way to reuse business logic.This was a

clumsy workaround, at best, and is far inferior to the overriding and overloading that are

now available.

2.1.1 Object-Oriented Language

Previous versions of Visual Basic did not offer true object-oriented inheritance

of code from a parent class to a child class. In VB.NET, propagating code from one

module to another is now possible, while only overriding the behavior that needs

changed in the child class, thus improving maintainability.

25

Because of the CLR, not only can a VB developer inherit a class from another

VB module, he can also inherit from a module developed in another language, such as

C#.

2.1.2 Why Learn Object-Oriented Techniques?

As you may know, Visual Basic has implemented some features of object­

oriented programming since Version 4. However, in terms of object-orientation, the

move from Version 6 to VB .NET has been dramatic. Many people did not consider VB

6 (or earlier versions) to be a truly object-oriented programming language. Whatever

your thoughts may have been on this matter, it seems clear that VB .NET is an object­

oriented programming language by any reasonable definition of the term. You may be

saying to yourself: "I prefer not to use object-oriented techniques in my programming."

This is something you could easily have gotten away with in VB 6. But in VB .NET, the

structure of the .NET Framework specifically the .NET Base Class Library as well as

the documentation, is so object-oriented that you can no longer avoid understanding the

basics of object-orientation, even if you decide not to use them in your applications.

2.1.3 Principles of Object-Oriented Programming

It is often said that there are four main concepts in the area of object-oriented

programmıng:

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

Each of these concepts plays a significant role in VB .NET programming at one

level or another. Encapsulation and abstraction are "abstract" concepts providing

motivation for object-oriented programming. Inheritance and polymorphism are

concepts that are directly implemented in VB .NET programming.

26

2.1.4 Advantages of Object-Oriented Design

The true advantages to object-oriented design come when you can propagate

behavior from one object to another. For example, if you were developing a sedan and a

coupe, you might design few differences between the two cars other than the number of

doors (four versus two). This is where inheritance comes in. If you already had a sedan
,··'\.

designed, you could build a coupe just by inheriting all of the behavior of the sedan,

except for overriding the number of doors. Observe the following VB pseudocode:

Public Class Coupe

Inherits Sedan

Overrides Sub BuildDoors()

Doors = Doors + 2

End Sub

End Class

Now, if you add new features to the sedan (such as side air bags, for example),

they are automatically propagated to the coupe without adding any additional code. By

contrast, overloading is when you want the methods of a single object to have different

behaviors depending upon what parameters you pass to it.Then, VB is smart enough to

determine which module to run depending upon the parameter list.

Type Overriding Overloading

Method Name Same
Argument List Same
Behavior Replaces existing method

Same
Different
Supplements existing method

Table 2.1.4 Overriding versus Overloading

27

Chapter3

3.1 Major VB.NET Changes

VB.NET introduces major changes to the VB language. Some are modifications

to existing ways of working, whereas others are brand new. This chapter will cover

some of those changes, but this is by no means an exhaustive list of all changes from

VB to VB.NET. First, you'll see some of the features that have changed. Then you will

see some of the new features.

3.1.1 General Changes

There are a number of general changes to be aware of when moving from VB to

VB.NET. Among them are topics such as the removal of default properties, subs and

functions requiring parentheses, ByVal being the default method for passing

parameters, and changes to the logical operators. These changes, and others, are detailed

in this section.

3.1.2 Subs and Functions Require Parentheses

As you saw in the last chapter when you used the MsgBox function, you must

now always use parentheses with functions, even if you are ignoring the return value. In

addition, you must use parentheses when calling subs, which you did not do in VB6.

For example, assume that you have this sub in both VB6 and VB.NET:

Sub foo(ByVal Greeting As String)

' implementation code here

End Sub
In VB6, you could call this sub in one of two ways:

foo "Hello"

Call foo("Hello")

In VB.NET, you also could call this sub in one of two ways:

Foo("Hello")

Call foo("Hello")

28

The difference, of course, is that the parentheses are always required in the

VB.NET calls, even though you aren't returning anything. The Call statement is still

supported, but it is not really necessary.

3.1.3 Changes to Boolean Operators

The And, Not, and Or operators were to have undergone some changes.

Microsoft originally said that the operators would short-circuit, but now they are staying

the way they worked in VB6. This means that in VB.NET, as in VB6, if you had two

parts of an And statement and the first failed, VB6 still examined the second part.

Examine the following code:

Dim x As Integer

Dim y As Integer

x=l

y=O

Ifx = 2 Andy= 5/y Then

As a human, you know that the variable x is equal to 1. Therefore, when you

look at the first part of the If statement, you know that x is not equal to 2, so you would

logically think it should quit evaluating the expression. However, VB.NET examines

the second part of the expression, so this code would cause a divide-by-zero error. If

you want short-circuiting, VB.NET has introduced a couple of new operators: AndAlso

and OrElse. In this case, the following code would not generate an error in VB.NET:

Dim x As Integer

Dim y As Integer

x=l

y=O

If x = 2 AndAlso y = 5/y Then

This code does not cause an error; instead, because xis not equal to 2, VB.NET

does not even examine the second condition.

29

3.1.4 Declaration Changes

We can now initialize your variables when you declare them. You could not do

this in VB;6.Jn VB6, the only way to initialize a new variable was to do so on a separate

line, like this:

Dim x As Integer

x=5
In VB.NET, you can rewrite this into one line of code:

Dim x As Integer = 5
Another significant, and much-requested, change is that of declaring multiple

variables, and what data type they assume, on one line. For example, you might have

the following line:

Dim x, y As Integer
As you're probably aware, in VB6, y would be an Integer data type, but x would

be a Variant. In VB.NET, this has changed, so both x and yare Integers. If you think,

"It's about time," there are many who agree. This should remove a number of bugs and

strange type conversions experienced by new VB developers. It should also make the

code more efficient by making variables the expected type instead of using the Object

type

3.1.5 Support for New Assignment Operators

VB.NET now supports shortcuts for performing certain assignment operations.

In VB6, you incremented x by 1 with the following line of code:

x=x+l
In VB.NET, you can type an equivalent statement like this:

X += 1
Not only can you use the plus sign, but VB.NET now also supports -=, *=, /=,

\=, and /\= from a mathematical standpoint, and &= for string concatenation. If all this

looks like C/C++, that's where it came from. However, the++ operator is not supported.

Microsoft made a decision not to include the ++ operator because they felt it

made the code more difficult to read.

30

Because VB.NET is in beta and has not yet been performance tuned, it is unclear

whether these new assignment operators will be more efficient. These operators did tend

to be more efficient in C/C++, due to a more efficient use of the CPU's registers.

Therefore, it will be interesting to test these new operators when the final, tuned version

of VB.NET is released.

3.1.6 ByVal ls Now the Default

In what many consider a strange decision, the default way to pass parameters in

VB has always been by reference. The decision was actually made because passing by

reference is faster within the same application, but can be costly if you are calling

components across process boundaries. If you're a little rusty, by reference means that

you are passing only the address of a variable into the called routine. If the called

routine modifies the variable, it actually just updates the value in that memory location,

and therefore the variable in the calling routine also changes.

Private Sub Commandl_Click()

Dim x As Integer

x=3

foo X

MsgBoxx

End Sub

Sub foo(y As Integer)

y=5

End Sub

The message box shows the value 5. That happens because in VB6, when you

pass x to foo, you are just sending the memory address of the variable x, so when foo

modifies y to 5, it is changing the value in the same memory location to which x points,

and this causes the value of x to change as well. If you tried to type this example into

VB.NET, you'd see something happen. First, of course, you'd have to add parentheses

around x in your call to foo. However, when you tried to type the definition of foo,

VB.NET would automatically add the word ByVal into the definition, so it would end

up looking like this: Sub foo(ByVal y As Integer) If you wanted to pass by reference,

31

you would have to add the ByRef keyword yourself, instead of VB.NET using the new

default of ByVal. This is a benefit to those of you calling procedures across process

boundaries, something that is common in the world of distributed applications. In

addition, this should cut down on errors like those seen by novice users who didn't

understand the concept of passing by reference in previous versions of VB.

3.1.7 Block-Level Scope

VB.NET adds the ability to create variables that are visible only within a block.

A block is any section of code that ends with one of the words End, Loop, or Next. This

means that For...Next and If...End If blocks can have their own variables. Take a look at

the following code:

Whiley< 5

Dim z As Integer

End While

The variable z is now visible only within the While loop. It is important to

realize that although z is visible only inside the While loop, its lifetime is that of the

procedure. That means if you re-enter the While statement, z will have the same value

that it did when you left. Therefore, it is said that the scope of z is block level, but its

lifetime is procedure level.

3.1.8 While ...Wend Becomes While ...End While

The While loop is still supported, but the closing of the loop is now End While

instead of Wend. If you type Wend, the editor automatically changes it to End While.

This change finally move the While loop into synch with most other VB "block"

structures, which all end with an End <block> syntax.

3.2 Procedure Changes

VB.NET has changes that affect how you define and work with procedures.

Some of those changes are mentioned in this section.

32

3.2.1 Optional Arguments Require a Default Value

In VB6, you could create an optional argument (or several optional arguments)

when you defined a procedure. You could, optionally, give them a default value. That

way, if someone chose not to pass in a value for an argument, you had a value in it. If

you did not set a default value and the caller did not pass in a value, the only way you

had to check was to call the IsMissing statement. IsMissing is no longer supported

because VB.NET will not let you create an optional argument that does not have a

default value. IsMissing is not needed because an optional argument is guaranteed to

have a value. For example, your declaration might look like this:

Sub foo(Optional ByVal y As Integer= 1)

Notice that the Optional keyword is shown, just as it was in VB6. This means a

parameter does not have to be passed in. However, if it is not passed in, y is given the

default value of 1. If the calling routine does pass in a value, of course, y is set to

whatever is passed in.

3.2.2 Static Not Supported on Subs or Functions

In VB6, you could put Static in the declaration of a sub or function. Doing so

made every variable in that sub or function static, which meant that they retained their

values between calls to the procedure. For example, this was legal in VB6:

Static Sub foo()

Dim x As Integer

Dim y As Integer

x=x+l

y=y+2

End Sub
In this example, x will retain its value between calls. So, the second time this

procedure is called, x already haş_a~ f I, and the value of x will be incremented to

2. The variable y would have the value of 2, and therefore the second time in it would

be incremented to 4.

VB.NET does not support the static keyword in front of the sub or function

declaration anymore, as you saw in the example above. In fact, if you want an entire sub

or function to be static, you need to place Static in front of each variable for which you

want to preserve the value. This is the only way to preserve values in variables inside a

sub or function. In VB.NET, the equivalent sub would look like this:

Sub foo()

Static x As Integer

Static y As Integer

x=x+l

y=y+2

End Sub

3.3 Array Changes

Arrays have undergone some changes as well. Arrays could be somewhat

confusing in previous versions of VB. VB.NET seeks to address any confusion by

simplifying the rules and removing the capability to have nonzero lower boundaries.

In VB6, if you left the default for arrays to start at o, declaring an array actually

gave you the upper boundary of the array, not the number of elements. For example,

examine the following code:

Dim y(2) As Integer

y(O) = 1

y(l) = 2

y(2) = 3

In this VB6 code, you declare that y is an array of type Integer, and the upper

boundary is 2. That means you actually have three elements: 0-2. You can verify this by

setting those three elements in code. In VB.NET, array declaration was going to change,

so that the parameter was the number of elements. However, due to the possibility of

breaking existing code in the upgrade process, this has been changed back to the way it

worked in VB.

34

3.3.1 Lower Boundary Is Always Zero

VB6 allowed you to have a nonzero lower boundary in your arrays in a couple

of ways. First, you could declare an array to have a certain range. If you wanted an array

to start with 1, you declared it like this:

Dim y(l To 3) As Integer

This would create an array with three elements, indexed 1-3. If you didn't like

this method, you could use Option Base, which allowed you to set the default lower

boundary to either O (the default) or 1. VB.NET removes those two options from you.

You cannot use the 1 to x syntax, and Option Base is no longer supported. In fact,

because the lower boundary of the array is always O, the Lbound function is no longer

supported.

3.4 Data Type Changes

There are several changes to data types that are important to point out. These

changes can have an impact on the performance and resource utilization of your code.

The data types in VB.NET correspond to the data types in the System namespace, which

is important for cross-language interoperability.

3.4.1 All Variables Are Objects

Technically, in VB.NET, all variables are subclassed from the Object base class.

This means that you can treat all variables as objects. For example, to find the length of

a string, you could use the following code:

Dim x As String

x = "Hello, World"

MsgBox(x.Length)

This means that you are treating x as an object, and examining its Length property.

Other variables have other properties or methods

3.4.2 Automatic String/Numeric Conversion Not Supported

35

In VB6, it was easy to convert from numbers to strings and vice versa. For

example,

examine this block of code:

Dim x As Integer

Dim y As String

x=5

y=x

In VB6, there is nothing wrong with this code. VB will take the value 5 and

automatically convert it into the string "5". VB.NET, however, disallows this type of

conversion by default. Instead, you would have to use the csı- function to convert a

number to a string, or the Val function to convert a string to a number. You could rewrite

the preceding code for VB.NET in this manner:

Dim x As Integer

Dim y As String

x=5

y = CStr(x)

y = x.ToString ' This is equivalent to the previous line

3.4.3 Fixed-Length Strings Not Supported

In VB6, you could declare a fixed-length string by using a declaration like the

one shown here:

Dim y As String * 30

This declared y to be a fixed-length string that could hold 30 characters. If you

try this same code in VB.NET, you will get an error. All strings in VB.NET are variable

length.

3.5 Structured Error Handling

Error handling has changed in VB.NET. Actually, the old syntax still works, but

there is a new error handling structure called Try...Catch...Finally that removes the need to use

the old on Error Goto structure. The overall structure of the Try... catch ...Finally syntax is to put

the code that might cause an error in the Try portion, and then catch the error. Inside the

Catch portion, you handle the error. The Finally portion runs code that happens after the

36

catch statements are done, regardless of whether or not there was an error. Here is a

simple example:

Dim x, y As Integer ' Both will be integers

Try

x \= y ' cause division by zero

Catch ex As Exception

msgbox(ex.Message)

End Try

Here, you have two variables that are both integers. You attempted to divide x by

y, but because y has not been initialized, it defaults to O. That division by zero raises an

error, and you catch it in the next line. The variable ex is of type Exception, which holds the

error that just occurred, so you simply print the Message property, much like you printed

Err.Description in VB6. In fact, you can still use Err.Description, and the Err object in general.

The Err object will pick up any exceptions that are thrown. For example, assume that

your logic dictates that an error must be raised if someone's account balance falls too

low, and another error is raised if the balance drops into the negative category. Examine

the following code:

Try

If bal< O Then

Throw New Exception("Balance is negative!")

Elself bal > O And bal <= 10000 Then

Throw New Exception("Balance is low; charge interest")

End If

Catch
MessageBox.Show("Error: " & Err().Description)

Finally

MessageBox.Show("Executing finally block.")

End Try

37

Chapter 4

4. SQL Server 2000 Overview

4.1 Introduction

Microsoft SQL Server 2000 is more than a relational database management

system; it is a complete database and analysis product that meets the scalability and

reliability requirements of the most demanding enterprises. It is appropriate for a broad

range of solution types, including e-commerce, data warehousing, and line-of-business

applications. Of course, SQL Server 2000 contains many features that help businesses

manage and analyze data, but one "feature" that might not be so obvious is the selection

of SQL Server 2000 editions.
There are seven different editions to choose from. That might seem like a lot of

different products to worry about, but understanding the differences and appropriate

uses for these various editions is actually quite simple. The different editions are

designed to accommodate the unique performance, runtime, and price requirements of

organizations and individuals. For example, your organization may require not only that

its database and analysis solution run on the largest, most powerful computers in your

company's data center, but also that this solution be able to "scale down" to desktops,

laptops, and even devices like the Pocket PC. SQL Server 2000 achieves this goal while

maintaining maximum application compatibility across platforms.

Understanding these options allows organizations to make the most costeffective

and technically appropriate choice for their particular needs. In this paper, you'll learn

more specifically about the differences among the various editions of SQL Server 2000,

and how you can save time and money by choosing the right one for the job.

4.2 SQL Server 2000 Editions for Special Uses

Besides the two server editions of SQL Server 2000, five editions exist for
special uses. These are:

• SQL Server 2000 Personal Edition
• SQL Server 2000 Developer Edition
• SQL Server 2000 Evaluation Edition (also known as SQL Server 2000

Enterprise
• Evaluation Edition)

38

SQL Server 2000 Windows CE Edition
o SQL Server 2000 Desktop Engine (also known as MSDE)

4.3 New and Enhanced Features of SQL Server 2000

SQL Server 2000 delivers a more mature RDBMS from Microsoft. The first

release since the near-entire redesign of SQL Server that resulted in version 7 .O, SQL

Server 2000 builds on that version and the feedback that resulted in two service packs of

enhancements and fixes to the SQL Server architecture. This latest release offers

enhanced reliability, scalability, programmability, and services for SQL programmers

and application developers. Delivering key new features allows

SQL Server to meet the demands of large-scale enterprise applications, including online

transaction processing (OLTP), data warehousing, and electronic commerce, in which

SQL Server continues to grow in market dominance. As a member of Microsoft's .NET

Enterprise Server family, SQL Server 2000 provides native support for XML as well as

standard Internet protocols such as HTTP and SSL. Numerous productivity

enhancements are welcome additions for SQL programmers, including new data types,

trigger enhancements, user-defined functions, and a supercharged Query Analyzer that

includes a built-in debugger that doesn't require godlike talents to configure! SQL

Server 7.0's OLAP Services have "grown up" and been renamed Analysis Services,

offering OLAP and datamining capabilities native to SQL Server 2000. Having been

designed for Windows 2000, SQL Server 2000 increases its scalability and availability

levels, taking advantage of four-way fail-over clustering and support for up to 64GB of

memory. A popular scalability enhancement in SQL Server 2000 is distributed

partitioned views, which has allowed SQL Server to take over the Transaction

Processing Council (TPC) leadership role in terms of price/performance measures and

tremendously surpassing its rival, Oracle 8i, in scalability. Sharing and exchanging data

are common tasks in distributed application environments, and SQL Server 2000 shines

in this area. Replication enhancements in SQL Server 2000 allow for queued updating

subscribers and easier setup and management of replication solutions. Since version 7.0

of SQL Server, Data Transformation Services (DTS) have enjoyed many new fans, and

this latest release adds a few of the "missing" pieces of the previous version. If all this

isn't enough to get you excited about this latest version of SQL Server, in the following

sections we review the entire list of enhancements and additions to SQL Server 2000.

39

4.3.1 XML Support

XML, a subset of Standard Generalized Markup Language (SGML), is the latest

addition to the arsenal of technologies available for building software solutions.

Although not a new concept, the XML 1 .O recommendation was submitted to the World

Wide Web Consortium (W3C) in 1998, many developers are finding it a strong and

functional tool for communicating between heterogeneous systems and across the

Internet. Microsoft has made such a strong commitment to XML that the company is

touting it as a core technology component in its .NET architecture and services model.

As its name implies, XML can be as simple or as complex as it needs to be to cater to a

given situation, and its HTML-like format makes it easy for new XML developers to

quickly begin being productive with the technology. Soon after Microsoft released SQL

Server 7.0, the XML Technology Preview for SQL Server was released, providing

insight into, and a draft of, what is now native XML support in SQL Server 2000. SQL

Server 2000 offers native support for reading, writing, delivering, and using XML

documents, the term for complete sets of XML tags and data. The following additions to

SQL Server, along with the latest version of ActiveX Data Objects, version 2.6, provide

complete support for using XML in your SQL Server-based applications:

4.3.2 User-Defined Functions

A significant addition to the programmability of SQL Server is the new User­

Defined Function (UDF) object. We use dozens of the built-in SQL functions to

manipulate and process data, define computed columns, and control logic flow in all our

SQL applications, but now SQL development is no longer restricted to that list of

predefined SQL functions from Microsoft. With support for returning single values such

as integer or character data and the ability to return the new table data type, UDFs in

SQL Server will increase developer productivity and code reuse in SQL applications.

The process of creating UDFs is similar to creating other objects in SQL Server.

The CREATE FUNCTION statement allows you to define input parameters and the

return parameter type of your custom function. The following example creates a new

function to return a table data type that contains the product name and unit price from

the Products table in the sample North-wind database for all products that have a "units

40

ın stock" greater than the input parameter-essentially, a parameterized view. This

function can be used in the FROM clause of a T-SQL statement as a rowset:

CREATE FUNCTION GetProductsA vail (@intStockQty int)

RETURNS @ProductList TABLE

(

ProductName nvarchar(40),

UnitPrice money

)

AS

BEGIN

INSERT INTO @ProductList

SELECT productname, unitprice

FROM Products

WHERE UnitsinStock > @intStockQty

RETURN

END

4.4 How Will SQL Server 2000 Benefit into Organization?

SQL Server 2000 includes many new and enhanced features that have proven

beneficial to all types of organizations and applications, including e-commerce,

business intelligence, and line-of-business applications. Integrated technologies such as

XML support, OLAP, and data-mining engines offer an unprecedented list of features,

allowing SQL Server to play an integral role in every aspect of your organization-from

business-to-business integration and electronic commerce to back-office data analysis

and decision support. The importance of technologies such as XML continues to

increase as organizations work toward greater integration with business partners,

providing higher levels of efficiency and access to new customers. OLAP and data­

mining capabilities result in more successful business decisions based on the discovery

of new information among your piles of data. Whether your organization is a small

business or a multinational corporation, SQL Server 2000 offers advantages such as

improved self-tuning, automatic file growth, and configuration wizards through four­

node fail-over clustering, federated servers, and support for up to 32 processors and

41

64GB of memory. SQL Server 2000 offers compatible platform support ranging from

Windows CE to Windows 2000 Datacenter Server, allowing organizations to leverage

existing SQL programming skills to deliver applications on every Windows platform.

4.4.1 Will SQL Server 2000 Fit into Organization?

Whether you are currently using SQL Server or have implemented a different

RDBMS, SQL Server 2000 provides the tools for a successful migration or peaceful and

productive coexistence. For organizations upgrading to SQL Server 2000 from SQL

Server 6.5 and 7.0, backward compatibility and upgrade wizards make the migration

seamless and efficient, with no modifications to your existing applications in most

situations. A SQL Server 2000 named instance installation can even run concurrently

with SQL Server 6.5 or 7.0 on the same server, so your database server can remain

active during your migration. Tools such as the new Copy Database Wizard minimize

database server downtime by copying databases and configuration information from

SQL Server 7 .O servers without affecting their ability to service active applications.

Migrating from other RDBMSs or integrating SQL Server 2000 into heterogeneous

environments is easily accomplished with its support for OLE DB providers for Oracle

and Sybase, to name a couple. Nearly all popular database and information storage

providers offer OLE DB drivers, allowing SQL Server to connect to other systems and

perform tasks such as data import or export, execute distributed queries, and work with

remote data sets using the OPENROWSET function. DTS in SQL Server allow you to

attach to remote database systems and migrate objects and data. All SQL Server 2000

integration and migration capabilities will assist your organization in making a smooth

transition to SQL Server 2000.

42

CHAPTERS

5. SQL DATABASE DESIGN OF THE PROGRAM

6.
3.1 Database table Design of The Program

I have used six tables, six views and two stored procedures for my server

asusa6vq. Which have this adress root on my database c.ConnectionString = "data

source=asusa6vq;initial catalog=adem;integrated security=true" this database use the

integrated security. İt means it's related to windows and sql server authontication.

The names of the tables are: login, company, customer, product, sale, stock

The name of thenames are: a,b,c, custotal, salepid and stockpid

I used the two data stored procedures for reporting. Because we can insert any

dynamical data every time, which names are zrapor and zrapor2

Login table includes these fields

Column name Data type length
userid int 4
uname nvarchar 20
upass nvarchar 15
access nvarchar 15

Fig. 3.1.1 Login Table

Customer table includes these fields

Column name Data type lenzth
Cusid int 4
Cusname nvarchar 50
Cussurname nvarchar 50
Cuscompany nvarchar 50
Cusfax nvarchar 50
Cusphone nvarchar 50
cusmail nvarchar 50
cusaddress nvarchar 50
custaxno nvarchar 50

43

[cusimage] nvarchar

Fig. 3.1.2 Customer Table

Company table includes these fields

Column name Data type length

Comid int 4

Comname nvarchar 50

Comphone nvarchar 50

Com fax nvarchar 50

Comweb nvarchar 50

Commail nvarchar 50

Comadress nvarchar 70

comımage char 50

Fig. 3.1.3 Company Table

Product table includes these fields

Column name Data type length
Pid İnt 4
Pcode Nvarchar 50
Pname Nvarchar 100
Pprice Money 8
Pguaranty int 4
Pcompany Nvarchar 50
pımage nvarchar 80

Fig. 3.1.4 Product Table

Sale table includes these fields

Column name Data type length
salid Int 4
customerid Int 4
pid Int 4
salcode Nvarchar 50
salname Nvarchar 100
saldate Smalldatetime 4
salprice Money 8

44

salto tal Money 8
salvat Int 4
salquantity Int 4
salguaranty Int 4

Fig. 3.1.5 Sale Table

Stock table includes these fields

Column name Data type length

Stid Int 4

Pid Int 4

Stcode Nvarchar 50

Stname Nvarchar 100

Stbuy Money 8

Stcompany Nvarchar 50

Stguaranty Int 4

Stdate Smalldatetime 4

Stquantity Int 4

stimage nvarchar 100

Fig. 3.1.6 Stock Table

I used six views to make aggregate functions.

Code of View A:

CREATE VIEW dbo.a

AS

SELECT pid, salcode, salname, sum(salquantity) as total

FROM dbo.sale

GROUP BY salcode, pid, salname

The above code make the aggregate funtion "summation" of salquantity.

Code of View B:

CREATE view dbo.b(pid,stcode,stname,stquantity)

45

-·~···-··~
---- -

as
select pid,stcode,stname,sum(stquantity)

from

stock

group by stcode,pid,stname
The view b mission is to make summation of stquantity

Code of View C:

CREATE VIEW dbo.c

AS

SELECT dbo.b.pid, dbo.b.stcode, dbo.b.stname, dbo.b.stquantity, dbo.a.total,

dbo.b.stquantity - dbo.a.total AS kalan

FROM dbo.a INNER JOIN

dbo.b ON dbo.a.pid = dbo.b.pid

After writing a view and b view. We made the subtruction of this two views

result. This is writing like this above command dbo.b.stquantity - dbo.a.total. We use

this in the stock control pages. This page shows the remaining product units. And the

user can make order easly.

Code of View Custotal:

CREATE VIEW dbo.custotal

AS
SELECT customerid, SUM(saltotal) AS total

FROM dbo.sale

GROUP BY customerid
Custotal views used in the extras pages to show the total spending by customer id.

Code of View Salepid:

CREATE VIEW dbo.salepid

AS

46

SELECT pid, salcode, salname, SUM(salquantity) AS quantity, SUM(saltotal) AS

total FROM dbo.sale GROUP BY salcode, salname, pid

Salpid created to take sum salquantity and saltotal colums.

Code of View Stockpid:

CREATE VIEW dbo.stockpid

AS SELECT pid, stcode, stname, SUM(stquantity) AS quantity

FROM dbo.stock

GROUP BY pid, stcode, stname, stquantity

Stockpid makes summation of stquantity as quantity by stokcode

We use the some relations between the tables to make consistent and reliable

information from tables. Which are listed below:

• The stok table (stid) is primary key- the sale (stid) is foreign key

• The company (comname) is primary key- stock (stcompany) is foreign key

• The customer (cusid) is primary key - Sale (customerid) is foreign key

The program edimspeed stock control ask the username and password to access

the main menü when the program starting.

l..ogorı

Fig 3.1 Login Form

47

When the starting the program, we see this fig 3. 1 transparancy form. This form

require usemame and password to access to thr main menu. I used "giris" class to

control the usemame and password. We used transparancy technic in this form. This

form not have border, but we move to anywhere by mouse.

If the user enter wrong password the message box show fig 3 .2

Fig 3.2 Wrong password messegebox

Fig 3.3 Main Page

The main menu is the main form of the edimspeed stock control. This menu

contains the label. Which show the licence statement. If the product register, the label

will be edimspeed stock control full version. Else the program will be trial period. Trials

program allows 30 days. If the correct serial number not enter succesfully to the

48

program will not be open after 30 days. The program control this events with windows

registry.

""""
"""""' Mtn·SC·77Si945p l05Yll ~uidem 1 26.05.20C6

tem ~-512 mb. 400 rmz. ddı 00\'lJ
"""

2 21i05.20C6

Mddi:;k m&Xia-aıa23 ı.12(1Ytl ""' 2 26.05.2003 s
,~ ıı,..m,,34 56\'lJ ,.~ 1 26.05.20'.li 5

""' ~~daylonııgf4mıı-~O 00\'lJ
._

2 26.05.2003 3

"'""' samsı.rıg,,a3128 470Yll
"""

2 26.05.200> 10

'"""'" sanıswp-~1 33011<!1 178Yll - 2 26.05.;?00; 10

Fig 3.4 Stock List

Stok list shows the detail of the inserted product and product image. In this page

we used currency manager and dataview. If we click the datagrid, clicked row

information shows in the textboxes dynamically. In this form we find the records easly

with above buttons. We search the record with by code, name, company. And than

finded records number shows on the menu title menu.

49

haukkk

iOYll
~ı.ıs-sc·n5l915p ıosva
fly·S12mb,«ıOl'mZ,ddr BOVl:i
ll"l<'lxlOl'·oto23 l.J20Vtl
fly-prine3'1 56vtl
,:kıytaM-6<\rrb ~ daytooa f/4 mx-100 80 Vtt
saır6U'l!t~l26 470vtl
sansu-,,;t(li 330füı\ 1'78vtl

/9
"'·'~ sony-tSSSOOfıat

~lıü
so:rnı
.l§llJll

'"''"""boQ.azjçi-~l!ı!ıiılm

26.05.2006
26.05.2006
26.0S.20Cl6
·26.05.2006
26.05.2006
26.05.2006
-26.05.2006
26.05.2006

~

ıo
ıo

Fig 3.5 Stock Entry

In this form, we can add new product or existing product. And we declare
the logo for new inserted product. This form control the data, makes this operation
clear, update, delete and add

Insertedsuccesfulv

Fig 3.6 Succesfull Insertion

If record is added to database succesfully below fig 3.6 appear on the screen.

50

Fig 3.7 User Management Form

To update, delete and add our account, firstly entered usemame and password.

After that we do these operation. The datagrid shows only usemames and access types.

Fig 3.8 Company form

51

In "Company Form" we can add,delete,update new company to the database by

pressing add button, after all the information are filled, from which company we are

buying the product. And to clear the textbox it is needed to press clear button

We use in this form currency manager. First, previous,next and last operation.

Fig 3.9 Customer form

Here Customer details are held in this form. We can add customer, delete

customer, update customer in this form, Moreover we can search customer by Id and by

First Name and Surname in the same form. When you select one customer then click

one of the sale button the sale form appears. And total loan and saled quantity shown

on secreen.

52

Fig 3.10 Retail Sale Form

In retail sale form the customer select one of the products which is shown in

ComboBox, then customer determines the quantity. After that the price and guarantee

are appeared automatically. Then price calculated automatically and "With VAT

(18%)" are calculated defaultly but the user can change the vat percentage on the

numericupdown control. When you press the "SELL" button you will see such as a

"Please Confirm Sale" message: shown below fig 3. 1 1 figure

Are. you sure to sell the program'.

j Evet] Hayı~

Fig 3.11 Confirm sale message

If user click evet the sale operation finished succesfully, else the operation

terminated. And this messagebox shown on secreen

53

., ", Customet· Name =.kamil selek
Saled·Product Name= esus- Sc-775 I945P ··
Total Amount= 124

I Tamam I

Fig 3.12 Succesfull sale message

This messages means the sale finished succesfully.

Fig 3.13 Whole Sale Form

If we sale more then one product we choose the whole sale form. ın this form we

can sale twelve product. Firstly we should select usemame arena and than peoduct area.

Normally the boxes is not active if we click the checkbox it will be active

In Wholesale form at the first clicked checkboxes then Comboboxes, Quantities,

Prices, Guarantees will be activated. Then we can select the products in the

Comboboxes and determine the quantity. Then when it is clicked the "CALCULATE"

button "Total Price" and "With VAT (18%)" are calculated and displayed on the form.

54

When you press the "SELL" button you will see such as a "Please Confirm Sale"

message"

If we click the yes confirm message, below message shown on screen

Fig 3.14 Succesfull Sale Message

This messages shows that, the sale operation finished succesfully.

. :: Edimspeed Sale Report With Between Dares ::.
)lJ.0$.]Q!)I',

<;u,ıunwrl1l "-:ılı:~~f~

JTı(;s.ıoı,ı,_~,n=ı 149._1ııı r;

3111ıMit'llillrcıı3000+, 6J un. ~C~7~;,+

1e.ı.;:(ii.iı")(, H6.ut, TT
~.:',;.\•:':.2fi(<(, ıe-.oon.
~~.ı~2tı0ı.ı lnS,(I{; u
2-!Al-5,~tıl)f. i0.'U•t1 IL

!05.oı)f{
10:'-.ünTL
!05/;()'Jı.
!H~,(..ı<l n.

:•o.n:-.1.r,ç,(, i0i.OOT! W'i.ıJ{ITl

10,.00rı 1.00 1a,.oon------

Fig 3.15 Daily and with Specific Date Sale Report

This form contains two part first part daily sale report, this is report page with

system day date. We cannot add any parameter. We use in this report zrap~ · ~

stored procedure code is like this f<::(~ · • '~~\
I t.t; t•ı \
•2 l ~ \
\ -lBF?"b -'i1>i.-..Y -.::

~~~ 
55 



CREATE procedure zrapor

@tarih smalldatetime =saldate

as

select salid, customerid, salname, saldate, salprice, salquantity, saltotal from sale where

(saldate=@tarih)

GO 
In this form we can see the report about sale between two specific dates. When

we determine the Start Date and End Date, then press report button, then displays

product name, date, price, quantity information as it is shown fig. below. We use

zrapor2 for the specific date report. Zrapor2 contains this codes.

CREATE procedure zrapor2

(@tarihl smalldatetime,

@tarih2 smalldatetime )

as

select salid, customerid, salname, saldate, salprice, salquantity, saltotal from sale where

(saldate>=@tarih 1) and (saldate<=@tarih2)

GO 

Fig 3.16 Extras Form

56



In the trial period extras button is enabled. If the user enter the correct serial

number by registration form the extras buttons will be active. I mean this extras form

for full version users. So advise that to users to see fig. 3. 16 extras form, purchase the

product.

Fig 3.17 Stock Control Page

In this form controls the stock quantities. The user can see the stock quantity

statement and then on the same form make the product order to increase the less product

quantity. This form use c view table to calculate the remaining product quantity.

,R~gi:stı,~tionP;:ıgıı

Fig 3.18 Registration Form

57



To get registered full version we should enter the serial number. If thee serial is

correct the program mode change trial 30 to full vesion. To take the serial number the

user should click www.adematceken.ekibi.com or send email edimspeed@vahoo.com

Stock Control Version 1.22 

Conıact Mail Act'::!ress
edim$ıJ<sa.J@yanoo,tom

Copyright {c) 2005s;wo6
Edimspeod Corporation

All Rıgllts Reservıo'd

Warning: Uııouthori:red reproeuction or distrub\Ji,,onof th,s program may res,ult in crirni:ııal penalties

Fig 3.19 About Form

The about form give the necessary information contact address about

edimspeed stock program. At the bottom of the page, there is a warning message to

unouthorized reproduction or distrubution of edimspeed program.

The programwas started 'O hours O minutes 6 seconds'ago,

\,, T~mam"J

Fig 3.20 Program Uptime

58



Program uptimes starts, when the program starting and anytime if the user want

to see how many time spent on this program. Fig 3.20 shows the spended time as hour

and minutes and second. May usefull for users.

·. Are :you'sure to close· the· proçr am

Evet J Hayır

Fig 3.21 Program Exit

If the user want to close the program, click the exit "red" button. The program

wants to confirm from the user to close, if the user click yes the program closed whole

of the program. We used in this part this code: application.exit

59



CONCLUSION

Recently, the technology is developing a lot and started to use by everyone in the

world. Because of placing the new tecnology to every platform in our life human

needed to combine both software and hardware. We need software and hardware

together Without software the machines are nothing. The new tecnologic machines

needs software to operate. The software must supply the hardware for best operating.

Visual Basic .NET is the next generation of Visual Basic, but it is also a

significant departure from previous generations. Experienced Visual Basic 6 will feel

comfortable with Visual Basic .NET code and will recognize most of its instructions.

Vb.net support many advantages, which The language itself is now fully object­

oriented. Before versiones of visual basic do not supported object oriented tecnology.

Microsoft SQL Server 2000 is more userful than a relational database

management system; it is a complete database and analysis product that meets the

scalability and reliability requirements of the most demanding enterprises. We used sql

server personel edition in my project.
Sql database management system is using record keeping system that stores,

maintains and provides access to the information. A Database system consists of four

major components that are Data, Hardware, Software, and Users. DBMS are used by

any reasonably self contained commercial, scientific, technical or other organization for

a single individual to a large company. Practically implementation of software for

business though it is related to any field needs a devoted and complete life cycle. The

most important idea is the attitude which has to be face during the life cycle of the

Company or Organization. And according to this point of view the reason of most

unsuccessful project is misunderstanding between the two parties.

The software created after a deep analysis, firstly we should determine the

requirements, so that all-important requirements to the company dealing with computer

product sales and purchase can be accomplished. Company and product, name and ID

have been included in the program to overcome the mistakes, which can occur. Reports

are also generated with the help of the Queries for the update purpose

60



REFERENCES 

Reference to Books:

Palme publisher Visualbasic.net 2003

Palme publisher Sql Server Ado.Net

Reference to E-Book:

Dave Grundgeiger Programming Visual Basic .NET

Robert Patton, sql server databases for .net

Steven RomanVB .NET Language in a Nutshell

A Programmer's Introduction to v.b Paul Boger Publisher Sams Publishing

Vb.net developer guide Cameron Wakefield Henk, Evert Sander, Wei Meng Lee

Reference to www

www.codeprojects.com

www.programmersheaven.com

www.vb masterschool.com

www.vbmaster.com

www.programlama.com

61



APPENDIX A: PROGRAM CODES

CLASS "GIRIS" CODE

Public Class giris

Private ad As String

Private mail As String

Private uname As String

Private upass As String
Public Sub logon(ByVal n As String, ByVal s As String)

Dim c As New SqlClient.SqlConnection

Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try
c.ConnectionString = "data source=asusa6vq;initial catalog=adem;integrated

security=true"

co.Connection= c

co.CommandText = "select * from login"

c.Open()

Dim z As Integer= O

dr = co.ExecuteReader

Do While ctr.Read
If LCase(n) = dr("uname") And LCase(s) = dr("upass") Then

z=l

pl.Text= "dogru"

Exit Do

End If

Loop

Ifz = O Then

pl.Text= "yanlıs"

62 



-

Throw New Exception("Wrong username or userpassword")

End If
Catch ex As Exception

MessageBox.Show("Password veya Yfrenizde yanlı)fık var", "YanlıYGiriY',

MessageBoxButtons.OK, MessageBoxlcon.Exclamation,

MessageBoxDefaultButton.Button 1)

Finally

dr.Close()

c.Close()

End Try

End Sub

End Class

MODUL "MODULl" CODE

Module Module 1
Public pl As New Forml 'entrance form

Public p2 As New Form2 'stock form

Public p3 As New Form3 'users form

Public p4 As New Form4 'Companies form

Public p5 As New Form5 'customers form

Public p6 As New Form6 'sale form

Public p7 As New Form7 'report form

Public p8 As New Form8 'registration

Public p9 As New Form9 'main
Public pl O As New Form l O 'stock control page

Public pl 1 As New Forml 1 'guaranty validate

Public pl2 As New Forml2' extra summary information

Public p13 As New Forml3 'about

Public sl, s2, al, a2 As DateTime
Public sd, sd2, sd3, sd4, oku, sgir, sdate, fdate, son As String

63



Public kgun As Integer

Public pid As Integer 'product id

Public tarih, tarih2 As DateTime

Public www As String

Public cusid, sayl, say2, say3, say4 As Integer' customer id

'oku registry serial number

'sgir you enter the serial

End Module

FORMl.ENTRANCEFORM 

Imports Microsoft.Win32

Private m As Point

Private i As Boolean = False

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Try

Dim g As New giris

If TextBoxl.Text =""Or TextBox2.Text =""Then

MessageBox.Show("Kullanıcı adı veya >1fre bo'Vbırakılamaz'',"Dikkat",

MessageBoxButtons.OK, MessageBoxlcon.Asterisk, MessageBoxDefaultButton.Buttonl)

Exit Sub

End If

g.logon(TextBoxl.Text, TextBox2.Text)

Catch ex As SqlClient.SqlException

MsgBox(ex.Message & vbTab & ex.Number)

End Try

End Sub
Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

TextBoxl .Focus()

64 



oku= Registry.ClassesRoot.GetValue("edims")

sdate = Registry.ClassesRoot.GetValue("sdate")

al = sdate

sl =Now

If oku Is Nothing Then 'if password not write then

Registry.ClassesRoot.SetValue("edims", "edimspeed2005")

End If

If sdate Is No thing Then

Registry. ClassesRoot. SetValue("sdate", Now. ToShortDateString)

End If

fdate = DateAdd(Dateinterval.Day, 30, al)

a2 = fdate

kgun = DateDiff(Datelnterval.Day, al, a2)

Dim ss As String

ss = Registry.ClassesRoot.GetValue("edimd")

If ss <> "edimspeed2005" Then

p8.ButtonBand2.Text = "Remaining Trial Period=" & kgun & "days"

p9.Labell.Text = "Remaining Trial Period=" & kgun & "days"

If kgun <= O Then

MessageBox.Show("Y our trial 30 days program usage period finished", "Trial

Period finished", MessageBoxButtons.OK, MessageBoxicon.Waming)

Application.Exit()

End If

Elself ss = "edimspeed2005" Then

pl2.Button31.Enabled = True

End If

End Sub

End If

End If

If pl.Text= "dogru" Then

pl.Close()

65



p9.Show()

End If

Catch ex As SqlClient.SqlException

MsgBox( ex.Message & vbTab & ex.Number)

Finally

End Try

End Sub
Private Sub PictureBoxl_MouseDown(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles PictureBox1 .MouseDown

Dim x As Integer

Dim y As Integer

If e.Button = MouseButtons.Left Then

x = -e.X - Systemlnformation.FrameBorderSize.Width

y = -e.Y - Systemlnformation.CaptionHeight -

Systemlnformation.FrameBorderSize.Height

m = New Point(x, y)

i = True

End If

End Sub
Private Sub PictureBoxl_MouseUp(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles PictureBoxl .MouseUp

If e.Button = MouseButtons.Left Then

i = False

End If

End Sub
Private Sub PictureBoxl_MouseMove(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles PictureBoxl .MouseMove

If i Then

Dim p As Point = Control.MousePosition

p.Offset(m.X, m.Y)

Location= p

66 



End If

End Sub

Private Sub Timerl_Tick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timerl.Tick

sdate = Registry.ClassesRoot.GetValue("edimd")

If sdate <> "edimspeed2005" Then

If kgun <= O Then

MessageBox.Show("Your trial program, usage period finished", "Trial period

finished, program will be closed", MessageBoxButtons.OK,

MessageBoxlcon.Exclamation)

Application.Exit()

End If

End If

End Sub

End Class

FORM 2. STOCK LIST AND ADD FORM

Imports System.IO

Public Class Form2

Inherits System.Windows.Forms.Form

Public asa As CurrencyManager

Public buy As Integer

Dim img As String

Dim tr As Date

Dim a As DateTime

End Sub

Private Sub TabControll_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles TabControll.SelectedlndexChanged

If TabPagel.Focus = True Then

67



<ls.Clear()

da.Fill( ds.stock)

End If

IfTabPage2.Focus = True Then

<ls.Clear()

da2.Fill(Ds2.stock)

Try

Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

c.Open()

co.CommandText ="select* from company"

co.Connection= c

dr = co.ExecuteReader

Do While dr .Read

ComboBoxl.Items.Add(dr("cornname"))

Loop

c.Close()

dr.Close()

Catch ex As Exception

MsgBox( ex.Message)

Finally

ComboBoxl.Text = ".::Select Company Names::."

HoverGradientButton3.Enabled = True

Button33.Selected = False

da2.Update( ds.stock)

DataGridl .DataSource = Data View 1

End Try

End If

End Sub

Private Sub Form2_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles MyBase.Load

68 



TabPage 1 .Focus()

<ls.Clear()

da.Fill( <ls.stock)

asa= CType(Me.BindingContext(DataViewl), CurrencyManager)

da.Fill( <ls.stock)

End Sub

Private Sub HoverGradientButton3_Click(ByVal sender As System.Object, ByVal e As

S ystem.EventArgs) Handles HoverGradientButton3. Click

Try

Dim d, m, y, t As String

tarih= DateTimePickerl.Value

www = tarih.Month & "." & tarih.Day & "." & tarih.Year

buy= TextBox12.Text

Dim c As New SqlClient.SqlConnection

c.ConnectionString = "data source=asusa6vq;initial catalog=adem;integrated

security=true"

Dim co As New SqlClient.SqlCommand

Dim i As Integer = O

c.Open()

sd4 = "C:\proje\pics\stock\" & TextBoxlü.Text & "." & "jpg"

co.CommandText = "insert into

stock(pid,stcode,stname,stbuy,stcompany,stguaranty,stdate,stquantity,stimage) values(" &

pid & ","' & TextBoxlü.Text & "',"' & TextBoxl 1.Text & "'," & buy & ","' &

ComboBoxl.Text & "'," & NumericUpDown2.Value & ","' & www & "'," &

NumericUpDownl.Value & ";"' & sd4 & '")"

co.Connection= c

i = co.ExecuteNonQuery()

If i > O Then
MessageBox.Show(TextBoxlO.Text & " " & TextBoxl 1.Text & vbCrLf &

"Inserted succesfully", "Inserted Succesfully", MessageBoxButtons.OK,

MessageBoxicon.Information)

69 



Elself i = O Then

MessageBox.Show("Can1t make Insert operation", "Not Succesfull",

MessageBoxButtons.OK, MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException

MsgBox( ex.Message)

Finally

da.Fill(Ds2.stock)

c.Close()

End Try

c.Close()

End Sub

Private Sub HoverGradientButton4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles HoverGradientButton4.Click

a= DateTimePickerl.Text

Try

IfMessageBox.Show("Are you sure to delete Product?", "Are You sure to delete?",

MessageBoxButtons.YesNo, MessageBoxicon.Warning) = DialogResult.No Then

Exit Sub

End If

Dim c As New SqlClient.SqlConnection

c.ConnectionString = "data source=asusa6vq;initial catalog=adem;integrated

security=true"

Dim co As New SqlClient.SqlCommand

Dimi As Integer= O

c.Open()

co.CommandText = "delete from stock where stcode="' & TextBoxlO.Text & 111

and stname=" & TextBoxl l.Text & 111
"

co.Connection= c

i = co.ExecuteNonQuery()

If i > O Then

70



MessageBox.Show(TextBoxlO.Text & " " & TextBoxl L'Text & vbCrLf &

"Deleted succesfully", "Deleted Succesfully", MessageBoxButtons.OK,

MessageBoxlcon.Information)

Elself i = O Then
MessageBox.Show("Not succesfull operation", "Not Succesfull",

MessageBoxButtons.OK, MessageBoxlcon.Exclamation)

End If

c.Close()

Catch ex As SqlClient.SqlException

MsgBox(ex.Message)

Finally

da.Fill(Ds2.stock)

End Try

End Sub

End Class

FORM 3. USER MANAGEMENT FORM

Public Class Form3

Inherits System.Windows.Forms.Form

Private Sub Form3_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

ds.login.Clear()

dalogin.Fill(ds.login)

Me.Text=".:: User Management Page::."

End Sub
Private Sub Button9_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button9.Click

Dim ds As New DataSet

Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

71



Dimi As Integer= O

Try

co.Connection= c

co.CommandText = "select * from login"

c.Open()

dr = co.ExecuteReader

If TextBox4.Text =""Or TextBox5.Text =""Then

MessageBox.Show("Kullanıcı ismi veya )ifre boVbırakılamaz'', "Lütfen

Doldurunuz", MessageBoxButtons.OK, MessageBoxlcon.Asterisk)

Exit Sub

End If

Do While dr.Read
If TextBox4.Text = dr("uname") And TextBox5.Text = dr("upass") Then

TextBox3.Enabled = False

i= 1

Exit Do

End If

Loop

If i = O Then
MessageBox.Show("Kullanıcı adı veya )ifre yanhyır", "Yanlıj/Giri.V',

MessageBoxButtons.OK, MessageBoxlcon.Warning)

End If

Catch ex As SqlClient.SqlException

MsgBox(ex.Message)

Finally

dr.Close()

c.Close()

End Try

End Sub
Private Sub Buttonll_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl I.Click

72



Dim co As New SqlClient.SqlCommand

Dim co2 As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Dimi As Integer= O

ds.login.Clear()

If TextBoxl.Text ='"'And TextBox2.Text =""Then

MessageBox. Show("U sername ve password kısımlarını boVbırakmayımz'', "BoY
Bırakmayınız", MessageBoxButtons. OK, MessageBoxlcon. Warning)

Exit Sub

End If

Try

co2.CommandText = "select * from login"

co.CommandText = "insert into login(uname,upass) values('" & TextBoxl.Text &

"',"' & TextBox2.Text & "')"

co.Connection= c

co2.Connection = c

c.Open()

dr = co2.ExecuteReader

Do While dr.Read

If TextBoxl.Text = dr("uname") Then

MessageBox.Show(TextBoxl.Text & "isimli kullanıcıdan var. Farklı bir

kullanıcı ismi kullanınız", "Kullanıcı isminizi degi)tiriniz", MessageBoxButtons.OK,

MessageBoxlcon. Warning)

ctr.Close()

c.Close()

Exit Sub

End If

Loop

ctr.Close()

i = co.ExecuteNonQuery()

Dim a As String

73



a= "Usemame=" & TextBoxl.Text & vbCrLf & "Password=" & TextBox2.Text

If i > O Then MessageBox.Show(a & vbCrLf & "Succesfully added to database",

"Succesfully Added", MessageBoxButtons.OK, MessageBoxlcon.Information)

Catch ex As SqlClient.SqlException

MessageBox.Show(ex.Message)

Finally

dalogin.Fill(ds.login)

End Try

c.Close()

dr.Close()

End Sub
Private Sub Button8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button8.Click
If MessageBox.Show("Are you sure to close the program", "System Exit",

MessageBoxButtons.YesNo, MessageBoxlcon.Asterisk,

MessageBoxDefaultButton.Buttonl) = DialogResult.Yes Then

Application.Exit()

End If

End Sub

End Class

FORM4. COMPANYFORM 

Imports System.IO

Public Class Form4

Inherits System.Windows.Forms.Form

Public cm As CurrencyManager

Public a As String
Private Sub Button8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button8.Click

74 



If MessageBox.Show("Are you sure to close the program", "System Exit",

MessageBoxButtons.YesNo, MessageBoxlcon.Asterisk,

MessageBoxDefaultButton.Buttonl) = DialogResult.Yes Then

Application.Exit()

End If

End Sub

Private Sub Form4_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

dacompany.Fill(ds.company)

cm= CType(Me.BindingContext(DataViewl), CurrencyManager)

TextBox7 .Hide()

End Sub

End Sub

Private Sub Button9 _Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

dacompany.Fill( ds.company)

End Sub

Private Sub HoverGradientButton7_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles HoverGradientButton7.Click

cm = CType(Me.BindingContext(Data View 1 ), CurrencyManager)

cm.EndCurrentEdit()

MessageBox.Show(TextBoxl.Text & "added your database successfully", "Added

successfully", MessageBoxButtons. OK)

dacompany.Update(ds.company)

End Sub

Private Sub HoverGradientButton4_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles HoverGradientButton4.Click

If cm.Position = O Then

MsgBox("You are on first record", MsgBoxStyle.Information, "First Record")

Else

cm.Position = cm.Position - 1

75



End If

End Sub

Private Sub HoverGradientButton8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles HoverGradientButton8.Click

If cm.Position = cm.Count - 1 Then

MsgBox("You are on last record", MsgBoxStyle.Information, "Last Record")

Else

cm.Position = cm.Position + 1

End If

End Sub

Private Sub DataGridl_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles DataGrid 1. Click

Dim a As String

a= DataGridl(DataGridl.CurrentRowlndex, 6)

PictureBox 1 .Image = Image.FromFile( a)

End Sub

Private Sub HoverGradientButtonlO_ Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles HoverGradientButton 1 O. Click

Dim f As String

Dim c As String

OpenFileDialogl.InitialDirectory = "c:\"

OpenFileDialogl .Filter= "Jpg files (* .jpg)I*.jpg"

OpenFileDialog 1 .Show Dialog()

If OpenFileDialogl.ShowDialog = DialogResult.OK Then

f = OpenFileDialogl.FileName.ToString

Me.Text= f

Dim dosya As New Filelnfo(f)

c = "c:\proje\pics\logo\" & TextBoxl.Text & "." & "jpg"

TextBox7.Text = c

dosya.CopyTo(c, True)

76 



MessageBox.Show("Your logo saved this " & c & " directory", " Succesfully added

to database", MessageBoxButtons.OK, MessageBoxlcon.Information)

Else
MessageBox.Show("Your logo not saved database succesfully", "Not successful",

MessageBoxButtons.OK, MessageBoxlcon.Warning)

End If

End Sub
Private Sub TextBox7_TextChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TextBox7.TextChanged

a= TextBox7.Text.ToString

PictureBoxl.Image = Image.FromFile(a)

End Sub

End Class

FORM5.CUSTOMERFORM 

Imports System.IO

Public Class Form5

Inherits System.Windows.Forms.Form

Public cm As CurrencyManager

Public a As String
Private Sub Form5_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load
cm= CType(Me.BindingContext(DataViewl), CurrencyManager)

da.Fill(ds.customer)

End Sub
Private Sub HoverGradientButton2_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button9.Click

Try
cm = CType(Me.BindingContext(DataView 1 ), CurrencyManager)

77



cm.AddNew()

Catch ex As Exception

MsgBox( ex.Message)

End Try

End Sub
Private Sub HoverGradientButton19_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs)

DataViewl.RowFilter = ""

IfDataViewl.Count = O Then

MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons.OK, MessageBoxlcon.Information,

MessageBoxDefaultButton.Button 1)

ElselfDataViewl.Count > O Then

Me.Text= DataViewl.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

End Sub
Private Sub HoverGradientButton25 _Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Try

IfTextBox9.Text =""Then

MsgBox("Please fill the customer name field", MsgBoxStyle.Exclamation, "Fill

empty space")

Exit Sub

End If

DataViewl.RowFilter = "cusname="' & TextBox9.Text & ""'

IfDataViewl.Count = O Then

MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons.OK, MessageBoxlcon.Information,

MessageBoxDefaultButton.Button 1)

Button33.Text = DataViewl.Count & "Records founded"

78



ElselfDataViewl.Count > O Then

Me.Text= DataViewl.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

Catch ex As Exception

MsgBox("Plase fill the not numeric values")

End Try

End Sub
Private Sub HoverGradientButton8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Try
If TextBox9.Text =""Then

MsgBox("Please fill the customer name field", MsgBoxStyle.Exclamation, "Fill

empty space")

Exit Sub

End If
DataViewl.RowFilter = "cuscompany="' & TextBox9.Text & ""'

IfDataViewl.Count = O Then
MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons.OK, MessageBoxicon.Information,

MessageBoxDefaultButton.Button 1)
Button33.Text = DataViewl.Count & "Records founded"

ElselfDataViewl.Count > O Then

Me.Text= DataViewl.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

Catch ex As Exception

MsgBox("Please fill the not numeric values")

End Try

End Sub

79 



Private Sub HoverGradientButtonlü_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles HoverGradientButtonlO.Click

Dim f As String

Dim c As String

OpenFileDialogl .InitialDirectory = "c:\"

OpenFileDialogl.Filter = "Jpg files(* .jpg)I* .jpg"

OpenFileDialogl .Show Dialog()

If OpenFileDialogl .Show Dialog= DialogResult.OK Then

f = OpenFileDialogl.FileName.ToString

Me.Text= f

, Dim dosya As New Filelnfo(f)

c = "c:\proje\pics\customer\" & TextBoxl.Text & TextBox2.Text & "." & "jpg"

TextBox7.Text = c

dosya.CopyTo(c, True)
MessageBox.Show("Your Photo saved this" & c & "directory"," Succesfully

added to database", MessageBoxButtons.OK, MessageBoxlcon.Information)

Else
MessageBox.Show("Your Photo not saved database succesfully", "Not successful",

MessageBoxButtons.OK, MessageBoxlcon.Warning)

End If

End Sub
Private Sub TextBoxlO_TextChanged_l(ByVal sender As System.Object, ByVal e As

System.EventArgs)

a= TextBoxlü.Text.ToString

PictureBox 1 .Image = Image.FromFile(a)

End Sub
Private Sub Button13_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Try

If TextBox9.Text ='"'Then

80 



---

MsgBox("Please fill the customer id field", MsgBoxStyle.Exclamation, "Fill

empty space")

Exit Sub

End If

DataViewl.RowFilter = "cusid="' & TextBox9.Text & '""

IfDataViewl.Count = O Then

MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons.OK, MessageBoxicon.Information,

MessageBoxDefaultButton.Button 1)

Button33.Text = DataViewl.Count & "Records founded"

ElselfDataViewl.Count > O Then

Me.Text= Data'View b.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

Catch ex As Exception

MsgBox("Plase fill the numerical values")

End Try

End Sub

Private Sub Buttonl4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Try

If TextBox9.Text =""Then

MsgBox("Please fill the customer name field", MsgBoxStyle.Exclamation, "Fill

empty space")

Exit Sub

End If

DataViewl.RowFilter = "cusname="' & TextBox9.Text & '""

IfDataViewl.Count = O Then

MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons. OK, MessageBoxicon.Information,

MessageBoxDefaultButton.Buttonl)

81



Button33.Text = DataViewl.Count & "Records founded"

ElselfDataViewl.Count > O Then

Me.Text= DataViewl.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

Catch ex As Exception

MsgBox("Plase fill the not numeric values")

End Try

End Sub

c2.0pen()
Dim coml As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader
coml.CommandText ="select* from sale where customerid="' & TextBox9.Text &

coml.Connection = c2

dr = coml.ExecuteReader

sayl = O

say2 = O

Do While dr.Read

sayl = sayl + dr("saltotal")

say2 = say2 + dr("salquantity")

Loop

Band2.Visible = True

Labell l.Text = sayl & " " & "Ytl"

Label14.Text = say2 & " " & "Units"

c2.Close()

dr.Close()

End Sub
Private Sub Buttonl5_Click_2(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button15.Click

Try

If TextBox9.Text =""Then

82 



MsgBox("Please fill the customer name field", MsgBoxStyle.Exclamation, "Fill

empty space")

Exit Sub

End If

DataViewl.RowFilter = "cuscompany=" & TextBox9.Text & ""'

IfDataViewl.Count = O Then
MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons.OK, MessageBoxlcon.Information,

MessageBoxDefaultButton.Button 1)
Button33.Text = DataViewl.Count & "Records founded"

ElselfDataViewl.Count > O Then
Me.Text= DataViewl.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

Catch ex As Exception
MsgBox("Please fill the not numeric values")

End Try

End Sub
Private Sub Button16_Click_2(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl6.Click

DataViewl.RowFilter = ""

IfDataViewl.Count = O Then
MessageBox.Show("The search find anything", "There is no item",

MessageBoxButtons.OK, MessageBoxlcon.Information,

MessageBoxDefaultButton.Button 1)

ElselfDataViewl.Count > O Then
Me.Text= DataViewl.Count & "Records founded"

Button33.Text = DataViewl.Count & "Records founded"

End If

End Sub

83



Private Sub TextBoxlO_TextChanged_2(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TextBoxlO.TextChanged

a= TextBoxlO.Text.ToString

PictureBoxl.Image = Image.FromFile(a)

End Sub
Private Sub TextBox9 _MouseDown(ByVal sender As Object, ByVal e As

System. Windows.F orms.MouseEventArgs) Handles TextBox9 .MouseDown

TextBox9 .ResetText()

End Sub

End Class

FORM 6. SALE FORM

Public Class Form6
Inherits System.Windows.Forms.Form

Public t, a, b, s As Integer

Public total, guaranty As Integer
Public vl, v2, v3, v4, v5, v6, v7, v8, v9, vlO, vl 1, v12 As Integer

Public stid(12) As Integer

Public tot As Integer = O

Public totq As Integer = O

Public tot2 As Integer = O

Public cusid As Integer
Private Sub TabControll_SelectedlndexChanged(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles TabControl1 .SelectedlndexChanged

If TabPage2.Focus = True Then
Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select cusname from customer"

84



com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox6.Items.Contains(dr("cusname")) = False Then

ComboBox6.Items.Add(dr("cusname"))

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End If

If TabPage2.Focus = True Then

Dim com As New SqlClient.SqlCommand

Dim dr2 As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select pcode from product"

com.Connection= c

dr2 = com.ExecuteReader

Do While dr2.Read

If ComboBox7.Items.Contains(dr2("pcode")) = False Then

Combo Box 7 .Items .Add(dr2( "pcode "))

End If

If ComboBox8.Items.Contains(dr2('1pcode")) = False Then

ComboBox8 .Items.Add( dr2("pcode"))

End If

If ComboBox9 .Items. Contains( dr2("pcode ")) = False Then

ComboBox9 .Items.Add( dr2("pcode1'))

85



-- e

End If
If Combo Box 1 O .Items. Contains( dr2("pcode ")) = False Then

Combo Box 1 O.Items.Add( dr2("pcode "))

End If
If ComboBoxl l.ltems.Contains(dr2("pcode")) = False Then

Combo Box 11 .Items.Add( dr2("pcode"))

End If
If ComboBox12.Items.Contains(dr2("pcode")) = False Then

Combo Box 12.Items.Add( dr2("pcode"))

End If
If ComboBoxl3.ltems.Contains(dr2("pcode")) = False Then

Combo Box 13 .Items.Add( dr2("pcode"))

End If
If ComboBoxl4.ltems.Contains(dr2("pcode")) = False Then

ComboBox14.Items.Add(dr2("pcode"))

End If
If ComboBox15.Items.Contains(dr2("pcode")) = False Then

ComboBox 15 .Items.Add( dr2("pcode "))

End If
If ComboBoxl6.ltems.Contains(dr2("pcode")) = False Then

Combo Box 16.ltems.Add( dr2('1pcode"))

End If
If ComboBoxl 7.ltems.Contains(dr2(11pcode'')) = False Then

Combo Box 17.Items.Add( dr2("pcode"))

End If
If ComboBoxl8.Items.Contains(dr2("pcode")) = False Then

Combo Box 18 .Items .Add(dr2('1pcode "))

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

86



Finally

c.Close()

dr2.Close()

End Try

End If

End Sub

Private Sub ComboBoxl_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxl.SelectedindexChanged

Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

co.CommandText = "select * from product"

co.Connection= c

dr = co.ExecuteReader

Do While dr.Read
If ComboBox2.Text = dr("pcode") And ComboBoxl.Text = dr("pname") Then

TextBoxl.Text = dr("pprice")

a= dr("pprice")

s = dr("pid")

TextBoxl.Text = dr("pprice")

total= dr("pprice") * (NumericUpDown2.Value I 100 + 1)

guaranty = dr("pguaranty")

TextBox2.Text = guaranty

TextBox3.Text = total

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

87



dr.Closeı)

End Try

End Sub
Private Sub NumericUpDownl_ ValueChanged(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles NumericUpDownl.ValueChanged

t =a* NumericUpDownl.Value

TextBox3.Text =(a* (NumericUpDown2.Value I 100 + 1)) *

(NumericUpDownl .Value)

End Sub

End Sub
Private Sub HoverGradientButton2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button14.Click

NumericUpDown2.Value = 18

NumericUpDownl.Value = 1

End Sub
Private Sub Form6_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

Dim co As New SqlClient.SqlCommand

Dim dr4 As SqlClient.SqlDataReader

Try

c.Open()
co.CommandText ="select* from product"

co.Connection= c

dr4 = co.ExecuteReader

Do While dr4.Read
If ComboBox2.Items.Contains(dr4("pcode")) = False Then

ComboBox2.Items.Add(dr4("pcode"))

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

88



Finally

c.Close()

dr4.Close()

End Try

Dim com As New SqlClient.SqlCommand

Dim dr5 As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select cusname from customer"

com.Connection= c

dr5 = com.ExecuteReader

Do While dr5 .Read

If ComboBox3.Items.Contains(dr5("cusname")) = False Then

ComboBox3.Items.Add(dr5("cusname"))

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr5.Close()

End Try

End Sub
Dim co2 As New SqlClient.SqlCommand

Dim i As Integer = O 

tarih= DateTimePickerl.Value
www = tarih.Month & "." & tarih.Day & "." & tarih.Year

c.Open()
co2.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salvat,salquantity,salguaranty)

values(" & t & "," & s & ","' & ComboBox2.Text & "',"' & ComboBoxl.Text & "',"' & 

89 



www & '"," & a & ",11 & NumericUpDown2.Value & 11,11 & NumericUpDownl.Value & ",11

& guaranty & ")11

' t is the customerid

' s is the stid

co2.Connection = c

i = co2.ExecuteNonQuery

If i > O Then
MessageBox.Show(11CustomerName= 11 & ComboBox3.Text & 11

" & 

ComboBox4.Text & vbCrLf & "Saled Product Name=" & "" & ComboBoxl.Text & 

vbCrLf & "Total Amount=" & total, "Succesfully Saled'', MessageBoxButtons.OK,

MessageBoxlcon.Information)

Elself i = O Then

MessageBox.Show(11olmadı")

End If
Catch ex As SqlClient.SqlException

MessageBox.Show(ex.Message)

Finally

c.Close()

End Try

End Sub
Private Sub NumericUpDown2_ValueChanged(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles NumericUpDown2.ValueClıanged

TextBox3.Text =(a~ (NumericUpDown2.Value I 100+ 1)) * 
(NumericUpDownl.Value)

End Sub
Private Sub ComboBox4_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox4.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

90



com.CommandText ="select* from customer"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox3.Text = dr("cusname") And ComboBox4.Text = dr("cussumame")

Then

t = dr("cusid")

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox3_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox3.SelectedindexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select * from customer"

com.Connection= c

. dr = com.ExecuteReader

Do While dr.Read
If ComboBox3.Text = dr("cusname") Then

ComboBox4.Items.Add(dr("cussumame"))

End If

Loop

Catch ex As Exception

91



MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox6_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox6.SelectedindexChanged

Try

ComboBox5 .Items. Clear()

ComboBox5.Text ="

ComboBox5 .Focus()

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

c.Open()

. : : Select Customer Surname : : . "

com.CommandText = "select* from customer"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox6.Text = dr("cusname") Then

ComboBox5 .Items.Add( dr(" cussumame"))

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

End Try

End Sub
Private Sub ComboBox5 _SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox5.SelectedindexChanged

92



Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Button20.Visible = False

TextBox37.Visible = False

Try

c.Open()

co.CommandText ="select* from customer"

co.Connection= c

dr = co.ExecuteReader

Do While dr.Read
If ComboBox6.Text = dr("cusname") And ComboBox5.Text = dr("cussurname")

Then

TextBoxlO.Text = dr("custaxno")

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub Check.Box4_CheckedChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Check.Box4.CheckedChanged

If Check.Box4.Checked = True Then

ComboBoxlO.Enabled = True

Else

-'TextBox26.Enabled = False

End If

End Sub

93



Private Sub ComboBox7 _SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox7.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox7.Text = dr("pcode") Then

If ComboBoxl9.Items.Contains(dr("pname")) = False Then

ComboBox 19 .Items.Add( dr("pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox8_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox8.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select pcode, pname from product"

com.Connection= c

94



dr = com.ExecuteReader

Do While dr.Read

If ComboBox8.Text = dr("pcode") Then

If ComboBox20.Items.Contains( dr("pname")) = False Then

ComboBox20 .Items.Add( dr("pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox9 _SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox9.SelectedindexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox9.Text = dr("pcode") Then

If ComboBox21 .Items.Contains( dr('1pname")) = False Then

ComboBox21 .Items .Add( dr( "pname "))

End If

End If

Loop

95



Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBoxlO_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxlO.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBoxlO.Text = dr("pcode") Then

If ComboBox22.Items.Contains( dr("pname")) = False Then

ComboBox22.Items.Add( dr("pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub

96 



~~-----

Private Sub ComboBoxl l_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxl l.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBoxl l.Text = dr("pcode") Then

If ComboBox23.Items.Contains(dr('1pname"))= False Then

ComboBox23.Items.Add(drC1pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox12_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxl2.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

97 



dr = com.ExecuteReader

Do While dr.Read

If ComboBox12.Text = dr("pcode") Then

If ComboBox24.Items.Contains(dr("pname")) = False Then

ComboBox24.Items.Add(dr("pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBoxl3_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxl3.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do ·while dr.Read

If ComboBoxl3.Text = dr("pcode") Then

If ComboBox25.Items.Contains(dr("pname")) = False Then

ComboBox25.Items.Add(dr("pname"))

End If

End If

Loop

98 



----

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox14_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox14.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox14.Text= dr("pcode") Then

If ComboBox26.Items.Contains(dr("pname")) = False Then

ComboBox26.Items.Add(dr(''pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub

99 



-----

Private Sub ComboBox15_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox15.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText = "select pcode, pname from product"

com.Connection= c

) 

dr = com.ExecuteReader

Do While dr.Read

If Combo Box 15. Text= dr("pcode") Then

If ComboBox27.Items.Contains( dr("pname")) = False Then

ComboBox27.Items.Add( dr("pname"))

Endlf

Endlf

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub

Private Sub ComboBox16_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxl6.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader. 
Try

c.Open()

com.CommandText = "select pcode, pname from product"

com.Connection= c

100



dr = com.ExecuteReader

Do While dr.Read

If ComboBox16.Text = dr("pcode") Then

If ComboBox28.Items.Contains(dr("pname")) = False Then

ComboBox28.Items.Add(dr("pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBoxl 7_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBoxl 7.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBoxl 7.Text = dr("pcode") Then

If ComboBox29.Items.Contains(dr("pname")) = False Then

ComboBox29.Items.Add(dr("pname"))

End If

End If

Loop

101



-

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBoxl8_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox18.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText = "select pcode, pname from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBox18.Text = dr("pcode") Then

If ComboBox30.Items.Contains(dr("pname")) = False Then

ComboBox3O .Items.Add(dr("pname"))

End If

End If

Loop

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Closet)

End Try

End Sub

102



~· 

Private Sub CornboBox19_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As Systern.EventArgs)Handles CornboBox19.SelectedindexChanged

Dim corn As New SqlClient.SqlCornrnand

Dim dr As SqlClient.SqlDataReader

Try
NurnericUpDown3.Enabled = True

TextBoxl l.Enabled = True

TextBox23.Enabled = True

c.Open()
corn.CornrnandText="select* from product"

corn.Connection= c

dr = corn.ExecuteReader

Do While dr.Read
If CornboBox7.Text= dr("pcode") And CornboBoxl9.Text = dr("pnarne") Then

NurnericUpDown3.Value = 1

vl = dr("pprice")

stid(1) = dr("pid")

TextBox23.Text = dr("pguaranty")

End If

Loop

TextBoxl l.Text = vl

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub CornboBox20_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As Systern.EventArgs)Handles CornboBox20.SelectedlndexChanged

Dim corn As New SqlClient.SqlCornrnand

103



[f" 

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
com.CommandText ="select* from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read
If ComboBox8.Text = dr("pcode") And ComboBox20.Text = dr("pname") Then

NumericUpDown4.Value = 1

v2 = dr("pprice")

TextBox24.Text = dr("pguaranty")

stid(2) = dr("pid")

End If

Loop

TextBoxl2.Text = v2

Catch ex As Exception

MsgBox(ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub
Private Sub ComboBox21_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox21.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try
NumericUpDown5.Enabled = True

c.Open()

com.CommandText ="select* from product"

com.Connection= c

104



dr = com.ExecuteReader

Do While dr.Read

If ComboBox9.Text = dr("pcode") And ComboBox21.Text = dr("pname") Then

NumericUpDown5.Value = 1

v3 = dr("pprice")

TextBox25.Text = dr("pguaranty")

stid(3) = dr(''pid")

End If

Loop

TextBox13.Text = v3

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub

Private Sub ComboBox22_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox22.SelectedindexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText ="select* from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBoxlü.Text = dr(''pcode") And ComboBox22.Text = dr("pname") Then

NumericUpDown6.Value = 1 

v4 = dr("pprice")

TextBox26.Text = dr("pguaranty")

105



stid(4) = dr("pid")

End If

Loop

TextBox14.Text = v4

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub

Private Sub ComboBox23_SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox23.SelectedindexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText ="select* from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBoxl I.Text= dr("pcode") And ComboBox23.Text = dr("pname") Then

NumericUpDown7.Value = 1

v5 = dr("pprice")

TextBox27.Text = dr("pguaranty")

stid(5) = dr("pid")

End If

Loop

TextBox15.Text = v5

Catch ex As Exception

MsgBox( ex.Message)

106



. - 

Finally

c.Close()

dr.Close()

End Try

End Sub

Private Sub ComboBox24_SelectedindexChanged(ByVal sender As System.Object

ByVal e As System.EventArgs) Handles ComboBox24.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText ="select* from product"

com.Connection= c

dr = com.ExecuteReader

Do While dr.Read

If ComboBoxl2.Text = dr('1pcode") And ComboBox24.Text = dr('1pname") Theı

NumericUpDown8.Value = 1

v6 = dr("pprice11)

TextBox28.Text = dr('1pguaranty")

stid( 6) = dr('1pid'')

End If

Loop

TextBox16.Text = v6

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()

End Try

End Sub

107



Private Sub ComboBox27 _SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox27.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText ="select* from product"

com.Connection= c

dr = com.ExecuteReader

Do While ctr.Read

If ComboBox15.Text = dr("pcode") And ComboBox27.Text = dr("pname") Then

NumericUpDownl I.Value= 1

v9 = dr("pprice")

TextBox31.Text = dr("pguaranty")

stid(9) = dr("pid")

End If

Loop

TextBox19.Text = v9

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

ctr.Close()

End Try

End Sub

Private Sub ComboBox28_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox28.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

108



com.CommandText ="select* from product"

com.Connection= c

cir = com.ExecuteReader

Do While dr.Read

If ComboBox16.Text = dr("pcode") And ComboBox28.Text = dr('1pname") Then

NumericUpDown12.Value = 1

vlü = drC1pprice")

TextBox32.Text = drC1pguaranty")

stid(lO) = drC1pid")

End If

Loop

TextBox20.Text = vlO

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Closeı)

End Try

End Sub

Private Sub ComboBox29 _SelectedindexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox29.SelectedindexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()

com.CommandText ="select* from product"

com.Connection= c

cir = com.ExecuteReader

Do While cir.Read

If ComboBoxl 7.Text = dr("pcode") And ComboBox29.Text = cir("pname") Then

NumericUpDown13.Value = 1

109



vl 1 = dr("pprice")

TextBox33.Text = dr("pguaranty")

stid( 11) = dr("pid")

End If

Loop

TextBox21.Text = vl 1

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

ctr.Close()

End Try

End Sub

Private Sub ComboBox30_SelectedlndexClıanged(ByVal sender As System.Object

ByVal e As System.EventArgs) Handles ComboBox30.SelectedlndexChanged

Dim com As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

com.CommandText ="select* from product"

com.Connection= c

dr = com.ExecuteReader

Do While ctr.Read

If ComboBox18.Text = dr("pcode") And ComboBox30.Text = dr("pname") Then

NumericUpDown14.Value = 1

v12 = dr('1pprice")

TextBox34.Text = dr("pguaranty")

stid(12) = dr("pid")

End If

Loop

TextBox22.Text = v12

Catch ex As Exception

110



-

MsgBox( ex.Message)

Finally

c.Close()

ctr.Close()

End Try

End Sub

Private Sub TextBox35_TextChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TextBox35.TextChanged

tot2 =tot+ tot* 0.18

TextBox36.Text = tot2

End Sub

Private Sub Button13_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button13.Click

tot= O

If CheckBoxl.Checked = True Then

tot= tot+ vl * NumericUpDown3.Value

TextBox35.Text = tot

End If

If CheckBox2.Checked = True Then

tot= tot+ v2 * NumericUpDown4.Value

TextBox35.Text = tot

End If

If CheckBox3.Checked = True Then

tot= tot+ v3 * NumericUpDown5.Value

TextBox35.Text = tot

End If

If CheckBox4.Checked = True Then

tot= tot+ v4 * NumericUpDown6.Value

TextBox35.Text = tot

End If

If CheckBox5.Checked = True Then

111



tot= tot+ v5 * NumericUpDown7.Value

TextBox35.Text = tot

End If

If Check.Box6.Checked= True Then

tot= tot+ v6 * NumericUpDown8.Value

TextBox35.Text = tot

End If
If Check.Box7.Checked= True Then

tot= tot+ v7 * NumericUpDown9.Value

TextBox35.Text = tot

End If

If Check.Box8.Checked= True Then

tot= tot+ v8 * NumericUpDownlO.Value

TextBox35.Text = tot

End If

If Check.Box9.Checked= True Then

tot= tot+ v9 * NumericUpDownl I.Value

TextBox35.Text = tot

End If

If Check.BoxlO.Checked= True Then

tot= tot+ vlO * NumericUpDownl2.Value

TextBox35.Text = tot

End If

If Check.Boxll.Checked= True Then

tot= tot+ vl 1 * NumericUpDown13.Value

TextBox35.Text = tot

End If

If Check.Boxl2.Checked = True Then

tot= tot+ v12 * NumericUpDown14.Value

TextBox35.Text = tot

End If

112



End Sub
Private Sub HoverButtonBand2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles HoverButtonBand2.Click

End Sub

Private Sub Buttonl2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl2.Click

Dim mes As String

tarih= DateTimePicker2.Value

www = tarih.Month & "." & tarih.Day & "." & tarih.Year

Dim i(l2) As Integer
lf ComboBox5.Text =".::Select Customer Surname::." Or ComboBox6.Text ="

Select Customer Name::." Then
MessageBox.Show("Please, select or fill the empty fields carefully", "Attention

Please", MessageBoxButtons.OK, MessageBoxlcon.Information)

Exit Sub

End If

Try

c.Open()

If CheckBoxl.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into
sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(l) & ","' & ComboBox7.Text & "',"' & ComboBoxl9.Text & "',"' & 

www & "'," & TextBoxl l.Text & "," & NumericUpDown3.Value & "," & TextBox23.Text

& ")" 

col.Connection= c

i(l) = col.ExecuteNonQuery

If i(l) > O Then
mes= mes & ", " & ComboBoxl9.Text

End If

113



End If

If CheckBox2.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale( customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" S: 

cusid & "," & stid(2) & ","' & ComboBox8.Text & "',"' & ComboBox20.Text & "',"' & 

www & "'," & TextBoxl2.Text & "," & NumericUpDown4.Value & "," & TextBox24.Text

& ")" 

col.Connection= c

i(2) = col.ExecuteNonQuery

If i(2) > O Then

mes= mes & ", " & ComboBox20.Text

End If

End If

If CheckBöx3.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(3) & ","' & ComboBox9.Text & "',"' & ComboBox21.Text & '","' & 

www & "'," & TextBoxl3.Text & "," & NumericUpDown5.Value & "," & TextBox25.Tex

& ")" 

col.Connection= c

i(3) = col.ExecuteNonQuery

If i(3) > O Then

mes= mes & ", " & ComboBox21.Text

End If

End If

If CheckBox4.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

114



cusid & "," & stid(4) & ","' & ComboBoxlü.Text & "',"' & ComboBox22.Text & "',"' & 

www & '"," & TextBox14.Text & "," & NumericUpDown6.Value & "," & TextBox26.Text

& ")" 

col.Connection= c

i(4) = col.ExecuteNonQuery

Ifi(4)>0Then

mes= mes & "," & ComboBox22.Text

End If

End If

If CheckBox5.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(5) & ","' & ComboBoxl 1.Text & "',"' & ComboBox23.Text & "','" & 

www & "'," & TextBox15.Text & ",'' & NumericUpDown7.Value & ",'' & TextBox27.Text

& ")" 

col.Connection= c

i(5) = col.ExecuteNonQuery

If i(5) > O Then

mes= mes & "," & ComboBox23.Text

End If

End If

If CheckBox6.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & ",'' & stid(6) & ",'" & ComboBox12.Text & '",'" & ComboBox24.Text & '",'" & 

www & "','' & TextBox16.Text & ",'' & NumericUpDown8.Value & ",'' & TextBox28.Text

& ")" 

col.Connection= c

i(6) = col.ExecuteNonQuery

115



If i(6) > O Then

mes= mes & ", '' & ComboBox23.Text

End If

End If

If CheckBox7.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(7) & ","' & ComboBoxl3.Text & "',"' & ComboBox25.Text & "',"' & 

www & "'," & TextBoxl 7.Text & "," & NumericUpDown9.Value & "," & TextBox29.Text

& ")" 

col.Connection= c

i(7) = col.ExecuteNonQuery

If i(7) > O Then

mes= mes & "," & ComboBox25.Text

End If

End If

If CheckBox8.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values('' & 

cusid & "," & stid(8) & ","' & ComboBox14.Text & "',"' & ComboBox26.Text & "',"' & 

www & "'," & TextBoxl8.Text & "," & NumericUpDownlü.Value & "," & 

TextBox30.Text & ")" 

col.Connection= c

i(8) = col.ExecuteNonQuery

If i(8) > O Then

mes= mes & "," & ComboBox26.Text

End If

End If

116



If CheckBox9.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale( customerid,pid,salcode,salname,saldate,salprice,salquantity ,salguaranty) values(" & 

cusid & "," & stid(9)& ","' & ComboBox15.Text & "',"' & ComboBox27.Text & "',"' & 

www & '"," & TextBox19.Text & "," & NumericUpDownl 1.Value& "," & 

TextBox31.Text & ")" 

col.Connection= c

i(9) = col.ExecuteNonQuery

If i(9) > O Then

mes= mes & "," & ComboBox26.Text

End If

End If

If CheckBoxlü.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(lü) & ","' & ComboBox16.Text & "',"' & ComboBox28.Text & "','" & 

www & "'," & TextBox20.Text & "," & NumericUpDown12.Value & "," & 

TextBox32.Text & ")" 

col.Connection= c

i(lü) = col.ExecuteNonQuery

If i(l O) > O Then

mes= mes & ", " & ComboBox28.Text

End If

End If

If CheckBox1 1.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(l 1) & ",'" & ComboBoxl 7.Text & "',"' & ComboBox29.Text & '","' & 

117



www & "'," & TextBox21.Text & "," & NumericUpDownl3.Value & "," & 

TextBox33.Text & ")" 

col.Connection= c

i(l 1) = col.ExecuteNonQuery

If i(l 1) > O Then

mes= mes & "," & ComboBox29.Text

End If

End If

If CheckBoxl2.Checked = True Then

Dim col As New SqlClient.SqlCommand

col.CommandText = "insert into

sale(customerid,pid,salcode,salname,saldate,salprice,salquantity,salguaranty) values(" & 

cusid & "," & stid(12) & ","' & ComboBox18.Text & "',"' & ComboBox30.Text & "',"' & 

www & "'," & TextBox22.Text & "," & NumericUpDown14.Value & "," & 

TextBox34.Text & ")" 

co1 .Connection= c

i(12) = col.ExecuteNonQuery

If i(12) > O Then

mes= mes & "," & ComboBox30.Text

End If

End If
MessageBox.Show(mes, "Succesfully Saled", MessageBoxButtons.OK,

MessageBoxicon.Information)

Catch ex As SqlClient.SqlException

MessageBox.Show(ex.Message)

Finally

c.Close()

End Try

End Sub

End Class

118



FORM 7. REPORT FORM 

Imports CrystalDecisions. CrystalReports.Engine

Imports CrystalDecisions.Shared

Public Class Form7

Inherits System.Windows.Forms.Form

Public st, en As DateTime

Public xx As New crl

Public yy As New cr2

Private Sub Button8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button8. Click

If MessageBox.Show("Are you sure to close the program", "System Exit",

MessageBoxButtons.YesNo, MessageBoxlcon.Asterisk,

MessageBoxDefaultButton.Buttonl) = DialogResult.Yes Then

Application.Exit()

End If

End Sub

Private Sub TabControll_SelectedlndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles TabControll.SelectedlndexChanged

If TabPagel.Focus = True Then

CrystalReportViewerl.ReportSource = xx

Dim z As New CrystalDecisions.Shared.ParameterValues

Dim zl As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim urun = tarih

zl.Value = urun

~Add(zl)

xx.DataDefinition.ParameterFields("@tarih").ApplyCurrentValues(z)

CrystalReportViewerl .ReportSource = xx

End If

119



If TabPage2.Focus = True Then

st= DateTimePickerl.Value

en= DateTimePicker2.Value

Dim z As New CrystalDecisions.Shared.ParameterValues

Dim zz As New CrystalDecisions.Shared.ParameterValues

Dim zl As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim z2 As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim urunl = st.ToShortDateString

Dim urun2 = en.ToShortDateString

zl.Value = urunl

z2.Value = urun2

z.Add(zl)

zz.Add(z2)

yy.DataDefinition.ParameterFields("@tarihl ").ApplyCurrentValues(z)

yy.DataDefinition.ParameterFields("@tarih2").ApplyCurrentValues(zz)

CrystalReportViewer2.ReportSource = yy

End If

End Sub

Private Sub Form7 _Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles MyBase.Load

tarih= Now.ToShortDateString

st= DateTimePickerl.Value

en= DateTimePicker2.Value

End Sub

Private Sub HoverGradientButtonl_Click(ByVal sender As System.Object, Bvval

e As System.EventArgs) Handles Buttonl2.Click

st= DateTimePickerl.Value

en= DateTimePicker2.Value

Dim yy As New cr2

Dim z As New CrystalDecisions.Shared.ParameterValues

Dim zz As New CrystalDecisions.Shared.ParameterValues

120



Dim zl As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim z2 As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim urunl = st.ToShortDateString

Dim urun2 = en.ToShortDateString

zl.Value = urunl

z2.Value = urun2

z.Add(zl)

zz.Add(z2)

yy.DataDefinition.ParameterFields("@tarihl ").ApplyCurrentValues(z)

yy.DataDefinition.ParameterFields("@tarih2 ") .Appl yCurrent Values( zz)

CrystalReportViewer2.ReportSource = yy

End Sub

End Class

FORM 8. REGISTRATION FORM 

Imports Microsoft.Win32

Public Class Form8

Inherits System.Windows.Forms.Form

Private Sub Buttonl l_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl I.Click

If TextBoxl.Text =""Then

MessageBox.Show("Please fill the serial number", "Fill the serial",

MessageBoxButtons.OK, MessageBoxicon.Exclamation)

Exit Sub

End If

If TextBoxl.Text <> "edimspeed2005" Then

MessageBox.Show(TextBoxl.Text & "is not valid serial number", "Enter correct

serial number", MessageBoxButtons.OK, MessageBoxicon.Exclamation)

TextBoxl.Focus()

Elself TextBoxl.Text = "edimspeed2005" Then

121



p 1. Timer 1 .Dispose()

MessageBox.Show("You registered successfully", "Thank you, to use full version",

MessageBoxButtons. OK, MessageBoxlcon. Information)

Registry.ClassesRoot.SetValue("edimd", "edimspeed2005")

ButtonBand2.Text = "Thank you for registration, Registered version"

TextBoxl.Enabled = False

Button9.Visible = True

p8.TextBoxl.Text = "Registered Full Vesion"

End If

End Sub

End Class

FORM 9. MAIN MENU 

Public Class Form9

Inherits System.Windows.Forms.Form

End Class

FORM 10. STOCK CONTROL FORM 

Public Class Formlü

Inherits System.Windows.Forms.Form

Private Sub FormlO_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

da.Fill(ds.c)

End Sub
Private Sub HoverGradientButton3_Click_l(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles HoverGradientButton3.Click

Dim buy As Integer

buy= TextBox8.Text

122



tarih= DateTimePickerl.Value

www = tarih.Month & "." & tarih.Day & "." & tarih.Year

sd3 = "C:\proje\pics\stock\" & TextBox6.Text & "." & "jpg"

Try
Dim c As New SqlClient.SqlConnection

c.ConnectionString = "data source=asusa6vq;initial catalog=adem;integrated

security=true"
Dim co As New SqlClient.SqlCommand

Dim i As Integer = O

c.Open()

co.CommandText = "insert into

stock(pid,stcode,stname,stbuy,stcompany,stguaranty,stdate,stquantity,stimage) values(''

TextBox5.Text & 11,111 & TextBox6.Text & 111,111 & TextBox7.Text & 111," & buy & 11,111 &

ComboBoxl.Text & 111," & NumericUpDown2.Value & 11,111 & www & 111,11 &

NumericUpDownl.Value & 11,111 & sd3 & 111)"

co.Connection= c

If TextBox8.Text = 1111 Then
MessageBox.Show("Please insert the product price", "Fill the product price"

MessageBoxButtons.OK, MessageBoxicon.Exclamation)

TextBox8.Focus()

End If

i = co.ExecuteNonQuery()

If i > O Then
MessageBox.Show(TextBox6.Text & " " & TextBox7.Text & vbCrLf &

"Inserted succesfully", "Inserted Succesfully", MessageBoxButtons.OK,

MessageBoxlcon.Information)

Elself i = O Then
MessageBox.Show("Can't make Insert operation", "Not Succesfull'',

MessageBoxButtons.OK, MessageBoxicon.Exclamation)

End If

123



•••••••••............... _.----~-------~~~ 
t

Catch ex As SqlClient.SqlException

MsgBox( ex.Message)

Finally

c.Close()

<ls.Clear()

da.Fill( ds.c)

End Try

End Sub
Private Sub HoverGradientButton2 _Click_ l (ByVal sender As Syste::i..Ü:'J..i~;::-- ByVal e

As System.EventArgs) Handles HoverGradientButton2.Click

Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Try

c.Open()
co.CommandText = "select* from company"

co.Connection= c

dr = co.ExecuteReader

Do While dr.Read
Combo Box 1 .Items.Add( dr(" comname "))

Loop

Catch ex As Exception

MsgBox( ex.Message)

Finally

c.Close()

dr.Close()
ComboBoxl.Text =" .:: Select the company name::."

GroupBox2.Enabled = True

End Try

End Sub

End Class

124



FORM 11. GUARANTY VALIDATE FORM 

Public Class Forml 1

Inherits System.Windows.Forms.Form

Private Sub Forml l_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

dasale.Fill( dssale.sale)

End Sub

Private Sub HoverGradientButtonl_Click(ByVal sender As System.Object, ByVal ı

As System.EventArgs) Handles HoverGradientButton 1. Click

Dim co As New SqlClient.SqlCommand

Dim dr As SqlClient.SqlDataReader

Dimi As Integer= O

Try

co.Connection= c

co.CommandText ="select* from sale"

c.Open()

dr = co.ExecuteReader

IfTextBoxl.Text =""Then

MessageBox.Show("Please fill the Sale Id", "Please Fill the Sale Id",

MessageBoxButtons.OK, MessageBoxlcon.Asterisk)

Exit Sub

End If

Do While dr.Read

If TextBoxl.Text = dr("salid") Then

tarih= dr("saldate")

sayl = dr("salguaranty")

sd2 = dr(''salid")

Exit Do

End If

Loop

125



tarih= DateAdd(Dateinterval.Year, sayl, tarih)

tarih2 = Now.ToShortDateString

If tarih> Now.ToShortDateString Then

sd3 = DateDiff(Dateinterval.Day, tarih2, tarih)

MessageBox.Show("Sale id=" & sd2 & "product guaranty is continue" &

vbCrLf & "The Remainig Quaranty Days=" & sd3, "The guaranty is valid",

MessageBoxButtons.OK, MessageBoxlcon.Information)

Else

MessageBox.Show("Sale id=" & sd2 & "have not guaranty", "The guaranty

duration finished", MessageBoxButtons.OK, MessageBoxlcon.Exclamation)

End If

Catch ex As SqlClient.SqlException

MsgBox( ex.Message)

Finally

dr.Close()

c.Close()

End Try

End Sub

End Class

FORM 12. EXTRAS FORM 

Public Class Form12

Inherits System. Windows.Forms.Form

Private Sub Forml2_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

Try

dacus.Fill( dscus.custotal)

dapid.Fill( dscus.salepid)

dastock.Fill( dscus.stockpid)

dafark.Fill( dscus.c)

126



Catch ex As SqlClient.SqlException

MsgBox( ex.Message)

End Try

End Sub

FORM 13. ABOUT FORM 

Public Class Form13

Inherits System.Windows.Forms.Form
Private Sub MenultemlO_Click_l(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MenultemlO.Click

s2 =Now

sd = DateDiff(Dateinterval.Hour, s 1, s2)

sd2 = DateDiff(Dateinterval.Minute, s 1, s2)

sd3 = DateDiff(Dateinterval.Second, s 1, s2)

sd4 = "The program was started" & sd & "hours" & "" & sd2 & "" & "minutes" &

sd3 & " " & " seconds ago"
MessageBox.Show(sd4, "Edimspeed Stock 2005 uptime", MessageBoxButtons.OK,

MessageBoxicon.Information)

End Sub

End Class

127



APPENDIX B: SQL DATABASE TABLES

'Cöluınn'Naıne I · Data Type I Length I Allow Nulls
comid int 4

comname · nvarchar 50 
comphone • nverchar ,50 ı/
comfax nvarchar 50 ı/
comweb rıvercher ·SO ı/
commail nvarchar 50 ı/
comedress nvarchar 70 ı/
comimage char 50 ı/

Fig. 4.1 Company Design Table

'comneme lcomEhone jcomfax
penta 4453234 4565432

, koyuncu :8986787 7672312
.hehsıstern 1212323 7878899
vatan 6654676 5545666

.slevt '3434322 3432345

.çold .3466787 1090987
bogaziçi 02122.344543 87878
somya '343 344

-ankara .121 211
kask 343 454

'coroweb I commail ·I comadress · · ı comimage
www.penta.com.tr penta@penta.com. cevizlibag ishanı ka, C:\proje\pi,:s\loço
www.koyuncu.com koyuncu@koyuncu istikamet isheru teh. C:\proje\pi,:s\loço'
www.hizlisistem.coı hizlisistem@hizlisist, tecnology işheru me C:\proje\pi,:s
www. vatanbilgisay vatan@vatan.com. pc lşhenı rnecldivelo C:\proje\pi,:s

, www. slayt. com. tr slayt@slayt.com. tr . medeş karşısı adalh C: \proje\pi,:s'. _ ,
www.gold.com.tr gold@gold.com.tr cambaz işheru vahc C:\proje\pics\loço
www.bogazici.com. bogazici@bogazici., bogazici işhanı meci C:\proje\pi,:s\,lcıçıolp
www.somya.com.tı somya@somya.con ist · , c:\proje\pics\loçoi!
www.ankara.com ankara@ankara.co kızıla\/ c:\proje\pics\loçol<
www.selek.com.tr kask@kask.com sendıklı- afyon c:\proje\pics\loçoı

Fig. 4.2 Company Table

Column•Name I .Data Type I Length I Allow·Nulls
int 4
rıvarchar 50 
nvarchar 50 

cuscoropenv nvarchar 50 ı/
cusfax nvarcher 50 ı/
cusphone nvarchar 50 ı/
cusmail nvarchar 50 ı/
cusaddress · nvarchar 50 ı/
custsxno nvarchar 50 ı/

Fig. 4.3 Customer Design Table

cusid cusfex -,, cusphone cusmail _lfusaddresd I cUStaxnocusnarrıe ı·cussurna"me ıwsco
adem atçekerı terene

.elper koral<ı.J; pent a
·kamil selek arena.
tevfik poçanoglu gold.
abdurr-ahman .etçeken -erene
süleyman .etçeken -erene
nıustafa arık gold

.edem çelik pent a

3453423
3453333
3477748
6678688
3434434

"7667777
03923434534
6667788

05443234322
05324567345
05324567644
05324567444
05553455432
05324567656
05338998944
02133455544

arena@arena.com. bulgurimarn mah, v, 234323444'-i
alppower@yahoo.cmehlr cad. asa işha 5666677665
kamilselek@yahoo. keçeder cad. vahd 559898899?
tserdar@hotmail.cc selçuklu_konya 3434343434
apoatceken@yahoı bulgurimam mah. v, 6678554545
suleymanatc@·rahc wwv,ı.suleymanatc. 6767676672
mustafa_arikl@hoı mermere bölgesi 24 6654441333
ademcelik@hotmaH İzmir 45454545'4-5

C:\ııroıe.,;ıcs,.=
C:\ııro...ı.:,a=
C:lpo-,,,;.:s=
C:~=
c,~=
('.~

c,~=
C·~=

Fig. 4.4 Customer Table

128



-. Column Name · Data Type Length I Allow Nulls
~9? z int 4

urıarrıe rıvarcher 20 
upess rıvercher 15 
access · nvarchar 15 

Fig. 4.5 Login Design Table

30 
31 

uname jU(:!aSS ı access
manager· manager manager
edimspeed 9985306933 manager
selek selek user
adem adem user
ab dur rahman atcekerı user
atceken atcekerı user
ahmet ahmet user
user user user·
ab dull ah • abdullah 'user
suleyrrıen •suleyman user
elif • elif user
neu ·neu user·
buket buket user

Fig. 4.6 Login Table

. Column'Name I . Data Type I Length I Allow Nulls'
int 4

pcode nvarchar 50 V 
pname ·rıvarchar 100 V 
ppr ice money '8 V 
pguararıty int 4 V 
pcompany nvarchar 50 V 

.,pinıage rıvsrcher 80 V 

Fig. 4.7 Product Design Table

code IQname IQQrice J QOUaraht\1 IQcomQanı: IQimaqe
mouse a4 tech - aq12 PS/ 10 1 arena , C:\proje'ı,pics\stock
mouse , microsoft- rnv 44 F' 15 ı penta 'C: \proje\pics\stock
mouse logitech -lk 89 Optif 2D ı gold C: \proje\pics\stock
mainboard asus- Sc-775 !945F 105 ı arena , C: \proje\pics\stock
mainboard asus-Sc-775 SIS 6E 107 1 slayt , C: \proje\pics\stock
ram fl\.ı-512 MB, 40(1 Mr 8(1 2 slayt , C:\proje\pics\stock
ram fl·;.ı-256 MB,. 400 Mr 45 2 gold C: \proje\pics\stock
ram matrix-256 ME:, 53'. 46 2 gold C: \proje\pics\stock
ram twinmos-1 GB, 533 100 2 arena . C: \proje\pics\stock
ram kingstone-512 MB, 7c: 2 koyuncu , C:.\proje\pics\stock
cpu amd-Athlon 64 FX-( 340 2 slayt · C: \proje\pics\stock

Fig. 4.8 Product Table

129



-~

17

Column Name Data Type I Length I Allow Nulls
int 4
int 4
int 4
nvarchar 50 ı/
nvarchar 100 ı/
smalldatetime 4 ı/
money 8 ı/
money 8 ı/
int 4 ı/
int 4 ı/
int 4 ı/

sal code
salname
saldate
salpr:ice
saltotal
salvat
salquantity
selçuer anty

'_cj_

Fig. 4.9 Sale Design Table

sekcce I-salname". lsa1date Jsa!ı2!:ice Jsaltotal !salvat
cpu intel-Pentium4 531 26.05.2004 189 189 18
cpu amd-AthlonM 350 26.05.2003 178 178 18
mainboerd · esus- Sc-775 l945F 26,05.2002 105 105 18
harddisk sernsuoç- sm 78 12 26.05.2001 112 112 18
cpu emd-Athlon 64 350 26.05.2006 178 '178 .ıs

.ccu intel-Pentium4 sar 26.05.2006 169 169 , 16

.cpu intel-Pentium4 511 ·26.05.2006 190 190 18
cpu amd-Athlon64 350 26.05.2006 178 178 = 18
cpu · intel-Pentium4 531 26.05,2006 189 189 '18

-melrcoerd · asus-Sc-775 SIS 6E-26.0S.2006 = 107 · 107 , 18
.cemere olivett~l300K 129S 26.05.2006 23 23 18
"flopov ·nec-1.44f'ı'BTel<li ·26.05.2006 40 40 16

f!y-512MB1 400 Ml- 26.05.2006 60 60 18
matrix-256MB, 53~ 26.05.2006 ·46 46 18.....•... ~,., .. .-.f~- "'" dd o "Jt.. nı.:: ?rltl,1;.

14
13•25

·13
14
15
13

,!4
5
30
21
6

,8

Fig. 4.10 Sale Table

Columrı'fıJame I Data Type I Length I Allow Nulls'

- int 4
pid int 4
stcode nvarchar 50 ı/
seneme nvarcher 100 ı/
stbuv money 8 ı/
stcornpsrıv nvarchar 50 ı/
stguaranty int 4 ı/
stdate smalldatetime 4 ı/
stquantity int 4 ı/
st image nvarchar 100 ı/

Fig. 4.11 Stock Design Table

stende ·I stname jstbu~ !stC9!:!!Ed[!i !stquarai-ıtt istdate ·>-jstguentitv I stiınaoe
mouse a4 tech - ps/2 opti 1 O gold I 26.05.200ô I C:\projeı,:«SIS<OC
mainboard esus- sc-775 i945p, 105 hızlısistem 1 26,05,2006 10 C:\proje\:ııı:>\=<:
rom fly-S12 mb, 400 mt- 80 gold 2 26,05,2006 6 C:\proje\i>CS\=(

.herddlsk maxtor-ota23 1120 gold 2 26,05,2006 '9 C:\proje~
voice fly-prime 34 56 vatan 1 26,05,2006 5 C:\projeiPO\stt<
vce daytana-6'1mb eçp 80 somya 2 26.05,2006 ,3 C:\proje\;,c:s\st:x

-monitor semscnç-ea 128 470 gold 2 26,05,2006 10 C:\projeı;ıiı:>\stt,c
·monitor . samsunçı-al ·330 fl<: 178 bog az içi 2 26,05,2006 10 C:\proje~
monitor sony-t5 5500 flat 580 hız~sistem 3 26,05,2006 ·6 C:\proıe~
dvd-rw lg-cd-rw1 1h45 260 hızesıstem 2 26.05.2006 2 C:\proıe~
dvd~rw lç-cd-rw, lh78 dvd '70 hızaslstem I 26,05,2006 2 C:\proje\;Jdscx

Flv-nrimP. '.=14 Sn nnlrl ::>n.ns.?nrıFı ,S C":\rv-niP..\,....-.dq-,y

Fig. 4.12 Stock Table

130


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 

	Images
	Image 1


	Page 2
	Titles
	ACKNOWLEDGEMENTS 


	Page 3
	Titles
	TABLE OF CONTENTS 


	Page 4
	Page 5
	Images
	Image 1


	Page 6
	Titles
	ABSTRACT 


	Page 7
	Titles
	INTRODUCTION 


	Page 8
	Titles
	CHAPTERl 
	1. Visual Basic .Net 
	1.1 Introduction 
	1.1.l What ls Visual Basic .NET? 
	2 


	Page 9
	Titles
	1.1.2 Why Should You Move to Visual Basic.NET? 
	1.1.3 What Can We Do with VB .NET? 

	Images
	Image 1


	Page 10
	Titles
	1.2 The Visual Basic .NET Language 
	1.2.1 Source Files 


	Page 11
	Titles
	1.2.2 Identifiers 
	1.2.3 Keywords 


	Page 12
	Titles
	1.2.4 Literals 
	1.2.5 Numeric Literals 
	1.2.6 String Literals 


	Page 13
	Titles
	1.2.7 Character Literals 
	1.2.8 Date Literals 
	1.2.9 Boolean Literals 
	7 

	Images
	Image 1


	Page 14
	Titles
	1.2.10 Nothing 
	1.3 Fundamental Types 


	Page 15
	Titles
	Boolean 
	Byte 
	Char 
	Date 

	Images
	Image 1


	Page 16
	Titles
	Decimal 
	Double 
	Long 
	Object 
	Short 

	Images
	Image 1


	Page 17
	Titles
	Single 
	String 
	1.3.1 Custom Types 
	1.3.2 Arrays 

	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Titles
	1.3.3 Namespaces 

	Images
	Image 1


	Page 20
	Titles
	1.3.4 The Namespace Statement 

	Images
	Image 1


	Page 21
	Titles
	1.4 The Imports Statement 

	Images
	Image 1
	Image 2


	Page 22
	Titles
	1.5 Variables 

	Images
	Image 1


	Page 23
	Titles
	1.5.1 Scope 

	Images
	Image 1


	Page 24
	Titles
	1.6 Arithmetic Operators 

	Images
	Image 1


	Page 25
	Titles
	1. 7 Relational Operators 

	Images
	Image 1


	Page 26
	Images
	Image 1


	Page 27
	Titles
	1.8 Logical Operators 

	Images
	Image 1


	Page 28
	Titles
	1.9 Classes 
	1.9.1 A class definition 

	Images
	Image 1


	Page 29
	Titles
	1.10 Interfaces 
	1.11 Inheritance 

	Images
	Image 1


	Page 30
	Titles
	1.12 Method parameters 
	1.13 What About On Error? 

	Images
	Image 1


	Page 31
	Titles
	1.14 Events 
	Chapter 2 
	2.1 History of Object Orientation and VB 
	2.1.1 Object-Oriented Language 

	Images
	Image 1


	Page 1
	Titles
	2.1.2 Why Learn Object-Oriented Techniques? 
	2.1.3 Principles of Object-Oriented Programming 

	Images
	Image 1


	Page 2
	Titles
	2.1.4 Advantages of Object-Oriented Design 

	Images
	Image 1
	Image 2


	Page 3
	Titles
	Chapter3 
	3.1 Major VB.NET Changes 
	3.1.1 General Changes 
	3.1.2 Subs and Functions Require Parentheses 

	Images
	Image 1


	Page 4
	Titles
	3.1.3 Changes to Boolean Operators 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	3.1.4 Declaration Changes 
	3.1.5 Support for New Assignment Operators 

	Images
	Image 1


	Page 6
	Titles
	3.1.6 ByVal ls Now the Default 

	Images
	Image 1


	Page 7
	Titles
	3.1.7 Block-Level Scope 
	3.1.8 While ... Wend Becomes While ... End While 
	3.2 Procedure Changes 

	Images
	Image 1


	Page 8
	Titles
	3.2.1 Optional Arguments Require a Default Value 
	3.2.2 Static Not Supported on Subs or Functions 

	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Titles
	3.3 Array Changes 

	Images
	Image 1


	Page 10
	Titles
	3.3.1 Lower Boundary Is Always Zero 
	3.4 Data Type Changes 
	3.4.1 All Variables Are Objects 
	3.4.2 Automatic String/Numeric Conversion Not Supported 

	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Titles
	Chapter 4 
	4. SQL Server 2000 Overview 
	4.1 Introduction 
	4.2 SQL Server 2000 Editions for Special Uses 

	Images
	Image 1


	Page 14
	Titles
	4.3 New and Enhanced Features of SQL Server 2000 

	Images
	Image 1


	Page 15
	Titles
	4.3.1 XML Support 
	4.3.2 User-Defined Functions 

	Images
	Image 1


	Page 16
	Titles
	4.4 How Will SQL Server 2000 Benefit into Organization? 

	Images
	Image 1


	Page 17
	Titles
	4.4.1 Will SQL Server 2000 Fit into Organization? 

	Images
	Image 1


	Page 18
	Titles
	CHAPTERS 
	5. SQL DATABASE DESIGN OF THE PROGRAM 
	6. 
	3.1 Database table Design of The Program 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 19
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3


	Page 20
	Titles
	Code of View A: 
	Code of View B: 

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 21
	Titles
	Code of View C: 
	Code of View Salepid: 
	Code of View Custotal: 

	Images
	Image 1


	Page 22
	Titles
	Code of View Stockpid: 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 23
	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 25
	Titles
	-~ 

	Images
	Image 1
	Image 2
	Image 3


	Page 26
	Images
	Image 1
	Image 2


	Page 27
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 28
	Images
	Image 1
	Image 2


	Page 29
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 30
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 1
	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 3
	Titles
	Stock Control Version 1.22 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 4
	Images
	Image 1
	Image 2
	Image 3


	Page 5
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	REFERENCES 
	Reference to Books: 
	Reference to E-Book: 
	Reference to www 

	Images
	Image 1
	Image 2


	Page 7
	Titles
	APPENDIX A: PROGRAM CODES 
	CLASS "GIRIS" CODE 

	Images
	Image 1
	Image 2


	Page 8
	Titles
	MODUL "MODULl" CODE 
	- 


	Page 9
	Titles
	FORMl.ENTRANCEFORM 

	Images
	Image 1


	Page 10
	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Titles
	FORM 2. STOCK LIST AND ADD FORM 
	67 

	Images
	Image 1
	Image 2


	Page 13
	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Titles
	FORM 3. USER MANAGEMENT FORM 

	Images
	Image 1


	Page 17
	Titles
	i = 1 

	Images
	Image 1


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Titles
	FORM4. COMPANYFORM 

	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1
	Image 2


	Page 21
	Images
	Image 1
	Image 2
	Image 3


	Page 22
	Titles
	FORM5.CUSTOMERFORM 

	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Images
	Image 1
	Image 2


	Page 25
	Images
	Image 1


	Page 26
	Page 27
	Images
	Image 1


	Page 28
	Images
	Image 1


	Page 29
	Titles
	FORM 6. SALE FORM 

	Images
	Image 1
	Image 2


	Page 30
	Images
	Image 1


	Page 31
	Titles
	-- e 


	Page 1
	Images
	Image 1
	Image 2


	Page 2
	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Page 7
	Images
	Image 1
	Image 2


	Page 8
	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Page 12
	Images
	Image 1


	Page 13
	Page 14
	Titles
	. 


	Page 15
	Images
	Image 1


	Page 16
	Page 17
	Images
	Image 1


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Page 21
	Page 22
	Images
	Image 1
	Image 2


	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Titles
	FORM 7. REPORT FORM 


	Page 34
	Page 35
	Titles
	FORM 8. REGISTRATION FORM 


	Page 36
	Titles
	FORM 9. MAIN MENU 
	FORM 10. STOCK CONTROL FORM 


	Page 1
	Images
	Image 1
	Image 2


	Page 2
	Titles
	ŁŁŁŁŁŁŁŁŁ............... _.----~-------~~~ 


	Page 3
	Titles
	FORM 11. GUARANTY VALIDATE FORM 

	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Titles
	FORM 13. ABOUT FORM 


	Page 6
	Titles
	APPENDIX B: SQL DATABASE TABLES 
	Fig. 4.1 Company Design Table 
	Fig. 4.2 Company Table 
	Fig. 4.3 Customer Design Table 
	Fig. 4.4 Customer Table 
	128 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1
	Table 2
	Table 3
	Table 4


	Page 7
	Titles
	Fig. 4.5 Login Design Table 
	Fig. 4.7 Product Design Table 
	Fig. 4.8 Product Table 
	129 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2
	Table 3
	Table 4


	Page 8
	Titles
	Fig. 4.11 Stock Design Table 
	Fig. 4.12 Stock Table 
	130 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1
	Table 2
	Table 3
	Table 4



