
NEAR EAST UNIVERSITY
ENGINEERING FACULTY

COMPUTER ENGINEERING
DEPARTMENT

COM400
GRADUATION PROJECT

BERRAH HEAL TH CENTER
The patient's illness information using Delphi 6.0 with

Microsoft Access Database

Student Name: Berrah <::ENGEL
Student Number:20020491

Supervisor:Asst.Prof.Dr.Elbrus IMANOV

NICOSIA 2007

ACKNOWLEDGEMENT

'First off a[[I want to thani; to my supervisor }lss. Prof Dr. CE,[6rus I:Jvl}lJIOV
for his fie[p valuable advices.

Second{y I want to tfianf?J to my parents wfio give me cfiance to 6e a computer
engineering in <Turk,isfi <R§pu6fic of 'Northern Crf(J!(f(VS.

<Tfiird{y I want to thank: to my friends 'Jfak,an 1(ILI(;' wfio help me a6out my
software design.

Pourtfi[y and fina[[y I want to tfianf?J to my fat lier ':Jvtuzaffer (!EJl(JCE,L wfio is
tfie meaning of my fife.

2

ABSTRACT

This project is a patient registration and illness information which I called Berrah Health
Center. This software is programmed at Borland Delphi 6.0 with Microsoft Access XP for
creating database and tables. For managing these tables, I use simple SQL queries.

The aim of the software is to prevent the complexity in the patient's record at Pediatrician
Doctor's office and is to avoid the wasting too much time for arranging appointments.

Berrah Health Center Software is a useful registration program that works on all platforms.
There are about a lot of patients' new registrations and old illness information. There is extra
information about Kinds of Vaccines for Doctors. Users can take appointment for next days.

3

CONTENTS.

Acknowledgement

Abstract

Contents

CHAPTER ONE: DELPHI

Introduction to Delphi

1.1 What is Delphi

1.1.2 What kind of programming can you do with Delphi?

1.1.3 How do they differ? 1.2.The VCL to Applications Developers

1.2.1 The VCL to Component Writers

l .2.2The VCL is made up of components

1.3 .1 Component Types

1.3 .2Standard Components

1.3.3 Custom components

l .3.4Graphical components

l .3.5Non-visual components

1.3.6Structure of a component

l .3.7Component properties

l.3.8Properties provide access to internal storage field

l .4Property-access methods

l .5Types of properties

l .6Methods

1.7 Events

l .8Containership

1.9 Ownership

1.1 OParenthood

CHAPTER TWO DATABASE DESIGN

2.Brief history about database

2.1 De-merits of absence of database

2.2 Merits of database

2.3 Introduction to database design

2

3

4

6

6

6

7

8

JO

11

12

12

13

13

14

14

14

15

16

17

1 7

17

20

20

21

22

22

23

23

24

4

!!!!!

2.4Database Models

2.4. 1 Flat Model

2.4.2 Network Model

2.4.3 Relational Model

2.4.3.1 Why we use a Relational Database Design

2.5 Relationships between Tables

2.5.2 One-To-One Relationships

2.5.3 One-To-Many Relationships

2.6 Data Modeling

2.6.1 Database Normalization

2.6.2 Primary Key

2.6.3 Foreign Key

2.6.4 Compound Key

2. 2.7 Visual Basic Editor

2.8 Structured Query Language

2.9 Description of SQL

2. 10 SQL_ Keywords

2.10. 1 Data Retrieval

2.10.2 Data Manipulation

2. 10.3 Data Transaction

2. l 0.4 Data Definition

2.11. Microsoft Access Database System

2.11. 1 A Few Terms

2. 11 .2 Introductory Microsoft Access

25

25

25

26

27

27

27

28

28

29

29

30

31

31

33

33

34

34

35

35

36

36

36

37

2.1 l .3 Introduction to Tables 38

) 2.11.4 Table's data types 39

CHAPTER 3: DESCRIPTION ABOUT BERRAH HEAL TH CENTER SOFTWARE

43

3 .1 . Software Requirement Document

3.2. Starting a Borland Delphi 6.0 with Microsoft Access XP

3 .2.1. Designing Forms

3.3.Working with Berrah Health Center

THE CODES OF THE MAIN FORM

THE CODES OF THE RM FORM

THE CODES OF THE SEARCH FORM
5

43

43

44

54

65

70

71

----·- ·------- -

CHAPTER ONE:INTRODUCTION TO DELPHI 6.0

In this project I will answer some basic questions about Delphi, to give a feel

for where it came from, what it has to offer, and where it is going in the future. This is

an essential part of any course. We feel it is important for those studying a new

programming language to understand the ideology and intended use of the language.

Too many programmers are tempted to use the language that they know, rather than

learn a new one to cope with the specific demands of the project that they have.At the

end of this lecture, you should have gained sufficient understanding of the Delphi

ideology to decide if it is a suitable language for a specific project that you have.

1.1 What is Delphi?

Delphi is an object oriented, component based, visual, rapid development

environment for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

· target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market.The term "visual" describes Delphi very well. All of the user

interface development is conducted in a. What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

· short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a Jong and distinguished line of Pascal
)

compilers (the previous versions of which went by the name "Turbo Pascal") from the

company formerly known as Borland, now known as Inprise. In common with the

Turbo Pascal compilers that preceded it, Delphi is not just a compiler, but a complete

development environment. Some of the facilities that are included in the "Integrated

Development Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

6

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

The development environment itself is extensible, and there are a number of add

ms available to perform functions such as memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications that will

run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tool.

This specialisation on one platform and one operating system, makes Delphi a

very strong tool. The code it generates runs very rapidly, and is very stable, once your

own bugs have been ironed out

1.1.1 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it

runs quickly, and is therefore suitable for writing more or less any program that you

would consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing

) machines, toasters or fuel injection systems, but for more or Jess anything else, it can be

used.

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

7

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and

breadth of Delphi's applicability. Because it is possible to access any and all of the

Windows API, and because if all else fails, Delphi will allow you to drop a few lines of

assembler code directly into your ordinary Pascal instructions, it is possible to do more

or Jess anything. Delphi can also be used to write Dynamically Linked Libraries

(DLLs) and can call out to DLLs written in other programming languages without

difficulty.

Because Delphi is based on the concept of self contained Components (elements of

· code that can be dropped directly on to a form in your application, and exist in object

. form, performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or Jess anything you can imagine. The job of the programmer

has become one of gluing together appropriate components with code that operates

them as required.

1.1.2 How do they differ?

Borland (as they were then) has a Jong tradition in the creation of high speed

compilers. One of their best known products was Turbo Pascal - a tool that many

programmers cut their teeth on. With the rise in importance of the Windows

environment, it was only a matter of time before development tools started to appear

that were specific to this new environment.In the very beginning, Windows produced

SDKs (software development kits) that were totally non-visual (user interface

development was totally separated from the development of the actual application), and

required great patience and some genius to get anything working with. Whilst these

8

tools slowly improved, they still required a really good understanding of the inner

workings of Windows a great extent these criticisms were dispatched by the release of

Microsoft's Visual Basic product, which attempted to bring Windows development to

the masses. It achieved this to a great extent too, and remains a popular product today.

However, it suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers

weren't so keen!

Into this environment arrived the eye opening Delphi I product, and in many

ways the standard for visual development tools for Windows was set. This first version

was a 16 bit compiler, and produced executable code that would run on Windows 3.1

and Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.Delphi 2 was

released quite soon after Delphi I, and in fact included a full distribution of Delphi I on

the same CD. Delphi 2, (and all subsequent versions) have been 32 bit compilers,

producing code that runs exclusively on 32bit Windows platforms. (We ignore for

simplicity the WIN32S DLLs which allow Win 3.1 x to run some 32 bit applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0)

expected shortly. In its latest version, Delphi has become somewhat feature loaded, and

as a result, we would argue, less stable than the earlier versions. However, in its

defence, Delphi (and Borland products in general) have always been more stable than

their competitors products, and the majority of Delphi 4's glitches are minor and

forgivable - just don't try and copy/paste a selection of your code, midway through a

debugging session!

The reasons for the version progression include the addition of new

components, improvements in the development enviromnent, the inclusion of more

9

internet related support and improvements in the documentation. Delphi at version 4 is

a very mature product, and lnprise has always been responsive in developing the

product in the direction that the market requires it to go. Predominantly this means right

now, the inclusion of more and more Internet, Web and CORBA related tools and

components - a trend we are assured continues with the release of version 5.0

For each version of Delphi there are several sub-versions, varying in cost and

features, from the most basic "Developer" version to the most complete (and

expensive) "Client Server" version. The variation in price is substantial, and if you are

contemplating a purchase, you should study the feature list carefully to ensure you are

not paying for features you will never use. Even the most basic "Developer" version

contains the vast majority of the features you are likely to need on a day to day basis.

Don't assume that you will need Client Server, simply because you are intending to

write a large database application - The developer edition is quitcapable ofthis.

1.2.The VCL to Applications Developers

Applications Developers create complete applications by interacting with the

Delphi visual environment (as mentioned earlier, this is a concept nonexistent in many

other frameworks) These people use the VCL to create their user-interface and the

other elements of their application: database connectivity, data validation .. business

rules, etc ..

Applications Developers should know· which properties. events, and methods

· each component makes available. Additionally. by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

i applications by extending components or creating new ones. Then they can maximize

the capabilities of these components. and create better applications.

1.2.1 The VCL to Component Writers

Component Writers expand on the existing VCL, either by developing nevi

components, or by increasing the functionality of existing ones. Many component

writers make their components available for Applications Developers to use.

10

A Component Writer must take their knowledge of the VCL a step further than

that of the Application Developer. For example, they must know whether to write a

new component or to extend an existing one when the need for a certain characteristic

arises. This requires a greater knowledge of the VCL's inner workings.

1.2.2The VCL is made up of components

Components are the building blocks that developers use to design the user

interface and to provide some non-visual capabilities to their applications. To an

Application Developer. a component is an object most commonly dragged from the

Component -palette and placed onto a form. Once on the form, one can manipulate the

component's properties and add code to the component's various events to give the

component a specific behavior. To a Component Writer, components are objects in

Object Pascal code. Some components encapsulate the behavior of elements provided

by the system, such as the standard Windows 95 controls. Other objects introduce

entirely new visual or non-visual clements, in which case the component's code makes

up the entire behavior of the component.

The complexity of different components varies widely. Some might be simple

while others might encapsulate a elaborate task. There is no limit to what a component

can do or be made up of You can have a very simple component like a TLabel, or a

much more complex component which encapsulates the complete functionality of a

spread sheet.

1.2.2The VCL is made up of components

Components are really just special types of objects. In fact, a component's

structure is based on the rules that apply to Object Pascal. There arc three fundamental

keys to understanding the VCL.

First, you should know the special characteristics of the four

basic component types: standard controls, custom controls, graphical controls

and non-visual components.

1]

Second, you must understand the VCL structure with which

components are built. This really ties into your understanding of Object Pascal's

implementation.

Third, you should be familiar with the VCL hierarchy and you

should also know where the four component types previously mentioned fit into

the VCL hierarchy. The following paragraphs will discuss each of these keys to

understanding the VCL.

1.3.1 Component Types

As a component writer, there four primary types of components that you will

work with in Delphi: standard controls, custom controls, graphical controls, and non

visual components. Although these component types arc primarily of interest to

component writers, it's not a bad idea for applications developers to be familiar with

thcrn. They arc the foundations on which applications arc built.

1.3.2Standard Components,

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox As a component writer, there four

primary types of components that you will work with in Delphi: standard controls,

custom controls, graphical controls, and non-visual components. Although these

component types are primarily of interest to component writers, it's not a bad idea for

applications developers to be familiar with them. They arc the foundations on which

applications arc built.

For example. You will find these components on the Standard page of the

Component Palette. These components are Windows' common controls with Object

Pascal wrappers around them.

Each standard component looks and works like the Windows' common control

which it encapsulates. The VCL wrapper's simply makes the control available to you in

the form of a Delphi component-it doesn't define the common control's appearance or

functionalitv. but rather. surfaces the abilitv to modifv a control's ., ., - ., .,/

12

appearance/functionality in the form of methods and properties If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS .PAS.
If you want to use these standard components unchanged, there is no need to

understand how the VCL wraps them. If, however. you want to extend or change one of

these components, then you must understand how the Window's common control is

wrapped by the VCL into a Delphi component.

For example, the Windows class USTBOX can display the list box items in

multiple columns. This capability, however. isn't surfaced by Delphi's TListBox

component (which encapsulates the Windows USTBOX class). (TListBox only

displays items in a single column.) Surfacing this capability requires that you override

the default creation of the Tl.istbox component.

This example also serves to illustrate why it is important for Applications

Developers to understand the VCL. Just knowing this tidbit of information helps you to

identify where enhancements to the existing library of components can help make your

life easier and more productive.

1.3.3 Custom components

Unlike standard components, custom components are controls that don't already

have a method for displaying themselves, nor do they have a defined behavior. The

Component Writer must provide to code that tells the component how to draw itself

and determines how the component behaves when the user interacts with it. Examples

of existing custom components arc the Tl'ancl and TStringGrid components.

It should be mentioned here that both standard and custom components arc

windowed controls. A "windowed control" has a window associated 'With it and,

therefore, has a window handle. Windowed controls have three characteristics: they can

receive the input focus, they use system resources, and they can be parents to other

controls. (Parents is related to containership, discussed later in this paper.) An example

of a component which can be a container is the Tl'anel component.

1.3.4Graphical components

13

Graphical components are visual controls which cannot receive the input focus

from the user. They are non-windowed controls. Graphical components allow you to

display something to the user without using up any system resources; they have less

"overhead" than standard or custom components. Graphical components don't require a

window handle-thus, they cannot can't get focus. Some examples of graphical

components arc the Tl.abel and TShape components.

Graphical components cannot be containers of other components. This means

that they cannot O\Vl1 other components which are placed on top of them.

1.3.SNon-visual components

Non-visual components are components that do not appear on the form as

controls at run-time. These components allow you to encapsulate some functionality of

an entity within an object. You can manipulate how the component will behave, at

design-time, through the Object Inspector. Using the Object Inspector, you can modify

a non-visual component's properties and provide event handlers for its events.

Examples of such components are the TOpenDialog, TT able, and TTimer components

1.3.6Structure of a component

All components share a similar structure Each component consists of common

elements that allow developers to manipulate its appearance and function via

properties, methods and events. The following sections in this paper will discuss these

common clements as \:VCU as talk about a few other characteristics of components

which don't apply to all components

1.3.7Component properties

Properties provide an extension of an object's fields. Unlike fields, properties do

not store data: they provide other capabilities For example, properties may use

methods to read or write data to an object field to which the user has no access. This

14

adds a certain level of protection as to how a given field is assigned data. Properties

also cause "side effects" to occur when the user makes a particular assignment to the

property. Thus what appears as a simple field assignment to the component user could

trigger a complex operation to occur behind the scenes.

1.3.BProperties provide access to internal storage fields

There are two ways that properties provide access to internal storage fields of

components- directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

Flvlaxl.ength: Integer;

protected

procedure SettvlaxLcngth(V alue: Integer):

published

property Max l.ength: Integer read

Flvlaxl.ength write Setlvlaxl.ength default O;

end:

The code above is snippet of the TCustomEdit component class. TCustornEdit

is the base class for edit boxes and memo components such as Tl.dit, and TMerno.

TCustoml.dit bas an internal field Flvlaxl.ength of type Integer which specifies

the maximum length of characters which the user can enter into the control. The user

doesn't directly access the Flvlaxl.ength field to specify this value. Instead, a value is

added lo this field by making an assignment to the MaxLength property.

The property Maxl.ength provides the access to the storage field FMaxLength.

The property definition is comprised of the property name, the property type, a read

declaration. a write declaration and optional default value.

The read declaration specifics how the property is used to read the value of an

internal storage field. For instance. the Maxl.ength property has direct read access to

15

FMaxLength. The write declaration for MaxLength shows that assignments made to the

Maxl.ength property result in a call to an access method which is responsible for

assigning a value to the FMaxLcngth storage field. This access method is

S etlvlaxl.en gth.

1.4Property-access methods

Access methods take a single parameter of the same type as the property. One of

the primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the Setlvlaxl.ength method below.

procedure TCustorn Edit. Set Max Lcngth(Valuc: I ntcger);

begin

if Flvlaxl.ength <> Value then

begin

FMaxLength : Value;

if Handl eAJ located then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

The code in the SetMaxLength method checks if the user is assigning the same

value as that which the property already holds. This is done as a simple optimization.

The method then assigns the new value to the internal storage field, Flvlaxl.ength.

Additionally, the method then sends an EM_LIMITTEXT Windows message to the

window which the TCustomEdit encapsulates. The EM_LUv1ITTEXT message places a

limit on the amount of text that a user can enter into an edit control. This last step is

what is referred to as a side-effect when assigning property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

16

Providing access to internal storage fields through property access methods offers the

advantage that the Component Writer can modify the implementation of a class without

modifying the interface. It is also possible to have access methods for the read access of

a property. The read access method might for example, return a type which is different

that that of a properties storage field. For instance, it could return the string

representation of an integer storage field.

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.5Types of properties

Properties can be of the standard data types defined by the Object Pascal rules.

Property types also determine how they arc edited in Delphi's Object Inspector. The

table below shows the different property types as they are defined in Delphi's online

help.

1.6Methods

Since components are really just objects, they can have methods. \Ve will

discuss some of the more commonly used methods later in this paper when we discuss

the different levels of the VCL hierarchy.

1.7 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

Components contain special properties called events to which the component

user assigns code. This code will be executed whenever a certain event occurs. For

instance, if you look at the events page of a TEdit component you'll see such events as

17

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

When the user of a component assigns code to one of those events, the user's

code is referred to as an event handler. For example, by double dicking on the events

page for a particular event causes Delphi to generate a method and places you in the

Code Editor where you can add your code for that method. An example of this is shown

in the code below, which is an OnClick event for a TButton component.

TButton component.

TForm 1 = class(TF orrn)
Button l : Tbutton;

procedure Button 1 Click(Sender: TObject);

end;

procedure TForml .Button l C!ick(Scnder: TObjcct):

begin

{ Event code goes here }

end;

It becomes clearer that events are method pointers when you assign an event

handier to an event programmatically The above example was Delphi generated code.

To link your own an event handler to a Tlsutron's OnClick event at run time you must

first create a method that you will assign to this event. Since this is a method, it must

belong to an existing object. This object can be the form which owns the TButton

component although it doesn't have to be. In fact, the event handlers which Delphi

creates belong to the form on which the component resides. The code below illustrates

how you would create an event handler method.

TForm l = class(TForm)

Button 1: TButton;

private

MyOnCJickEvent(Sender: TObject}; Ii

Your method declaration

end:

18

-----~----------- -

{ Your method definition below}

procedure TForml .?viyOnClickEvent(Sender: TObject);

begin

{ Your code goes here }

end;

The MyOnClickEvent method becomes the event handler for Buttonl.OnClick

when it is assigned to Button] .OnClick in code as shown below.

Button 1.0nClick := MyOnClickEvent

This assignment can be made anytime at runtime, such as in the form's

OnCreatc event handler. This is essentially the same thing that happens when you

create an event handler through Delphi's Object Inspector except that Delphi generates

the method declaration.

When you define methods for event handlers. these methods must be defined as

the same type as the event property and the field to which the event properly refers. For

instance, the Onf.lick event refers lo an internal data field, FOnClick. Both the property

OrrClick .. and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvcnt = procedure (Sender: TObject) of object;
Therefore, if you are creating a method for an On Click event, it must be defined

with the same type and number of parameters as shown below.
·r1· . , I ('[T' , , ·orm i = c ass . J'Orn1 J

procedure (Sender: TObject):

end;

Note the use of the of object specification. This tells the compiler that the

procedure definition is actually a method a:nd performs some additional logic like

ensuring that an implicit Self parameter is also passed to this method when called. Self

is just a pointer reference to the class to which a method belongs.

19

1.8Containership

Some components in the VCL can own other components as well as be parents

to other components. These two concepts have a different meaning as will be discussed

in the section to follow.

1.9 Ownership

All components may be owned by other components but not all components can

own other components. A component's Owner property contains a reference to the

component which owns it

The basic responsibility of the owner is one of resource management. The

owner is responsible for freeing those components which it owns whenever it is

destroyed. Typically, the form owns all components which appear on it, even if those

components arc placed on another component such as a '[Panel. At design-time, the

form automatically becomes the owner for components which you place on it. At run

time. when you create a component, you pass the owner as a parameter to the

component's constructor. For instance, the below shows how to create a TButton

component at run-time and passes the form's implicit Self variable to the TButton's

Create constructor. TButton.Create will then assign whatever is passed to it, in this case

Self or rather the form, and assign it to the button's Owner property.

MyButton := T'Button.Creatcrsclf);

When the form that now owns this TButton component gets freed, MyButton

will also be freed.

You can create a component without an owner by passing nil to the component's

Create constructor. however, you must ensure that the component is freed when it is no

longer needed. The code below shows you how to do this for a TTable component.

tcy

2o stuff with MyTable

20

)!ml!' -····-······"-i11iHlllllll111111mmrn"""

.F:cee;

As shown in the code above, it is best to use a try .. finally block to ensure that

the component gets freed even if an exception were to be raised.

The Components property of a component is an array property which contains a

list of the components which it owns. For instance, the code below shows how to loop

through a form's components and then shows their class name .

..,_. integer;

r o r 1- C to Count - 1 de

e no :

1.1 OParenthood

Parenthood is a much different concept from ownership. It applies only to

windowed components, which can be parents to other components. Later, when we

discuss the VCL hierarchy, you will see the level in the hierarchy which introduces

windowed controls.

Parent components are responsible for the display of other components. They

call the appropriate methods internally that cause the children components to draw

themselves. The Parent property of a component refers to the component which is its

parent. Also, a component's parent does not have to be it's owner. Although the parent

component is mainly responsible for the display of components, it also frees children

components when it is destroyed.

Windowed components are controls which are visible user interface elements

such as edit controls, list boxes and memo controls. In order for a windowed

component to be displayed, it must be assigned a parent on which to display itself.

21

CHAPTER 3: DESCRIPTION ABOUT BERRAH HEALTH
CENTER SOFTWARE

Now, J want to describe my project in details step by step. My project is Berrah Health

Center Software. I create this program by using Borland Delphi 6.0 with Microsoft

Access XP.

3.1. Software Requirement Document

First step on my project was read Software requirement document which is prepared by

me with Assoc. Prof. Kudret Caglar who is Pediatrician and Pediatric oncologist. I

learned about Doctor's inspector operations more. What they need to use program. They

need registration and remember the patient's illness. They want to see the personal

information's like addresses and phone numbers easily. They can receive that in

formations very quickly with using my software.

These forms are used in the software

• Patient Registration

• Search Edit

• Illness info

• Inoculations info

• Inoculations kinds

• Calendar

• Report

3.2. Starting a Borland Delphi 6.0 with Microsoft Access Xp

I mention about Borland Delphi 6.0 but here I mention it an easy way. Borland Delphi

- 6.0 with Microsoft Access XP has many special tools and many components to create a

project. After opening Borland Delphi 6.0, you see the blank screen. For creating a new

form. You would click the file menu and then Open>Fonn button.

43

•iA ·s V ~:~:<iitf;:,,,
,. - - fJ Cl.X lq;il>t .• ~U(f"I

(trh.f!l :ffijc,,:,:.~~-
~ o m11~i ;;,1111111111111

l:'jr-r<))"f)C
p I.hit

Opening new form

3.2.1. Designing Forms

Designing a form is very easy with Borland Delphi 6.0. After starting a project it has

already a form which is called form 1 ready t use.

44

hoe
CW$(<f :;iO~/~$.
Dd~t»\t>li..rioi ehit1ctivcf-01..r,
Oot:k9.e f'r.iht:1
Dr6;r('t!d ;:j.J:n,>,9
D1.,¥:;1Mr..de
£-

pc~)h~Cl~

tt·k~)(?J
r~h~
157

Opened Form

By using tools at top of the screen, I can add controls to my form. In below figure you

can see the tools which I used in my project.

45

:~

Main form

In below figure you can see the main form which I prepared other detailed forms on it.

User can easily access the other forms with using pictured buttons on the top of the

software.

46

;==::··- -

rcceeure TF~n,1, Too.l.Bvt.t:t.ir .• ac l.ick (Send~r: T(ib,J~cr..) :
t)g).:ri
u: r{ie~sagedi,;; f' t,.:. yo-..1 vent t o e z i t. t.be fr-c1rt\lu"'.'; ,mc.1ntc-!'IB~U.on, (mbyt:~,rcbnoJ, 0) -mrnc t.nen exlt:
Jpp J ,;.cl!l·u ou , r.,rrfli ner e :

rncecu'r e TFond .troo isue.cor .• <;CJick(S-end:r: Tot;;ect):
:1cg"in

ll'M"t;dUI'(: Tf;::n:Jr>'l '';(;-<'.J.i.lltl(..l;tii:,l;(J i cx (Se.n,:.h~l'. '. TOl)Jt:t;t j ;

'"yin
.torni6. '.:,ho\-:1bd*'1 l;
tnd;

-roee dur e Tf cr nn . Trio 1-Butt,;t:,r,6(J Jc)< [St.'l'id~r: TObJ,..Ct.! ;
1egi.n F,d

fOlmS!}'le
fi,;;1-1
H"',oC<ri""

Tforrd .TcoJ~w:tor,SC.l.'ic~(Se:nde:r: iObj~Ct);

Main form Codes

To see and to change the codes, you can use code windows (units). You can access the

units with view menu then clicking Units or you can access with Ctlr+F12. The project

starts to run if there is no error on code.

47

Ft ft):
f'-7

1:t. tM:t'-~~91":d.lQf'D<:J yc'Q;l'r~tof-k;d.51'.'un:urie 5hitttf7 l,:mt1t;.t.c;;nne.t.ion,(mbyez,mt,no),OJ •. -mr nc t.nen ex i c:
>.m~J .tCi!it,1 en. T~n11i t.~t 'µ\ ~\It! to CiJf'iO' F-1
~nd.;

t j :

t-nd;

Q_r!+F! ti:

.torm6 Sho-.;Jh::.d~ l:
l",hd;

coceuune Ttorrd. Tco!tutt::cr:'l(llck\StttirJer: 'f(!bJ;i:cq;

eu,tn

OiQ>JKbd
0!..,gi·M.de
(n,,1-i«i

m,lrl ·
· fonnSWk:
Htigi·t
Hel.;,C'-ri~
Hct:ffu.i_

j t cnedur e Tf ormt . Tool b!.lttX:n6C l J t:k r Sende r : TOb;~-C!,) ;
,t-,in
!t!I:.h(!. ~.ht>Vltt(.ot;;,~,,l.;

end;

ecceuur e T7onr,1. Tco J hit ccnec lick f Se nde r : T0bj¢C-t i ;
tlgJi,

Running program

After test the project, if every think is okay about the changing the code. You would

click run menu or press F9 key.

48

)§~·

.Ai1vt0t,
Bi1J,N°""

t!JBoioe.ic:t,,-i:
80!'.dt>i'St;>W!'
B ~)I dt:N!!dth
C.«.-.tkni
C"!i6-iH~i
c,,,,,;w,1\h
C,:JQ

[Mi.~:,,*lop) --0
;:..itt
ri)l,;,e
tid..eftli;,fh;'"lt
[t;,i~':);~e>rnMe-riu,
t:d)l~09

~f!i:,,i..~f.:::.
534
'[]dhrf>e<
[l ~,U-e(\ini~!i")r'>

Ctl.1~1)1 ;:;rDt>Muli.

fJ~foti!i.M,:.:dk<i ·jr,,,\t.t!'.,.-t-f'.om,
OotlSlr. F,-::.1;-e
Di~Khd J;,l'•11;i9
Dr~M,nit.: dnMM!i.id.
Er<(ft";t>G l<v<
F"Oft llbntl
F,;.,imSt}•k- !~N01m-:>J

Heiil 55t
H,l:,Ci,;"°" 0
Hd;J"i$
Hi!el::f~,'(d
Hdp1;y, htConieid
H:nt
HJ;:!IP~elO,,, [1Con1tol:$.c1olf

[l'-J,;:.r·.ie]
(tw;

ns

rti,n2 ·i·

Patient Registration form design

As you see in the figure there are labels, edits ,buttons, combo boxes and other

components. This form also connected the database with Ado connection.

49

Search-Edit form design

While J was preparing this form I use labels, edits, dbgrid. User can easily add, remove

or update the records.

50

Diagnosis form design

I used labels, edits, memo ,buttons and date time picker for preparing this form. This

form is designed for recording the Jab results then making diagnosis.

51

[tf:Syil,roi-A,');,1,

!tSi
·sp
:o,s.roc,
j\l ~ii_eCWil.iJ~
"'liut.

'crDtJ&.i.
Defat.11'\M~jt(j! .dr,V0.htf°'m

i;;J,,.e ,. ·

I~DiQ_Q

'd?itAl'lt!i.g,t

fc,imSt->lt:
H"';ihl
HebC.orit~A
ifol;:fi$
H~l~~d
He~1;~
Hri
Ht>i:So~~ ;FC<'."ri1(l!Sc_1;i~

Innocent form design

I especially prepare this useful form for ready information's with time labels.

IJ:Cordi.'lin!{l
Cl!'.£'
Cuitt:1 ;;0Hd
Dda,il:tMoric") drf1,'\clrYt-F01:fi
Do;;-kHt! ;;J,e
D10-;Ki~
D1,~Mr)de
En{ith;-t

GF°'11
fonnS:}4-

=JX'l~9
dr,>1l<ti'!f1iJ.al:
'r:ix
_'(l(()fll)

·1ti-J::.~m¢1

Report form design

This form is designed for printing the information's of doctor's report.

53

,,~~ -···

~" ~ ·€& • • //
P.-1ki111 Reiji'!l'1ir11tlt'n §:.Ult.h,.fdfl l;ltn~'tt-t Jnf~ k'IMuJ.rthm!l' Info lnMtt!Ait>n~ • l'f;ind, c_,.1~11{}(;1 Er.p~-, b<l!

Main form

3.3.Working with Berrah Health Center

To start the using program, beginning page is main menu which is shown in the below

figure .the important and useful buttons are at the top of the page .what you want to

select you can just click it.

54

ABOUT CHILO ABOUT PARENTS

BiJthdate

Ben ah

(,;ENGEL

03.02.2002

Fathet Name

Father Handy

M other N aJ1Ye

M other H and.v

fatih

05332330122

Name

Surname

Sevda

Home Handy 03562137533 05 .• 283,41573

BirthPlace Saka,ya

Sex

BloodG,oup

'.:) Female

Addniu

Prn111atuie
Notes

Patient Id

Registration Form

In registration form we record a new patient. There is information about children's

personal and necessary information as blood group, birth date (when we insert the

birth date program calculates automatically the age) , for receiving address , telephone

numbers, and extra information about family. After filling the blanks when you click

add button program saves the data's. When you click the clear button the page is

cleaned and ready to insert the new informations. patient id is given bye program own

self You do not insert any data to that edit. add this id is as a personal identity.

55

Patient Id 3
Sumome ••

Search form

We use this form for searching the old patients. when you insert just name it opens

automatically information's about child. you can change any data with at the bottom of

the page .also you can add , delete or updated the information's. It is for if you want to

search by name from name label's edit component .every patient which includes that

text is shown at the list table.

56

Name
Patient Ide .6

Sumoine"

,-,-1+-• ("

Search form with patient id

As you see at the previous page you can search with the name. for this form you may

search just patient id. It opens data about child ,and as previous page you can edit any

information's. This form for make search operations. The user can select search criteria

by a edits or on the table. All the patients which are includes that is shown at the list

box. You can see how many patients found in this search at the final.

57

Patient Id: 2 Or Name

--~Complaint
.;i,waefjj1pewff ·-·--.-· --

05.01.2007

COMPLAINT: DIAGNOSIS: f Hepetid

1
!

INSf>E:CllOH: !Blood L;b l1;tt
'

Illness information

This form is used for old patients illness information's. Firstly when you enter patient

id which we identified as a identity info , it opens the patients illness data .or you can

search it with just name .I use it for patients who could not remember the patient id

number., it is helping for users. At the bottom of the page there is complaints data, user

will enter the complaints to there. Inspection is for cures. Diagnosis is after doctor cures

the patient which he decide for diagnosis .there is a date. When I filled the blanks and

save them it automatically saves the date. finally if we save them we can see the new

data's on the table.

58

Name Surname"'

Patient Id"'

Pal.ient Info
Name

flliz
Sevda

Keskm
Bay1am
C:HlGE'L

Yllmaz

Sedal
falih

2 Aleyna
6 Beneh

Inoculate form

In this form when you enter just name or patient id, and you click enter button next page

opens.

59

Name-.-·-··'"> Benah tlome Tel--····> 0.3562137533

Su,name·· > c;:ENGEt M~,t.he• Tel-----.> 115428341573

Note• r················-----·--·-····················-····- fP,e-mat.u.• e

Age IBenahl
d11i11tDli

Jnoculahona
"N~Jni~-~i;~-,.=-~~f}ni~c~-···:t~:1n~~;;*~~rp·~=:u .. ,.,.l~C

Ktnd ol lnocutatio.ns

(;) C-0lfod

Oatc
[05.01.2007 .:::J

Ape of inoculations

Opened inoculation page

In this form is saving calling family and making vaccine to the child .It is like giving

appointment. for example at the previous page you choose the patient and click the enter

button. After you did them this page opens with the patients data as name , surname ,

family's telephone numbers. There is an important detail for me. that is calculating the

age of child. At the kind of inoculation you chose the vaccines kind. when you just

select the kind , it automatically writes the name and the age of vaccine. called and done

it radio buttons are for appointment and finishing the operating. also you can select the

date. program automatically saves date which you chose. finally clicking the add button

it takes all the data to database.

60

+

verem
nno'iolo
g11p

5
7

berem-b
byo101
ngltsljgfn

Ready inoculate list form

This form is completely usefully for doctors. There is extra information for doctors

about vaccines. if the doctor forget any inoculate user may open this form and

remember the forgotten vaccine. it helps to users.

61

a Ataltk2006 Ocak 2007 Subat2007 D
Pzt Sal !;,'.at Per Cum Cm! Paz

1 2 3

•• 5 6 7 8 9 10
11 12 13 u 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 ~II) 31

'E)Bugi..in: 05.01.2007

Pzt Sal ~a1 Pel Cum Cmt Pat Pzt Sal !:,;a1 Pei Cum Cml Paz
1 2 3 • ID 6 7 1 2 3 ••
8 9 10 11 12 13 14 5 6 7 8 9 10 11
15 16 17 18 19 20 21 12 13 u 15 16 17 18
22 23 24 25 26 27 28 19 20 21 22 23 24 25
29 30 31 26 27 28

ale -~~~JSurname j Explanation ·,"_v·,~-~-''"·----,------"~""-.,........'
3 04.01.2007 Nihan i:inal
rt 04.01.2007 Aleyna Bayrnm muayne
3 05.01.2007 Nihan l:inal ssal 2 mu<1yne
6 30.12.2006 Ben ah CENGEL Di<19nosis

Calendar

It is for appointments. it shows the calendar of last month, this month and next month.

As you see in the table it signs the today in detail. A month view appears on the screen

and show month and today. At the bottom of the table the is a notebook which patients

appointments with dates.

62

DOCTOR NAME : ABDULLAH PARLAKKILII;

EXPEATIS: PEDIATRICIAN

DATE: 05.m.2007

f Akut tomillit leJhisi konmuf olu13.
16 gi.in yatak istnahah uygundurj

DR. ABDULLAH PARLAU:.JUI;

SIGNATURE

Report Form

In this form is prepared for the children's schools. It is a report for permission from the

school direction. there is a doctor name and his or her sign place. after printing out,

doctor will sign it and it would given to the family. and they bring it to the child's

school.

63

THE CODES OF THE MAIN FORM

unit anaform;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, ADODB, lmgList, ComCtrls, ToolWin, WinSkinData, Menus, jpeg,
ExtCtrls;

type
TForml = class(TForm)
ToolBarl: TToolBar;
ToolButtonl: TToolButton;
Too1Button2: TToolButton;
Too1Button3: TToolButton;
Too1Button4: TToolButton;
Too1Button5: TToolButton;
Too1Button6: TToolButton;
Too1Button7: TToolButton;
Too1Button8: TToolButton;
lmageListl: TlmageList;
SkinDatal: TSkinData;
StatusBarl: TStatusBar;
ToolButtonl 9: TToolButton;
Too1Button9: TToolButton;
Too1Button15: TToolButton;
Too1Button20: TToolButton;
Too1Button21: TToolButton;
Too1Button12: TToolButton;
Too1Button14: TToolButton;
Too1Button13: TToolButton;
ToolButtonl 0: TToolButton;
Image2: Tlmage;
procedure Too1Button2Click(Sender: TObject);
procedure MteriKaytl Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure ToolButton 1 Click(Sender: TObject);
procedure MteriAramal Click(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure Too1Button4Click(Sender: TObject);
procedure Too1Button5Click(Sender: TObject);
procedure Too1Button6Click(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure Too1Button8Click(Sender: TObject);
procedure FormShow(Sender: TObject);
private

64

{ Private declarations }
public

{ Public declarations }

end;

var
Form 1: TForrn 1;

implementation
uses Unitl l ,Kayitforrnu,Search,Unit4,Unit6, Unit7,Unit9;
{$R *.dfm}

procedure TForrn l .Too1Button2Click(Sender: TObject);
begin
forrn2.ShowModal;//Birinci forrndan ikinci forrna gecer.;
end;

procedure TForrn l .MteriKaytl Click(Sender: TObject);
begin
formz.Showlvlodal;
end;

procedure TForrn l .Exitl Click(Sender: TObject);
begin //~1kmadan once sor. ..

if messagedlg('Do you want to exit the

Program?';;ntinfonnationjr mbyes,mbno],O)=mrno then exit; App11cafion. 1 errn hate,
end;

procedure TForrn l .ToolButtonl Click(Sender: TObject);
begin
forrn3.ShowModal;
end;

procedure TF orrn 1 .M teriArama 1 Cli ck(Sender: TObj ect);

begin
forrn3.ShowModal;
end;

procedure TForrn l .Too1Button3Click(Sender: TObject);
begin
if messagedlg('Do you want

Program?';;ntinfonnation/ mbyes,mbno],O)=mrno then exit; App11cafion. l errn1tiate,
end;

to exit the

65

procedure TForml .Too1Button4Click(Sender: TObject);
begin
form4. Show Modal;
end;

procedure TForml .Too1Button5Click(Sender: TObject);
begin
form6.ShowModal;
end;

procedure TForml .Too1Button6Click(Sender: TObject);
begin
form7.showmodal;
end;

procedure TForml .Too1Button7Click(Sender: TObject);
begin
form9.ShowModal;
end;

procedure TForml .Too1Button8Click(Sender: TObject);
begin
forml l .ShowModal;
end;

procedure TForml .FormShow(Sender: TObject);
begin
StatusBarl .Panels[O]. Text:=datetostr(date);
end;

end.

THE CODES OF THE KAYIT FORM

unit Kayitformu;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, StdCtrls, ExtCtrls, DB, ADODB, dxCntner, dxEditor,
dxExEdtr, dxEdLib, dxTL, dxDBCtrl, dxDBGrid, dxDBTLCl, dxGrClms, ExtDlgs,
Menus, Mask;

type
TForm2 = class(TForm)
Label2: TLabel;

66

Label3: TLabel;
Label4: TLabel;
Label 1 : TLabel;
Label5: TLabel;
Label6: TLabel;
Label8: TLabel;
Edit4: TEdit;
ComboBox 1: TComboBox;
RadioButton2: TRadioButton;
Radio Button 1: TRadioButton;
Edit3: TEdit;
Edit2: TEdit;
Editl: TEdit;
Label 7: TLabel;
Memol: TMemo;
Memo2: TMemo;
Label9: TLabel;
Label 10: TLabel;
Label 11 : TLabel;
Label 12: TLabel;
Label 13: TLabel;
Labell 5: TLabel;
Label16: TLabel;
Edit5: TEdit;
Edit6: TEdit;
Edit7: TEdit;
Edit8: TEdit;
Button}: TButton;
ADOQuery 1 : T ADOQuery;
Label 14: TLabel;
Edit9: TEdit;
dxDateEditl: TdxDateEdit;
Timer I: TTimer;
Label 1 7: TLabel;
Button2: TButton;
PopupMenul: TPopupMenu;
MaskEditl: TMaskEdit;
procedure FormActivate(Sender: TObject);
procedure Button 1 Click(Sender: TObject);
procedure Timer] Timer(Sender: TObject);
procedure ButtonzClickf Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormKeyUp(Sender: TObject; var Key: Word;
Shift: TShiftState);

procedure MaskEditl Exit(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

67

var
Form2: TForm2;

implementation

{$R *.dfm}
uses Rm,Search;
procedure TForrn2.FormActivate(Sender: TObject);
begin
memo I .Text:=";
memo2.Text:=";

end;

procedure TForrn2.Buttonl Click(Sender: TObject);
begin
adoquery1 .Close;
adoquery1 .SQL.Clear;
adoquery1 .sql.Text:='select * from Costumer_Info';
adoquery] .Open;
adoquery] .Insert;
adoqueryl .FieldByName('Name').AsString:=editl .Text;
adoquery1 .FieldByName('Sumame').AsString:=edit2.Text;
adoquery] .FieldByName('Birthdate').AsString:=dxdateedit1 .Text;
adoquery] .FieldByName('BirthPlace').AsString:=edit3.Text;
if RadioButton J .Checked=true then adoqueryl .FieldByName('Sex').AsString:='Male'

else adocnerv l Fje.WRvName('Syx') As~ring:='Female'· aaoquery J ~fielaByN ame~'BfoooUYoup').As:stnng:=combobox 1.Text;
adoquery] .FieldByName('HomeAddress').AsString:=memo2.Text;
adoqueryl .FieldByName('HomeTel').AsString:=edit4.Text;
adoqueryl .FieldByName('Notes').AsString:=memo 1.Text;
adoqueryl .FieldByName('Father _Name').AsString:=edit6.Text;
adoqueryl .FieldByN ame('Father _ Tel').AsString:=edit5.Text;
adoqueryl .FieldByName('Mother_Name').AsString:=edit8.Text;
adoqueryl .FieldByName('Mother _ Tel').AsString:=edit7.Text;
if edit] .Text=" then II eger cocugun ismi yoksa

begin
messagedlg('Please Enter The Name of The Child.',mterror,[mbok],O);
edit] .SetFocus;
exit;
end;
adoqueryl .Post;
edi t9. Text:=adoquery 1. fieldbyname('Patient_ Id').AsString;
adoqueryl .Close;
label17.Visible:=True;
timer I .Enabled:=true;

forrn3.AD0Queryl .Close;

68

end;

procedure TForm2.Timerl Timer(Sender: TObject);
begin
label 17 .Visible:=false;

end;

procedure TForm2.Button2Click(Sender: TObject);
begin
edit9.Text:=";
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit6.Text:=";
edit7 .Text:=";
edit8.Text:=";
dxDateEditl .Text:=";
memo l .Text:=";
memo2.Text:=";
MaskEditl .Text:=";
combobox 1.Text:='--Rh+';
RadioButtonl .Checked:=true;
radiobutton2.Checked:=false;
editl .SetFocus;
end;

procedure TForm2.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (key=#l 3) then button 1 click(sender);
end;

procedure TForm2.FormKeyUp(Sender: TObject; var Key: Word;
Shift: TShiftState);
var a:string;

begin
a:=vartostr(key);
case strtoint(a) of
27:close;
end;

end;

procedure TForm2.MaskEdit1Exit(Sender: TObject);
begin

dxdateeditl .Text:=maskeditl .Text;
end;

69

end.

THE CODES OF THE RM FORM

unit Rm;

interface

uses
SysUtils, Classes, DB, ADODB;

type
TDm = class(TDataModule)
ADOConnection 1: T ADOConnection;
ADOQueryl: TADOQuery;

private
{ Private declarations }

public
{ Public declarations }
procedure SorguR(str:string);

end;

var
Dm:TDm;

implementation

{$R *.dfm}

Procedure TDm.SorguR(str:string);
begin
with ADOQueryl do begin
close;
sql.clear;
sq 1.tex t:=str;
open;
end;

end;

end.

70

THE CODES OF THE SEARCH FORM

unit Search;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, dxCntner, dxTL, dxDBCtrl, dxDBGrid, DB, ADODB,
dxDBTLCl, dxGrClms, ExtCtrls, DBCtrls;

type
TFonn3 = class(TForm)
Label 1: TLabel;
Editl: TEdit;
Label2: TLabel;
Label3: TLabel;
Edit2: TEdit;
Edit3: TEdit;
dxDBGridl: TdxDBGrid;
ADOQueryl: TADOQuery;
DataSourcel: TDataSource;
dxDBGrid 1 Patient_ld: TdxDBGridMaskColurnn;
dxDBGrid 1 Name: TdxDBGridColumn;
dxDBGrid 1 Surname: TdxDBGridColurnn;
dxDBGrid 1 Birthdate: TdxDBGridDateColurnn;
dxDBGrid 1 BirthPlace: TdxDBGridColurnn;
dxDBGrid 1 Sex: TdxDBGridColurnn;
dxDBGridlBloodGroup: TdxDBGridColurnn;
dxDBGrid 1 HomeAddress: TdxDBGridMemoColurnn;
dxDBGrid 1 HomeTel: TdxDBGridColurnn;
dxDBGrid 1 Notes: TdxDBGridMemoColurnn;
dxDBGrid 1 Father _Name: TdxDBGridColurnn;
dxDBGrid 1 Father_ Tel: TdxDBGridColumn;
dxDBGrid 1 Mother _Name: T dxDBGridColurnn;
dxDBGridl Mother_ Tel: TdxDBGridColurnn;
dxDBGrid 1 Picture: TdxDBGridColurnn;
DBNavigatorl: TDBNavigator;
procedure Editl Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);

71

procedure Edit2Change(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form3: TForm3;

implementation

{$R *.dfm}
uses Rm;
procedure TForm3.Edit1 Change(Sender: TObject);

var tt:String;
var ss:string;
var sss:string;
var ssss:string;
begin

tt:="'';
if edit2.Text<>" then
begin
sss:='Name like' +tt+ edit2.Text +'%'+tt + sss +'and+';
end else begin
sss:=";
end;
if edit3.Text<>" then
begin
SS:='Sumame LIKE'+ tt + edit3.Text +'%'+ tt +ss+' and+';
end else begin
ss:=";
end;
ssss:=ss+sss;
ADOQueryl .Close;
ADOQueryl .SQL.Clear;
ADOQueryl.SQL.Text:='select * from Costumer_Info where '+ssss+' Patient_Id LIKE

' + tt + erutbiext +1'%'+ tt· A"'TI Query .opeii;
end;

procedure TForm3.Edit3Change(Sender: TObject);
var tt:String;
var ss:string;
var sss:string;
var ssss:string;

begin
tt:="";
if editl .Text<>" then
begin
sss:='Patient_Id like' +tt+ editl.Text +'o/o'+tt + sss +'and+';
end else begin
sss:=";
end;
if edit2.Text<>" then
begin
SS:='Name LIKE'+ tt + edit2.Text +'%'+ tt +ss+' and+';
end else begin
ss:=";
end;
ssss:=ss+sss;
AD0Queryl .Close;
ADOQueryl .SQL.Clear;
ADOQueryl .SQL.Text:='select * from Costumer Info where '+ssss+' Surname LIKE '

+ tt + erlit33,e.xt +'%'+ tt_;_
AD0t .. ,mery1 .open;
end;
procedure TForm3.Edit2Change(Sender: TObject);
var tt:String;
var ss:string;
var sss:string;
var ssss:string;
begin
tt:="";
if editl .Text<>" then
begin
sss:='Patient_Id like' +tt+ editl.Text +'%'+tt + sss +' and+ ';
end else begin
sss:=";
end;
if edit3.Text<>" then
begin
SS:='Sumame LIKE'+ tt + edit3.Text +'%'+ tt +ss+' and+';
end else begin
ss:=";
end;
ssss:=ss+sss;
ADOQueryl .Close;
ADOQueryl .SQL.Clear;
ADOQueryl .SQL.Text:='select * from Costumer_lnfo where '+ssss+' Name LIKE '+

tt + edit23™ +'%'+ tt· ADUl,lueryl .open;
end;

procedure TForm3.FormClose(Sender: TObject; var Action: TCloseAction);

begin

73

editl .Text:=";
edit2.Text:=";
edit3.Text:=";
end;

procedure TFonn3.FonnShow(Sender: TObject);
begin
adoqueryl .Open;
end;

end.

THE CODES OF THE ILLNESS iNFORMATION FORM

unit Unitl O;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ComCtrls;

type
TFonn 10 = class(TFonn)
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Edit 1 : TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
DateTimePickerl: TDateTimePicker;
Label 7: TLabel;
Label 1: TLabel;
Labels: TLabel;
Label6: TLabel;
Edit5: TEdit;
Edit6: TEdit;
Edit7: TEdit;
Label8: TLabel;
Label9: TLabel;
La bell 0: TLabel;
Edit8: TEdit;
Edit9: TEdit;
Editl 0: TEdit;
Memo 1: TMemo;
Label 11: TLabel;

Editl 1: TEdit;
Label 12: TLabel;
Edit12: TEdit;
Label 13: TLabel;
Editl 3: TEdit;
Label] 4: TLabel;
Button 1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

var
FonnlO: TFormlO;

implementation

{$R *.dfm}

end.

THE CODES OF REPORT FORM

unit Unit9;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, dxCntner, dxEditor, dxExEdtr, dxEdLib, StdCtrls, ComCtrls,
Buttons;

type
TFonn9 = class(TForm)
Label I : TLabel;
Label2: TLabel;
Label3: TLabel;
LabeJ4: TLabel;
Memol: TMemo;
Label5: TLabel;
Label6: TLabel;
PrintDialogl: TPrintDialog;
Button 1 : TButton;
procedure FormActivate(Sender: TObject);

private
{ Private declarations }

public

75

{ Public declarations }
end;

var
Fonn9: TFonn9;

implementation

{$R *.dfm}

procedure TFonn9.FonnActivate(Sender: TObject);
begin
label 3 .Caption:=datetostr(date);
memol .Text:=";

)

end;

end.

THE CODES OF THE CHOOSE PATIENT

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, ADODB, dxDBTLCI, dxGrClms, dxDBGrid, dxTL, dxDBCtrl,
dxCntner, StdCtrls;

type
TFonn4 = class(TFonn)
Label 1 : TLabel;
Label2: TLabel;
Labe13: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
dxDBGridl: TdxDBGrid;
AD0Queryl: TADOQuery;
DataSourcel: TDataSource;
Button 1 : TButton;
dxDBGrid 1 Patient_ld: TdxDBGridMaskColurnn;
dxDBGridlName: TdxDBGridColumn;
dxDBGridl Surname: TdxDBGridColumn;
dxDBGrid 1 Birthdate: TdxDBGridDateColumn;
dxDBGrid 1 BirthPlace: TdxDBGridColumn;
dxDBGridl Sex: TdxDBGridColumn;
dxDBGridlBloodGroup: TdxDBGridColumn;

76

dxDBGrid 1 HomeAddress: TdxDBGridMemoColumn;
dxDBGrid 1 HomeTel: TdxDBGridColumn;
dxDBGrid 1 Notes: TdxDBGridMemoColumn;
dxDBGrid 1 Father _Name: TdxDBGridColumn;
dxDBGrid 1 Father_ Tel: TdxDBGridColumn;
dxDBGridl Mother _Name: TdxDBGridColumn;
dxDBGrid 1 Mother_ Tel: TdxDBGridColumn;
dxDBGrid 1 Picture: TdxDBGridColumn;
Edit4: TEdit;
procedure Edit} Change(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Button 1 Click(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure dxDBGrid 1 DblClick(Sender: TObject);
procedure Formxhowf Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form4: TForm4;

implementation
uses Rm,Unit5;
{$R *.dfm}

procedure TForm4.Edit1 Change(Sender: TObject);
var tt:String;
var ss:string;
var sss:string;
var ssss:string;
begin

tt:='"';
if edit2.Text<>" then
begin
sss:='Name like' +tt+ edit2.Text +'o/o'+tt + sss +'and+';
end else begin
sss:=";
end;
if edit3.Text<>" then
begin
SS:='Sumame LIKE'+ tt + edit3.Text +'%'+ tt +ss+' and+';
end else begin
ss:=";
end;

77

10 miiffiiimrni·ffiiffI

ssss:=ss+sss;
ADOQueryl .Close;
ADOQueryl .SQL.Clear;
ADOQueryl .SQL.Text:='select * from Costumer_Info where '+ssss+' Patient_ld LIKE

' + tt + eAditbiext +1'%'+ tt; A--U l,luery .open,
end;
procedure TForm4.Edit2Change(Sender: TObject);
var tt:String;
var ss:string;
var sss.string;
var ssss:string;
begin-
tt:="";
if editl .Text<>" then
begin
sss:='Patient_Id like' +tt+ editl .Text +'o/o'+tt + sss +'and+';
end else begin
sss:=";
end;
if edit3.Text<>" then
begin
SS:='Sumame LIKE'+ tt + edit3.Text +'%'+ tt +ss+' and+';
end else begin
ss:=";
end;
ssss: =ss+sss;
ADOQueryl .Close;
ADOQueryl .SQL.Clear;
ADOQueryl .SQL.Text:='select * from Costumer_Info where '+ssss+' Name LIKE'+

tt + edit2J,ex.t. +'%'+1 t~ AlJu~uery .open;
end;

procedure TFonn4.Edit3Change(Sender: TObject);
var tt:String;
var ss: string;
var sss:string;
var ssss:string;
begin
tt:="";
if edit] .Text<>" then
begin
sss:='Patient_Id like' +tt+ editl .Text +'o/o'+tt + sss +' and+ ';
end else begin
sss:=";
end;
if edit2.Text<>" then
begin
SS:='Name LIKE'+ tt + edit2.Text +'%'+ tt +ss+' and+';

78

end else begin
ss:=";
end;
ssss:=ss+sss;
ADOQueryl .Close;
AD0Queryl .SQL.Clear;
ADOQueryl.SQL.Text:='select * from Costumer_Info where '+ssss+' Surname LIKE'

+ tt + erliL1..T,e..xt +'%'+ tt.;, AD0l.Juery1 .open;
end;

procedure TF orm4 .Button 1 Cl i ck(Sender: TObj ect);
begin'

if editl .Text=" then
begin
messagedlg('Please Enter The Patient ld',mterror,[mbok],O);
edit] .SetFocus;
exit;
end else begin

adoquery1 .Close;
adoquery1 .SQL.Clear;
adoquery1 .SQL.Text:='select

_, di pdP.~~xi;-;y1 .Open;
- +e It e·Jir4'.1ext:=editl .Text;

form5.ShowModal;

* from Costumer Info where Patient Id

end;
end;

procedure TForm4.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (key=#] 3) then buttonl click(sender);
end;

procedure TForm4.dxDBGrid1DblClick(Sender: TObject);
begin
edit] .Text:=adoqueryl .fieldbyname('Patient Id').AsString;
edit4.Text:=adoqueryl .fieldbyname('Patient_Id').AsString;
form5 .edit7. Text:=form4.Edit4. Text;
form5.ShowModal;
end;

procedure TForm4.FormShow(Sender: TObject);
begin
adoqueryl .Close;
adoqueryl .SQL.Clear;

79

adoqueryl.SQL.Text:='select * from Costumer_Info';
adoquery l .Open;
end;

procedure TForm4.FormClose(Sender: TObject; var Action: TCloseAction);
begin
edit2.Text:=";
edit l .Text:=";
edit3 .Text:=";
adoquery l .Close;
end;

end. '

THE CODES OF THE INOCULATE

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, dxDBTLCl, dxGrClms, dxTL, dxDBCtrl, dxDBGrid, DB, ADODB,
ExtCtrls, DBCtrls, dxCntner;

type
TForm6 = class(TForm)
dxDBGridl: TdxDBGrid;
DBNavigator1: TDBNavigator;
ADOQueryl: TADOQuery;
DataSource 1 : TDataSource;
dxDBGrid 1 Asi _Adi: TdxDBGridColumn;
dxDBGridlAsi __ Yasi: TdxDBGridColumn;
dxDBGrid 1 Ali ans: TdxDBGridColumn;
dxDBGridlAktif: TdxDBGridCheckColumn;

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form6: TForm6;

implementation

80

uses Rm;
{$R *.dfm}

end.

THE CODES OF THE INOCULATIONS INFO

" unit Unit5;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DB, ADODB, dxCntner, dxTL, dxDBCtrl, dxDBGrid,
ComCtrls, dxDBTLCl, dxGrClms, dxEditor, dxExEdtr, dxEdLib;

type
TFom15 = class(TForrn)
Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Edit7: TEdit;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
Label 11 : TLabel;
Label 12: TLabel;
Label 13: TLabel;
Editl: TEdit;
ComboBox 1: TComboBox;
Lab ell O: TLabel;
Edit2: TEdit;
Label 14: TLabel;
Edit3: TEdit;
Label 15: TLabel;
Memo 1: TMemo;
Label 16: TLabel;
Button 1: TButton;
AD0Query1: T ADOQuery;
DataSource 1: TDataSource;
AD0Query2: T ADOQuery;
RadioButton 1 : TRadioButton;
RadioButton2: TRadioButton;

81

....... _
eee

dxDateEditl: TdxDateEdit;
Label I 7: TLabel;
dxDBGrid 1: TdxDBGrid;
dxDBGrid 1 Asi_Adi: TdxDBGridColumn;
dxDBGrid 1 Asi , Yasi: TdxDBGridColumn;
dxDBGrid 1 Tarih: TdxDBGridDateColumn;
dxDBGrid 1 Called: TdxDBGridColumn;
dxDBGrid 1 Yapld: TdxDBGridColumn;
dxDBGrid 1 Id: TdxDBGridColumn;
dxDBGrid 1 A Tr: TdxDBGridColumn;
Edit4: TEdit;
Buttonz: TButton;
procedure FormShow(Sender: TObject);
procedure Combo Box 1 Click(Sender: TObject);
procedure ComboBox 1 Enter(Sender: TObject);
procedure Button 1 Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Button2Click(Sender: TObject);
procedure FormActivate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form5: TForm5;

implementation
Uses Rrn,Unit4;
{$R *.dfm}

procedure TForm5.FormShow(Sender: TObject);
begin
edit7 .Text:=form4.Editl .Text;
form4.editl .Text:=";
form4.edit2.Text:=";
form4.edit3 .Text:=";
dm.adoqueryl .Close;
dm.adoqueryl .SQL.Clear;
dm.adoqueryl .SQL.Text:='select * from Costumer Info

Patient drit='=49g5L117~¥:h.9+Wn; .
-hiielTLtapiion:=dm.adoqueryl .fieldbyname('Name').AsStnng;
label 13.Caption:=dm.ADOQueryl .fieldbyname('Sumame').AsString;
label7 .Caption:=dm.ADOQueryl .fieldbyname('HomeTel').AsString;
label8.Caption:=dm.ADOQueryl.fieldbyname('Mother_Tel').AsString;
label9.Caption:=dm.AD0Queryl .fieldbyname('Father_Tel').AsString;
edit4.Text:=dm.AD0Queryl .fieldbyname('Birthdate').AsString;
label 11.Caption:='('+label 12.Caption+')';
memo l .Text:=dm.ADOQueryl .fieldbyname('Notes').AsString;

where

82

dm.ADOQueryl .Close;
adoqueryl .Close;
adoqueryl .SQL.Clear;
adoqueryl .SQL.Text:='select * from asilar where Id="'+edit7 .Text+"";
adoqueryl .Open;
button2.Click;
end;

procedure TForm5.ComboBox 1 Click(Sender: TObject);
begin
"dm.adoqueryl .Close;
dm.adoqueryl .SQL.Clear;
dm.adoqueryl .SQL.Text:='select *from Asi where alians="'+combobox I .Text+"";
dm.adoqueryl .Open;
Edit2. Tex t:=dm.adoquery 1. fieldbyname('Asi _ Adi ').AsS tring;
edit3.Text:=dm.ADOQueryl.fieldbyname('Asi_Yasi').AsString;

end;

procedure TForm5.ComboBox1Enter(Sender: TObject);
var a:integer;
begin
comboboxl .Clear;
dm.adoqueryl .Close;
dm.adoqueryl .SQL.Clear;
dm.adoqueryl .SQL.Text:='SELECT Asi.Asi _Adi, Asi .alians '+
'FROM Asi '+
'GROUP BY Asi.Asi_Adi, Asi.alians '+
'HA YING (((Asi.alians) Is Not Null))';
dm.adoqueryl .Open;
dm.adoqueryl .First;

for a:=0 to dm.adoqueryl.RecordCount-1 do
begin
combobox I .Items.Add(dm.adoqueryl .fieldbyname('alians').AsString);
dm.adoqueryl .Next;

end;
end;

procedure TF orm5 .Button 1 Click(Sender: TObject);
begin
adoquery2.Close;
adoquery2. SQ L. Clear;
adoquery2.SQL.Text:='Select * from asilar';
adoquery2. Open;
adoquery2.Insert;
adoquery2.FieldByName('Asi Adi').AsString:=edit2.Text;
adoquery2.FieldByName('Asi Yasi').AsString:=edit3.Text;
if RadioButtonl.Checked=true then
begin
adoquery2.FieldByName('Called').AsString:='Called';
adoquery2 .FieldBy N ame('Y apildi'j.Asxtring :=' ------';

83

end else begin
adoquery2.FieldByName('Yap1ld1').AsString:='Done It';
adoquery2.FieldByName('Called').AsString:='------';
end;
if dxdateeditl .Text=" then
begin
messagedlg('You have to choose date',mtwaming,[mbok],O);

dxdateeditl .SetFocus;
exit;
end else begin
adoquery2.FieldByName('Tarih').AsString:=dxdateeditl .Text;
end;
adoquery2.FieldByName('ld').AsString:=edit7.Text;
adoquery2.FieldByName('A~1 Turu'j.AsStringr=combobox 1.Text;
adoquery2 .Post;

adoquery2.Close;
adoqueryl .Close;
adoqueryl .SQL.Clear;
adoqueryl .SQL.Text:='select * from Asilar where ld="'+edit7.text+"";
adoqueryl .Open;
end;

procedure TForm5.FormClose(Sender: TObject; var Action: TCloseAction);
begin
edit2.Text:=";
edit3.Text:=";
comboboxl .Text:=";
end;
function yashesap(gel en: string): string;
var
yas,sonuc,a,sl ,s2:string;
x.i.y.integer;
begin
x:=7;
while(x<l 1) do begin

sl :=sl +gelen[x];
x:=x+ 1;
end;

a :=datetostr(date);
i:=7;
while(i<l 1) do begin

s2 :=s2+a[i];
i:=i+l;
end;

yas :=inttostr(strtoint(s2)-strtoint(s 1));
sonuc:=yas;
if strtoint(yas)> 1 then
begin
form5.Editl .Text:=yas+' years old';

84

end else begin
form5.Editl .Text:=yas+' year old';
end;
end;

procedure TForm5.Button2Click(Sender: TObject);
begin
yashesap(edit4.Text);
end;

procedure TForm5.ForrnActivate(Sender: TObject);
begin
dxDateEdit l .Date:=date;
end;

end.

THE CODES OF THE CALENDER

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, dxCntner, dxTL, dxDBCtrl, dxDBGrid, DB,
ADODB, dxDBTLCI, dxGrClms;

type
TForm7 = class(TFonn)
Button 1: TButton;
Editl: TEdit;
ADOQuery 1 : T ADOQuery;
DataSourcel: TDataSource;
MonthCalendarl: TMonthCalendar;
dxDBGrid 1: TdxDBGrid;
dxDBGrid 1 id: TdxDBGridColumn;
dxDBGrid 1 Date: TdxDBGridDateColumn;
dxDBGrid 1 explanation: TdxDBGridMemoColumn;
dxDBGrid 1 name: TdxDBGridColumn;
dxDBGrid 1 surname: TdxDBGridColurnn;
procedure Button 1 Click(Sender: TObject);
procedure FormShow(Sender: TObject);

private

85

{ Private declarations }
public

{ Public declarations }
end;

var
Forrn7: TForm7;

implementation
uses Rm,Unit8;
{$R *.dfm}

procedure TF orm 7 .Button 1 Click(Sender: TObject);
begin

edit I . Tex t:=datetostr(month calendar I .Date);
form8.ShowModal;
end;

procedure TForm7.FormShow(Sender: TObject);
begin
adoqueryl .Open;
end;

end.

THE CODES OF ADD MESSAGE FORM

unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DB, ADODB;

type
TForm8 = class(TForm)
Memol: TMemo;
Label 1: TLabel;
Edit 1 : TEdit;
Label2: TLabel;
Edit2: TEdit;
Buttonl: TButton;
Label3: TLabel;
ADOQueryl: T ADOQuery;

86

Edit3: TEdit;
Edit4: TEdit;
Label4: TLabel;
procedure FormActivate(Sender: TObject);
procedure ForrnShow(Sender: TObject);
procedure ForrnClose(Sender: TObject; var Action: TCloseAction);
procedure Button] Click(Sender: TObject);
procedure Editl Exit(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forrn8: TForrn8;

implementation
uses Rm,Unit7;
{$R *.dfin}

procedure TForrn8.FormActivate(Sender: TObject);
begin
memol .Text:=";
editl .SetFocus;
end;

procedure TForm8.ForrnShow(Sender: TObject);
begin
edit2.Text:=forrn7.Editl .Text;
label3.Caption:=edit2.Text;

end;

procedure TForrn8.ForrnClose(Sender: TObject; var Action: TCloseAction);

begin
edit] .Text:=";
memo I .Text:=";
edit2.Text:=";
forrn7.ADOQueryl .close;
forrn7.AD0Queryl .SQL.Clear;
forrn7.ADOQueryl.SQL.Text:='select * from calendar';
forrn7.ADOQueryl.Open;
end;

procedure TForrn8.Button 1 Click(Sender: TObject);
begin
dm.ADOQueryl .Close;
dm.ADOQueryl .SQL.Clear;
dm.ADOQueryl .SQL.Text:='select * from calendar';

87

dm.adoqueryl .Open;
dm.ADOQueryl .Insert;
if edit} .Text=" then
begin
messagedlg('Please enter the Id number',mtinformation,[mbok],O);
edit} .SetFocus;
exit;
end;
dm.ADOQueryl .FieldByName('id').AsString:=editl .Text;
dm.ADOQueryl .FieldByName('Date').AsString:=edit2.Text;
dm.ADOQueryl .FieldByName('explanation').AsString:=memo I .Text;
if (edit3.Text=") or (edit4.Text=") then
begin
messagedlg('Please Enter The Correct Patient Id ... ',mtinformation,[mbok],O);
edit} .Text:=";
edit} .SetFocus;
exit;
end;
dm.ADOQueryl .FieldByName('name').AsString:=edit3.Text;
dm.ADOQueryl .FieldByName('sumame').AsString:=edit4.Text;
dm.ADOQueryl .Post;

dm.ADOQueryl .Close;
showmessage('Randevu isleminiz tamamlanrmstir');
edit} .Text=";
edit2.Text:=";
memo} .Text:=";
form8.Close;
end;

procedure TForm8.Edit1Exit(Sender: TObject);
begin
if edit} .Text<>" then
begin
adoqueryl .Close;
adoqueryl .SQL.Clear;

adoqueryl .SQL.Text:='select * from Costumer_Info where Patient_Id='+editl .Text+";
adoqueryl .Open;
edit3.Text:=adoqueryl .fieldbyname('name').AsString;
edit4.Text:=adoquery1 .fieldbyname('sumame').AsString;
adoqueryl .Close;
label4.Visible:=True;
label4.Caption:=edit3.Text+' '+edit4.Text
end;
end;
end.

88

