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PREFACE 

In this paper for COM 400 course, I present the study for Neural networks and the 

time series forecasting. Artificial Neural networks, in technological terms, depicts the 

behavior of the human mind. Human brain - a complex organ of the human body, is being 

studied for centuries. However, most of its functions remains a mystery, though scientists 

and researchers have evaluated the main characteristics of the brain, which are memory, 

learning, adaptation, and forecasting. These functions are applied using networks of 

computers and various other electronic devices to simulate the "predicting behavior" of a 
given data model. 

This paper includes references and scientific studies of various scientists and 

researchers. There are four chapters in this report which include Artificial Neural 

networks, times series and forecasting, learning in Neural networks and a program which 

emulates Artificial Neural networks. 

In completing this project, I have used references from various authors and have 

tried to compile this information in orderly fashion. Since the stress is upon time series 

forecasting, I have used the information to deliver it in proper perspective. Not only I have 

learnt from the process of scrutinizing the information and selecting the right work, but I 

think this paper can be used for further references in Artificial Neural network field. 

The process of writing paper has motivated me to read more about the subject 

even after the graduation. There is more to it then receiving just a grade. It has become my 

interest and may be in the future I can do further research in this topic. 
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CHAPTER I 

NEURAL NETWORKS 
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INTRODUCTION 

Neural networks provide a unique computing architecture whose potential has only 

begun to be tapped. Used to address problems that are intractable or cumbersome with 

traditional methods, these new computing architectures - inspired by the structure of the 

brain - are radically different from the computers that are widely used today. Neural 

networks are massively parallel system that rely on dense arrangements of 

interconnections and surprisingly simple processor. [Doy Hoff, PI] 

Artificial Neural Networks take their name from the networks of nerve cells in the 

brain. Although a great deal of biological detail is eliminated in these computing models, 

the artificial neural networks retain enough of the structure observed in the brain to 

provide insight into how biological neural processing may work. Thus these models 

contribute to a paramount scientific challenge - the brain understanding itself [DoyHoff, 
Pl] 

Neural networks provide an effective approach for a broad spectrum of 

applications. Neural networks excel at problems involving patterns - pattern mapping, 

pattern completion, and pattern classification. It may be applied to translate images into 

keywords, translate financial data into financial predictions, or map visual images to 

robotics commands. Noisy patterns - those with segment missing - may be completed with 

a neural network that has been trained to recall the completed patterns (for example, a 

neural network might input the outline of a vehicle that has been partially obscured, and 

produce an outline of the complete vehicle). [DoyHoff, Pl] 

Possible applications for pattern classification abound: Visual images need to be 

classified during industrial inspections; medical images, such as magnified blood cells, need 

to be classified for diagnostic test; sonar images may be input to a neural network for 

classification; speech recognition requires classification and identification of words and 

sequences of word. Even diagnostic problems, where results of test and answers to 

questions are classified into appropriate diagnoses, are promising areas for neural 
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networks. The process of building a successful neural network application is complex, but 

the range of possible applications is impressively broad. [DoyHoff, Pl-2] 

Its utilize a parallel processing structure that has large numbers of processor and 

many interconnections between them. These processor are much simpler than typical 

central processing units (CPUs). In a neural network each processor is linked to many of 

its neighbors (typically hundreds or thousands) so that there are many more 

interconnections than processors. The power of the neural network lies in the tremendous 
number of interconnections. [DoyHoff, P2] 

Neural networks are generating much interest among engineers and scientist. 

Artificial neural network models contribute to our understanding of biological models, 

provide a novel type of parallel processing that has powerful capabilities and potential 

hardware, and provide the potential for solving applications problems. [DoyHoff, P2] 

It excite our imagination and relentless desire to understand the self, and in 

addition equip us with an assemblage of unique technological tools. But what has 

triggered the most interest in neural networks is that models similar to biological nervous 

system can actually be made to do useful computations, and, furthermore, the capabilities 

of the resulting systems provide an effective approach to previously unsolved problems. 
[DoyHoff, P2] 

There are a variety of different neural network architectures, which illustrate their 

major components, and show the basic differences between neural networks and more 

traditional computers. Ours is a descriptive approach to neural network models and 

applications. Included are chapters on biological system that describe living nerve cells, 

synapses, and neural assemblies. The chapters on artificial neural networks cover a broad 

range of architectures and example problems, many of which can be developed further to 
provide possibilities for realistic applications. 
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RECOGNITION OF DIFFERENCE BETWEEN NEURAL NETWORKS AND 

TRADITIONAL TABLE 

As discussed earlier, the traditional computer or a normal personal computer, 

does not have the ability to make decisions on it's own rather then, it relies on the 

instructions (in the form of add, subtract, multiply, division etc.) given by the programmer 

or a user. It can store these instruction in its memory, but evidently cannot modify or learn 

the patterns of computing algorithm on its own. This is where neural networks come into 

play. Rather then one microprocessor there are numerous parallel processors, which 

works simultaneously to provide exceptional computing power to the user. 

A neural network derives its computing power through, first, its massively parallel 

distributed structure and, second, its ability to learn a therefore generalize; generalization 

refers to the neural network producing reasonable outputs for inputs not encountered 

during training (learning). These two information-processing capabilities make it possible 

for neural networks to solve complex (large-scale) problems that are currently intractable. 

In practice, however, neural networks cannot provide the solution working by themselves 

alone. Rather, they need to be integrated into a consistent system engineering approach. 

Specifically, a complex problem of interest is decomposed into a number of relatively 

simple tasks, and neural networks are assigned a subset of the tasks (e.g., pattern, 

recognition, associative memory, control) that match their inherent capabilities. It is 

important to recognize, however, that we have a long way to go (if ever) before we can 

build a computer architecture that mimics a human brain . [Haykin, P4] 

Neural Networks offers the following useful properties and capabilities: 

1. Nonlinearity: A neuron is basically a nonlinear device. Consequently, a neural 

network, made up of an interconnection of neurons, is itself nonlinear. Moreover, the 

nonlinearity is of a special kind in the sense that it is distributed throughout the 

network. Nonlinearity is a highly important property, particularly if the underlying 

physical mechanism responsible for the generation of an input signal (e.g., speech 
signal) is inherently nonlinear.) 
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2. Input-Output Mapping: A popular paradigm of learning called supervised learning 

involves the modification of the synaptic weights of a neural network by applying a set 

of labeled training samples or task examples. Each example consist of a unique input 

signal and the corresponding desired response. The network is presented an example 

signal picked at random from the set, and the synaptic weights ( free parameters ) of 

the network are modified so as to minimize the difference between the desired 

response and the actual response of the network produced by the input signal in 

accordance with an appropriate statistical criterion. The training of the network is 

repeated for many examples in the set until the network reaches a steady state, where 

there are no further significant changes in the synaptic weights ; The previously applied 

training examples may be reapplied during the training session but in a different order. 

Thus the network learns from the examples by constructing an input-output for the 

problem at hand. Such an approach brings to mind the study of nonparametric 

statistical inference which is a branch of statistics dealing with model-free estimation, 

or, from a biological viewpoint tabula rasa learning. Consider for example, a pattern 

classification task, where the requirement is to assign an input signal representing a 

physical object or even to one of several pre-specified categories (classes). In non 

parametric approach to this problem, the requirement is to estimate arbitrary decision 

boundaries in the input signal space for the pattern classification task using a set of 

examples, and to do so without invoking a probabilistic distribution model. A similar 

point if view is implicit in the supervised learning paradigm, which suggests a close 

analogy between the input-output mapping performed by a neural network and 
nonparametric statistical inference. 

3. Adaptivity. Neural networks have a built-in capability to adopt their synaptic weights 
to changes in the surrounding environment. In particular, a neural network trained to 

operate in specific environment can be easily retrained to deal with minor changes in 

the operating environmental conditions. Moreover, when it is operating in a non­ 

stationary environment (i.e., one whose statistics change with time), a neural network 

can be designed to change its synaptic weights in real time. The natural architecture of 

a neural network for pattern classification, signal processing, and control applications, 
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coupled with the adaptive capability of the network, makes it an ideal tool for use in 

adaptive pattern classification, adaptive signal processing , and adaptive control. As a 

general rule, it may be said that more adaptive we make a system in a properly 

designed fashion, assuming the adaptive system is stable, the more robust its 

performance will likely be when the system is required to operate in non-stationary 

environment. It is emphasized, however, that adaptivity does not always lead to 

robustness; indeed, it may do the very opposite. To realize the full benefits of 

adaptivity, the principle time constants of the system should be long enough to 

respond to meaningful changes in the environment. 

4. Evidential Response. In the context of pattern classification, a neural network can be 

designed to provide information not only about which particular pattern to select, but 

also about the confidence in the decision made. The latter information may be used to 

reject ambiguous patterns, should they arise, and thereby improve the classification 
performance of the network. 

5. Contextual Information. Knowledge is represented by the very structure an activation 
state of neural network. Every neuron in the network is potentially affected by the 

global activity of all other neurons in the network. Consequently, contextual 

information is dealt with naturally by a neural network. 

6. Fault Tolerance. A neural network, implemented in hardware form, has the potential 

to be inherently fault tolerant in the sense that its performance is degraded gracefully 

under adverse operating conditions. For example, if a neuron or its connecting links 

are damaged, recall of a stored pattern is impaired in quality. However, owing to the 

distributed nature of information in the network, the damage has to be extensive 

before the overall response of the network is degraded seriously. Thus, in principle, a 

neural network exhibits a graceful degradation in performance rather than a 
catastrophic failure. 

7. VLSI Implementability. The massive parallel nature of neural network makes it 

potentially fast for the computation of certain tasks. The same feature makes the 

neural network ideally suited for implementation using very-large-scale-integrated 

(VLSI) technology. The particular virtue of VLSI is that it provides a means of 
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capturing truly complex behavior in a highly hierarchical fashion., which makes it 

possible to use a neural network as a tool for real-time applications involving pattern 

recognition, signal processing and control. 

8. Uniformity of Analysis and Design. Basically neural networks enjoy universality as 

information processors. We say this in the sense that the same notation is used in all 

the domains involving the application of neural networks. This feature manifests itself 
in different ways: 

• Neurons in one form or another, represent an ingredient common to all neural 

networks. 

• this commonality makes it possible to share theories and learning algorithms in 

different application of neural networks. 

• Modular networks can be built through a seamless integration of modules. 
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BASIC STRUCTURE OF ARTIFICIAL NEURAL NETWORKS 

Figure 1.1 depicts an example of a typical processing unit for an artificial neural 

network. On the left are the multiple inputs to the processing unit, each arriving from 

another unit shown at the center. Each inter connection has an associated connection 

strength, given as w1, w2, ... wn. The processing unit performs a weighted sum on the inputs 

and uses a nonlinear threshold function, f. to compute its output. The calculated result is 

sent along the output connections to the target cells shown at the right. The same output 

zalue is sent along the output connections. [Doy Hoff P7] 

PROCESSING UNIT! 
Wj1 

Wj2 Wjn <- 
INPUTS ~ 

CONNECTION STRENGTH Wj; 

Figure 1.1 

OUTPUTS 

The neural network shown in figure 1. 2 has three layers of processing units, a 

typical organization for the neural net paradigm known as back-error propagation. First is 

a layer of input units. These units assume the values of a pattern represented as a vector, 

that is input to the network. The middle hidden layer of this network consists of feature 

detectors - units that respond to particular features that may appear in the input pattern. 

Sometimes there is more than one hidden layer. The last layer is the output layer. The 

activities of these units are read as the output of the network. In some applications, output 

units stand for different classification patterns. However, Neural networks are not limited 

to three layers, and may utilize a huge number of interconnections. [DoyHoff P8] 
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INTERNAL 
REPRESENTATION 
UNITS 

OUTPUT PATTERNS 

INPUT PATTERNS 

FIGURE 1.2 

Each interconnection between processing units acts as a communication processing unit to 

another. These values are weighted by a connection strength when they are used 

computationally by the target processing unit. The connection strengths that are associated 

with each interconnection are adjusted during training to produce the final Neural 

network. [DoyHoff P8] 

Some Neural networks applications have fixed interconnection weights; these 

networks operate by changing activity levels of neurons without changing the weights. 

Most networks, however, undergo a training procedure during which the network 

weights are adjusted. Training may be supervised, in which case the network is presented 

with target answers for each pattern that is input. In some architectures, training is 

unsupervised - the network adjusts its weights in response to input patterns without the 

benefit of target answers. In unsupervised learning, the network classifies the input 

patterns into similarity categories. [DoyHoff PlO] 
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CHARACTERISTICS OF NEURAL NETWORKS 

Neural networks are not programmed; they learn by example. Typically a Neural 

network is presented with a training set consisting of a group of examples from which the 

network can learn. These examples, known as training patterns, are represented as 

ectors, and can be taken from such sources as images, speech signals, sensor data, 

robotic arm movements, financial data and diagnosis information. [DoyHoff PIO] 

The most common training scenarios utilize supervised learning, during which the 

network is presented with the target output for that pattern. The target output usually 

constitutes the correct answer, or correct classification for the input pattern. In response 

to these paired examples, the Neural networks adjusts the values of its internal weights. If 

training is successful, the internal parameters are then adjusted to the point where the 

network can produce the correct answers in response to each input pattern. Usually the set 

of training examples is presented many times during training to allow the network to 

adjust its internal parameters gradually. [DoyHoff PIO] 

Because the learn by example, Neural networks have the potential for building 

computing systems that do not need to be programmed. This reflects a radically different 

approach to computing compared to traditional methods, which involve the development 

of computer programs. In a computer program, every step that the computer executes is 

specified in advance by the programmer, a process that takes time and human resources. 

The Neural network, in contrast, begins with sample inputs and outputs, and learns to 

provide the correct output for each input. [DoyHoff PIO] 

The Neural networks approach does not require human identification of features, 

or human development of algorithms or programs that are specified to the classification 

problem at hand, suggesting that the time and human effort can be saved. There are draw 

backs to the Neural network approach, however: That the time to train the network may 

not be known a priori, and the process of designing a network that successfully solves an 

application problem may be involved. The potential of the approach, however, appears 
significantly better than past approaches. [DoyHoff Pl O] 
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Neural network architectures encode information in a distributed fashion. Typically 

the information that is stored in a neural net is shared by many of its processing units. This 

type of coding is in stark contrast to traditional memory schemes, where particular pieces 

of information are stored in particular locations of memory. Traditional speech recognition 

systems, for example, contain a lookup table of template speech patterns (individual 

syllables or words) that are compared one by one to spoken inputs. Such templates are 

stored in a specific location of the computer memory. Neural networks, in contrast, 

identify spoken syllables by using a number of processing units simultaneously. The 

internal representation is thus distributed across all or part of network. Furthermore, more 

than one syllable or pattern may be stored at the same time by the same network. 
[DoyHoff PIO] 

Distributed storage schemes provide many advantages, the most important being 

that the information representation can be redundant. Thus a Neural network system can 

undergo partial destruction of the network and may still be able to function correctly. 

Although redundancy can be built into other types of systems, the neural network has a 

natural way to organize and implement this redundancy; the result is naturally fault or 
error-tolerant system. [DoyHoff Pl2] 

It is possible to develop a network that can generalize on the tasks for which it is 

trained, enabling the network to provide the correct answer when presented with new 

input pattern that is different from the inputs in the training set. To develop a Neural 

network which can generalize, the training set must include a variety of examples that are 

good preparation for the generalization task. In addition the training session must be 

limited in iterations, so that no "over learning" takes place (i.e., the learning of specific 

examples instead of classification criteria, which is effective and general). Thus, special 

considerations in constructing the training set and training presentations must be made to 

permit effective generalization behavior from a Neural network. [DoyHoffP13] 

A Neural network can discover the distinguishing features needed to perform a 

classification task. This discovery is actually a part of the network's internal self­ 

organization. The organization of features takes place in back-propagation. A network 
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may be presented with a training set of pictures, along with the correct classification of 

these pictures into categories. The network can then find the distinguishing features 

between the different categories of pictures. These features can be read off from a ''feature 

detection" layer of neurons after the network is trained. [DoyHoff Pl3J 

A Neural network can be tested at any point during training. Thus it is possible to 

measure a learning curve (not unlike learning curves found in human learning sessions) for 
a Neural network. [DoyHoffP13] 

All of these characteristics of Neural networks may be explained through the 

simple mathematical structure of the neural net models. Although we use broad behavioral 

terms such as learn, generalize, and adapt, the Neural network's behavior is simple and 

quantifiable at each node. The computations performed in the neural net may be specified 

mathematically, and typically are similar to other mathematical methods already in use. 

Although large Neural network systems may some times act in surprising ways, their 

internal mechanism are neither mysterious nor incomprehensible. [DoyHoff Pl3] 
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APPLICATIONS POTENTIAL OF NEURAL NETWORKS 

Neural networks have far-reaching potential as building blocks in tomorrow's 

computational world. Already, useful applications have been designed, built and 

commercialized, and much research continues in hopes of extending this success. 
[DoyHoffP13] 

Neural network applications emphasize areas where they appear to offer a more 

appropriate approach than traditional computing has. Neural networks offer possibilities 

or solving problems that require pattern recognition, pattern mapping, dealing with noisy 

data, pattern completion, associative lookups, or systems that learn or adapt during use. 

Examples of specific areas where these types of problems appear include speech synthesis 

and recognition, and image processing and analysis, sonar and seismic signal classification, 

and adaptive control. In addition, Neural networks can perform some knowledge 

processing tasks, and can be used to implement associative memory. Some optimization 

tasks can be addresses with Neural networks. The range of potential application is 
impressive. [DoyHoff P 14] 

The first highly developed application was handwritten character identification. A 

- .eural network is trained on a set of handwritten characters, such as printed letters of the 

alphabet. Network training set then consists of the handwritten characters as inputs 

together with the correct identification for each character. At the completion of training, 

the network identifies handwritten characters in spite of the variation of the handwriting. 
[DoyHoffP14] 

Another impressive applications study involved NETtalk, a Neural network that 

learns to produce phonetic strings, which in turns specify pronunciation for written text. 

The input to the network in this case was English text in form of successive letters that 

appear in the sentences. The output of the network was phonetic notation for the proper 

sound to produce given the text input. The output was linked to a speech generator so 

that an observer can hear the network learn to speak. This network trained by Sejnowski 
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and Rosenberg (1987), learned to pronounce English text with a high level of accuracy. 

[DoyHoff P14] 

Neural network studies have also been done for adaptive control applications. A 

lassie implementation for Neural network control system was the broom-balanced 

experiment, originally done by Widrow (Widrow and Smith, l 963)using a single layer of 

adaptive network weights. The network learned to move a cart back and forth in such a 

way that a broom balanced upside down on its handle tip in the cart remained on end. 

More recently, application studies were done for teaching a robotic arm how to get to its 

target position, and to steadying a robotic arm. Research was also done on teaching a 

Neural network to control an autonomous vehicle using simulated, simplified vehicle 

control situations. [DoyHoff Pl4] 

Many other applications, over a wide spectrum of fields, have been examined. 

_ ;eural network were configured to implement the associative memory systems. They 

were applied to a variety of financial analysis problems, such as credit assessment and 

financial forecasting. Signal analysis has been attempted with Neural networks, as well as 

difficult pattern classification tasks that arise in biochemistry. In music, a string-fingering 

problem, that of assigning successive string and finger positions for a difficult violin 

assage, was studied with a Neural network approach. [DoyHoff Pl4] 

Neural networks are expected to complement rather than replace other 

ecbnologies. Tasks that are done well by traditional computer methods need not be 

addressed with Neural networks, but technologies that complement Neural networks are 

far-reaching. For example, expert systems and rule based knowledge processing 

echniques are adequate for some applications, although Neural networks have the ability 

o learn rules more flexibly. More sophisticated systems may be built in some cases from a 

combination of expert systems and Neural networks. Sensors for visual or acoustic data 

may be combined in a system that includes a Neural network for analysis and pattern 

recognition. Sound generators and speech-synthesizing electronic equipment may be 

combined with Neural networks to provide auditory inputs and outputs. Robotics and 

control systems may use Neural network components in the future. Simulation techniques, 
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ch as simulation languages, may be extended to include structures that allow us to 

simulate Neural networks. Neural networks may also play a new role in the optimization 

of engineering designs and industrial resources. [DoyHoffP15] 
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DESIGN CHOICES IN NEURAL NETWORKS 

Many design choices are involved in developing a neural network application. 

(Figure 1.3). The first option is in choosing the general area of application. Usually this is 

an existing problem that appears amenable to solution with a Neural network. Next the 

problem must be defined specifically so that a selection of inputs and outputs to the 

network may be made. Choices for inputs and outputs involve identifying the types of 

patterns to go into and out of the network. [DoyHoff Pl5] 

PRE-PROCESSING 
OF DATA 

D 
OU PUT 

REPRESENTATION INPUT 
REPRESENTATION NUMBER OF LAYERS 

NUMBER OF UNITS PER LAYER 
INTERCONNECTION TOPOLOGY 

PARADIGM 

FIGURE 1.3 
DESIGN CHOICES FOR A NEURAL NETWORK APPLICATION. 

In addition, the researchers must design how those patterns are to represent the needed 

rmation (the representation scheme). For example, in an image classification problem, 

could input the image pixel by pixel, or one could use a preprocessing technique such 

a Fourier transform before the image is presented to the network. The output of the 

ork then might have one processing unit assigned to represent each image 

afication, or, alternatively, a combination of several output units might represent each 

specific image classification. [DoyHoff Pl5] 

Next, internal design choices must be made - including topology and the size of the 

ork. The number of processing units is specified along with the specific 

111tPrt'.nnnections that the network is to have. Processing units are usually organized into 

· ct layers, which are either fully or partially interconnected. [DoyHoff Pl6] 
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There are additional choices for the dynamic activity of the processing units. A 

variety of neural net paradigms are available; these differ in the specifics of the processing 

done at each unit and in how there internal parameters are adjusted. Each paradigm 

dictates how the readjustment of parameters takes place. This adjustment results in 

learning by the network. [Doy Hoff P 16] 

Next there are internal parameters that must be "tuned" to optimize the neural net 

design. One such parameter is the learning rate from the back-error propagation paradigm. 

The value of this parameter influences the rate of learning by the network, and may 

possibly influence how successfully the network learns. There are experiments that 

indicate that learning occurs more successfully if this parameter is decreased during a 

learning session. Some paradigms utilize more than one parameter that must be tuned. 

Typically, the network parameters are tuned with the help of experimental results and 

experience on the specific applications problem under study. [DoyHoff P16] 

Finally, the selection of the training data presented to the Neural network 

influences whether or not the network learns a particular task. Like a child, how well a 

network will learn depends on the examples presented. A good set of examples, which 

illustrate the task to be learned well, is necessary for the desired learning to take place; a 

poor set of examples will result in poor learning on the part of the network. The set of 

training examples must also reflect the variability in the patterns that the network will 

encounter after training. [DoyHoff P 16] 

Although a variety of Neural network paradigms have already been established, 

there are many variations which are currently being researched. Typically these variations 

add more complexity to gain more capabilities. Examples of additional structures under 

estigation include the incorporation of delay components, the use of sparse 

· · erconnections, and the inclusion of interaction between different interconnections. More 

than one neural net may be combined with outputs of some networks becoming the inputs 

of others. Such combined systems sometimes provide improved performance and faster 

ocessing times. [DoyHoff P16] 



22 

IMPLEMENTATION OF NEURAL NETWORKS 

Implementation of Neural networks come in many forms. The most widely used 

implementations of Neural networks today are software simulators, computer programs 

that simulate the operation of Neural network. Such simulation might be done on a Von 

Neumann machine. The speed of the simulation depends upon the speed of the hardware 

upon which the simulation is executed. A variety of accelerator boards is available, vector 

processors, and other parallel processors may be used. [DoyHoff Pl 7] 

Simulation is key to the development and deployment of neural network 

technology. With a simulator, one can establish most of the design choices in a Neural 

network system. The choice of inputs and outputs can be tested as well as the capabilities 

of the particular paradigm used. Realistic training sets can be tested in simulation mode. 

[DoyHoff Pl 7] 

Implementation of Neural networks is not limited to computer simulation, 

however. An implementation can be an individual calculating the changing parameters of 

the network using paper and pencil. Another implementation would be a collection of 

people, each one acting as a processing unit, using a hand-held calculator. Although these 

implementations are not fast enough to be effective for applications, they are nevertheless 

methods for simulating a parallel computing structure based on Neural network 

architectures. [DoyHoff Pl 7] 

Because the precursors of today's Neural networks were built during the same 

period that the digital computer was being designed, digital computer simulation was not 

yet available. Neural networks were then made with electrical and electronic components, 

including resistors and motor driven clutches. Even though these designs appeared 

promising, the development of the digital computer soon dominated the field, and Neural 

networks were developed further using simulation. [DoyHoff Pl 7] 

One challenge to Neural network applications is that they require more 

computational power then readily available computers have, and the trade off in sizing up 

such a network are sometimes not apparent from a small-scale simulation. The 
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performance of the Neural network must be tested using the network the same size as that 

o be used in the application. [Doy Hoff P 17] 

The response of an artificial neural net simulation may be accelerated through the 

of specialized hardware. Such hardware may be designed using analog computing 

echnology or a combination of analog and digital. Macroscopic electronic components 

may be used, or the circuits may be fabricated using the semi-conductor devices. 

Development of such specialized hardware is underway, but there are many problems yet 

o be solved. Such technological advances as custom logic chips and logic-enhanced 

memory chips are being considered for Neural network implementations. [DoyHoff P18] 

No discussion of implementations would be complete without mention of the 

riginal Neural networks-biological Neural nervous systems. These systems provided the 

implementations of the Neural network architecture. Developed through billion of 

years of evolution, they use the substances available to living systems for learning and 

adaptation. Many details of their learning and information processing methods are still not 

own. However, there is some resemblance to the way that synthetic neural networks 

perate, although vast differences still remain. Much of what is known about biological 

ons is not included in today's computational Neural networks. [DoyHoff Pl 8] 
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CHAPTER2 

TIME SERIES AND FORECASTING 

IN 

ARTIFICIAL NEURAL NETWORKS 
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FORECASTING 

INTRODUCTION 

Forecasting is a key element of management decision making. This is not 

surprising, since the ultimate effectiveness of any decision depends upon a sequence of 

events following the decision. The ability to predict the uncontrollable aspects of these 

events prior to making the decision should permit an improved choice over that which 

would otherwise be made. For this reason, management systems for planning and 

controlling the operations of an organization typically contain a forecasting function. The 

following are examples are situations where forecasts are useful: 

• Inventory Management In controlling inventories of purchased spare parts at an 

aircraft maintenance facility, it is necessary to have an estimate of the usage rate for 

each part in order to determine procurement quantities. In addition, an estimate of the 

variability of forecast error over the procurement lead time is required to establish 

reorder points. 

• Production Planning .. To plan the manufacturing of a product line, it may be 

necessary to have a forecast of unit sales for each item by delivery period for a number 

of months in the future. These forecast for finished products can then be converted 

into requirements for semi finished products, components, materials, labor, and so on, 

so that the entire manufacturing system can be scheduled. 

• Financial Planning. A financial manager has concern about the pattern of cash flow 

his or her company will experience over time. The manager may wish a prediction of 

cash flow broken down by type and time period for a number of future time periods as 

an aid in making current decisions. 

• Staff Scheduling. The manager of a mail processing facility of the United States 

Postal Service needs a forecast of the hourly volume and mix of mail to be processed 

in order to schedule staff and equipment efficiently. 

Facilities Planning. Decisions about new facilities generally require a long-range 

forecast of the activities using the facilities. This is important in the design of the 

facility, as well as for justification of the investment required. 
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Process Control Forecasting also can be an important part of a process control 

system. By monitoring key process variables and using them to predict the future 

behavior of the process, it may be possible to determine the optimal time and extent of 

control action. For example, a chemical processing unit may become less efficient as 

hours of continuous operation increase. Forecasting the performance of the unit will be 

useful in planning the shutdown time and overhaul schedule. 

these examples and others that easily come to mind, we see that a forecast is a 

· ction of future events. The purpose of forecasting is to reduce the risk in decision 

· g. Forecasts are usually wrong, but the magnitude of the forecasting errors 

aperienced will depend upon the forecasting system used. By devoting more resources to 

-~ting, we should be able to improve our forecasting accuracy and thereby eliminate 

of the losses resulting from uncertainty in the decision-making process. 

gomery, Johnson, Pl] 

Because forecasting can never completely eliminate risk, it is necessary that the decision 

nm('~~ explicitly consider the uncertainty remaining subsequent to the forecast. Often the 

· · on is related conceptually to the forecast by 

acTUAL DECISION =DECISION ASSUMING FORECAST IS CORRECT + ALLOWANCE FOR FORECAST ERROR 

implies that the forecasting system should provide a description of forecast error as 

as a forecast. Ideally the forecasting process should result in an estimate of the 

arobability distribution of the variable being predicted. This permits risk to be objectively 

rporated into the decision-making process. [Montgomery, Johnson, P3-4] 

forecast is not an end in itself; rather it is a means to an end. The forecasting system is 

part of a larger management system and, as a subsystem, interacts with other 

a:imponents of the total system to determine overall performance. [Montgomery, Johnson, 

] 
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FORECASTING METHODS 

Methods for generating forecasts can be broadly classified as qualitative or quantitative, 

epending upon the extent to which mathematical and statistical methods are used. 

Qualitative procedures involve subjective estimation through the opinions of experts. 

There are usually formal procedures for obtaining predictions in this manner, ranging from 

nsolidation of the estimates of sales personnel to the use of Delphi-type methods to 

tain a consensus of opinion from a panel of forecasters. These procedures may rely in 

or marketing tests, customer surveys, sales force estimates, and historical data, but 

process by which the information is used to obtain a forecast is subjective. 
Montgomery, Johnson, PS] 

On the other hand, a statistical forecasting procedures explicitly defines how the 

recast is determined. The logic is clearly stated and the operations are mathematical. The 

method involve examination of historical data to determine the underlying process 

.... erating the variable and, assuming that the process is stable, use of this knowledge to 

extrapolate the process in the future. Two basic types of models are used: 

TIDle Series: A time series is a time ordered sequence of observations (realizations) of a 

rariable. Time series analysis uses only the time series history of the variable being 

ecasted in order to develop a model for predicting future values. Thus, if examination 

" past monthly sales of replacement tires for automobiles revealed a linear growth, a 

trend model might be chosen to represent the process and the appropriate slope and 

ercept estimated from historical data. Forecasts would be made by extrapolating the 
ed model, as illustrated in Fig. 2.1 



MONTHL 
y 
SALES 

FORECAST 

NOW FUTURE 
FIGURE 2.1: Linear-trend time series forecast 

Casual Models: Casual Models exploit the relation ship between the time series of 

erest and one or more other time series. If these other variables are correlated with the 

· · les of interest and if there appears to be some cause for this correlation, a statistical 

el describing this relationship can be constructed. Then, knowing the values of 

elated variables, one can use the model to obtain the forecast. Of the dependent 

le. For example, analysis might reveal a strong correlation between monthly sales of 

Rl)lacement tires and monthly sales of new automobiles 15 months before. Then 

.tion about new car sales 14 months ago would be useful in predicting replacement 

sales next month. The concept is illustrated in Fig. 2.2. 

MONTHL 
y 
SALES 

NEW CAR SALES 15 MONTHS AGO 

FIGURE 2.2: Causal Model 
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An obvious limitation to the use of causal models is the requirement that the independent 

variables be known at the time the forecast is made. The fact that tire sales are correlated 

with new car sales 15 months previous is not useful in forecasting tire sales 18 months in 

the future. Similarly, the knowledge that the tire sales are correlated with current gasoline 

prices is of little value, since we would know exactly the gasoline price in any future 

month for which we wished to forecast tire sales. Another limitation to the use of causal 

models is the large amount of computation and data handling compared with certain 

forms of time series models. 

Actually, forecasting system often use a combination of quantitative and qualitative 

methods. The statistical methods are used to routinely analyze historical data and prepare 

a forecast. This lends objectivity to the system and results in effective organization of the 

information content of historical data. Then statistical forecast then becomes an input to a 

subjective evaluation by informed managers, who may their perception of future. 

The selection of appropriate forecasting models is influenced by the following 

factors, most of which were discussed in the previous section: 

1. Form of forecast required 

Forecast horizon, period, and interval 

3. Data availability 

Accuracy required 

5. Behavior of process being forecast (demand pattern) 

Cost of development, installation, and operation 

Ease of operation 

Management comprehension and cooperation. 

Computers play an important role in modem forecasting systems. They make it possible to 

ore, retrieve, aggregate, desegregate, and otherwise manage time series data for a large 

Dimber of variables. Complex statistical analysis is done easily. Many statistical software 

ages include forecasting modules. Also available are special purpose forecasting 



30 

system software with powerful data management, analysis, and forecasting features. 

[Montgomery, Johnson, PS-11] 

TIME SERIES MODELS 

In this paper we will concentrate on forecasting using the time series analysis and 

models. Therefore it is necessary to explain the time series analysis in detail. 

Characteristic of time series 

For our purposes a time series is a sequence of observations on a variable of interest. The 

rariable is observed at a discrete time points, usually equally spaced. Time series analysis 

:involves describing the process or phenomena that the sequence. To forecast time series, it 

necessary to represent the behavior of the process by a mathematical model that can be 

good representation of the observations in any local segment of time close to the 

present. We usually do not require the model to represent very old observations, as they 

probably are not characteristic of the present, or observations far into the future, beyond 

lead time over which the forecast is made. Once a valid model for the time series 

process has been established, an appropriate forecasting technique can be developed . 

.•..•..•. ontgomery, Johnson, Pl I] 

Several characteristic patterns of time series are shown in fig. 2.3, where x, is the 

observation for period t. In fig. 2.3a, the process remains at a constant level over time, 

rith variation from period to period due to random causes. Pattern ( b) illustrated a trend 

· then level of the process, so the variation from one period to the next is attributable to a 

d in addition to random variation. In ©, the process level is assumed to vary cyclically 

er time, as in the case of a seasonal product. Seasonal variation can be attributed to 

some cause, such as weather, (e.g., the demand for soft drinks), institutions (e.g., 

Christmas cards), or policy (e.g., end-of quarter accounting) Most time series models for 

i>recasting are developed to represent these patterns: constant, trend, periodic ( cyclical), 

a combination of the three. [Montgomery, Johnson, Pl lJ 
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(a) (b) 

(c) (d) 

(e) (f) 

In addition, there are patterns resulting from a change in the underlying process. A 

transient, or impulse, pattern is illustrated by (d). For one period the process operated at a 

igher level before reverting to the original level. An example would be a temporary 

ease in sales caused by a strike at a competitor's plant. In ( e ), the change to a new 

'el is permanent, and we refer to it as a step change. This could be caused by the 

uisition of a new customer, for example. Finally, pattern (f) shows a process which has 

been operating at a constant level suddenly experiencing a trend. Since these three patterns 

change are common in practice, we desire that our forecasting system identify 

permanent changes and adjust the forecasting model to track the new process. At the same 

e, we wish our forecasting system recognize random variations and transient changes 

not react to these phenomena. 

forecasting demand for a product, we may need to use different forecasting models 

· g various stages in the product's life cycle. For example, fig. 2.3 illustrated a life 

ycle having three distinct phases. During the growth phase, following introduction of the 

oduct, we might represent the process by a trend model, possibly with both linear and 

dratic components. Once demand has leveled off, it would be desirable to switch to a 
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constant-process model. During the final phase, when sales are declining, a trend model 

would again be appropriate. [Montgomery, Johnson, Pl 1] 

GROWTH STABILITY DECLINE 

Demand 

Time 

FIG. 2.4 Product life cycle 
Representation of Time series 

Many of the models used to represent time series are algebraic or transcendental functions 

of time, or some composite model that combines both algebraic and transcendental 

components. For example, if the observations are random samples from some probability 

distribution, and if the mean of that distribution does not change with time, then we may 

use the constant model. [Montgomery, Johnson, P13] 

Xt = b+Et (2.1) 

,nere x, is the demand in period t, b is the unknown process mean, and Et is the random 

mponent, sometimes called the "noise" in the process. The random component has an 

cepted value of zero, and we usually assume that its variance is constant; that is, 

E{ Ei)=O and V( Et)=cf\. Note that this is equivalent to saying that x, is a random variable 

rith mean b and variance cf2 E. Equation (2.1) is the appropriate model fbr the Jrocess 
rated in fig. 2.3a. 

To represent the process of fig. 2.3b, we might assume that the mean of the 

ss changes linearly with time and use the linear trend model 
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(2.2) 

where b1and b2 are constants. Note that the slope b2 represents the change in the average 

level of demand from one period to the next. Equation (2.3) gives a quadratic trend 

model: 

Cyclical variation may be accounted for by introducing transcendental terms into the 

model; for example, 

Xt=b1 +b2sin (2IJt/12) + b3 COS (2IJt/12) + Et (2.4) 

which would account for a cycle repeating every 12 periods. The models described above 

are of the following general form: 

where the {bi} are parameters, the {Zi{t)} are mathematical functions oft, and Et is the 

random component. Thus for example, in equation (2.2), Z1(t) = I and Zi(t) = t. Note that 
· modeling approach represents the expected value of the process as a mathematical 

ction oft. 

Often it is desirable to define the origin of time as the end of the most recent 

d T. Then the model for the observation in period T + r is 
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where the coefficients are now denoted by {a;_(])} to indicate that they are based on the 

current time origin T, and thereby distinguish them from the original-origin coefficients 

{b;}. 

Always keeping the origin of time on a current basis greatly facilitates the operation of a 

forecasting system. One simple technique in model selection is to plot historical data and 

look for patterns. As in any statistical data analysis procedure, graphic methods can be 

very useful in forecasting. Since the model should represent the near future for forecasting 

purposes, we usually judge its effectiveness by how well it describes the recent past. 

ontgomery, Johnson, P14] 

Forecasting with time series models 

Time series forecasting consists of estimating the unknown parameters in the 

appropriate model and using these estimates, projecting the model into the future to obtain 

forecast. For example, let bi and bs be estimates of the unknown parameters b, and b2 in 

equation 2.2. If we currently are at the end of period T, the forecast of the expected value 

of the observation in some future period T + r would be 

Xr+.(T) = b, + b2(T+-r) (2.7) 

Thus the forecast simply projects the estimate of the trend component, b2, z; periods into 

future. This is illustrated in figure 2.5. [Montgomery, Johnson, P14] 

Upper limit 
..... ···· 

.. , /::::~., ·· Forecast 

Oem,ndX, IL·:-:· ., Lowe,11m, 

T 
Figure 2.5: Forecasts and Prediction Intervals. 
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The forecast given by equation 2. 7 is for a single period T + t. We may wish to 

ecast the sum of the observation in periods T+ I, T+2, ... ,T+L. To obtain the 

cumulative forecast, we add the period forecasts as follows: 

XL(1J = Ixr+l1) (2.8) 

Cumulative forecasts are often required to predict total requirements over a lead time. 

There are a variety of techniques for estimating the unknown parameters of time 

series models of equation 2. 5 is linear in the unknown coefficients b 1, b2, ... , bk, and 

efore conventional least squares methods can be used to obtain parameter estimates 

from historical data. In figure 2.5 , where the upper and lower prediction limits are 

determined so that there is a specified probability of their containing the actual 

observation. 

Pmormance Criteria 

There are a number of measures that can be used to evaluate the effectiveness of a 

forecasting system. Among the more important are forecasting accuracy, system cost, 

utility of output, and stability and responsiveness abilities. [Montgomery, Johnson, Pl6] 

The accuracy of a forecasting method is determined by analyzing forecast errors 

experienced. If x, is the actual observation in period t and It is the forecast for that period 

e at some prior time, the forecast error for period t is 

et= Xt- Xt (2.9) 

For a given process and forecasting method, the forecast error is considered a 

om variable having mean £( e) and variance cr/ If the forecast is unbiased, E( e) = 0. 
While an unbiased forecast is desirable, it usually is more important that large forecast 

errors are rarely obtained. Hence a quantity such as the expected absolute error 
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(2.10) 

or the expected squared error 

(2.11) 

commonly used as a measure of forecast accuracy. Note that the expected squared 

error, usually called the mean squared error, is equal too} if the forecast is unbiased. 

analyzing the accuracy of an installed forecasting method, is common to employ a 

·acking signal test each period. The purpose is to determine if the forecast is unbiased. 

The tracking signal is a statistic computed by dividing an estimate of excepted forecast 

error by a measure of the variability of forecast error, such as an estimate of the mean 

solute deviation of forecast error. If the forecasting system yields unbiased estimates, 

tracking signal should be near zero. Should the tracking signal deviate from zero by 

re than a prescribed amount, an investigation is made to determine if the forecasting 

el should be modified in order to better represent the time series process, which may 

rve experienced a change such as that shown in fig.2.6., Note that this form of analysis 

be applied to a statistical forecast, a judgmental forecast, or a combination of the two. 

__ fontgomery, Johnson, Pl6] 

Out of control point "---.. 

Tracking 
signal 

- Upper control limit 

- - - - - - - - - - - - - - - - - - - - - - - - Lower control limit 

Time Period 

Fig 2.6: Forecast Control 
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- aturally cost is an important consideration in evaluating and comparing forecasting 

ods. There are one-time costs for developing and installing the system and periodic 

sts for operating it. With regard to operating costs, alternative forecasting procedures 

y differ, widely in the cost of data acquisition, the efficiency of computation, and the 

-el of activity required to maintain the system. 

The utility of the forecast in improving management decisions will depend upon the 

- eliness and form of the forecast, as well as its accuracy. Benefits should be measured 

rith regard to the management system as a whole. Forecasting is only one component of 

· total system. The objective is to reach good decisions, and usually this can be achieved 

,ith less than perfect forecasts. [Montgomery, Johnson, Pl 7] 

'e may also- wish to compare forecasting methods on the basis of their response to 

anent changes in the time series process and their response to permanent changes in 

time series process and their stability in the presence of random variation and transient 

ges, This can be done through simulation and, for certain statistical methods, by 

thematical analysis. [Montgomery, Johnson, Pl 7] 

,ystem design considerations 

-e do not intend to give a comprehensive description of how one goes about developing 

installing a forecasting system. The process is similar to that used for design of many 

er types of management information systems. Instead, we describe some 

nsiderations, that are important for forecasting systems. [Montgomery, Johnson, Pl 7] 

choosing the forecasting interval, there is a trade-off between the risk of not identifying 

change in the time series process and the costs of forecast revision. If we forecast 

equently, we may operate for a long period under plans based on an obsolete forecast. 

the other hand, if we use a shorter interval, we more frequently incur not only the cost 

making the forecast but also the cost of changing plans to conform to the new forecast. 

appropriate forecast frequency depends upon the stability of the process, the 

nsequences of using an obsolete forecast, and the cost of forecasting and re-planning. 

_.fontgomery, Johnson, Pl 7-18] 
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data required by the forecasting system are subject to recording and transmission 

errors and therefore should be edited to detect obvious or likely mistakes. Small errors in 

magnitude will not be identifiable, but they usually will have little effect on the forecast. 

ger errors can be more easily detected and corrected. Also the forecasting system 

d not respond to extraordinary or unusual observations. If we are forecasting product 

llema.nd, any sales transaction that is identified as non-typical or extreme should, of 

eoerse, affect inventory records, but should not be included in data used for forecasting. 

example, suppose a manufacturer who supplies a number of distributors acquires a 

, customer. The initial orders, since the customer is at first establishing inventory. 

pmuui.!5omery, Johnson, P18] 

ation is useful technique for evaluation alternative forecasting methods. This can be 

retrospectively using historical data. For each method, one starts at some prior time 

and simulates forecasting period by period up to the present. Measures of forecast 

can then be compared among methods. If the future is excepted to differ from the 

a pseudo-history can be created based upon subjective expectations of the future 

of the time series and used in the simulation. Simulation is also useful in 

*9amining parameters of forecasting techniques, such as the best smoothing methods. 

•· Ggomery, Johnson, Pl8] 

convenient to think of the two primary functions of a forecasting system as 

_llnt:osting generation and forecast control. Forecast generation involves acquiring data 

revise the forecasting model, producing a statistical forecast, introducing management 

Jlllllgment, and presenting the results to the user of the forecast. Forecast control involves 

m:ntoring the forecasting process to detect out-of-control conditions and identify 

performance. An essential component of the 

....-ml function is the tracking signal test described in the previous section. Items that 

.-ibit out-of-control tracking signals can be singled out for special attention by 

--•~g,ers, and efforts can be directed toward modifying their forecasting models, if 

wr,essary. [Montgomery, Johnson, PIS] 
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Historical data 

Forecast 
g.eneration 

........._..... Current 
observation 
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and 
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FIG 2.7 The forecasting system 

the forecast control function should involve periodically summarizing forecasting 

ormance and presenting the results to appropriate management. This feedback should 

urage improvement in both the quantitative and qualitative aspects of the system. The 

ionship between forecast generation and forecast control is shown in fig.2.7., 
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THE TIME SERIES PROBLEM 

Predictability is fundamental to the modem scientific view of nature. When we 

ite down Newton's law to calculate the motion of a projectile or a planet, we are 

licitly assuming that the motion of such a system is predictable. It is the expectation 

we can make meaningful predictions that drives us to seek underlying principles to 

explain the behavior of the systems we observe. In control engineering for example, the 

is often to combine measurements on a system, with some sets of fundamental rules 

predict and control the systems behavior. In the time series problem we would like to 

a series of measurements of a single observable as a function of time to predict what 

es future measurement will yield. [Vemuri, Rogers P 1] 

Many examples of time series are important in engineering and science. One of the 

-studied time series is electric power demand. The ability to predict the demand placed 

an electric power supply enables a system manager to make effective decisions about 

eoasumption of resources. Meteorologists have spent years studying various techniques 

forecasting the weather, and although the full problem is inherently three-dimensional, 

weather phenomena can be usefully studied as one carries with it major implications 

how investing and securities trading are carried out. In this age of computerized 

tnrlma, fast, effective analysis and forecasting strategies are highly sought after in the 

ial markets. Chemical engineers have studied the chaotic behavior of some chemical 

· ons as a time series problem in order to improve control over the rates at which 

processes proceed. There are many important time series in medicine. For example, 

white blood cell count of a cancer patient must be monitored and controlled. Decisions 

ding drug dosages for such a patient can be greatly aided by predictions of the white 

cell count time series. Many other chemical relationships in the body, such as the 

glucose and insulin concentrations, can also be studied as time series. In addition, 

EEG and ECG time series are of great interest. [Vemuri, Rogers Pl] 

Time series themselves exhibit reasonably well-understood behaviors. Often, as is 

case for the price of a stock, a time series is composed of a long-term trend plus 
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rarious periodic and random components. Some periodic components, such as a cyclic 

.ariation in the price of grain, are related to the seasons of the year, or they can be related 

o some other periodic phenomenon, such as a limit cycle. Linear and periodic components 

e usually easy to model and remove from the time series. One is then left time series 

recasting problem. [Vemuri, Rogers P 1] 

The apparently random component of a time series usually falls into one of two 

egories. In the first case, the apparently random component it truly random; that is, the 

surements are drawn from some underlying probability distribution. In this case, the 

dom component can be characterized by a statistical distribution function or by the 

tistical moments of the data: mean, variance, skew, kurtosis, and so on. To a large 

extent, short-time-scale variations of stock prices are of this nature, as is the count rate in 

Geiger counter placed near a radioactive isotope. In this category of time series, the 

· pie statistical description of the system might be improved if the time series data are 

rrelated on the time scale of interest. The level of water in a river can exhibit such 

vior. The water level may fluctuate on short time scales, but measurements made 

,ithin a single day will cluster around some mean that varies from day to day. Such 

rrelations allow more precise predictions of future values and the excepted derivations 

m these predictions. [Vemuri, Rogers P 1] 

The second class of apparently random behavior in time series is not random at all, 

rather, chaotic. A chaotic time series is characterized by values that appear to be 

domly distributed and non periodic but are actually the result of a completely 

erministic process. The deterministic behavior in a chaotic time series is usually due to 

erlying nonlinear dynamics. [Vemuri, Rogers P 1] 

The behavior of a dynamical system can be described in terms of its trajectory in 

space. For a system whose dynamics are a function of one variable (x), the phase 

ce is the x' - x plane, often called the phase plane. The set of all values of x' and x 

ten by the system from a non-self intersecting trajectory in this plane. Figure 2. 7 shows 

phase space trajectory for the one dimensional non-linear oscillator governed by the 

tion [Vemuri, Rogers P2] 
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X" = -X - Yi (x ')2 (2.12) 

The trajectories of non-linear systems in phase space are generaUy constrained to 

rve on surfaces that have significantly fewer dimensions then the fuU phase space of the 

em. A two dimensional dynamical system (for example, one that can move in two 

6nensions x and y) would have a four dimensional phase space, but might actually only 

eon the surface of a sphere inscribed in the four-dimensional phase space. Constraints 

as this are the results of the conservation laws that severely limits the types of 

.ior the system can exhibit. For instance, the total energy of an isolated dynamical 

9J5lem_ can never increase, since energy is a conserved quantity. In a dynamical system 

out dissipation, the trajectories of the system in phase space are a set of nested closed 

es. In a dissipative non-linear system, all initial conditions lead to trajectories that 

either lie on a single surface or converge to individual points in phase space. The set of 

these surfaces and points in phase space, to which all possible trajectories of the system 

converge, is called the attractor of the system. The attractor of a chaotic system has non­ 

integral, or fractal, dimension and is called a strange attractor. [Vemuri, Rogers P2] 

dx/dt 0 I 

-1 

-2 -1 0 
X 

Figure 2. 7 Trajectory in the phase plane of non-linear oscillator 
described by the above equation. 

The importance of the strange attractor to the forecasting of a chaotic time series 

twofold. First, its structure determines a theoretical limit to how far into the future the 
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time series can be predicted. On the strange attractor surface, nearby trajectories diverge 

exponentially from one another, implying that any small error in a prediction of a chaotic 

time series will grow exponentially. The result is that long-term predictions are impossible. 

There is a natural time scale associated with this exponential growth of errors, which is 

specific to the type of chaotic system under consideration. This divergence is quantified by 

Liapunov exponent of the system. Since chaotic time series are deterministic, short term 

predictions of them can be made, as long as the length of the prediction is shorter then this 

error growth time. Second, the shape of the strange attractor determines how an Artificial 

i ,eural network predicts a chaotic time series. [Vemuri, Rogers P2] 

Now that the desirability of modeling time series has been demonstrated, one 

might ask, ''How do we go about making predictions of time series?" Ideally, we would 

like to use past data to construct a set of basic rules, like Newton's laws, that can be used 

to make predictions under very general circumstances. Unfortunately, this approach 

cannot always be carried out in practice. In some cases, the under lying principles are not 

known or are poorly understood because the system of interest is very complicated. This is 

the case with the stock market, in which relation ships various parameters are not known, 

and some of the relevant parameters, such as public opinion and world events, may not be 

accessible to us or quantifiable. Another problem with this approach is that often, even 

when the basic laws are known, direct solution of the equation is not possible without 

detailed information about initial values and boundary conditions. Fluid flow is an example 

of this situation because the hydrodynamic laws are known but their exact solutions 

requires us to specify the initial condition through out the volume of interest as well as 

boundary conditions along the entire surface, which may be quite complex. In practice, 

even barring the possibility of turbulence in the system, it is often impossible to make 

enough measurements to specify the system sufficiently. [Vemuri, Rogers P3] 

In a second approach to time series analysis one avoids these problems by making 

assumption that a well defined relationship exists between the past and future values of 

single observable. In this phenomenological approach one seeks an approximate 

· onal relationship between the past values and the future values one wishes to 

culate. There are various ways to model this relationship. One can make recursive 
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prescription for extrapolating the most recent data points based on the success of previous 

extrapolations. One can also parameterize the time dependencies of the various statistical 

moments and time derivatives of the time series of interest. Alternatively, one can try to 

find a single function that gives a future value of the observable as its output when some 

,et of past observables is supplied as its input. This last model is implemented by Artificial 

eural networks. [Vemuri, Rogers P3] 

An Artificial Neural network is essentially a group of interconnected computing 

elements, or neurons. Typically, a neuron computes the sum of its inputs (which are either 

outputs of other neurons or external inputs to the system) and passes this sum through 

nonlinear function, such as sigmoid or hard threshold. Each neuron has only one output, 

this output is multiplied by a weighting factor if it is to be used as a input to another 

on. The result is that there is a separate, adjustable weight parameter for each 

connection between neurons. [Vemuri, Rogers P3] 

Neural networks typically exhibit two types of behavior. If no feedback loop 

connects neurons, the signal produced by an external input moves in only one direction 

the output of the network is just the output of the last group of neurons in the 

ork. In this case the network behaves mathematically like a non linear function of the 

s. This feed forward type of network is most often used in time series forecasting, 

past time series values as the inputs and the desired future value as the output. The 

nd type of network behavior is observed when there are feedback loops in the neuron 

ections. in this case the network behaves like a dynamical system, so the output of the 

ons vary with the time. The neuron output can then oscillate, or settle down into 

y state values, or, since the threshold function introduces nonlinearity into the 

em, they can become chaotic. [Vemuri, Rogers P3] 

Since Neural networks are inherently non linear and often exhibit chaotic behavior, 

great deal of research is being done on there dynamic behavior, especially that mimics 

l-world chaotic systems. such applications include modeling of chaotic processes in the 

and using chaotic dynamics to encode and decode speech signals for automated 

h recognition. [Vemuri, Rogers P3] 
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In practice one usually subdivides the available time series data into two time 

segments: the training data set and the test data set. The data from the first segment is 

used to train the network. The network that results from the training process is then 

checked against the data from the test data set to determine whether the mapping 

performed by the network is a good representation of the time series and can therefore be 

expected to make reasonable predictions. This step can be accomplished in two ways. To 

for short term prediction accuracy, the network is given the actual time series values 

the test data set as its input and the resulting output is compared with the next time 

ies point. This is done for every point in the test data set, and an error statistic is 

lated. This error estimates the accuracy of short term predictions of the network. 

emuri, Rogers P4] 

The ability of the network to make longer term predictions can also be tested. To 

this, the network is given an input vector from near the beginning of the test data set. 

output of the network, which is the predicted future time series value, is then used as 

of the next input vector. The output from the second prediction is likewise used as 

of the third input vector. Continuing the process in this way, the network recursively 

,ropagates the time series forward in time to make a prediction many time steps ahead. 

divergence of the prediction properties of Artificial Neural networks are very different 

this is a useful test to perform before making predictions longer than one time step into 

future. [Vemuri, Rogers P4] 

Another practical issue in time series prediction is the size of the network. As in 

st Artificial Neural network research, no rule determines how many input and hidden- 

neurons to use. There are a few practical guidelines, however. In order for the 

rk to be completely general mapping, there must be at least one hidden layer. This is 

known result of Artificial Neural networks research. The smallest network that can 

the training data is usually desirable, because it is more likely to be generalized to 

· time series data then a larger network. A network that is too large will tend to over fit 

data points from the training data set without finding any underlying relationship 

ldween them. Such a network cannot predict the behavior of the time series for input 

W:ll•"' it hasn't seen before. A small network, with fewer parameters, is forced to find 



46 

underlying relationship between inputs and outputs, and this mapping is more likely to be 

generalized to future time series behavior. On the other hand, a network that is too small 

may not have enough free parameters to learn the training data. In practice one often starts 

.ith a very small network and increases the number of hidden layer neurons until the 

esired prediction performance is obtained. [Vemuri, Rogers P4] 

Similar considerations apply to the number of inputs to the network. The network 

st be given enough past data in each input vector to span the phase space of the time 

series, but too many inputs simply slows down the convergence of the training process and 

rease the number of possible undesirable mappings. Again, unless something is known 

ut the dynamics generating the time series, experimentation is required to determine 

optimum number of inputs. Performance on the test data set is usually the best guide 

railable. [Vemuri, Rogers P4] 

We have seen that the training process results in a Neural network that maps the 

values of a time series into a future value of that time series. The formation of this 

.pping is the interpolation process, which Artificial Neural networks are particularly 

d at. In the training process the network effectively interpolates a surface between the 

ut and output vectors. When the time series is dissipative dynamic system, the 

erpolation surface is generally an approximation to the attractor of the system or, in the 

of chaotic system, the strange attractor. as an example consider the iterative map 

erated by the rule 

xi+J = axi(l - xJ (2.13) 

which is chaotic when a 2 3.5699. When trained from data from this map, the 

ork interpolates the parabolic shape of the locus of allowed points in the X;+1 -x; and 

the time series itself This is an important point: Neural networks generally interpolates 

underlying dynamic relationship, not the explicit time dependence of the time series. 

y questions regarding exactly how Artificial Neural networks do this remain 
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unanswered. For instance, no quantitative criteria exist for how a complicated dynamic 

ystem a particular Artificial Neural network can learn or how many past data are required 

o achieve some desired prediction accuracy. [Vemuri, Rogers P4] 
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PROCEDURES FOR FORECASTING 

Technological forecasting is a subset of futures research. Futures research is an 

umbrella term which encompasses "any activity that improves understanding about the 

future consequences of present developments and choices" (Amara and Salanik, 1972, p. 

415). Forecasting is: 

• a statement about the future 

• a probabilistic statement about the future 

• a probabilistic, reasonably definite statement about the future 

• a probabilistic, reasonably definite statement about the future, based upon an 

evaluation of alternative possibilities (p. 415) 

Technological forecasting includes "all efforts to project technological capabilities 

and to predict the invention and spread of technological innovations" (Ascher, 1979, p. 
65). Martino (1983) states that a technological forecast includes four elements: the time 

the forecast or the future date when the forecast is to be realized, the technology being 

recast, the characteristics of the technology or the functional capabilities of the 

technology, and a statement about probability. 

Forecasting a technology is a difficult task "beset with hazards" (Ayers, 1969, p. 

). Some of these hazards include: ''the uncertainty and unreliability of data, the 

lexity of 'real world' feedback interactions, the temptation of wishful or emotional 

anrucing, the fatal attraction of ideology, [and] the dangers of forcing soft and somewhat 

le 'facts' into a preconceived pattern" ( p. 18). To offset the inherent ambiguity and 

ainty of forecasting, technological forecasters have developed a set of 

odologies to assist them in their endeavor. 

In general, as a technology moves from the early stages of laboratory development 

widespread acceptance in the marketplace, the forecasting methodologies that are most 

opriate move from qualitative to quantitative techniques. Since technological 

~~sting is employed to predict long-term technological developments, the methods 
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are generally qualitative. Listed below is a brief description and discussion of some 

e major qualitative methods and techniques wbich have been oeve\opec\ to forecast 

ological developments. 

hi 

The Delphi procedure is designed for the systematic solicitation of expert opinion. 

are three characteristics which distinguish it from interpersonal group interaction: 

..mvmity, iteration with controlled feedback, and statistical group response (Martino, 

3). 

While many variations of the technique have been offered since it was originally 

~oped at the Rand Corporation in, the conventional Delphi study proceeds as follows. 

estionnaire designed by a monitor team is sent to a select group of experts. After the 

nses are summarized, the results are sent back to the respondents who have the 

rtunity to re-evaluate their original answers, based upon the responses of the group. 

_ incorporating a second and sometimes third round of questionnaires, the respondents 

the opportunity to defend their original answers or change their position to agree 

the majority of respondents. 

The Delphi technique, therefore, is a method of obtaining what could be 

mnsidered an intuitive consensus of group expert opinions. The accuracy of the forecast 

ced is limited by the quality of opinions provided by the experts, and it should be 

that some authors (such as, Challis and Wills, 1970 and Wise,1976) have questioned 

accuracy of the opinions of specialists. 

d Extrapolation 

A forecast can be generated by "observing a change through time in the character 

something and projecting or extrapolating that change into the future" (Cornish, 1977, 

08). In making such a forecast, the focus is on the long-term trend, so short-term 

1_,,u,:uions are disregarded. Trend extrapolations require that the forecaster have an 

•~~nding of the factors which contributed to change in the past, and possess 
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confidence in the notion that these factors will continue to influence developments in a 

similar fashion in the future (Schwarz, Svedin, Wittrock,. 1982, p. 20). 

One commonly employed approach to trend extrapolation involves the use of 

growth curves (Cornish, 1977, pp. 110-111). Growth curves are loosely based upon the 

notion that the growth of a technology can be charted in the same way organic growth can 

be charted. For example, the growth in height and weight of an individual can be charted, 

and will commonly display a pattern which indicates a leveling off around early adulthood. 

It is believed that the growth pattern of a technology can also be plotted and charted in a 

similar fashion. As an illustration, Martino describes how this particular technique can be 

utilized in charting and forecasting the growth in, and leveling off, of the number of cable 

television subscribers. 

Regarding the accuracy of trend extrapolation as a forecasting technique, Ascher 

(1978) questions its "objectivity and reliability" (p. 183). Schnaars (1989) goes even 

further and admonishes forecasters to discount trend extrapolations. He notes that trends 

and patterns have no life of their own and are susceptible to sudden changes, and that 

focusing on trends alone "is often a search for the will-o'<the wisp" (p. 152). As an 

example of a misuse of trend extrapolation, he notes the actions taken by American 

electronics firms with regard to television manufacturing. Through the 1950s and the 

1960s, television sets steadily grew larger. As American firms continued to make large, 

cabinet-based systems, Japanese firms began to concentrate on making portable sets. 

While the American firms acted on the belief that the existing trend toward larger sets 

would continue, the actual trend within the marketplace shifted toward a greater variability 

in size. 

Historical Analogy 

The use of analogy in forecasting involves a "systematic comparison of the 

technology to be forecast with some earlier technology that is believed to have been 

similar in all or most important respects" (Martino, 1983, p. 39). Forecasting by analogy is 

one of the simpler and more common ways to forecast the growth of a new technology, 

though as a method its accuracy has been questioned on several accounts. Schnaars 



51 

1989) notes that the method has limited predictive value as "what happened before in an 

industry often blinds those already in the industry to developments that come from 

outside" (p. 153). In his study of home video forecasts, Klopfenstein (1985) found that 

many erroneous forecasts of videodisk players sales were based on comparison with the 

previous introduction of color television. He asserts that historical analogy can serve as a 

ful guide to forecasting a new technology, but great care must be taken in making the 

comparison. Martino (1983) asserts that when drawing an analogy, consideration must be 

given to the numerous dimensions which are known to have an effect on technological 

change (see Martino, 1983, pp. 40-49 for a discussion of these dimensions). The real 

challenge facing a forecaster, therefore, is the task of identifying a technological 

ovation which will truly serve as an accurate historical precedent upon which to base a 

recast by analogy. 

enarios 

Each of the above forecasting methods has its own advantages and disadvantages. 

refore, in many cases, it is helpful to combine several methods and forecasts into one. 

lartino (1983) notes that scenario construction is an effective method for combining 

ecasts and forecasting methodologies into a holistic composite. 

Cornish (1977) describes a scenario in simple terms: "it is simply a series of events 

we imagine happening in the future." In other words, scenario writing is "making up 

ories about the future" (p. 11 ). Schwarz, Svedin, and Wittrock (1982) note that the term 

"scenario" has numerous meanings. It can be used as a description for "a hypothetical, 

ely or unlikely, development or situation; a development which is described as caused to 

e extent by the actions and reactions of various actors: a desirable or undesirable 

.elopment or situation" (p. 28). Kahn and Wiener (1967) assert that it is a method 

.hich can be employed to focus attention on causal processes and crucial decision points. 

Martino (1983) states that scenarios serve three basic purposes: 

to display the interactions among several trends and events in order to provide a 

holistic picture of the future; 
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_ l to help check the internal consistency of the set of forecasts on which they are based 

_ l to depict a future situation in a way readily understandable by the non-specialist in the 

subject area (p. 148). 

While noting the unreliability of forecasting methods, Schnaars (1989) is a strong 

·ocate of the use of scenarios. He notes that they do not pretend to predict the future 

rather present a set of possible futures. Godet (1983) notes that since the value of a 

ecast is dependent upon the underlying assumptions, and that quite often several sets of 

ptions can be offered upon which several scenarios can be constructed, no forecast 

uld be published "without giving an indication of the estimated probability of the 

esponding scenario" (p. 190). 

J accounting for a range of possibilities, scenarios can be distinguished from the other 

ods listed above. They do not generate or present the same degree of specificity, and 

.e even been described as an "alternative to forecasting" (Schnaars, 1989). 



53 

ADAPTIVE NETWORKS AND TIME SERIES PREDICTION 

A dynamical System Perspective 

One of the central roles of science in the study of naturally occurring phenomena is 

forecasting, given knowledge about a system and its past behavior. Two basic methods 

which such predictions are made may be classified into a model-based approach and a 

· tical approach. The first approach assumes that there is sufficient a priori information 

instance in the form of physical conservation laws) that a first-principles derivation 

be made to construct an accurate model of the mechanism which is generating the 

lllll'KP.rved processes. There are two difficulties with this approach. One is that it is not 

possible to generate an accurate model since the underlying 'laws' may not be fully 

-1~ood, as in stock-market forecasting. Secondly, even if an accurate model can be 

eeestructed, the specification of the current state from which the model can predict, may 

· e much more information than is practically obtainable. In weather forecasting the 

el takes the form of a set of partial differential equations whose initial state requires 

ions to be continuously specified in three dimensions. Whereas in practice one may 

a spatially non-uniform sparse sample of observations to specify the initial state. 

'emuri, Rogers Pl2] 

The second approach attempts to analyze the sequence of observation the 

ence of observations produced by the underlying mechanism directly. From the 

· cs or dynamics obtained from the observation sequence one hopes to be able to 

some knowledge about the future evolution of the observation sequence. The 

lem with this latter approach is that nature tends to produce very complicated, often 

negular, chaotic behavior which is apparently the result of a self interaction of the system 

a large (possibly infinite) number of degrees of freedom. Consistent with this 

oint, contemporary forecasting theory has developed to assume that the observation 

,equence may be considered to be one specific realisation of a random process, where the 

omness arises from the many independent degrees of freedom interacting linearly. 

wever, the emerging view in dynamical systems theory is that apparently random 

.viour may be generated by deterministic system with only a small number of degrees 
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of freedom, but which interact nonlinearly to produce deterministic chaos. This reflects 

one of the underlying generator of the observation sequence, since most of contemporary 

physics and engineering relies on the superposition principle-an inherent assumption 

concerning a system's linearity. [Vemuri, Rogers P12] 

Of course, certain classes of artificial 'neural' networks (particularly multilayer 

perceptron-like networks) may be considered as flexible nonlinear parameterised models 

where the parameters may be adapted according to the available data. Indeed, adaptive 

network techniques have been used recently with some success to predict the behaviour of 

chaotic time series -deterministic sequences whose second-order persistent statistics seem 

to indicate that they are random. This success stems from the ability of adaptive networks 

to produce an interpolation surface which approximates the actual nonlinear map which 

generated the data. Thus, adaptive networks may be applied to time series prediction, as 

long as the observed time series is generated by an underlying iterative mapping, if the 

mapping itself is 'smooth' enough to allow an interpolation surface to be constructed. 

[Vemuri, Rogers P12] 

It is known that current network models perform well when operating as static 

pattern classifiers, and the reason for their effectiveness in this domain may be explained 

by exploiting relationship with traditional discriminate analysis. However, such network 

models do not manipulate dynamic information appropriately. The best methods for 

automatic continuous speech recognition are the established hidden Markov models, and 

not 'neural' networks. The encoding of time by adaptive networks, and how such 

networks should deal with temporal sequences is, perhaps, the major difference between 

the artificial connectionist models and real neural networks. This paper accepts the limited 

temporal repertoire of connectionist models, but emphasizes a class of problems where , 

by viewing them as models of dynamical systems, a broad response range is obtainable by 

a suitable choice of parameter values. Thus use of adaptive networks as forecasting 

models for time series prediction by exploiting the links between adaptive networks, 

dynamical systems theory and functional interpolation. [Vemuri, Rogers Pl2] 
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Dynamical systems. preliminaries 

It is sufficient to consider a dynamical system as specifying the evolution, or 'flow' 

of the state of a system in its phase space. We are only interested in finite dimensional 

phase spaces of dimension d, which determines the number of possible degrees of freedom 

available to the system. The state of a system at time ti is given by a vector x(ti)ERd and 

the evolution of this vector is determined, generically, by a nonlinear equation of motion, 

dx/dt = j{x). For deterministic dynamical systems, the evolution trajectories, the solutions 

of the equation of motion, do not cross in the phase space. Although the system could 

potentially evolve in the full d dimensional phase space, it is usually the case, due to 

conservation laws, imposed restrictions or dissipative dynamics, that the flow of a system 

is asymptotically constrained to evolve on a much lower dimensional non-Euclidean sub­ 

manifold M of dimension m. This asymptotic hyper-surface is called an attractor. If an 

attractor may be characterised by a non-integer dimension (a 'fractal' Hausdorff 

dimension), then the attractor is a strange attractor and evolution on this attractor is 

chaotic. That is, if two initial conditions are specified which are close together. Their 

subsequent evolution trajectories will diverge exponentially. Thus, unless the initial 

condition is known to infinite precision, it is impossible to be able to predict the state of 

the system at a future time. Since evolution on the hypersurface is a reduced-dimension 

representation the dynamics compared to the potential dimensionality of the original 

equations of motion, the asymptotic behavior should be specified by a model system with 

fewer degrees of freedom. It is usually, the case in physical systems that this is an 

enormous reduction in the degrees of freedom of the system, corresponding to self 

organization. [Vemuri, Rogers P 13] 

Unfortunately, this sub-manifold is non-Euclidean (only in a local region may the 

manifold be characterised by a Euclidean space of dimension m), and adaptive networks 

are only really useful when performing transformations between Euclidean spaces. 

However, theorems have been developed which allow arbitrary, smooth hypersurfaces to 

be 'embedded' into spaces which are diffeomorphic (the embedding transformation and its 

inverse are differentiable) to an equivalent-dimensional Euclidean space. In particular a 

smooth m dimensional manifold may be embedded in a Euclidean space of at most 
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- ension 2m + 1. This is the basis of phase space reconstruction techniques developed 

ce 1980 when Takens and Packard discussed methods where the phase space 

formation equivalent to the underlying dynamical system could be reconstructed from a 

gle time series and derivatives obtained from the time series. Taken's approach was to 

ect a reconstruction using time-lagged vectors created from the time series, a technique 

wn as the 'method-of-delays-, which was extended into a regularized analysis tool to 

whit real data. It is analogous to the window length employed in linear predictive 

ysis in digital signal processing. According to the method-of-delays, an n dimensional 

e portrait can be obtained by constructing the sequence of vectors 

(2.14) 

m the discrete time series x1,x2,x3, .... The work of Takens showed that this construction 

sufficient (but not necessary ) to give an embedding of the underlying m dimensional 

n ~ 2m+ I .From the point of view of networks, the number of input units is 

the size of the enclosing Euclidean space in which the dynamical system is 

edded. [Vemuri, Rogers P 13] 

unctional interpolation preliminaries 

One view on the operation of adaptive, feed forward layered networks such as the 

tilayer perceptron is that they perform well for certain tasks by exploiting their 

eling flexibility to create an implicit interpolation surface in a high-dimensional space. 

ifically, in mapping a finite set of P, n dimensional 'training' patterns to the 

rresponding n' dimensional 'target' patterns, s: Rn ~Rn one may think of this map as 

ing, g,enerateci 'o)7 a 'g,ta\)b.' 1:' c K' 0 Rn' ~ in tb.e same wa')l tb.at an Orcinance Sutve')l 

contour plot, s:R2 ~R mapping the surface to a high may be viewed as a landscape in three 

dimension). The input and target pattern pairs are points on this graph. The learning phase 

of adaptive network training corresponds to the optimization of a fitting procedure for r 
ed on knowledge of the data-points. This is curve fitting in the generally high 
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iensional space Rn 0 Rn'_ Thus generalization becomes synonymous with interpolation 

ng the constrained surface which is the 'best' fit tor. The radial basis function network 

s introduced simply to make this point more explicit, but it also applies to networks 

.h as the multi-layer perceptron. It is clear that, by analog by curve fitting on one or two 

aensions, one can create an interpolation surface which is guaranteed to pass through 

ery point in a finite training set provided that the model is of a sufficiently high order 

g. sufficient numbers of hidden units equivalent to a sufficient number of Fourier 

efficients). However, this is incorrect strategy for real data which is confused by 

:rinsic and intrinsic noise effects and corresponds to over training a network. Often a 

ge amount of prior knowledge is required to allow a fitting surface to be produced 

iich is just smooth enough to fit the structure in the data, thus allowing good 

neralisation performance, without being over-complex to permit the fitting of noise on 

J of the data. [Vemuri, Rogers P 13] 

nthetic problems 

Specially we consider the problem of reconstructing the generator of data, where 

! 'data' is a single time series obtained either from an iterated chaotic map or from a 

nlinear differential equation. The aim in both cases is to use deterministic networks to 

empt a reconstruction of the generator of the data, which may then be used to 

nthesize data with the characteristics of the true data. Since the time series may be 

aotic using the network to generate data will produce a flow in the phase which will 

pidly diverge from the actual flow from a given starting value. This emphasizes the point 

at networks do not interpolate the time series themselves. [Vemuri, Rogers P 13] 

eal problems 

The illustrative examples considered so far have been 'ideal' in the sense that we 

ve had control over the time series. In particular, it was not necessary to consider effects 

1e to real background extrinsic noise, intrinsic noise effects in the data ( quantization 

rors-the data was generated with 32-bit floating-point arithmetic)or sampling effects. 

dditionally we had extra knowledge regarding the 'order' of the problem. In real physical 
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situations we do not have this control. In speech wave form prediction where the speech 

was quantised to ::::: 14 bits, had a high signal-to-noise ratio and was over sampled with 

respect to the vowel sounds. Nevertheless, it was still difficult to obtain adequate network 

solutions to reproduce the wave forms (although relevant 'features' could be reproduced). 

The noise has the effect of forcing the actual low dimensional behavior back into a high 

dimensional space. This implies that the apparent 'order' of the data is higher than it needs 

to be, which complicates the task of finding an appropriate window size in which the 

evolution of the system may be captured. The significant advances in dynamical systems 

practice have been in devising regularized approaches to deal with noise problems to 

determine how to project the data into subspaces in which the variance of the noise is 

minimized. Currently there are no equivalent regularized schemes to deal with these 

problems using adaptive networks and this is an obvious area for future development. 

[V emuri, Rogers P 17] 

In addition to problems due to limited control over data ( such as reducing, but not 

eliminating noise), one is also often confronted with time series over which there can be no 

control at all. Typical examples in this category are economic and social forecasting where 

available prior knowledge for model-building is minimal. Even if a long history of samples 

is obtainable, it is likely that the generator of the data (if one exists) is not static but 

evolves on a slower time scale to the local variation of the data. Thus the significance of 

generated data depends upon its history. In such circumstances one wishes to be able to 

predict the likely evolution of a system based on a sparse, noisy, non-uniformly sampled 

set of data points where the reliability of each data point can be different. [Vemuri, Rogers 

P17] 
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FORECASTING TIME SERIES 

Typically, the decision problem requires a forecast over a number of future 

periods. That is one must forecast over some lead time or Planning horizon. The length of 
the planning horizon depends upon the nature of the decision problem. These 

considerations also determine whether a forecast is required for each period in the 

planning horizon or whether a forecast of the total demand over all periods in the horizon 

will be adequate. The former is called a period-by-period forecast, and the latter, a 

cumulative forecast.[Montgomery, Johnson pl65] 

Forecasting yields a prediction about future events. If a forecast is made by 

extrapolating a time series model, assuming that, over the forecast horizon, the process 

will behave as it did in the recent past. Specifically, it is assumed that the model form is 

correct and that the true parameter values do not change. In that case, the estimates of 

model parameters computed from historical data would yield accurate forecasts. In most 

situations, these assumptions are not exactly correct; the underlying process is changing 

with time. Therefore, one could expect forecast accuracy to decrease as the planning lead 

time increases. A forecast of March sales, made at the end of February, will likely be more 

accurate then a forecast of October sales, also made at the end of February. [Montgomery, 

Johnson p.165.166] 

The accuracy of a forecasting procedure can be quantitatively described by the 

variance of the forecast error. Even if the process does not change over time, the forecast 

will differ from the actual demand because of random variation in the demand process and 

errors in estimating the parameters in the model. even if the true parameter values were 

known, there would be forecast errors because of the random variation. Thus, the variance 

of the forecast error is the function of the variance of the demand process and the 

sampling variances of the statistics used to estimate model parameters. The forecast error 

also depends upon the forecast lead time r. As a practical matter, it is always desirable to 

have an estimate of the forecast error variance in order to quantify the uncertainty, or risk, 

associated with the forecast. [Montgomery, Johnson, p.166] 
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Normally a time series model is used to provide an estimate of the expected value 

of the process at some future period. By adding or subtracting a multiple of the standard 

deviation of the forecast error, this point estimate can be converted into a prediction 
interval. In some cases, the probability that the actual time series realization will fall in the 

interval can be stated. Prediction intervals can be very useful in describing the uncertainty 

associated with a forecast. In some cases, it is desirable to forecast the probability 

distribution of demand directly. [Montgomery, Johnson, p.166] 

Period and Cumulative Forecasts: 

Assume the following time series model, 

(2.15) 

where the {b;} are constants, the {z,(t)} are mathematical :functions of time t. and Er is the 

random component having mean O and variance a e 2. At time T, we have estimated the 

coefficients {h1} from historical using, say, discounted least squares and have the 

following forecasting equation in terms of the original time origin 

(2.16) 

or, if a current time origin is used, 

(2.17) 
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The above forecasting equation provides a point estimate of the expected demand in 

period T + t. If it is desired a period-by-period forecast over a forecast horizon L periods, 

then the forecasting equation is evaluated successively for r = 1,2, ... ,L, to obtain 

' ' ' Xr+I , Xr+2 , ... , Xr+L (2.18) 

The Cumulative demand over a horizon L periods, starting with period T + 1, will be 

denoted by XL(T) and is defined by 

(2.19) 

The cumulative forecast computed at time Tis 

(2.20) 

Depending upon the nature of the { z(t)}, it may be possible to calculate the cumulative 

orecast directly , rather than first calculating each of the L individual forecasts and then 

adding. [Montgomery, Johnson, p.166] 
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FORECAST ERRORS 

There are a number of possible definitions of the forecast error experienced in a 

period, depending upon the prior point in time at which the forecast was made. For 

example, the forecast error for October could be computed based on a forecast made at 

the end of September, or it might be calculated based upon a forecast made at the end of 

July. In the former case, one would be calculating the one-period-ahead forecast error, 

and in the latter, the three-period-ahead forecast error. Naturally, other possibilities exist 

for different forecast lead times. In general, the t-period-ahead forecast computed for 

period Tis the actual demand in period T less the forecast for period T made at the end of 

period Ts t, or 

eP) = Xr - xr'(T-r) (2.21) 

The circumstances of the particular decision problem for which the forecast is required 

will dictate the value, or values of the forecast lead time 't that are of interest in monitoring 

forecast performance. For statistical purposes, the analysis of forecast error will generally 

require computation of only e1(1), and for convenience, it is sometimes referred to as "the 

forecast error", without stating 't= 1. 

Mathematically, we can define the Lspertod-cumulative forecast error, computed 

at time T, as the total actual demand in periods T-L+ I, T-L+2, ... , T, less the cumulative 

forecast for these periods made at time T-L, 

EL(T) = XL(T-L) -XL '(T-L) 

= z.,=11el_T-L+ r) (2.22) 
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Variance of Period forecast errors: 

From equation 2.21 we can observe that the t-period forecast error is the 

difference of two random variables, the demand in period T and the forecast made t 

periods before. These random variables are independent since the forecast is based upon 

the demand values prior to period T and we assume the demands are independent, 

Therefore the forecast error variance is the sum of the variance of the demand process, 

CT/, and the forecast error; that is, 

Var[e.(T)J =Var[ xr] + Var[xr'(T-r)] (2.23) 

The variance of the forecast is a function of the variances and covariances describing the 

uncertainty in using estimates of the model parameters in the forecasting equation. The 

sampling variances of the estimators are defined as 

and the covariance between bi and b1 is defined as 

Covib, ',bf') = E{[bi '-E(b; ')][ bf '-E(bf ')]}= Vff (2.25) 

where E is the expected value operator. 

If the forecasting equation is 2.16, then the variance of the forecast is 

Var[xr+.'(1)] = Var[1:\=1b;'{'.l]z;(T + r)] (2.26) 
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In matrix notation the above equation becomes 

Var[xr+.'(1)] = z'(J'+t)Vz(I'+t) (2.27) 

where z(T+ r) is a k-component column vector of the independent variables evaluated at 

T + r; and V is the variance-covariance matrix having elements V;f- If a current-origin 

forecasting equation is used then 

Var[xr+/(1)] = z'(t)Vz( r) (2.28) 

where V now must be the variance-covariance matrix ofthe{a/(1)}. 

Variance of cumulative forecast errors: 

The cumulative forecast over an L-period horizon and the associated cumulative forecast 

error were defined by equation 2.21 and 2.22, respectively. From the latter equation, we 

see that the cumulative forecast error is the difference between the cumulative demand 

actually experienced and the cumulative forecast. Assuming that the period demands are 

mutually independent random variables, these two quantities are uncorrelated, so the 

variance of the forecast error is the sum of the variance of the cumulative demand and the 

variance of the forecast. 

The results can be stated symbolically by assuming that we are at the end of period T and 
wish a cumulative forecast for the next L periods. The forecast is, for an original-original 

model, 

XL '(1) = 1:.-/ xr+. '(1) 
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-b'(1) Lr-IL z(T+ t") (2.29) 

where z'(T+r) = [z1(T+r), zi(T+r}, ... , zk(T+i-)] is the vector of independent variables 

evaluated at T + r. The variance of the forecast is the following function of the variances 

ofthe {bt'(l)}: 

Var[Xi '(1)] = [Lr-1L z(T+T)]' V (Lr-1L z(T+r)] (2.30) 

where Vis the variance-covariance matrix having elements Vi;= Cov(b;,b} 

It should be observed that even though the forecast is the sum of L period 

forecasts, the forecast variance is not the sum of the period forecast variances. This is 

because all the period forecasts in the cumulative forecast are based upon the same b'(l) 

[or a'(l)] and therefore are correlated. The variance of the cumulative error in forecasting 

for periods T + r, T + i-+ 1, ... , T + L is 

Var[Ei(T+L)] = Var[X1(1)] + Var[X1 '(1)] 

--LCY/+ Var [X1 '(1)] (2.31) 

Estimation of Expected Forecast Error: 

The forecasting procedures described before have involved: 

1. choosing a time series model to represent the demand process, 

2. estimating the parameters of this model, and 

3. extrapolating the estimated model into the future. 
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We have assumed that the time series model is of the general form 

Xt = µ(t) + Et (2.32) 

where the expected value of X1 is µ(t), some mathematical function oft, and E1 is a random 

component having mean O and variance cr/. Thus, in choosing a time series model, we are 

assuming the expected value of demand changes over time according to the mathematical 

model µ(t). If we have chosen the correct model, that is, if the process mean is changing 

with t in the assumed manner, and if the statistical procedure used to estimate parameters 

in the model yields unbiased estimates, then the expected forecast errors will be zero. We 

can examine forecast errors to evaluate the adequacy of the model. If it does satisfactorily 

represents the process, we would expect the average value of the forecast errors to be 

zero. 

Given that we have a history of, say, one-period-ahead forecast errors, e1(1), e1(2), 

.. , e1 ( 1), we have a choice of several statistics that could be used to estimate the expected 

forecast error. We could average all past errors to obtain 

Yr'= Lt=1 e1 (t). l/T = Yl(T)/T (2.33) 

.here Y(]) is defined implicitly as the sum of the forecast errors, or cumulative error. 

Often Y(]) is used for forecast evaluation, rather then YT' because one does not have to 

reep up with the value T to compute the cumulative error each period by 

Y(T) = Y(T+ 1) + eI(T) (2.34) 
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Since we are primarily interested in the representation of the forecasting model in 

the near future, we logically might wish to give more weight to recent forecast errors than 

to older data. We could adopt the moving average concept and use only the last N errors 
m average: 

JIN. Lt=T-N+l eI(t) (2.35) 

All these statistics are linear combinations of past errors with weights adding to 

one. Therefore, each has an expected value of zero, if the expected forecast error is zero. 

Because of noise ( a /) in the time series, these statistics will be random variables, 

distributed about their means. 
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CHAPTER3 

LEARNING 
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LEARNING IN ARTIFICIAL NEURAL NETWORKS 

Among the many interesting properties of a Neural network, the property that is of 

primary significance is the ability of the network to learn from its environment, and to 

improve its performance through learning: the improvement in performance takes place 

over time in accordance with some prescribed measure. A neural network learns about its 

environment through an iterative process of adjustments applied to its synaptic weights 

and thresholds. Ideally, the network becomes more knowledgeable about its environment 

after each iteration of the learning process. [Haykin, p.45] 

There are too many nations associated with "learning" to justify defining the term 

in a precise manner (Minsky, 1961). Moreover, the process of learning it is a matter of 

viewpoint, which makes its all the more difficult to agree on a precise definition of the 

term (Natarajan,1991). For example, learning viewed by a psychologist is quite different 

from learning in a classroom sense. Recognizing that our particular interest is in neural 

networks, we use a definition of learning that is adapted from Mendel and McClaren 

(1970). 

We define learning in the context of neural networks as follows: 

Learning is a process by which the free parameters of a neural networks are adapted 

through a continuing process of stimulation by the environment in which the network is 

embedded The type of learning is determined by the manner in which the parameter 

changes take place. 

This definition of the learning process implies the following sequence of events: 

1. The neural network is stimulated by an environment. 

2. The neural network undergoes changes as a result of this stimulation. 

3. The neural network responds in a new way to the environment, because of the changes 

that have occurred in its internal structure. 

To be specific, consider a pair of node signals x1 and vk connected by a synaptic 

weight w~, as depicted in Fig.3 .1. Signal x1 represents the output of neuron j, and signal vk 
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represents the internal activity of neuron k. In the context of synaptic weight w1g· the 

signals Xj and vk are commonly referred to as presynaptic and postsynaptic activities, 

respectively. Let w1g(n) denote the value of the synaptic weight w1q at time n. At time nan 

adjustment AwkJ(n) is applied to the synaptic weight Wkj yielding the updated value 

w1g(n+ J) We may thus write 

w1g(n+ 1)= w1g(n)+ t1w1g(n) (3.1) 

where w1g(n) and wkJ(n+ J) may be viewed as the old and new values of the synaptic weight 
WkJ respectively. Equation (3 .1) sums up the overall effect of events 1 and 2 implicit in the 

definition of the learning process presented above. In particular, the adjustment Aw1g(n) is 

computed as a result of stimulation by the environment ( event 1 ), and the updated value 

w1q(n+ I) defines the change made in the network as a result of this stimulation ( event 2). 

Event 3 takes place when the response of the new network, operating with the updated set 

of parameters { w1g(n+ J) } is reevaluated. [Haykin, p.46] 

Neuron J Neuron k 
Fig 3.1 Signal Flow Graph depicting a pair of neurons j and k embedded in a neural network. 

Both neurons are assumed to have the same activation function. 

A prescribed set of well-defined rules for the solution of a learning problem is 

called a learning algorithm. As one would expect, there is no unique learning algorithm 

for the design of neural network. Rather, we have a 'kit of tools' represented by a diverse 

variety of learning algorithm, each of which offers advantages of its own. Basically, 
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learning algorithm differ from each other in the way in which the adjustment LlwkJ to the 

synaptic weight w1q is formulated. Another factor to be considered is the manner in which 

a neural network (learning machine) relates to its environment. In this latter context, we 

speak of a learning paradigm referring to a model of the environment in which the neural 

network operates. We may thus offer the taxonomy of learning described in fig.3.2. the 

elements of this taxonomy are explained in the sequel. [Haykin, p.46] 

Learning Process 

Learning algorithms (rules) Learning Paradigms 

Boltzmann Hebbian Error-Correction Competitive 
Learning Learning learning Learning 

I 
Supervised Reinforcement Unsupervised 
learning Learning Learning 

FIG 3.2 A taxonomy of the learning process 

There are four basic rules: error-correction learning, Hebbian learning, 

competitive learning, and Boltzmann learning. Error-correction learning is rooted in 

optimum filtering. In contrast, both Hebbian learning and competitive learning are inspired 

by neurobiological considerations. Boltzmann learning is different altogether in that it is 

based on ideas borrowed from thermodynamics and information theory. 
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Error-Correction Learning 

Let dk(n) denote some desired response or target response for neuron k at time n. 

Let the corresponding value of the actual response of this neuron be denoted by yk(n). 

The response yk(n) is produced by a stimulus (vector) x (n) applied to the input of the 

network in which neuron k is embedded. The input vector x(n) and desired response dk(n) 

for neuron k constitute a particular example presented to the network at time n. It is 

assumed that this example and all other examples presented to the network are generated 

by an environment that is probabilistic in nature, but the underlying probability distribution 

is unknown. [Haykin, p.47] 

Typically, the actual response yk(n) of neuron k is different from the desired 

response dk(n). Hence, we may define an error signal as the difference between the target 

response dk(n) and the actual response Yk(n), as shown by 

ek(n) = dk(n) - yk(n) (3.2) 

The ultimate purpose of error-correction learning is to minimize a cost Junction based on 

the error signal ek(n), such that the actual response of each output neuron in the network 

approaches the target response for that neuron in some statistical sense. Indeed, once a 

cost function is selected, error-correction learning is strictly an optimization problem to 

which the usual tools may be brought to bear. A criterion commonly used for the cost 

function is the mean-square-error criterion, defined as the mean-square value of the sum 

of squared errors: 

J=E[ ~Lk e2k (n)] (3.3) 

Where Eis the statistical expectation operator, and the summation is over all the neurons 

in the output layer of the network. The factor 1h is used in Eq.(3.3) so as to simplify 

subsequent derivations resulting from the minimization of J with respect to free 
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parameters of the network. Equation (3.3) assumes that the underlying processes are 

wide-sense stationary. Minimization of the cost function J with respect to the network 

parameters leads to the so-called method of gradient descent ( Haykin, 1991; Widrow and 

Steams, 1985). However, the difficulty with this optimization procedure is that it requires 

knowledge of the statistical characteristic of the underlying processes. We overcome this 

practical difficulty by settling for an approximate solution to the optimization problem. 

Specifically, we use the instantaneous value of the sum of squared errors as the criterion 

of interest: 

E(n) = Yi Lk e/(n) (3.4) 

The network is then optimized by minimizing E(n) with respect to the synaptic weights of 

the network. Thus, according to the error-correction learning rule ( or delta rule, as it is 

sometimes called), the adjustment Awt made to thesynaptic weight Wt at time n is given 

by (Widrow and Hoff, 1960) 

~wkJ(n) = 17eifl')x;(n) (3.5) 

where 11 is a positive constant that determines the rate of learning. In other words, the 

adjustment made to a synaptic weight is proportional to the product of the error signal 

(measured with respect to some desired response at the output of that neuron) and the 

input signal of the synapse in question. Note that this input signal is the same as the output 

signal of the presynaptic neuron that feeds the neuron in question. [Haykin, p.48] 

Error correction learning behaves like a closed feedback system. Hence care has to 

be exercised in the choice of the value assigned to the learning rate parameter 11, so as to 

ensure stability of the error-correction learning process. Indeed, the learning rate 

parameter 11 has a profound impact on the performance of error-correction learning in that 
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it affects not only the rate of convergence of learning but also the convergence itself. If 11 

is small, the learning process proceeds smoothly, but it may take a long time for the 

system to converge to a stable solution. If, on the other hand, 11 is large, the rate of 

learning is accelerated, but now there is a danger that the learning process may diverge 

and the system therefore becomes unstable. [Haykin, p.49) 

A plot of the cost function J versus the synaptic weights characterizing the neural 

network consists of a multidimensional surface referred to as an error-performance 
surf ace or simply error surf ace. Depending on the type of processing units used to 

construct the Neural network, we may identify two distinct situations: 

1. The Neural network consists entirely of processing units, in which case the error 

surface is bowl-shaped with a unique minimum point (barring the existence of a 

degenerate solution). 

2. The Neural network consists of nonlinear processing units in which case the error 

surface has a global minimum (perhaps multiple global minima) as well as local 

rmruma. 

In both cases, the objective of the error-correction learning algorithm is to start from an 

arbitary point on the error surface ( determined by the initial values assigned to synaptic 

weights) and then moves towards global minimum, in a step-by-step fashion. In first case 

this objective is indeed attainable. In the second case, on the other hand, it is not always 

attainable, because it is possible for the algorithm to get trapped at a local minimum of the 

error surface and therefore never be able to reach a global minimum. [Haykin, p.49] 
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Hebbian Learning 

Hebb 's postulate of learning is the oldest and most famous of all learning rules; it 

is named in honor of the neuropsychlogist Hebb (1949). Quoting from Hebb's book, The 

Organization of Behavior (1949, p.62): 

When an axon of cell A is near enough to excite a 

cell B and repeatedly or persistently takes part in 

firing it, some growth process or metabolic changes 

take place in one or both cells such that A's efficiency 

as one of the cells firing B, is increased. 

Hebb proposed this change as a basis of associative learning ( at the cellular level), 

which would result in enduring modification in the activity pattern of a spatially distributed 

assembly of nerve cells. 

The above statement is made in a neurobiological context. We may expand and 

rephrase it as a two-part rule as follows (Stent, 1973; Changeux and Danchin, 1976): 

1. If two neurons on either side of a synapse (connection) are activated simultaneously 

(i.e., synchronously), then the strength of that synapse is selectively increased 

2. If two neurons on either side of synapse are activated asynchronously, then that 

synapse is selectively weakened or eliminated 

Such a synapse is called Hebbian synapse. More precisely, we define a Hebbian synapse 

that uses a time-dependent, highly local, and strongly interactive mechanism to increase 

synaptic efficiency as a function of the correlation between the presynaptic and 

postsynaptic activities. From this definition we may deduce the following four key 

mechanisms (properties) that characterize a Hebbian synapse: 

1. Time-dependent mechanism. This mechanism refers to the fact that the modification in 

a Hebbian synapse depend on the exact time of occurrence of the presynaptic and 

postsynaptic activities. 
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Local Mechanism. By its very nature, a synapse is the transmission site where 

information-bearing signals (representing ongoing activity in the presynaptic and 

postsynaptic units) are in spatiotemporal contiguity. This locally available information 

is used by a Hebbian synapse to produce a local synaptic modification that is input­ 

specific. It is this local mechanism that enables a Neural network made up of Hebbian 

synapses to perform unsupervised learning. 

Interactive mechanism. Here we note that the occurrence of a change in Hebbian 

synapse depends on activity levels on both sides of the synapse. That is, a Hebbian 

form of learning depends on a true interaction between presynaptic and postsynaptic 

activities in the sense that we cannot make a prediction from either one of these two 

activities by itself. Note also that this dependence or interaction may be deterministic 

or statistical in nature. 

Conjunctional or correlational mechanism. One interpretation of Hebb's postulate of 

learning is that the condition for a change in synaptic efficiency is the conjunction of 

presynaptic and postsynaptic activities. Thus, according to this interpretation, the co­ 

occurrence of presynaptic and postsynaptic activities (within a short interval of time) is 

sufficient to produce the synaptic modification. It is for this reason that a Hebbian 

synapse is sometimes referred to as Conjunctional synapse. 
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Competitive Learning 

In competitive learning, as the name implies, the output neurons of a Neural 

network compete among themselves for being the one to be active (fired). Thus, whereas 

in Neural network based on Hebbian learning several output neurons may be active 

simultaneously, in the case of competitive learning only a single output neuron is active at 

any one time. It is this feature that makes competitive learning highly suited to discover 

those statistically salient features that may be used to classify a set of input patterns. 

The idea of competitive learning may be traced back to the early works Von der 

Malsburg (1973) on the self organization of orientation sensitive nerve cells in the striate 

cortex, Fukushima (1975) on a self organizing multilayer Neural network known as 

cognitron, Willshaw and Von der Malsburg (1976) on the formation of patterned neural 

connections by self organization, and Grossberg ( 1972, 197 6a, b) on adaptive pattern 

classification. Also, there is substantial evidence for competitive learning playing an 

important role in the formation of topographic maps in the brain (Durbin et al., 1989), and 

recent experimental work by Ambros-Ingerson et al. (1990) provides further 

neurobiological justification for competitive learning. 

There are three basic elements to competitive learning rule: 

• A set of neurons that are all the same except for some randomly distributed synaptic 

weights, and which therefore respond differently to a given set of input patterns. 

• A limit imposed on the "strength" of each neuron. 

• A mechanism that permits the neurons to compete for the right to respond to a given 

subsets of inputs, such that only one output neuron, or only one neuron per group, is 
) 

active (i.e., "on") at a time. The neuron that wins the competition is called a winner- 

takes-all neuron. 

Accordingly, the individual neurons of the network learn to specialize on sets of similar 

patterns, and thereby become feature detectors. 
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In the simplest form of competitive learning, the Neural network has a single layer 

output neurons, each of which is fully connected to the input nodes. The network may 

ilude lateral connections among the neurons, as indicated in figure 3 .3. In the network 

chitecture described herein, the lateral connections perform lateral inhibition, with each 

uron tending to inhibit the neuron to which it is laterally connected. The rest of the 

naptic connection in the network of figure 3.3 are excitatory. 

FIG 3.3 Architectural graph of a simple competitive learning network With 
feed forward connections from the source nodeS to the neurons, lateral 
connections amono the neurons. 

For neuron}, say, to be the winning neuron, its net internal activity level v1 for a 

ecified input pattern x must be the largest among all the neurons in network. The output 

gnal y1 of winning neuron j is set equal to one; the output signal of all the neurons that 

se the competition are set equal to zero. 

Let w1; denote the synaptic weight connecting input node I to neuron j. Each 

:uron is allotted a fixed amount of synaptic weight ( all weights are positive), which is 

stributed among its input nodes; we have 

~iWji = 1 for all} (3.6) 

neuron learns by shifting synaptic weights from its inactive to active input node. If a 

euron does not respond to a particular input pattern, no learning takes place in that 



79 

neuron. If a particular neuron wins the competition, then each input node of that neuron 

relinquishes some proportion of its synaptic weight, and the weight relinquished is then 

distributed equally among the active input nodes. According to the standard competitive 

learning rule, the change .Llw/i applied to synaptic weight w/i is defined by 

~wfi = 11(xi-wj;) If neuron} wins the competition 

~Wji = 0 If neuron j loses the competition 

(3.6a) 

(3.6b) 

where 11 is the learning-rate parameter. This rule has the overall effect of moving the 

synaptic weight vector WJ of winning neuron} toward the input pattern x. 
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Boltzmann Learning 

The Boltzmann learning rule, named in honor of L. Boltzmann, is a stochastic 

learning algorithm derived from information-theoretic and thermodynamic considerations. 

In a Boltzmann machine, the neurons constitute a recurrent structure, and they operate in 

a binary manner in that they are either in "on" state denoted by + 1 or in an "off" state 

denoted by -1. The machine is characterized by an energy function E, the value of which is 
determined by the particular states occupied by the individual neurons of the machine, as 

shown by 

where s, is the state of neuron i, and w1; is the synaptic weight connecting neuron i to 

neuron j. The fact that i¥:j means simply that none of the neurons in the machine has self­ 

feedback The machine operates by choosing a neuron at random- say, neuron) - at some 

step of the learning process, and flipping the state of neuron j from state s1 to state -s1 at 

some temperature T with probability 

Wcsj-+-sf) = 1/1 + exp(-M/1) (3.8) 

where M.i is the energy change(i.e., the change in the energy function of the machine) 

resulting from such a flip. Note that Tis not a physical temperature, but rather a pseudo­ 

temperature. If this rule is applied repeatedly, the machine will reach thermal equilibrium. 

The neurons of a Boltzmann machine partition into two functional groups: visible 

and hidden. The visible neurons provide an interface between the network and the 

environment in which it operates, whereas the hidden neurons always operate freely. There 

are two modes of the operation to be considered: 
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• Clamped condition, in which the visible neurons are all clamped onto specific states 

determined by the environment. 

• Free-running condition, in which all the neurons (visible and hidden) are allowed to 

operate freely. 

This is a distinctive feature of Boltzmann machine that it uses only locally available 

observations under two operating conditions as mentioned above. 
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Supervised Learning 

An essential ingredient of supervised or active learning is the availability of an 

external teacher, as indicated in the arrangement of figure 3.4. In conceptual terms, we 

may think of the teacher as having knowledge of the environment that is represented by a 

set of input-output examples. The environment is, however, unknown to the Neural 

network of interest. Suppose now that the teacher and the neural network are both 

exposed to a training vector (i.e., example) drawn from the environment. By virtue of 

built-in knowledge, the teacher is able to provide the Neural network with a desired or 

target response for that training vector. Indeed, the desired response represents the 

optimum action to be performed by the Neural network. The network parameter are 

adjusted under the combined influence of the training vector and the error signal; the error 

signal is defined as the difference between the actual response of the network and the 

desired response. The adjustment is carried out iteratively in a step by step fashion with 

the aim of eventually making the Neural network emulate the teacher; the emulation is 

presumed to be optimum in some statistical sense. In other words, knowledge of the 

environment available to the teacher is transferred to the Neural network as fully as 

possible. When the condition is reached, we may then dispense with the teacher and let the 

Neural network deal with the environment thereafter completely by itself 

The form of supervised learning is indeed the error-correction learning discussed 

previously. It is a closed loop feed back system, but the unknown environment is not 

known in the loop. As a performance measure for the system, we may think in terms of the 

mean-squared error (i.e., the expected value of the sum of squared vectors) defined as a 

function of the free parameters of the system. This function may be visualized as a 

multidimensional error-performance surface or simply error surface, with the free 

parameters as the coordinates. The true error surface is averaged over all possible input­ 

output examples. Any given operation of the system under the teacher's supervision is 

represented as a point on the error surface. For the system to improve performance over 

time and therefore learn from the teacher, the operating point has to move down 
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successively toward a minimum point of the error surface; the minimum point may be local 

minimum or a global minimum. A supervised learning system is able to do this by virtue of 

some useful information it has about the gradient of the error surface corresponding to the 

current behavior of the system. The gradient of an error surface at any point is a vector 

that points in the direction of steepest descent. In fact, in the case of supervised learning 

from examples, the system uses an instantaneous estimate of the gradient vector, with the 

example indices presumed to be those of time. The use of such an estimate results in the 

form of "random walk." Nevertheless, given an algorithm designed to minimize the cost 

function interest, and given an adequate set of input-output examples and enough time 

permitted to do the training, a supervised learning system is usually able to perform such 

tasks as pattern classification and function approximation satisfactorily. 

Vector describing the 
state of the 
environment 

I Environment I - Teacher = •.. = = I 
I Actual "" ii Response 

II - Learning l: ,... system 

Error 
Signal 

Desired 
esponse 

FIG 3.4 Block diagram of supervised !earning 

Example of supervised learning algorithm include the ubiquitous least-mean­ 

square (IMS) algorithm and its generalization known as the back-propagation (BP) 

algorithm. The LMS algorithm involves a single neuron, where as the back-propagation 

algorithm involves a multilayered interconnection of neurons. The back-propagation 

algorithm derives its name from the fact that error terms in the algorithm are back­ 

propagated through the network, on a layer-by-layer basis. Naturally, the back- 
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propagation algorithm is more powerful in application then the LMS algorithm. Indeed, 

the back-propagation algorithm includes the LMS algorithm as a special case. 

Supervised learning can be performed in an off-line or on-line manner. In the off­ 

line case, a separate computational facility is used to design the supervised learning 

system. Once the desired performance is accomplished, the design is ''frozen," which 

means that the neural network operates in a static manner. On the other hand, in on-line 

learning the learning procedure is implemented solely within the system itself, not 

requiring a separate computational facility. In order words, learning is accomplished in 

real time, with the result that the neural network is dynamic. Naturally, the requirement of 

on-line learning places a more severe requirement on a supervised learning procedure than 

off-line learning. 

A disadvantage of supervised learning, regardless of whether it is performed off­ 

line or on-line, is the fact that without a teacher, a neural network, can not learn new 

strategies for particular situations that are not covered by the set of examples used to train 

the network. 
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Unsupervised Learning 

In unsupervised or self-organized learningthere is no external teacher or critie to 

oversee the learning process, as indicated in fig 3. 5. In order words, them are no specific 

examples of the function to be learned by the network. Rather, provision is made for a 

task-independent measure of the quality of representation that the network is required to 
learn, and the free parameters of the network has become tuned to the statistical 

regularities of the input data, it develops the ability to from internal representations for 

encoding features of the input and there by create new classes automatically(Becker, 

1991). 

Vector describing 
state of the 
environment 

Learning 
Environment ,. system ,,, 

FlG 3.5 Block diagram of unsupervised learning 

To perform unsupervised learning, we may use a competitive learning rule. For 

example, we may use a neural network consists of two layers, namely, an input layer and a 

competitive layer. The input layer receives the available data. The competitive layer 

consists of neurons that compete with each other (in a prescribed fashion) for the 

"opportunity " to respond to features contained in the input data. In its simplest form, the 

network operates in accordance with a "winner-takes-all" strategy the neuron with the 

greatest total input "wins" the competition and turns on; all the other neurons then switch 

off. 
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Supervised Versus Unsupervised Learning 

Among the algorithm used to perform supervised learning, the back-propagation 

algorithm has emerged as the most widely used an successful algorithm for the design of 

multilayer feed forward networks. There are two distinct phases to the operation of back 

propagation learning: the forward phase and the backward phase. In the forward phase the 

input signals propagate through the network layer by the layer, eventually producing some 

response at the output of the network. The actual response so produced is compared with 

a desired ( target) response, generating errors signals that are then propagated in a 

backward direction through the network. In this backward phase of operation, the free 

parameters of the network are adjusted so as to minimize the sum of squared errors. Back­ 

propagation learning has been applied successfully to solve some difficult problems such 

as speech recognition from text (Sejnowski and Rosenberg, 1987), handwritten-digit 

recognition (LeCun et al., 1990a), and adaptive control (Narendra and 

Parthasarathy,1990). Unfortunately, back-propagation and other supervised learning 

algorithm may be limited by their poor scaling behavior. One possible solution to the 

scaling problem is to use an unsupervised learning procedure. In particular, if we are able 

to apply a self-organization process in a sequential manner, one layer at a time, it is 

feasible to train deep networks in time that is linear in the number of layers. 
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CHAPTER4 

TIME SERIES AND FORECASTING PROBLEM 

ELECTRIC LOAD FORECASTING 

USING AN ARTIFICIAL NEURAL NETWORK 
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ELECTRIC LOAD FORECASTING USING AN ARTIFICIAL NEURAL 

NETWORK 

Various techniques for power system load forecasting have been proposed in the 

last few decades. Load forecasting with lead-times, from a few minutes to several days, 

helps the system operator to efficiently schedule spinning reverse allocation. In addition, 

load forecasting can provide information which is able to be used for possible energy 

interchange with other utilities. In addition to these economical reasons, load forecasting is 

also useful for system security. If applied to the system security assessment problem, it can 

provide valuable information to detect many vulnerable situations in advance. 

Traditional computationaly economic approaches, such as regression and 

interpolation, may not give sufficiently accurate results. Conversely, complex algorithmic 

methods with heavy computational burden can converge slowly and may diverge in certain 

cases. 

A number of algorithms have been suggested for the load forecasting problem. 

Previous approaches can be generally classified into two categories in accordance with 

techniques they employ. One approach treats the load patterns as a time series signal and 

predicts the future load by using various time series analysis techniques. The second 

approach recognizes that the load is then predicted by inserting the predicted weather 

information into the predetermined functional relationship. 

General problems with the time series approach include the inaccuracy of 

prediction and numerical instability. One of the reasons that it gives inaccurate results is 

that it does not utilize weather information. There is a strong correlation between the 

behavior of power consumption and weather variables such as temperature, humidity, 

wind speed and cloud cover. This is specially true in residential areas. The time series 
;' 

approach mostly utilizes computationally cumbersome matrix oriented adaptive 

algorithms, which in certain cases may be unstable. 
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Following is a program which combines both time series and regression analysis. 

As is the case with time series approach the Artificial Neural network traces previous load 

patterns and predicts. The weather information is used as a mode. It performs non-linear 

modeling and adaptation. 

Program for Electric Load Forecasting: 

In this Artificial Neural network program, I have used data for the previous week 

of a residential area. This data includes the hourly temperature data for one week. The 

program calculates the following: 

• Average temperature of one day 

• Maximum temperature of one day 

• Minimum temperature of one day 

• Average temperature of the previous week 

• Peak Power load for each day 

• Total Power load for each day 

• Average power load for previous week 

• Forecasting for next week. 

The topology for the Artificial Neural network for the electric load forecasting is as 

follows: 

Input Neurons: Average Temperature, Maximum temperature, minimum temperature of 

day (d); Total 3 neurons 

Output neuron: Peak load forecasting for next week 
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The data used is fictional, but logical as it does not negate the laws of nature. It can be 

assumed that the input temperature data is in degrees centigrade. This data is included in 

the TEMP DATA. TXT file. There are 7 rows in the input file, each having 24 columns, The 

first row contains the hourly temperature data for day 1 and so on. The results are 

obtained inLOADDATA.TXTtile. The program is written in Pascal. The input, output and 

the program is included in appendices along with input and output data files. 
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APPENDICES 
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TEMPDATA. TXT 

8 7 6 7 7 8 8.5 9 9.5 10 11 12 12 12 12.3 12 11 11 10 9.5 9 9.3 9.2 8.4 

8.3 8 8 7 7 6 7 7 8.4 8.8 9 10 11 11 12 11 10 9 8 7.6 7 7 6 6 

5666.577.58899.510111213141312111098776.5 

5 5.5 6 6.5 7.5 8 8.6 9 9.4 10 10.4 11 11.2 12 13 12 12 11 10 9 8 7.5 7 6 

6 6.5 7 7.5 8 8.5 8.7 9 9.11010.31111121312 1110 10 9 8.5 8 7.5 7 

7 7.5 8 8.5 9 9.39.710111111.41212131413121110 9 8.5 8 7.8 7.6 

77.788.499.69.810111111.5121213121211109.598877 
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THE PROGRAM 

program ANN_generate (input,output); 

uses 

crt,dos; 

var 

pload,tload,tave,tpeak,tlow: real; 

sum,max,min,ploadwk, wk:real; 

t: array[1 •. 7,1 •. 24] of real; 

d: array[1 .• 7] of integer; 

\, J : \nteger; 

in1, in2 :text; 

begin 

clrscr; 

Assign(in1, 'TEMP DATA. TXT'); 

Assign(in2, 'loaddata. TXT'); 

reset(in1 ); 

rewrite(in2); 

writeln(in2,'jDayjMax TemplMin TempjAve TempJPeak LoadlTotal Loadj'); 

writeln(in2, '====--===============-=========--=============='); 

wk:=O; 

for l:=1 to 7 

do begin 

tpeak:=O; 

tlow:=O; 

sum:=O; 
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for J:=1 to 24 do begin 

read(in1, t[l,J)); 

sum:=sum + t[l,J]; 

tave:=sum/24, 

if t[l,J] > tpeak then tpeak:=t[l,J]; 

if t[l,J+1] < t[l, 1] then tlow:=t[l,J]; 

end; 

writeln('The max temperature on day ',I,' is ',tpeak:4:2); 

writeln('The min temperature on day ',I,' is ',ttow:4:2); 

writeln('The average temperature on day ',I,' is ',tave:4:2); 

pload:=tpeak * 0.15; 

tload :=sum * 0.15; 

writeln('The Peak load on day ',I,' is •,pload:4:2); 

writeln('The total load on day ',I,' is \ttoad:4:2); 

wk:=wk+ptoad; 

writetn; 

writeln(in2,t,' ',tpeak:4:2,' ',tlow:4:2,' ',tave:4:2,' ',pload:4:2,' ',tload:4:2); 
end; 

ploadwk:=wk/7; 

writeln('The forecast for the next week load is ',ploadwk:4:2); 

writeln('See loaddata.txt file for results'); 

Writeln('Press enter to quit'); 

writeln(in2,' '); 

writeln(in2,'The load forecast for next week is ',ploadwk:4:2); 

read In; 

Close(in1 ); 

Ctose(in2); { Close file, save changes } 



end. 
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LOADDATA.TXT (RESULT) 

IDay!Max Temp!Min Ternppwe Templf-eak Load!Total Load! 

----------------------------------------------------- 

1 12.30 8.40 9.53 1.85 34.30 

2 12.00 6.00 8.34 1.80 30.02 

3 14.00 6.50 9.00 2.10 32.40 

4 13.00 6.00 8.98 1.95 32.34 

5 13.00 7.00 9.19 1.95 33.09 

6 14.00 7.60 10.01 2.10 36.05 

7 13.00 7.00 9.73 1.95 35.03 

The load forecast for next week is 1.96 



97 

CONCLUSION 

In this research paper, I have concentrated on Artificial Neural networks and time 

senes forecasting. The phrase "Artificial Neural network" actually comes from the 

biological term neurology, which is the study of human brain and its functions. 

Human brain is a complex part of the body. Over the years, scientist and 

researchers are studying the functions of the brain and how the neurons work. However, 

· there is fot to be learned about, but it is known that the human brain has the potential to 

memorize, learn, adapt and predict so to speak. Scientist have evolved procedures which 

simulate this behavior of the brain and is called Artificial Neural network, using computers 

or network of electronic devices. Nevertheless they have not managed to match the 

capabilities of the human brain. 

In this paper, Artificial Neural networks and their applications and characteristics 

are discussed. Furthermore, time series and forecasting is discussed in detail. Forecasting - 

a characteristic of Artificial Neural networks, though, not fully accurate but are helpful in 

predicting the future to some extent. There is a percentage of error involved in 

forecasting, but if scrutinized enough it can produce results which are beneficial to both 

industry and business in terms of financial control and economic monitoring. 

In chapter 4, a program is included which gives a fairly good example for training 

an Artificial Neural network. Although, the data is fictional but the prediction is sensible. 

· To sum up, it is safe to say that Artificial Neural networks have a big future in the 

industry. T~ evolution of this technology is on the right path, however, there is more to 

be researched. The techniques known so far, have produced logical results - but there is 

I6-e to be- learned. 
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