
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

DATA-BANK PROGRAMMING FOR LIBRARY
SYSTEM

Graduation Project
COM-400

Student: Halime Yılmaz

Supervisor: Mr.Ümit Soyer

Nicosia-2008

ACKNOWLEDGMENT

"First of all I would like to thank my supervisor Mr. Umit Sayerfor his way of treatment with
me, he never rejected me when I had any question and also we contacted otherside of the

university.

I don'tforget other instructors, Mr. Elbrus Imanov was also helped me whenever I had any
problem or he gave me any ideas. I thank them very much with my allfor their advices.

Secondly I would like to thank myfamily for their molar tooth ofgraduated mefrom here. I
know that because of their selfless I was here and I never want to make them disappointed.

So we trust each other and I will be graduated.

Thirdly I want to thanks myfriend Cüneyt Şeker,he helped me in myproject and gave me
ideas andparted her time with me.

Finally I would like to thank All myfriends who aid me during my university life, to resist and
study."

ABSTRACT

Computer science has developed tremendously over the last decades. It is possible to state this
in terms of both hardware and software. Programming is always providing the scientists a
continuous systematic development in their studies and research. In this project it's been
constructed a special program related to Library Automation .The library management should
not be regarded as an isolated and unrelated field from the other industries but it is within this
framework that the history of library development should be examined .New concepts in
library design have been developed more recently in an effort to meet the changing
preferences and new characteristics.

The libraryautomation program consists of many departments like give-return book, search
book, update book-user, search book-user, search transactions and report transactions. The
program that been given in this thesis, resumes that the briefly in a quick time in order to have
quick and economic services. On the other hand, the library development is suitable for
researches and students in computer science ;the development of library automation program
is designed to help compute professionals who want to learn about exciting field and to serve
as a basic reference.

The aim of this project is to create and to develop a project in a scientific method to introduce
the gab between scientific theoretical life and work normal life.

In this project, it's been constructed a library automation program for the availability of
information is incrementally important an all over the word, how to make a cays process in
order to have a quick research, data process, analysis process.

Finally, all file enclosed full details about the project.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER ONE

I

il

Ill

Vil

I. BASIC CONCEPTS OF DELPHI 1

1.1 Introduction to Delphi 1

1.2 What is Delphi 1

1.2.1 Delphi Compilers 1

1.2.2 What Kind of Programming Can You Do with Delphi 2

1.2.3 History of Delphi 3

1.2.4 Advantages & Disadvantages of Delphi 5

1.3 Delphi 6 Editions 6

1.3.1 Delphi 6 Archite 7

1.3.2 Installation Delphi 6 7

1.4. A Tour of Environment 9

1.4.1 Running Delphi for The First Time 9

1.4.2 The Delphi IDE 10

1.4.3 The Menus & Toolbar 11

1.4.4 The component Palette 12

111

1.4.5 The Code Editor 13

1.4.6 The Object Inspector 13

1.4.7 The Object Tree View 14

1.4.8 Class Completion 15

1.4.9 Debugging Applications 16

1.4.10 Exploring Databases 17

1.4.11 Templates and Object Repository 18

1.5 Programming with Delphi 19

1.5.1 Starting A New Application 19

1.5.1.1 Setting Property Values 21

1.5.2 Adding Objects to The Form 21

1.5.3 Add a Table and Statusbar to the Form 21

1.5.4 Connecting to a Database 23

CHAPTER TWO

2. WHAT is DATABASE? 27

2.1. History 27

2.2 Database Models 29

2.2.1 Hierarchical model 29

2.2.2 Network model 29

2.2.3 Relational model 30

2.2.4 Relational operations 31

2.2.5 Normal forms 31

2.3 Database Management Systems 31

2.3.1 Relational database management systems 31

ıv

2.3.2 Post-relational database models 32

2.3.3 Object database models 32

2.4 DBMS internals 33

2.4.1 Indexing 33

2.4.2 Transactions and concurrency 34

2.4.3 Replication 35

2.4.4 Security 35

2.5 Applications of databases 35

CHAPTER THREE

3. PARADOX (DATABASE)

3. 1 Paradox For DOS

3.2 Paradox For Windows

3 .2 Corel Paradox

3.3 Paradox Users

37

37

38

40

40

CHAPTER FOUR 41

4.PROGRAM DESIGN PROCESS 41

4. 1 Login Screen Form 41

4.2 Main Menu Form 43

4.3 Return Book 44

4.4 Give Book 47

4.5 Update 51

4.6 Add, Delete, Update User and Book 55

V

4.6.1 Add, Delete, Update User 56

4.6.2 Add, Delete, Update Book 58

4.7 Search 62

4.7.1 Search Book 63

4.7.2 Search User 66

4.7.3 Search Borrower 68

4.8 Report 70

4.8.1 Report Book 71

4.8.2 Report User 74

4.8.2 Report Borrower 75

4.9 About in Main Menu 77

4.9 Exit 79

4.10 Other Users 80

4.10.1 Student Login 80

4.10.2 StaffLogin 81

4.10.3 Guest Login 82

4.1 O .4 Search Book 83

4.10.5 Statue and Location 83

CONCLUSION 85

REFERENCES 86

APPENDIX 87

vı

LIST OF FIGURES

Figure 1.1 : Select Page For Start Installation

Figure 1.2 : Serial Number and Authorization Screen

Figure 1.3 : License Agreement Screen

Figure 1.4 : Setup Type And Destination Folder Screen

Figure 1.5 : Start Menu

Figure 1.6 : Borland Delphi 6 Folder

Figure 1.7: IDE

Figure 1.8 : Menu ,Title, Speed Bar & Component Palette

Figure 1.9 : Component Palette

Figure 1.1 O : Code Editor Window

Figure 1.11 : Object Inspector

Figure 1.12 : Object Tree View

Figure 1.13 : Class

Figure 1.14: Run

Figure 1.15: SQL Explorer

Figure 1.16: New Item

Figure 1.17 : Form Screen

Figure 1.18: Standard Button

Figure 1.19: BDE Component palette

Figure 1.20 : Table In The Form

Figure 1.21 : Select Database Name

7

8

8

8

9

9

10

11

12

13

14

15

16

17

18

18

21

21

22

22

23

vıı

Figure 1.22: DBGrid In The Form

Figure 1 .23 : Show Table

Figure 4.1 Login To program

Figure 4.2 Wrong Password or Name

Figure 4.3 Admin Entrance

Figure 4.4 Main Menu

Figure 4.5 Return Book Option

Figure 4.6 Return Book 1

Figure 4.7 Return Book

Figure 4.8 Give Book Option

Figure 4.9 Give Book By Searching with ISBN

Figure 4.10 Give Book by Searching with Book Name

Figure 4.11 Give Book by Searching with Name

Figure 4. 12 Update Option

Figure 4.13 Update Form

Figure 4.14 Update Searching By ISBN

Figure 4.15 Update Searching By Book Name

Figure 4. 16 Add, Delete, Update Option

Figure 4. 17 Add, Delete, Update Searching By Id

Figure 4.18 Add, Delete, Update Searching By Name

Figure 4. 19 Add, Delete, Update Searching By Surname

Figure 4.20 Add, Delete, Update Book Searching By ISBN

Figure 4.21 Add, Delete, Update Book Searching By Book Name

Figure 4.22 Add, Delete, Update Book Searching By Writer

24

25

41

42

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

vm

Figure 4.23 Search Option 62

Figure 4.24 Search Book By ISBN 63

Figure 4.25 Search Book By ISBN 64

Figure 4.26 Search Book By Name 65

Figure 4.27 Search User 66

Figure 4.28 Search User By Id 67

Figure 4.29 Search Borrower 68

Figure 4.30 Search Borrower By Id 69

Figure 4.31 Report 70

Figure 4.32 Report Book 71

Figure 4.33 Report Book By Name 72

Figure 4.34 Lists of Books 73

Figure 4.35 Print Book 73

Figure 4.36 Report User 74

Figure 4.37 List of Users 75

Figure 4.38 Report Borrower 75

Figure 4.39 Report Borrower By Id 76

Figure 4.40 List Borrowers 76

Figure 4.41 About Option 77

Figure 4.41 About Me 78

Figure 4.42 Exit 79

Figure 4 . .43 Student Login 80

Figure 4.44 Staff Login 81

Figure 4.46 Guest Login 82

ıx

Figure 4.47 Search Book

Figure 4.48 Statue and Location Form

83

84

X

CHAPTER!

I.BASIC CONCEPT OF DELPHI

1.1.Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums

I thought it was time to write a good introductory article for Delphi

1.2~What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way ofwriting Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the tools

you need to develop, test and deploy Windows applications, including a large number of

so-called reusable components.

Borland Delphi, provides a cross platform solution when used with Borland Kylix -

Borland's RAD tool for the Linux platform.

1.2.1.Delphi Compliers

There are two types complier for Delphi

1

• Turbo Delphi : Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own Visual Component Framework.

• Turbo Delphi for .NET: Free industrial strength Delphi application

development environment and compiler for the Microsoft .NET platform.

1.2.2. What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

2

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3.History Of Delphi

Delphi was one of the first of what came to be known as "RAD"tools, for Rapid

Application Development, when released in 1995 for the 16-bit Windows 3.1 . Delphi

2, released a year later, supported 32-bit Windows environments, and a C++ variant,

C++ Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was Anders

Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on Visual

J++ and subsequently became the chief designer of C Sharp programming languagelC#

and a key participant in the creation of the Microsoft .NET Framework.

In 2001 a Linux version known as Kylix programming tooljkylix became available.

However, due to low quality and subsequent lack of interest, Kylix was abandoned after

version 3.

Support for Linux and Windows cross platform development (through Kylix and the

CLX component library) was added in 2002 with the release ofDelphi 6.

Delphi 8, released December 200;,, was a .NET -only release that allowed developers

to compile Delphi Object Pascal code into .NET Microsoft Intermediate

Languagellvlxll. . It was also significant in that it changed its IDE for the first time,

3

from the multiple-floating-window-on-desktop style IDE to a look and feel similar to

Microsoft's Visual Studio.NET.

Although Borland fulfilled one of the biggest requests from developers (.NET support),

it was criticized both for making it available too late, when a lot of former Delphi

developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 also lacked

significant high-level features of the c sharplC# language, as well as many of the more

appealing features of Microsoft's Visual Studio IDE. (There were also concerns about

the future of Delphi Win32 development. Because Delphi 8 did not support Win32,

Delphi 7.1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET development

in a single IDE, reiterating Borland's commitment to Win32 developers. Delphi 2005

includes design-time manipulation of live data from a database. It also includes an

improved IDE and added a "for ... in" statement (like C#'s foreach) to the language.

However, it was criticized by some for its bugs; both Delphi 8 and Delphi 2005 had

stability problems when shipped, which were only partially resolved in service packs.

In late 2005 , Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable than

Delphi 8 or Delphi 2005 when shipped, and improved even more after the service packs

and several hotfixes.

On February 8, 2006, Borland announced that it was looking for a buyer for its IDE

and database line of products, which include Delphi, to concentrate on its Application

Lifecycle Managementlaf.M line. The news met with voluble optimism from the

remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of the not yet

spun off company) of Borland Software Corporation released single language versions

of Borland Developer Studio, bringing back the popular "Turbo" moniker. The Turbo

product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo C++, and

Turbo C#. Each version is available in two editions: "Explorer"—a free

downloadable version—and "Professional"—a relatively cheap (US$399)

4

version which opens access to thousands of third-party components. Unlike earlier

"Personal" editions of Delphi, new "Explorer" editions can be used for commercial

development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

1.2.4.Advantages&Disadvantages Delphi

==Advantages==

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL
. . .versıonıng ıssues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source compatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily

enabling dual-platform development and deployment

• Cross FBC - a sister project to CrossKylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

5

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programming polymorphism

Disadvantages

• Limited cross-platform capability for Delphi itself. Compatibles provide

more architecture/OS combinations

• Access to platform and third party libraries require header files to be

translated to Pascal. This creates delays and introduces the possibilities of

errors in translation.

• There are fewer published books on Delphi than on other popular

programming languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonality and predictability have suffered

1.3. Delphi 6 Editions

There are 3 editions in Delphi 6 :

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows

development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily

integrate Web Services into client-side applications.

• Delphi Enterprise - includes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a

snap. This Program will concentrate on the Enterprise edition.

6

1.3.1. Delphi 6 Archite

Delphi 6 Architect is designed for professional enterprise developers who need to adapt

quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

facing Web applications with executable state diagrams, object-relational mapping, and

transparent persistence.

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and includes

the complete ECO III framework, including new support for ECO State Machines

powered by State Chart visual diagrams, and simultaneous persistence to multiple and

mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2.Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install, you only have one choice "Delphi 6":

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key

(the two you got from inside a Cd rom driver).

7

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen will popup:

Figure 1.3 Lisanse Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

Figure 1.4.SetUp Type and Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu in the

Programs section of the Start menu, leading to the main Delphi 6 Enterprise program

plus some additional tools.

8

LS.Start Menu Screen

Figure LS.Start Menu

For a faster access to Delphi, create a shortcut on the Windows Desktop.

1.4. A. Tour Of The Environment

This chapter explains how to start Delphi and gives you a quick tour of the main parts

and tools of the Integrated Development Environment(IDE)

1.4.1. Running Delphi For The First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) if

a folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

Borland Delphi 6
llıa.p

Help Delphi 6 Image Editor Register Now

Figure 1.6.Borland Delphi 6 Folder

9

1.4.2. The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs I Borland

Delphi 6 I Delphi 6 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on your

hardware performance) you are presented with the IDE: the user interface where you

can design, compile and debug your Delphi projects.

Figure 1.7.IDE

Like most other development tools (and unlike other Windows applications), Delphi

IDE comprises a number of separate windows.

Some of the facilities that are included in the "Integrated Development Environment"

(IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

10

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.4.3. The Menus & Toolbar

The main window, positioned on the top of the screen, contains the main menu, toolbar

and Component palette.

co rn p orıe rrt palette

Figure 1.8.Menu ,Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll see in

some of the future chapters what exactly is a Delphi project).

The menu bar includes a dozen drop-down menus - we'll explain many of the options in

these menus later through this course. The toolbar provides a number of shortcuts to

mostfrequently used operations and commands - such as running a project, or adding a

new form to a project. To find out what particular button does, point your mouse "over"

the button and wait for the tooltip. As you can see from the tooltip (for example, point

to [Toggle Form/Unit]), many toolbuttons have keyboard shortcuts ([F12]).

The menus and toolbars are freely customizable. I suggest you to leave the default

arrangement while working through the chapters of this course.

11

1.4.4. The Component Palette

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components).Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

click to see Win32 controls click for more tabs orı jeft/riçht

Figure 1.9.Component Palatte

Depending on the version of Delphi (assumed Delphi 6 Personal through this course),

you start with more than 85 components at your disposal - you can even add more

components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the function they

perform. Each page tab in the Component palette displays a group of icons representing

the components you can use to design your application interface. For example, the

Standard and Additional pages include controls such as an edit box, a button or a scroll

box.

To see all components on a particular page (for example on the Win32 page) you simply

click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

12

1.4.5. The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Forml. This form can be renamed, resized

and moved, it has a caption and the three standard minimize, maximize and close

buttons. As you can see a Delphi form is a regular Windows window

aı.~~w*,. ~~-~,-.g.,~,. sv,•111;;ıl'*,. \'•ı;-·t~~~ .. eııııı.N.ııi:#~~
C>i-1!1,löl)~:.

T.r.cı:r.n.1 :,ıı. cıa..• [7To:rwJ

~rı- •.~-

Fig.1.10.CodeEditor Window

If the Forml is the active window and you press [F12], the Code Editor window will be

placed on top. As you design user interface of your application, Delphi automatically

generates the underlying Object Pascal code. More lines will be added to this window as

you add your own code that drives your application. This window displays code for the

current form (Forml); the text is stored in a (so-called) unit - Unitl. You can open

multiple files in the Code Editor. Each file opens on a new page of the Code editor, and

each page is represented by a tab at the top of the window.

1.4.6. The Object Inspector

Each component and each form, has a set of properties - such as color, size, position,

caption - that can be modified in the Delphi IDE or in your code, and a collection of

events - such as a mouse click, keypress, or component activation - for which you can

13

specify some additional behavior. The Object Inspector displays the properties and

events (note the two tabs) for the selected component and allows you to change the

property value or select the response to some event.

Figure 1.11.0bject Inspector

For example, each form has a Caption (the text that appears on it's title bar). To change

the caption of Forml first activate the form by clicking on it. In the Object Inspector

find the property Caption (in the left column), note that it has the 'Forml' value (in the

right column). To change the caption of the form simply type the new text value, like

'My Form' (without the single quotes). When you press [Enter] the caption of the form

will change to My Form.

Note that some properties can be changed more simply, the position ofthe form on the

screen can be set by entering the value for the Left and Top properties - or the form can

be simply dragged to the desired location.

1.4.7. The Object TreeView

Above the Object Inspector you should see the Object TreeView window. For the

moment it's display is pretty simple. As you add components to the form, you'll see that

it displays a component's parent-child relationships in a tree diagram. One of the great

features of the Object TreeView is the ability to drag and drop components in order to

change a component container without losing connections with other components.

14

,4 D ataS ource1
[t]--~ Default {Session}
:···lınJ Edit1
i----·liJ Edit2
i-----[i Edit3
:----[§ll Image1
1 ·lrfil I mage3
] ~ lmage4
i ; lmage5
l,-- ·.\ I magelistl/ 4 I magelist2
j.. ri] Label1
:----·!il Label2
' --Ei] Label3

--~ I ~hol,t

Figure 1.12.0bject Tree View

The Object TreeView, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focussed in the Object TreeView.

1.4.8.Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere within

a class declaration; then press Ctrı+Shift+c, or right-click and select Complete Class

at Cursor. Delphi automatically adds private read and write specifiers to the

declarations for any properties that require them, then creates skeleton code for all the

class's methods. You can also use Class Completion to fill in class declarations for

methods you've already implemented.

To configure Class Completion, choose Toolsllirıvironment Options and click the

Explorer tab.

15

(•Explorer

· Protected.
Public:
Publiılıed
Fıeld

,P(operlieş
Methods

'Classes
Interfaces.

Fig. 1.13. Class

1.4.9.Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in your

code. The debugger lets you control program execution, watch variables, and modify

data values while your application is running. You can step through your code line by

line, examining the state of the program at each breakpoint.

16

~-

~

. Run

"V: Attach to Process...

T~.i Parameters...
$•

Reçıi:;ter Active>:: Server

~ Unregister ActiveX Server

In:;tall COM+ objects

F9

· r:J"' Step Over

ô Trace Into

~i Trace to Next Source Line
ılr-;,ı·· ı!J± Run to Cursor....b Run Until Return

•~ Show Execution Point
.,. Program Pause

[g] Program Reset

Inspect ...
~ Evaluate/Modify ...

~ Add Watch ...

Add Breakpoint

F8

F7

Shift+F7

F4

Shift+F8

Choose any of the debugging
commands from the Run menu.

Some commands are also
available on the toolbar.

Ctrl+F2

Ctrl+F7

Ctrl+F5

Figure 1 .14.Run

To use the debugger, you must compile your program with debug information. Choose

Projectlôptions, select the Compiler page, and check Debug Information. Then you can

begin a debugging session by running the program from the IDE. To set debugger

options, choose Toolsll.ıebugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,

Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing

View'Debug Windows. To learn how to combine debugging windows for more

convenient use, see "Docking tool windows".

1.4.1O.Exploring databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you work

directly with a remote database server during application development. For example,

you can create, delete, or restructure tables, and you can import constraints while you

are developing a database application.

17

·tô IBLocal
-·ô MS Access Database
-~Ai senhe
G@:j Iebes

i!:rnll AR~db
&Hill! atizaWL111U.DB
~i rnll CiNS.db
iffl GIRIS.ctı
!i:rnll iLCE.db
i·ffl kasa.DB
,i, ll,II kasaI.OB
f±H'.!ffl kasacikis.DB
ttJ-·rnll KULLANILAN.08
~;.ffl KUR.db
e:-ll,II MARKActı
!11-ll,II MODELctı
:f)-ffl PARCAGIRIS.DB
'!} ll,II Peseoddb
İ·irnl per.dı
f1: ll,II SERl'IS.ctı
,ı:.mm:1!

Figure 1.15.SQL Explorer

1.4.11.Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose FilejNew to

display the New Items dialog when you begin a project. Check the Repository to see if

it contains an object that resembles one you want to create.

~ 8etchFie ControlP.eınel ControlPanel
Application Module

CLX
Applicaı:iorı

Component

~ ,~
D~a Modulcı DLLı.ı.rızeıd

~ ~

Frame
~ ~

Prl)jectGıeıup Aepcxt

1 AHoucı, DU. Servicı, Seıvicı, Text Thread Objeci Unil: \ıılı,b Seıvı,r
Wi.zeıd Appication A~

><ML Dete

'""""

Figure 1.16.New Item

18

You can add your own objects to the Repository to facilitate reusing them and sharing

them with other developers. Reusing objects lets you build families of applications with

common user interfaces and functionality; building on an existing foundation also

reduces development time and improves quality. The Object Repository provides a

central location for tools that members of a development team can access over a

network.

1.5.Programming With Delphi

The following section provide an overwiew of software development with Delphi.

1.5.1.Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder called Seniha in the Projects directory off the main Delphi

directory.

2. Open a new project.

Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose Filellvew Application to

create a new project.

When you open a new project, Delphi automatically creates the following files.

• Project I .DPR : a source-code file associated with the project. This is called a

project file.

• Unitl .PAS : a source-code file associated with the main project form. This is

called a unit file.

• Unitl.DFM: a resource file that stores information about the main project form.

This is called a form file.

Each form has its own unit and form files.

19

3. Choose Filelxave All to save your files to disk. When the Save dialog appears,

navigate to your Seniha folder and save each file using its default name.

Later on, you can save your work at any time by choosing FilelSave All.

When you save your project, Delphi creates additional files in your project directory.

You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named Forml

by default. You'll create the user interface and other parts of your application by placing

components on this form.

Figure 1.17.Form Screen

The default form has maximize , minimize buttons and a close button , and a control

menu Next to the form, you'll see the Object Inspector, which you can use to set

property values for the form and components you place on it. The drop-down list at the

top of the Object Inspector shows the current selected object.when an object is sellected

the Object Inspector show its properties.

20

1.5.1.1. Setting Property Values

When you use the Object Inspector to set properties, Delphi maintains your source code

for you. The values you set in the Object Inspector are called design-time settings.

For Example; Set the background color of Forml to Aqua.

Find the form's Color property in the Object Inspector and click the drop-down list

displayed to the right of the property. Choose clAqua from the list.

1.5.2. Adding objects to the form

The Component palette represents components by icons grouped onto tabbed pages.

Add a component to a form by selecting the component on the palette, then clicking on

the form where you want to place it. You can also double-click a component to place it

in the middle of the form.

Components
Componont palette tabs

Figure 1.18.Standart Button

1.5.3.Add a Table and a StatusBar to the form:

Drop a Table component onto the form.

Click the BDE tab on the Component palette. To find the Table component, point at an

icon on the palette for a moment; Delphi displays a Help hint showing the name of the

component.

21

E.ile ~dit 2earch Y'.iew E.roject Run Component Database Tools Window tielp

...... ;dl,6,ddi(iqrial !Wi~i'[system I o'~ı;tcı!;;IData·~·ıi?ı o--.~d·i;win..·lt]~~
··-~· . ~sCtv s°:~~ lli.lJII O.,.,:,\:~ -sQL -~ -~.,

Fig.1.19.BDE Component palette

When you find the Table component, click it once to select it, then click on the form to

place the component. The Table component is nonvisual, so it doesn't matter where you

put it. Delphi names the object Tablel by default. (When you point to the component on

the form, Delphi displays its name--Table1--andthe type of object it is--TTable.)

Figure 1.20.Table In The Form

Each Delphi component is a class; placing a component on a form creates an instance of

that class. Once the component is on the form, Delphi generates the code necessary to

construct an instance object when your application is running.

Set the DatabaseName property of Tablel to DBDEMOS. (DBDEMOS is an alias to the

sample database that you're going to use.)

22

Select Tablel on the form, then choose the DatabaseName property in the Object

Inspector. Select DBDEMOS from the drop-down list.

Fig.1.21.Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component palette.

This adds a status bar to the bottom of the application.

Set the AutoHint property of the status bar to True. The easiest way to do this is to

double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to

True allows Help hints to appear in the status bar at runtime.)

1.5.4. Connecting to a Database

The next step is to add database controls and a DataSource to your form.

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is nonvisual, so it doesn't

matter where you put it on the form. Set its DataSet property to Table1.

23

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

then expand it by dragging its upper right comer.

If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure :

The Data Control page on Component palette holds components that let you view

database tables.

Figure 1.22.DBGrid In The Form

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them

all to True.

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Table] object you placed on the form earlier.

24

5. Select the Tablel object on the form, then set its TableName property to

BIOLIFE.DB. (Name is still Tablel.) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB database

table. If the grid doesn't display data, make sure you've correctly set the properties of all

the objects on the form, as explained in the instructions above. (Also verify that you

copied the sample database files into your ... \Borland Shared\Data directory when you

installed Delphi.)

!fl 90020 T riggerfish
90030 IS napper

....... ~gq?gJy/ra?s~
90070 I Angelfish·· ······· iıöösöTc~d················

Clown T riggerfish
Red Emperor
Giant Maori Wrasse
Blue Angelfish
Lunartail Rockcod

90090 l S corpionfish Firefish
90100 I B utterflyfish

· 901101 Shark ·
h

Figure 1.23.Show Table

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

25

points to a DataSource object, which in turn points to a dataset object (in this

case, a Table). Finally, the dataset (Tablel) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

data-aware control ------f DataSource
(Grid)

dataset
------f (Table) ~ BDE ------f database

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

26

CHAPTER2

2. What is Database?

A database is a structured collection of records or data. A computer database relies

upon software to organize the storage of data. The software models the database

structure in what are known as database models. The model in most common use today

is the relational model . Other models such as the hierarchical model and the network

model use a more explicit representation of relationships (see below for explanation of

the various database models).

Database management systems (DBMS) are the software used to organize and

maintain the database. These are categorized according to the database model that they

support. The model tends to determine the query languages that are available to access

the database. A great deal of the internal engineering of a DBMS, however, is

independent of the data model, and is concerned with managing factors such as

performance, concurrency, integrity, and recovery from hardware failures. In these areas

there are large differences between products.

2.1. History

The first database management systems were developed in the 1960s. A pioneer in

the field was Charles Bachman. Bachman's early papers show that his aim was to make

more effective use of the new direct access storage devices becoming available: until

then, data processing had been based on punched cards and magnetic tape, so that serial

processing was the dominant activity. Two key data models arose at this time:

CODASYL developed the network model based on Bachman's ideas, and (apparently

independently) the hierarchical model was used in a system developed by North

American Rockwell later adopted by IBM as the cornerstone of their IMS product.

While IMS along with the CODASYL IDMS were the big, high visibility databases

developed in the 1960s, several others were also bom in that decade, some ofwhich

have a significant installed base today. Two worthy ofmention are the PICK and

27

MUMPS databases, with the former developed originally as an operating system with

an embedded database and the latter as a programming language and database for the

development ofhealthcare systems.

The relational model was proposed by E. F. Codd in 1970. He criticized existing models

for confusing the abstract description of information structure with descriptions of

physical access mechanisms. For a long while, however, the relational model remained

of academic interest only. While CODASYL products (IDMS) and network model

products (IMS) were conceived as practical engineering solutions taking account of the

technology as it existed at the time, the relational model took a much more theoretical

perspective, arguing (correctly) that hardware and software technology would catch up

in time. Among the first implementations were Michael Stonebraker's Ingres at

Berkeley, and the System R project at IBM. Both of these were research prototypes,

announced during 1976. The first commercial products, Oracle and DB2, did not appear

until around 1980. The first successful database product for microcomputers was

dBASE for the CP/M and PC-DOS/MS-DOS operating systems.

During the 1980s, research activity focused on distributed database systems and

databasemachines. Another important theoretical idea was the Functional Data Model,

but apart from some specialized applications in genetics, molecular biology, and fraud

investigation, the world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some success in

fields where it was necessary to handle more complex data than relational systems could

easily cope with, such as spatial databases, engineering data (including software

repositories), and multimedia data. Some of these ideas were adopted by the relational

vendors, who integrated new features into their products as a result. The 1990s also saw

the spread of Open Source databases, such as PostgreSQL and MySQL.

In the 2000s, the fashionable area for innovation is the XML database. As with object

databases, this has spawned a new collection of start-up companies, but at the same time

the key ideas are being integrated into the established relational products. XML

databases aim to remove the traditional divide between documents and data, allowing

all of an organization's information resources to be held in one place, whether they are

highly structured or not.

28

2.2. Database Models
Various techniques are used to model data structure. Most database systems are built

around one particular data model, although it is increasingly common for products to

offer support for more than one model. For any one logical model various physical

implementations may be possible, and most products will offer the user some level of

control in tuning the physical implementation, since the choices that are made have a

significant effect on performance. Here are three examples:

2.2.1 Hierarchical model

In a hierarchical model, data is organized into an inverted tree-like structure, implying a

multiple downward link in each node to describe the nesting, and a sort field to keep the

records in a particular order in each same-level list. This structure arranges the various

data elements in a hierarchy and helps to establish logical relationships among data

elements of multiple files. Each unit in the model is a record which is also known as a

node. In such a model, each record on one level can be related to multiple records on the

next lower level. A record that has subsidiary records is called a parent and the

subsidiary records are called children. Data elements in this model are well suited for

one-to-many relationships with other data elements in the database.

This model is advantageous when the data elements are inherently hierarchical. The

disadvantage is that in order to prepare the database it becomes necessary to identify the

requisite groups of files that are to be logically integrated. Hence, a hierarchical data

model may not always be flexible enough to accommodate the dynamic needs of an

organisation.

2.2.2 Network model

The network model tends to store records with links to other records. Each record in the

database can have multiple parents, i.e., the relationships among data elements can have

a many to many relationship. Associations are tracked via "pointers". These pointers can

be node numbers or disk addresses. Most network databases tend to also include some

form ofhierarchical model. Databases can be translated from hierarchical model to

network and vice versa. The main difference between the network model and

hierarchical model is that in a network model, a child can have a number of parents

whereas in a hierarchical model, a child can have only one parent.

29

The network model provides greater advantage than the hierarchical model in that it

promotes greater flexibility and data accessibility, since records at a lower level can be

accessed without accessing the records above them. This model is more efficient than

hierarchical model, easier to understand and can be applied to many real world

problems that require routine transactions. The disadvantages are that: It is a complex

process to design and develop a network database; It has to be refined frequently; It

requires that the relationships among all the records be defined before development

starts, and changes often demand major programming efforts; Operation and

maintenance of the network model is expensive and time consuming.

Examples of database engines that have network model capabilities are RDM

Embedded and RDM Server.

2.2.3 Relational model

The basic data structure of the relational model is a table where information about a

particular entity (say, an employee) is represented in columns and rows. The columns

enumerate the various attributes of an entity (e.g. employee_ name, address,

phone_number). Rows (also called records) represent instances of.arı entity (e.g.

specific employees).

The "relation" in "relational database" comes from the mathematical notion of relations

from the field of set theory. A relation is a set of tuples, so rows are sometimes called

tuples. All tables in a relational database adhere to three basic rule.

• The ordering of columns is immaterial

• Identical rows are not allowed in a table

• Each row has a single (separate) value for each of its columns (each tuple has an

atomic value).

If the same value occurs in two different records (from the same table or different

tables) it can imply a relationship between those records. Relationships between records

are often categorized by their cardinality (1: 1, (O), 1 :M, M:M).

Tables can have a designated column or set of columns that act as a "key" to select rows

from that table with the same or similar key values. A "primary key" is a key that has a

unique value for each row in the table. Keys are commonly used to join or combine data

from two or more tables. For example, an employee table may contain a column named

30

address which contains a value that matches the key of a address table. Keys are also

critical in the creation of indexes, which facilitate fast retrieval of data from large tables.

It is not necessary to define all the keys in advance; a column can be used as a key even

if it was not originally intended to be one.

2.2.4 Relational operations

Users (or programs) request data from a relational database by sending it a query that is

written in a special language, usually a dialect of SQL. Although SQL was originally

intended for end-users, it is much more common for SQL queries to be embedded into

software that provides an easier user interface. Many web applications, such as

Wikipedia, perform SQL queries when generating pages.

In response to a query, the database returns a result set, which is the list of rows

constituting the answer. The simplest query is just to return all the rows from a table,

but more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a join. There are a

number of relational operations in addition to join.

2.2.5 Normal forms

Relations are classified based upon the types of anomalies to which they're vulnerable.

A database that's in the first normal form is vulnerable to all types of anomalies, while a

database that's in the domain/key normal form has no modification anomalies. Normal

forms are hierarchical in nature. That is, the lowest level is the first normal form, and

the database cannot meet the requirements for higher level normal forms without first

having met all the requirements of the lesser normal form.

2.3 Database Management Systems

2.3.1 Relational database management systems

An RDBMS implements the features of the relational model outlined above. In this

context, Date's Information Principle states:

31

The entire information content of the database is represented in one and only one way.

Namely as explicit values in column positions (attributes) and rows in relations (tuples)

Ergo, there are no explicit pointers between related tables.

2.3.2 Post-relational database models
Several products have been identified as post-relational because the data model

incorporates relations but is not constrained by the Information Principle, requiring that

all information is represented by data values in relations. Products using a post

relational data model typically employ a model that actually pre-dates the relational

model. These might be identified as a directed graph with trees on the nodes.

Examples of models that could be classified as post-relational are PICK aka

MultiValue, and MUMPS.

2.3.3 Object database models

In recent years, the object-oriented paradigm has been applied to database technology,

creating a new programming model known as object databases. These databases attempt

to bring the database world and the application programming world closer together, in

particular by ensuring that the database uses the same type system as the application

program. This aims to avoid the overhead (sometimes referred to as the impedance

mismatch) of converting information between its representation in the database (for

example as rows in tables) and its representation in the application program (typically as

objects). At the same time, object databases attempt to introduce the key ideas of object

programming, such as encapsulation and polymorphism, into the world of databases.

A variety of these ways have been tried for storing objects in a database. Some products

have approached the problem from the application programming end, by making the

objects manipulated by the program persistent. This also typically requires the addition

of some kind of query language, since conventional programming languages do not

have the ability to find objects based on their information content. Others have attacked

the problem from the database end, by defining an object-oriented data model for the

database, and defining a database programming language that allows full programming

capabilities as well as traditional query facilities.

32

2.4 DBMS internals

Database tables/indexes are typically stored in memory or on hard disk in one ofmany

forms, ordered/unordered flat files, ISAM, heaps, hash buckets or B+ trees. These have

various advantages and disadvantages discussed further in the main article on this topic.

The most commonly used are B+ trees and ISAM.

Other important design choices relate to the clustering of data by category (such as

grouping data by month, or location), creating pre-computed views known as

materialized views, partitioning data by range or hash. As well memory management

and storage topology can be important design choices for database designers. Just as

normalization is used to reduce storage requirements and improve the extensibility of

the database, conversely denormalization is often used to reduce join complexity and

reduce execution time for queries.

2.4.1 Indexing

All of these databases can take advantage of indexing to increase their speed, and this

technology has advanced tremendously since its early uses in the 1960s and 1970s. The

most common kind of index is a sorted list of the contents of some particular table

column, with pointers to the row associated with the value. An index allows a set of

table rows matching some criterion to be located quickly. Typically, indexes are also

stored in the various forms of data-structure mentioned above (such as B-trees, hashes,

and linked lists). Usually, a specific technique is chosen by the database designer to

increase efficiency in the particular case of the type of index required.

Relational DBMSs have the advantage that indexes can be created or dropped without

changing existing applications making use of it. The database chooses between many

different strategies based on which one it estimates will run the fastest.

In other words, indexes are transparent to the application or end-user querying the

database; while they affect performance, any SQL command will run with or without

index to compute the result of an SQL statement. The RDBMS will produce a plan of

how to execute the query, which is generated by analyzing the run times of the different

algorithms and selecting the quickest. Some of the key algorithms that deal with joins

33

are nested loop join, sort-merge join and hash join. Which of these is chosen depends on

whether an index exists, what type it is, and its cardinality.

An index speeds up access to data, but it has disadvantages as well. First, every index

increases the amount of storage on the hard drive necessary for the database file, and

second, the index must be updated each time the data are altered, and this costs time.

(Thus an index saves time in the reading of data, but it costs time in entering and

altering data. It thus depends on the use to which the data are to be put whether an index

is on the whole a net plus or minus in the quest for efficiency.)

A special case of an index is a primary index, or primary key, which is distinguished in

that the primary index must ensure a unique reference to a record. Often, for this

purpose one simply uses a running index number (ID number). Primary indexes play a

significant role in relational databases, and they can speed up access to data

considerably.

2.4.2 Transactions and concurrency

In addition to their data model, most practical databases ("transactional databases")

attempt to enforce a database transaction. Ideally, the database software should enforce

the ACID rules, summarized here:

• Atomicity: Either all the tasks in a transaction must be done, or none of them.

The transaction must be completed, or else it must be undone (rolled back).

• Consistency: Every transaction must preserve the integrity constraints - the

declared consistency rules - of the database. It cannot place the data in a

contradictory state.

• Isolation: Two simultaneous transactions cannot interfere with one another.

Intermediate results within a transaction are not visible to other transactions.

• Durability: Completed transactions cannot be aborted later or their results

discarded. They must persist through (for instance) restarts of the DBMS after

crashes.

In practice, many DBMS's allow most of these rules to be selectively relaxed for

better performance.

34

Concurrency control is a method used to ensure that transactions are executed in a

safe manner and follow the ACID rules. The DBMS must be able to ensure that only

serializable, recoverable schedules are allowed, and that no actions of committed

transactions are lost while undoing aborted transactions .

2.4.3 Replication

Replication of databases is closely related to transactions. If a database can log its

individual actions, it is possible to create a duplicate of the data in real time. The

duplicate can be used to improve performance or availability of the whole database

system. Common replication concepts include:

Master/Slave Replication: All write requests are performed on the master and then

replicated to the slaves

Quorum: The result ofRead and Write requests are calculated by querying a "majority"

of replicas.

Multimaster: Two or more replicas sync each other via a transaction identifier.

Parallel synchronous replication of databases enables transactions to be replicated on

multiple servers simultaneously, which provides a method for backup and security as

well as data availability.

2.4.4 Security

Database security denotes the system, processes, and procedures that protect a database

from unintended activity.In the United Kingdom legislation protecting the public from

unauthorized disclosure of personal information held on databases falls under the Office

of the Information Commissioner. United Kingdom based organizations holding

personal data in electronic format (databases for example) are required to register with

the Data Commissioner.

2.5 Applications of databases

Databases are used in many applications, spanning virtually the entire range of

computer software. Databases are the preferred method of storage for large multiuser

applications, where coordination between many users is needed. Even individual users

find them convenient, and many electronic mail programs and personal organizers are

35

based on standard database technology. Software database drivers are available for most

database platforms so that application software can use a common Application

Programming Interface to retrieve the information stored in a database. Two commonly

used database APis are JDBC and ODBC.

For example suppliers database contains the data relating to suppliers such as;

• supplier name

• supplier code

• supplier address

It is often used by schools to teach students and grade them.

36

CHAPTER3

3.PARADOX (DATABASE)
Paradox is a relational database management system currently published by Corel

Corporation. It was originally released for DOS by Ansa Software, but a Windows

version was released by Borland in 1992.

3.1 Paradox For DOS
Paradox for DOS was a relational database management system originally written by

Richard Schwartz and Robert Shostak, and released by their company Ansa Software in

1985. In September 1987, Borland purchased Ansa Software, including their

Paradox/DOS 2.0 software. Notable classic versions were 3.5 and 4.5. Versions up to

3.5 were evolutions from 1.0. Version 4.0 and 4.5 were retooled in the Borland C++

windowing toolkit and used a different extended memory access scheme.

Paradox/DOS was a successful DOS-based database of the late eighties and early

nineties. At that time, dBase and its xBase clones (Foxpro, Clipper programming

language) dominated the market. Other notable competitors were Clarion, DataEase,

R:Base, and Dataflex.

The features that distinguished Paradox/DOS were:

a visual Query By Example implementation that was supported by an AI engine.

effective use of memory (conventional as well as extended I expanded) - caching data

tables and particularly, indexes which caused Paradox to execute tasks very quickly in

contrast to the explicit skills required for xBase performance optimisation.[1]

an innovative programming language the Paradox Application Language (PAL) that

was readable, powerful, and could be recorded from keyboard actions (rather like Lotus

1-2-3 macro recording).

Lotus-like text menus and windows which was the native interface (in contrast to dBase

which had a command line interface on top ofwhich cumbersome menus were layered).

Particularly in Paradox 1.0 and 2.0, the user and programming manuals won readability

awards[citation needed] - they were copiously illustrated, well laid out and explanations

37

were written in common English. In contrast, xBase and other manuals were text heavy,

sometimes even typed in plain Courier with no attempt at professional page layout.

3.2 Paradox For Windows

Paradox for Windows was a distinctly different product produced by a different team of

programmers. Although key features of the DOS product, the QBE and the database

engine, were ports keeping the DOS code, there was a major break in compatibility

from PAL to ObjectPAL and in the shift to a GUI design metaphor for Forms and

Reports. The ObjectPAL changes were controversial but forced since PAL was based

on keystroke recording actions that had no equivalent in Windows. An object-based

language based on ideas from Hypercard was used in place of keystroke recording. The

Forms and Reports designers used device independent scaling including ability to work

in zoomed mode for detailed layout. The mouse right-click was used for access to

Forms and Reports properties, inspired by the Xerox Alto and Smalltalk, in a way now

almost universal to Windows programs. The ObjectPAL was (like Hypercard)

associated with the visual objects - also revealed by right click. Property inspection and

layout tools could be "pinned up" to stay on screen, an idea borrowed from the NeXT

and now fairly widely adopted in Windows.

For approximately the first year of development the object-oriented code was written in

C aided by macros, until Turbo C++ was available at which point the remaining parts of

the code were written in C++. The product manager up until shipping version I.O was

Joe Duncan. The development and QA team totaled about 30 people.

Both Paradox for Windows and Quattro Pro for Windows, a closely related project,

started development using beta versions of Windows 3.0, in the spring of 1990.

Paradox/Windows ended up delayed about a year beyond its original plan, shipping in

early 1993. The reasons were many, but not entirely surprising for a major rewrite, in

00 language with new tools, shifting to a GUI paradigm, on what was essentially a first

version operating system. Still it was a big problem for the company and Microsoft

managed to ship Access a couple of months ahead of Paradox for Windows, a major

marketing win to Microsoft.

38

In 1990 Borland also started work on an internal dBASE clone for both DOS and

Windows, written in assembler, which was planned to ship in 1992. By early 1992 it

became clear that Ashton-Tate was in difficulties on developing Windows versions of

their products and so Borland switched plans, instead acquiring the company and

anointing their internal project as the official successor. Part of the Ashton-Tate

acquisition was the Interbase database and it was decided that Paradox/W should be

able to work with Interbase as well as the Paradox engine and this led to the creation of

an IDAPI engine based around Interbase.

The acquisition also shifted focus. Paradox had historically competed against dBASE in

some markets, and Paradox/W originally was designed to improve the competitive

position in the developer-oriented market. After dBASE was acquired this was no

longer desirable and emphasis shifted towards an ease-of-use market. However the

product could not be changed to match the emphasis (this occurred in later releases) at

that late stage, making the product somewhat over complex for the entry level market.

Access did a good job of addressing that same market and got there first, by Christmas

1992. Still, Paradox/W sold well for a while. Meanwhile, Borland was going through

some serious problems caused by the Ashton-Tate acquisition. Many product lines were

discontinued, corporate reorganization and consolidation was painful, and even worse

the internal dBASE project at the center of the acquisition rationale was eventually

cancelled for technical reasons leaving Borland with a collapse in revenues and a

serious need to develop the missing dBASE for Windows in a hurry. Borland had lost

the strength to fight the multiple marketing battles it needed for its range ofproducts.

Paradox was minimally marketed to the developers since the company decided it would

hold out for a replacement of dBASE, which eventually came out in 1994, too late for

the company.

Microsoft Access was sold for a fraction of the price ofParadox/Windows and bundled

with Word, Excel and PowerPoint in Microsoft Office Professional. Furthermore,

Access performance was good thanks to team contributions from FoxPro programmers.

Despite solid follow-on versions with improvements to usability for entry-level users,

Paradox faded from the market. It was included in the sale ofBorland products to Word

Perfect, which were in turn resold as Word Perfect got into financial products, and at the

current time ofwriting Paradox for Windows, Word Perfect and Quattro Pro for

39

Windows are all owned by Corel and sold as part of their office suite. dBASE for

Windows came out too late to be a significant player in the Windows market, most

dBASE programmers by then had migrated to Microsoft FoxBase, a very similar

database tool. Borland itself retained the Interbase/IDAPI server and focussed efforts on

its Delphi tools which over the years gave it an influential but small part of the data

oriented developer market.

3.2 Corel Paradox

Corel acquired certain rights to develop and market Paradox in the mid-90's and

released Corel Paradox 8 in 1997. It also bundled Paradox in the professional version of

its WordPerfect Office suite. It has released versions 9, 10, 11, 12, X3 and the latest

version Office X4 Professional Edition since then.

3.3 Paradox Users

There is a strong Paradox user base, mainly centered around the Paradox Community

and its associated newsgroups. Many feel let down by Borland and Corel because they

believe that Paradox is superior to all the other desktop DBMSes around.

Although there are many fans of ObjectP AL, the programming language for

Paradox/Windows, PAL/DOS scripts could not easily be migrated; the object and event

models were completely different forcing developers using PAL to completely rewrite

their database applications.

40

CHAPTER4

4.PROGRAM DESIGN PROCESS

4.1 Login Screen Form

Here the users enter the usemame and password to login to the program.There are five
types of users: Admin,User,Guest,Student,Staff.Each of the users has different
hierarchic authorities.Admin and user can use all the options in the program,but user
can not change the admin's password.Student,Staff and Guest can only search book and
except guest they can borrow book.The difference between student and staff is book
borrowing duration.Student can borrow a book for 1 O days,guest can borrow a book for
30 days.

LIBRA~YAlJİOlVIATION

Figure 4.1 Login To program

If the information provided by the user is correct the main form will be opened else it
will not be displayed and a message box will appear to warn the user that there could
be a mistake in usemame or password.

41

Project1 • ııııı ~

Figure 4.2 Wrong Password or Name

Because of the authority of the admin and user are the same, admin login will be shown
only.

Figure 4.3 Admin Enterance

After correct informations are entered the mainmenu screenshot will be displayed.

42

Figure 4.4 Main Menu

This is the main page of the program.

4.2 Main Menu Form

The aim of the main menu is to use the program easily,faster and use all the process
screens or necessary program at the same time.There will be options like Give
Book,Return Book,Add,Delete,Update User and Book,Update Tansaction,Search Book,
User and Borrower,Report Book,User and Borrower.Lastly there will be an About Page
in which users could see the some informations about program and programmer.

43

Figure 4.5 Return Book Option

4.3 Return Book

In this form,when the user select the return book to take the book was borrowed before
Return book window will be appeared and using search options either by isbn or by
name user will find the important book informations like rent date and return date.If the
book will be given late program will automatically calculate lateness dept.After all datas
will be completed user will change the book status not available to available to could
lend book again later and press button to send the datas to the database.Available means
book is in the library,not available means book is borrowed and not in library.Away
means the book location is unknown.

44

Figure 4.6 Return Book

45

User ID

User Name

Us et 'Sıırnaıne

RetıımDate

Figure 4.7 Return Book

46

Figure 4.8 Give Book Option

4.4 Give Book

In this form user can 'lend books to the people who wants.To give the book,user can

search the book information due to isbn ,book and writer name.After datas will be

entered book statu must be changed available to not available.

47

Figure 4.9 Give Book By Searching with Isbn

48

Days.

~nbje¢t

Figure 4.10 Give Book by Searching withBook Name

49

Figure 4.11 Give Book by Searching with Name

50

4.5 Update

Update option will be used to make longer borrowing days. When it is requested,retum

date could be changed by user.

Figure 4.12 Update Option

51

Search By Bcrrbwer Surnaame
'--·~

Rent Date

Return Date

Figure 4.13 Update Form

User can find the last return date record for that book by searching isbn,

52

Figure 4.14 Update Searching By Isbn

User can find the last return date record for that book by searching book name,

53

Book Status Available

Figure 4.15 Update Searching By Book Name

54

4.6 Add, Delete, Update User and Book

Figure 4.16 Add, Delete, Update Option

55

4.6.1 Add, Delete, Update User

In this window users can add a new user due to their statu's,delete a user or update a

user's information.If user would update an existing record,using search options (By

ld,By Name,By Surname) he/she could find and see in table below easly.

Searching By Userld,

l\.'.Iobile Phone

Address

Figure 4.17 Add, Delete, Update Searching By Id

56

Searching By Naıne,

Figure 4.18 Add, Delete, Update Searching By Name

57

Searching By Surname,

E ~ mail

Figure 4.19 Add, Delete, Update Searching By Surname

4.6.2 Add,Delete,Update Book

In this window users can add a new book ,delete book or update a book's

information.If user would update an existing record,using search options (By Isbn,By

Book Name,By Writer Name) he/she could find and see in table below easly.

58

Searching By ISBN,

Adın in
:BQ9~.R~gi'stration

111

. ISBN Nı.iinber Language

. Bookl\f .ame Publisher

'vVıiter N ame Date

Book Status I Not Available Location b14

novel

Figure 4.20 Add, Delete, Update Book Searching By ISBN

59

Searching By Book Name,

Figure 4.21 Add, Delete, Update Book Searching By Book Name

60

Searching By Writer Name,

Figure 4.22 Add, Delete, Update Book Searching By Writer

61

4.7 Search

In this form user could search Book, User and Borrower.

Figure 4.23 Search Option

62

4.7.1 Search Book

In this form,user can search borrowed books according to its isbn or name.

Figure 4.24 Search Book By ISBN

63

This form allows to user to search borrowed books according to ISBN given between

two dates. Table will show the book ISBN, name, location and statue.

,:cc.,· , , :~

ISBNNwnber

[~
BookNaıne

Ishn
~ıııı

Figure 4.25 Search Book by, ISBN

64

This form allows to user to search borrowed books according to book name between

two dates.

Searc!ı, ;By.Bool{'Nanıe
.,,,·.;. .,c:-:-;_:-; ece:;:/ .. ',,.,''.:; '

ŞearcJı :Şy pate' Of Sfai1

Figure 4.26 Search Book By Name

65

4.7.2 Search User

Figure 4.27 Search User

66

This form allows to user to search transactions have been done by that user according

to his/her id in between two dates. Table will show the user ID, name, surname,

borrowed book, rent date and return dates.

Figure 4.28 Search User By ID

67

4.7.3 Search Borrower

Figure 4.29 Search Borrower

68

This form allows to user to search books have been taken by borrower according to

his/her ID between two dates.

Figure 4.30 Search Borrower By ID

69

4.8 Report

In this form user could report and print (if it is necessary) Book, User and Borrower

informations.

Figure 4.31 Report

70

4.8.1 Report Book

Figure 4.32 Report Book

71

In this section, program can report and print optionally books which have been

borrowed between given two dates.

s eaı'dr0Bv DafJ'ôt Start
· ·• •-o''"cc-,-+cc ı,J_. __ • ·. ,., ··,'-,-;.;, ece. ,., •

25.06.2008

Bv Date Of End•t·: '

25.06.2008

Figure 4.33 Report Book by Name

72

Rent Date Return Date Book Name
20.06.2008 25.06.2008 Ora ele

ID
234

Borrower Name
Murat Karaogul

ID Cashier Name
987 Halime

Figure 4.34 List of Books

Figure 4.35 Print Book

73

4.8.2 Report User

In this section, program can report and print optionally users which have done

transactions between given two dates.

Figure 4.36 Report User

74

User ID

111

User Name
Ekrem

Rent Date Book Name Return Date

Yılmaz

Figure 4.37 List ofUsers

4.8.2 Report Borrower

'I

Figure 4.38 Report Borrower

75

In this window user can report borrowers which borrowed book in given two dates.

Figure 4.39 Report Borrower by ID

Borrower ID Borrower Name Rent Date
20.06.2008

Book Name
Oracle234 lvlurat Karaogul

Figure 4.40 List Borrowers

76

Return Date
25.06.2008

4.9 About in Main Menu

Figure 4.41 About Option

In this About window, user can see the some information about the programmer and

program.

77

LIBBARY. .. ii'VTOMA TION•y ••-· •

. halimeyilmazzz@yahoo.com

Figure 4.41 About Me

78

4.9 Exit

To close the program or page exit should click.

Figure 4.42 Exit

79

4.10 Other Users

As it is mentioned before there are five types of users:

Admin,User,Guest,Student,Staff.Each of the users has different hierarchic

authorities.Admin and user can use all the options in the program,but user can not

change the admin's password.Student,Staff and Guest can only search book and except

guest they can borrow book.The difference between student and staff is book

borrowing duration.Student can borrow a book for 1 O days,guest can borrow a book for

30 days.

4.10.1 Student Login

Figure 4. .43 Student Login

80

4.10.2 Staff Login

Figure 4.44 Staff Login

81

4.10.3 Guest Login

LIBRARY AUTQl\i{ATION,

PROGKi\.l(I

Figure 4.46 Guest Login

The authority of the student, staff and guest is the same and when the Student, Staff and

Guest login to program can see just two forms. They can just search book.

82

4.10.4 Search Book

In this form users can search books by ISBN or name and can see the book ISBN, name,

writer and publisher.

ı....ı ----·-·--···· jD~lphi
'234

Suç Ve Ceza222

Figure 4.47 Search Book

After learning these information if the user wants to borrow the book, he or she should

click Statue and Location button to see the book situation.

4.10.5 Statue And Location

In this form user will see the book location to take the book and the statue. If it is

available user can borrow it. Also close button closes the window.

83

Figure 4.48 Statue And Location Form

84

CONCLUSION

Particular needs and demands of a library made this software program possible. The
features of the program that the library needs as fallows:

• To give the books to the borrowers
• To return book which is taken before
• To register the books at the library database
• To see the books which library has
• To list the borrowers who take book
• To list the users who give book
• To list the books which are taken
• To keep the transaction details under control

Borland Delphi 6.0 is used for the software that will answer the needs of a big
library.This program is chosen because it is highly secure and easy software to use in
terms of both the user and the programmer when trying to fulfill the needs and demands
of the library.Paradox is the database that is used for this software as it is the most
applicable database for Delphi.

This software holds the all necessary aspects to support the heavy work load of a library
and it is being tested in a library department and there have been no problems faced
with the program coping with the library's load so far.The program requires further
development to handle remote access perhaps through internet to facilitate remote
access by users and borrowers for better communications.

85

REFERENCES

[1] www.delphiturk.com

[2] www.yazilim.com

[3] www.programlama.com

[4] www.wikipedia.com

[5] www.bilisimterimleri.com

[6] www.paradoxplaza.com

[7] www.paradox.gen.tr

[8] Karagülle, İhsan, Delphi 7.0, Türkmen Printing House, İstanbul, 2001

86

APPENDIX

Login Form

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, StdCtrls, Mask, DBCtrls;

type
TForml = class(TForm)
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
Queryl: TQuery;
Query2: TQuery;
Query3: TQuery;
Query4: TQuery;
Query5: TQuery;
DataSource1: TDataSource;
DataSource2: TDataSource;
DataSource3: TDataSource;
DataSource4: TDataSource;
DataSource5: TDataSource;
Editl: TEdit;
Edit2: TEdit;
Buttonl: TButton;
Labell: TLabel;
Label2: TLabel;
Label4: TLabel;
Label5: TLabel;
procedure Buttonl Click(Sender: Tübject);
procedure FormCreate(Sender: Tübject);
procedure Edit2Change(Sender: Tübject);

private
{ Private declarations }

public

87

{ Public declarations }
end;

var
Forml: TForml;

implementation

uses Unit2, Unit4, Unit5, Unit6, Unitlü, Unit13, Unit20, Unit3;

{$R *.dfm}

procedure TForml.ButtonlClick(Sender: TObject);
begin

if (edit 1. text=dbedit 1. Text) and (edit2. text=dbedit2. Text) then
begin
form2.label 1.caption:='Admin';
form4.labell.caption:='Admin';
form5 .label 1 .caption:='Admin';
form3 .label 12. Caption:=' Admin';
form6.Show;
end
else

if (edit 1.text=dbedit3. Text) and (edit2. text=dbedit4. Text) then
begin
form2.labell .caption:='User';
form4.label 1.caption:='U ser';
form5 .label 1. caption:='U ser';
form3 .label 12. Caption:='U ser';

form6.Show;
end
else

if (edit 1.text=dbedit5. Text) and (edit2. text=dbedit6. Text) then
begin
form2.labell .caption:='guest';
form4.labell .caption:='guest';
form5 .label I.caption:=' guest';
form20.Show;

end
else

if (editl .text=dbedit7. Text) and (edit2.text=dbedit8. Text) then
begin
form2.label l .caption:='student';
form4.label 1.caption:='student';
form5 .label I.caption:=' student';
form20.Show;

88

end
else
if (edit 1.text=dbedit9. Text) and (edit2. text=dbedit 1 O. Text) then
begin
form2.label 1.caption:='staff;
form4 .label I .caption:=' staff;
form5.labell.caption:='staff;
form20.Show;

end
else

showmessage('Wrong User Name Or Password');
editl .Text:=";
edit2.Text:=";
end;

procedure TForml .FormCreate(Sender: TObject);
begin
editl.Text:=";
edit2. Text:=";
dbeditl .Visible:=false;
dbedit2.Visible:=false;
dbedit3. Visible:=false;
dbedit4.Visible:=false;
dbedit5. Visible:=false;
dbedit6.Visible:=false;
dbedit7. Visible:=false;
dbedit8.Visible:=false;
dbedit9. Visible:=false;
dbeditl O.Visible:=false;

end;
procedure TForml .Edit2Change(Sender: Tübject);
begin
edit2.PasswordChar:='* ';
end;
end.

Main Menu

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, StdCtrls, jpeg, ExtCtrls, ComCtrls;

89

type
TForm6 = class(TForm)
Image1: Tlmage;
Labell: TLabel;
DateTimePickerl: TDateTimePicker;
Label2: TLabel;
Timer1: TTimer;
Timer2: TTimer;
MainMenu1: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Update I: TMenultem;
Add1: TMenultem;
AddUser1: TMenultem;
AddBookl: TMenultem;
Search1 : TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashier1: TMerıultem;
SerchByCashier1: TMenultem;
Reportl: TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowers1: TMenultem;
ReportBorrower1: TMenultem;
Nl: TMenultem;
Exitl: TMenuitem;
SearchBorrowerl: TMenultem;
Aboutl: TMenultem;
procedure Timer2Timer(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure ReportByCashierl Click(Sender: TObject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrowerl Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure ISBNl Click(Sender: TObject);
procedure CashierlClick(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchBorrowerl Click(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserlClick(Sender: Tübject);
procedure GiveBookl Click(Sender: TObject);
procedure ReturnBooklClick(Sender: TObject);
procedure Aboutl Click(Sender: TObject);
procedure ImagelClick(Sender: TObject);

private
{ Private declarations }

public

90

{ Public declarations }
end;

var
Form6: TForm6;

implementation

uses Unit7, Unit8, Unit9, Unitl, Unitlü, Unit13, Unitl 1, Unit12, Unit4,
Unit2, Unit3, Unit15, Unit14, Unit22;

{$R *.dfm}

procedure TForm6.Timer2Timer(Sender: TObject);
begin
DateTimePickerl .DateTime := Now;
end;

procedure TForm6.Timerl Timer(Sender: TObject);
begin
label2.caption:=timetostr(time);
end;

procedure TForm6.ReportByCashier 1 Click(Sender: Tübj ect);
begin

form7.show;
end;

procedure TForm6.reportByBorrowers 1 Click(Sender: TObject);
begin

form8.show;
end;

procedure TForm6 .ReportBorrower 1 Click(Sender: TObj ect);
begin

form9 .show;
end;

procedure TForm6.Exit1Click(Sender: TObject);
begin
forml .close;
end;

procedure TForm6.ISBN1 Click(Sender: TObject);
begin
forml O.show;
end;

91

procedure TForm6.Cashierl Click(Sender: Tübject);
begin
form13.show;
end;

procedure TForm6.SerchByCashierl Click(Sender: Tübject);
begin
forml 1.show;
end;

procedure TForm6.SearchBorrowerl Click(Sender: Tübject);
begin
form12.show;
end;

procedure TForm6.Update1Click(Sender: Tübject);
begin
form4.show;
end;

procedure TForm6 .AddBook 1 Click(Sender: Tübj ect);
begin
form2.show;
end;

procedure TForm6.AddU ser 1 Click(Sender: Tübj ect);
begin
form3 .show;
end;

procedure TForm6.GiveBookl Click(Sender: TObject);
begin
form15.show;
end;

procedure TForm6.ReturnBookl Click(Sender: Tübject);
begin
form14.show;
end;

procedure TForm6.Aboutl Click(Sender: Tübject);
begin
Form22.show;
end;

procedure TForm6.Image 1 Click(Sender: Tübject);
begin

end;

92

end.

RETURN BOOK

unit Unit14;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Menus, Mask, DBCtrls, DB, DBTables;

type
TForm14 = class(TForm)
Label 1 1: TLabel;
Label 12: TLabel;
Edit I: TEdit;
Edit2: TEdit;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Labellü: TLabel;
Label 14: TLabel;
Label 15: TLabel;
Label 1: TLabel;
Label2: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
Label7: TLabel;
DBEditlO: TDBEdit;
Label8: TLabel;
DBEditl 1: TDBEdit;
MainMenu 1: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Update I: TMenultem;
Add 1: TMenultem;

93

AddU ser 1 : TMenultem;
AddBookl: TMenultem;
Search 1: TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashier 1: TMenultem;
SerchByCashier 1: TMenultem;
SearchByBorrowerl: TMenultem;
Reportl: TMenultem;
ReportByCashier 1: TMenuitem;
reportByBorrowersl: TMenultem;
ReportBorrowerl: TMenultem;
N 1: TMenultem;
Exitl: TMenultem;
DBComboBoxl: TDBComboBox;
Label9: TLabel;
Buttonl: TButton;
Query 1: TQuery;
DataSource 1: TDataSource;
procedure AddUserl Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure ReportByCashierl Click(Sender: Tübject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrowerl Click(Sender: TObject);
procedure ISBNlClick(Sender: TObject);
procedure Cashier 1 Click(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchByBorrowerl Click(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Button I Click(Sender: Tübject);
procedure FormActivate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form14: TForm14;

implementation

uses Unit3, Unit7, Unit8, Unit9, UnitlO, Unit13, Unitl 1, Unit12, Unit2,
Unit4, Unit15;

94

{$R *.dfm}

procedure TForm14.AddUser1Click(Sender: TObject);
begin
forın14.close;
form3 .show;
end;

procedure TForml 4.Exitl Click(Sender: TObject);
begin
forın14.Close;
end;

procedure TForm 14.ReportByCashier 1 Click(Sender: TObj ect);
begin
forml4.close;
form7.show;
end;

procedure TForm 14 .reportBy Borrowers 1 Click(Sender: TObject);
begin
form14.close;
forın8.show;
end;

procedure TForml 4.ReportBorrowerl Click(Sender: TObject);
begin
forınl 4.close;
form9.show;
end;

procedure TForml 4.ISBNl Click(Sender: TObject);
begin
form14.close;
formlO.show;
end;

procedure TForml4.CashierlClick(Sender: TObject);
begin
forın14.close;
form13.show;
end;

procedure TForml 4.SerchByCashier 1 Click(Sender: TObject);
begin
forml4.close;
forml 1 .show;
end;

procedure TForml 4.SearchByBorrower 1 Click(Sender: TObject);

95

begin
forml 4.close;
forml2.show;
end;

procedure TForml4.AddBook1Click(Sender: TObject);
begin
form14.close;
form2.show;
end;

procedure TForm14.Update1Click(Sender: TObject);
begin
forml 4.close;
form4.show;
end;

procedure TForm14.GiveBook1Click(Sender: TObject);
begin
form14.close;
form15.show;
end;

procedure TForm14.FormCreate(Sender: TObject);
begin

Queryl.DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
queryl.SQL.Text:='select * from halime';
query1 .Active:=true;
editl .Text:=";
edit2.Text:=";

end;

procedure TForml 4.Editl Change(Sender: TObject);
begin
query1 .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where Isbn like'+#39+(editl.text)+'%'+#39);
query1.Open;

end;

procedure TForm14.Edit2Change(Sender: TObject);
begin
query1 .close;
queryl.SQL.Clear;

96

query I .sql.add('select * from halime where BookName
like'+#39+(edit2.text)+'%'+#39);
query1. Open;

end;

procedure TForm14.Button1Click(Sender: Tübject);
begin
query 1 .Append;
end;

procedure TForm14.FormActivate(Sender: Tübject);
begin

query1 .Insert;
end;

end.

GIVE BOOK

unit Unitl5;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, DB, DBTables, StdCtrls, DBCtrls, Grids, DBGrids,
ExtCtrls, Mask;

type
TForm15 = class(TForm)
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Update 1 : TMenultem;
Add1: TMenultem;
AddUser1: TMenultem;
AddBookl: TMenultem;
Search1: TMenultem;
SerchBook1: Tlvlenultem;
ISBNI: TMenultem;
CashierI: TMenultem;
SerchByCashier1: TMenultem;
SearchByBorrowerl: TMenultem;
ReportI: TMenultem;
ReportByCashier 1: TMenultem;
reportByBorrowers 1: TMenultem;

97

ReportBorrower 1: TMenulteın;
N 1: TMenulteın;
Exitl: TMenuiteın;
Label 11: TLabel;
Label12: TLabel;
Label 13: TLabel;
Label3: TLabel;
Label4: TLabel;
Label9: TLabel;
Label8: TLabel;
Label2: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
LabellO: TLabel;
Label 14: TLabel;
Label15: TLabel;
Label16: TLabel;
GroupBoxl: TGroupBox;
Label 1 : TLabel;
Edit 1 : TEdit;
Edit2: TEdit;
Edit3: TEdit;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBMeınol: TDBMeıno;
DBEdit5: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
Edit4: TEdit;
DBCoınboBoxl: TDBCoınboBox;
Labell 7: TLabel;
Label18: TLabel;
DBEditlO: TDBEdit;
DBEditl 1: TDBEdit;
Query 1: TQuery;
DataSource 1: TDataSource;
Buttonl: TButton;
procedure Updatel Click(Sender: TObject);
procedure AddUserl Click(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure ISBNl Click(Sender: TObject);
procedure CashierlClick(Sender: TObject);
procedure SerchB yCashier 1 Click(Sender: TObj ect);
procedure SearchByBorrower 1 Click(Sender: TObject);
procedure ReportByCashierl Click(Sender: TObject);

98

procedure reportByBorrowersl Click(Sender: TObject);
procedure ReportBorrowerl Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure ReturnBookl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure Buttonl Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form15: TForm15;

implementation

uses Unit4, Unit3, Unit2, UnitlO, Unit13, Unitl 1, Unit12, Unit7, Unit8,
Unit9, Unit14;

{$R *.dfm}

procedure TForml5.Update1Click(Sender: TObject);
begin
form 15 .close;
form4.show;
end;

procedure TForm 15 .AddU ser 1 Click(Sender: TObj ect);
begin
form 15 .close;
form3 .show;
end;

procedure TForm 15 .AddBook 1 Click(Sender: TO bject);
begin
form15.close;
form2.show;
end;

procedure TForm15.ISBN1Click(Sender: TObject);
begin
form15.close;
form IO.show;
end;

99

procedure TForm15.Cashier1Click(Sender: Tübject);
begin
form15.close;
forml3.show;
end;

procedure TForml 5.SerchByCashierl Click(Sender: Tübject);
begin
form15.close;
form I 1 .show;
end;

procedure TForm15.SearchByBorrowerl Click(Sender: Tübject);
begin
form 15 .close;
form12.show;
end;

procedure TF orm 15 .ReportByCashier 1 Click(Sender: Tübject);
begin
form15.close;
form7.show;
end;

procedure TForm15.reportByBorrowers1Click(Sender: Tübject);
begin
forml5.close;
form8.show;
end;

procedure TF orm 15 .ReportBorrower 1 Click(Sender: Tübj ect);
begin
forml5.close;
form9 .show;
end;

procedure TForm15.Exit1Click(Sender: Tübject);
begin
form15.close;
end;

procedure TForml5.ReturnBook1Click(Sender: Tübject);
begin
forml5.close;
form14.show;
end;

procedure TForm15.FormCreate(Sender: Tübject);
begin

100

Queryl.DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
queryl.SQL.Text:='select * from halime';
query 1 .Active:=true;
editl.Text:=";
edit2.Text:=";
edit3.Text:=";
edit 4. Text:=";
end;

procedure TForm15.Edit1Change(Sender: TObject);
begin
query 1 .close;
queryl .SQL.Clear;
queryl .sql.add('select * from halime where Isbn like'+#39+(editl .text)+'%'+#39);
query 1. Open;
end;

procedure TForm15.Edit2Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl .sql.add('select * from halime where bookname like'+#39+(edit2.text)+'%'+#39);
query 1. Open;
end;

procedure TForm15.Edit3Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl .sql.add('select * from halime where Borrowemame
like'+#39+(edit3 .text)+'%'+#39);
query 1. Open;
end;

procedure TForm15.Edit4Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl .sql.add('select * from halime where Borrowersumame
like'+#39+(edit4.text)+'%'+#39);
query 1 . Open;
end;

procedure TForm15.FormActivate(Sender: TObject);
begin
queryl .Insert;
end;

procedure TForm15.Button1Click(Sender: TObject);

101

begin
query I .Append;
end;
end.

UPDATE

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, StdCtrls, ExtCtrls, ComCtrls, DBCtrls, Mask, DB, DBTables,
Grids, DBGrids;

type
TForm4 = class(TForm)
GroupBox1: TGroupBox;
Label1: TLabel;
Labell 1: TLabel;
Label12: TLabel;
Labell 3: TLabel;
Label3: TLabel;
Label4: TLabel;
Label9: TLabel;
Label8: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBMemol: TDBMemo;
DBEdit5: TDBEdit;
Label6: TLabel;
Label7: TLabel;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBNavigatorl: TDBNavigator;
Labell 5: TLabel;
Edit4: TEdit;
MainMenul: TMainMenu;
MainMenu2: TMenuitem;
ReturnBookl: TMenuitem;
GiveBookl: TMenuitem;
UpdateI: TMenuitem;

102

Addl: TMenultem;
AddUserl: TMenultem;
AddBookl: TMenultem;
Searchl: TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashierl: TMenultem;
SerchByCashier 1: TMenultem;
Searchbylsorrower l: TMenultem;
Reportl : TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowersl: TMenultem;
ReportBorrowerl: TMenultem;
Nl: TMenultem;
Exitl: TMenultem;
Label16: TLabel;
DBComboBoxl: TDBComboBox;
DBEditlO: TDBEdit;
DBEditl 1: TDBEdit;
Label 18: TLabel;
Labell O: TLabel;
Label14: TLabel;
Label 1 7: TLabel;
Label2: TLabel;
Label5: TLabel;
Query 1: TQuery;
DataSource 1: TDataSource;
procedure BookRegistration2Click(Sender: TObject);
procedure ransaction21 Click(Sender: TObject);
procedure EXl Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure ISBNl Click(Sender: TObject);
procedure Cashierl Click(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchByBorrowerl Click(Sender: TObject);
procedure ReportByCashier 1 Click(Sender: TObj ect);
procedure reportByBorrowersl Click(Sender: TObject);
procedure ReportBorrower 1 Click(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);
procedure ReturnBookl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure AddUserlClick(Sender: TObject);

private
{ Private declarations }

103

public
{ Public declarations }

end;

var
Form4: TForm4;

implementation

uses Unit2, Unit5, Unitl, Unitlü, Unit13, Unitll, Unit12, Unit7, Unit8,
Unit9, Unitl5, Unit14, Unit3;

{$R *.dfm}

procedure TForm4.BookRegistration2Click(Sender: Tübject);
begin
form4.close;
form2.show;
end;

procedure TForm4.ransaction21Click(Sender: Tübject);
begin
form4.close;
form5.show;
end;

procedure TForm4.EX1 Click(Sender: Tübject);
begin
forml .close;
end;

procedure TForm4.Exitl Click(Sender: Tübject);
begin
form4.close;
end;

procedure TForm4.ISBN1 Click(Sender: TObject);
begin
form4.Close;
forml O.show;
end;

procedure TForm4.Cashierl Click(Sender: Tübject);
begin
form4.Close;
form13.show;
end;

procedure TF orm4.SerchByCashierl Click(Sender: Tübject);
begin

104

forrn4.Close;
forrnl 1 .show;
end;

procedure TForrn4.SearchByBorrowerl Click(Sender: Tübject);
begin
forrn4.Close;
forrnl2.show;
end;

procedure TForrn4.ReportByCashierl Click(Sender: TObject);
begin
forrn4.Close;
forrn7.show;
end;

procedure TForrn4.reportByBorrowers 1 Click(Sender: TObject);
begin
forrn4.Close;
forrn8.show;
end;

procedure TF orrn4.ReportBorrower 1 Click(Sender: Tübj ect);
begin
forrn4.Close;
forrn9 .show;
end;

procedure TForrn4.AddBooklClick(Sender: TObject);
begin
forrn4.Close;
forrn2.Show;
end;

procedure TForrn4.GiveBookl Click(Sender: TObject);
begin
forrn4.Close;
form 15. show;
end;

procedure TForrn4.ReturnBookl Click(Sender: Tübject);
begin
forrn4.close;
forrnl4.show;
end;

procedure TForrn4.ForrnCreate(Sender: TObject);
begin
Queryl.DatabaseName:='STANDARD7';
Query I .requestlive:=true;

105

queryl.SQL.Text:='select * from halime';
query l .Active:=true;
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";

end;

procedure TForm4.Editl Change(Sender: TObject);
begin
query I .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where lsbn like'+#39+(editl.text)+'%'+#39);
query 1. Open;

end;

procedure TForm4.Edit2Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where bookname like'+#39+(edit2.text)+'%'+#39);
query 1. Open;
end;

procedure TForm4.Edit3Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where Borrowemame
like'+#39+(edit3 .text)+'%'+#39);
queryl.Open;

end;

procedure TForm4.Edit4Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where Borrowersumame
like'+#39+(edit4.text)+'%'+#39);
query 1. Open;
end;

procedure TForm4 .ForrnActivate(Sender: TObject);
begin
query I .Insert;
end;

106

procedure TForm4.AddUser1Click(Sender: TObject);
begin
form3.show;
form4.Close;
end;

end.

ADD DELETE UPDATE USER

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, SkinCaption, WinSkinData, DB, DBTables,
Menus, ExtCtrls, Grids, DBGrids;

type
TForm3 = class(TForm)

SkinDatal: TSkinData;
SkinCaptionl: TSkinCaption;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Updatel: TMenultem;
Add 1: TMenultem;
AddU ser 1: TMenultem;
AddBookl: TMenultem;
Searchl: TMenultem;
SerchBookl: TMenultem;
ISBN I: TMenultem;
Cashier 1: TMenultem;
SerchByCashierl: TMenultem;
SearchByBorrowerl: TMenultem;
Report 1: TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowersl: TMenuitem;
ReportBorrowerl: TMenultem;
Nl: TMenultem;
Exitl: TMenultem;

107

Label12: TLabel;
Label3: TLabel;
DBEdit3: TDBEdit;
Label4: TLabel;
DBEdit4: TDBEdit;
Label21: TLabel;
DBEdit15: TDBEdit;
Label22: TLabel;
DBEdit16: TDBEdit;
Label23: TLabel;
DBEditl 7: TDBEdit;
Label24: TLabel;
DBMemo2: TDBMemo;
Label25: TLabel;
DBEdit18: TDBEdit;
Labell: TLabel;
Label2: TLabel;
DBEditl: TDBEdit;
DBGridl: TDBGrid;
DBNavigatorl: TDBNavigator;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
DBComboBoxl: TDBComboBox;
Query 1: TQuery;
DataSource 1: TDataSource;
procedure AddBookl Click(Sender: Tübject);
procedure Update I Click(Sender: Tübject);
procedure Exitl Click(Sender: Tübject);
procedure ISBN I Click(Sender: Tübject);
procedure CashierlClick(Sender: Tübject);
procedure SerchByCashierl Click(Sender: Tübject);
procedure SearchByBorrowerl Click(Sender: Tübject);
procedure ReportByCashier1 Click(Sender: Tübject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrowerlClick(Sender: Tübject);
procedure GiveBookl Click(Sender: Tübject);
procedure ReturnBookl Click(Sender:Tübject);
procedure FormCreate(Sender: Tübject);
procedure Editl Change(Sender: Tübject);
procedure Edit2Change(Sender: Tübject);
procedure Edit3Change(Sender: TObject);
procedure FormActivate(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

108

end;

var
Form3: TForm3;

implementation

uses Unit2, Unit4, Unitlü, Unit13, Unitl 1, Unit12, Unit7, Unit8, Unit9,
Unit15, Unit14, Unit17, Unit19, Unit18, Unit16;

{$R * .dfm}

procedure TForm3.AddBook1Click(Sender: TObject);
begin
form3.Close;
form2.show;
end;

procedure TForm3.Update1Click(Sender: TObject);
begin
form3.Close;
form4.show;
end;

procedure TForm3.Exit1 Click(Sender: TObject);
begin
form3.Close;
end;

procedure TForm3.ISBN1Click(Sender: TObject);
begin
form3.Close;
forml O.show;
end;

procedure TForm3.Cashier1Click(Sender: TObject);
begin
form3.Close;
forml3.show;
end;

procedure TForm3.SerchByCashierl Click(Sender: TObject);
begin
form3.Close;
forml 1 .show;
end;

procedure TForm3.SearchByBorrowerl Click(Sender: TObject);
begin
form3.Close;

109

form12.show;
end;

procedure TForm3.ReportByCashierl Click(Sender: Tübject);
begin
form3. Close;
form7.show;
end;

procedure TForm3 .reportByBorrowers 1 Click(Sender: TObject);
begin
form3.Close;
form8.show;
end;

procedure TForm3 .ReportBorrower 1 Click(Sender: Tübject);
begin
form3.Close;
form9 .show;
end;

procedure TForm3. GiveBookl Click(Sender: TObj ect);
begin
form3 .close;
form15.show;
end;

procedure TForm3.ReturnBook1Click(Sender: TObject);
begin
form3 .close;
form14.show;
end;

procedure TForm3.FormCreate(Sender: Tübject);
begin
Queryl.DatabaseName:='STANDARD7';
Query l .requestlive:=true;
queryl.SQL.Text:='select
userid,usemame,usersumame,Phone,halime."password",mobilphone,address,email,statu
s from halime';
queryl .Active:=true;
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
end;

procedure TForm3.Editl Change(Sender: TObject);
begin
queryl.close;
queryl .SQL.Clear;

110

queryl .sql.add('select
userid,usemame,usersumame,Phone,halime. "password",mobilphone,address,email,statu
s from halime where userid like'+#39+(editl.text)+'%'+#39);
query 1. Open;

end;

procedure TForm3.Edit2Change(Sender: TObject);
begin
query 1 .close;
queryl .SQL.Clear;
query 1 .sql.add('select
userid,usemame,usersumame,Phone,halime."password",mobilphone,address,email,statu
s from halime where usemame like'+#39+(edit2.text)+'%'+#39);
queryl .Open;
end;

procedure TForm3.Edit3Change(Sender: TObject);
begin
query 1 .close;
queryl .SQL.Clear;
query 1 .sql.add('select
userid, usemame, usersumame,Phone,halime. "password" ,mobilphone,address,email,statu
s from halime where usersumame like'+#39+(edit3.text)+'%'+#39);
query 1 . Open;
end;

procedure TForm3.FormActivate(Sender: TObject);
begin
query 1 .Insert;
end;
end.

ADD DELETE UPDATE BOOK

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DBCtrls, Mask, Menus, ExtCtrls, ComCtrls, Grids,
DBGrids, DB, DBTables;

type
TForm2 = class(TForm)

GroupBoxl: TGroupBox;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;

111

Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBMemo 1: TDBMemo;
DBEdit6: TDBEdit;
Labell O: TLabel;
DateTimePickerl: TDateTimePicker;
Timerl: TTimer;
Timer2: TTimer;
DBGridl: TDBGrid;
DBNavigatorl: TDBNavigator;
Labell 1: TLabel;
Label12: TLabel;
Label 13: TLabel;
Editl : TEdit;
Edit2: TEdit;
Edit3: TEdit;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Updatel: TMenultem;
Addl: TMenultem;
AddU serl: TMenultem;
AddBookl: TMenultem;
Searchl: TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashier 1: TMenultem;
SerchByCashier 1: TMenultem;
SearchByBorrower 1: TMenuitem;
Reportl: TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowers 1: TMenultem;
ReportBorrowerl: TMenultem;
N 1: TMenultem;
Exitl: TMenultem;
Label9: TLabel;
DBEdit5: TDBEdit;
Labe114: TLabel;
Label 15: TLabel;
DBEdit7: TDBEdit;
DBComboBoxl: TDBComboBox;
Query 1: TQuery;

112

DataSource 1: TDataSource;
procedure Labell Click(Sender: TObject);
procedure ChangeAllPasswords 1 Click(Sender: TObject);
procedure EXlClick(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure Timer2Timer(Sender: Tübj ect);
procedure ransactionl 1 Click(Sender: TObject);
procedure ransaction21 Click(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure ISBNl Click(Sender: TObject);
procedure Cashierl Click(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchByBorrowerl Click(Sender: TObject);
procedure ReportByCashierl Click(Sender: TObject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrower 1 Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure AddU serl Click(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);
procedure ReturnBooklClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Edit2Change(Sender: Tübject);
procedure Edit3Change(Sender: TObject);
procedure FormActivate(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form2: TForm2;

implementation

uses Unit3, Unitl, Unit4, Unit5, UnitlO, Unit13, Unitl 1, Unit12, Unit7,
Unit8, Unit9, Unit15, Unit14;

{$R *.dfm}

procedure TForm2.Label 1 Click(Sender: TObject);
begin
form3.show;
end;

procedure TForm2.ChangeAllPasswords1 Click(Sender: Tübject);
begin
form3.show;
end;

113

procedure TFonn2.EX1 Click(Sender: TObject);
begin
forml .close;
end;

procedure TFonn2.Timerl Timer(Sender: TObject);
begin
label 1 O.caption:=timetostr(time);
end;

procedure TForm2.Timer2Timer(Sender: Tübject);
begin
DateTimePickerl .DateTime := Now;
end;

procedure TForm2.ransactionl lClick(Sender: TObject);
begin
form2.close;
form4.show;
end;

procedure TForm2.ransaction21Click(Sender: TObject);
begin
form2.close;
form5.show;
end;

procedure TForm2.Update1Click(Sender: TObject);
begin
form2.Close;
form4.Show;
end;

procedure TForm2.ISBN1Click(Sender: TObject);
begin
form2.Close;
forml O.Show;
end;

procedure TForm2.Cashierl Click(Sender: TObject);
begin
fonn2.Close;
form13.Show;
end;

procedure TForm2.SerchByCashierl Click(Sender: TObject);
begin
form2.Close;
form11.Show;

114

end;

procedure TForm2.SearchByBorrowerl Click(Sender: TObject);
begin
form2.Close;
form 12. Show;
end;

procedure TForm2.ReportByCashier 1 Click(Sender: TObj ect);
begin
form2.Close;
form 7. Show;
end;

procedure TForın2.reportByBorrowers 1 Click(Sender: TObject);
begin
forın2. Close;
form8. Show;
end;

procedure TForm2.ReportBorrower 1 Click(Sender: TObject);
begin
form2. Close;
form9. Show;
end;

procedure TForm2.Exit1Click(Sender: TObject);
begin
forın2. Close;
end;

procedure TForm2.AddUser1Click(Sender: TObject);
begin
form2. Close;
form3.Show;
end;

procedure TForın2.GiveBookl Click(Sender: TObject);
begin
form2.close;
form15.show;
end;

procedure TForın2.ReturnBookl Click(Sender: TObject);
begin
form2.close;
form14.show;
end;

procedure TForm2.FormCreate(Sender: TObject);

115

begin
Queryl.DatabaseName:='STANDARD7';
Query 1.requestlive:=true;
queryl.SQL.Text:='select * from halime';
query 1.Active:=true;
editl .Text:=";
edit2.Text:=";
edit3.Text:=";

end;

procedure TForm2.Editl Change(Sender: TObject);
begin
query I .close;
queryl.SQL.Clear;
queryl .sql.add('select * from halime where Isbn like'+#39+(editl .text)+'%'+#39);
query 1. Open;

end;

procedure TForm2.Edit2Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where bookname like'+#39+(edit2.text)+'%'+#39);
query 1 . Open;
end;

procedure TForm2.Edit3Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl .sql.add('select * from halime where writemame
like'+#39+(edit3 .text)+'%'+#39);
query 1 . Open;
end;

procedure TForm2.FormActivate(Sender: TObject);
begin
query I .Insert;
end;
end.

SEARCH BOOK BY ISBN

unit Unitlü;

interface

uses

116

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Mask, DBCtrls, StdCtrls, ComCtrls, Grids, DBGrids, DB,
DBTables;

type
TForml O= class(TForm)
Label 1: TLabel;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Label 15: TLabel;
Label 16: TLabel;
Label2: TLabel;
Editl: TEdit;
Label4: TLabel;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenuitem;
GiveBookl: TMenultem;
Update 1: TMenultem;
Addl: TMenultem;
AddU ser 1: TMenultem;
AddBookl: TMenuitem;
Search I: TMenultem;
SerchBookl: TMenuitem;
ISBN I: TMenultem;
Cashier I: TMenultem;
SerchByCashierl: TMenuitem;
SearchByBorrowerl: TMenuitem;
Report I: TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowers 1: TMenuitem;
ReportBorrowerl: TMenuitem;
Nl: TMenultem;
Exitl: TMenuitem;
DBGridl: TDBGrid;
Button I: TButton;
Query 1: TQuery;
DataSource 1: TDataSource;
Edit2: TEdit;
procedure Cashier 1 Click(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchByBorrower 1 Click(Sender: TObject);
procedure ExitlClick(Sender: TObject);
procedure ReportByCashierl Click(Sender: TObject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrowerl Click(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserl Click(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);

117

procedure ReturnBookl Click(Sender: Tübject);
procedure FormCreate(Sender: Tübject);
procedure Editl Change(Sender: Tübject);
procedure Edit2Change(Sender: Tübject);
procedure Buttonl Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end; ·

var
Forml O: TForml O;

implementation

uses Unit13, Unitl 1, Unit12, Unit7, Unit8, Unit9, Unit4, Unit2, Unit3,
Unit15, Unit14, Unitl;

{$R *.dfm}

procedure TForml O.Cashierl Click(Sender: TObject);
begin
formlü.Close;
form 13 .show;
end;

procedure TForml O.SerchByCashierl Click(Sender: Tübject);
begin
formlü.Close;
forml 1 .show;
end;

procedure TForml O.SearchByBorrowerl Click(Sender: Tübject);
begin
formlü.Close;
form12.show;
end;

procedure TFormlü.ExitlClick(Sender: Tübject);
begin
form I .Close;
end;

procedure TForml O.ReportByCashierl Click(Sender: TObject);
begin
formlü.Close;
form7.show;
end;

118

procedure TForml O.reportByBorrowersl Click(Sender: Tübject);
begin
forml O.Close;
form8.show;
end;

procedure TFormlO.ReportBorrowerl Click(Sender: Tübject);
begin
forml O.Close;
form9 .show;
end;

procedure TForml O.Update I Click(Sender: Tübject);
begin
forml O.Close;
form4.show;
end;

procedure TForml O.AddBookl Click(Sender: Tübject);
begin
forml O.Close;
form2.show;
end;

procedure TFormlO.AddUserlClick(Sender: Tübject);
begin
forml O.Close;
form3 .show;
end;

procedure TFormlO.GiveBookl Click(Sender: Tübject);
begin
forml O.close;
form15.show;
end;

procedure TForml O.ReturnBookl Click(Sender: Tübject);
begin
forml O.close;
form14.show;
end;

procedure TFormlO.FormCreate(Sender: Tübject);
begin
Query I .DatabaseName:='STANDARD7';
Query 1 .requestli ve :=true;
queryl.SQL.Text:='select Isbn, Bookname,Bookstatus, Location from halime';
queryl .Active:=true;
editl .Text:=";
edit2.Text:=";

119

end;

procedure TFormlO.EditlChange(Sender: TObject);
begin
query 1 .close;
queryI .SQL.Clear;
query 1 .sql.add('select Isbn, Bookname,Bookstatus, Location from halime where Isbn
like'+#39+(editI .text)+'%'+#39);
query 1 . Open;
end;

procedure TForm10.Edit2Change(Sender: TObject);
begin
query 1 .close;
queryI .SQL.Clear;
queryl .sql.add('select Isbn, Booknaıne,Bookstatus, Location from halime where
BookName like'+#39+(edit2.text)+'%'+#39);
query1. Open;
end;

procedure TFormlO.ButtonlClick(Sender: TObject);
begin
queryI.Close;
queryl .SQL.Clear;
queryl.SQL.add('SELECT Isbn, Bookname,Bookstatus, Location');
queryl.sql.add('FROM halime');
query1 .sql.add('where (ReturnDate>=:Gelen) and (ReturnDate<=:Gelenl)');
queryl .sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
query 1 .ParamByName('Gelen').AsDatetime := DateTiınePickerl .DateTime;
query1 .ParamByName('Gelenl ').AsDatetiıne := DateTiınePicker2.DateTiıne;
query1. Open;
dbgridl .DataSource:=datasourcel
end;
end.

SEARCH BOOK BY NAME

unit Unit13;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Mask, DBCtrls, StdCtrls, CoınCtrls, DB, DBTables;

type
TForm13 = class(TForm)
Labell: TLabel;
DateTiınePickerl: TDateTimePicker;
DateTiınePicker2: TD ateTimePicker;

120

Label 15: TLabel;
Labe116: TLabel;
Label2: TLabel;
Editl: TEdit;
Label3: TLabel;
MainMenui: TMainMenu;
MainMenu2: TMenultem;
RetumBookl: TMenultem;
GiveBookl: TMenultem;
Updatel: TMenultem;
Add 1: TMenultem;
AddBookl: TMenultem;
Searchl: TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashier 1: TMenultem;
SerchByCashierl: TMenultem;
SearchByBorrowerl: TMenultem;
Reportl: TMenultem;
ReportByCashier 1: TMenultem;
reportByBorrowersl: TMenultem;
ReportBorrowerl: TMenultem;
Nl: TMenultem;
Exitl: TMenultem;
DBComboBox 1: TDBComboBox;
Label9: TLabel;
DBEditl: TDBEdit;
Buttonl: TButton;
AddDeleteUpdateUserl: TMenultem;
Query 1: TQuery;
DataSourcel: TDataSource;
procedure Exitl Click(Sender: TObject);
procedure ReportByCashierl Click(Sender: TObject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrower 1 Click(Sender: TObject);
procedure ISBNl Click(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchByBorrowerl Click(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserlClick(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);
procedure RetumBook 1 Click(Sender: TObject);
procedure AddDeleteUpdate User 1 Click(Sender: TObj ect);
procedure FormCreate(Sender: TObject);
procedure Editl Change(Sender: TObject);
procedure Buttonl Click(Sender: TObject);

private
{ Private declarations }

public

121

{ Public declarations }
end;

var
Form13: TForm13;

implementation

uses Unit7, Unit8, Unit9, Unitlü, Unitl 1, Unit12, Unit4, Unit2, Unit3,
Unit15, Unit14;

{$R *.dfm}

procedure TForm 13 .Exitl Click(Sender: Tübject);
begin
form13.Close;
end;

procedure TForm13.ReportByCashier1Click(Sender: TObject);
begin
forml J .Close;
form7.show;
end;

procedure TForm13.reportByBorrowersl Click(Sender: TObject);
begin
form13.Close;
form8.show;
end;

procedure TF orm 13 .ReportBorrower 1 Click(Sender: TObj ect);
begin
form13.Close;
form9 .show;
end;

procedure TForm13.ISBN1Click(Sender: Tübject);
begin
form13.Close;
forml O.show;
end;

procedure TForml 3 .SerchByCashier 1 Click(Sender: TObject);
begin
form13.Close;
forml 1 .show;
end;

procedure TForml 3 .SearchByBorrower 1 Click(Sender: TObject);
begin

122

form13.Close;
forml2.show;
end;

procedure TForm13.Update1Click(Sender: TObject);
begin
form13.Close;
form4.show;
end;

procedure TForm 13 .AddBookl Click(Sender: TObject);
begin
form13.Close;
form2.show;
end;

procedure TForm 13 .AddU ser 1 Click(Sender: TObject);
begin
form 13. Close;
form3 .show;
end;

procedure TForm13.GiveBook1Click(Sender: TObject);
begin
form 13 .close;
form15.show;
end;

procedure TForml 3 .ReturnBookl Click(Sender: TObject);
begin
form13.close;
form14.show;
end;

procedure TForm13.AddDeleteUpdateUserl Click(Sender: TObject);
begin
form13.Close;
form3.show;
end;

procedure TForm13.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
queryl .SQL.Text:='select * from halime';
queryl .Active:=true;
editl .Text:=";

end;

123

procedure TForm 13 .Edit 1 Change(Sender: TObject);
begin
queryI.close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where BookNarne
like'+#39+(editl .text)+'%'+#39);
query1.Open;
end;

procedure TForm13.Button1Click(Sender: TObject);
begin
query1. Close;
queryl .SQL.Clear;
queryl.SQL.add('SELECT * ');
queryl .sql.add('FROM halime');
queryl .sql.add('where (RetumDate>=:Gelen) and (ReturnDate<=:Gelenl)');
queryl .sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
queryl .PararnByNarne('Gelen').AsDatetirne := DateTirnePickerl .DateTime;
queryl .ParamByNarne('Gelenl ').AsDatetime := DateTirnePicker2.DateTime;
query1. Open;

end;
end.

SEARCH USER

unit Unitl 1;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Grids, DBGrids, Mask, DBCtrls, StdCtrls, ComCtrls, DB,
DBTables;

type
TForml 1 = class(TForm)
Label1: TLabel;
Label15: TLabel;
DateTirnePickerl: TDateTirnePicker;
Label16: TLabel;
DateTimePicker2: TDateTirnePicker;
Label2: TLabel;
Editl : TEdit;
DBGridl: TDBGrid;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Updatel: TMenultem;

124

Addl: TMenultem;
AddUserl: TMenultem;
AddBookl: TMenuitem;
Search 1: TMenultem;
SerchBookl: TMenultem;
ISBN I: TMenultem;
Cashier 1: TMenultem;
SerchByCashier 1: TMenultem;
SearchByBorrowerl: TMenultem;
Report I: TMenultem;
ReportByCashierl: TMenuitem;
reportByBorrowersl: TMenultem;
ReportBorrower 1: TMenultem;
NI: TMenultem;
Exitl: TMenultem;
Button I: TButton;
Query I: TQuery;
DataSource 1: TDataSource;
procedure Exitl Click(Sender: Tübject);
procedure ReportByCashier 1 Click(Sender: Tübj ect);
procedure reportByBorrowersl Click(Sender: Tübject);
procedure ReportBorrower 1 Click(Sender: Tübject);
procedure ISBN I Click(Sender: Tübject);
procedure CashierlClick(Sender: Tübject);
procedure SearchByBorrowerl Click(Sender: Tübject);
procedure UpdatelClick(Sender: Tübject);
procedure AddBookl Click(Sender: Tübject);
procedure AddU ser 1 Click(Sender: Tübject);
procedure GiveBookl Click(Sender: Tübject);
procedure ReturnBookl Click(Sender: Tübject);
procedure FormCreate(Sender: Tübject);
procedure Editl Change(Sender: Tübject);
procedure Button I Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Formll: TFormll;

implementation

uses Unit7, Unit8, Unit9, Unitlü, Unit13, Unit12, Unit4, Unit2, Unit3,
Unit15, Unit14;

{$R *.dfm}

procedure TForml 1.ExitlClick(Sender: Tübject);

125

begin
forrnl 1 .Close;
end;

procedure TForrnl 1 .ReportByCashierl Click(Sender: Tübject);
begin
forrnl 1 .Close;
forrn7.show;
end;

procedure TForrnl 1 .reportByBorrowers1 Click(Sender: Tübject);
begin
forrnl 1 .Close;
forrn8.show;
end;

procedure TForrnl 1.ReportBorrowerlClick(Sender: Tübject);
begin
forrnl 1 .Close;
forrn9.show;
end;

procedure TForrnl 1 .ISBNl Click(Sender: Tübject);
begin
forrnl I.Close;
formlü.show;
end;

procedure TForrnl 1.CashierlClick(Sender: Tübject);
begin
forml 1 .Close;
forml3.show;
end;

procedure TForml 1 .SearchByBorrowerl Click(Sender: Tübject);
begin
forml I .Close;
fonulz.show.
end;

procedure TForml 1.UpdatelClick(Sender: Tübject);
begin
forml 1.Close;
form4.show;
end;

procedure TForml 1 .AddBooklClick(Sender: Tübject);
begin
forml 1 .Close;
form2.show;

126

end;

procedure TForml l.AddUserl Click(Sender: TObject);
begin
forml 1 .Close;
form3 .show;
end;

procedure TForml 1.GiveBookl Click(Sender: TObject);
begin
forml 1 .close;
form15.show;
end;

procedure TForml 1 .ReturnBookl Click(Sender: TObject);
begin
forml 1 .close;
forml4.show;
end;

procedure TForml l.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
query1.SQL.Text:='select userid, usemame,usersumame,bookname,rentdate,retumdate
from halime';
query1 .Active:=true;
editl .Text:=";

end;

procedure TForml l.EditlChange(Sender: TObject);
begin
query1 .close;
queryl .SQL.Clear;
queryl .sql.add('select userid, usemame,usersumame,bookname,rentdate,retumdate from
halime where cashierid like'+#39+(editl.text)+'%'+#39);
query1.Open;
end;

procedure TForml 1 .Buttonl Click(Sender: TObject);
begin
query1. Close;
queryl .SQL.Clear;
queryl.SQL.add('SELECT userid,
usemame,usersumame,bookname,rentdate,retumdate');
queryl .sql.add('FROM halime');
queryl .sql.add('where (RetumDate>=:Gelen) and (RetumDate<=:Gelenl)');
query1.sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
queryl.ParamByName('Gelen').AsDatetime := DateTimePickerl.DateTime;

127

query 1.ParamByN ame('Gelen 1 ').AsDatetime := Date TimePicker2.Date Time;
queryl .Open;
dbgridl .DataSource:=datasourcel
end;
end.

SEARCH BORROWER

unit Unit12;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, Grids, DBGrids, Mask, DBCtrls, StdCtrls, ComCtrls, DB,
DBTables;

type
TForm12 = class(TForm)
Labell: TLabel;
Label15: TLabel;
DateTimePickerl: TDateTimePicker;
Label16: TLabel;
DateTimePicker2: TDateTimePicker;
Label2: TLabel;
Editl: TEdit;
DBGridl: TDBGrid;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Update 1: TMenultem;
Add 1: TMenultem;
AddUser1: TMenultem;
AddBookl: TMenultem;
Search1: TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashierl: TMenultem;
SerchByCashier1: TMenultem;
SearchByBorrowerl: TMenultem;
Report I: TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowersl: TMenultem;
ReportBorrower1: TMenultem;
N 1: TMenultem;
Exitl: TMenultem;
Buttonl: TButton;
Query1: TQuery;
DataSource 1: TDataSource;

128

procedure Exitl Click(Sender: TObject);
procedure ReportByCashierlClick(Sender: TObject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure ReportBorrower 1 Click(Sender: TObj ect);
procedure ISBNl Click(Sender: TObject);
procedure Cashier! Click(Sender: TObject);
procedure SerchByCashier 1 Click(Sender: TObj ect);
procedure UpdatelClick(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserlClick(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);
procedure ReturnBookl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Buttonl Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml2: TForm12;

implementation

uses Unit7, Unit8, Unit9, Unitlü, Unit13, Unitl 1, Unit4, Unit2, Unit3,
Unitl5, Unit14;

{$R *.dfm}

procedure TForm 12.Exitl Click(Sender: TObj ect);
begin
forml2.Close;
end;

procedure TForm12.ReportByCashierlClick(Sender: TObject);
begin
form12.Close;
form7.show;
end;

procedure TForm12.reportByBorrowers1Click(Sender: TObject);
begin
form12.Close;
form8.show;
end;

procedure TForm 12.ReportBorrowerl Click(Sender: TObject);
begin

129

form12.Close;
form9.show;
end;

procedure TF orml 2.ISBNl Click(Sender: TObject);
begin
forml2.Close;
formlü.show;
end;

procedure TForm12.Cashier1Click(Sender: TObject);
begin
forml2.Close;
form13.show;
end;

procedure TForml2.SerchByCashierl Click(Sender: TObject);
begin
form12.Close;
forml 1 .show;
end;

procedure TForml2.Update1Click(Sender: TObject);
begin
form12.Close;
form4.show;
end;

procedure TF orm 12.AddBookl Click(Sender: TObject);
begin
form12.Close;
form2.show;
end;

procedure TF orm 12.AddU ser 1 Click(Sender: TObject);
begin
forml2.Close;
form3 .show;
end;

procedure TForml2.GiveBookl Click(Sender: TObject);
begin
form12.close;
form 15. show;
end;

procedure TForml2.ReturnBook1Click(Sender: TObject);
begin
form12.close;
forml4.show;

130

end;

procedure TForml2.FormCreate(Sender: TObject);
begin
Queryl.DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
queryl.SQL.Text:='select
borrowerid,borrowemame,borrowersumame,bookname,rentdate,retumdate from
halime';
queryl .Active:=true;
editl .Text:=";

end;

procedure TForml2.Editl Change(Sender: TObject);
begin
query 1 .close;
queryl .SQL.Clear;
query 1 .sql.add('select
borrowerid, borrowemame,borrowersumame,bookname,rentdate,retumdate from halime
where borrowerid like'+#39+(editl.text)+'%'+#39);
query 1. Open;
end;

procedure TForml2.Button1Click(Sender: TObject);
begin
query 1. Close;
queryl .SQL.Clear;
query 1 .SQL.add('SELECT
borrowerid, borrowemame, borrowersumame, bookname,rentdate,retumdate ');

" queryl .sql.add('FROM halime');
queryl.sql.add('where (RetumDate>=:Gelen) and (RetumDate<=:Gelenl)');
query 1 .sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
queryl .ParamByN ame('Gelen').AsDatetime := DateTimePicker 1 .DateTime;
query 1 .ParamByN ame('Gelenl ').AsDatetime := DateTimePicker2.DateTime;
query 1 . Open;
dbgridl .DataSource:=datasourcel
end;
end.

REPORT BOOK

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Mask, DBCtrls, StdCtrls, ComCtrls, Menus, DB, DBTables,
frxClass, frxDBSet;

131

type
TForm7 = class(TForm)

Label 1: TLabel;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
RetumBookl: TMenultem;
GiveBookl: TMenultem;
Updatel: TMenultem;
Add 1: TMenultem;
AddUserl: TMenultem;
AddBookl: TMenultem;
Search 1: TMenultem;
SerchBookl: TMenultem;
ISBNl: TMenultem;
Cashierl: TMenultem;
SerchByCashier 1: TMenultem;
Reportl: TMenultem;
ReportByCashier 1: TMenultem;
reportByBorrowersl: TMenultem;
Nl: TMenultem;
Exitl: TMenultem;
DateTimePickerl: TDateTimePicker;
DateTimePicker2: TDateTimePicker;
Label 15: TLabel;
Label 16: TLabel;
Label2: TLabel;
Editl: TEdit;
ReportBorrowerl: TMenultem;
SearchBorrowerl: TMenultem;
Button2: TButton;
Buttonl: TButton;
Query 1: TQuery;
DataSource 1: TDataSource;
Button3: TButton;
frxDBDatasetl: TfrxDBDataset;
frxReportl: TfrxReport;
procedure reportByBorrowersl Click(Sender: TObject);
procedure ReportBorrowerlClick(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure ISBNl Click(Sender: TObject);
procedure Cashierl Click(Sender: TObject);
procedure SerchByCashierlClick(Sender: TObject);
procedure SearchBorrowerlClick(Sender: TObject);
procedure Update 1 Click(Sender: Tübject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserlClick(Sender: TObject);
procedure GiveBookl Click(Sender: Tübject);
procedure ReturnBookl Click(Sender: TObject);
procedure FornıCreate(Sender: TObject);

132

procedure Edit] Change(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure ButtonlClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form7: TForm7;

implementation

uses Unit8, Unit9, Unitlü, Unit13, Unitll, Unit12, Unit4, Unit2, Unit3,
Unit15, Unit14;

{$R *.dfm}

procedure TForm7.reportByBorrowers1 Click(Sender: TObject);
begin
form7.Close;
form8.show;
end;

procedure TForm7.ReportBorrower1 Click(Sender: TObject);
begin
form7.Close;
form9.show;
end;

procedure TForm7.Exit1Click(Sender: TObject);
begin
form7.Close;
end;

procedure TForm7.ISBN1Click(Sender: TObject);
begin
form7.Close;
forml O.show;
end;

procedure TForm7.Cashier1Click(Sender: TObject);
begin
form7.Close;
form13.show;
end;

procedure TForm7.SerchByCashier1Click(Sender: TObject);

133

begin
form7.Close;
forml 1.show;
end;

procedure TForm 7. SearchBorrower 1 Click(Sender: TObject);
begin
form7.Close;
form12.show;
end;

procedure TForm7.Update1Click(Sender: TObject);
begin
form7.Close;
form4.show;
end;

procedure TF orm7.AddBook 1 Click(Sender: TObj ect);
begin
form7.Close;
form2.show;
end;

procedure TForm 7 .AddU ser 1 Click(Sender: TObj ect);
begin
form7.Close;
form3 .show;
end;

procedure TForm7.GiveBook1Click(Sender: TObject);
begin
form7.close;
form15.show;
end;

procedure TForm7 .ReturnBookl Click(Sender: TObject);
begin
form7.close;
form14.show;
end;

procedure TForm7.FormCreate(Sender: Tübject);
begin
Queryl.DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
queryl.SQL.Text:='select * from halime';
queryl .Active:=true;
edit 1.Text:=";
end;

134

procedure TForm7.Edit1Change(Sender: TObject);
begin
query I .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where BookName
like'+#39+(editl .text)+'%'+#39);
query 1. Open;

end;

procedure TForm7.Button3Click(Sender: TObject);
begin
query 1. Close;
query I .SQL.Clear;
queryl.SQL.add('SELECT * ');
query I .sql.add('FROM book');
query 1 .sql.add('where (RetumDate>=:Gelen) and (ReturnDate<=:Gelenl)');
query I .sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
query 1 .ParanıB yNanıe(' Gelen') .AsDatetime := Date TimePicker 1 .DateTime;
queryl.ParamByName('Gelenl').AsDatetime := DateTimePicker2.DateTime;
query 1. Open;

end;

procedure TForm7.Button2Click(Sender: TObject);
begin
frxreport 1 .Print;
end;

procedure TForm 7.Button 1 Click(Sender: TO bj ect);
begin
frxReportl .ShowReport(true);
end;
end.

REPORT USER

unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, Mask, DBCtrls, StdCtrls, ComCtrls, Menus, DB,
DBTables, frxClass, frxDBSet;

type
TForm8 = class(TForm)
Label 1: TLabel;
Label 15: TLabel;

135

DateTimePicker 1: TDateTimePicker;
Label16: TLabel;
DateTimePicker2: TDateTimePicker;
Label2: TLabel;
Editl: TEdit;
MainMenul: TMainMenu;
MainMenu2: TMenultem;
ReturnBookl: TMenultem;
GiveBookl: TMenultem;
Update I: TMenultem;
Addl: TMenultem;
AddU ser 1: TMenultem;
AddBookl: TMenultem;
Search 1: TMenultem;
SerchBookl: TMenultem;
ISBN I: TMenultem;
Cashier 1: TMenultem;
SerchByCashierl: TMenultem;
Report 1: TMenultem;
ReportByCashierl: TMenultem;
reportByBorrowersl: TMenultem;
ReportBorrowerl: TMenultem;
NI: TMenultem;
Exit I: TMenultem;
SearchByBorrower 1: TMenultem;
Button2: TButton;
Button I: TButton;
Query 1: TQuery;
DataSource 1: TDataSource;
Button3: TButton;
frxDBDatasetl: TfrxDBDataset;
frxReportl: TfrxReport;
procedure ReportByCashierl Click(Sender: TObject);

· procedure ReportBorrowerl Click(Sender: TObject);
procedure ExitlClick(Sender: TObject);
procedure ISBN I Click(Sender: TObject);
procedure CashierlClick(Sender: TObject);
procedure SerchByCashierlClick(Sender: TObject);
procedure SearchByBorrower 1 Click(Sender: TObject);
procedure Update 1 Click(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserlClick(Sender: TObject);
procedure GiveBookl Click(Sender: TObject);
procedure ReturnBookl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button I Click(Sender: TObject);

private

136

{ Private declarations }
public

{ Public declarations }
end;

var
Form8: TForm8;

implementation

uses Unit7, Unit9, UnitlO, Unit13, Unitl 1, Unit12, Unit4, Unit2, Unit3,
Unit15, Unit14;

{$R *.dfm}

procedure TForm8.ReportByCashierl Click(Sender: Tübject);
begin
form8.Close;
form7.show;
end;

procedure TForm8.ReportBorrowerl Click(Sender: TObject);
begin
form8. Close;
form9 .show;
end;

procedure TForm8.Exit1Click(Sender: TObject);
begin
Form8.Close;
end;

procedure TForm8.ISBN1 Click(Sender: TObject);
begin
form8.Close;
forml O.show;
end;

procedure TForm8.Cashierl Click(Sender: Tübject);
begin
form8.Close;
form13.show;
end;

procedure TForm8.SerchByCashier 1 Click(Sender: TObject);
begin
form8.Close;
forml 1 .show;
end;

137

procedure TForm8.SearchByBorrowerl Click(Sender: TObject);
begin
form8.Close;
form12.show;
end;

procedure TForm8.Updatel Click(Sender: TObject);
begin
form8.Close;
form4.show;
end;

procedure TForm8.AddBookl Click(Sender: TObject);
begin
form8.Close;
forrn2.show;
end;

procedure TForm8.AddU ser 1 Click(Sender: TObject);
begin
form8.Close;
form3 .show;
end;

procedure TForm8.GiveBookl Click(Sender: TObject);
begin
form8.close;
form15.show;
end;

procedure TForm8.ReturnBookl Click(Sender: TObject);
begin
form8.close;
form14.show;
end;

procedure TForm8.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARD7';
Queryl .requestlive:=true;
queryl .SQL.Text:='select * from halime';
query1 .Active:=true;
editl .Text:=";
end;

procedure TForm8.Edit1Change(Sender: TObject);
begin
queryl .close;
queryl.SQL.Clear;
queryl .sql.add('select * from halime where userid like'+#39+(editl .text)+'%'+#39);

138

query 1. Open;
end;

procedure TForm8.Button3Click(Sender: TObject);
begin
query1.Close;
queryl.SQL.Clear;
queryl.SQL.add('SELECT * ');
queryl .sql.add('FROM book');
query1 .sql.add('where (ReturnDate>=:Gelen) and (ReturnDate<=:Gelenl)');
query1 .sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
queryl .ParamByName('Gelen').AsDatetime := DateTimePicker 1 .DateTime;
query1 .ParamByName('Gelenl ').AsDatetime := DateTimePicker2.DateTime;
query1 . Open;

end;

procedure TForm8.Button2Click(Sender: TObject);
begin.
frxreport1 .Print;
end;

procedure TForm8.Buttonl Click(Sender: TObject);
begin
frxReportl .ShowReport(true);
end;

end.
REPORT BORROWER

unit Unit9;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, Mask, DBCtrls, StdCtrls, ComCtrls, Menus, DB,
DBTables, frx:Class,frxDBSet;

type
TForm9 = class(TForm)
Labell: TLabel;
Label15: TLabel;
DateTimePickerl: TDateTimePicker;
Label16: TLabel;
DateTimePicker2: TDateTimePicker;
Label2: TLabel;
Editl: TEdit;
MainMenul: TMainMenu;
MainMenu2: TMenultem;

139

ReturnBookl: TMenultem;
GiveBookl: TMenuitem;
Update 1: TMenultem;
Add 1: TMenultem;
AddU ser 1: TMenuitem;
AddBookl: TMenuitem;
Searchl : TMenuitem;
SerchBookl: TMenuitem;
ISBNl: TMenuitem;
Cashierl : TMenuitem;
SerchByCashierl: TMenuitem;
Reportl : TMenuitem;
ReportByCashierl: TMenuitem;
reportByBorrowersl: TMenuitem;
ReportBorrower 1: TMenuitem;
N 1: TMenuitem;
Exitl: TMenuitem;
SearchByBorrowerl: TMenuitem;
Button l: TButton;
Button2: TButton;
Query 1: TQuery;
DataSource 1: TDataSource;
Button3: TButton;
frxDBDatasetl: TfrxDBDataset;
frxReportl: TfrxReport;
procedure ReportByCashierl Click(Sender: TObject);
procedure reportByBorrowers 1 Click(Sender: TObject);
procedure Exitl Click(Sender: Tübject);
procedure ISBNl Click(Sender: Tübject);
procedure Cashier! Click(Sender: TObject);
procedure SerchByCashierl Click(Sender: TObject);
procedure SearchByBorrowerl Click(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure AddBookl Click(Sender: TObject);
procedure AddUserlClick(Sender: Tübject);
procedure GiveBookl Click(Sender: Tübject);
procedure ReturnBookl Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button! Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form9: TForm9;

140

implementation

uses Unit7, Unit8, Unitlü, Unit13, Unitl 1, Unit12, Unit4, Unit2, Unit3,
Unit15, Unit14;

{$R *.dfm}

procedure TForın9 .ReportByCashierl Click(Sender: TObject);
begin
forın9. Close;
forın7.show;
end;

procedure TForın9 .reportByBorrowers 1 Click(Sender: Tübject);
begin
forın9. Close;
forın8.show;
end;

procedure TForın9.Exit1Click(Sender: Tübject);
begin
forın9.Close;
end;

procedure TForın9 .ISBN 1 Click(Sender: Tübject);
begin
forın9.Close;
forınlü.show;
end;

procedure TForın9. Cashierl Click(Sender: TObj ect);
begin
forın9. Close;
forınl3.show;
end;

procedure TForın9. SerchByCashier 1 Click(Sender: Tübj ect);
begin
forın9.Close;
forınl 1 .show;
end;

procedure TForın9.SearchByBorrower1Click(Sender: TObject);
begin
forın9. Close;
forınl 2.show;
end;

procedure TForın9 .Update 1 Click(Sender: TObj ect);

141

begin
form9.Close;
form4.show;
end;

procedure TForm9.AddBook1Click(Sender: Tübject);
begin
form9.Close;
form2.show;
end;

procedure TForm9 .AddU serl Click(Sender: Tübject);
begin
form9.Close;
form3 .show;
end;

procedure TF orm9. GiveBook 1 Click(Sender: TObj ect);
begin
form9 .close;
form15.show;
end;

procedure TF orm9 .ReturnBookl Click(Sender: TObject);
begin
form9 .close;
form14.show;
end;

procedure TForm9.FormCreate(Sender: TObject);
begin
Queryl .DatabaseName:='STANDARD7';
Query 1.requestli ve :=true;
queryl.SQL.Text:='select * from halime';
queryl .Active:=true;
editl.Text:=";
end;

procedure TF orm9 .Edit 1 Change(Sender: TObject);
begin
queryl .close;
queryl .SQL.Clear;
queryl.sql.add('select * from halime where borrowerid like'+#39+(editl.text)+'%'-:--#39
queryl.Open;
end;

procedure TForm9.Button3Click(Sender: TObject);
begin
queryl.Close;
queryl .SQL.Clear;

142

queryl .SQL.add('SELECT * ');
queryl .sql.add('FROM book');
queryl .sql.add('where (ReturnDate>=:Gelen) and (ReturnDate<=:Gelenl)');
queryl .sql.add('or (RentDate>=:Gelen) and (RentDate<=:Gelenl)');
queryl .ParamByName('Gelen').AsDatetime := DateTimePickerl .DateTime;
query1 .ParamByName('Gelenl ').AsDatetime := DateTimePicker2.DateTime;
query1. Open;

end;

procedure TForm9.Button2Click(Sender: TObject);
begin
frxreportl .Print;
end;

procedure TForm9.Buttonl Click(Sender: TObject);
begin
frxReport 1 . ShowReport(true);
end;
end.

ABOUT

unit Unit22;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
TForrrı22= class(TForm)
Image1: Tlmage;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Image2: Tlmage;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form22: TForrrı22;

143

implementation

{$R *.dfm}

procedure TForm22.FormCreate(Sender: TObject);
begin
end·

, '
end.

144

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Page 2
	Titles
	ACKNOWLEDGMENT

	Page 3
	Titles
	ABSTRACT

	Page 4
	Titles
	TABLE OF CONTENTS

	Tables
	Table 1

	Page 5
	Tables
	Table 1

	Page 6
	Titles
	CHAPTER THREE

	Tables
	Table 1
	Table 2

	Page 7
	Tables
	Table 1

	Page 8
	Titles
	LIST OF FIGURES
	8

	Page 9
	Page 10
	Tables
	Table 1

	Page 11
	Page 12
	Titles
	CHAPTER!
	I.BASIC CONCEPT OF DELPHI
	1.1.Introduction to Delphi
	1.2~ What is Delphi?
	1

	Page 13
	Page 14
	Page 15
	Titles
	4

	Page 16
	Titles
	. . .

	Page 17
	Titles
	1.3. Delphi 6 Editions

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 20
	Titles
	1.4. A. Tour Of The Environment
	Borland Delphi 6
	p

	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 26
	Titles
	i-----[i Edit3
	:----·!il Label2

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 27
	Titles
	1.4.9.Debugging applications

	Images
	Image 1

	Page 28
	Titles
	"

	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Titles
	1.4.11.Templates and the Object Repository
	~ ,~

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 30
	Titles
	1.5.Programming With Delphi

	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	·· ······· iıöösöTc~d················

	Images
	Image 1
	Image 2

	Page 6
	Titles
	data-aware control ------f DataSource
	dataset
	------f (Table) ~ BDE ------f database

	Images
	Image 1

	Page 7
	Titles
	CHAPTER2
	2. What is Database?
	2.1. History

	Page 8
	Page 9
	Titles
	2.2. Database Models

	Page 10
	Page 11
	Titles
	2.3 Database Management Systems

	Page 12
	Page 13
	Titles
	2.4 DBMS internals

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Titles
	2.5 Applications of databases

	Page 16
	Page 17
	Titles
	CHAPTER3
	3.PARADOX (DATABASE)
	3.1 Paradox For DOS

	Page 18
	Titles
	3.2 Paradox For Windows

	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	3.2 Corel Paradox
	3.3 Paradox Users

	Page 21
	Titles
	CHAPTER4
	4.PROGRAM DESIGN PROCESS
	LIBRA~YAlJİOlVIATION

	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1

	Page 32
	Titles
	'--·~

	Images
	Image 1
	Image 2

	Page 33
	Images
	Image 1
	Image 2

	Page 34
	Images
	Image 1
	Image 2
	Image 3

	Page 35
	Images
	Image 1
	Image 2

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	Date
	Adın in
	:BQ9~.R~gi'stration
	. ISBN Nı.iinber

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Titles
	Ishn
	~ıııı
	[~

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	Searc!ı, ;By.Bool{'Nanıe

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	s e aı'dr0Bv D afJ'ôt Start
	72

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	Figure 4.34 List of Books
	Figure 4.35 Print Book
	73

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Titles
	LIBBARY. .. ii'VTOMA TION
	Figure 4.41 About Me
	78

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	LIBRARY AUTQl\i{ATION,

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Titles
	CONCLUSION

	Page 29
	Titles
	REFERENCES

	Images
	Image 1

	Page 30
	Titles
	APPENDIX
	Login Form

	Images
	Image 1

	Page 31
	Page 32
	Titles
	Main Menu

	Page 33
	Images
	Image 1

	Page 34
	Page 35
	Images
	Image 1

	Page 1
	Titles
	RETURN BOOK

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 1
	Page 2
	Page 3
	Titles
	GIVE BOOK

	Page 4
	Page 5
	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Page 8
	Titles
	UPDATE

	Page 9
	Page 10
	Page 11
	Page 12
	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	ADD DELETE UPDATE USER

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Page 15
	Page 16
	Page 17
	Titles
	ADD DELETE UPDATE BOOK

	Page 18
	Page 19
	Page 20
	Titles
	114

	Page 21
	Page 22
	Titles
	SEARCH BOOK BY ISBN

	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Page 26
	Titles
	SEARCH BOOK BY NAME

	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Page 29
	Page 30
	Titles
	SEARCH USER

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 1
	Page 2
	Titles
	SEARCH BORROWER

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Page 5
	Titles
	REPORT BOOK

	Images
	Image 1

	Page 6
	Page 7
	Page 8
	Page 9
	Titles
	REPORT USER

	Page 10
	Page 11
	Page 12
	Page 13
	Titles
	REPORT BORROWER

	Page 14
	Page 15
	Page 16
	Page 17
	Titles
	ABOUT

	Images
	Image 1

	Page 18

