
Student

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Supervisor
..

SIXTY COUNTER

Graduation Project
COM-400

.. Hakan Şahin(20033641)

•
Mehmet Kadir Ozakman

Nicosia-2008

ACKNOWLEDGEMENTS

•

"First, I would like to thank my supervisor Mehmet Kadir Özakman for his
ble advice and belief in my work and myself over the course of

Graduation Project..

Second, I would like to Express my gratitude to Near East University
- t the scholarship that made the work possible.

Third, I thank my family for their constant encouragement and
rt during the preparation of this project.

Finally, I would also like to thank all my friends
- their advice and support."

•

ABSTRACT

We will design sixty counter in this project. Sixty counter is an electronic

desgin.We are using sixty counter in different areas as digital watch .

The xilinx ise 9. 1 i software will be used for to create the sixty counter design .

We have selected this program because is very useful for to do this elecronic design .

We can design many things that we want using xilinx ise software.

We will explain briefly why xilinx ise software is useful and suitable for us.

Assume that you have a company you are working IT(information technology)

sector. You can do many specific solutions , one day if you need a 32 bit proccessor for

example.You are calling xilinx company and then you are saying 'we want a 32 bit

proccessor'. Then they are sending a spesific FPGA (field programmable logic

gate)chip kit(virtex,spartan etc ..) as special for your request. Then you are taking the kit

and connecting the internet at where you are . They are loading a 32 bit proccessor

software your kit using the internet . So you have a 32 bit proccessor.

It's very useful for the companies because if you want you can change your

proccessor to ram or rom etc .. You can convert so many things . If you have a kit on

your hand you can create many things using this kit and xilinx software.

So we hope this technology will grow up and there will be so many vacany

therefore we want to learn this technology and we used this software.

..

ii

TABLE OF CONTENTS

ACKNOWLEDGMENT İ

ABSTRACT İİ

TABLE OF CONTENTS İİİ

LIST OF ABBREVIATIONS İV

~TRODUCTION 1

CHAPTER ONE : DESIGN 3

1.l)DESIGN DECRIPTION 3

1 .2) 1 .2)ABOUT THE DESIGN 5

CHAPTER TWO : DESİGN STEPS 7

2.l)ENTER THE DESIGN 7

2.2)CREA TİNG a VHDL SOURCE 8

2.3)GENERATING a CODE 11

2.4)SYNTHESİZE 17

2.5)WRITING a TEST BENCH 30

2.6)SIMULATING 34

2.7)EXPLANA TION OF MY SIXTY COUNTER PROGRAM 36

CODES

CHAPTER THREE :SPARTAN

3.l)OVERVİEW

3 .2)CAP ABILITIES

3.2.l)DUAL POWER MANAGEMENT

40

40

41

41
•.. 42

42

3.2.2)MULTIPLE LEVELS OF SECURITY

3.2.3)INTEGRATED FLASH MEMORY

3.2.4)XtremeDSP DSP 48A SLICE 43

3.2.S)EMBEDDED PROCESSING 43

111

3.2.6)FOUR LEVEL MEMORY ARCHİTECTURE 44

3.2.7)LEADING CONNECTIVITY PLATFORM 45

3.2.8)CONFIGURABLE LOGIC BLOCKS 46

3.2.9)PRECISE CLOCK MANAGEMENT RESOURCES 46

3 .2. 1 O)COMPREHENSIVE CONFIGURATION 46

CAP ABILITIES

3.3)ADV ANTAGES 47

CHAPTER FOUR:HISTORY 50

4.l)WHAT DOES XILINX MEAN? 50

4.2) WHAT DOES XILINX NAME REPRESENT? 50

4.3)HOW XILINX BEGAN ? 53

4.3.l)NEV TECHNOLOGY 53

4.3.2)EFFECTIVE PARTNERSHİPS 54

4.3.3)INSPIRED EMPLOYEES 54 •

• 4A')BUS1NESS SS

4.4. 1)LEARN ABOUT THE XİLİNX TECHNOLOGY,MOW 55
••
and WHY TO PURPOSE IT ?

4.4.2)PROGRAMMABLE LOGIC IS XİLİNX's BUSINESS 55

4.4.3)USES FOR PROGRAMMABLE LOGIC 56

4.4.4)MULTIPLE PRODUCT LINES WITH 56

SUPERLATIVE SOFTWARE SUPPORT

4.4.5)HIGH-PROFILE WORLDWIDE CUSTOMER 56

and PARTNER BASE

4.4.6)XILINX' S VISION FOR THE FUTURE 57

4.5)GETTIN STARTED WITH FPGAs 57

4.5.l)WHAT ARE FPGAs? 57

4.5.2)COMMON FPGA FEATURES 59

4.5.3)FPGA SOLUTIONS, APPLICATIONS and 60

END- MARKETS

4.6)XILINX's SUCCEES 62

4.6.1)THE SYNERGY OF TECHNOLOGY, 62

PARTNERSHIP, and LEADERSHIP

4.6.2)XILINX's PARTNERS 62

4.6.3)XILINX's TECHNOLOGY 63

4.6.4)XILINX' s EMPLOYEES • 63
••

4.7)XILINX's VALUES 64

4.7.l)HOW XILINX WORK WITH ONE 64

ANOTHER AND XILINX's PARTNERS,

WHAT DO VALUES MEAN TO XILINX?

CONCLUSION

REFERENCES

67

69

4.7 .2)HOW DID XILINX CLEARLY DEFINE

IT's VALUES ?

64

4.7.3)HOW DO XILINX KEEP IT's VALUES

VISIBLE and VIABLE IN THE COMP ANY ?

65

,,

•

ISE

FPGA

VHDL

DCM

RPM

DUT

UUT

LIST OF ABBREVIATIONS

Integrated Software Environment

Field Programmable Gate Array

Very high speed integrated circuit Hardware
Description Language

Digital Clock Manager

Relationally Placed Macro

Design Under Test

Unit Under Test

•

iv

INTRODUCTION
About the project , we will create a sixty counter . Sixty counter is a counter and

vherı we run it , it counts up to sixty .

Block diagram of the Project looks like this .

·---·---- CE LSBSEC(3:0)

CLK

CLR MSBSEC(3:0)

Figurel. block diagram

In the first chapter block diagram of the Project will be given and inputs and

outputs from the block diagram will be defined . After that information about which

language we used to create the project and what we used in software and hardware will

be given . Then we will explain the Xilinx iSE 9. 1 . In this chapter lastly we will show

the design flow .
In the second chapter wt; will follow the steps which we gave at the end of

chapter one . In the first step we will enter the,design , the name of the project and

directory of Project will be given by us .We will select a project device properties .•
Second step is creating a VHDL source. After creating a source we generate the codes .

Then we check the generated codes from check syntax , to bu sure if we have mistakes

or not . Then we create a test bench . After creating test bench we get simulation to see

the output of the project. In this chapter lastly we will give an information about the

project.
In chapter threean information will be given by us about the spartan. We will

give an overview and capabilities and advantages of spartan .

1

In chapter four we will talk about xilinx . We will explain the mean of xilinx,

d what the name of xilinx represents . In business what xilinx represents .

As you see last two chapter is general information about the xilinx and spartan .

But the first two chapter is about the project .

•

2

CHAPTER one DESIGN

1.l)DESIGN DECRIPTION
The design is sixty counter. We are going to do a Sixty counter which counts up

•o sixty .

CE LSBSEC(3:0)

CLK

CLR MSBSEC(3:0)

Figure2. Sixty counter block diagram

Inputs:

CLK

CLR

CE

The counter counts the clock cycles . If the clock cycle is lsecond canter will

count up to 1 minute . If the clock cycle is 1 minute counter will count UP. to 60minute .
•

Clear is clears all the values . Clock enable is enables counter to count .

Outputs:

LSBSEC

MSB SEC

Lsbsec is counts from O to 9 . Msbsec is counts from 0-5 .

Used things : To create the project VHDL programming language will be used

and there will be a some hardware and software requirements . We will use in software

Xilinx iSE and hardware Spartan3E.

3

The briefly explanation of Xilinx iSE : The Integrated Software Environment

£H1) is the Xilinx® design software suite that allows that , take the design from

sign entry through Xilinx device programming. The iSE Project Navigator manages

d processes the designs through the following steps in the iSE design flow .

• DESIGN ENTRY
Design entry is the first step in the iSE design flow. During design entry, we can

eate our source files based on design objectives. We can create your top-level design

file using a Hardware Description Language (HDL), such as VHDL, Verilog, or ABEL,

or using a schematic. We can use multiple formats for the lower-level source files in the

design.

• SYNTHESİS
After design entry and optional simulation, we run synthesis. During this step,

VHDL, Verilog, or mixed language designs become netlist files that are accepted as

input to the implementation step.

• CREA TE TEST BENCH
The results of the works during all the program is displayed in this process .

Also in this process some values is given to get the outputs .

• IMPLEMENTATION
After synthesis, we run design implementation, which converts the logical

design into a physical file format that can be downloaded to the selected target device.

From Project Navigator, we can run the implementation process in one step, or we can

run each of the implementation processes separately. Implementation processes vary

depending on whether we are targeting a Field Programmable Gate Array (FPGA) or a

Complex Programmable Logic Device (CPLD).

• VERİFİCATİON
We can verify the functionality of our design at several points in the design flow.

We can use simulator software to verify the functionality and timing of our design or a

portion of our design. The simulator interprets VHDL or Verilog code into circuit

functionality and displays logical results of the described HDL to determine correct

circuit operation. Simulation allows us to create and verify complex functions in a

relatively small amount of time. We can also run in-circuit verification after

programming our device.

4

Generating a codç •

• DEVICE CONFİGURATION
After generating a programming file, we configure our device. During

figuration, we generate configuration files and download the programming files

- ma host computer to a Xilinx device.

1.2)AB0UT THE DESIGN
In this project we we have created a count sixty counter . This counter will count

to sixty . To create the counter we need two counter and the counters will work

ogether . First counter will count from 0-9 and when the first counter comes nine it will

done to the second counter. By this way first counter will count the six times and the

ounter will reach the sixty .

Sixty counter can be used in digital watch .

The design flow lookslike this :

Define the lnputs,Outputs and
Block diagram

Used Things

Enter the design

Creating a VHDL source

--.,.-

Synthesize

Check Syntax

5

Creating a test bench

Simulating

Explaining project

Figure3. design flow

ıı •

6

Proiect Location

: C \Xilinx91 i\myproiect\sixty [J

CHAPTER two DESİGN STEPS

2.l)ENTER THE DESIGN
In the first step we will create the Project basically . To do this firstly we must

e XİLİNX iSE 9. 1 I . After the installation of the program we open the program

en we have some steps to create the program as follows :

1. Select File> New Project... The New Project Wizard appears.

-· Type SİXTY in the Project Name field.

3. Enter or browse to a location (directory path) for the new project. The works

subdirectory is created automatically.

Enter a r~ eme and Location for the Project

Project Name

Select the Type of Top-Level ~;oı.ırce for the Project

T op-Level Source Type

HDL

< 8ad. [... Next> "J ~nee! .]

~
Figure4.Project name

4. Verify that HDL is selected from the Top-Level Source Type list.

5. Click Next to move to the device properties page.

6. Fill in the properties in the table as shown below:

Product Category: All

Family: Spartan3E

Device: XC3S lOOE

Package: VQlOO

7

Figures. Project Device Properties
Leave the default values in the remaining fields.

2.2)CREATİNG a VHDL SOURCE
,ı

Create a VHDL source file for the project as follows:~ •

Speed Grade: -5

Top-Level Source Type: HDL

Synthesis Tool: XST (VHDL/Verilog)

Simulator: iSE Simulator (VHDL/Verilog)

Preferred Language: VHDL

Verify that Enable Enhanced Design Summary is selected.

5 eect the Device and Design Flow for the Preıject

Property Name

Product Category

Family

Device

Package

Speed

Value

All

'Spartan3E
h··.•e••·•

1XC3S1 ODE

VQlOO
.5

Top-Level Source Type

Synthesis Tool

Simulator

Preferred Language

iSE Simulator [VHDLNerilog)

VHDL

Enable Enhanced Design Summary ~

D
o

Enable Message Filtering

Display Incremental Messages

Nex,t > J [Cancel JMore Info]

1. Click the New Source button in the New Project Wizard.

2. Select VHDL Module as the source type.

3. Type in the file name CNT60.

8

More lnlo ·ı

e
regen & Architecture Wizard]
File

atic
entation Constraints File

e Diagram , File name:
-;: - est Bench \,\I aveForm
? Jser Document
": Verilog Module Location:

,;ver;.;,-7!'ı·ıı,"ı•K•·· '',11-:1:: :ı• ·--·····-··-·····--···-·--·--··- ..-··--··----·· O~3il.-.:ıı~ . m- . ,l., ,,.ııı.W,

~~ VHDL Package ı
~ VHDL Test Bench

~ Add to project

Figure6.Adding source

4. Verify that the Add to project checkbox is selected.

5. Click Next.

6. Declare the ports for the counter design by filling in the port information as

hown below:

ICE

ıC,LK
ıcLR
\LSBSEC
jMSBSEC

Iı

< Back ~I ext > 1J [Cancel

Figure7. Define Module

9

-. Click Next, then Finish in the New Source Wizard - Summary dialog box to

lete the new source file template .

. Click Next, then Next, then Finish.

The source file containing the entity/architecture pair displays in the Workspace,

the counter displays in the Source tab, as shown below:

't :ix \\ew Pr*ct Source Process Wixlow Hdp

''., 6b rtı @: X :.1 ©1 2 if')O:t:;t [0
"}1,i.%'.lX;,(;~

5 ~- Cr<::·~~..-:: D.'Jt;;"; 1,;;::ı~;::11 :)\/1\ı,:=:ı::,~ı

h::.;;:~Jrı N,:ı,>;ıt
flotlı.ıle 1'.l~ı::Je: ·::nv:,D ~ Behe.v10:.:al

8 Fr,:ı_:~n Nıımı:>.:
>.H·)::f l\~vic,::.~;

. •,
: lf

. '

!.J::""1>Jlruce
:-Neı,Sruce
,..,o.,;g,soomaıı
~Utiies
.'8Coosiıans
l,riheıi,e XST
wı,,rı Desqı
O,ne,~ePıogıarrııirıgFle

11 f::.>;;ı_ ·; pr::\!l"
12
13 l\::p,~·rıdc::rı,.:;i
ıq
15 Pev :.!.ı ıon:
16 -- P~vi::s10n \:)1 - FL~ Crı:1t~:i

18
19
20 library HEE:
21 use If,f,f.,STP LOGIC 116',!LL:
22 use ıttt.sre ıecıc ,.IRITH,ALL:
23 use TJJL STD Lw.TC lf'E<TC.Nf.Jı, ALL:

24
25 --·-n· Urh:(ırnt,i::nt. tbi:: foll::ıı;11m1 lfr;c~r.yjt,:L1.r::ıt.1:Hı ıf :.n.3t'.',Jıtl:.'ı.Ln]

26 ırn;: iı.:l:.nr pr ımıtıves ın r:.hlJ c::..Ue.
27 -ni.1.'0r11rv l.lNT.;3TJ\;
28 -use U}JI-5 IH, i/(,)mpon,::nt,.:.:, :) ii;

29
30 entity cnt60 is
31 Port (CE : in STDLXIC:
32 CLK in 5TD LOGIC:
33 CLR in $Tl• L((,IC:

34
35

LSBS!C out. STLJ _LwIC_VECTOR (3 dount.o O):
MSBS!:ll out STD LOGIC VECTOR (3 dounto 0)):

36 end cnt60;

r'Launching ISE Text Editor to edit cnt60.vhd".
•.. ,,.

"Launching Design Surıvoary'1,

Ji 'ı/aırirıgs ITd Shel ,£ Fnd iı Fies

Figure8.Program

10

library IEEE;

use IEEE.STD_LOGIC_l 164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity cnt60 is

•

2.3)GENERATING a CODE

- next step we add some necessary signals , process and some codes to the

_ m . After that the program will be as shown :

-- -

anv:

eer:

= Create Date: 12:38:22 05/08/2008

sign Name:

- _.• Iodule Name: cnt60 - Behavioral

- Project Name:

- Target Devices:

- Tool versions:

- Description:

- Dependencies:

-- Revision:

-- Revision O.Ol - File Created

-- Additional Comments:

--~---------------------------------------

11

E: in STD_LOGIC;

- : in STD_LOGIC;

LR: in STD_LOGIC;

BSEC: out STD_LOGIC_ VECTOR (3 downto O);

--~SBSEC: out STD_LOGIC_ VECTOR (3 downto O));

re Behavioral of cnt60 is

.x,:::..:"'Onent scntr

CE : in STD_LOGIC;

CLK: in STD_LOGIC;

CLR: in STD_LOGIC;

QOUT: out STD_LOGIC_ VECTOR (3 downto O));

end component;

_ al lsbout: STD_LOGIC_ VECTOR (3 downto 0);

_ al msbout: STD_LOGIC_ VECTOR (3 downto O);

signal msbce: STD_LOGIC;

signal lsbtc: STD_LOGIC;

signal msbclr: STD_LOGIC;

signal msbtc: STD_LOGIC ;

egin
lsbcount : scntr port map (CE=> CE , CLK => CLK , CLR => CLR , QOUT =>

lsbout);
msbcount: scntr port map (CE=> msbce ,CLK => CLK,CLR=> msbclr,

QOUT=>msbout);

process (lsbout)

begin

if (lsbout=" 100 l ") then

lsbtc<='l';

else

lsbtc-c=O';

end if;

end process;

process (msbout)

begin

•

12

<='l':

<=.0';

msbce-c=Cf and lsbtc;

msbclr <= CLR or msbtc:

LSBSEC <= lsbout ;

MSBSEC <= msbout ;

Behavioral;
Now one more process must be created . Because we have two counter in this

gram so second counter we are adding a other source as following :

1. Click the New Source button in the New Project Wizard.

2. Select VHDL Module as the source type.

3. Type in the file name SCNTR.

~ BMM File
q IP (Coregen & Architecture Wizard]

iMEM File
Schematic
Implementation Constraints File,ı State Diagram

~ Test 8 ench \ıılaveF orm
~ User Document

File name:

VHDL Library
l!.J VHDL Package
[':ıı~ VHDL Test Bench •

0 Add to project

< Back ~~> Cancel

Figure9.Adding source

4. Verify that the Add to project checkbox is selected.

5. Click Next.

13

e ports for the counter design by filling in the port information as

:rıe scntr

Behavioral

Direction Bus MSB LSB

3 o

Cancel< Back] o~xt;:ıe Info J

FigurelO. Define Module

-. Click Next, then Finish in the New Source Wizard - Summary dialog box to

plete the new source file template .

. Click Next, then Next, then Finish.

e source file containing the entity/architecture pair displays in the Workspace, and

e counter displays in the Source tab, as shown below:

•

14

. ılb~ı[1X 1)ct [i;
~ = ~. ,4 '.:'~ ~ ~ 'J '!'J

:v:·oo
.:,6) · l!ehav<ı• \cr/60.vhd]

~::=.rt· ıcntr · Behawıcal \ıcrlr.vhd)
:; ~ · ıcntr · Behawıcal \scntr.vhd)

f:,, SM)Srt:ıl.S (jj libraries

::xo.rl·ıcnlı·Beha>ioıal

!:.3.:::ed : "Launching Design Sı.uıurıary11•

l'1':Klı.ı1i.' Nane :
jro '. cet. Niı:~~:::

11 \\=:,=;,:: :;ıtl,";i)"

12
13 Li!p1.':ı:.l!lnc:e:.1·

14
ıs %<. ıs ıon:
16 H~\': :- ion D. DL
17
18
19
20 library IHf.;
21 use IEEE.STD LOGIC 1164.ALL;
22 use T.H.E.STf;_l/X.~ICJIETH.ALL;
23 uae H:H.5Tl\.L(f3IC UN5IGNf.fı,ALL;

25 f,lw::.ıc:rnı.~nı:. ı;/V.' Cıi 1r.w:ın -orurv rJı.>r.1m:ıJr::r.ın :.J ;_n:-.ıı;.!HH :.<JC'.J\!J

26 ,'ııJ'::' X~LrıY. pr ın.tıves ın Ül'.:: cooe .
27 --litır~-;:-y Ui'Jl':3'Dl;
28 IJ'..t'.'· 1.lT-J"r:::i/'\.\\:r.ımV.'tV.'J\i.';.ı,11]

29
30 ent ıtv scntr is
31 Port I CE : in ',:Tv l.,XlC:
32
33
3q

CLK in STfı VX,IC;
CLR : in STD_LOGIC;
QOUT : out 5TD.l,OC.1CV[CT0R (3 ctownto O)) ;

35 end scnt r :

36
37 architecture Behavioral of scnt r ıs
38
39 signal qoutsig ST\) LOGIC: \/'i;CTOP (3 ctoımto O);

0 DesignSurrımary ~ scntr.vhd

!:~:.ed : "Launching ISE Text Editor to edit scntr . vhd".

Figure 11 .Program

In next step we add some necessary signals , process and some codes to the

program . After that the program will be as shown :

---~-- ----

-- Company:

-- Engineer:

-- Create Date:

-- Design Name:

-- Module Name:

-- Project Name:

13:01:5405/08/2008

scntr - Behavioral

15

library IEEE;

use IEEESTD_LOGIC_l 164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity scntr is

Port (CE: in STD_LOGIC;

CLK: in STD_LOGIC;

CLR: in STD_LOGIC;

QOUT: out STD_LOPIC_ VECTOR (3 downto O));

end scntr;

architecture Behavioral of scntr is

signal qoutsig: STD_LOGIC_ VECTOR (3 downto O);

begin

process (CE,CLK,CLR)

begin

if (CLR='l') then

qoutsig<= "0000";

elsif (CE='l ')then

if (CLK'event and CLK ='1 ') then

•

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:

-- Revision O.Ol - File Created

-- Additional Comments:

--

16

ig="lOOl") then

~"=<="0000";

else

ısig-c= qoutsig+"OOO1 ";

end if;

end if;

if:

end process;

QOUT <=qoutsig;

end Behavioral;

2.4)SYNTHESİZE
After design entry and optional simulation, we run synthesis. In the Sources tab,

Synthesis/Implementation from the Design View drop-down list, and select the

odule ı:ltıtı. In the Processes tab, double-click Synthesize.

Processes for: cnt60 · Behavioral
,.......... ·······················

\r::::J ... _0.ı::lı::l E~i_s.t_ir1g ~?.~.r~~- . ..

Ü Create New Source
_ View Design S ummery

l+J Design Utilities
[-8 User Constraints

8 (*;;) ..,b Synthesize · XS T
~t]Niew Synthesis Report
[;;;] View RTL Schematic
~ View Technology Schematic

f ~ Check Syntax

•

(£1 f~ Generate Post-S_l'lnthesis Simulation Model

t:B , ~(~Implement Design
Cf) , ;ıı~Gener ate Programming File

~ Processes

Figurel2.Select synthesize

17

•

ee from the figure. 12we can get the synthesize report , we can look

- · e our design , we can look the technology schematic of the design

· the syntax to be sure that the if we have mistakes or not .

sıs Report : This report contains the results from the synthesis run,

d timing estimation.

-xstJ.30

1995-2007 Xilinx, Inc. All rights reserved.

r.ır:ı=ncter TMPDIR set to ./xst/projnav.tmp

0.36 s I Elapsed : 0.00 I 0.00 s

eter xsthdpdir set to ./xst

J)() I 0.36 s \ Elapsed : 0.00 I 0.00 s

· g design: cnt60.prj

_"'I.Du:. OF CONTENTS

esis Options Summary

L Compilation

sign Hierarchy Analysis

HOL Analysis

5) HOL Synthesis

-.1) HDL Synthesis Report

Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

- Low Level Synthesis

ı Partition Report

Final Report

9. 1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

,;

* Synthesis Options Summary *

---- Source Parameters

Input File Name : "cnt60.prj"

18

Student

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Supervisor
..

SIXTY COUNTER

Graduation Project
COM-400

.. Hakan Şahin(20033641)

•
Mehmet Kadir Ozakman

Nicosia-2008

ACKNOWLEDGEMENTS

•

"First, I would like to thank my supervisor Mehmet Kadir Özakman for his
ble advice and belief in my work and myself over the course of

Graduation Project..

Second, I would like to Express my gratitude to Near East University
- t the scholarship that made the work possible.

Third, I thank my family for their constant encouragement and
rt during the preparation of this project.

Finally, I would also like to thank all my friends
- their advice and support."

•

ABSTRACT

We will design sixty counter in this project. Sixty counter is an electronic

desgin.We are using sixty counter in different areas as digital watch .

The xilinx ise 9. 1 i software will be used for to create the sixty counter design .

We have selected this program because is very useful for to do this elecronic design .

We can design many things that we want using xilinx ise software.

We will explain briefly why xilinx ise software is useful and suitable for us.

Assume that you have a company you are working IT(information technology)

sector. You can do many specific solutions , one day if you need a 32 bit proccessor for

example.You are calling xilinx company and then you are saying 'we want a 32 bit

proccessor'. Then they are sending a spesific FPGA (field programmable logic

gate)chip kit(virtex,spartan etc ..) as special for your request. Then you are taking the kit

and connecting the internet at where you are . They are loading a 32 bit proccessor

software your kit using the internet . So you have a 32 bit proccessor.

It's very useful for the companies because if you want you can change your

proccessor to ram or rom etc .. You can convert so many things . If you have a kit on

your hand you can create many things using this kit and xilinx software.

So we hope this technology will grow up and there will be so many vacany

therefore we want to learn this technology and we used this software.

..

ii

TABLE OF CONTENTS

ACKNOWLEDGMENT İ

ABSTRACT İİ

TABLE OF CONTENTS İİİ

LIST OF ABBREVIATIONS İV

~TRODUCTION 1

CHAPTER ONE : DESIGN 3

1.l)DESIGN DECRIPTION 3

1 .2) 1 .2)ABOUT THE DESIGN 5

CHAPTER TWO : DESİGN STEPS 7

2.l)ENTER THE DESIGN 7

2.2)CREA TİNG a VHDL SOURCE 8

2.3)GENERATING a CODE 11

2.4)SYNTHESİZE 17

2.5)WRITING a TEST BENCH 30

2.6)SIMULATING 34

2.7)EXPLANA TION OF MY SIXTY COUNTER PROGRAM 36

CODES

CHAPTER THREE :SPARTAN

3.l)OVERVİEW

3 .2)CAP ABILITIES

3.2.l)DUAL POWER MANAGEMENT

40

40

41

41
•.. 42

42

3.2.2)MULTIPLE LEVELS OF SECURITY

3.2.3)INTEGRATED FLASH MEMORY

3.2.4)XtremeDSP DSP 48A SLICE 43

3.2.S)EMBEDDED PROCESSING 43

111

3.2.6)FOUR LEVEL MEMORY ARCHİTECTURE 44

3.2.7)LEADING CONNECTIVITY PLATFORM 45

3.2.8)CONFIGURABLE LOGIC BLOCKS 46

3.2.9)PRECISE CLOCK MANAGEMENT RESOURCES 46

3 .2. 1 O)COMPREHENSIVE CONFIGURATION 46

CAP ABILITIES

3.3)ADV ANTAGES 47

CHAPTER FOUR:HISTORY 50

4.l)WHAT DOES XILINX MEAN? 50

4.2) WHAT DOES XILINX NAME REPRESENT? 50

4.3)HOW XILINX BEGAN ? 53

4.3.l)NEV TECHNOLOGY 53

4.3.2)EFFECTIVE PARTNERSHİPS 54

4.3.3)INSPIRED EMPLOYEES 54 •

• 4A')BUS1NESS SS

4.4. 1)LEARN ABOUT THE XİLİNX TECHNOLOGY,MOW 55
••
and WHY TO PURPOSE IT ?

4.4.2)PROGRAMMABLE LOGIC IS XİLİNX's BUSINESS 55

4.4.3)USES FOR PROGRAMMABLE LOGIC 56

4.4.4)MULTIPLE PRODUCT LINES WITH 56

SUPERLATIVE SOFTWARE SUPPORT

4.4.5)HIGH-PROFILE WORLDWIDE CUSTOMER 56

and PARTNER BASE

4.4.6)XILINX' S VISION FOR THE FUTURE 57

4.5)GETTIN STARTED WITH FPGAs 57

4.5.l)WHAT ARE FPGAs? 57

4.5.2)COMMON FPGA FEATURES 59

4.5.3)FPGA SOLUTIONS, APPLICATIONS and 60

END- MARKETS

4.6)XILINX's SUCCEES 62

4.6.1)THE SYNERGY OF TECHNOLOGY, 62

PARTNERSHIP, and LEADERSHIP

4.6.2)XILINX's PARTNERS 62

4.6.3)XILINX's TECHNOLOGY 63

4.6.4)XILINX' s EMPLOYEES • 63
••

4.7)XILINX's VALUES 64

4.7.l)HOW XILINX WORK WITH ONE 64

ANOTHER AND XILINX's PARTNERS,

WHAT DO VALUES MEAN TO XILINX?

CONCLUSION

REFERENCES

67

69

4.7 .2)HOW DID XILINX CLEARLY DEFINE

IT's VALUES ?

64

4.7.3)HOW DO XILINX KEEP IT's VALUES

VISIBLE and VIABLE IN THE COMP ANY ?

65

,,

•

ISE

FPGA

VHDL

DCM

RPM

DUT

UUT

LIST OF ABBREVIATIONS

Integrated Software Environment

Field Programmable Gate Array

Very high speed integrated circuit Hardware
Description Language

Digital Clock Manager

Relationally Placed Macro

Design Under Test

Unit Under Test

•

iv

INTRODUCTION
About the project , we will create a sixty counter . Sixty counter is a counter and

vherı we run it , it counts up to sixty .

Block diagram of the Project looks like this .

·---·---- CE LSBSEC(3:0)

CLK

CLR MSBSEC(3:0)

Figurel. block diagram

In the first chapter block diagram of the Project will be given and inputs and

outputs from the block diagram will be defined . After that information about which

language we used to create the project and what we used in software and hardware will

be given . Then we will explain the Xilinx iSE 9. 1 . In this chapter lastly we will show

the design flow .
In the second chapter wt; will follow the steps which we gave at the end of

chapter one . In the first step we will enter the,design , the name of the project and

directory of Project will be given by us .We will select a project device properties .•
Second step is creating a VHDL source. After creating a source we generate the codes .

Then we check the generated codes from check syntax , to bu sure if we have mistakes

or not . Then we create a test bench . After creating test bench we get simulation to see

the output of the project. In this chapter lastly we will give an information about the

project.
In chapter threean information will be given by us about the spartan. We will

give an overview and capabilities and advantages of spartan .

1

In chapter four we will talk about xilinx . We will explain the mean of xilinx,

d what the name of xilinx represents . In business what xilinx represents .

As you see last two chapter is general information about the xilinx and spartan .

But the first two chapter is about the project .

•

2

CHAPTER one DESIGN

1.l)DESIGN DECRIPTION
The design is sixty counter. We are going to do a Sixty counter which counts up

•o sixty .

CE LSBSEC(3:0)

CLK

CLR MSBSEC(3:0)

Figure2. Sixty counter block diagram

Inputs:

CLK

CLR

CE

The counter counts the clock cycles . If the clock cycle is lsecond canter will

count up to 1 minute . If the clock cycle is 1 minute counter will count UP. to 60minute .
•

Clear is clears all the values . Clock enable is enables counter to count .

Outputs:

LSBSEC

MSB SEC

Lsbsec is counts from O to 9 . Msbsec is counts from 0-5 .

Used things : To create the project VHDL programming language will be used

and there will be a some hardware and software requirements . We will use in software

Xilinx iSE and hardware Spartan3E.

3

The briefly explanation of Xilinx iSE : The Integrated Software Environment

£H1) is the Xilinx® design software suite that allows that , take the design from

sign entry through Xilinx device programming. The iSE Project Navigator manages

d processes the designs through the following steps in the iSE design flow .

• DESIGN ENTRY
Design entry is the first step in the iSE design flow. During design entry, we can

eate our source files based on design objectives. We can create your top-level design

file using a Hardware Description Language (HDL), such as VHDL, Verilog, or ABEL,

or using a schematic. We can use multiple formats for the lower-level source files in the

design.

• SYNTHESİS
After design entry and optional simulation, we run synthesis. During this step,

VHDL, Verilog, or mixed language designs become netlist files that are accepted as

input to the implementation step.

• CREA TE TEST BENCH
The results of the works during all the program is displayed in this process .

Also in this process some values is given to get the outputs .

• IMPLEMENTATION
After synthesis, we run design implementation, which converts the logical

design into a physical file format that can be downloaded to the selected target device.

From Project Navigator, we can run the implementation process in one step, or we can

run each of the implementation processes separately. Implementation processes vary

depending on whether we are targeting a Field Programmable Gate Array (FPGA) or a

Complex Programmable Logic Device (CPLD).

• VERİFİCATİON
We can verify the functionality of our design at several points in the design flow.

We can use simulator software to verify the functionality and timing of our design or a

portion of our design. The simulator interprets VHDL or Verilog code into circuit

functionality and displays logical results of the described HDL to determine correct

circuit operation. Simulation allows us to create and verify complex functions in a

relatively small amount of time. We can also run in-circuit verification after

programming our device.

4

Generating a codç •

• DEVICE CONFİGURATION
After generating a programming file, we configure our device. During

figuration, we generate configuration files and download the programming files

- ma host computer to a Xilinx device.

1.2)AB0UT THE DESIGN
In this project we we have created a count sixty counter . This counter will count

to sixty . To create the counter we need two counter and the counters will work

ogether . First counter will count from 0-9 and when the first counter comes nine it will

done to the second counter. By this way first counter will count the six times and the

ounter will reach the sixty .

Sixty counter can be used in digital watch .

The design flow lookslike this :

Define the lnputs,Outputs and
Block diagram

Used Things

Enter the design

Creating a VHDL source

--.,.-

Synthesize

Check Syntax

5

Creating a test bench

Simulating

Explaining project

Figure3. design flow

ıı •

6

Proiect Location

: C \Xilinx91 i\myproiect\sixty [J

CHAPTER two DESİGN STEPS

2.l)ENTER THE DESIGN
In the first step we will create the Project basically . To do this firstly we must

e XİLİNX iSE 9. 1 I . After the installation of the program we open the program

en we have some steps to create the program as follows :

1. Select File> New Project... The New Project Wizard appears.

-· Type SİXTY in the Project Name field.

3. Enter or browse to a location (directory path) for the new project. The works

subdirectory is created automatically.

Enter a r~ eme and Location for the Project

Project Name

Select the Type of Top-Level ~;oı.ırce for the Project

T op-Level Source Type

HDL

< 8ad. [... Next> "J ~nee! .]

~
Figure4.Project name

4. Verify that HDL is selected from the Top-Level Source Type list.

5. Click Next to move to the device properties page.

6. Fill in the properties in the table as shown below:

Product Category: All

Family: Spartan3E

Device: XC3S lOOE

Package: VQlOO

7

Figures. Project Device Properties
Leave the default values in the remaining fields.

2.2)CREATİNG a VHDL SOURCE
,ı

Create a VHDL source file for the project as follows:~ •

Speed Grade: -5

Top-Level Source Type: HDL

Synthesis Tool: XST (VHDL/Verilog)

Simulator: iSE Simulator (VHDL/Verilog)

Preferred Language: VHDL

Verify that Enable Enhanced Design Summary is selected.

5 eect the Device and Design Flow for the Preıject

Property Name

Product Category

Family

Device

Package

Speed

Value

All

'Spartan3E
h··.•e••·•

1XC3S1 ODE

VQlOO
.5

Top-Level Source Type

Synthesis Tool

Simulator

Preferred Language

iSE Simulator [VHDLNerilog)

VHDL

Enable Enhanced Design Summary ~

D
o

Enable Message Filtering

Display Incremental Messages

Nex,t > J [Cancel JMore Info]

1. Click the New Source button in the New Project Wizard.

2. Select VHDL Module as the source type.

3. Type in the file name CNT60.

8

More lnlo ·ı

e
regen & Architecture Wizard]
File

atic
entation Constraints File

e Diagram , File name:
-;: - est Bench \,\I aveForm
? Jser Document
": Verilog Module Location:

,;ver;.;,-7!'ı·ıı,"ı•K•·· '',11-:1:: :ı• ·--·····-··-·····--···-·--·--··- ..-··--··----·· O~3il.-.:ıı~ . m- . ,l., ,,.ııı.W,

~~ VHDL Package ı
~ VHDL Test Bench

~ Add to project

Figure6.Adding source

4. Verify that the Add to project checkbox is selected.

5. Click Next.

6. Declare the ports for the counter design by filling in the port information as

hown below:

ICE

ıC,LK
ıcLR
\LSBSEC
jMSBSEC

Iı

< Back ~I ext > 1J [Cancel

Figure7. Define Module

9

-. Click Next, then Finish in the New Source Wizard - Summary dialog box to

lete the new source file template .

. Click Next, then Next, then Finish.

The source file containing the entity/architecture pair displays in the Workspace,

the counter displays in the Source tab, as shown below:

't :ix \\ew Pr*ct Source Process Wixlow Hdp

''., 6b rtı @: X :.1 ©1 2 if')O:t:;t [0
"}1,i.%'.lX;,(;~

5 ~- Cr<::·~~..-:: D.'Jt;;"; 1,;;::ı~;::11 :)\/1\ı,:=:ı::,~ı

h::.;;:~Jrı N,:ı,>;ıt
flotlı.ıle 1'.l~ı::Je: ·::nv:,D ~ Behe.v10:.:al

8 Fr,:ı_:~n Nıımı:>.:
>.H·)::f l\~vic,::.~;

. •,
: lf

. '

!.J::""1>Jlruce
:-Neı,Sruce
,..,o.,;g,soomaıı
~Utiies
.'8Coosiıans
l,riheıi,e XST
wı,,rı Desqı
O,ne,~ePıogıarrııirıgFle

11 f::.>;;ı_ ·; pr::\!l"
12
13 l\::p,~·rıdc::rı,.:;i
ıq
15 Pev :.!.ı ıon:
16 -- P~vi::s10n \:)1 - FL~ Crı:1t~:i

18
19
20 library HEE:
21 use If,f,f.,STP LOGIC 116',!LL:
22 use ıttt.sre ıecıc ,.IRITH,ALL:
23 use TJJL STD Lw.TC lf'E<TC.Nf.Jı, ALL:

24
25 --·-n· Urh:(ırnt,i::nt. tbi:: foll::ıı;11m1 lfr;c~r.yjt,:L1.r::ıt.1:Hı ıf :.n.3t'.',Jıtl:.'ı.Ln]

26 ırn;: iı.:l:.nr pr ımıtıves ın r:.hlJ c::..Ue.
27 -ni.1.'0r11rv l.lNT.;3TJ\;
28 -use U}JI-5 IH, i/(,)mpon,::nt,.:.:, :) ii;

29
30 entity cnt60 is
31 Port (CE : in STDLXIC:
32 CLK in 5TD LOGIC:
33 CLR in $Tl• L((,IC:

34
35

LSBS!C out. STLJ_LwIC_VECTOR (3 dount.o O):
MSBS!:ll out STD LOGIC VECTOR (3 dounto 0)):

36 end cnt60;

r'Launching ISE Text Editor to edit cnt60.vhd".
•.. ,,.

"Launching Design Surıvoary'1,

Ji 'ı/aırirıgs ITd Shel ,£ Fnd iı Fies

Figure8.Program

10

library IEEE;

use IEEE.STD_LOGIC_l 164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity cnt60 is

•

2.3)GENERATING a CODE

- next step we add some necessary signals , process and some codes to the

_ m . After that the program will be as shown :

-- -

anv:

eer:

= Create Date: 12:38:22 05/08/2008

sign Name:

- _.• Iodule Name: cnt60 - Behavioral

- Project Name:

- Target Devices:

- Tool versions:

- Description:

- Dependencies:

-- Revision:

-- Revision O.Ol - File Created

-- Additional Comments:

--~---------------------------------------

11

E: in STD_LOGIC;

- : in STD_LOGIC;

LR: in STD_LOGIC;

BSEC: out STD_LOGIC_ VECTOR (3 downto O);

--~SBSEC: out STD_LOGIC_ VECTOR (3 downto O));

re Behavioral of cnt60 is

.x,:::..:"'Onent scntr

CE : in STD_LOGIC;

CLK: in STD_LOGIC;

CLR: in STD_LOGIC;

QOUT: out STD_LOGIC_ VECTOR (3 downto O));

end component;

_ al lsbout: STD_LOGIC_ VECTOR (3 downto 0);

_ al msbout: STD_LOGIC_ VECTOR (3 downto O);

signal msbce: STD_LOGIC;

signal lsbtc: STD_LOGIC;

signal msbclr: STD_LOGIC;

signal msbtc: STD_LOGIC ;

egin
lsbcount : scntr port map (CE=> CE , CLK => CLK , CLR => CLR , QOUT =>

lsbout);
msbcount: scntr port map (CE=> msbce ,CLK => CLK,CLR=> msbclr,

QOUT=>msbout);

process (lsbout)

begin

if (lsbout=" 100 l ") then

lsbtc<='l';

else

lsbtc-c=O';

end if;

end process;

process (msbout)

begin

•

12

<='l':

<=.0';

msbce-c=Cf and lsbtc;

msbclr <= CLR or msbtc:

LSBSEC <= lsbout ;

MSBSEC <= msbout ;

Behavioral;
Now one more process must be created . Because we have two counter in this

gram so second counter we are adding a other source as following :

1. Click the New Source button in the New Project Wizard.

2. Select VHDL Module as the source type.

3. Type in the file name SCNTR.

~ BMM File
q IP (Coregen & Architecture Wizard]

iMEM File
Schematic
Implementation Constraints File,ı State Diagram

~ Test 8 ench \ıılaveF orm
~ User Document

File name:

VHDL Library
l!.J VHDL Package
[':ıı~ VHDL Test Bench •

0 Add to project

< Back ~~> Cancel

Figure9.Adding source

4. Verify that the Add to project checkbox is selected.

5. Click Next.

13

e ports for the counter design by filling in the port information as

:rıe scntr

Behavioral

Direction Bus MSB LSB

3 o

Cancel< Back] o~xt;:ıe Info J

FigurelO. Define Module

-. Click Next, then Finish in the New Source Wizard - Summary dialog box to

plete the new source file template .

. Click Next, then Next, then Finish.

e source file containing the entity/architecture pair displays in the Workspace, and

e counter displays in the Source tab, as shown below:

•

14

. ılb~ı[1X 1)ct [i;
~ = ~. ,4 '.:'~ ~ ~ 'J '!'J

:v:·oo
.:,6) · l!ehav<ı• \cr/60.vhd]

~::=.rt· ıcntr · Behawıcal \ıcrlr.vhd)
:; ~ · ıcntr · Behawıcal \scntr.vhd)

f:,, SM)Srt:ıl.S (jj libraries

::xo.rl·ıcnlı·Beha>ioıal

!:.3.:::ed : "Launching Design Sı.uıurıary11•

l'1':Klı.ı1i.' Nane :
jro '. cet. Niı:~~:::

11 \\=:,=;,:: :;ıtl,";i)"

12
13 Li!p1.':ı:.l!lnc:e:.1·

14
ıs %<. ıs ıon:
16 H~\': :- ion D. DL
17
18
19
20 library IHf.;
21 use IEEE.STD LOGIC 1164.ALL;
22 use T.H.E.STf;_l/X.~ICJIETH.ALL;
23 uae H:H.5Tl\.L(f3IC UN5IGNf.fı,ALL;

25 f,lw::.ıc:rnı.~nı:. ı;/V.' Cıi 1r.w:ın -orurv rJı.>r.1m:ıJr::r.ın :.J ;_n:-.ıı;.!HH :.<JC'.J\!J

26 ,'ııJ'::' X~LrıY. pr ın.tıves ın Ül'.:: cooe .
27 --litır~-;:-y Ui'Jl':3'Dl;
28 IJ'..t'.'· 1.lT-J"r:::i/'\.\\:r.ımV.'tV.'J\i.';.ı,11]

29
30 ent ıtv scntr is
31 Port I CE : in ',:Tv l.,XlC:
32
33
3q

CLK in STfı VX,IC;
CLR : in STD_LOGIC;
QOUT : out 5TD.l,OC.1CV[CT0R (3 ctownto O)) ;

35 end scnt r :

36
37 architecture Behavioral of scnt r ıs
38
39 signal qoutsig ST\) LOGIC: \/'i;CTOP (3 ctoımto O);

0 DesignSurrımary ~ scntr.vhd

!:~:.ed : "Launching ISE Text Editor to edit scntr . vhd".

Figure 11 .Program

In next step we add some necessary signals , process and some codes to the

program . After that the program will be as shown :

---~-- ----

-- Company:

-- Engineer:

-- Create Date:

-- Design Name:

-- Module Name:

-- Project Name:

13:01:5405/08/2008

scntr - Behavioral

15

library IEEE;

use IEEESTD_LOGIC_l 164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity scntr is

Port (CE: in STD_LOGIC;

CLK: in STD_LOGIC;

CLR: in STD_LOGIC;

QOUT: out STD_LOPIC_ VECTOR (3 downto O));

end scntr;

architecture Behavioral of scntr is

signal qoutsig: STD_LOGIC_ VECTOR (3 downto O);

begin

process (CE,CLK,CLR)

begin

if (CLR='l') then

qoutsig<= "0000";

elsif (CE='l ')then

if (CLK'event and CLK ='1 ') then

•

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:

-- Revision O.Ol - File Created

-- Additional Comments:

--

16

ig="lOOl") then

~"=<="0000";

else

ısig-c= qoutsig+"OOO1 ";

end if;

end if;

if:

end process;

QOUT <=qoutsig;

end Behavioral;

2.4)SYNTHESİZE
After design entry and optional simulation, we run synthesis. In the Sources tab,

Synthesis/Implementation from the Design View drop-down list, and select the

odule ı:ltıtı. In the Processes tab, double-click Synthesize.

Processes for: cnt60 · Behavioral
,.......... ·······················

\r::::J ... _0.ı::lı::l E~i_s.t_ir1g ~?.~.r~~- . ..

Ü Create New Source
_ View Design S ummery

l+J Design Utilities
[-8 User Constraints

8 (*;;) ..,b Synthesize · XS T
~t]Niew Synthesis Report
[;;;] View RTL Schematic
~ View Technology Schematic

f ~ Check Syntax

•

(£1 f~ Generate Post-S_l'lnthesis Simulation Model

t:B , ~(~Implement Design
Cf) , ;ıı~Gener ate Programming File

~ Processes

Figurel2.Select synthesize

17

•

ee from the figure. 12we can get the synthesize report , we can look

- · e our design , we can look the technology schematic of the design

· the syntax to be sure that the if we have mistakes or not .

sıs Report : This report contains the results from the synthesis run,

d timing estimation.

-xstJ.30

1995-2007 Xilinx, Inc. All rights reserved.

r.ır:ı=ncter TMPDIR set to ./xst/projnav.tmp

0.36 s I Elapsed : 0.00 I 0.00 s

eter xsthdpdir set to ./xst

J)() I 0.36 s \ Elapsed : 0.00 I 0.00 s

· g design: cnt60.prj

_"'I.Du:. OF CONTENTS

esis Options Summary

L Compilation

sign Hierarchy Analysis

HOL Analysis

5) HOL Synthesis

-.1) HDL Synthesis Report

Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

- Low Level Synthesis

ı Partition Report

Final Report

9. 1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

,;

* Synthesis Options Summary *

---- Source Parameters

Input File Name : "cnt60.prj"

18

Asynchronous To Synchronous : NO •

: mixed

thesis Constraint File : NO

Oııpm File Name

Oıııprn Format

Device

: "cnt60"

:NGC

: xc3sl00e-5-vq100

e Options

.-.odule Name : cnt60

..•. -.nmatic FSM Extraction : YES

Encoding Algorithm : Auto

Implementation : No

.-f Style : lut

,~\I Extraction : Yes

.~\l Style : Auto

ovı Extraction : Yes

x Style

oder Extraction

: Auto

: YES

ority Encoder Extraction : YES

ift Register Extraction : YES

ogical Shifter Extraction : YES

XOR Collapsing :YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing :YES

Multiplier Style : auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 24

Register Duplication : YES

19

Slice Utilization Ratio Delta : 5 •

: YES

tantiated Primitives : NO

.-~- Enable : Yes

cnronous Set : Yes

cnronous Reset : Yes

Registers into IOBs : auto

ent register Removal : YES .,

eral Options

..ation Goal : Speed

ization Effort : 1

· Search Order : cnt60.lso

Hierarchy :NO

Output : Yes

al Optimization : AllClockNets

Cores : YES

'rite Timing Constraints :NO

oss Clock Analysis :NO

erarchy Separator : I

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100

BRAM Utilization Ratio : 100

erilog 2001 :YES

Auto BRAM Packing :NO

* HDL Compilation *
-- -

20

iling vhdl file "C:/Xilinx9 l i/myproject/sixty/scntr.vhd" in Library work.

ecture behavioral of Entity scntr is up to date:
iling vhdl file "C:/Xilinx9li/myproject/sixty/cnt60.vhd" in Library work.

_: -ccntôü> compiled.

: -ccntôü> (Architecture <behavioral>) compiled.

Design Hierarchy Analysis *

alyzing hierarchy for entity -ccntôü> in library <work> (architecture <behavioral>).

:\nalyzing hierarchy for entity -cscntr> in library <work> (architecture <behavioral>).

HDL Analysis *
--

Analyzing Entity -ccntôü> in library <work> (Architecture <behavioral>).

Entity -ccntôü> analyzed. Unit -ccntôü> generated.

Analyzing Entity -cscntr> in library <work> (Architecture <behavioral>).
~

Entity -cscntr> analyzed. Unit -cscntr> generated.

• •
--

-----==----
* HDL Synthesis *
--

Performing bidirectional port resolution ...

21

~~rrln% Un'\.t <scntr>.
ed source file is "C:/Xilinx91i/myproject/s1xty/scntr.vhd".

4-bit up counter for signal <qoutsig> .

.:,u:.uıııary:

. ferred 1 Counter(s).

-cscntr> synthesized.

esiz1ng Unit <cnt60>.
elated source file is "C:/Xilinx9li/myproject/sixty/cnt60.vhd".

-ccntôü> synthesized.

Synthesis Report

o Statistics

ters

up counter

:2

:2

========
Advanced HDL Synthe~ı;is *

~============================----------- --------
•

oading device for application Rf_Device from file '3sl00e.nph' in environment

ilinx9li.

--

Advanced HDL Synthesis Report

22

Low Level Synthesis *

•

:2

:2

imizing unit -ccntôü> ...

ping all equations ...

ilding and optimizing final netlist ...

d area constraint ratio of 100 (+ 5) on block cnt60, actual ratio is O.

Final Macro Processing ...

-~--------------------------------------

Final Register Report

Macro Statistics

Registers

Flip-Flops

:8

:8

-- ----

----------=

23

Partition Report *

ition Implementation Status

--------------------- -

_ ;o Partitions were found in this design.

~-------------------- -

--·----------------------------------

Final Report *

Final Results
RTL Top Level Output File Name : cnt60.ngr

Top Level Output File Name : cnt60

Output Format : NGC

Optimization Goal

Keep Hierarchy

Design Statistics

#IOs

Cell Usage:

#BELS

GND

INV

LUT3

LUT4

MUXFS

FlipFlops/Latches

FDCE

Clock Buffers

: Speed

:NO

: 11
,,

: 13

: 1

:2

:2

:6

:2

:8

•

:8

: 1

24

~-------------11111111111111111111111111111-ıııııı

BUFGP : 1

: 10

:2

:8

O Buffers

IBUF

OBUF

----==========---======-------------- ..

ice utilization summary:

~-------------------- ---

Selected Device: 3s100evq100-5

Number of Slices: 7 out of 960 0%

.. umber of Slice Flip Flops: 8 out of 1920 0%

.. umber of 4 input LUTs: 10 out of I 920 0%

Number of IOs: 1 1

Number of bonded IOBs: 11 out of 66 16%

Number of GCLKs: 1 out of 24 4%

------------------------ -

Partition Resource Summary:

No Partitions were found in this design.

------------------------ -- ''

--- -

======-----
TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE

REPORT

GENERATED AFTER PLACE-and-ROUTE.

25

- Information:

~~~-------- --
~~-----------------------------+------------------------+-------+

I Clock buffer(FF name) I Load I
~~-----------------------------+------------------------+-------+

I BUFGP I 8

~~-----------------------------+------------------------+-------+

svnchronous Control Signals Information:

~------------------------
~--------------------------------+-------------------------+-------+

Control Signal I Buff er(FF name) I Load I
~---------------------------------+-------------------------+-------+

bclr(msbclr_f5:0)

CLR

I NONE(msbcount/qoutsig_2)l 4

I IBUF I 4

-----------------------------------+-------------------------+-------+

Timing Summary:

Speed Grade: -5

Minimum period: 3.076ns (Maximum Frequency: 325.098MHz)

Minimum input arrival time before clock: 3.519ns

Maximum output required time after clock: 4.252ns
~

Maximum combinational path delay: No path found

•
Timing Detail:

All values displayed in nanoseconds (ns)

--------------------------------------------------------------

===========
Timing constraint: Default period analysis for Clock 'CLK'

Clock period: 3.076ns (frequency: 325.098MHz)

26



Total number of paths I destination ports: 40 I 12

-----------------------------------------------

Delay: 3.076ns (Levels of Logic= 2)

Source: lsbcount/qoutsig_2 (FF)

Destination: msbcount/qoutsig_O (FF)

Source Clock: CLK rising

Destination Clock: CLK rising

Data Path: lsbcount/qoutsig_2 to msbcount/qoutsig_O

Gate Net

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

-------------------------------------

FDCE:C->Q

LUT4:I0->0

MUXFS:11->0

FDCE:CE

5 0.514 0.690 lsbcount/qoutsig_2 (lsbcount/qoutsig_2)

1 0.612 0.000 msbcel (N22)

4 0.278 0.499 msbce_fS (msbce)

0.483 msbcount/qoutsig_O

-------------------------------------

Total 3.076ns (l.887ns logic, l.189ns route)

(61.3% logic, 38.7% route)

----------------------------------------

Timing constraint: Default OFFSET IN BEFORE for Clock 'CLK'

Total number of paths I destinatiorf'ports: 8 I 8

-------------------------------------------------------------0------

Offset:

Source:

3 .519ns (Levels of Logic = 3)

CE (PAD)

•

Destination: msbcount/qoutsig_O (FF)

Destination Clock: CLK rising

Data Path: CE to msbcount/qoutsig_O

Gate Net

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

---------------------------------------- ------------

27



IBUF:I->0 5 1.106 0.541 CE_IBUF (CE_IBUF)

LUT4:I3->0 1 0.612 0.000 msbcel (N22)

MUXF5:Il->0 4 0.278 0.499 msbce_f5 (msbce)

FDCE:CE 0.483 msbcount/qoutsig_O

--------------------------

Total 3.519ns (2.479ns logic, l.040ns route)

(70.4% logic, 29.6% route)

--------==----====----==-===-------- =- - ----------

-----------
Timing constraint: Default OFFSET OUT AFTER for Clock 'CLK'

Total number of paths I destination ports: 8 I 8

--------------------- -

Offset: 4.252ns (Levels of Logic= 1)

Source: msbcount/qoutsig_O(FF)

Destination: MSBSEC<O>(PAD)

Source Clock: CLK rising

Data Path: msbcount/qoutsig_Oto MSBSEC<O>

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-----------------------------------

FDCE:C->Q

OBUF·.l->0

6 0.514 0.569 msbcount/qoutsig_O(msbcount/qoutsig_O)

3.169 ~ MSBSEC_O_OBUF (MSBSEC<O>)

----------------------------------------

Total 4.252ns (3.683ns logic, 0.569nsroute)

(86.6% logic, 13.4%route)

•

---------- ·-·-==============-·-----------=========-----------------------

-----------
CPU: 8.75 / 9.20 s I Elapsed: 9.0019.00 s

-->

28



Total memory usage is 146204 kilobytes

-~umber of errors : O ( O filtered)

_ ;umber of warnings : O ( O filtered)

Number of infos O ( O filtered)

Xilinx sythesize tool created the following design. Top level block diagram.

CE LSBSEC(3:o)1...,_..? -

CLK

CLR MSBSEC(3:0)

Figurel3. Block diagram

Detailed block diagram.

•

29



O.R

l LS8SEC{3Oi)

Figure 14. Detailed block diagram

2.S)WRITING a TEST BENCH
To simulate the design, we need both the design under test (DUT) or unit under

test (UUT) and the stimulus provided by the test bench. A test bench is HDL code that

allows us to provide a documented, repeatable set of stimuli that is portable across

different simulators. A test bench can be as simple as a file with clock and input data or

a more complicated file that includes terror checking, file input and output, and

conditional testing.
Create a test bench containing input stimulus we.can use to verify the

functionality of the CNT60 module.

1. Select the CNT60 HDL file in the Sources window.

2. Create a new test bench source by selecting Project - New Source.

3. In the New Source Wizard, select Test Bench as the source type, and type

cnt60_tb in the File Name field.

30



~ 8MM. File -·
q IP (Coregen & Architecture \ıılizard)

i MEM File
Schematic
Implementation Constraints File

(\'.'.tı State Diagram

I
T est Bench\ıılaveForm
User Document
Verilog Module
Verilog Test Fixture
VHDL Module
VHDL Library

PI VHDL Package

File name:

Location:

jC\Xilinx91i\myproiect\sixty - ~ O
. ·-···-··-··--- ···-·-· ··- ··--·--

~ Add to project

•. 8Jck L ~ext>, ] [. Cancel ... ]
More Info -ı

Figure15.Test bench

4. Click Next.
5. The Summary page shows that the source will be added to the project, and it

displaysthe source directory, type and name. Click Finish.
6.We need some values to get output so we must add the foolowing to the process:

---------------------------------------------

-- Company:

-- Engineer:

-- Create Date: 12:59:31 05/08/20'08

-- Design Name: cnt60
-- Module Name: C:/Xilinx9li/myproject/sixty/sixty_tb.vhd

-- Project Name: sixty

-- Target Device:

-- Tool versions:

•

-- Description:

-- VHDL Test Bench Created by iSE for module: cnt60

31



-- Dependencies:

-- Revision:

-- Revision O.Ol - File Created

-- Additional Comments:

-- Notes:
-- This testbench has been automatically generated using types std_logic and

-- std_logic_ vector for the ports of the unit under test. Xilinx recommends

-- that these types always be used for the top-level I/O of a design in order

-- to guarantee that the testbench will bind correctly to the post-implementation

-- simulation model.

-----------------------------------------------

LIBRARY ıeee:

USE ieee.std_logic_l 164.ALL;

USE ieee.std_logic_unsigned.all;

USE ieee.numeric_std.ALL;

ENTITY sixty_tb_vhd IS

END sixty_tb_vhd;
ARCHITECTURE behavior OF sixty_tb_vhd IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT cnt60

PORT(

CE : IN std_logic;

CLK : IN std_logic;

CLR : IN std_logic;

LSBSEC : OUT std_logic_ vector(3 downto O);

MSB SEC : OUT std_logic_ vector(3 downto O)

);

END COMPONENT;

-Tnputs

SIGNAL CE : std_logic := 'O';

SIGNAL CLK: std_logic := 'O';

SIGNAL CLR : std_logic := 'O';

•

32

~------- •••••••••••111111111111111•111111111111111



--Outputs
SIGNAL LSBSEC : std_logic_ vector(3 downto O);

SIGNAL MSBSEC: std_logic_ vector(3 downto O);

BEGIN
-- Instantiate the Unit Under Test (UUT)

uut: cnt60 PORT MAP(

CE=>CE,

CLK=>CLK,

CLR =>CLR,

LSBSEC => LSBSEC,

MSBSEC => MSBSEC

);

clkpr: process

BEGIN

CLK<='O';

WAIT FOR lOnS;

CLK<='l';

WAIT FOR 10 nS;

END PROCESS;

tb: PROCESS

BEGIN

CLR<='l';

-- Wait 100 ns for global reset to finish

wait for 100 ns;

CLR<='O';

CE<='l'; .. •
-- Place stimulus here

wait; -- will wait forever

END PROCESS;

END;

6. Click Finish to complete the timing initialization .

33



2.6)S1MULAT1NG
During HDL simulation, the simulator software verifies the functionality and

ing of the design or portion of the design. The simulator interprets VHDL or Verilog

e into circuit functionality and displays logical results of the described HDL to

etermine correct circuit operation. Simulation allows you to create and verify complex

- ctions in a relatively small amount of time.

We have created a test bench to the count sixty and it looks like this :

Now:
1000 ns
.. ····---·----·--ı·-·-

o./ ce 1

o.JI elk O

Q.:' cir O
ı ~t lsbsec[lO] 4'h5
--··---~~·

iJl [3] O

~J\[21 1
Q,Li [1] O

q,rl [O]
--··-----·-····-·-·---·
ı ~· msbsec[30] 4'h4

------:;fl [3] O
O,.

ô)i[2]

I öJ1[11 fa
r-Q,i!.[0] --- O

800
200 400 600

------4==.J----=--=l=~==J==~d.==-J__ - --- ı _l

rmfUliınrınru1SU1nJWOWlilllJJJffiITwlfil--lSlJuU1JlJlJITilillimmu:ın

""

Figure 16.Simulation

ôJ\ce 1 " \
ğJI elk o GJUUUl
qJl cir o l

a 94 lsbsec[3 O] 4'h4
.~ -4'rı0•, -

ğjl [3] o
oıJ!\21 1

Q)\[11 o
-·

ğJl [O] o

•

Figurel 7 .Reset

34



This figurel 7 shows the reset part of Project. It resets the program for lOOns .

Now:
1000 ns

ğJ)ce
ğJ! elk o
ô)l cir o

a ı• ısbsec[3 OJ 4'h4

Q,!)[3] o
ğJ) [2)

qJI [1 J o
q,!l[OJ o

IS 'a;4 msl:ısec[J.O) 4'h4

gJ! [3) o
qJ)[2] 1

g,fi [1) o
o)![OJ o

100 200 300

100ı
200

l
301

l_L

:ifıL:::53:r:ç
~ - I•'-=

•
•

Figurel 8.Counting process

Here it shows the after reset part how program starts the counting . It starts

counting after end of reset , when lsbsec comes 9 it adds to msbsec 1 as shown in the

figures.

35



Now:
2000 ns

13[0
900 1000 1100 1200

ör! cir!"·

q,i1[1l o
·'.,i[OJq,ı. o

= ı• rnsbsec[30l I 4'h0 "' 4'h4

Figurel 9.Return zero

We can see in this figure when msbsec becomes 6 program starting the count

from O again
2.7)EXPLANATION OF MY SIXTY COUNTER PROGRAM

CODES
Now we finished the works . So now when we run the the program is counting

sixty times . If we try to explain the codes that we used in the sources :

We have entered the input and output values while we were adding a source and

they look like this :

entity cnt60 is
,,

•Port (CE: in STD_LOGIC;

CLK: in STD_LOGIC;

CLR: in STD_LOGIC;
LSBSEC : out STD_LOGIC_ VECTOR (3 downto O);

MSBSEC: out STD_LOGIC_ VECTOR (3 downto O));

End cnt60;

36



These inputs and outputs are genereal ınput and outputs of the counter .We must

eclare the components of other source inputs and outputs because we have two counter

in the program .

component scntr

port ( CE : in STD_LOGIC;

CLK: in STD_LOGIC;

CLR ·. in S'TD_LOGlC ·,

QOUT: out STD_LOGIC_ VECTOR ( 3 downto O));

end component;

This shows the relation of the inputs and outputs , with the other source .

Now we decleared some signals . These signals are necessary to not get the error

signal lsbout: STD_LOGIC_ VECTOR (3 downto O);

signal msbout: STD_LOGIC_ VECTOR (3 downto O);

signal msbce: STD_LOGIC ;

signal lsbtc: STD_LOGIC ;

signal msbclr: STD_LOGIC;

signal msbtc: STD_LOGIC;
Now we showed the port map of lsbcount and msbcount. We decleared the port

map ecause program will continue to process by looking these maps .

lsbcount : scntr port map (CE => CE , CLK => CLK , CLR => CLR , QOUT =>

lsbout);
msbcount: scntr port map (CE=> msbce ,CLK => CLK,CLR=> msbclr,

QOUT=>msbout);
Now we decleared the processses of lsbout and msbout .

pr_ocess (lsbout) •

begin

if (lsbout=" 1001 ") then

lsbtc<='l';

else

lsbtc<='O';

end if;

end process;

process (msbout)

37



begin
if (msbout="Ol lO")then

msbtc<='l';

else

msbtc<='O';

end if;

end process;
Now we passed to second source which is scntr. We have entered the input and

output values of scntr while we were adding a source and they look like this

entity scntr is

Port (CE: in STD_LOGIC;

CLK: in STD_LOGIC;

CLR: in STD_LOGIC;
QOUT: out STD_LOGIC_ VECTOR (3 downto O));

end scntr;
We will get an output signal to this place so I decleared the 4bit output signal

like this :
signal qoutsig: STD_LOGIC_ VECTOR (3 downto O);

Now we are defining a process

process (CE,CLK,CLR)

begin

if (CLR='l') then

qoutsig<="OOOO";

elsif (CE=' l ')then

if (CLK'event and CLK ='l') then

if (qoutsig=" 100 l ") then •

qoutsig<="OOOO";

else
qoutsig<= qoutsig+ "000 l ";

end if;

end if;

end if;

end process;

QOUT<=qoutsig;

38



Here these codes wants to tell us the if CLR is not zero and if CE is one and if

CLK event and CLK is one and if qoutsig is "1001" change qoutsig to"OOOO" if it's not

dd qoutsig+"OOOl" . By the other way clear musn't be O , clock enable must be 1 , so

»Ôr- output signal is 9 return O to count again . If output signal is not 9 add output signal

ol.
After that we generate the test bench . In the test bench we entered only the input

·alues to get the output and we declared the process like this .

clk .pr: process

BEGIN

CLK<='O';

WAIT FOR lOnS;

CLK<='l';

WAIT FOR 10 nS;

END PROCESS;

tb: PROCESS

BEGIN

CLR<='l';
-- Wait 100 ns for global reset to finish

wait for 100 ns:

CLR<='O';

CE<='l';
-- Place stimulus here

wait; -- will wait forever

END PROCESS;

..
•.•.

39



CHAPTER threeSPARTAN 3

3.l)OVERVİEW
Spartan®-3 generation FPGAs offer multiple platforms ranging from extremely

low cost packaging to high performance DSP solutions while maintaining the lowest

total cost possible. Several platforms are available, each suited to your specific

application need:

DSP

Non-volatile

I/O optimized

Logic optimized

Highest density and pin-count

Spartan-3 Generation FPGAS offers five platforms for your specific application

needs

See the complete Spartan-3 Generation product table .

Spartan Gates Integrated I/Os Logic Block Embedded DCMsVoltage

Platform* Flash Cells RAM Multipliers

Spartan-3A 3.4M- 519 53, 712~b68
126 8

3.3V -

DSP
18xl8t 1.2V**

Spartan-3AN 1.4M 16Mb 502 25,344 576 Kb32 18xl8 8
3.3V -
l.2V**

Spartan-3A l.4M- 502 25,344 576 Kb 32 18xl8 8
3.3V -
1.2V**

Spartan-3E l.6M- 376 33,192 648 Kb 36 18xl8 8
3.3V -
l.2V**

Spartan-3 SM 633 74,880 ~:2 104 18xl8 4
3.3V -

- 1.2V**

Figure20.Spartan-3 Generation product table

Maximum values listed for each Spartan platform.Spartan-3/3A/3E/3AN/3A

BSP platforms offer multi-standard, multi-voltageSelectIO™ interface pins.

t Integrated in the 126 DSP48A slices (Advanced Multiply Accumulate Element).

40



3.2)CAP ABILITIES

Spartan®-3 generation FPGAs offer the broadest selection of platforms allowing

the lowest possible system cost to the designer by choosing the perfect FPGA for the

application.

In addition, unique features and capabilities are available to provide the ultimate

low cost, high volume system designs:

Dual power management*

Multiple levels of security**

Integrated Flash memoryt

XtremeDSP DSP 48A Slicett

Embedded Processing

Four level memory architecture

Leading connectivity platform

Configurable logic blocks

Precise clock management resources

Comprehensive configuration capabilities

3.2.l)DUAL POWER MANAGEMENT

The integrated power management (PDF) in Spartan-3 generation FPGAs can

reduce power consumption by up to 99%. A single pin activated, hardware feature is

built-in unlike other external implementations which requires additional components.

Suspend mode

•
••

Over 40% static power reduction

All states saved in memory
Scale down voltage (VCCAUX) and shut off non-essential functions (e.g.,

FPGA inputs, interconnects)
System synchronization for fast wake-up

Hibernate mode

Up to 99% static power reduction

41

~------------1111111111111111••



Shut off all power

Wake up time

Ultimate battery life extension

100
9,Q;

,.-..
~ 70
E
- &Oı...
(l)
3 so
o

O.. 40

JO
20

10··

5 62 3 4
Time {s)

Figure2 l .Hibemate
Dual power management modes allow the device to go to an extremely low

power state which can reduce power consumption significantly.

* Available only in Spartan-3A/ 3AN/ 3A DSP FPGAs.

3.2.2)MULTiPLE LEVELS OF SECURITY
Spartan-3 generation FPGAs offer the ultimate flexibility in customizing

security solutions for high volume, low-cost systems.
Customizable security algorithms utilizing unique Device DNA

Monitor JTAG access and ,take action

Monitor for tampering and alert for a bitstream alteration

Ability to increase algorithm complexity •
Hidden bitstream deters bitstream snooping

Tamper resistant packaging

JTAG lockdown prevents "backdoor" access
Readback disable to prevent configuration readback via JTAG or ICAP

Available only in Spartan-3AI 3AN/ 3A DSP FPGAs.

3.2.3)1NTEGRATED FLASH MEMORY
This integrated memory found in Spartan-3AN FPGAs can be used for both

device configuration as well as a valuable system resource for the user. It provides

42

~-------111111111111111111111111111111111111



simple and secure embedded application storage while enabling advanced real-time

control with fine-grained protection, lockdown and erase features.

Simple and secure embedded application storage with up to 11Mb of integrated

user Flash Enables single-chip board designs for space-conscious applications

Worry-free configuration

Twenty year data retention with 100K write cycles

Pin compatible to the Spartan-3A platform

t Available only in Spartan-3AN FPGAs.

3.2.4)XtremeDSP DSP 48A SLICE
The Spartan-3A DSP platform's optimized DSP48A slice (PDF) achieves 250

MHz operation in the slowest speed grade and enables advanced DSP functions to

derive over 30 GMACS.

XtremeDSP™ slices providing advanced MACC functionality

Configurable logic blocks to store data and implement logic functions

Precise clock management resources

Advanced I/O structure
18-bit by 18-bit, two's complement multiplier with full precision 36-bit result,

sign extended to 48 bits
Pre-adder saves 9 logic slices per DSP48A used
Two input, flexible 48-bit adder/subtracter with optional registered accumulation

feedback
DSP co-processing functions such as MAC engines, distributed algorithms and

fully parallel FIR filters
•..

tt Available only in Spartan-3A DSP FPGAs.

3.2.S)EMBEDDED PROCESSING

Industry's most versatile, low-cost Embedded Processing platform

Integrate processor into FPGA and reduce BOM

Reduce obsolescence risks with soft processors

43



Reduce inventory cost by using common flexible Embedded Processing

architecture across multiple products

3.2.6)FOUR LEVEL MEMORY ARCHİTECTURE
Four level memory architecture (PDF) provides the optimal granularity and

efficient area utilization.
Up to 520 Kb distributed SelectRAM™+ memory

Each LUT works as a single-port or dual-port RAM/ROM

LUTs can be cascaded to build larger memories

Flexible memory for FIFOs, and buffers

Up to 1.87 Mb embedded block RAM
Up to 104 blocks of synchronous 18 Kb block RAM can be cascaded

Each 18 Kb block can be configured as a single/dual-port RAM

Supports multiple aspect ratios, data-width conversion and parity

Up to 16 Mb of integrated Flash memory

System flexibility with up to 11Mb of on-chip user Flash

Single-chip solution for failsafe field upgradeability using MultiBoot feature

New benchmark in non-volatile FPGA market for retention and cycling

Popular low cost external memory
Connects low cost memories via interfaces such as HSTL and SSTL

Large system memory requirements

Memory Device Electrical Interface

DDRSDRAM SSTL 1.8V

DDR IISDRAM SSTL 1.8V
. •

DIMMDDR SSTL 2.SV
SDRAM

DIMM DDR II SSTL 1.8V
SDRAM

Network FCRAM SSTL 2.SV

SSTL 1.8V, HSTL
Network FCRAM II 1.8V

44



RLDRAM HSTL 1.8V

RLDRAM II HSTL 1.8V

DDRSRAM HSTL 2.5V, 1.8V

DDRllSRAM HSTL 1.8V

QDR SRAM HSTL 2.5V

QDR HSRAM HSTL 1.8V

SyncBurst I ZBT HSTL 2.5V
SRAM

Figure22.Memory requirements

3.2.7)LEADING CONNECTIVITY PLATFORM
Implement multiple bridging, differential signaling, and memory interfaces with

SelectIO™ technology.
Supports most popular and emerging single-ended and differential signaling

standards including TMDS, PPDS, SSTL3 Class I and II
Pre-engineered interface IP solutions including PCI™, PCI Express®, USB,

Firewire, CAN, SPI, and I2C
Advanced interfacing supports up to 26 different single-ended and differential

VO standards
Full hot-swap compliance and 3.3V support

622+ Mb/s data transfer rate per VO

SDRAM
•

FLASH

Figure 23.Spartan-3 generation FPGAs support multiple platform standards.

45~----------................•••••••



3.2.8)CONFIGURABLE LOGIC BLOCKS

CLB architecture provides wider functionality and less logic levels resulting in

higher performance.

Four slices per CLB - two each for memory and logic functions.

Wide-input functions - 16:1 mux in one CLB

Fast arithmetic functions - two look-ahead carry chains per CLB column

Four cascadable 16-bit addressable shift registers

Two slices can be configured as distributed memory

3.2.9)PRECISE CLOCK MANAGEMENT RESOURCES

A self-calibrating, fully digital solution for distributing, delaying, multiplying,

dividing and phase-shifting clock signals.

Up to 8 digital clock managers (DCMs)

Flexible frequency generation from 5 MHz to 333 MHz

Precision phase shift control for O - 360 degrees

Fine grain control (1/256 clock period) for clock data synchronization

Precise 50/50 duty cycle generation

Up to 9 external outputs available for internal or external usage

3.2.lO)COMPREHENSIVE CONFIGURATION
CAP ABILITIES
The broadest flash memory support including Platform Flash, SPI and parallel

Flash memories allow lowest cost configuration.

Proprietary Platform Flash

Convenience of a single source supplier for FPGA and flash memory.. •

Advanced features such as JTAG, bits team compression, design revisiton

tracking

High speed programming

MultiBoot capability allow multiple configurations .

Failsafe upgrading

Application control of the bitstream selection

46



replacement of large ASIC or multiple FPGAs with a single Spartan-3

generation FPGA
Third-party support for parallel, high-speed BPI configuration mode

Fast parallel configuration speeds

Easily procured through standard channels

Commonly found on low-cost systems
For larger densities, memory can be used for configuration and system

functions

3.3)ADV ANT AGES
Spartan®-3 generation FPGAs offer the industry's leading multiple, value-

centric platforms and features for low cost systems in high volume applications.

Lowest Total Cost. Period.

Delivers lowest total cost
Industry's largest selection of device/package options

Industry's most comprehensive IP library

Leading embedded and DSP solutions

Efficient, cost-effective board designs

Allows use of fewer standard components
Increased system reliability by ~liminating external components

•

Industry's only Dual Power Management Modes

Instant power savings
External component power reduction

Built-in power savings features
Advanced software tools to optimize low power design

47



'
Industry's only Low-cost Security

Unique Device DNA serial number (57-bits)

helps prevent design cloning, unauthorized

overbuilding and reverse engineering

Secure mechanism to deliver IP

Customizable algorithms for security

as well as responses to failures

Industry's Largest On-chip User Flash

Superior system flexibility with up to 11Mb of on-chip user Flash

Space-conscious applications
Single-chip solution for failsafe field upgradeability using MultiBoot feature

Worry free configuration
New benchmark in non-volatile FPGA market for retention and cycling

Industry's Most Versatile, Low-Cost Embedded Processing Platform

Integrate MicroBlaze™ soft processor into FPGA and reduce BOM

Reduce obsolescence risks with soft processors
'

Reduce inventory cost by using common flexible Embedded Processing•..
architecture across multiple products

Industry's only High Performance, Low Cost DSP Solution

Fill the DSP performance gap between traditional DSP processors and high-end

ASIC and Virtex®-type solutions

48



Cost-optimized DSP architecture delivers superior results in performance and

power consumption
Enables new applications in more cost-sensitive applications such as customer-

premises wireless access, portable ultrasound, digital displays, surveillance, video

processing

The Industry's Most Complete Design Solution for Optimal Results

iSE® Foundation™ Software

The industry's most complete programmable logic design solution for optimal

performance, power management, cost reduction, and productivity

iSE WebPACK™ Software
Our free, easy-to-use logic design solution for your Xilinx CPLD or medium-density

FPGA, with all the tools included in iSE Foundation, on both Windows and Linux

iSE Classics software

A free collection of previously released iSE software tools

•..

49



CHAPTER four HISTORY

4.l)WHAT DOES XILINX MEAN?
How, many ask, did Xilinx (pronounced "Zylinks") get its unusual name?

In 1984, when Xilinx was just forming, the new company tried to register several

"sensible" names, but they were all taken. This became an expensive proposition and

the founders, (being very frugal), decided to create an unusual name that wasn't taken.

Thus, two of the founders came up with "Xilinx."

4.2) WHAT DOES XILINX NAME REPRESENT?
Xilinx Fellow Bill Carter, who was at Xilinx from the start, explains. "The 'X's'

at each end represent programmable logic blocks. The "linx" represents programmable

links that connect the logic blocks together, a key innovation embodied in FPGAs."

While Xilinx doesn't follow all the branding and phonetically-correct rules for

naming a company, a Xilinx by any other name would not be as sweet.

Read about the origin of Xilinx and the Xilinx name

Timeline of Significant Events in Xilinx History

1984
Ross Freeman, Bernie Vonderschmitt, and Jim Barnett found Xilinx.

The company's business and management mission and philosophy are created, a new

kind of company is bom. The concept foısa new type of product, the Field

Programmable Gate Array, takes shape. Read more about how Xilinx began.

•
1985 ••

Xilinx introduces its first product, the XC2064™.

It's the first-ever FPGA, a radical new form of programmable logic.

1987

Sales office established in Weybridge, England.

This is the first sales office outside North America, targeted to serve the European

market.

50



1988

The company opens its first overseas office in Tokyo.
Xilinx K.K. is bom. Initial focus is to serve Seiko, our first wafer supplier/partner.

1989

Xilinx founder, Ross Freeman, passes away.

His dream for the team and the technology lives on.

1990
Xilinx goes public at S 10 per share, after reaching several quarters of profitability.

Shares are $0.83 when adjusted for splits. This is a major milestone along the path to

realizing the company vision.

1991

The XC4000™ family of FPGAs is introduced.
This is the first broadly adopted FPGA and will become the primary Xilinx revenue

driver for the 90's.

1993

Xilinx Scotland is established in Edinburgh.
This team's focus on IP solutions core and software development brings Xilinx a

considerable competitive advantage.

1995

.Xilinx Ireland officially opens in Dublin.(O

This is our first major site in Europe, establishing manufacturing and engineering

capability outside the U.S. •..
Xilinx Colorado is established in Boulder.
Boulder employees significantly increase software development capability in the

company. This is the first major North American site outside of Silicon Valley. It has

since moved to Longmont, Colorado.

1996

Wim Roelandts joins as CEO and President.
He brings 30 years of Hewlett-Packard experience to his new assignment.

51



ht-;~~~-~~~·,,,,:,~,. e,.., ;ı. _, -J , '.:

/

'"-I;-' ,,,

~

,V>,o- I
u»: ~~\

J.._ ....{~ t~'~ _1 .••• \

1997 ~J) =eı- :c'.'" , /t /l
V" -4.ı; I.

CREATIVE Values dialogue is created throughout the company. "7/,tl}ı&
All employees participate in a process to articulate the values of Xilinx. These are:

customer focus, respect, excellence, accountability, teamwork, integrity, very open

communications and enjoying our work. The first letter of each value forms the

acronym: CREATIVE.

1998

Virtex®™ FPGA family is introduced.
This is a major step in FPGA architecture and opens up new markets for the company.

The Virtex family becomes the primary revenue driver to date.

1999
Xilinx Albuquerque opens with acquisition of CoolRunner™ team and technology.

This product line offers new low power and lower cost CPLD products to customers.

2000

Xilinx revenue exceeds $1 B.
The company reaches the billion-dollar milestone only 10 years after going public.

Employees take out a full-page ad saying "Thanks a Billion for Your Leadership" as a

tribute to CEO Wim Roelandts at a pivotal point for the company.

2003

Spartan®™-3 family of products is introduced.
This very low-cost product is the world's first 90nm FPGA. The Spartan-3 technology

p_uts us considerably ahead of our competition and in the ,~ompany of premier advanced

semiconductor manufacturers .
•

•

2003

Wim Roelandts becomes Chairman of the Board.
Bernie Vonderschmitt retires; the last company founder leaves an impressive legacy.

52



2004

Xilinx celebrates its 20th anniversary.
The company observes its first 20 years of life by honoring employees, customers,

shareholders, partners, and local communities.

2008

Moshe Gavrielov is named President and CEO.

Wim Roelandts remains Chairman of the Board·

4.3)HOW XILINX BEGAN ?

4.3.l)NEV TECHNOLOGY
Two brilliant engineers and a marketing guru working in Silicon Valley in 1984

had a dream. Bernie Vonderschmitt, Ross Freeman, and Jim Barnett dreamed of starting

a different kind of company.

Ross Freeman, Xilinx co-founder, Bernie Vonderschmitt, Xilinx co-founder,

invented the "field programmable gate pioneered the revolutionary concept of a

array" (FPGA), a new form of fabless semiconductor.

programmable logic.

They wanted to create a company that would develop and launch state-of-the-art

technology in an entirely new field. And they wanted to lead it in such a way that the

people who worked there loved their jobs, enjoyed working together, and were

fascinated with their work ... •

The technology that propelled Xilinx into being was considered an off-the-wall

concept in 1984. Invented by Xilinx co-founder Ross Freeman, the new semiconductor,

now known as the field programmable gate array, was a completely new form of

programmable logic.

These chips could be personalized by customers to perform a variety of

functions by programming them with the help of software. "The concept," says Xilinx



Fellow Bill Carter, who was the eighth employee to be hired in the new company in

1984, "required lots of transistors and, at that time, transistors were considered

extremely precious. People thought that Ross's idea was pretty far out."

Ross postulated that transistors, because of Moore's Law (the doubling of

transistor density every 18 months) would be getting less expensive and, therefore, less

precious every year. In the years to come, a multi-billion dollar market for field

programmable gate arrays (FPGAs) emerged, creating the foundation for the successful

enterprise that Xilinx is today. Sadly, Ross Freeman passed away in 1989. The

technology he invented is thriving and continues to delight more and more customers in

an ever-widening breadth of industries.

4.3.2)EFFECTIVE PARTNERSHİPS
Bernie Vonderschmitt, an engineer and an MBA graduate, came up with a

powerful business model for the young company. When he was General Manager of the

Solid State Division of RCA, he became convinced, working at the time with three in

house foundries making semiconductors, that semiconductor factories (or fabs) were

expensive and burdensome. "If I ever start a semiconductor company, it will be fabless,"

he vowed. "We'll find partners who can do our manufacturing for us."

And that is exactly what Xilinx did in 1984. Since then, the idea has become so

compelling and popular that today there are approximately 700 fabless semiconductor

companies around the world.

4.3.3)INSPIRED EMPLOYEES
However, the three founders wanted to not only revolutionize technology but the

way companies are managed as well. Ross Freeman put it best. He hoped to start a

company that had solid, ethical values, invited employee lotyalty, made a good_and

useful product, helped make employees feel like owners, and encouraged people to

enjoy their work.

The co-founders called this set of values and people objectives their

"philosophy" and looked for employees who felt comfortable in this environment. And

their theory - which has proven correct - was that if you created this kind of community

atmosphere for clever and inventive people, they would stay, keeping their innovation

and expertise in the company.



These original values regarding the treatment of employees and the way they

interact with each other provided the basis for how Xilinx operates today. They help

make Xilinx a great place to work.

And the technology that the three men introduced to the world is more popular

than ever. It has become pervasive and mainstream, thanks to the technology and cost

benefits that have come about because of Moore's Law.

The dream that Bernie, Ross, and Jim talked about in 1984 is a reality today,

proving that dreams do come true.

4.4)BUSINESS

4.4.l)LEARN ABOUT THE XİLİNX
TECHNOLOGY,HOW and WHY TO PURPOSE IT?

There are three types of electronic devices: memory, processors, and logic.

Memory devices store random information (contents of a spreadsheet or database);

processors execute software instructions to perform a wide variety of tasks (running a

data processing program or video game); and logic provides specific functions

(communications between devices, and every other function a system must perform).

There are two categories of logic devices: fixed or custom, and programmable or

changeable. We are in the programmable logic business.

4.4.2)PROGRAMMABLE LOGIC IS XİLİNX's BUSINESS
Xilinx leads the Programmable Logic Device (PLD) market - one of the fastest

growing segments of the semiconductor industry. This market features a revolutionary
"'

technology called the field programmable gate array (FPGA) that our company

pioneered in 1984. •..
Xilinx is the world's leading supplier of programmable logic solutions. We

supply customers with "off-the-shelf" logic devices that customers can program to

perform specific functions using the development tools we provide.

This programmability provides a revolutionary alternative to fixed or custom

logic devices that typically require many months to design, test, and manufacture.

Xilinx customers enjoy the benefit of faster time-to-market and increased product

design flexibility as a result.

55



4.4.4)MULTIPLE PRODUCT LINES WITH SUPERLATIVE

SOFTWARE SUPPORT

4.4.3)USES FOR PROGRAMMABLE LOGIC
Xilinx's company's business is drawn from a variety of industry segments. In

recent years, a large portion of our revenues came from the communications

marketplace. However, we have become increasingly more diversified to include the

consumer, industrial, and automotive sectors.

You can find Xilinx chips in a wide variety of digital electronic applications

ranging from wireless base stations to HDTV to portable handsets.

Xilinx's extensive product line includes silicon solutions like the Virtex™ series

FPGAs (high performance FPGAs for networking, communications, and video/imaging

applications); Spartan™ FPGAs (ideal for high volume applications); and

CoolRunner™ CPLD families (Complex Programmable Logic Devices that offer ultra

low cost and low power). We also offer a powerful suite of high performance software

design tools.

4.4.S)HIGH-PROFILE WORLDWIDE CUSTOMER and

PARTNER BASE

Xilinx has over 21,000 customers around the globe, including Alcatel, Cisco

Systems, EMC, Ericsson, Fujitsu, Hewlett-Packard, IBM, Lucent Technologies, and

Motorola. Most of our sales are handled by outside partners: both large distributors and

independent sales representatives.

The company has a very flexible business model that has contributed to our

success as an employer and a competitor. We are a "fabless" supplier and do not •

manufacture our logic devices. Instead, we have formed close strategic alliances with

chip manufacturers like UMC and Toshiba. This strategy, along with outsourcing most

of sales, allows us to focus more of our energies on R&D, marketing and technical

support. The resulting flexibility gives us the ability to rearrange business priorities

quickly as we respond to the cyclical nature of the semiconductor market. It also has

made it easier for the company to avoid layoffs in periods of downturn·

56



4.4.6)XILINX'S VISION FOR THE FUTURE

What essentially defines Xilinx is vision. Our long-term business goal is to put a

PLD in every piece of electronic equipment within the next 10 years. Our long-term

management goal is to create a company that sets the standard for managing high

technology companies. While these are ambitious undertakings, at Xilinx, visions have

a way of turning into reality.

4.S)GETTIN STARTED WITH FPGAs

4.5.l)WHAT ARE FPGAs?
Field Programmable Gate Arrays (FPGAs) are programmable semiconductor

devices that are based around a matrix of configurable logic blocks (CLBs) connected

via programmable interconnects. As opposed to Application Specific Integrated Circuits

(ASICs) where the device is custom built for the particular design, FPGAs can be

programmed to the desired application or functionality requirements.

Although one-time programmable (OTP) FPGAs are available, the dominant

type are SRAM based which can be reprogrammed as the design evolves.

Roll cursor over blue highlighted sections of the figure below to see more

details.

CLB Details
The Configurable Logic Block is the basic logic unit in an FPGA. Exact numbers and

features vary from device to device, but every CLB consists of a configurable switch

jnaırix with 4 or 6 inputs, some selectiop circuitry (MUX, etc.), and flip-flops. The

switch matrix is highly flexible and can be configured to handle combinatorial logic,

shift registers or RAM. A high level CLB overview is shown here. More architectural. ~
details can be found in the applicable device's data sheet.

57

~~--------1111111111111111111111111111111111111111111111111•



e- T6tJF
t>TBtJF

C()UT
! DoR(W

MUXFxO

EJ
Sv,•ilC.11
M"ıJrı'.,

SHCfl
XOY1

Fı:ıs\
S!km L.,. ·1· ConrııK1S
XiWQ I · • to rıııııgl'li:ıors

DCM Details
Digital clock management is provided by most FPGAs in the industry (all Xilinx

FPGAs have this feature), and has nearly eliminated the skew and other issues that

designers had to face with in designing global signals into FPGAs in the past.

IOB Details
Today's FPGAs provide support for dozens of I/O standards thus providing the ideal

interface bridge in your system. I/O in FPGAs is grouped in banks (see figure below)

with each bank independently able to support different I/O standards. Today's leading

FPGAs provide over a dozen I/O banks, thus allowing flexibility in I/O support.

SANK '
I BANK

401/0 •W i/0
.<· ·A,<·;-.<-,',

BANK
aovo

BANK l ~·~~ I £:l.ANK
40 If<) 40 \/0

-- ----··-
,9.ı,NK CONFlG B;\NK
40 !IO i BAr::11<-

40 i/0

2') 1/0
.,...------· ...'"'"····

8/,NK I BANK I I BANKI 20 eo .....40 va 4(} ve

58



~ o I Q 2v.: ~

!OB
Cle, CLB

!OB
iOB

- --,mwı- - -
I
I

106
IOB

CU! CUI cıe
!O&

IOB

or:,:

Figure 24.FPGA Block Structure

4.5.2)COMMON FPGA FEATURES

Today's FPGAs have evolved far beyond the basic capabilities present in their

predecessors, and incorporate hard (ASIC type) blocks of commonly used functionality

such as RAM, clock management, and DSP. Following are the basic components in an

FPGA.

Configurable Logic Block (CLBs)

The CLB is the basic logic unit in an FPGA. Exact numbers and features vary from

device to device, but every CLB consists of if configurable switch matrix with 4 or 6

inputs, some selection circuitry (MUX, etc), and flip-flops. The switch matrix is highly

flexible arjd can be configured to handle combinatorial logic, shift registers, or RAM.

More architectural details can be found in the applicable device's data sheet.

Interconnect

While the CLB provides the logic capability, flexible interconnect routing routes the

signals between CLBs and to and from VOs. Routing comes in several flavors, from that

designed to interconnect between CLBs to fast horizontal and vertical long lines

spanning the device to global low-skew routing for Clocking and other global signals.

59

~~~~~~--------------------~111111111


Complete Clock Management

Digital clock management is provided by most FPGAs in the industry (all Xilinx

FPGAs have this feature). The most advanced FPGAs from Xilinx offer both digital

clock management and phase-looped locking that provide precision clock synthesis

combined with jitter reduction and filtering.

The design software makes the interconnect routing task hidden to the user unless

specified otherwise, thus significantly reducing design complexity.

SelectIO (IOBs)

Today's FPGAs provide support for dozens of VO standards thus providing the ideal

interface bridge in your system. VO in FPGAs is grouped in banks with each bank

independently able to support different VO standards. Today's leading FPGAs provide

over a dozen 1/0 banks, thus allowing flexibility in VO support.

Memory

Embedded Block RAM memory is available in most FPGAs, which allows for on-chip

memory in your design. These allow for on-chip memory for your design. Xilinx

FPGAs provide up to 10 Mbits of on-chip memory in 36 kbit blocks that can support

true dual-port operation.

4.5.3)FPGA SOLUTIONS, APPLICATIONS and END

MARKETS

Due to their programmable nature, FPGAs are an ideal fit for many different

markets. As the industry leader, Xilinx provides comprehensive solutions consisting of

FPGA devices, advanced software, and configurable, ready-to-use IP cores for markets

and applications such as •

End Markets

Aerospace & Defense

Radiation-tolerant FPGAs along with intellectual property for image processing,

waveform generation, and partial reconfiguration for SDRs.

Automotive

Automotive silicon and IP solutions for gateway and driver assistance systems, comfort,

convenience, and in-vehicle infotainment.

60

Broadcast
Solutions enabling a vast array of broadcast chain tasks as video and audio finds its way

from the studio to production and transmission and then to the consumer.

Consumer
Cost-effective solutions enabling next generation, full-featured consumer applications,

such as converged handsets, digital flat panel displays, information appliances, home

networking, and residential set top boxes.

Industrial/Scientific/Medical

Industry-compliant solutions addressing market-specific needs and challenges in

industrial automation, motor control, and high-end medical imaging.

Storage & Server
Data processing solutions for Network Attached Storage (NAS), Storage Area Network

(SAN), servers, storage appliances, and more.

Wireless Communications
RF, base band, connectivity, transport and networking solutions for wireless equipment,

addressing standards such as WCDMA, HSDP A, WiMAX and others.

Wired Communications
End-to-end solutions for the Reprogrammable Networking Linecard Packet Processing,

Framer/MAC, serial backplanes, and more

Technology Solutions

DSP
The Xilinx XtremeDSP™ initiative helps you develop tailored high performance DSP

solutions for aerospace and defense, digitaJ communications, multimedia, video, and

imaging industries.

Embedded Processing

Xilinx delivers an innovative and flexible range of processing solutions for your unique

embedded applications.

61

~~~----------------



4.6)XILINX's SUCCEES

4.6.l)THE SYNERGY OF TECHNOLOGY,

PARTNERSHIP, and LEADERSHIP

While the rest of the industry continues the practices of layoffs and shaking-off

excessive inventory, Xilinx is busy innovating, collaborating, and introducing new

products to market. Unlike many of our counterparts, Xilinx views downturns as an

opportunity to focus on research and development, streamline operations, and deliver

new products that change the FPGA landscape.

For the past few years, Xilinx has asserted a considerable market leadership

position. We secured over 50% of the PLD market share: larger than all other public

PLD companies combined. By creatively avoiding layoffs and empowering employees,

we rose to become the fourth best company to work for in America (Forbes magazine).

4.6.2)XILINX's PARTNERS

Through the power of innovation and partnerships, Xilinx takes the FPGA-based

value chain to a new level. By teaming with technology leaders in silicon fabrication,

design automation, system level tools, IP, and design services, we deliver a complete

value chain and strengthen our position as a strategic partner for our customers.

Delivering this complete value chain enables the fastest innovation while reducing total

development and system costs for our customers. It also reduces time to market and

increases time in market for our customer's products.

•In March 2002, through partnering with industry leaders IBM, WindRiver

Systems, and Conexant, Xilinx delivered the Virtex™-11 Pro programmable system

•

solution. The solution was the first of its kind and is the most flexible tool ever invented

for a designer. The Virtex-11 Pro FPGA includes programmable logic fabric with high

speed embedded PowerPC processors and integrated 3. 125 gigabit RocketIO™ serial

transceivers supported by leading design tools. Recent additions to the family and lower

price points have now made the Virtex-II Pro solution the de-facto standard for all

programmable logic users.

62



The Virtex-11 Pro solution responds to the issues facing design teams and their

corporations. By delivering both high-performance processing and high bandwidth

connectivity on a single device, many design challenges associated with integration,

high-speed interfacing, high performance processing, and new design methodologies are

effectively solved. The rapid rate of change in technology and standards demands a

solution that is completely flexible and reduces inventory risks and NRE costs - the

Virtex-II Pro solution delivers.

4.6.3)XILINX's TECHNOLOGY

Xilinx is a company built on delivering maximum customer value and ongoing

innovation throughout all of our product lines. Xilinx recently revamped all of its

products from the new Spartan™-IIE cost-optimized FPGA solution to the

CoolRunner™-11 Rea!Digital CPLD solution, the Virtex-11 Pro platform for

programmable systems, and the Virtex-II EasyPath solution for cost management. We

also introduced the world's fastest and most productive software tool suite with our ISE

4.2i software release, numerous intellectual property cores, and the technical training

necessary to decrease time-to-knowledge for the rapid assimilation of this new

technology. We continue to focus on raising the bar by adding more value in every

category of the value chain.

Through the years, Xilinx has evolved into a solutions company rather than

remaining just a chip company. We can only be better tomorrow than we are today by

working closely with our customers and anticipating their needs. Xilinx's job is to

continue to expand our capabilities and our partnerships, so we can continue to be a

strategic partner for our client companies.

4.6.4)XILINX's EMPLOYEES
lı •

Xilinx is an innovation engine and their employees are the keys to the

innovation. Such innovation requires personnel policies that allow employees to make

their own decisions and take risks. their company values and corporate culture promote

teamwork and very open communication. They know that keeping employees satisfied

leads directly to innovation, customer satisfaction, and ultimately, increased profits.

Their employees are inspired and know they make a real difference.

63



This unique work environment has resulted in breakthrough technology,

marketing and community achievements. For example, Xilinx continues to support local

schools through their Stock for Students program and made a $ 1 million donation to the

American Red Cross. Also, Xilinx was the first semiconductor company to simulcast

training in North America and Europe through industry events like Programmable

World 2002.

With a combination of innovative products, world-class partners, inspired

employees and the recognition of the balance between business and community, their

clients have taken Xilinx solutions, management, and employees to heart. This is a

reminder that good people ultimately do come in first when they are inspired and

empowered to be leaders.

4.7)XILINX's VALUES
4.7.l)HOW XILINX WORK WITH ONE ANOTHER

AND XILINX's PARTNERS,WHAT DO VALUES MEAN TO
XILINX?
Xilinx's values have helped set the character of their company. They are more

than a set of lofty ideals put down on paper and left to yellow in conference rooms.

Values are very much alive and well in Xilinx.

Their values also provide the backdrop for the dialogue they have with

colleagues. They help them make business decisions. They provide the framework for

interacting with each other. What's especially impressive about their values is that they

are accepted and acceptable around the world. The practices may be different in

different places, but the values are relevant everywhere.

While a whirlwind of business change constantly surrounds them - and they
• •

accept change as the reality of today's high-tech industry - it's important to know that

the values their depend upon are constant and unchanging. They are, in a very real

sense, yheir permanent anchors.

4.7.2)HOW DID XILINX CLEARLY DEFINE IT's

VALUES?

The set of values xilinx believe in started with xilinx 's company's founders. The

three men who followed their dream of starting a new enterprise were just as concerned

64

~~~~----------~~~--------------------·11111111


about the work environment as they were about the new, innovative technology they

were pioneering. Respect for the dignity of the individual was the cornerstone of the

philosophy upon which Xilinx was founded.

In 1996, xilinx company started a grassroots process to articulate xilinx' s values.

They looked very carefully at their business and made certain the values were connected

with what would move them forward and foster their growth in the marketplace. Most

importantly, they wanted to capture in words what they liked so much about working at

Xilinx and the ideals our founders had set in motion.

The result was a description of the the eight Xilinx CREATIVE values.

Customer Focused

Respect

Excellence

Accountability

Teamwork

Integrity

Very Open Communication

Enjoying Our Work

It was the creativity of the founders and their innovative ideas that launched a

new category of products for customers around the world. And it is the creativity of our

products and patents that has propelled us to market leadership.

4.7.3)HOW DO XILINX KEEP IT's VALOES VISIBLE and

VIABLE IN THE COMPANY? •
At Xilinx, they believe that making decisions based on their values translates

directly to the bottom line, helps them be more successful in their business, and brings

them closer to realizing their company vision of setting a new standard for managing a

high-tech company. Customers are eager to do business with a company whose values

are as excellent as their products.

Another way the values are kept alive is through a variety of appreciation

programs. The most popular one is the Values Medallion award. Employees nominate

someone who has exhibited a teamwork value, and, each quarter, several winners are

65

randomly selected from the nominees. These individuals are awarded 10 shares of stock

and receive public recognition from Wim.

How do they "enforce" the values? They don't. They leave it up to each

individual to act in accordance with them. The values are there to direct their actions, to

guide them professionally and personally, and to inspire them in the worst and the best

of times.

" •

66

CONCLUSION

Finally I can say my project which named sixty counter is working correctly.

When I simulate the project lsbsec is counting from 0-9 and when it comes to 9 , lsbsec

is adding 1 to msbsec . This proccess is counting until msbsec becomes 6 .

Now:
1000 ns

ğJl[3J I o

o

100 200

r--- ..-·--
. ~ ,.- -~--, ,......

300ıq,/1 C 8

q,11 cir o
LJ UlJô)I elk

a t;1 lsbsec[30J

ğJ![2]
ôJI [1] I O

qJ] [OJ I o
ı:ı ~· rnsbsec[3:0J I 4'h4

ôJ1[3J I o
qJI [2] I 1

ğJl[OJ I o ! ,-- '==-=· ========L-

Ö,)1(1 J I o

100

•

Figure25.Counting

67

Now:
2000 ns 900 1000 1100 1200 13[0

ğJ ce

a !ilsbsec[JO] I 4'h0, '

ô)i [3] o
o

ôJ: Ill9" o
ô)i ıoı o

:cı !;1 rnsbsec[JO] I 4'h0

ğ.!![3J I o
~fi[2J I o
~JI] I O

Figure26.Restarting to count

We can see in this figure when msbsec becomes 6 program starting the count

from O again .

..

68

•

REFERENCES
http://www.members.shaw.ca/kadirm/VHDL Course notes.htm

http://www.xilinx.com/company/index.htm

http://www.xilinx.com/products/silicon solutions

•
••

69

