
I
i
I
I
i
i
i
i
I.

J

J

I

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Car Service Garage Program
With Visual Basic

Graduation Project
Com-400

-

Student:Hasan Onbaşı(20033591)

~ .
Supervisor:Dr Umit ilhan

NICOSIA-2008

'---- . -

II

•
I

~=
ACKNOWLEDGEMENTS {~·

First.I would like to thank my supervisor Dr UMIT ILHAN for his support and \\\
encouragement during this graduation project Second ,I would like to exspress m~~'< _
gratitude to Near East University for the scholarship that made the work possible. Thır~~
, I thank my familiy for their constant encaungement and support during the
preparation of this project. Finally.I would also like to thank all my friends For their
advice and support

I
I
I
ıı
ıı

I

I
I
I I

I
I
I
I

I
I
I
I
I
I
I
I
I

-
I
I
I
I
I
I
I
I
I
I

ABSıTRACT

This project including, base topics of visual basic 6.0,chapterl(The visual basic
language)
Chapter2(Exploring the visual basic tollbok), chapter3(More Exploration of the Visual
Basic Toolbox),chapter4(Error-Handling, Debugging and File Input/Output),
chapter5(Database Access Management),chapter6(SQL) finally chapter7(Car Service
Garrage program with visual basic) This program(project) including 3 part. At program
used Database Access, SQL, and base commands of visual basic.

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLE OF CONTENTS
Chapter.I The Visual Basic Language
1. lAbaut Visual Basic
1.2.Visual Basic Statements and Expressions
1.3.Visual Basic Operators
1.4.Visual Basic Functions
1.5.String Functions
1.6Rnd (Random Number) Function

Example : Savings Account
l.7Visual Basic Symbolic Constants
1.8Defining Your Own Constants
1.9Visual Basic Branching - If Statements
1.1 OKey Trapping

Example : Savings Account - Key Trapping
1.11 Select Case - Another Way to Branch
l.12The GoTo Statement ~-)
1.13Visual Basic Looping
l.14Visual Basic Counting

Example : Savings Account - Decisions

Chapter.2 Exploring the Visual Basic Toolbox

2.1.The Message Box
2.2.0bject Methods
2.3.The Form Object
2.4.Command Buttons
2.5.Label Boxes
2.6.Text Boxes

Example : Password Validation
2.7.Check Boxes
2.8.0ption Buttons
2.9.Arrays
2.1O.Frames

Example 3-2: Pizza Order
2.11 List Boxes
2.12.Combo Boxes

1
2
3
4
5
6

8
11
12

13
15
16
18
19

20
22
23
24
25
25
28,
28
29
29
31

36
37

111

I
I
i
I
I
I
I
I
I
I
I
ıı
I
i
i
i
I
I
I

Chapter.3 More Exploration of the Visual Basic Toolbox
3. 1 .Display Layers
3.2.Line Tool
3.3.Shape Tool
3.4.Horizontal and Vertical Scroll Bars

Example: Temperature Conversion
3.5.Image Boxes
3.6.Quick Example: Picture and Image Boxes
3.7.Drive List Box
3. 8 .Directory List Box
3.9.File List Box
3.1 O.Synchronizing the Drive, Directory, and File List Boxes

Example : Image Viewer
3. 1 1.Common Dialog Boxes
3.12.0pen Common Dialog Box
3.13.Save As Common Dialog Box \
Quick Example: The Save As Dialog Box)

41
43
43
44

47
48
49
49
50
51

55
56
59

Chapter.4 Error-Handling, Debugging and File Input/Output
4. 1 .ErrorTypes
4.2.Run-Time Error Trapping and Handling
4.3General Error Handling Procedure

Example - Simple Error Trapping
4.4.Debugging Visual Basic Programs
Example - Debugging Example.

4.5.Using the Debugging Tools
4.6.Debugging Strategies
4.7.Sequential Files
4.8Sequential File Output (Variables)
4.9.Sequential File Input (Variables) ~
4.10.Writing and Reading Text Using Sequential Files
4.11.Random Access Files
4. 12.User-DefinedVariables
4.13Writing and Reading Random Access Files
4.14Using the Open and Save Common Dialog Boxes

60
61
63

66

68
71
72
73
74

, 75
77
79
80
81

ıv

II

I
ıı
II
Ii
I

Chapter.5 Database Access Management

5.1.Database Structure and Terminology 84
5.2.ADO Data Control (ADODC) 86
5.3.Data Links 87
5.4Assigning Tables 88
5.5.Bound Data Tools 89

Example - Accessing the Books Database
5.6.Creating a Virtual Table 91
5. 7.Finding Specific Records 92

I
I

Chapter.6 SQL
6. 1 .Select statement 94
6.2.Conditional selection 95
6.3.Join 96
6.4.Function 98
6.5.Deleting Data 99
6.6.Updating data 99I

I Chapter.7 Car Service Garrage Program with visual basic
7. 1 .About project 100
7.2.Advantages of program 101
7.3.step by step program 102
7.4.conclusion 112

I
I CONCLUSION

REFERENCES 113
114I

I

I
I

(

V

•

lntrocıuction

Visual Basic is a highlypopular language in the commercial world because it allows for
the rapid development of Windows based programs. VB is particularly strong at
creating front ends for databases. This can be done in amazing time through the use of
wizards. This page does not cover all aspects of VB, it does not show how to do the
basics like layout a form, neither does it cover all the built in functions, as there is
already plenty ofhelp provided for these, and a lot of it is self-evident. A more limited
version ofVisual Basic is also included in several other Microsoft Applications such as
MS Access. Most of the information here applies to that version.Their is also VB Script
for creating web pages. Much of the information on this page applies, but VB Script
only has one basic data type - the Variant type. This project consist of introduction,7
cahapter.

Chapter 1 describes the The Visual Basic Language
Chapter 2 describes the Exploring the Visual Basic Toolbox
Chapter3 describes the More Exploration of the Visual Basic Toolbox
Chapter4 describes the Error-Handling, Debugging and File Input/Output
Chapters describes theDatabase Access Management
Chapter6 describes the SQLwith visual basic
Chapter 7 describes the Car Service Garrage Program with visual basic

i
i

I
[

I
f

VI

I

I
I 1.1 Abaut Visual Basic

I
Visual Basic (VB) is a third-generation event driven programming language and
associated development environment (IDE) from Microsoft for its COM programming
model.[IJ Visual Basic was derived from BASIC and enables the rapid application
development (RAD) of graphical user interface (GUI) applications, access to databases
using DAO, RDO, or ADO, and creation ofActiveX controls and objects. Scripting
languages such as VBA and VBScript are syntactically si~ilar to Visual Basic, but
perform differently.l2l
A programmer can put together an application using the components provided with
Visual Basic itself. Programs written in Visual Basic can also use the Windows API, but
doing so requires external function declarations.

I
I
I A Brief History of Basic

I
I

Language developed in early 1960's at Dartmouth College:

I

B (eginner's)
A (All-Purpose)
S (Symbolic)
I (Instruction)
C (Code)

Answer to complicated programming languages (FORTRAN, Algol, Cobol ...). First
timeshare language.

I
I
I
I
I
I
I
I

1

---- - ~ ·- --------

II
II

I
I
I
I
I
I
I
ı·
I
I
I
I
I
I

1.2.Visual Basic Statements and Expressions

The simplest statement is the assignment statement. It consists of a variable name,
followed by the assignment operator(=), followed by some sort of expression. The
variable (or property) on the left hand side of the assignment operator is replaced by the
value of the expression on the right hand side of the operator.

Examples:

StartTime = Now
Explorer.Caption= "Captain Spaulding"
BitCount = ByteCount * 8
Energy = Mass * LIGHTSPEED I\ 2
NetWorth = Assets - Liabilities

Statements normally take up a single line with no terminator. Statements can be
stacked by using a colon(:) to separate them. Example:

StartTime = Now : EndTime = StartTime + 10

Be careful stacking statements, especially with If/End If structures (we'll learn about
these soon). You may not get the response you desire.

If a statement is very long, it may be continued to the next line using the continuation
character, an underscore LJ. Example:

Months= Log(Final * IntRate I Deposit+ 1)_
I Log(l + IntRate)

Comment statements begin with the keyword Rem or a single quote('). Forexample:

Rem This is a remark
' This is also a remark
x = 2 * y ' another way to write a remark or comment

You, as a programmer, should decide how much to comment your code. Consider such
factors as reuse, your audience, and the legacy of your code.

2

•
I
i

1.3.Visual Basic Operators

The simplest operators carry out arithmetic operations. These operators in their order
of precedence are:

I
i

Operator
I\

Operation
Exponentiation
Multiplication and division
Integer division (truncates decimal portion)
Modulus

* I
\

Mod

I
I

+ - Addition and subtraction

Parentheses around expressions can change precedence.

To concatentate two strings, use the & symbol or the+ symbol:

I
I

lblTime.Caption = "The current time is" & Format(Now, "hh:mm")
txtSample.Text = "Hook this"+ "to this"

Be aware that I use both concatenation operators in these notes - I'm not very consistent
(an old habit that's hard to break).

There are six comparison operators in Visual Basic:

I Operator Comparison
> Greater than
< Less than

>= Greater than or equal to
<= Less than or equal to

Equal to
<> Not equal to

I
I
I
I
I

The result of a comparison operation is a Boolean value (True or False).

3

i
ii
i
ıi
ıı
ıi

II
ıı
II
II
ıı

II
II
ıı
II

We will use three logical operators

Operator Operation
Not Logical not
And Logical and
Or Logical or

The Not operator simply negates an operand. It is very useful for 'toggling' Boolean
variables.

The And operator returns a True if both operands are True. Else, it returns a False.

The Or operator returns a True if either of its operands is True, else it returns a False.

Logical operators follow arithmetic operators in precedence.

1.4.Visual Basic Functions

Visual Basic offers a rich assortment of built-in functions. The on-line help utility will
give you information on any or all of these functions and their use. Some examples are:

Function
Abs
Ase
Chi
Cos
Format
Instr
Left
Len
Mid
Now
Ri ht. g
Rnd
Sin
Sqr
Str
Timer
Trim
Val

Value Returned
Absolute value of a number
ASCII or ANSI code of a character
Character corresponding to a given ASCII or ANSI code
Cosine of an angle
Date or number converted to a text string
Locates a substring in another string
Selected left side of a text string
Number of characters in a text string
Selected portion of a text string
Current time and date
Selected right end of a text string
Random number
Sine of arr angle
Square root of a number
Number converted to a text string
Number of seconds elapsed since midnight
Removes leading and trailing spaces from string
Numeric value of a given text string

4

I
I
i
i
i
i
i
i
I
i
i
I
i
I
I

1.5.String Functions

Visual Basic offers a powerful set of functions to work with string type variables, which
are very important in Visual Basic. The Caption property of the label control and the
Text property of the text box control are string types. You will find you are constantly
converting string types to numeric data types to do some math and then converting back
to display the information.

To convert a string type to a numeric value, use the Val function. As an example, to
convert the Text property of a text box control named txtExample to a number, use:

Val(txtExampie.Text)

This result can then be used with the various mathematical operators.

There are two ways to convert a numeric variable to a string. The Str function does the
conversion with no regard for how the result is displayed. This bit of code can be used
to display the numeric variable MyNumber in a text box control:

MyNumber= 3.14159
txtExample.Text = Str(MyNumber)

If you need to control the number of decimal points (or other display features), the
Format function is used. This function has two arguments, the first is the number, the
second a string specifying how to display the number (use on-line help to see how these
display specifiers work). As an example, to display MyNumber with no more than two
decimal points, use:

MyNumber= 3.14159
txtExample.Text = Format(MyNumber, "#.##")

In the display string("#.##"), the pound signs represent place holders.

Many times, you need to extract substrings from string variables. There are three
functions that help with this task. In the Left function, you can extract a specified
number of 'left most' characters."This example extracts the 3 'left most' characters
from the string variable:

MyString = "Visual Basic is fun!"
LeftString = Left(MyString, 3)

The LeftString variable is equal to "Vis"

5

I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

With the Right function, you can extract a specified number of 'right most' characters.
This example extracts the 6 'right most' characters from the string variable:

MyString = "Visual Basic is fun!"
RightString = Right(MyString, 6)

The RightString variable is equal to "s fun!"

And, the Mid function lets extract a specified number of characters from anywhere in
the string (you specify the string, the starting position and the number of characters to
extract). This example extracts 6 characters from the string variable, starting at
character 3:

MyString = "Visual Basic is fun!"
MidString = Mid(MyString, 3, 6)

The MidString variable is equal to "sual B"

To determine how many characters are in a string variable, use the Len function. Or,
for our example:

MyString = "Visual Basic is fun!"
LenString = Len(MyString)

LenString will have a value of 20.

To find a substring within a string variable, use the Instr function. Three arguments are
used: starting position in Stringl (optional), Stringl (the variable), String2 (the
substring to find). The function will return the location of the first character of the
substring (it will return O if the substring is not found). For our example:

MyString = "Visual Basic is fun!"
Location = Instr(3, MyString, "sic")

This says find the substring "sic" in MyString, starting at character 3 (if this argument
is omitted, 1 is assumed). The returned Location will have a value of 10.

6

il

I
II
I
I
I
I
I
I
I
I
I

Another useful pair of functions are the Ase and Chr functions. These work with
individual characters. Every 'typeable' character has a numeric representation called an
ASCII ("askey") code. The Ase function returns the ASCII code for an individual
character. For example:

Asc("A")

returns the ASCII code for the upper case A (65, by the way). The Chr function returns
the character represented by an ASCII code. For example:

Chr(48)

returns the character represented by an ASCII value of 48 (a "1 "). The Ase and Chr
functions are used often in determining what a user is typing.

1.6.Rnd (Random Number) Function

In writing games and learning software, we use the Rnd function to introduce
randomness. This insures different results each time you try a program. The Visual
Basic function Rnd returns a single precision, random number between O and 1 (actually
greater than or equal to O and less than 1). To produce random integers (I) between
Imin and Imax, use the formula:

I= Int((lmax - imin+ 1) * Rnd) + imin

The random number generator in Visual Basic must be seeded. A Seed value initializes
the generator. The Randomize statement is used to do this:

Randomize Seed

If you use the same Seed each time you run your application, the same sequence of
random numbers will be generated. To insure you get different numbers every time you
use your application (preferred for games), use the Randomize statement without a seed
(it will be seeded using the built-in Timer function):

"
Randomize

Place the above statement in the Form_Load event procedure.

Examples:

To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number= Int(lOl * Rnd) + 100

7

•
il

Example 2-1

1.7.Savings Account

il
i

1. Start a new project. The idea of this project is to determine how much you save by
making monthly deposits into a savings account. For those interested, the mathematical
formula used is:

F = D [(1 + I)M - 1] II

where

II
I

F - Final amount
D - Monthly deposit amount
I - Monthly interest rate
M- Number of months

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the form. It should look
something like this:

I
II
I
I
I
I

I
I
I
I 8

ill 3. Set the properties of the form and each object.

II Forml:
BorderStyle I-Fixed Single

II Caption Savings Account
Name frmSavings

II Labell:
Caption Monthly Deposit

II Label2:
Caption Yearly Interest

II Label3:
Caption Number ofMonths

II Label4:
Caption Final Balance

II Textl:
Text [Blank]
Name txtDeposit

II Text2:
Text [Blank]

I Name txtlnterest

Text3:

I Text [Blank]
Name txtMonths

I Text4:
Text [Blank]
Name txtFinal

I Commandl: ~
Caption &Calculate

I Name cmdCalculate

Command2:

I Caption E&xit
Name cmdExit

I
I
I
I 9

Now, your form should look like this:

I
r

II
~

4. Declare four variables in the general declarations area of your form. This makes them
available to all the form procedures:

II
II

Option Explicit
Dim DepositAs Single
Dim Interest As Single
Dim Months As Single
Dim Final As Single

The Öption Explicit statement forces us to declare all variables.

5. Attach code to the cmdCalculate command button Click event.

I Private Sub cmdCalculate_Click O
Dim IntRate As Single
'Read values from text boxes
Deposit= Val(txtDeposit.Textı
Interest= Val(txtlnterest.Text)
IntRate = Interest I 1200
Months= Val(txtMonths.Text)
'Compute final value and put in text box
Final= Deposit* ((1 + IntRate) I\ Months - 1) I IntRate
txtFinal.Text = Format(Final, "#####0.00")
End Sub

I
I
I
I
I
I

10

I
~

II
II
II
II
II
I
I

I
I
I

This code reads the three input values (monthly deposit, interest rate, number of
months) from the text boxes, converts those string variables to number using the Val
function, converts the yearly interest percentage to monthly interest (lntRate) computes
the final balance using the provided formula, and puts that result in a text box (after
converting it back to a string variable).

6. Attach code to the cmdExit command button Click event.

Private Sub cmdExit_Click O
End
End Sub

7. Play with the program. Make sure it works properly. Save the project (it is saved as
Example2-1 in the LearnVB6NB Code/Class 2 folder).

1.7.Visual Basic Symbolic Constants

Many times in Visual Basic, functions and objects require data arguments that affect
their operation and return values you want to read and interpret. These arguments and
values are constant numerical data and difficult to interpret based on just the numerical
value. To make these constants more understandable, Visual Basic assigns names to the
most widely used values - these are called symbolic constants. Appendix I lists many
of these constants.

As an example, to set the background color of a form named frmExample to blue, we
could type:

frmExample.BackColor = OxFFOOOO

or, we could use the symbolic constant for the blue color (vbBlue):

frmExample.BackColor = vbBlue

It is strongly suggested that the symbolic constants be used instead of the numeric
values, when possible. You should agree that vbBlue means more than the value
OxFFOOOO when selecting the background color in the above example. You do not
need to do anything to define the symbolic constants - they are built into Visual Basic.

1.8.Defıning Your Own Constants

You can also define your own constants for use in Visual Basic. The format for
defining a constant named PI with a value 3.14159 is:

Const PI= 3.14159

User-defined constants should be written in all upper case letters to distinguish them
from variables. The scope of constants is established the same way a variables' scope
is. That is, if defined within a procedure, they are local to the procedure. If defined in

11

I

the general declarations of a form, they are global to the form. To make constants
global to an application, use the format:

Global Const PI= 3.14159

within the general declarations area of a module.

1.9.Visual Basic Branching - If Statements

Branching statements are used to cause certain actions within a program if a certain
condition is met.

The simplest is the single line If/Then statement:

If Balance - Check < O Then Print "You are overdrawn"

Here, if and only if Balance - Check is less than zero, the statement "You are
overdrawn" is printed.

If/Then/End If blocks to allow multiple statements:

If Balance - Check < O Then
Print "You are overdrawn"
Print "Authorities have been notified"

End If

In this case, if Balance - Check is less than zero, two lines of information are printed.
Or, Ifffhen/Else/End If blocks:

If Balance - Check < O Then
Print "You are overdrawn"
Print "Authorities have been notified"

Else
Balance = Balance - Check

End If

""Here, the same two lines are printed if you are overdrawn (Balance - Check < O), but, if
you are not overdrawn (Else), your new Balance is computed.

12

II

I
I
II
II
II
II
I
I
I

Or, we can add the Elself statement:

If Balance - Check < O Then
Print "You are overdrawn"
Print "Authorities have been notified"

ElselfBalance - Check = O Then
Print "Whew! You barely made it"
Balance= O

Else
Balance= Balance - Check

End If

Now, one more condition is added. If your Balance equals the Check amount (Elself
Balance - Check= O), a different message appears.

In using branching statements, make sure you consider all viable possibilities in the
If/Else/End If structure. Also, be aware that each If and Elself in a block is tested
sequentially. The first time an If test is met, the code associated with that condition is
executed and the If block is exited. If a later condition is also True, it will never be
considered.

1.10.Key Trapping

Note in the previous example, there is nothing to prevent the user from typing in
meaningless characters (for example, letters) into the text boxes expecting numerical
data. Whenever getting input from a user, we want to limit the available keys they can
press. The process of interecepting unacceptable keystrokes is key trapping.

Key trapping is done in the KeyPress event procedure of a control. Such a procedure has
the form (for a text box named txtText):

Private Sub txtText_KeyPress (KeyAscii as Integer)

End Sub

What happens in this procedure is that every time a key is pressed in the corresponding
text box, the ASCII code for the pressed key is passed to this procedure in the argument
list (i.e. KeyAscii). If KeyAscii is an acceptable value, we would do nothing. However,
if KeyAscii is not acceptable, we would set KeyAscii equal to zero and exit the
procedure. Doing this has the same result of not pressing a key at all. ASCII values for
all keys are available via the on-line help in Visual Basic. And some keys are also
defined by symbolic constants. Where possible, we will use symbolic constants; else,
we will use the ASCII values.

As an example, say we have a text box (named txtExample) and we only want to be able to
enter upper case letters (ASCII codes 65 through 90, or, correspondingly, symbolic

13

I

I
I
I
I
I
I

constants vbKeyA through vbKeyZ). The key press procedure would look like (the
Beep causes an audible tone if an incorrect key is pressed):

Private Sub txtExample_KeyPress(KeyAscii as Integer)
If KeyAscii >=vbKeyA And KeyAscii <=vbKeyZ Then
Exit Sub

Else
KeyAscii = O
Beep

End If
End Sub

In key trapping, it's advisable to always allow the backspace key (ASCII code 8;
symbolic constant vbKeyBack) to pass through the key press event. Else, you will not
be able to edit the text box properly.

Example 2-2

!Savings Account - Key Trapping

1. Note the acceptable ASCII codes are 48 through 57 (numbers), 46 (the decimal point),
and 8 (the backspace key). In the code, we use symbolic constants for the numbers and
backspace key. Such a constant does not exist for the decimal point, so we will define
one with the following line in the general declarations area:

Const vbKeyDecPt = 46

2. Add the following code to the three procedures: txtDeposit_KeyPress,
txtlnterest_KeyPress, and txtMonths_KeyPress.

Private Sub txtDeposit_KeyPress (KeyAscii As Integer)
'Only allow number keys, decimal point, or backspace
If (KeyAscii >=vbKeyO And KeyAscii <=vbKey9) Or KeyAscii = vbKeyDecPt Or
KeyAscii = vbKeyBack Then
Exit Sub ı<

Else
KeyAscii = O
Beep

End If
End Sub

Private Sub txtlnterest_KeyPress (KeyAscii As Integer)
'Only allow number keys, decimal point, or backspace
If (KeyAscii >=vbKeyO And KeyAscii <=vbKey9) Or KeyAscii = vbKeyDecPt Or
KeyAscii = vbKeyBack Then
Exit Sub

Else
KeyAscii = O
Beep

End If

14

I
I
I
II

End Sub

Private Sub txtMonths_KeyPress (KeyAscii As Integer)
'Only allow number keys, decimal point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) Or KeyAscii = vbKeyDecPt Or
KeyAscii = vbKeyBack Then
Exit Sub

Else
KeyAscii = O
Beep

End If
End Sub

(In the If statements above, note the word processor causes a line break where there
really shouldn't be one. That is, there is no line break between the words Or
KeyAscii and= vbKeyDecPt. One appears due to page margins. In all code in
these notes, always look for such things.)

3. Rerun the application and test the key trapping performance. Save the application '
(Example2-2 in the LearnVB6NB Code/Class 2 folder).

1.11.SelectCase - Another Way to Branch

In addition to If/Then/Else type statements, the Select Case format can be used when there
are multiple selection possibilities.

Say we've written this code using the If statement:

If Age = 5 Then
Category= "Five Year Old"

Elself Age >= 13 and Age <= 19 Then
Category = "Teenager"

Elself (Age >= 20 and Age <= 35) Or Age = 50 Or (Age >= 60 and Age <= 65) Then
Category= "Special Adult"

Elself Age > 65 Then "
Category= "Senior Citizen"

Else
Category= "Everyone Else"

End If

The corresponding code with Select Case would be:

Select Case Age
Case 5
Category= "Five Year Old"

Case 13 To 19
Category= "Teenager"

Case 20 To 35, 50, 60 To 65
Category= "Special Adult"

15

I
I
I
I

Case Is> 65
Category = "Senior Citizen"

Case ¥..\se
Category = "EveryoneE\se••

End Select

Notice there are several formats for the Case statement. Consult on-line help for
discussions of these formats.

1.12.The GoTo Statement

D Another branching statement, and perhaps the most hated statement in programming, is
the GoTo statement. However, we will need this to do Run-Time error trapping. The
format is GoTo Label, where Label is a labeled line. Labeled lines are formed by
typing the Label followed by a colon.

• GoTo Example:

LinelO:r

GoToL~

When the code reaches the GoTo statement, program control transfers to the line labeled
Line 10.

Visual Basic Looping

O Looping is done with the Do/Loop format. Loops are used for operations are to be
repeated some number of times. The loop repeats until some specified condition at the
beginning or end of the loop is met.

O Do While/Loop Example:

Counter= 1
Do While Counter<= 1000
Debug.Print Counter
Counter = Counter + 1

Loop

This loop repeats as long as (While) the variable Counter is less than or equal to 1000.
Note a Do While/Loop structure will not execute even once if the While condition is
violated (False) the first time through. Also note the Debug.Print statement. What this
does is print the value Counter in the Visual Basic Debug window. We'll learn more
about this window later in the course.

Do Until/Loop Example:

16

Counter= 1
Do Until Counter> 1000
Debug.Print Counter
Counter= Counter+ 1

Loop

This loop repeats Until the Counter variable exceeds 1000. Note a Do Until/Loop
structure will not be entered if the Until condition is already True on the first encounter.

Do/Loop While Example:

Sum=l
Do
Debug.Print Sum
Sum=Sum+3

Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to 50. Note, since the
While check is at the end of the loop, a Do/Loop While structure is always executed atleast once.

Do/Loop Until Example:

Sum=l
Do
Debug.Print Sum
Sum=Sum+3

Loop Until Sum> 50

This loop repeats Until Sum is greater than 50. And, like the previous example, a
Do/Loop Until structure always executes at least once.

Make sure you can always get out of a loop! Infinite loops are never nice. If you get
into one, try Ctrl+Break. That sometimes works - other times the only way out is
rebooting your machine!

iii

The statement Exit Do will get you out of a loop and transfer program control to the
statement following the Loop statement.

17

1.13.Visual Basic Counting

Counting is accomplished using the For/Next loop.

Example

For I = 1 to 50 Step 2
A=I * 2
Debug.Print A

Next I

In this example, the variable I initializes at 1 and, with each iteration of the For/Next
loop, is incremented by 2 (Step). This looping continues until I becomes greater than or
equal to its final value (50). If Step is not included, the default value is 1. Negative
values of Step are allowed.

You may exit a For/Next loop using an Exit For statement. This will transfer program
control to the statement following the Next statement.

Example 2-3

Savings Account - Decisions

1. Here, we modify the Savings Account project to allow entering any three values and
computing the fourth. First, add a third command button that will clear all of the text
boxes. Assign the following properties:

Command3:
Caption
Name

Clear &Boxes
cmdClear

The form should look something like this when you're done:

18

2. · Code the cmdClear button Click event:

Private Sub cmdClear _Click O
'Blank out the text boxes
txtDeposit.Text = ""
txtlnterest.Text = ""
txtMonths.Text = ""
txtFinal.Text = ""
End Sub

This code simply blanks out the four text boxes when the Clear button is clicked.
3. Code the KeyPress event for the txtFinal object:

Private Sub txtFinal_KeyPress (KeyAsciiAs Integer)
'Only allow number keys, decimal point, or backspace
If (KeyAscii>= vbKeyOAnd KeyAscii<= vbKey9) Or KeyAscii= vbKeyDecPt Or
KeyAscii = vbKeyBack Then

Exit Sub
Else
KeyAscii= O
Beep

End If
End Sub

We need this code because we can now enter information into the Final Value text box.

4. The modified code for the Click event of the cmdCalculate button is:

Private Sub cmdCalculate_Clickı)
Dim IntRate As Single
Dim IntNew As Single
Dim Fen As Single, FcnD As Single
'Read the four text boxes
Deposit= Val(txtDeposit.Text)
Interest= Val(txtlnterest.Text)
IntRate = Interest I 1200

~ Months= Val(txtMonths.Text)
Final= Val(txtFinal.Text)
'Determine which box is blank
'Compute that missing value and put in text box
If Trim(txtDeposit.Text) =""Then
'Deposit missing
Deposit= Final I (((1+ IntRate) A Months - 1) I IntRate)
txtDeposit.Text = Format(Deposit, "#####0.00")

Elself Trim(txtlnterest.Text) ="''Then
'Interest missing - requires iterative solution
IntNew = (Final I (0.5*Months* Deposit) - 1) I Months
Do
IntRate = IntNew
Fen= (1 + IntRate) A Months - Final* IntRate I Deposit - 1

19

·I

I
I
I

FcnD =Months* (1 + IntRate)" (Months - 1) - Final I Deposit
IntNew = IntRate - Fen I FcnD

Loop Until Abs(IntNew - IntRate) < 0.00001I 12
Interest = IntNew * 1200
txtlnterest.Text = Format(Interest, "##0.00")

Elself Trim(txtMonths.Text) =""Then
'Months missing
Months= Log(Final * IntRate I Deposit+ 1) I Log(l + IntRate)
txtMonths.Text = Format(Months, "###.0")

Elself Trim(txtFinal.Text) = "" Then
'Final value missing
Final= Deposit* ((1 + IntRate) "Months - 1) I IntRate
txtFinal.Text = Format(Final, "#####0.00")

End If
End Sub

In this code. we first read the text information from all four text boxes and based on
which one is blank (the Trim function strips off leading and trailing blanks),
compute the missing information and display it in the corresponding text box.
Solving for missing Deposit, Months, or Final information is a straightforward
manipulation of the equation given in Example 2-2.

If the Interest value is missing, for the mathematically-inclined, we have to solve an
Mth-order polynomial using something called Newton-Raphson iteration - a good
example of using a Do loop. If you're not mathematically inclined, you should see that
finding the Interest value is straightforward. What we do is guess at what the interest
is, compute a better guess, and repeat the process (loop) until the old guess and the new
guess are close to each other. You can see each step in the code. Don't be intimidated
by the code in this example. Upon study, you should see that it is just a straightforward
list of instructions for the computer to follow based on input from the user.

5. Test and save your application (Example2-3in the LearnVB6NB Code/Class 2
folder). Go home and relax.

CHAPTER2 (Exploring the Visual Basic Toolbox)
1.1.The Message Box "'

D One of the best functions in Visual Basic is the messagebox. The message box
displays a mess~ge, optional icon, and selected set of command buttons. The user
responds by clicking a button.

D The statement form of the message box returns no value (it simply displays the box):

MsgBoxMessage, Type, Title

where

Message
Type
Title

Text message to be displayed
Type of message box (discussed in a bit)
Text in title bar of message box

20

~ I

I
I

You have no control over where the message box appears on the screen.

O The function form of the message box returns an integer value (corresponding to the
button clicked by the user). Example of use (Response is returned value):

Dim Response as Integer
Response = MsgBox(Message, Type, Title)

• The Type argument is formed by summing four values corresponding to the buttons to
display, any icon to show, which button is the default response, and the modality of the
message box.

• The first component of the Type value specifies the buttons to display:

Value Meaning Symbolic Constant
o OK button only vbOKOnly
1 OK/Cancel buttons vbOKCancel
2 Abort/Retry/Ignore buttons vbAbortRetryIgnore
3 Yes/No/Cancel buttons vbYesNoCancel
4 Yes/No buttons vbYesNo
5 Retry/Cancel buttons vbRetryCancel

The second component of Type specifies the icon to display in the message box:

Value
o
16
32
48
64

Meaning
No icon
Critical icon
Question mark
Exclamation point
Information icon

Symbolic Constant
(None)
vbCritical
vbQuestion
vbExclamation
vbInformation

The third component of Type specifies which button is default (i.e. pressing Enter is the
same as clicking the default button):

Value
o
256
512

Meaning
First button defaült
Second button default
Third button default

Symbolic Constant
vbDefaultButton1
vbDefaultButton2
vbDefaultButton3

The fourth and final component of Type specifies the modality:

Value
o
4096

Meaning
Application modal
System modal

Symbolic Constant
vbApplicationModal
vbSystemModal

If the box is Application Modal, the user must respond to the box before continuing
work in the current application. If the box is System Modal, all applications are
suspended until the user responds to the message box.

21

Note for each option in Type, there are numeric values listed and symbolic constants.
Recall, it is strongly suggested that the symbolic constants be used instead of the
numeric values. You should agree that vbOKOnly means more than the number O
when selecting the button type.

The value returned by the function form of the message box is related to the button clicked:

Value
1
2
3
4
5
6
7

Meaning
OK button selected
Cancel button selected
Abort button selected
Retry button selected
Ignore button selected
Yes button selected
No button selected

Message Box Example:

Symbolic Constant
vbOK
vbCancel
vbAbort
vbRetry
vbIgnore
vbYes
vbNo

MsgBox "This is an example of a message box", vbOKCancel + vbinformation,
"Message Box Example"

D You've seen message boxes if you've ever used a Windows application. Think of all the
examples you've seen. For example, message boxes are used to ask you if you wish to
save a file before exiting and to warn you if a disk drive is not ready.

2.2.0bject MethodsII
II
II
II

• In previous work, we have seen-that each object (control) has properties and events
associated with it. A third concept associated with objects is the method. A method is
a procedure or function that imparts some action to an object.

• As we move through the toolbox, when appropriate, we'll discuss object methods.
Methods are always enacted at run-time in code. The format for invoking a method is:

ObjectName.Method { optional arguments}

Note this is another use of the dot notation.

I
II
I 22

i
i 2.3.The Form Object

i
i

The Form is where the user interface is drawn. It is central to the development of
Visual Basic applications.

Form Properties:

I Appearance Selects 3-D or flat appearance.
BackColor Sets the form background color.
BorderStyle Sets the form border to be fixed or sizeable.
Caption Sets the form window title.
Enabled If True, allows the form to respond to mouse and
keyboard events; if False, disables form.
Font Sets font type, style, size.
ForeColor Sets color of text or graphics.
Picture Places a bitmap picture in the form.
Visible If False, hides the form.

I
I
I
I
I

Form Events:

Activate Form_Activate event is triggered when form becomes the active

I
I

window.
Click Form_Click event is triggered when user clicks on form.
DblClick Form_DblClick event is triggered when user double-clicks on
form.
Load Form_Load event occurs when form is loaded. This is a good place to
initialize variables and set any run-time properties.

Form Methods:

I
I

Cls Clears all graphics and text from form. Does not clear any objects.
Print Prints text string on the form.

Examples

I
I

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form"

I
I

• 23

I

2.4.Command Buttons

We've seen the command button before. It is probably the most widely used control.
It is used to begin, interrupt, or end a particular process.

Command Button Properties:

Appearance Selects 3-D or flat appearance.
CancelAllows selection of button with Ese key (only one button on a form can
have this property True).
Caption String to be displayed on button.
Default Allows selection of button with Enter key (only one button on a
form can have this property True).
Font Sets font type, style, size.

Command Button Events:

Click Event triggered when button is selected either by clicking on it or by
pressing the access key.

2.5.Label Boxes

A label box is a control you use to display text that a user can't edit directly. We've
seen, though, in previous examples, that the text of a label box can be changed at run­
time in response to events.

Label Properties:

Alignment Aligns caption within border.
Appearance Selects 3-D or flat appearance.
AutoSize If True, the label r's resized to fit the text specifed by the caption
property. If False, the label will remain the size defined at design time and the
text may be clipped.
BorderStyle Determines type of border.
Caption String to be displayed in box.
Font Sets font type, style, size.

24

I
I
il
i
I
I
II

II
I
I

I

WordWrap Works in conjunction with AutoSize property. If AutoSize =
True, WordWrap = True, then the text will wrap and label will expand vertically
to fit the Caption. If AutoSize = True, WordWrap = False, then the text will not
wrap and the label expands horizontally to fit the Caption. If AutoSize = False,
the text will not wrap regardless of Word Wrap value.

Label Events:

Click Event triggered when user clicks on a label.
DblClick Event triggered when user double-clicks on a label.

2.6.Text Boxes

A text box is used to display information entered at design time, by a user at run-time,
or assigned within code. The displayed text may be edited.

Text Box Properties:

Appearance Selects 3-D or flat appearance.
BorderStyle Determines type of border.
Font Sets font type, style, size.
MaxLength Limits the length of displayed text (O value indicates unlimited
length).
MultiLine Specifies whether text box displays single line or multiple lines.
PasswordChar Hides text with a single character.
ScrollBars Specifies type of displayed scroll bar(s).
SelLength Length of selected text (run-time only).
SelStart Starting position of selected text (run-time only).
SelText Selected text (run-time only).
Tag Stores a string expression.
Text Displayed text.

25

I
I
~

I
I
I
I

Text Box Events:

Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. This is a good place
to examine the contents of a text box after editing.
Key Press Triggered whenever a key is pressed. Used for key trapping, as
seen in last class.

Text Box Methods:

SetFocus Places the cursor in a specified text box.

Example

txtExample.SetFocus 'moves cursor to txtExample

Use of the text box control should be minimized if possible. Whenever you give a user
the option to type something, it makes your job as a programmer more difficult. You
need to validate the information they type to make sure it will work with your code
(recall the Savings Account example in the last class, where we need key trapping to
insure only numbers were being entered). There are many controls in Visual Basic that
are 'point and click,' that is, the user can make a choice simply by clicking with the
mouse. We'll look at such controls through the course. Whenever these 'point and
click' controls can be used to replace a text box, do it!
Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password.
If correct, a message box appears to validate the user. If incorrect, other options are
provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks
something like this:

3. Set the properties of the form and each object.

26

I
I
I
I
r

r

Forml:
BorderStyle
Caption
Name

I-Fixed Single
Password Validation
frml'assword

Labell:
Alignment
BorderStyle
Caption
FontSize
FontStyle

2-Center
I-Fixed Single
Please Enter Your Password:
10
Bold

Textl:
FontSize
FontStyle
Name
Password Char
Tag
Text

14
Regular
txtPassword
*
[Whatever you choose as a password]
[Blank]

Commandl:
Caption
Default
Name

&Validate
True
cmdValid

Command2:
Cancel
Caption
Name

True
E&xit
cmdExit

Your form should now look like this:

4. Attach the following code to the cmdValid Click event.

Private Sub cmdValid_ClickO
'This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Tag Then
'If correct, display messagebox

27

I
I
I
I
I
l
I
I
l
l

MsgBox "You've passed security!", vbOKOnly + vbExclamation, "Access
Granted"
Else
'If incorrect, giveoption to try again
Response= MsgBox("lncorrect password", vbRetryCancel + vbCritical, "Access

Denied")
If Response = vbRetry Then
txtPassword.SelStart = O
txtPassword.SelLength = Len(txtPassword.Text)

Else
End

End If
End If
txtPassword.SetFocus
End Sub
This code checks the input password to see if it matches the stored value. If so, it prints
an acceptance message. If incorrect, it displays a message box to that effect and asks
the user if they want to try again. If Yes (Retry), another try is granted. If No (Cancel),
the program is ended. Notice the use of SelLength and SelStart to highlight an
incorrect entry. This allows the user to type right over the incorrect response.

5. Attach the following code to the Form Activate event.

Private Sub Form_ActivateO
txtPassword.SetFocus
End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_ CJickO
End
End Sub

7. Try running the program. Try both options: input correct password (note it is case
sensitive) and input incorrect password. Save your project (saved as Example3-1 in the
LearnVB6NB6 Code/Class 3 folder).

If you have time, define a constant, TRYMAX = 3, and modify the code to allow the
user to have just TRYMAX attempts to get the correct password. After the final try,
inform the user you are logging him/her off. You'll also need a variable that counts
the number of tries (make it a Static variable).

2.7.Check Boxes

• Check boxesprovide a way to make choices from a list of potential candidates.
Some, all, or none of the choices in a group may be selected.

• Check Box Properties:

28

I

Caption Identifying text next to box.
Font Sets font type, style, size.
Value Indicates if unchecked (O, vbUnchecked), checked (1, vbChecked), or
grayed out (2, vbGrayed).

• Check Box Events:

I Click Triggered when a box is clicked. Value property is automatically
changed by Visual Basic.

I
2.8.0ption Buttons

I • Option buttons provide the capability to make a mutually exclusive choice among
a group of potential candidate choices. Hence, option buttons work as a group, only one
of which can have a True (or selected) value.

I
r

• Option Button Properties:

Caption Identifying text next to button.
Font Sets font type, style, size.
Value Indicates if selected (True) or not (False). Only one option button in a
group can be True. One button in each group of option buttons should always
be initialized to True at design time.

• Option Button Events:

Click Triggered when a button is clicked. Value property is automatically
changed by Visual Basic.

2.9.Arrays

• Up to now, we've only worked with regular variables, each having its own unique
name. Visual Basic has powerful facilities for handling arrays, which provide a way to
store a large number of variables under the same name. Each variable, called an
element, in an array must have the same data type, and they are distinguished from each
other by an array index. In this class, we work with one-dimensional arrays, although
multi-dimensional arrays are possible.

• Arrays are declared in a manner identical to that used for regular variables. For
example, to declare an integer array named 'Item', with dimension 9, at the procedure
level, we use:

Dim ltem(9) as Integer

29

I
I
I

If we want the array variables to retain their value upon leaving a procedure, we use the
keyword Static:

Static Item(9) as Integer

At the form or module level, in the general declarations area of the Code window, use:

Dim ltem(9) as Integer

And, at the module level, for a global declaration, use:

Global Item(9) as Integer

The index on an array variable begins at O and ends at the dimensioned value. For
example, the Item array in the above examples has ten elements, ranging from Item(O)
to Item(9). You use array variables just like any other variable - just remember to
include its name and its index. For example, to set Item(5) equal to 7, you simply write:

Item(S) = 7

To sum all the array elements, use:

Sum=O
For I= O to 9
Sum = Sum + Item(I)

Next I

Control Arrays

Similar to variable arrays, control arrays are groups of like controls with the same
name and referred to by individual index values. Use of control arrays depends on the
application. For example, option buttons are almost always grouped in control arrays.

Control arrays are a convenient way to handle groups of controls that perform a similar
function. All of the events available to the single control are still available to the array
of controls, the only difference being an argument indicating the Index (a property of
control arrays) of the selected array element is passed to the event. Hence, instead of
writing individual procedures for each control (i.e. not using control arrays), you only
have to write one procedure for each array.

Another advantage to control arrays is that you can add or delete array elements at run­
time. You cannot do that with controls (objects) not in arrays. Refer to the Load and
Unload statements in on-line help for the proper way to add and delete control array
elements at run-time.

Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the control using the
editor, then paste it on the form. Visual Basic will pop-up a dialog box that will ask you

30

I

I
I
I
r

•
if you wish to create a control array. Respond yes and the array is created (an Indexvalue is assigned to the control).

2. Create all the controls you wish to have in the array. Assign the desired control
array name to the first control. Then, try to name the second control with the same
name. Visual Basic will prompt you, asking if you want to create a control array.
Answer yes. Once the array is created, rename all remaining controls with that name.
As each control is renamed, an Index property is assigned by Visual Basic.

Once a control array has been created and named, elements of the array are referred to
by their Name and Index properties. For example, to set the Caption property of
element 6 of a label box arraynamed JblExanıpJe, we would use:

JbJExampJe(6).Caption == "This is an example"

We'll use control arrays in the next example.

2.1 O.Frames

We've seen that both option buttons and check boxes work as a group. Frames provide
a way of grouping related controls on a form. And, in the case of option buttons, framesaffect how such buttons operate.

To group controls in a frame, you first draw the frame. Then, the associated controls
must be drawn in the frame. This allows you to move the frame and controls together.
And, once a control is drawn within a frame, it can be copied and pasted to create a
control array within that frame. To do this, first click on the object you want to copy.
Copy the object. Then, click on the frame. Paste the object. You will be asked if youwant to create a control array. Answer Yes.

Drawing the controls outside the frame and dragging them in, copying them into a
frame, or drawing the frame around existing controls will not result in a proper
grouping. It is perfectly acceptable to draw frames within other frames.

As mentioned, frames affect how option buttons work. Option buttons-within a frame
work as a group, independently of option buttons in other frames. Option buttons on
the fonn, and not in frames, work as another independent group. That is, the fonn is
itself a frame by default. We'll see this in the next example.

It is important to note that an independent group of option buttons is defined by physical
location within frames, not according to naming convention. That is, a control array of
option buttons does not work as an independent groupjust because it is a control array.
It would only work as a group if it were the only group of option buttons within a frame
or on the fonn. So, remember physical location, and physical location only, dictatesindependent operation of option button groups.

Frame Properties:

31

Caption Title information at top of frame.
Font Sets font type, style, size.
Enabled If False, all controls within frame are disabled

Example 2-2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be entered by
simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second, draw two
option buttons, and in the third, draw six check boxes. Draw two option buttons on the
form. Add two command buttons. Make things look something like this.

3. Set the properties of the form and each control.

Form1:
BorderStyle
Caption
Name

I-Fixed Single
Pizza Order
frmPizza

Framel:
Caption Size

Frame2:
Caption Crust Type

Frame3
Caption Toppings

32

Check4:
Caption
Name

Onions
chk.Top

Check5:
Caption
Name

Green Peppers
chk.Top

Check6:
Caption
Name

Tomatoes
chk.Top

Commandl:
Caption
Name

&Build Pizza
cmdBuild

Command2:
Caption
Name

E&xit
cmdExit

The form should look like this now:

4. Declare the following variables in the general declarations area:

Option Explicit
Dim PizzaSize As String
Dim PizzaCrust As String
Dim PizzaWhere As String

This makes the size, crust, and location variables global to the form.

34

5. Attach this code to the Form_Load procedure. This initializes the pizza size, crust,
and eating location.

Private Sub Form_LoadO
'Initialize pizza parameters
PizzaSize = "Small"
PizzaCrust = "Thin Crust"
Pizza Where= "Eat In"
End Sub

Here, the global variables are initialized to their default values, corresponding to the
default option buttons.

6. Attach this code to the three option button array Click events. Note the use of the
Index variable:

Private Sub optSize_Click(Index As Integer)
'Read pizza size
PizzaSize = optSize(lndex).Caption
End Sub

Private Sub optCrust_ Click(lndex As Integer)
'Read crust type
PizzaCrust = optCrust(Index).Caption
End Sub

Private Sub optWhere_Click(Index As Integer)
'Read pizza eating location
Pizza Where = optWhere(lndex).Caption
End Sub

In each of these routines, when an option button is clicked, the value of the
corresponding button's caption is loaded into the respective variable.

7.Attach this code to the cmdBuild Click event.

Private Sub cmdBuild _ClickO ı.

'This procedure builds a message box that displays your pizza type
Dim Message As String
Dim I As Integer
Message = PizzaWhere + vbCr
Message = Message + PizzaSize + " Pizza" + vbCr
Message = Message + PizzaCrust + vbCr
For I= O To 5
If chkTop(I).Value = vbChecked Then Message= Message+ chkTop(I).Caption +

vbCr
Next I
MsgBoxMessage, vbOKOnly, "Your Pizza"
End Sub

35

This code forms the first part of a message for a message box by concatenating the pizza
size, crust type, and eating location (vbCr is a symbolic constant representing a
'carriage return' that puts each piece of ordering information on a separate line). Next,
the code cycles through the six topping check boxes and adds any checked information
to the message. The code then displays the pizza order in a message box.

7. Attach this code to the cmdExit Click event.

Private Sub cmdExit_Clickü
End
End Sub

8. Get the application working. Notice how the different selection buttons work in
their individual groups. Save your project (saved as Example3-2 in the LearnVB6NB
Code/Class 3 folder).

9. If you have time, try these modifications:

A. Add a new program button that resets the order form to the initial default values.
You'll have to reinitialize the three global variables, reset all check boxes to
unchecked, and reset all three option button groups to their default values.

B. Modify the code so that if no toppings are selected, the message "Cheese Only"
appears on the order form. You'll need to figure out a way to see if no check boxes
were checked.

2.11.List Boxes

A list box displays a list of items from which the user can select one or more items. If
the number of items exceeds the number that can be displayed, a scroll bar is
automatically added.

List Box Properties:

I
Appearance Selects 3-D or flat appearance.
List Array of items in list box.
ListCount Number of items in list. ...

Listlndex The number of the most recently selected item in list. If no item
is selected, Listlndex = -1.
MultiSelect Controls how items may be selected (O-no multiple selection
allowed, I-multiple selection allowed, 2-group selection allowed).
Selected Array with elements set equal to True or False, depending on
whether corresponding list item is selected.
SortedTrue means items are sorted in 'Ascii' order, else items appear in order
added.
Text Text of most recently selected item.

I

I List Box Events:

36

I
II
II Click Event triggered when item in list is clicked.

DblClick Event triggered when item in list is double-clicked. Primary way
used to process selection.

II List Box Methods:

II Addltem Allows you to insert item in list.
Clear Removes all items from list box.
Removeltem Removes item from list box, as identified by index of item to
remove.II
Examples

II lstExample.Addltem "This is an added item"
lstExample.Clear
lstExample.Removeltem 4 ' removes lstExample.List(4)
Items in a list box are usually initialized in a Form_Load procedure. It's always a good
idea to Clear a list box before initializing it.

I
I You've seen list boxes before. In the standard 'Open File' window, the Directory box is

a list box with MultiSelect equal to zero.

I
I

2.12.Combo Boxes

I
The combo box is similar to the list box. The differences are a combo box includes a
text box on top of a list box and only allows selection of one item. In some cases, the
user can type in an alternate response.

Combo Box Properties:

I Combo box properties are nearly identical to those of the list box, with the deletion of
the MultiSelect property and the addition of a Style property.

I Appearance Selects 3-D or flat appearance.
List Array of items in list box portion.
ListCount Number of items in list.
Listlndex The number of the most recently selected item in list. If no item
is selected, Listlndex = -1.
Sorted True means items are sorted in 'Ascii' order, else items appear in order
added.
Style Selects the combo box form.

Style = O, Dropdown combo; user can change selection.
Style = 1, Simple combo; user can change selection (make sure to resize

default box so dropdown area appears).
Style = 2, Dropdown combo; user cannot change selection.

Text Text of most recently selected item.

I
I

'
37

Combo Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked. Primary way
used to process selection.

Combo Box Methods:

Addltem Allows you to insert item in list.
Clear Removes all items from list box.
Removeltem Removes item from list box, as identified by index of item to
remove.

Examples

cboExample.Addltem "This is an added item"
cboExample.Clear
cboExample.Removeltem 4' removes cboExample.List(4)

You've seen combo boxes before. In the standard 'Open File' window, the File Name
box is a combo box of Style 2, while the Drive box is a combo box of Style 3.

Example 3-3

Flight Planner

I
I

1. Start a new project. In this example, you select a destination city, a seat location,
and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command buttons on
the form. The form should appear similar to this:

I
I
I
I
I
I 38

I

3. Set the form and object properties:

Form1:
BorderStyle
Caption
Name

l-Fixed Single
Flight Planner
frmFlight

Listl:
Name
Sorted

lstCities
True

Combol:
Name
Style

cboSeat
2-Dropdown List

Combo2:
Name
Style
Text

cboMeal
I-Simple
[Blank]

(After setting properties for this combo box, resize it until it is large enough to hold 4 to
5 entries.)

Labell:
Caption Destination City

Label2:
Caption Seat Location

Label3:

I Caption Meal Preference

Command!:
Caption
Name

&Assign
cmdAssign

ııı

Command2:
C..?>.""\ı\.\.ı;:)'1:'ı..

~'a.Th.~

Now, the form should look like this:

39

I

I

I

I
I
I
I

4. Attach this code to the Form_Load procedure:

Private Sub Form Loadt)
'Add city names to list box
lstCities.Clear
lstCities.Addltem "San Diego"
lstCities.Addltem "Los Angeles"
lstCities.Addltem "Orange County"
lstCities.Addltem "Ontario"
lstCities.Addltem "Bakersfield"
lstCities.Addltem "Oakland"
lstCities.Addltem "Sacramento"
lstCities.Addltem "San Jose"
lstCities.Addltem "San Francisco"
lstCities.Addltem "Eureka"
lstCities.Addltem "Eugene"
lstCities.Addltem "Portland"
lstCities.Addltem "Spokane"
lstCities.Addltem "Seattle"
lstCities.Listlndex = O

'Add seat types to first combo box
cboSeat.Addltem "Aisle"
cboSeat.Addltem "Middle"
cboSeat.Addltem "Window"
cboSeat.Listlndex = O

'Add meal types to second combobox
cboMeal.Addltem "Chicken"
cboMeal.Addltem "Mystery Meat"
cboMeal.Addltem "Kosher"
cboMeal.Addltem "Vegetarian"
cboMeal.Addltem "Fruit Plate"
cboMeal.Text= "No Preference"
End Sub

40

This code simply initializes the list box and the list box portions of the two combo
boxes.

5.Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign _Clickı)
'Build message box that gives your assignment
Dim Message As String
Message= "Destination: " + lstCities.Text + vbCr
Message= Message+ "Seat Location: "+ cboSeat.Text + vbCr
Message= Message+ "Meal: "+ cboMeal.Text + vbCr
MsgBox Message, vbOKOnly + vblnformation, "Your Assignment"
End Sub

When the Assign button is clicked, this code forms a message box message by
concatenating the selected city (from the list box lstCities), seat choice (from cboSeat),
and the meal preference (from cboMeal).

5. Attach this code to the cmdExit Click event:

Private Sub cmdExit_ Clickı)
End
End Sub

6. Run the application. Save the project (saved as Example3-3 in LearnVB6NB
Code/Class 3 folder).

Chapter3 More Exploration of the Visual Basic Toolbox

3.1.DisplayLayers

In this class, we will look at our first graphic type controls: line tools, shape tools,
picture boxes, and image boxes. And, with this introduction, we need to discuss the
idea of display layers.

Items shown on a form are not necessarily all on the same layer of display. A form's
display is actually made up of three layers as sketched below. All information
displayed directly on the form (by printing or drawing with graphics methods, discussed
in Chapter 7) appears on the bottom-layer. Information from label boxes, image boxes,
line tools, and shape tools, appears on the middle-layer. And, all other objects are
displayed on the top-layer.

41

I

I
I
I
I
I
I
I
I

Bottom-layer: form

==:r Middle-layer: label,
.--~~~~~~~~~~~~~~~~~______!_~.....ıı.....,....irnage,shape,lineI I- rop-layer: other controls

and objects

T

..__

What this means is you have to be careful where you put things on a form or something
could be covered up. For example, a command button placed on top of it would hide
text printed on the form. Things drawn with the shape tool are covered by all controls
except the image box, line control and label control.

The next question then is what establishes the relative location of objects in the same
layer. That is, say two command buttons are in the same area of a form - which one lies
on top ofwhich one? The order in which objects in the same layer overlay each other is
called the Z-order. This order is first established when you draw the form (you can
also establish it in code using the Zorder property). Items drawn last lie over items
drawn earlier. Once drawn, however, clicking on the desired object and choosing Bring
to Front from Visual Basie's Edit menu can modify the Z-order. The Send to Back
command has the opposite effect. Note these two commands only work within a layer;
middle-layer objects will always appear behind top-layer objects and lower layer objects
will always appear behind middle-layer objects.

42

3.2.Line Tool

J The line tool creates simple straight line segments of various width and color. Together
with the shape tool discussed next, you can use this tool to 'dress up' your application.

Line Tool Properties:

I
BorderColor Determines the line color.
BorderStyle Determines the line 'shape'. Lines can be transparent, solid,
dashed, dotted, and combinations.
BorderWidth Determines line width:

I There are no events or methods associated with the line tool.

Since the line tool lies in the middle-layer of the form display, any lines drawn will be
obscured by all controls except the shape tool, label box or image box.

3.3.Shape Tool

The shape tool can create circles, ovals, squares, rectangles, and rounded squares and
rectangles. Colors can be used and various fill patterns are available.

Shape Tool Properties:

BackColor Determines the background color of the shape (only used when
FillStyle not Solid.
BackStyle Determines whether the background is transparent or opaque.
BorderColor Determines the color of the shape's outline.
BorderStyle Determines the style of the shape's outline. The border can be
transparent, solid, dashed, dotted, and combinations.
BorderWidth Determines the widt~ofthe shape border line.
FillColor Defines the interior color of the shape.
FillStyle Determines the interior pattern of a shape. Some choices are:
solid, transparent, cross, etc.
Shape Determines whether the shape is a square, rectangle, circle, or some
other choice.

Like the line tool, events and methods are not used with the shape tool.

Shapes are covered by all objects except perhaps line tools, label boxes and image
boxes (depends on their Z-order) and printed or drawn information. This is a good
feature in that you usually use shapes to contain a group of control objects and you'd
want them to lie on top of the shape.

43

3.4.Horizontal and Vertical Scroll Bars

I Horizontal and vertical scroll bars are widely used in Windows applications. Scroll
bars provide an intuitive way to move through a list of information and make great input
devices.

I
Both type of scroll bars are comprised of three areas that can be clicked, or dragged, to
change the scroll bar value. Those areas are:

End arrow

I Scroll box (thumb)

Clicking an end arrow increments the scroll box a small amount, clicking the bar area
increments the scroll box a large amount, and dragging the scroll box (thumb) provides
continuous motion. Using the properties of scroll bars, we can completely specify how
one works. The scroll box position is the only output information from a scroll bar.

Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll bar Value
property when the bar area is clicked.
Max The value of the horizontal scroll bar at the far right and the value of the
vertical scroll bar at the bottom. Can range from -32,768 to 32,767.
Min The other extreme value - the horizontal scroll bar at the left and the
vertical scroll bar at the top. Can range from -32,768 to 32,767.
SmallChange The increment added to or subtracted from the scroll bar Value
property when either of the scroll arrows is clicked.
Value The current position of the scroll box (thumb) within the scroll bar. If
you set this in code, Visual Basic moves the scroll box to the proper position.

44

Properties for horizontal scroll bar:

LargeChange

Mi

I Smal!Change

Max

SmallChange LargeChange

Properties for vertical scroll bar:

Min

LargeChange

--- Value

-- -SmallChange

LargeChange

SmallChange
Max

A couple of important notes about scroll bars:

I
I

1. Note that although the extreme values are called Min and Max, they do not
necessarily represent minimum and maximum values. There is nothing to keep the Min
value from being greater than the Max value. In fact, with vertical scroll bars, this is the
usual case. Visual Basic automatically adjusts the sign on the SmallChange and
LargeChange properties to insure proper movement of the scroll box from one extreme
to the other.I

I
r

2. If you ever change the Value, Min, or Max properties in code, make sure Value is
at all times between Min and Max or and the program will stop with an error message.

45

Scroll Bar Events:

Change Event is triggered after the scroll box's position has been
modified. Use this event to retrieve the Value property after any changes in thescroll bar.
Scroll Event triggered continuously whenever the scroll box is being moved.

Picture Boxes

The picture box allows you to place graphics information on a form. It is best suited
for dynamic environments - for example, when doing animation.

Picture boxes lie in the top layer of the form display. They behave very much like small
forms within a form, possessing most of the same properties as a form.

Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed graphic.
Font Sets the font size, style, and size of any printing done in the picture box.
Picture Establishes the graphics file to display in the picture box.

Picture Box Events:

Click Triggered when a picture box is clicked.
DblCiick Triggered when a picture box is double-clicked.

Picture Box Methods:
Cls Clears the picture box.
Print Prints information to the picture box.

Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" 'ıfrints text string

Picture Box LoadPicture Procedure:

An important function when using picture boxes is the LoadPicture procedure. It is
used to set the Picture property of a picture box at run-time.

Example

picExample.Picture = LoadPicture("c:\pix\sample.bmp")

This command loads the graphics file c:\pix\sample.bmp into the Picture property of the
picExample picture box. The argument in the LoadPicture function must be a legal,
complete path and file name, else your program will stop with an error message.

46

Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a collection of bits
in which each bit corresponds to one pixel. Usually has a .bmp extension.
Appears in original size.
Icon A special type of bitmap file of maximum 32 x 32 size. Has a .ico
extension. We'll create icon files in Class 5. Appears in original size.
Metafile A file that stores an image as a collection of graphical objects
(lines, circles, polygons) rather than pixels. Metafiles preserve an image more
accurately than bitmaps when resized. Has a .wmf extension. Resizes itself to
fit the picture box area.
JPEG JPEG (Joint Photographic Experts Group) is a compressed bitmap format
which supports 8 and 24 bit color. It is popular on the Internet. Has a .jpg
extension and appears in original size.
GIF GIF (Graphic Interchange Format) is a compressed bitmap format
originally developed by CompuServe. It supports up to 256 colors and is
popular on the Internet. Has a .gif extension and appears in original size.

/

3.5.Image Boxes

An image box is very similar to a picture box in that it allows you to place graphics
information on a form. Image boxes are more suited for static situations - that is, cases
where no modifications will be done to the displayed graphics.

Image boxes appear in the middle-layer of form display, hence they could be obscured
by picture boxes and other objects. Image box graphics can be resized by using the
Stretch property.

Image Box Properties:

Picture Establishes the graphics file to display in the image box.
Stretch If False, the image box resizes itself to fit the graphic. If True,
the graphic resizes to fit the corilrol area.

Image Box Events:

Click Triggered when a image box is clicked.
DblClick Triggered when a image box is double-clicked.

r

The image box does not support any methods, however it does use the LoadPicture
function. It is used in exactly the same manner as the picture box uses it. And image
boxes can load the same file types: bitmap (.bmp), icon (.ico), metafiles (.wmf), GIF
files (.gif), and JPEG files (.jpg). With Stretch = True, all five graphic types will
expand to fit the image box area. Metafiles, GIF files and JPEG files scale nicely using
the Stretch property.

47

I
J

r

I
f

r
I
!

(

3.6.Drive List Box

The drive list box control allows a user to select a valid disk drive at run-time. It
displays the available drives in a drop-down combo box. No code is needed to load a
drive list box; Visual Basic does this for us. We use the box to get the current drive
identification.

Drive List Box Properties:

Drive Contains the name of the currently selected drive.

Drive List Box Events:

Change
selection.

Triggered whenever the user or program changes the drive

48

3.7.Directory List Box

The directory list box displays an ordered, hierarchical list of the user's disk directories
and subdirectories. The directory structure is displayed in a list box. Like, the drive list
box, little coding is needed to use the directory list box - Visual Basic does most of the
work for us.

Directory List Box Properties:

Path Contains the current directory path.

Directory List Box Events:

Change Triggered when the directory selection is changed.

3.8.File List Box

I The file list box locates and lists files in the directory specified by its Path property at
run-time. You may select the types of files you want to display in the file list box.

File List Box Properties:

FileName Contains the currently selected file name.
ListCount Number of files listed
List Array of file names in list box
MultiSelect Allows multiple selection in list box
Path Contains the current path directory.
Pattern Contains a string that determines which files will be displayed. It
supports the use of* and ? wildcard characters. For example, using * .dat only
displays files with the .dat extension.

File List Box Events:

DblClick Triggered whenever a file name is double-clicked.
PathChange Triggered whenever the path changes in a file list box.

49

3.10.Synchronizing the Drive, Directory, and File List Boxes

The drive, directory, and file list boxes are almost always used together to obtain a file
name. As such, it is important that their operation be synchronized to insure the
displayed information is always consistent.

When the drive selection is changed (drive box Change event), you should update the
directory path. For example, if the drive box is named drvExample and the directory
box is dirExample, use the code:

dirExample.Path = drvExample.Drive

When the directory selection is changed (directory box Change event), you should
update the displayed file names. With a file box named filExample, this code is:

fılExample.Path = dirExample.Path

I
I

Once all of the selections have been made and you want the file name, you need to form
a text string that correctly and completely specifies the file identifier. This string
concatenates the drive, directory, and file name information. This should be an easy
task, except for one problem. The problem involves the backslash (\) character. If you
are at the root directory of your drive, the path name ends with a backslash. If you are
not at the root directory, there is no backslash at the end of the path name and you have
to add one before tacking on the file name.

Example code for concatenating the available information into a proper file name and
then loading it into an image box is:

Dim Your File as String

I
I
l

If Right(fılExample.Path,1) = "\" Then
YourFile = fılExample.Path + fılExample.FileName

Else
YourFile = fılExample.Path + "\" + fılExample.FileName

End If
imgExample.Picture = LoadPict,ure(Y ourFile)

Note we only use properties of the file list box. The drive and directory box properties
are only used to create changes in the file list box via code.

r

50

Example 4-2

Image Viewer

Start a new project. In this application, we search our computer's file structure for
graphics files and display the results of our search in an image box.

One possible solution to the Image Viewer Application:

1. Place a drive list box, directory list box, file list box, four label boxes, a line (use
the line tool) and a command button on the form. We also want to add an image box,
but make it look like it's in some kind of frame. Build this display area in these steps:
draw a 'large shape', draw another shape within this first shape that is the size of the
image display area, and lastly, draw an image box right on top of this last shape. Since
the two shapes and image box are in the same display layer, the image box is on top of
the second shape which is on top of the first shape, providing the desired effect of a
kind of picture frame. The form should look like this:

auto161d.vbp
biblio.ldb
biblio.mdb
bright.dib
ctrlref.cnt
ctrlref.ftg
ctrlref.fts
ctrlref.gid
ctrlref.hlp
datamgr.cnt
datamgr.exe
datamgr.ftg
datamgr.fts
datamgr.gid
datamqr.hlp

Imagel

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Forml:
BorderStyle
Caption
Name

I-Fixed Single
Image Viewer
fmılmage

Drivel:
Name drvimage

sr

Dir 1:

Filel:

Labell:

Label2:

Label3:

Label 4:

Name dirlmage

Name
Pattern

fillmage
* .bmp;*.ico;*.wınf;*.gif;*jpg
[type this line with no spaces]

Caption
BackColor
BorderStyle
Name

[Blank]
Yellow
I-Fixed Single
lbllmage

Caption Files:

Caption Directories:

Caption Drives:

Command1:
Caption
Default
Name

&Show Image
True
cmdShow

Command2:
Cancel
Caption
Name

Linel:

Shapel:

Shape2:

True
E&xit
cmdExit

BorderWidth 3

BackColor
BackStyle
FillColor
FillStyle
Shape

Cyan
I-Opaque
Blue
4-Upward Diagonal
4-Rounded Rectangle

BackColor
BackStyle

White
I-Opaque

I
I

I
I

Imagel:
BorderStyle
Name
Stretch

1-Fixed Single
imglmage
True

3. Attach the following code to the drvlmage_Change procedure.

Private Sub drvlmage_Changeü
'If drive changes, update directory
dirlmage.Path = drvlmage.Drive
End Sub

When a new drive is selected, this code forces the directory list box to display
directories on that drive.

4. Attach this code to the dirlmage_Change procedure.

Private Sub dirlmage_Changeü
'If directory changes, update file path
fillmage.Path = dirlmage.Path
End Sub

Likewise, when a new directory is chosen, we want to see the files on that directory.

5. Attach this code to the cmdShow Click event.

Private Sub cmdShow_Clickf)
'Put image file name together and
'load image into image box
Dim ImageName As String
'Check to see if at root directory
If Right(fillmage.Path, 1) = "\" Then
ImageName = fillmage.Path + fillmage.filename

Else
ImageName = fillmage.Path + "\" + fillmage.filename

End If •
lbllmage.Caption = ImageName
imglmage.Picture = LoadPicture(ImageName) !
End Sub

This code forms the file name (ImageName) by concatenating the directory path with
the file name. It then displays the complete name and loads the picture into the image
box.

53

6. Copy the code from the cmdShow _ Click procedure and paste it into the
fillmage_DblCiick procedure. The code is identical because we want to display the
image either by double-clicking on the filename or clicking the command button once a
file is selected. Those of you who know how to call routines in Visual Basic should
note that this duplication of code is unnecessary - we could simply have the
fillmage_DblClickprocedure call the cmdShow_Clickprocedure. We'll learn more
about this next class.

7. Attach this code to the cmdExit _ Click procedure.

Private Sub cmdExit ClickO
End
End Sub

8. Save your project (saved as Example4-2 in LearnVB6NB Code/Class 4 folder).
Run and try the application. Find bitmaps, icons, and metafiles. Notice how the image
box Stretch property affects the different graphics file types. Here's how the form
should look when displaying one example metafile:

disk35.wmf
disk525. wmf
dollar.wmf
dollars.wmf
envlback. wmf
envlfrnt.wmf
fileclsd. wmf
fileopen. wmf
guilder.wmf
harddisk. wmf

laptop2. wmf
micrchip. wmf
money.wmf
morıey~cıg. v,,ınıf

54

3.11.Common Dialog Boxes

The primary use for the drive, directory, and file name list boxes is to develop custom
file access routines. For example, you could just use the file list box (not allowing a
user to change drive or directory). For general use, two common file access routines in
Windows-based applications are the Open File and Save File operations. These can be
used in our Visual Basic applications and, fortunately, you don't have to build theseroutines.

To give the user a standard interface for common operations in Windows-based
applications, Visual Basic provides a set of common dialog boxes, two ofwhich are the
Open and Save As dialog boxes. Such boxes are familiar to any Windows user and
give your application a professional look. And, some context-sensitive help is available
while the box is displayed. Appendix II lists many symbolic constants used with
common dialog boxes.

The Common Dialog control is a 'custom control' which means we have to make sure
some other files are present to use it. In normal setup configurations, Visual Basic does
this automatically. If the common dialog box does not appear in the Visual Basic
toolbox, you need to add it. This is done by selecting Components under the Project
menu. When the selection box appears, click on Microsoft Common Dialog Control, then click OK.

The common dialog tool, although it appears on your form, is invisible at run-time. You
cannot control where the common dialog box appears on your screen. The tool is
invoked at run-time using one of five 'Show' methods. These methods are:

Method Common Dialog Box
Showüpen Open dialog box

ShowSaveSave As dialog box
ShowColor Color dialog box
ShowFontFont dialog box
ShowPrinter Printer dialog box

55

The format for establishing a common dialog box named cdlExample so that an Open
box appears is:

cdlExample.ShowOpen

Control to the program returns to the line immediately following this line, once the
dialog box is closed in some manner. Common dialog boxes are system modal.

Leaming proper use of all the common dialog boxes would require an extensive amount
of time. In this class, we'll limit ourselves to learning the basics of getting file names
from the Open and Save As boxes in their default form.

3.12.0pen Common Dialog Box

The Open common dialog box provides the user a mechanism for specifying the name
of a file to open. We'll worry about how to open a file in Class 6. The box is displayed
by using the ShowOpen method. Here's an example of an Open common dialog box:

Club
[j?Cup
[ffl' Del ete
[ffl' Diamond
[ffl' Envelope
[ffl' Fish

!EH and
[ffl'Happy
[ffl'Heart
[ffl' Intl_no
[j?Key
[l?Mail

Note
[i?N oteboo
[ffl'Phone
[ffl'Pin
[ffl'Plan
[i'Present

56

Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is clicked. Allows
you to use error-handling procedures to recognize that Cancel was clicked.
DialogTitle The string appearing in the title bar of the dialog box. Default is
Open. In the example, the DialogTitle is Open Example.
FileName Sets the initial file name that appears in the File name box. After
the dialog box is closed, this property can be read to determine the name of the
selected file.
Filter Used to restrict the filenames that appear in the file list box. Complete
filter specifications for forming a Filter can be found using on-line help. In the
example, the Filter was set to allow Bitmap (* .bmp), Icon(* .ico), Metafile
(* .wmf), GIP (* .gif), and JPEG(* .jpg) types (only the Bitmap choice is seen).
Filterlndex Indicates which filter component is default. The example uses a
1 for the Filterlndex (the default value).
Flags Values that control special features of the Open dialog box (see
Appendix II). The example uses no Flags value.

When the user closes the Open File box, you should check the returned file name to
make sure it meets the specifications your application requires before you try to open
the file.

57

Quick Example: The Open Dialog Box

1. Start a new project. Place a common dialog control, a label box, and a command
button on the form. Set the following properties:

Forml:
Caption
Name

Common Dialog Examples
funCommon

CommonDialogl:
DialogTitle Open Example

Filter Bitmaps (*.bmp)l*.bmpl
Icons (*.ico)l*.icoJMetafıles(*.wmf)J*.wmf
GIF Files (* .gif)J*.gi~JPEG Files (* ,jpg)J*.jpg
(all on one line)

cdlExampleName

Labell:
BorderStyle
Caption
Name

I-Fixed Single
[Blank]
lblExample

Command!:
Caption
Name

&Display Box
cmdDisplay

When done, the form should look like this (make sure your label box is very long):

58

2. Attach this code to the cmdDisplay _ Click procedure.

Private Sub cmdDisplay _ ClickO
cdlExample.ShowOpen
lblExample.Caption = cdlExample.filename
End Sub

This code brings up the Open dialog box when the button is clicked and shows the file
name selected by the user once it is closed.

3. Save the application (saved as QExampleOpen in LearnVB6NB Code/Class 4
folder). Run it and try selecting file names and typing file names. Notice names can be
selected by highlighting and clicking the OK button or just by double-clicking the file
name. In this example, clicking the Cancel button is not trapped, so it has the same
effect as clicking OK.

4. Notice once you select a file name, the next time you open the dialog box, that
selected name appears as default, since the FileName property is not affected in code.

3.13.Save As Common Dialog Box

The Save As common dialog box provides the user a mechanism for specifying the
name of a file to save. We'll worry about how to save a file in Class 6. The box is
displayed by using the ShowSave method.. Here's an example of a Save As common
dialog box:

Club
r.;·
~Cup
[if Delete
[if Diamond
[itEnvelope
(if Fish

Hand
[it Happy
!§Heart
[ifintl_no
[itKey
[itMail

~Note
[ifNoteboo
[it Phone
[it Pin
(i?Plan
[if Present

Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is clicked. Allows
you to use error-handling procedures to recognize that Cancel was clicked.
DefaultExt Sets the default extension of a file name if a file is listed without
an extension.

59-

DialogTitle The string appearing in the title bar of the dialog box. Default is
Save As. In the example, the DialogTitle is Save As Example.
FileName Sets the initial file name that appears in the File name box. After
the dialog box is closed, this property can be read to determine the name of the
selected file.
Filter Used to restrict the filenames that appear in the file list box.
Filterlndex Indicates which filter component is default.
Flags Values that control special features of the dialog box (see Appendix II).

The Save File box is commonly configured in one of two ways. If a file is being saved
for the first time, the Save As configuration, with some default name in the FileName
property, is used. In the Save configuration, we assume a file has been previously
opened with some name. Hence, when saving the file again, that same name should
appear in the FileName property. You've seen both configuration types before.

When the user closes the Save File box, you should check the returned file name to
make sure it meets the specifications your application requires before you try to save the
file. Be especially aware of whether the user changed the file extension to something
your application does not allow.

Quick Example: The Save As Dialog Box

1. We'll just modify the Open example a bit. Change the DialogTitle property of the
common dialog control to "Save As Example" and set the DefaultExt property equal to
"bmp".

2. In the cmdDisplay _ Click procedure, change the method to ShowSave (opens Save
As box).

3. Save the application (saved as QExampleSave in LearnVB6NB Code/Class 4
folder) and run it. Try typing names without extensions and note how .bmp is added to
them. Notice you can also select file names by double-clicking them or using the OK
button. Again, the Cancel button is not trapped, so it has the same effect as clicking
OK.

Chapter4 Error-Handling, Debugging and File Input/Output
4.1.ErrorTypes
No matter how hard we try, errors do creep into our programs. These errors can be
grouped into three categories:

1. Syntax errors
2. Run-time errors
3. Logic errors

• Syntax errors occur when you mistype a command or leave out an expected phrase or
argument. Visual Basic detects these errors as they occur and even provides help in
correcting them. You cannot run a Visual Basic program until all syntax errors have

60

been corrected.

• Run-time errors are usually beyond your program's control. Examples include: when a
variable takes on an unexpected value (divide by zero), when a drive door is left open,
or when a file is not found. Visual Basic allows you to trap such errors and make
attempts to correct them.

• Logic errors are the most difficult to find. With logic errors, the program will usually
run, but will produce incorrect or unexpected results. The Visual Basic debugger is an
aid in detecting logic errors.

•Someways to minimize errors:

• Design your application carefully. More design time means less debugging time.
• Use comments where applicable to help you remember what you were trying to
do.
• Use consistent and meaningful naming conventions for your variables, objects,
and procedures.

• Run-time errors are trappable. That is, Visual Basic recognizes an error has occurred
and enables you to trap it and take corrective action. If an error occurs and is not
trapped, your program will usually end in a rather unceremonious manner.

• Error trapping is enabled with the On Error statement:

On Error GoTo errlabel

Yes, this uses the dreaded GoTo statement! Any time a run-time error occurs following
this line, program control is transferred to the line labeled errlabel. Recall a labeled lirle
is simply a line with the label followed by a colon(:).

• The best way to explain how to use error trapping is to look at an outline of an
example procedure with error trapping.

Sub SubExample()

[Declare variables, ...]

On Error GoTo HandleErrors

[Procedure code]

Exit Sub
HandleErrors:

Error handling code]

End Sub

61

Once you have set up the variable declarations, constant definitions, and any other
procedure preliminaries, the On Error statement is executed to enable error trapping.
Your normal procedure code follows this statement. The error handling code goes at the
end of the procedure, following the HandleErrors statement label. This is the code that
is executed if an error is encountered anywhere in the Sub procedure. Note you must
exit (with Exit Sub) from the code before reaching the HandleErrors line to avoid
inadvertent execution of the error handling code.

• Since the error handling code is in the same procedure where an error occurs, all
variables in that procedure are available for possible corrective action. If at some time in
your procedure, you want to turn off error trapping, that is done with the following
statement:

On Error GoTo O

• Once a run-time error occurs, we would like to know what the error is and attempt to
fix it. This is done in the error handling code.

• Visual Basic offers help in identifying run-time errors. The Err object returns, in its
Number property (Err.Number), the number associated with the current error condition.
(The Err function has other useful properties that we won't cover here - consult on-line
help for further information.) The Error() function takes this error number as its
argument and returns a string description of the error. Consult on-line help for Visual
Basic run-time error numbers and their descriptions.

• Once an error has been trapped and some action taken, control must be returned to
your application. That control is returned via the Resume statement. There are three
options:

Resume Lets you retry the operation that caused the error. That is, control is returned to
the line where the error occurred. This could be dangerous in that, if the error has not
been corrected (via code or by the user), an infinite loop between the error handler and
the procedure code may result.

Resume Next Program control is returned to the line immediately following the line
where the error occurred. "
Resume label Program control is returned to the line labeled label.

..•
• Be careful with the Resume statement. When executing the error handling portion of
the code and the end of the procedure is encountered before a Resume, an error occurs.
Likewise, if a Resume is encountered outside of the error handling portion of the code,
an error occurs.

Development of an adequate error handling procedure is application dependent. You
need to know what type of errors you are looking for and what corrective actions must
be taken if these errors are encountered. For example, if a 'divide by zero' is found, you
need to decide whether to skip the operation or do something to reset the offending
denominator.

• What we develop here is a generic framework for an error handling procedure. It

62

simply informs the user that an error has occurred, provides a description of the error,
and allows the user to Abort, Retry, or Ignore. This framework is a good starting point
for designing custom error handling for your applications.

• The generic code (begins with label HandleErrors) is:

HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore, "Error
Number" + Str(Err.Number))

Case vbAbort
Resume ExitLine

Case vbRetry
Resume

Case vblgnore
Resume Next

End Select
ExitLine:
Exit Sub

4.2.General Error Handling Procedure

Let's look at what goes on here. First, this routine is only executed when an error
occurs. A message box is displayed, using the Visual Basic provided error description
[Error(Err.Number)] as the message. uses a critical icon along with the Abort, Retry,
and Ignore buttons, and uses the error number [Err.Number] as the title. This message
box returns a response indicating which button was selected by the user.

If Abort is selected, we simply exit the procedure. (This is done using a Resume to the
line labeled ExitLine. Recall all error trapping must be terminated with a Resume
statement of some kind.)

If Retry is selected, the offending program line is retried (in a real application, you or
the user would have to change something here to correct the condition causing the

I'
error).

If Ignore is selected, program operation continues with the line following the error
causing line. •

• To use this generic code in an existing procedure, you need to do three things:

1. Copy and paste the error handling code into the end of your procedure.
2. Place an Exit Sub line immediately preceding the HandleErrors labeled line.
3. Place the line, On Error GoTo HandleErrors, at the beginning of your procedure.

For example, if your procedure is the SubExample seen earlier, the modified code will
look like this:

63

Sub SubExampleO

. [Declare variables, ...]

On Error GoTo HandleErrors

. [Procedure code]

Exit Sub
Handle Errors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore, "Error
Number"+ Str(Err.Number))
Case vbAbort

Resume ExitLine
Case vbRetry

Resume
Case vblgnore

Resume Next

End Select
ExitLine:
Exit Sub
End Sub

Again, this is a very basic error-handling routine. You must determine its utility in your
applications and make any modifications necessary. Specifically, you need code to clear
error conditions before using the Retry option.

• One last thing. Once you've written an error handling routine, you need to test it to
make sure it works properly. But, creating run-time errors is sometimes difficult and
perhaps dangerous. Visual Basic comes to the rescue! The Visual Basic Err object has a
method (Raise) associated with it that simulates the occurrence of a run-time error. To
cause an error with value Number, use:

Err.Raise Number

• We can use this function to completely test the operation of any error handler we
write. Don't forget to remove the Raise statement once testing is completed, though!
And, to really get fancy, you can also use Raise to generate your own 'application­
defined' errors. There are errors specific to your application that you want to trap.

• To clear an error condition (any error, not just ones generated with the Raise method),
use the method Clear:

Err.Clear

Example-Simple Error Trapping

64

1. Start a new project. Add a text box and a command button.

2. Set the properties of the form and each control:

Forml:
BorderStyle - 1-Fixed Single
Caption - Error Generator
Name frmError

Commandl:
Caption - Generate Error
Default - True
Name - cmdGenError

Textl:
Name - txtError
Text - [Blank)

The form should look something like this:

3. Attach this code to the cmdGenError Click event.

Private Sub cmdGenError _Click()
On Error GoTo HandleErrors
Err.Raise Val(txtError.Text)
Err.Clear
Exit Sub

HandleErrors:Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore, "Error

Number"+ Str(Err.Number))

Case vbAbort
Resume ExitLine

Case vbRetry
Resume

Case vblgnore
Resume Next

End Select

ExitLine:

65

Exit Sub
End Sub

In this code, we simply generate an error using the number input in the text box. The
generic error handler then displays a message box which you can respond to in one of
three ways.

4. Save your application. Try it out using some of these typical error numbers (or use
numbers found with on-line help). Notice how program control changes depending on
which button is clicked.

Error Number Error Description

6
9
11
13
16
20
52
53
55
61
70
92

Overflow
Subscript out of range
Division by zero
Type mismatch
Expression too complex
Resume without error
Bad file name or number
File not found
File already open
Disk full
Permission denied
For loop not initialized

4.3.Debugging Visual Basic programs
• We now consider the search for, and elimination of, logic errors. These are errors that
don't prevent an application from running, but cause incorrect or unexpected results.
Visual Basic provides an excellent set of debugging tools to aid in this search:

• Debugging a code is an art, not a science. There are no prescribed processes that you
can follow to eliminate all logic errors in your program. The usual approach is to
eliminate them as they are discovered,

• What we'll do here is present the debugging tools available in the Visual Basic
environment (several of which appear as buttons on the tool bar) and desoribe their use
with an example. You, as the program designer, should select the debugging approach
and tools you feel most comfortable with.

• The interface between your application and the debugging tools is via three different
debug windows: the Immediate Window, the Locals Window, and the Watch Window.
These windows can be accessed from the View menu (the Immediate Window can be
accessed by pressing Ctrl+G). Or, they can be selected from the Debug Toolbar
(accessed using the Toolbars option under the View menu):

66

•

• All debugging using the debug windows is done when your application is in break
mode. You can enter break mode by setting breakpoints, pressing Ctrl+Break, or the
program will go into break mode if it encounters an untrapped error or a Stop statement.

• Once in break mode, the debug windows and other tools can be used to:

I. Determine values of variables
2. Set breakpoints
3. Set watch variables and expressions
4. Manually control the application
5. Determine which procedures have been called
6. Change the values of variables and properties

Example - Debugging

1. Unlike other examples, we'll do this one as a group. It will be used to demonstrate
use of the debugging tools.

2. The example simply has a form with a single command button. The button is used to
execute some code. We won't be real careful about proper naming conventions and such
in this example.

3. The code attached to this button's Click event is a simple loop that evaluates a
function at several values.

Private Sub Commandl_Click()
Dim X As Integer, Y As Integer
X=O
Do
Y = Fcn(X)
X=X+ 1
Loop While X <= 20
End Sub

This code begins with an X value of O and computes the Y value using the general
integer function Fen. It then increments X by 1 and repeats the Loop. It continues
looping While Xis less than or equal to 20. The function Fen is computed using:

67

Function Fcn(X As Integer) As Integer
Fen= Cint(O. l * X /\ 2)
End Function

Admittedly, this code doesn't do much, especially without any output, but it makes a
good example for looking at debugger use. Set up the application and get ready to trydebugging

4.4.Using the Debugging Tools
. • There are several debugging tools available for use in Visual Basic. Access to these
tools is provided with both menu options and buttons on the Debug toolbar. These tools
include breakpoints, watch points, calls, step into, step over, and step out.

• The simplest tool is the use of direct prints to the immediate window.
• Printing to the Immediate Window:

You can print directly to the immediate window while an application is running.
Sometimes, this is all the debugging you may need. A few carefully placed print
statements can sometimes clear up all logic errors, especially in small applications.

To print to the immediate window, use the Print method:

Debug.Print [List of variables separated by commas or semi-colons]

• Debug.Print Example:

1. Place the following statement in the Command1 _Click procedure after the line
calling the general procedure Fen:

Debug.Print X; Y

and run the application.

2. Examine the immediate window. Note how, at each iteration of the loop, the
program prints the value ofX and Y. Y-ou could use this information to make sure Xis
incrementing correctly and that Y values look acceptable.
3. Remove the Debug.Print statement.

• Breakpoints:

In the above examples, the program ran to completion before we could look at the
debug window. In many applications, we want to stop the application while it is
running, examine variables and then continue running. This can be done with
breakpoints.

68

A breakpoint is a line in the code where you want to stop (temporarily) the execution of
the program, that is force the program into break mode. To set a breakpoint, put the
cursor in the line of code you want to break on. Then, press <F9> or click the
Breakpoint button on the toolbar or select Toggle Breakpoint from the Debug menu.
The line will be highlighted.

When you run your program, Visual Basic will stop when it reaches lines with
breakpoints and allow you to use the immediate window to check variables and
expressions. To continue program operation after a breakpoint, press <FS>, click the
Run button on the toolbar, or choose Start from the Run menu.

You can also change variable values using the immediate window. Simply type a valid
Basic expression. This can sometimes be dangerous, though, as it may change program
operation completely.

• Breakpoint Example:

1. Set a breakpoint on the X = X + 1 line in the sample program. Run the program.
2. When the program stops, display the immediate window and type the following
line:

Print X;Y
3. The values of these two variables will appear in the debug window. You can use
a question mark(?) as shorthand for the command Print, if you'd like. Restart the
application. Print the new variable values.
4. Try other breakpoints if you have time. Once done, all breakpoints can be
cleared by Ctrl+Shift+<F9> or by choosing Clear All Breakpoints from the Debug
menu. Individual breakpoints can be toggled using <F9> or the Breakpoint button on
the toolbar.

• Viewing Variables in the Locals Window:

The locals window shows the value gf any variables within the scope of the current
procedure. As execution switches from procedure to procedure, the contents of this
window changes to reflect only the variables applicable to the current procedure. Repeat
the above example and notice the values ofX and Y also appear in the locals window.

• Watch Expressions:

The Add Watch option on the Debug menu allows you to establish watch expressions
for your application. Watch expressions can be variable values or logical expressions
you want to view or test. Values of watch expressions are displayed in the watch
window.

69

In break mode, you can use the Quick Watch button on the toolbar to add watch
expressions you need. Simply put the cursor on the variable or expression you want to
add to the watch list and click the Quick Watch button.

Watch expressions can be edited using the Edit Watch option on the Debug menu.

• Watch Expression Example:

1. Set a breakpoint at the X = X + 1 line in the example.
2. Set a watch expression for the variable X. Run the application. Notice X appears
in the watch window. Every time you re-start the application, the value of X changes.
3. At some point in the debug procedure, add a quick watch on Y. Notice it is now
in the watch window.
4. Clear the breakpoint. Add a watch on the expression: X = Y. Set Watch Type to
'Break When Value Is True.' Run the application. Notice it goes into break mode and
displays the watch window whenever X = Y. Delete this last watch expression.

• Call Stack:

Selecting the Call Stack button from the toolbar (or pressing Ctrl+L or selecting Call
Stack from the View menu) will display all active procedures, that is those that have not
been exited.

Call Stack helps you unravel situations with nested procedure calls to give you some
idea of where you are in the application.

• Call Stack Example:

1. Set a breakpoint on the Fen = Cint() line in the general function procedure. Run
the application. It will break at this line.
2. Press the Call Stack button. It will indicate you are currently in the Fen
procedure which was called from the Command 1 _Click procedure. Clear the
breakpoint. ı-

• Single Stepping (Step Into):

While at a breakpoint, you may execute your program one line at a time by pressing
<F8>, choosing the Step Into option in the Debug menu, or by clicking the Step Into
button on the toolbar.

This process is single stepping. It allows you to watch how variables change (in the
locals window) or how your form changes, one step at a time.

You may step through several lines at a time by using Run To Cursor option. With this
option, click on a line below your current point of execution. Then press Ctrl+<F8> (or

70

choose Run To Cursor in the Debug menu). the program will run through every line up
to the cursor location, then stop.

• Step Into Example:

1. Set a breakpoint on the Do line in the example. Run the application.
2. When the program breaks, use the Step Into button to single step through the
program.

3. At some point, put the cursor on the Loop While line. Try the Run To Cursor
option (press Ctrl+<F8>).

rProcedure Stepping (Step Over):

While single stepping your program, if you come to a procedure call you know
functions properly, you can perform procedure stepping. This simply executes the entire
procedure at once, rather than one step at a time.

To move through a procedure in this manner, press Shift+<F8>, choose Step Over from
the Debug menu, or press the Step Over button on the toolbar.

• Step Over Example:

1. Run the previous example. Single step through it a couple of times.
2. One time through, when you are at the line calling the Fen function, press the
Step Over button. Notice how the program did not single step through the function as itdid previously.

• Function Exit (Step Out):

While stepping through your program, if you wish to complete the execution of a
function you are in, without stepping through it line-by-line, choose the Step Out
option. The function will be completed and you will be returned to the procedure
accessing that function.

To perform this step out, press Ctrl+Shift+<F8>, choose Step Out from the Debug
menu, or press the Step Out button on the toolbar. Try this on the previous example.

4.5.Debugging Stategies
• We've looked at each debugging tool briefly. Be aware this is a cursory introduction.
Use the on-line help to delve into the details of each tool described. Only through lots of
use and practice can you become a proficient debugger. There are some guidelines to
doing a good job, though.

• My first suggestion is: keep it simple. Many times, you only have one or two bad lines
of code. And you, knowing your code best, can usually quickly narrow down the areas

71

with bad lines. Don't set up some elaborate debugging procedure if you haven't tried a
simple approach to find your error(s) first. Many times, just a few intelligently-placed
Debug.Print statements or a few examinations of the immediate and locals windows can
solve your problem.

• A tried and true approach to debugging can be called Divide and Conquer. If you're
not sure where your error is, guess somewhere in the middle of your application code.
Set a breakpoint there. If the error hasn't shown up by then, you know it's in the second
half of your code. If it has shown up, it's in the first half. Repeat this division process
until you've narrowed your search.

• And, of course, the best debugging strategy is to be careful when you first design and
write your application to minimize searching for errors later.

4.6.Sequental Files

• In many applications, it is helpful to have the capability to read and write information
to a disk file. This information could be some computed data or perhaps information
loaded into a Visual Basic object.

• Visual Basic supports two primary file formats: sequential and random access. We
first look at sequential files.

• A sequential file is a line-by-line list of data. You can view a sequential file with any
text editor. When using sequential files, you must know the order in which information
was written to the file to allow proper reading of the file.

• Sequential files can handle both text data and variable values. Sequential access is best
when dealing with files that have lines with mixed information of different lengths. I
use them to transfer data between applications.

4.7.Sequental File Output(Variables)
• We first look at writing values of variables to sequential files. The first step is to Open
a file to write information to. The syntax for opening a sequential file for output is:

Open SeqFileName For Output As #N

where SeqFileName is the name of the file to open and Nisan integer file number. The
filename must be a complete path to the file.

• When done writing to the file, Close it using:

Close N

Once a file is closed, it is saved on the disk under the path and filename used to open
the file.

• Information is written to a sequential file one line at a time. Each line of output
requires a separate Basic statement.

72

• There are two ways to write variables to a sequential file. The first uses the Write
statement:

Write #N, [variable list]

where the variable list has variable names delimited by commas. (If the variable list is
omitted, a blank line is printed to the file.) This statement will write one line of
information to the file, that line containing the variables specified in the variable list.
The variables will be delimited by commas and any string variables will be enclosed in
quotes. This is a good format for exporting files to other applications like Excel.

Example

Dim A As Integer, B As String, C As Single, D As Integer

Open TestOut For Output As #1
Write #1, A, B, C
Write #1, D
Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by commas, with B (a string variable) in quotes. The
second line will simply have the value of the variable D.

• The second way to write variables to a sequential file is with the Print statement:

Print #N, [variable list]

This statement will write one line of information to the file, that line containing the
variables specified in the variable list. (If the variable list is omitted, a blank line will be
printed.) If the variables in the list are separated with semicolons(;), they are printed
with a single space between them in the file. If separated by commas (,), they are spaced
in wide columns. Be careful usingthe Print statement with string variables. The Print
statement does not enclose string variables in quotes, hence, when you read such a
variable back in, Visual Basic may have trouble knowing where a string ends and
begins. It's good practice to 'tack on' quotes to string variables when using Print.

Example

Dim A As Integer, B As String, C As Single, D As Integer

Open TestOut For Output As #1
Print #1, A; Chr(34) + B + Chr(34), C
Print #1, D
Close 1

73

-- - - ----- ---- -- - -

After this code runs, tb.e fıle 1'est0ut will have two lines. 'The füst will have the
variables A, B, and C, delimited by spaces. B will be enclosed by quotes [C\ır(34)). The
second line will simply have the value of the variable D.

Quick Example: Writing Variables to Sequential Files

1. Start a new project.
2. Attach the following code to the Form_Load procedure. This code simply writes
a few variables to sequential files.

Private Sub Form_Load()
Dim A As Integer, B As String, C As Single, D As Integer
A=S
B = "Visual Basic"
C = 2.15
D=-20
Open "Testl.Txt" For Output As #1
Open "Test2.Txt" For Output As #2
Write #1, A, B, C
Write #1, D
Print #2, A, B, C
Print #2, D
Close 1
Close 2
End Sub
3. Run the program. Use a text editor (try the Windows 95 Notepad) to examine
the contents of the two files, Testl.Txt and Test2.Txt. They are probably in the Visual
Basic main directory. Note the difference in the two files, especially how the variables
are delimited and the fact that the string variable is not enclosed in quotes in Test2.Txt.
Save the application, if you want to

4.8.Sequental File Input(Variables)
• To read variables from a sequential file, we essentially reverse the write procedure.
First, open the file using:

Open SeqFileName For Input As #]}I

where N is an integer file number and SeqFileName is a complete file path. The file is
closed using:

Close N

• The Input statement is used to read in variables from a sequential file. The format is:

Input #N, [variable list]

The variable names in the list are separated by commas. If no variables are listed, the
current line in the file N is skipped.

• Note variables must be read in exactly the same manner as they were written. So,

74

using our previous example with the variables A, B, C, and D, the appropriate
statements are:

Input #1, A, B, C
Input #1, D

These two lines read the variables A, B, and C from the first line in the file and D from
the second line. It doesn't matter whether the data was originally written to the file
using Write or Print (i.e. commas are ignored).

Quick Example: Reading Variables from Sequential Files

1. Start a new project or simply modify the previous quick example.
2. Attach the following code to the Form_Load procedure. This code reads in files
created in the last quick example.

Private Sub Form_Load()
Dim A As Integer, B As String, C As Single, D As Integer
Open "Testl.Txt" For Input As #1
Input #1, A, B, C
Debug.Print "A="; A
Debug.Print "B="; B
Debug.Print "C="; C
Input #1, D
Debug.Print "D="; D
Close 1
End Sub

Note the Debug.Print statements and how you can add some identifiers (in-quotes) for
printed information.
3. Run the program. Look in the debug window and note the variable values. Save
the application, if you want to.
4. Rerun the program using Test2.Txt as in the input file. What differences do you
see? Do you see the problem with using Print and string variables? Because of this
problem, I almost always use Write tinstead of Print) for saving variable information to
files. Edit the Test2.Txt file (in Notepad), putting quotes around the words Visual Basic.
Rerun the program using this file as input - it should work fine now

4.10.Writing and Reading Text Using Sequental Files
• In many applications, we would like to be able to save text information and retrieve it
for later reference. This information could be a text file created by an application or the
contents of a Visual Basic text box.
• Writing Text Files:

To write a sequential text file, we follow the simple procedure: open the file, write the
file, close the file. If the file is a line-by-line text file, each line of the file is written to
disk using a single Print statement:

Print #N, Line

75

where Line is the current line (a text string). This statement should be in a loop that
encompasses all lines of the file. You must know the number of lines in your file,beforehand.

If we want to Writethe contents of the Text property ofa text box named txtExample toa file, we use:

Print #N, txtExample. Text

Example

We have a text box named txtExample. We want to save the contents of the Text
property of that box in a file named MyText.ned on the c: drive in the IMyFilesdirectory. The code to do this is:

Open "c:\MyFiles\MyText.ned" For Output As #1
Print #1, txtExample.Text
Close 1

The text is now saved in the file for later retrieval.

• Reading Text Files:

To read the contents ofa previously-saved text file, we follow similar steps to the
Writingprocess: open the file, read the file, close the file. If the file is a text file, we readeach individual line with the Line Input command:

Line Input # 1, Line

This line is usually placed in a Do/Loop structure that is repeated until] all lines of the
file are read in. The EOFO fimction can be used to detect an end-of-file condition, if youdon't know, a prioiri, how many lines are in the file.

To place the contents of a file opened with number N into the Text property of a textbox named txtExample we use the Input function:
••

txtExample.Text = Input(LOF(N), N)

This Input fonction has two arguments: LOF(N), the length of the file opened as N andN, the file number.

Example

We have a file named MyText.ned stored on the c: drive in the IMyFiles directory. We
want to read that text file into the text property of a text box named txtExample. Thecode to do this is:

Open "c:\MyFiles\MyText.ned" For Input As #1
txtExample.Text = Input(LOF(l), 1)
Close 1

·----- 76

The text in the file will now be displayed in the text box.

4.11.Random Access Files

• Note that to access a particular data item in a sequential file, you need to read in all
items in the file prior to the item of interest. This works acceptably well for small data
files of unstructured data, but for large, structured files, this process is time-consuming
and wasteful. Sometimes, we need to access data in nonsequential ways. Files which
allow nonsequential access are random access files.

• To allow nonsequential access to information, a random access file has a very definite
structure. A random access file is made up of a number of records, each record having
the same length (measured in bytes). Hence, by knowing the length of each record, we
can easily determine (or the computer can) where each record begins. The first record in
a random access file is Record 1, not O as used in Visual Basic arrays. Each record is
usually a set of variables, of different types, describing some item. The structure of a
random access file is:

Rec,ord 1
N bytes

Rec:orcl 2
N bytes

·········ı:ıecofrı3
N bytes

Record Last
N bytes

• A good analogy to illustrate the differences between sequential files and random
access files are cassette music tapes and compact discs. To hear a song on a tape (a
sequential device), you must go past all songs prior to your selection. To hear a song on
a CD (a random access device), yoü simply go directly to the desired selection. One
difference here though is we require all of our random access records to be the same
length - not a good choice on CD's!

• To write and read random access files, we must know the record length in bytes. Some
variable types and their length in bytes are:

Type Length (Bytes)

Integer 2
Long 4
Single 4
Double 8
String 1 byte per character

77

So, for every variable that is in a file's record, we need to add up the individual variable
length's to obtain the total record length. To ease this task, we introduce the idea of
-u.,,e.:-<ie-fm.e<i 'Ja.:ia'o\e.,,.

4.12.User-Defined Variables

• Data used with random access files is most often stored in user-defined variables.
These data types group variables of different types into one assembly with a single,
user-defined type associated with the group. Such types significantly simplify the use of
random access files.

• The Visual Basic keyword Type signals the beginning of a user-defined type
declaration and the words End Type signal the end. An example best illustrates
establishing a user-defined variable. Say we want to use a variable that describes people
by their name, their city, their height, and their weight. We would define a variable of
Type Person as follows:

Type Person
Name As String
City As String
Height As Integer
Weight As Integer
End Type

These variable declarations go in the same code areas as normal variable declarations,
depending on desired scope. At this point, we have not reserved any storage for the
data. We have simply described to Visual Basic the layout of the data.

• To create variables with this newly defined type, we employ the usual Dim statement.
For our Person example, we would use:

Dim Lou As Person
Dim John As Person
Dim Mary As Person

And now, we have three variables, each containing all the components of the variable
type Person. To refer to a single component within a user-defined type, we use the dot­
notation:

VarName.Component

As an example, to obtain Lou's Age, we use:

Dim AgeValue as Integer

AgeValue = Lou.Age

78

Note the similarity to dot-notation we've been using to set properties of various Visual
Basic tools.

4.13.Writing and Reading Random Access Files

• We look at writing and reading random access files using a user-defined variable. For
other variable types, refer to Visual Basic on-line help. To open a random access file
named RanFileName, use:

Open RanFileName For Random As #N Len= RecordLength

where N is an available file number and RecordLength is the length of each record.
Note you don't have to specify an input or output mode. With random access files, as
long as they're open, you can write or read to them.

• To close a random access file, use:

Close N

• As mentioned previously, the record length is the sum of the lengths of all variables
that make up a record. A problem arises with String type variables. You don't know
their lengths ahead of time. To solve this problem, Visual Basic lets you declare fixed
lengths for strings. This allows you to determine record length. If we have a string
variable named StrExample we want to limit to 14 characters, we use the declaration:

Dim StrExample As String * 14

Recall each character in a string uses 1 byte, so the length of such a variable is 14 bytes.

• Recall our example user-defined variable type, Person. Let's revisit it, now with
restricted string lengths:

Type Person
Name As String * 40
City As String * 35
Height As Integer
Weight As Integer
End Type

The record length for this variable type is 79 bytes (40 + 35 +2 + 2). To open a file
named PersonData as File #1, with such records, we would use the statement:

Open PersonData For Random As #1 Len= 79

• The Get and Put statements are used to read from and write to random access files,
respectively. These statements read or write one record at a time. The syntax for these
statements is simple:

Get #N, [RecordNumber], variable

79

Put #N, [RecordNumber], variable

The Get statement reads from the file and stores data in the variable, whereas the Put
statement writes the contents of the specified variable to the file. In each case, you can
optionally specifiy the record number. If you do not specify a record number, the next
sequential position is used.

• The variable argument in the Get and Put statements is usually a single user-defined
variable. Once read in, you obtain the component parts of this variable using dot­
notation. Prior to writing a user-defined variable to a random access file, you 'load' the
component parts using the same dot-notation.

• There's a lot more to using random access files; we've only looked at the basics. Refer
to your Visual Basic documentation and on-line help for further information. In
particular, you need to do a little cute programming when deleting records from a
random access file or when 'resorting' records.

4.14.Using the Open and Save Common Dialog Boxes
• Note to both write and read sequential and random access files, we need a file name
for the Open statement. To ensure accuracy and completeness, it is suggested that
common dialog boxes be used to get this file name information from the user. I'll
provide you with a couple of code segments that do just that. Both segments assume
you have a common dialog box on your form named cdlFiles, with the CancelError
property set equal to True. With this property True, an error is generated by Visual.
Basic when the user presses the Cancel button in the dialog box. By trapping this error,
it allows an elegant exit from the dialog box when canceling the operation is desired.

-The code segment to obtain a file name (MyFileName with default extension Ext) for
opening a file to read is:

Dim MyFileName As String, Ext As String

cdlFiles.Filter = "Files (*." + Ext + ")I*." + Ext
cdlFiles.DefaultExt = Ext
cdlFiles.DialogTitle = "Open File"
cdlFiles.Flags = cdlOFNFileMustExist + cdlO'FNPathMustExist
On Error GoTo No_Open
cdlFiles.ShowOpen
MyFileName = cdlFiles.filename

Exit Sub
No_Open:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

80

A few words on what's going on here. First, some properties are set such that only files
with Ext (a three letter string variable) extensions are displayed (Filter property), the
default extension is Ext (DefaultExt property), the title bar is set (DialogTitle property),
and some Flags are set to insure the file and path exist (see Appendix II for more
common dialog flags).

Error trapping is enabled to trap the Cancel button. Finally, the common dialog box is
displayed and the filename property returns with the desired name. That name is put in
the string variable MyFileName. What you do after obtaining the file name depends on
what type of file you are dealing with. For sequential files, you would open the file, read
in the information, and close the file. For random access files, we just open the file here.
Reading and writing to/from the file would be handled elsewhere in your coding.

-The code segment to retrieve a file name (MyFileName) for writing a file is:

Dim MyFileName As String, Ext As String

cdlFiles.Filter = "Files (*." +Ext+ ")I*." + Ext
cdlFiles.DefaultExt = Ext
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist
On Error GoTo No Save
cdlFiles.ShowSave
MyFileName = cdlFiles.filename

Exit Sub
No Save:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

Note this code is essentially the same used for an Open file name. The Flags property
differs slightly. The user is prompted if a previously saved file is selected for overwrite.
After obtaining a valid file name for a"sequential file, we would open the file for output,
write the file, and close it. For a random access file, things are trickier.

If we want to save the file with the same name we opened it with, we simply close the
file. If the name is different, we must open a file (using a different number) with the
new name, write the complete random access file, then close it. Like I said, it's trickier.

•We use both of these code segments in the final example where we write and read
sequential files.

Example - Note Editor - Reading and Saving Text Files
We now add the capability to read in and save the contents of the text box in the Note
Editor application from last class. Load that application. Add a common dialog box to
your form. Name it cdlFiles and set the CancelError property to True.

81

Modify the File menu (use the Menu Editor and the Insert button) in your application,
such that Open and Save options are included. The File menu should now read:

File
New
Open
Save
Exit

Properties for these new menu items should be:

Caption Name Shortcut

&Open mnuFileOpen [None]
&Save mnuFileSave [None]
The two new menu options need code. Attach this code to the mnuFileOpen _Click
event. This uses a modified version of the code segment seen previously. We assign the
extension ned to our note editor files.

Private Sub mnuFileOpen _Clickt)
cdlFiles.Filter = "Files (* .ned)f * .ned"
cdlFiles.DefaultExt = "ned"
cdlFiles.DialogTitle = "Open File"
cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist
On Error GoTo No_Open
cdlF iles. Showüpen
Open cdlFiles.filename For Input As #1
txtEdit.Text = Input(LOF(l), 1)
Close 1
Exit Sub
No_Open:
Resume ExitLine
ExitLine:

Exit Sub
End Sub

!!l

And for the mnuFileSave _Click procedure, use this code. Much of this can be copied
from the previous procedure.

Private Sub mnuFileSave _Clickt)
cdlFiles.Filter = "Files (* .ned)f * .ned"
cdlFiles.DefaultExt = "ned"
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist
On Error GoTo No Save
cdlFiles. ShowSave
Open cdlFiles.filename For Output As #1
Print # 1, txtEdit. Text
Close 1
Exit Sub

82

No Save:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

Each of these procedures is similar. The dialog box is opened and, if a filename is
returned, the file is read/written. If Cancel is pressed, no action is taken. These routines
can be used as templates for file operations in other applications.
Save your application. Run it and test the Open and Save functions. Note you have to
save a file before you can open one. Check for proper operation of the Cancel button in
the common dialog box.
If you have the time, there is one major improvement that should be made to this
application. Notice that, as written, only the text information is saved, not the formatting
(bold, italic, underline, size). Whenever a file is opened, the text is displayed based on
current settings. It would be nice to save formatting information along with the text.
This can be done, but it involves a fair amount of reprogramming. Suggested steps:

A. Add lines to the mnuFileSave Click routine that write the text box properties
FontBold, Fontltalic, FontUnderline, and FontSize to a separate sequential file. If your
text file is named TxtFile.ned, I would suggest naming the formatting file TxtFile.fmt.
Use string functions to put this name together. That is, chop the ned extension off the
text file name and tack on the fint extension. You'll need the Len() and Left() functions.

B. Add lines to the mnuFileOpen _ Click routine that read the text box properties
FontBold, Fontltalic, FontUnderline, and FontSize from your format sequential file.
You'll need to define some intermediate variables here because Visual Basic won't
allow you to read properties directly from a file. You'll also need logic to set/reset any
check marks in the menu structure to correspond to these input properties.

C. Add lines to the mnuFileN ew Click procedure that, when the user wants a new file,
reset the text box properties FontBold, Fontltalic, FontUnderline, and FontSize to their
default values and set/reset the corresponding menu check marks.

D. Try out the modified application. Make sure every new option works as it should.

Actually, there are 'custom' tools (we'll look at custom tools in Class 1 O) that do what
we are trying to do with this modification, that is save text box contents with formatting
information. Such files are called 'rich text files' or rtf files. You may have seen these
before when transferring files from one word processor to another.
Another thing you could try: Modify the message box that appears when you try to Exit.
Make it ask if you wish to save your file before exiting- provide Yes, No, Cancel
buttons. Program the code corresponding to each possible response. Use calls to
existing procedures, if possible.

'
Chapters Database Access Management
5.1.Database Structure and Terminology
• In simplest terms, a database is a collection of information. This collection is stored in
well-defined tables, or matrices.

83

• The rows in a database table are used to describe similar items. The rows are referred
to as database records. In general, no two rows in a database table will be alike.

• The columns in a database table provide characteristics of the records. These
characteristics are called database fields. Each field contains one specific piece of
information. In defining a database field, you specify the data type, assign a length, and
describe other attributes.

• Here is a simple database example:

.Field
iti Ho I N.ıııııt Dııte ofl'!lrth

68

Table

In this database table, each record represents a single individual. The fields (descriptors
of the individuals) include an identification number (ID No), Name, Date of Birth,
Height, and Weight.

• Most databases use indexes to allow faster access to the information in the database.
Indexes are sorted lists that point to a particular row in a table. In the example just seen,
the ID No field could be used as an index.

• A database using a single table is called a flat database. Most databases are made up of
many tables. When using multiple tables within a database, these tables must have some
common fields to allow cross-referencing of the tables. The referral of one table to
another via a common field is called a relation. Such groupings of tables are called
relational databases.

• In our first example, we will use a sample database that comes with Visual Basic. This
database (BIBLIO.MDB) is found in the main Visual Basic directory (try c:\Program
Files\Microsoft Visual Studio\VB98). It is a database of books about computers. Let's
look at its relational structure. The BH3LIO.MDB database is made up of four tables:

Authors Table (6246 Records, 3 Fields)ı AııJO i Aıdtıor ! Y••r Born ı

'"°'''""''"'~,.-:,-•Av;.., ,,,-.,_,._..,.,,~O,<, .:, '""'o,<J,,< ,~,,_ -~·:

84

Publishers Table (727 Records, 10 Fields)

Pub ID Name Coınımny Fax Comments

Title Author Table (16056 Records, 2 Fields)

ISBN I Au_lD

The Authors table consists of author identification numbers, the author's name, and the
year bom. The Publishers table has information regarding book publishers. Some of the
fields include an identification number, the publisher name, and pertinent phone
numbers. The Title Author table correlates a book's ISBN (a universal number
assigned to books) with an author's identification number. And, the Titles table has
several fields describing each individual book, including title, ISBN, and publisher
identification

Note each table has two types of information: source data and relational data. Source
data is actual information, such as titles and author names. Relational data are
references to data in other tables, such as Au_ID and PubID. In the Authors, Publishers
and Title Author tables, the first column is used as the table index. In the Titles table,
the ISBN value is the index.

• Using the relational data in the four tables, we should be able to obtain a complete
description of any book title in the database. Let's look at one example:

85

Publishersr· ...···· tfüe .·.······.· ..··ı
i Stepc,by-step d8ase IV

Pııbllsher

lc.öraw•HUI

Authors

Here, the book in the Titles table, entitled "Step-by-step dBase IV," has an ISBN of 0-
0280095-2-5 and a PubID of 52. Taking the PubID into the Publishers table,
determines the book is published by McGraw-Hill and also allows us to access all other
information concerning the publisher. Using the ISBN in the Title Author table
provides us with the author identification (Au_ID) of 171, which, when used in the
Authors table, tells us the book's author is Toby Wraye.

• We can form alternate tables from a database's inherent tables. Such virtual tables, or
logical views, are made using queries of the database. A query is simply a request for
information from the database tables. As an example with the BIBLIO.MDB database,
using pre-defined query languages, we could 'ask' the database to form a table of all
authors and books published after 1992, or provide all author names starting with B.
We'll look briefly at queries.

• Keeping track of all the information in a database is handled by a database
management system (DBMS). They are used to create and maintain databases.
Examples of commercial DBMS programs are Microsoft Access, Microsoft FoxPro,
Borland Paradox, Borland dBase, and Claris FileMaker. We can also use Visual Basic
to develop a DBMS. Visual Basic shares the same 'engine' used by Microsoft Access,
known as the Jet engine. In this class, we will see how to use Visual Basic to access
data, display data, and perform some elementary management operations.

5.2.ADO(ActiveX Data Object) data control

• The ADO (ActiveX Data Object) data control is the primary interface between a
Visual Basic application and a database. It can be used without writing any code at all!
Or, it can be a central part of a complex database management system. This icon may
not appear in your Visual Basic toolbox. If it doesn't, select Project from the main
menu, then click Components. The Components window will appear. Select Microsoft
ADO Data Control, then click OK. The control will be added to your toolbox.

• As mentioned in Review and Preview, previous versions ofVisual Basic used another
data control. That control is still included with Visual Basic 6.0 (for backward
compatibility) and has as its icon:

86

Make sure you are not using this data control for the work in this class. This control is
suitable for small databases. You might like to study it on your own.
• The data control (or tool) can access databases created by several other programs
besides Visual Basic (or Microsoft Access). Some other formats supported include
Btrieve, dBase, FoxPro, and Paradox databases.
• The data control can be used to perform the following tasks:
1. Connect to a database.
2. Open a specified database table.
3. Create a virtual table based on a database query.
4. Pass database fields to other Visual Basic tools, for display or editing. Such tools are
bound tools (controls), or data aware.
5. Add new records or update a database.
6. Trap any errors that may occur while accessing data.
7. Close the database.
• Data Control Properties:
Align Determines where data control is displayed.

Caption Phrase displayed on the data control.

ConnectionString Contains the information used to establish a connection to a
database.

LockType Indicates the type of locks placed on records during editing
(default setting makes databases read-only).

Recordset A set of records defined by a data control's ConnectionString
and RecordSource properties. Run-time only.

Determines the table (or virtual table) the data control isRecordSource
attached to.
• As a rule, you need one data control for every database table, or virtual table, you need
access to. One row of a table is accessible to each data control at any one time. This is
referred to as the current record.
• When a data control is placed on a form, it appears with the assigned caption and four
arrow buttons:

Movıı to first roy.,,_,_. l Mov,e lo lası roıı

McNe tJJ nexl row

The arrows are used to navigate through the table rows (records). As indicated, the
buttons can be used to move to the beginning of the table, the end of the table, or from
record to record.

5.3.Data Links
• After placing a data control on a form, you set the ConnectionString property. The
ADO data control can connect to a variety of database types. There are three ways to
connect to a database: using a data link, using an ODBC data source, or using a
connection string. In this lesson, we will look only at connection to a Microsoft Access

87

database using a data link. A data link is a file with a UDL extension that contains
information on database type.

• If your database does not have a data link, you need to create one. This process is best
illustrated by example. We will be using the BIBLIO.MDB database in our first
example, so these steps show you how to create its data link:

1. Open Windows Explorer.
2. Open the folder where you will store your data link file.
3. Right-click the right side of Explorer and choose New. From the list of files,
select Microsoft Data Link.
4. Rename the newly created file BIBLIO.UDL
5. Right-click this new UDL file and click Properties.
6. Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider (an
Access database).
7. Click the Next button to go to the Connection tab.
8. Click the ellipsis and use the Select Access Database dialog box to choose the
BIBLIO.MDB file which is in the Visual Basic main folder. Click Open.
9. Click Test Connection. Then, click OK (assuming it passed). The UDL file is
now created and can be assigned to ConnectionString, using the steps below.

• If a data link has been created and exists for your database, click the ellipsis that
appears next to the ConnectionString property. Choose Use Data Link File. Then,
click Browse and find the file. Click Open. The data link is now assigned to the
property. Click OK.

5.4.Assigning Tables
• Once the ADO data control is connected to a database, we need to assign a table to
that control. Recall each data control is attached to a single table, whether it is a table
inherent to the database or the virtual table we discussed. Assigning a table is done via
the RecordSource property.

• Tables are assigned by making queries of the database. The language used to make a
query is SQL (pronounced 'sequel,' meaning structured query language). SQL is an
English-like language that has evolved into the most widely used database query
language. You use SQL to formulate a question to ask of the database. The data base
'answers' that question with a new table of records and fields that match your criteria.

• A table is assigned by placing a valid SQL statement in the RecordSource property of
a data control. We won't be learning any SQL here. There are many texts on the subject
- infact, many of them are in the BIBLIO.MDB database we've been using. Here we
simply show you how to use SQL to have the data control 'point' to an inherent
database table.

• Click on the ellipsis next to RecordSource in the property box. A Property Pages
dialog box will appear. In the box marked Command Text (SQL), type this line:

SELECT * FROM TableName

88

This will select all fields (the * is a wildcard) from a table named TableName in the
database. Click OK.

• Setting the RecordSource property also establishes the Recordset property, which we
will see later is a very important property.

• In summary, the relationship between the data control and its two primary properties
(ConnectionString and RecordSource) is:

Oatııhase ıatı:e ADO Dala cotı1ı:oı

5.5.Bound Data Tools
• Most of the Visual Basic tools we've studied can be used as bound, or data-aware,
tools (or controls). That means, certain tool properties can be tied to a particular
database field. To use a bound control, one or more data controls must be on the form.
• Some bound data tools are:
Label - Can be used to provide display-only access to a specified text data field.
Text Box - Can be used to provide read/write access to a specified text data field.
Probably, the most widely used data bound tool.
Check Box - Used to provide read/write access to a Boolean field.
Combo Box .., Can be used to provide read/write access to a text data field.
List Box - Can be used to provide read/write access to a text data field.
Picture Box - Used to display a graphical image from a bitmap, icon, or metafile on
your form. Provides read/write access to a image/binary data field.
Image Box - Used to display a graphical image from a bitmap, icon, or metafile on your
form (uses fewer resources than a picture box). Provides read/write access to a
image/binary data field.
• There are also three 'custom' data aware tools, the DataCombo (better than using the
bound combo box), DataList (better than the bound list box), and Data Grid tools, we
will look at later.

• Bound Tool Properties: "
DataChanged - Indicates whether a value displayed in a bound control has changed.
DataField - Specifies the name of a field in the table pointed to by the respective datacontrol.
DataSource - Specifies which data control the control is bound to.
If the data in a data-aware control is changed and then the user changes focus to another
control or tool, the database will automatically be updated with the new data (assuming
LockType is set to allow an update).
• To make using bound controls easy, follow these steps (in order listed) in placing the
controls on a form:

1. Draw the bound control on the same form as the data control to which it will bebound.

2. Set the DataSource property. Click on the drop-down arrow to list the data
controls on your form. Choose one.

89

3. Set the DataField property. Click on the drop-down arrow to list the fields
associated with the selected data control records. Make your choice.
4. Set all other properties, as required.

By following these steps in order, we avoid potential data access errors.

• The relationships between the bound data control and the data control are:

(Fie;Jd in current recor,:t)

Example - Accessing the Books Database

1. Start a new application. We'll develop a form where we can skim through the books
database, examining titles and ISBN values. Place an ADO data control, two label
boxes, and two text boxes on the form.

2. If you haven't done so, create a data link for the BIBLIO.MDB database following
the steps given under Data Links in these notes.

3. Set the following properties for each control. For the data control and the two text
boxes, make sure you set the properties in the order given.

Forml:
BorderStyle - I-Fixed Single
Caption - Books Database
Name - frmBooks

Adodcl:
Caption - Book Titles
ConnectionString - BIBLIO.UDL (in whatever folder you saved it in - select, don't~type)
RecordSource - SELECT * FROM Titles
Name - dtaTitles

Labell:
Caption - Title

Label2:
Caption - ISBN

Textl:
DataSource - dtaTitles (select, don't type)
DataField - Title (select, don't type)
Locked - True

90

Text2:
DataSource - dtaTitles (select, don't type)
DataField - ISBN (select, don't type)
Locked - True
Name - txtISBN
Text - [Blank]

MultiLine - True
Name - txtTitle
Text - [Blank]

When done, the form will look something like this (try to space your controls as shown;
we'll use all the blank space as we continue with this example):

\1 ı~tl

ISBN

4. Save the application. Run the application. Cycle through the various book titles using
the data control. Did you notice something? You didn't have to write one line of Visual
Basic code! This indicates the power behind the data tool and bound tools.

5.6.Creating a Virtual Table
• Many times, a database table has more information than we want to display. Or,
perhaps a table does not have all the information we want to display. For instance, in
Example 8-1, seeing the Title and ISBN of a book is not real informative - we would
also like to see the Author, but that information is not provided by the Titles table. In
these cases, we can build our own virtual table, displaying only the information we want

the user to see.
l<,

• We need to form a different SQL statement in the RecordSource property. Again, we
won't be learning SQL here. We will just give you the proper statement.

Quick Example: Forming a Virtual Table

91

1. We'll use the results of Example 8-1 to add the Author name to the form. Replace the
RecordSource property of the dtaTitles control with the following SQL statement:

SELECT Author,Titles.ISBN,Title FROM Authors,[Title Author],Titles WHERE
Authors.Au_ID=[Title Author].Au_ID AND Titles.ISBN=[Title Author].ISBN
ORDER BY Author

This must be typed as a single line in the Command Text (SQL) area that appears when
you click the ellipsis by the RecordSource property. Make sure it is typed in exactly as

shown. Make sure there are spaces after 'SELECT', after' Author,Titles.ISBN,Title',
after 'FROM', after 'Authors,[Title Author],Titles', after 'WHERE', after
'Authors.Au ID=[Title Author] .Au ID', after 'AND', after 'Titles.ISBN=[Title- -
Author].ISBN', and separating the final three words 'ORDER BY Author'. The
program will tell you if you have a syntax error in the SQL statement, but will give you
little or no help in telling you what's wrong.

Here's what this statement does: It selects the Author, Titles.ISBN, and Title fields from
the Authors, Title Author, and Titles tables, where the respective Au_ID and ISBN
fields match. It then orders the resulting virtual table, using authors as an index.

2. Add a label box and text box to the form, for displaying the author name. Set the
control properties.

Label3:
Caption - Author

Textl:
DataSource - dtaTitles (select, don't type)
DataField - Author (select, don't type)
Locked - True
Name - txtAuthor
Text - [Blank]

When done, the form should resemble this:

ıı~ı:~IBook Tiiles.

3. Save, then rerun the application. The author's names will now appear with the book
titles and ISBN values. Did you notice you still haven't written any code?

I know you had to type out that long SQL statement, but that's not code, technically
speaking.Notice how the books are now ordered based on an alphabetical listing of
authors' last names

5.7.Finding Specific Records
• In addition to using the data control to move through database records, we can write
Visual Basic code to accomplish the same, and other, tasks. This is referred to as
programmatic control. In fact, many times the data control Visible property is set to
False and all data manipulations are performed in code. We can also use programmatic
control to find certain records.

92

• There are four methods used for moving in a database. These methods replicate the
capabilities of the four arrow buttons on the data control:

MoveFirst - Move to the first record in the table.
MoveLast - Move to the last record in the table.
MoveNext - Move to the next record (with respect to the current record) in the table.
MovePrevious - Move to the previous record (with respect to the current record) in the
table.

• When moving about the database programmatically, we need to test the BOF
(beginning of file) and EOF (end of file) properties. The BOF property is True when
the current record is positioned before any data. The EOF property is True when the
current record has been positioned past the end of the data. If either property is True, the
current record is invalid. If both properties are True, then there is no data in the database
table at all.

• These properties, and the programmatic control methods, operate on the Recordset
property of the data control. Hence, to move to the first record in a table attached to a
data control named dtaExample, the syntax is:

dtaExample.Recordset.MoveFirst

• There is a method used for searching a database:

Find - Find a record that meets the specified search criteria.

This method also operates on the Recordset property and has three arguments we will
be concerned with. To use Find with a data control named dtaExample:

dtaExample.Recordset.Find Criteria,NumberSkipped,SearchDirection

• The search Criteria is a string expression like a WHERE clause in SQL. We won't
go into much detail on such criteria here. Simply put, the criteria describes what
particular records it wants to look at. For example, using our book database, if we want
to look at books with titles (the Title field) beginning with S, we would use:

II

Criteria = "Title >= 'S'"

Note the use of single quotes around the search letter. Single quotes are used to enclose
strings in Criteria statements. Three logical operators can be used: equals(=), greater
than(>), and less than (<).

• The NumberSkipped argument tells how many records to skip before beginning the
Find. This can be used to exclude the current record by setting NumberSkipped to 1.

• The SearchDirection argument has two possible values: adSearchForward or
adSearchBackward. Note, in conjunction with the four Move methods, the
SearchDirection argument can be used to provide a variety of search types (search
from the top, search from the bottom, etc.)

93

• If a search fails to find a record that matches the criteria, the Recordset's EOF or BOF
property is set to True (depending on search direction). Another property used in
searches is the Bookmark property. This allows you to save the current record pointer
in case you want to return to that position later. The example illustrates its use.

6.1Basics of the SELECT Statement
In a relational database, data is stored in tables.
/EmplAddressTable · · .
--- ~--r,-··----···------- ·-··-·--·-.--·--·

/SSN ıFirstName ıLastName jAddress jCity [State I
~~~--,H-h"'··,-w,,m,,•,-_.,.,,,,'{'"~m"'"'=""f""-'•mm,=,,,,.,,,,m,,,,,-,.,..,.,,, . .,m,w,-,=,-,,="=,,,mm" fm""""'===''"=•\

\123456789 (Hal \Glass \45 A Street \lnd)' \lndiana \
1·"'""'. '"'""'"·'"-""'"'" \'""-"""""'"'-"""""'"""'""' \""'"'"'-"""'"-----""--\ """'"'"""" ,,,,,,, -, (-------- • -"""""'"'"""" ,"""""'""""""''""""'1

\565656565 ıJoe !Wilder _ıl~_B Ave. JB_urlıngt~~\Vermontl
1345678654 [M;ry- ısmith 11234 C St. [otta iiowa_J

[45-67.43244 iRosa [Cobb jl~~D-~t J~-~~~~~~-J~~~~: j
,,¥-••¥¥¥¥¥¥¥ -m·-¥""""'"" ••w•u~,- - ,,_mm¥¥u•·-•~"''"· . '. W ..·.. ··'·'·'··' · ·

If you want to see the address of each employee. Use the SELECT statement.

SELECT FirstNarne, LastNarne, Address, City, State 

FROM ErnplAddressTable; 

The following is the results of your query of the database:
1 ---------r- ------------------------·---c---- -------·-r·--------if irst Name jLastName [Address [City State
iH~l iGiass - 145 A Street jfudy Jindiana
----- r,;;-;:;·---ı;-""-----
!Joe 'wilder 112 B Ave. [Burlington[Vermont

f~:s~ · · -- ~:~: -- -i]~~~cs~L f::land-~::. J
The Statement asked for the all of data in the EmployeeAddressTable, from the columns 
called FirstName, LastName, Address, City, and State.
To get all columns from table do the following:
SELECT* FROM TableNarne; 

6.2.Conditional Selection 

To further discuss the SELECT statement, let's look at a new example table (for
hypothetical purposes only):

r·N'll" •'<'<Y' .•..• ,,_,. m,,,,m,,,-_,m,,mmm """'"'"""'"'""'~'"•" "'""'"'"'_,,,,_,_,,,,,,,_,,,._,_,, -,,,u,w,mm,m,m,m· "'""'"'"''"'-""'"'""'""""'·ll<--m-wm ,., ll ·un,mNWMW ,UN~--"'" N'<U· ,.,- ,·u· 

JEmployeeStatisticsTable
)EmployeeIDNo ... iSalary

----·loıo 115000 
--·---------; ------r----,,,, _

105 165000 115000 
152 15000 

94



Relational Operators
There are six Relational Operators in SQL, and after introducing them, we'll see how
they're used:

The WHERE clause is used to specify that only certain rows of the table are displayed,
based on the criteria described in that WHERE clause. It is most easily understood by
looking at a couple of examples.
If you wanted to see the EMPLOYEEIDNO's of those making at or over $50,000, use
the following:

SELECT EMPLOYEEIDNO 
FROM EMPLOYEESTATISTICSTABLE 
WHERE SALARY>= 50000; 

Notice that the >= (greater than or equal to) sign is used, as we wanted to see those who
made greater than $50,000, or equal to $50,000, listed together. This displays:
EMPLOYEE I ONO 

010 
105 
152 
215 
244

The WHERE description, SALARY>= 50000, is known as a condition (an operation
which evaluates to True or False). The same can be done for text columns:
SELECT EMPLOYEEIDNO 
FROM EMPLOYEESTATISTICSTABLE 
WHERE POSITION= 'Manager'; 
This displays the ID Numbers of all Managers. Generally, with text columns, stick to
equal to or not equal to, and make sure that any text that appears in the statement is
surrounded by single quotes('). Note: Position is now an illegal identifier because it is
now an unused, but reserved, keyword in the SQL-92 standard.

95



More Complex Conditions: Compound Conditions I Logical Operators
The AND operator joins two or more conditions, and displays a row only if that row's
data satisfies ALL conditions listed (i.e. all conditions hold true). For example, to
display all staff making over $40,000, use:
SELECT EMPLOYEEIDNO 
FROM EMPLOYEESTATISTICSTABLE 
WHERE SALARY> 40000 AND POSITION= 'Staff'; 
The OR operator joins two or more conditions, but returns a row if ANY of the
conditions listed hold true. To see all those who make less than $40,000 or have less
~'ô.~ \ \ ~ ~~~ \~ \f~,w6,\..\~,',_\.~\~~ \"-ı~~~~'-,\).~~~~\"-ı~W~~\.\"ı.~~\).~'-1·.
SELECT EMPLOYEEIDNO 
FROM EMPLOYEESTATISTICSTABLE 
WHERE SALARY< 40000 OR BENEFITS< 10000; 
AND & OR can be combined, for example:
SELECT EMPLOYEEIDNO 

6.3.Joins
In this section, we will only discuss inner joins, and equijoins, as in general, they are the
most useful. For more information, try the SQL links at the bottom of the page.
Good database design suggests that each table lists data only about a single entity, and
detailed information can be obtained in a relational database, by using additional tables,
and by using ajoin. 
First, take a look at these example tables:
AntiqueOwners

t····--·-······-················r······ ·-·--····················-····· ·1····-·----. ---····
jOwnerID [Ownerf.astlvame OwnerFırstName
[Oı [Jones · IBill ---

f02 IS~ith I Bob
1

,··----------·- f
115 [l.awson
H~ ' r ------,-,,.---r-~--------·~-
!21 IAkins ·

ıa

Orders

!21 !Chair .·.ı

.ıs fMırror

Antiques ... _
' ~ ··--r--·---
ISellerID [Buyerfl) [Item
,--------·--······· r--·······. r-······-· I

ed

96 



Keys

First, let's discuss the concept of keys. Aprimary key is a column or set of columns that
uniquely identifies the rest of the data in any given row. For example, in the
AntiqueOwners table, the OwnerID column uniquely identifies that row. This means
two things: no two rows can have the same OwnerID, and, even if two owners have the
same first and last names, the OwnerID column ensures that the two owners will not be
confused with each other, because the unique OwnerID column will be used throughout
the database to track the owners, rather than the names.
Aforeign key is a column in a table where that column is a primary key of another table,
which means that any data in a foreign key column must have corresponding data in the
other table where that column is the primary key. In DBMS-speak, this correspondence
is known as referential integrity. For example, in the Antiques table, both the BuyerID
and SellerID are foreign keys to the primary key of the Antiqueüwners table (OwnerID;
for purposes of argument, one has to be an Antique Owner before one can buy or sell
any items), as, in both tables, the ID rows are used to identify the owners or buyers and
sellers, and that the OwnerID is the primary key of the AntiqueOwners table. In other
words, all of this "ID" data is used to refer to the owners, buyers, or sellers of antiques,
themselves, without having to use the actual names.
Performing a Join
The purpose of these keys is so that data can be related across tables, without having to
repeat data in every table--this is the power of relational databases. For example, you
can find the names of those who bought a chair without having to list the full name of
the buyer in the Antiques table...you can get the name by relating those who bought a
chair with the names in the Antiqueüwners table through the use of the OwnerID,
which relates the data in the two tables. To find the names of those who bought a chair,
use the following query:
SELECT OWNERLASTNAME, OWNERFIRSTNAME 
FROM ANTIQUEOWNERS, ANTIQUES 
WHERE BUYERID = OWNERID AND ITEM= 'Chair'; 

Note the following about this query...notice that both tables involved in the relation are
listed in the FROM clause of the statement. In the WHERE clause, first notice that the
ITEM = 'Chair' part restricts the listing to those who have bought (and in this example,
thereby own) a chair. Secondly, notice how the ID columns are related from one table to
the next by use of the BUYERID = OWNERID clause. Only where ID's match across
tables and the item purchased is a chair (because of the AND), will the names from the

97



Antiqueüwners table be listed. Because the joining condition used an equal sign, this
join is called an equijoin. The result of this query is two names: Smith, Bob & Fowler,
Sam.
Dot notation refers to prefixing the table names to column names, to avoid ambiguity,
as follows:
SELECT ANTIQUEOWNERS.OWNERLASTNAME, ANTIQUEOWNERS.OWNERFIRSTNAME 
FROM ANTIQUEOWNERS, ANTIQUES 
WHERE ANTIQUES.BUYERID = ANTIQUEOWNERS.OWNERID AND ANTIQUES.ITEM 
'Chair'; 

As the column names are different in each table, however, this wasn't necessary.

DISTINCT and Eliminating Duplicates
Let's say that you want to list the ID and names of only those people who have sold an
antique. Obviously, you want a list where each seller is only listed once--you don't want
to know how many antiques a person sold, just the fact that this person sold one (for
counts, see the Aggregate Function section below). This means that you will need to tell
SQL to eliminate duplicate sales rows, and just list each person only once. To do this,
use the DISTINCT keyword.
First, we will need an equijoin to the Antiqueüwners table to get the detail data of the
person's LastName and FirstName. However, keep in mind that since the SellerID

column in the Antiques table is a foreign key to the Antiqueüwners table, a seller will
only be listed if there is a row in the Antiqueüwners table listing the ID and names. We
also want to eliminate multiple occurrences of the SellerID in our listing, so we use
DISTINCT on the column where the repeats may occur (however, it is generally not
necessary to strictly put the Distinct in front of the column name).
To throw in one more twist, we will also want the list alphabetized by LastName, then
by FirstName (on a LastName tie). Thus, we will use the ORDER BY clause:
SELECT DISTINCT SELLERID, OWNERLASTNAME, OWNERFIRSTNAME 
FROM ANTIQUES, ANTIQUEOWNERS 
WHERE SELLERID = OWNERID 
ORDER BY OWNERLASTNAME, OWNERFIRSTNAME; 

In this example, since everyone has sold an item, we will get a listing of all of the
owners, in alphabetical order by last name. For future reference (and in case anyone
asks), this type ofjoin is considered to be in the category of inner joins. 

Aliases & In/Subqueries
In this section, we will talk aboutAliases, In and the use of subqueries, and how these
can be used in a 3-table example. First, look at this query which prints the last name of
those owners who have placed an order and what the order is, only listing those orders
which can be filled (that is, there is a buyer who owns that ordered item):
SELECT OWN.OWNERLASTNAME Last Name, ORD.ITEMDESIRED Item Ordered 
FROM ORDERS ORD, ANTIQUEOWNERS OWN 
WHERE ORD.OWNERID = OWN.OWNERID 
AND ORD.ITEMDESIRED IN 
(SELECT ITEM 
FROM ANTIQUES); 

This gives:
Last Name Item Ordered 

Smith 
Smith 

Table 
Desk 

98



Akins 
Lawson 

Chair 
Mirror 

There are several things to note about this query:
First, the "Last Name" and "Item Ordered" in the Select lines gives the headers on the
report.
The OWN & ORD are aliases; these are new names for the two tables listed in the
FROM clause that are used as prefixes for all dot notations of column names in the
6.4.Aggregate Functions
I will discuss five important aggregate functions: SUM, AVG, MAX, MIN, and
COUNT. They are called aggregate functions because they summarize the results of a
query, rather than listing all of the rows.
SUM () gives the total of all the rows, satisfying any conditions, of the given column,
where the given column is numeric.
AVG() gives the average of the given column.
MAX () gives the largest figure in the given column.
MIN () gives the smallest figure in the given column.
COUNT(*) gives the number of rows satisfying the conditions.
Looking at the tables at the top of the document, let's look at three examples:
SELECT SUM(SALARY), AVG(SALARY)
FROM EMPLOYEESTATISTICSTABLE;
This query shows the total of all salaries in the table, and the average salary of all of the
entries in the table.
SELECT MIN(BENEFITS)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION= 'Manager';
This query gives the smallest figure of the Benefits column, of the employees who are
Managers, which is 12500.
SELECT COUNT(*)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION= 'Staff;
This query tells you how many employees have Staff status (3).

6.5.Deleting Data
Let's delete this new row back out of the database:
DELETE FROM ANTIQUES
WHERE ITEM= 'Ottoman';
But if there is another row that contains 'Ottoman', that row will be deleted also. Let's
delete all rows (one, in this case) that contain the specific data we added before:
DELETE FROM ANTIQUES
WHERE ITEM= 'Ottoman' AND BUYERID = 01 AND SELLERID = 21;

6.6.Updating Data
Let's update a Price into a row that doesn't have a price listed yet:
UPDATE ANTIQUES SET PRICE= 500.00 WHERE ITEM= 'Chair';
This sets all Chair's Prices to 500.00. As shown above, more WHERE conditionals,
using AND, must be used to limit the updating to more specific rows. Also, additional
columns may be set by separating equal statements with commas.

99 



chapter.7 Car Service Garrage Program with visual basic
7.1.About Project
At car service garage program including 4 parts first part is customer information form.
Second part is invoice display form, third part is invoice record form, and finally
database access part . Customer information form and invoice record form connect to
database access table .Enty the knowledge customer information form and invoice
information form records in the database access table.

100



7.2.Advantages of this program
This program customer and car information save in the database access table and this
information make a add ,update ,search and delete.This program also contain invoice
program part invoice information save in the access table make a add , update,search
and delete and display the invoice screen .
1 .fast record in the database access
2.fast search
3 .fast delete records in the table
4.update the records

101



7.3.step by step program
At project, created three form
Forml is "CUSTOMER INFORMATION FORM"
At forml used the 9 label 7 text 5 command

For forml (code)

Dim Db As Database
Dim Tb As Recordset

Private Sub Commandl_Click()
Set Db= OpenDatabase("customer.mdb")
Set Tb= Db.OpenRecordset("custômertable")
Tb.AddNew
Tb.Fields("Customer_ID") = Textl.Text
Tb.Fields("Customer_Name") = Text2.Text
Tb.Fields("Customer_tel") = Text3.Text
Tb.Fields("Customer_Address") = Text4.Text
Tb.Fields("Car_Plate") = Text5.Text
Tb.Fields("Car_Mark") = Text6.Text
Tb.Fields("Car_Model") = Text7.Text
Tb.Update
Tb.Close
Db.Close
End Sub

Private Sub Command2_Click()

102



Set Db= OpenDatabase("customer.mdb")
Set Tb= Db.OpenRecordset("customertable")
Tb.Index = "primarykey"
Tb.Seek"=", Textl.Text
IfTb.NoMatch = O Then
ans= MsgBox("Do you wont update", 4, "update")
If ans = 6 Then
Tb.Edit
Tb.Fields("Customer_Name") = Text2.Text
Tb.Fields("Customer_tel") = Text3.Text
Tb.Fields("Customer_Address") = Text4.Text
Tb.Fields("Car_Plate") = Text5.Text
Tb.Fields("Car_Mark") = Text6.Text
Tb.Fields("Car_Model") = Text7.Text
Tb.Update
Tb.Close
Db.Close
End If
Else
Exit Sub
End If
End Sub

Private Sub Command4 Click()
Set Db= OpenDatabase("customer.mdb")
Set Tb= Db.OpenRecordset("customertable")
Tb.Index = "primarykey"
Tb.Seek"=", Textl.Text
IfTb.NoMatch = O Then
Text2.Text = Tb.Fields("Customer_Name")
Text3.Text = Tb.Fields("Customer_Tel")
Text4.Text = Tb.Fields("Customer_Address")
Text5.Text = Tb.Fields("Car_Plate")
Text6.Text = Tb.Fields("Car_marR")
Text7.Text = Tb.Fields("Car_Model")
End If
Tb.Close
Db.Close

End Sub

Private Sub Command5 _Click()
Form2.Show
End Sub

Private Sub Text2_KeyPress(KeyAscii As Integer)
If Key Ascii = 13 Then
Text3. SetFocus

103



End If
End Sub

Private Sub Text3_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
Text4.SetFocus
End If
End Sub

Private Sub Text4_KeyPress(KeyAscii As Integer)
If Key Ascii = 13 Then
Text5. SetFocus
End If
End Sub
Private Sub Text5_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
Text6.SetFocus
End If
End Sub

Private Sub Text6_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then

/
TextJ,,-:SetF ocus
End If
End Sub
Private Sub Text7 _KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
Command 1. SetFocus
End If
End Sub

Private Sub Form_Load()
Labell.Caption = "CUSTOMER INFORMATION FORM"
Label2.Caption = "Customer ID" "
Label3.Caption = "Customer Name"
Label4.Caption = "CustomerTel "
Label5. Caption = "Customer Address"
Label6.Caption = "Plate No of Car"
Label7.Caption = "Car Mark"
Label8.Caption = "Car Model"
Label9.Caption = "Car information Part"
Textl .Text= ""
Text2.Text = ""
Text3.Text = ""
Text4.Text = ""
Text5.Text = ""
Text6.Text = ""
Text7.Text = ""

104

',



Command I .Caption= "Add"
Command2.Caption = "Update"
Command3.Caption = "Delete"
Command4.Caption = "Search"
Command5.Caption = "invoice"
End Sub

Private Sub Command3 _Click()
Set Db= OpenDatabase("customer.mdb")
Set Tb= Db.OpenRecordset("customertable")
Tb.Index = "primarykey"
Tb.Seek"=", Textl.Text
IfTb.NoMatch = O Then
Tb.Delete
MsgBox "Record deleted"
Textl.Text = ""
Text2.Text = '"'
Text3.Text = ""
Text4.Text = ""
Text5.Text = ""
Text6.Text = '"'
Text7.Text = '"'
Else
MsgBox "Record not found"
End If
Tb.Close
Db.Close
End Sub

Form2 is "INVOICE"
At form2(INVOICE) used the 5 label 1 combol 3 text 1 msflexgrid 2 button

105



For form2(codes)

Dim Db As Database
Dim Tb As Recordset

Private Sub Combo1 _click()
Set Db= OpenDatabase("customer.mdb")
SQL ="select* from car where part=" & Combol.Text & ""'
Set Tb= Db.OpenRecordset(SQL)
While Not Tb.EOF
MSFlexGridl .Addltem Tb.Fields("part") & Chr(9) ~ Str(Tb.Fields("priee")) & Chr(9)
& Str(Tb.Fields("labor")) & Chr(9) & Str(Tb.Fields("total"))
Tb.MoveNext
Wend
Tb.Close
Db.Close

End Sub

Private Sub Commandl_Click()
Set Db= OpenDatabase("customer.mdb")
SQL ="select* from car where ID=" & Val(Textl.Text) & '"'
Set Tb= Db.OpenRecordset(SQL)

106



tot= O
While Not Tb.EOF
tot = tot + Tb.Fields("price") + Tb.Fields("labor")
MSFlexGridl .Addltem Tb.Fields("part") & Chr(9) & Str(Tb.Fields("price")) & Chr(9)
& <;:,\1('i'o.r1e\ıı':'ı\'.'\a'om:11)) & C'm\<)') & 'S\,\\o\)
Tb.MoveNext
Wend
Tb.Close
Db.Close

End Sub

Private Sub Form_Load()
Labell .Caption= "INVOICE"
Label2.Caption = "Customer id"
Label3.Caption = "Customer Name"
Label4.Caption = "Customer Tel"
Combo 1 .Addltem "Polen Filter"
Combol.Addltem "Air Filter"
Combol.Addltem "spark Plug"
Combo 1 .Addltem "Battery"
Combo 1 .Addltem "hydraulic oil"
Combol.Addltem "Hydraulic"
Combol.Addltem "Brake oil"
Combo 1 .Addltem "Rubber"
Combol.Addltem "Engine Oil"
Combo 1 .Addltem "Engine Water"
Combo 1 .Addltem "Medicated Water"
Combo 1 .Addltem "Other"
Textl .Text=""
Text2.Text = ""
Text3.Text = ""
Text4.Text = ""
Command I.Caption= "calculate"
Command2.Caption = "invoice record"
MSFlexGridl .Cols= 4
MSFlex Grid l .Rows = 1
MSFlex Grid 1. Clear
MSFlexGridl .Col= O
MSFlexGridl.Row = O
MSFlexGridl .Text= "part"
MSFlexGridl .Col= 1
MSFlexGridl.Row = O
MSFlexGridl .Text= "price"
MSFlexGridl .Col= 2
MSFlexGrid 1 .Row = O
MSFlexGridl .Text= "labor"
MSFlexGridl.Col = 3
MSFlexGridl .Row= O
MSFlexGridl .Text= "total"

107



MSFlexGridl .ColWidth(O) = 1200
MSFlexGridl.ColWidth(l) = 2000
MSFlexGridl .Co1Width(2) = 2000
MSFlexGridl .Co1Width(3) = 3000
End Sub
Private Sub Cornmand2 _Click()
Form3.Show
End Sub

Form3 is "Invoice record FORM"
At forml used the 5 label 4 text 4cornmand

form3 (code) .
Dim Db As Database
Dim Tb As Recordset

Private Sub Cornmandl_Click()
Set Db= OpenDatabase("customer.mdb")
Set Tb= Db.OpenRecordset("car")
Tb.AddNew
Tb.Fields("Part") = Textl .Text
Tb.Fields("Price") = Val(Text2.Text)
Tb.Fields("Labor") = Val(Text3.Text)
Tb.Fields("Total") = Val(Text4.Text)

108



Tb.Update
Tb.Close
Db.Close
End Sub

Private Sub Command2 _Click()
Set Db= OpenDatabase("custorner.rndb")
Set Tb= Db.OpenRecordset("car")
Tb.Index = "prirnarykey"
Tb.Seek"=", Val(Textl.Text)
IfTb.NoMatch = O Then
ans= MsgBox("Do you wont update", 4, "update")
If ans = 6 Then
Tb.Edit
Tb.Fields("Part") = Text2.Text
Tb.Fields("Price") = Text3.Text
Tb.Fields("Labor") = Text4.Text
Tb.Fields("Total") = Text5.Text
Tb.Update
Tb.Close
Db.Close
End If
Else
Exit Sub
End If
End Sub

Private Sub Command4_ Click()
Set Db= OpenDatabase("custorner.rndb")
Set Tb= Db.OpenRecordset("car")
Tb.Index = "prirnarykey"
Tb.Seek"=", Val(Textl.Text)
IfTb.NoMatch = O Then
Text2.Text = Tb.Fields("Part") "
Text3.Text = Tb.Fields("Price")
Text4.Text = Tb.Fields("Labor")
Text5.Text = Tb.Fields("Total")
End If
Tb.Close
Db.Close

End Sub

Private Sub Text2~KeyPress(KeyAscii As Integer)
If Key Ascii = 13 Then
Text3. SetFocus
End If

\

109



End Sub

Private Sub Text3_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
Text4.SetFocus
End If
End Sub

Private Sub Text4_KeyPress(KeyAscii As Integer)
If Key Ascii = 1 3 Then
Commandl .SetFocus
End If
End Sub \
Private Sub Form_Load()
Labell.Caption = "INVOICE INFORMATION RECORD"
Label2.Caption = "Part"
Label3.Caption = "Price"
Label4.Caption = "Labor "
Label5.Caption = "Total"
Textl.Text = ""
Text2.Text = 1111

Text3.Text = ""
Text4.Text = '"'
Commandl.Caption = "Add"
Command2.Caption = "Update"
Command3.Caption = "Delete"
Command4.Caption = "Search"
End Sub

Private Sub Command3_Click()
Set Db= OpenDatabase("customer.mdb")
Set Tb= Db.OpenRecordset("car")
Tb.Index = "primarykey"

I'Tb.Seek"=", Val(Textl.Text)
IfTb.NoMatch = O Then
Tb.Delete
MsgBox "Record deleted"
Textl .Text=""
Text2.Text = 1111

Text3.Text = 1111

Text4.Text = 1111

Else
MsgBox "Record not found"
End If
Tb.Close
Db.Close
End Sub

110



End the program

111



7.4.Conclusion

This program included three part forml,form2,form3.A t program when the clicked on a
add button at form1 than saved the customer and car information in the database
access(customertable),when clicked on a search button at forml find the I,nformation
by ıd number,when clicked delete button at forml delete record by ıd number in the
database access(customertable)and when clicked on a update button at forml change the
customer and car information.form2 display the invoice model when clicked on a add
button at form3 than saved the invoice information in the database acces(invoice) when
cliced on a search button at form3 find the record by ıd number, when clicked on a
delete button at form3 delete record by ıd number in the database access(invoicetable).

112



CONCLUSION
At graduation projects introduced 6 important chapter of visual basic6,0. Chapter one
described(The visual basic language) and parts ,chapter two described(Exploring the
visual basic toll bok) and parts, chapter three described(More Exploration of the Visual
Basic Toolbox) and parts ,chapter four described(Error-Handling, Debugging and File
Input/Output) and parts
Chapter5 described(Database Access Management) and parts chapter6 described(sql)
and parts.

At chapter seven maked the car service garage program with visual basic.

113



REFERENCES 
References to electronic sources-online sources from web:
1 .www.freeprogrammingresources.com/visual-basic-books.html
2.http://www.freetutes.com/Visua1Basic/lesson21 .html
3 .http://staffwww.fullcollc.edu/ dcraig/vbasic
4.msdn.microsoft.com/en-us/vbasic/default.aspx
5.www.vbtutor.net/vbtutor.htrnl
6.www.murach.com/books/vb60/index.htrn

l 

114


