NEAR EAST UNIEVERSITY

DEPERTMENT OF

COMPUTER
ENGINEERING

GRADUATION PROJECT
"ERROR CONTROL CODING"

PROF.DR.FAHRETTIN

ZELIHA ÇAY 93651

INDEX

Chapter I
Error control coding, 1
Error Detection \& Correction
Parity and Parity Check Codes
Code vectors \& Hamming Distances 3
FEC Systems 5
ARQ Systems 7
Linear Block Codes 11
Matrix Representation of Block Codes Syndrome Decoding 14
Convolutional Codes 21
Convolutional Encoding
Free Distances \& Coding Gain 25
Decoding Methods 30
Chapter II
Error Detection, Correction \& Control 37
12.1 Parity
12.2 Parity Generating \& Checking
12.3 The Dlsadvantages with Parity 38
12.4 Vertical \& Longitudinal Redundancy 40check (vrc \& Irc)
12.1 Cyclic Redundancy Checking
12.5 Computing The Block Check Character 43
1-Single-Precision Checksum 46
2-Double-Precision Checksum 3-Honeywell Checksum 47
4-Reuside Checksum
12.7 Error Correction 48
12.7.1 Hamming Code 50
12.7.2 Developing a Hamming Code
12.7.2.1 An Alternative Method 54

ERROR CONTROL CODING

Transmission errors in digital communication depend on the signal-to-noise ratio. If a particular system has a fixed value of S / N and the error rate is unacceptably high, then some other means of improving reliability must be sought Error-control coding often provides the best solution.

Error-control coding involves systematic addition of extra digits to the transmitted message. These extra check digits convey no information by themselves, but they make it possible to detect or correct errors in the regenerated message digits. In principle, information theory holds out the promise of nearly errorless transmission, as well be discussed in Chap.15. In practice, we seek some compromise between conflicting considerations of reliability, efficiency and equipment complexity. A multitude of error-control codes have therefore been devised to suit various applications.

This chapter starts with an overview of error-control coding, emphasizing the distinction between error detection and error correction and systems that employ these strategies. Subsequent sections describe the two major types of code implementations, block codes and convolutinal codes. We will stick entirely to binary coding, and we will omit formal mathematical analysis. Detailed treatments of errorcontrol coding are provided by the references cited in the supplementary reading list.

ERROR DETECTION AND CORRECTION

Coding for error detection, without correction, is simpler than error-correction coding. When a two-way channel exists between source and destination, the receiver can request retransmission of information containing detected errors. This errorcontrol strategy, called automatic repeat request (ARQ), particularly suits data communication systems such as computer networks. However, when retransmission is impossible or impractical, error control must take the form of forward error correction (FEC) using an error-correcting code. Both strategies will be examined here, after an introduction to simple but illustrative coding techniques.

Repetition and Parity-Check Codes

When you try to talk to someone across a noisy room, you may need to repeat yourself to be understood. A brute-force approach to binary communication over a noisy channel likewise employs repetition, so each message bit is represented by a codeword consisting of n identical bits. Any transmission error is a received codeword alters the repetition pattern by changing a 1 to a 0 or vice versa.

If transmission errors occur randomly and independently with probability $P=x$, then the binomial frequency function from Eq.(1), Sect.4.4, gives the probability of i errors in an n-bit codeword as

$$
\begin{align*}
P(i, n) & =\left|\begin{array}{l}
n \\
i
\end{array}\right| \alpha^{1}(1-\alpha)^{n-1} \tag{1a}\\
& \approx \left\lvert\, \begin{array}{l|ll}
n & & \\
i & \alpha \ll 1
\end{array}\right.
\end{align*}
$$

where

$$
\left|\begin{array}{l}
n \tag{1b}\\
i
\end{array}\right|=\frac{n!}{i(n-i)}=n \frac{(n-1) \ldots \ldots(n-i+1\rangle}{i)}
$$

We will proced on the assumption that $\alpha \ll 0.1$-which does not necessary imply reliable transmission since $\alpha=0.1$ satisfies our condition but would be an unacceptable error probability for digital communication. Repetition codes improve reliability when α is sufficiently small that $P(l+1, n) \ll P(1, n)$ and, consequently, several errors per word are much less likely than a few errors per word.

Consider, for instance, a triple-repetition code with codeword 000 and 111. All the other received words, such as 001 or 101, clearly indicate the presence of errors. Depending on the decoding scheme, this code can detect or correct erroneous words. For error detection without correction, we say that any word other than 000 or 111 is a detected error. Single and double errors in a word are thereby detected, but triple errors result in an undetected word error with probability.

$$
\mathrm{P}_{\mathrm{wq}}=\mathrm{P}(3,3)=\alpha^{3}
$$

For error correction, we use majority-rule decoding based on the assumption that at least two of the three bits are correct. Thus, 001 and 101 are decoded as 000 and 111 , respectively. This rule corrects words with single errors, but double or triple errors result in a decoding with probability.

$$
P_{w s}=P(2,3)+P(3,3)=3 \alpha^{2}-2 \alpha^{3}
$$

Since $P_{e}=\alpha$ would be the error probability without coding, we see that either decoding scheme for the triple-repetition code greatly improves reliability if, say, $\alpha \leq 0.01$. However implementation is gained at the cost of reducing the message bit rate by a factor of $1 / 3$.

More efficient codes are based on the notion of parity. The parity of a binary word is said to be even when the word contains an even number of 1 s , while odd parity means an odd number of 1 s . the codewords for an error-detecting parity check code are constructed with n-1 message bits and one check bit chosen such that all codewords have the same parity. With $n=3$ and even parity, the valid codewords are 000,011,101, and 110, the last bit in each word being the parity, check. When a received word has odd parity, 001 for instance, we immediately know that it contains a transmission error-or three errors or, in general, an odd number of errors. Error correction is not possible because we don't know where the errors fall within the word. Furthermore, an even number of errors preserves valid parity and goes unnoticed.

Under the condition $\alpha \ll 1$, double errors occur far more often than four or more errors per word. Hence, the probability of an undetected error in an n-bit parity-check codeword is

$$
\begin{equation*}
P_{w e} \approx P(2, n) \approx n\left(\frac{n-1) \alpha^{2}}{2}\right. \tag{2}
\end{equation*}
$$

For comparison purposes, uncoded transmission of words containing $n-1$ message bts would have

$$
P_{u w e}=1-P(0, n-1) \approx(n-1) \alpha
$$

Thus if $n=10$ and $\alpha=10^{-3}$ then $P_{\text {ume }} \approx 10^{-2}$ whereas coding yields Puna 5×10^{-5} with a rate reduction of just $9 / 10$. These numbers help explain the popularity of parity checking for error detection in computer systems.

As an example of parity checking for error correction, Fig. 13.1-1 Ilustrates an error-correcting scheme in which the codeword is formed by arranging k message bits in a square array whose rows and columns are checked by 2 squere k parity bits. A transmission error in one message bit causes a row and column

m_{1}	m_{2}	m_{3}	m_{6}
m_{4}	m_{5}	m_{9}	
m_{7}	m_{8}	c_{6}	
-	-		

Figure 13.1-2 Interieaved check bits for error control with burst errors.
parity failure with the error at the intersection, so single errors can be corrected. This code also detects double errors.

Throughout the foregoing discussion we have assumed that transmission errors appear randomly and independently in a codeword. This assumption holds for errors caused by white noise or filtered white noise. But impulse noise produced by lightning and switching transients causes errors to occur in bursts that span several successive bits. Burst errors also appear when radio-transmission systems suffer from rapid fading. Such multiple errors wreak have on the performance of conventional codes and must be combated by special techniques. Parity checking controls burst errors if the check bits are interleaved so that the checked bits are widely spaced, as represented in where a curved line connects the message bits and check bit in one parity word.

Code Vectors and Hamming Distance

Rather than continuing a piecemeal survey of particular codes, we now introduce a more general approach in terms of code vectors. An arbitrary n-bit codeword can be visualized in an n-dimensional space as a vector whose elements or coordinates equal the bits in the codeword. We thus write the codeword 101 in row vector notation as $X=\left(\begin{array}{ll}1 & 0\end{array}\right)$. Figure 13.13 portrays all possible 3-bit codeward as
dots corresponding to the vector tips in a three-dimension space. The solid dots in part (a)represent the triple-repetition code, while those in part (b) represent a paritycheck code.

Notice that the triple-repetition code vectors have greater separation than the parity-check code vectors. This separation, measured in terms of the

Hamming distance, has direct bearing on the error-control power of a code. The Hamming distance $d(X, Y)$ between two vectors X and Y is defined to equal the number of different elements. For instance, if $X=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$ and $Y=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ then $d(X, Y)=2$ because the second and third elements are different.

The minimum distance $d_{\text {min }}$ of a particular code is the smallest Hamming distance between valid code vectors. Consequently, error detection is always possible when the number of transmission errors in a codeword is less then $d_{\min }$ so the erroneous word is not a valid vector. Conversely, when the number of errors equals or exceeds $\mathrm{d}_{\text {min }}$, the erroneous word may correspond to another valid vector and the errors be detected.

Further reasoning along this line leads to the following distance requirements for various degrees of error control capability.

Detect up to I errors per word Correct up to terrors per word Correct up to t errors and detect $1>$ t

$$
\begin{array}{ll}
d_{\text {min }} \geq 1+1 & (3 a) \\
d_{\text {min }} \geq 2 l+1 & (4 a) \\
d_{\text {min }} \geq 3 l+1 & (3 c)
\end{array}
$$

By way of example, we see from Fig.13.1-3 that the triple-repetition code has $d_{\text {min }}=3$. Hence, this code could be used to detect $t \leq 3-1=2$ errors per word or to correct $t \leq(3-1) / 2=1$ error per word-in agreement with our previous observations. A more powerful code with $\alpha_{\min }=7$ could correct triple errors or it could correct double errors and detect quadruple errors.

The power of a code obviously depends on the number of bits added to each codeword for error-control purposes. In particular, suppose that the codewords consist of $k<n$ message bits and $n-k$ parity bits checking the message bits. This structure is known as an (n, k) block code. The minimum distance of an (n, k) block code is upper-bounded by

$$
d_{\min } \leq n-k+1
$$

and the code's efficiency is measured by the code rate

$$
R_{c}{ }^{\Delta}=k / n
$$

Regrettably, the upper bound in Eq.(4) is realized only by repetition codes, which have $k=1$ and very inefficient code rate $R_{c}=1 / n$. Considerable effort has thus been devoted to the search for powerful and reasonably efficient codes, a topic we will return to in the next section.

Now we are prepared to examine the forward error correction system diagrammed in Fig 13.1-4. Message bits come from an information source at the rate t_{0}. The encoder takes blocks of k message bits and constructed an (n, k) block code with

Figure 13.14 FEC System
code rate $R_{c}=k / n<1$. The bit rate on the channel therefore must be greater than r_{b}, namely

$$
\begin{equation*}
r=(n / k) r_{b}=r_{b} / R_{c} \tag{6}
\end{equation*}
$$

The code has $d_{\text {min }}=2 t+1 \leq n-k+1$, and the decoder operates strictly in an error-correction mode. We will investigate the performance of this FEC system when additive white noise causes random errors with probability $\alpha \ll 1$. The value of α depends, of course, on the signal energy and noise density at the receiver. If E_{b} represent the average energy per message bit, then the average energy per code bit is $R_{c} E_{b}$ and the ratio of bit energy to noise energy to noise density is

$$
\begin{equation*}
y_{c}=R_{c} E_{b} / n=R_{c} y_{c} \tag{7}
\end{equation*}
$$

where $y_{b}=E_{b} / n$. Our performance criterion will be the probability of output message-bit errors, denoted by $P_{b e}$ to distinguish it from the word error probability $P_{w e}$

The code always corrects up to terrors per word and some patterns of more than terrors may also be correctable, depending upon the specific code vectors. Thus, the probability of a decoding word error is upper-bounded by

$$
\mathrm{P}_{\mathrm{we},} \leq \sum_{\mathrm{P}(1, \mathrm{n})}
$$

H
For a rough but reasonable performance estimate, we will take the approximation

$$
P_{w o} \approx P(t+1, n) \approx\left[\begin{array}{r}
n \tag{8}\\
t+1
\end{array}\right] \alpha^{i+1}
$$

which means that an uncorrected word typically has $t+1$ bit errors. On the average, there will be $(k / n)(t+1)$ message-bit errors per uncorrected word, the remaining
errors being in check bits. When Nk bits are transmitted in N>>1 words, the expected total number of erroneous message bits at the output is $(\mathrm{k} / \mathrm{n})(\mathrm{t}+1) \mathrm{NP}$ we
Hence,

$$
P_{b e}=\frac{t+1}{n} P_{w e \alpha}\left[\begin{array}{c}
n-1 \tag{9}\\
t
\end{array}\right] \alpha^{t+1}
$$

n which we have used Eq. (1b) to combine $(t+1) / n$ with the binomial coefficient. If the noise has a gaussian distribution and the transmission system has been optimized (i.e., polar signaling and matched filtering), then the transmission error probability is given by Eq.(16), Sect.11.2, as

$$
\begin{align*}
\alpha & =Q\left(\sqrt{ } 2 y_{c}\right) Q\left(\sqrt{ } R_{c} y_{b}\right) \tag{10}\\
& \approx\left(4 p i R_{c} y_{b}\right)^{-1 / 2} e^{-R_{c} Y_{b}}
\end{align*}
$$

The gaussian tail approximation invoked here follows, from Eq. (10), Sect.4.4, and is consistent with the assumption that $\alpha \ll 1$. Thus, our final result for the output error probability of the FEC system becomes

$$
\begin{align*}
P_{b e} & =\left[\begin{array}{c}
n-1 \\
t
\end{array}\right]\left[Q\left(\sqrt{2} R_{c} y_{b}\right)\right]^{l+1} \tag{11}\\
& \sim\left[\begin{array}{c}
n-1 \\
t
\end{array}\right]\left(4 \mathrm{pi} R_{\mathrm{c}} y_{b}\right)^{((t+1) / 2} e^{\left((1+1) R_{c} y_{b}\right.}
\end{align*}
$$

Lincoded transmission on the same channel would have

$$
\begin{equation*}
P_{\text {cha }}=Q\left(\sqrt{ } 2 y_{b}\right) \approx\left(4 p_{i} y_{b}\right)^{1 / 2} e^{y_{b}} \tag{12}
\end{equation*}
$$

snce the signaling rate can be decreased from r_{b} / R_{c} to r_{b}
A comparison of Eqs(11) and (12) brings out the importance of the code zarameters $t=\left(d_{\min }-1\right) / 2$ and $R_{c}=k / n$. The added complexity of an FEC system is suified provided that t and R_{c} yield a value of significantly less than $P_{\text {uba }}$. The =rponential approximation show that this essentially requires $(t+1) R>1$. Hence, a asde that only corrects single or double errors should have a relatively high code Its. while more powerful codes may succeed despite lower code rates. The mennel parameter y_{b} aiso enters into the comparison, as demonstrated by the diowing example.

Exampler3.1-1 Suppose we have a $(15,11)$ block code with $d_{\text {min }}=3$,二 $t=1$ and $R_{c}=11 / 15$. An FEC system using this code would have $\left.a=0(22 / 15) y_{6}\right]$ and $P_{b=}=4 \alpha^{2}$, whereas uncoded transmission on the seme channel would yield $P_{w_{b}}=Q\left(\sqrt{ } 2 y_{b}\right)$. These three probebilities are acted versus y_{b} in dB fig.13.1-6. If $y_{b}>8 \mathrm{~dB}$, we see that coding decreases - a eror probability by at least an order of magnitude compared to uncoded 18 smission. At $y_{h}=10 \mathrm{~dB}$, for instance, uncoded transmission yields $=-4 \times 10^{-5}$ whereas the FEC system has $\mathrm{P}_{\text {bes }} 10^{-7}$ even through the Ster channel bit rate increase the transmission error probability to +erio ${ }^{2}$.

Figure 13.1-5 Curves of error probabilities in Example 13.1-1.
If y_{b}. DB, however, coding does not significantly improve and actually makes matters worse when $y_{b}<4 \mathrm{~dB}$. Furthermore, an uncoded system could achieve better reliability that the FEC system simply by increasing the signal-to-noise ratio about 1.5 dB . Hence, this particular code doesn't save much signal much signal power, but it would be effective ${ }^{\circ} y_{b}$ has a fixed value in the vicinity of 8-10 dB.

ARQ Systems

The automatic-repeat-request strategy for error control is based on error detection and retransmission rather than forward error correction. Consequently, ARQ systems differ from FEC systems in three important respects. First, an (n, k) block code designed for error detection generally requires fewer check bits and has a higher k/n ratio than code designed for error correction. Second, an ARQ system needs a return transmission path and additional hardware in order to implement repeat transmission of codewords with detected errors. Third, the forward transmission bit rate must make allowance for repeated word transmissions. The net impact of these differences becomes clearer after we describe the operation of the ARQ system represented by fig. 13.1-6.

Each codeword constructed by the encoder is stored temporarily and transmitted to the destination where the decoder looks for errors. the decoder issues positive acknowledgment (ACK) if no errors are detected, or a negative acknowledgment (NAK) if errors are detected. A negative acknowledgment causes the input controller to retransmit the appropriate word from those stored by the aput buffer. A particular word may be transmitted just once or it may be transmitted two or more times, depending on the occurrence of transmission errors. The function of the output controller and buffer is to assemble the output bit stream from the codewords that have been accepted by the decoder.

Compared to forward transmission, return transmission of the ACK,NAK signal involves a low bit rate and we can reasonably assume a negligible error probability on the return path. Under this condition, all codewords with detected errors are transmitted as many times as necessary, so the only output errors appear in words with undetected errors. For an (n, k) block code with $\mathrm{d}_{\text {min }} i+1$, the corresponding output error probabilities are

$$
\begin{align*}
& P_{w e}=\sum_{i=1+1}^{n} P(i, n) \approx P(1+1, n) \approx\left|\begin{array}{c}
n \\
1+1
\end{array}\right| \alpha^{1+1} \tag{13}\\
& P_{b a}=\frac{1+1}{n} P_{w a} \approx\left|\begin{array}{c}
n-9 \\
1
\end{array}\right| \alpha^{1+1} \tag{14}
\end{align*}
$$

which are identical to the FEC expressions, Eqs(8) and (9), with I in place of t Since the decoder accepts words that have either no rrors or undetected errors. The words retransmission probability is given by

$$
p \approx 1-\left[P(0, n)+P_{w a}\right]
$$

But a good error-detecting code should yield $P_{w a} \ll P(0, n)$. Hence,

$$
p \approx 1-P(0, n)=1-(1-\alpha)^{n} \approx n \alpha
$$

where we have used the approximation $(1-\alpha)^{n} \approx 1-n \alpha$ based on $n \alpha \ll 1$. As for the retransmission process itself, there are three basic ARQ schemes illustrated by the timing diagrams in Fig. 13.1-7. The asterik marks words received with detected errors which must be retransmitted. The stop-and-wait scheme in part a requires the transmitter to stop after every word and wait for acknowledgment from the receiver. Just one word needs to be stored by the input buffer, but the transmission time delay t_{f} in which direction results in an idle time of duration $D \geq 2 t_{d}$ between words. Idle time is eliminated by the go-back-N scheme in part b where codewords are transmitted continuously. When the receiver sends a NAK signal, the transmitter goes back N words in the buffer and

Figure 13.1-7 ARO schemes. (A) Stop-and wait;(B)go-back-n; (C) selective-repeat
retransmits starting from that point. The receiver discards the N-1 intervening words, correct or not, in order to preserve proper sequence. The selective-repeat scheme in part c puts the burden of sequencing on the output controller and buffer, so that only words with detected errors need to be retransmitted.
Clearly, a selective.-repeat ARQ system has the highest throughput efficiency. To set this on a quantitative footing, we observe that the total number of transmission of a given word is discrete random variable m governed by the event probabilities $P(m=1)=1-p, P(m=2)=P(1-p)$ etc. The average number of transmitted words per accepted word is then
$m=1(1-p)+2 p(1-p)+3 p^{2}(1-p)+\ldots \ldots$

$$
\begin{equation*}
=(1-p)\left(1+2 p+3 p^{2}+\ldots . .\right)=\frac{1}{1-p} \tag{16}
\end{equation*}
$$

since $1+2 p+3 p^{2}+\ldots \ldots=(1-p)^{-2}$. On the average, the system must transmit nm bits for every k message bits, so the throughput efficiency is

$$
\begin{equation*}
R_{c}=k /(n m)=(k(1-p)) / n \tag{17}
\end{equation*}
$$

in which $p \approx n \alpha$, From Eq.(15).
We use the symbol \mathbf{R}_{c} here to reflect the fact that the forwardtansmission bit rate r and the message bit rate r_{b} are related by.

$$
R=r_{b} / R_{c}^{\prime}
$$

comparable to the relationship $r=r_{b} / R_{c}$ in an FEC system. Thus, when the noise has a gaussian distribution, the transmission error probability α s calculated from Eq.(10) using R_{c}^{\prime} instead of $R_{c}=K / n$. Furthermore, if $\lll 1$, then $R_{c} \approx k / n$. But an error-detecting code has a larger k / n ratio than an error-correcting code of equivalent error-control power. Under these conditions, the more elaborate hardware needed for selective-repeat ARQ may pay off in terms of better performance than an FEC system would yield on the same channel.

The expression form m in Eq.(16) also applies to a stop-and wait ARQ system. However, the idle time reduces efficiency by the factor $T_{\mu}\left(T_{w}+D\right)$ where is the round-trip delay and T_{w} is the word duration given by $T_{w}=n / r \leq k / r_{b}$. Hence,
$R=\frac{k}{n} \frac{1-p}{1+\left(\mathrm{D} / T_{w}\right)} \leq \frac{k}{n} \frac{1-\mathrm{p}}{1+\left(2 t_{d} \sigma_{b} / k\right)}$
n which the upper bound comes from writing $D \pi_{w} \geq 2 t_{0} T_{b} / k$.
a go back-N ARQ system has no idle time, but N words must be retransmitted for each word with detected errors. Consequently, we find that

$$
\begin{equation*}
m=1+\frac{N p}{1-p} \tag{19}
\end{equation*}
$$

and where the upper bound reflects the fact that $N \geq 2 t_{0} / T_{w}$. Unlike selective-repeat ARQ, the throughput efficiency of the stop-and-wait and go-back- N schemes depends on the round-trip delay. Equations (18) and (20) reveal that both of these schemes have reasonable efficiency if te delay and bit rate are such that $2 \mathrm{t}_{\mathrm{d}} \mathrm{r}_{\mathrm{b}} \ll k$. However, stop-and-wait ARQ has very low efficiency when $2 t_{d} r_{b} \geq k$, whereas the go-back-N scheme may still be satisfactory provided that the retransmission probability p is small enough.

Finally, we should at least describe the concept of hybrid ARQ systems. These systems consist of an FEC subsystem within the ARQ framework, thereby combining desirable properties of both error-control strategies. For instance, a hybrid ARC system might employ a block code with $d_{\text {min }}=t+1+1$, so the decoder can correct up to t errors per word and detect but not correct words with $\mid>t$ errors. Errors correction reduces the number of words that must be retransmitted, thereby increasing the throughput without sacrificing the higher reliability of ARQ.

13.2 Linear Block codes

This section describe the structure, probabilities, and implementation of slock codes. We start with a matrix representation of the encoding process that generates the check bits for a given block of message bits. Then we use the natrix representation to investigate decoding methods for error detection and correction. The section closes with a brief introduction to the important class of oycic block codes.

Matrix Representation of Block Codes

An (n, k) block code consist of n-bit vectors, each vector corresponding to a unique block of $k<n$ message bit. Since there are different k-bit message blocks and 2^{n} possible n-bit vectors, the fundamental strategy of block coding is to choose the 2^{k} code vectors such that the minimum distance is as large as possible. But the code should also have some structure that facilities the encoding and decoding process. We will therefore focus on the class of systematic linear bock codes.

Let an arbitrary code vector be represented by

$$
X=\left(x_{1} x_{2} \ldots \ldots \ldots x_{n}\right)
$$

where the elements $x_{1} x_{2} \ldots \ldots$ are, of course, binary digits. A code is linear it it includes the all-zero vector and if the sum of any code vectors produces another vector in the code. The sum of two vectors, say X and Z, is defined as

$$
x+Z=\left(\begin{array}{lll}
x & x & x_{1} \tag{1}\\
x_{2}
\end{array}+\ldots \ldots \ldots . . x_{n} z_{n}\right)
$$

n which the elements are combined according to the rules of mod-2 additional given in Eq..(2), Sect.11.4.

As a consequence of linearity, we can determine a code's minimum distance Dy the following argument. Let the number of nonzero elements of a vector X be symbolized by $w(X)$, called the vector weight. The Hamming distance between any swo code vectors X and Z is then

$$
d(X, Z)=w(X+Z)
$$

since $x_{1} \oplus z_{1}=1$ if $x_{1} \neq z_{1}$ etc. The distance between X and Z therefore equals the wight of another code vetor $X+Z$. But if $Z=(0, \ldots . .0)$ then $X+Z=X$; hence,

$$
\left.d_{\min }=\left[\begin{array}{lll}
w & X
\end{array}\right)\right]_{\min } \quad X \neq\left(\begin{array}{llll}
0 & 0 & \ldots & 0
\end{array}\right)
$$

in other words, the minimum distance of a linear block code equals the smallest nonzero vector weight.
A systematic block code consists of vectors whose first k elements(or est k elements) are identical to the message bits, the remaining $n-k$ eernents being check bits. A code vector then takes the form

$$
\begin{equation*}
x=\left(m_{1} m_{2} \ldots \ldots \ldots m_{k} \quad c_{1} \quad c_{2} \ldots \ldots c_{q}\right) \tag{3a}
\end{equation*}
$$

where

$$
q=n-k
$$

For convenience, we will also code vectors in the partitioned notation

$$
X=(M \mid C)
$$

in which M is a k-bit message vector and C is a q-bit check vector.
Partitioned notations lends itself to the matrix representation of block codes.

Given a message vector M, the corresponding code vector X for a systematic linear (n, k) block code can be obtained by a matrix multiplication.

$X=M G$

The matrix G is a $k \times n$ generator matrix having the general structure

$$
G==_{\left[\begin{array}{ll}
I_{k} & P \tag{5a}
\end{array}\right] .}
$$

where l_{k} is the $k \times k$ identity matrix and P is a $k \times q$ submatrix od binary digits represented by

$$
P=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{1 q} & \tag{5b}\\
p_{21} & p_{13} & \ldots & p_{2 q} \\
\cdot & \cdot & \cdot \\
p_{k 1} & p_{k 2} & p_{k q} & \\
p_{k} & \\
\end{array}\right]
$$

The identity matrix in G simply reproduces the message vector for the first Kelements of X, while the submatrix P generates the check vector via

$\mathrm{C}=\mathrm{MP}$

This binary matrix multiplication follows the usual rules with mod-2 addition instead of conventional addition. Hence, the jth element of C is computed using the j th column of P, and

$$
\begin{equation*}
c_{1}=m_{1} p_{1 j}+m_{2} p_{2 i}+\ldots \ldots \ldots . . .+m_{k} p_{k j} \tag{6b}
\end{equation*}
$$

for $\mathrm{j}=1,2,3, \ldots \ldots$. . All of these matrix operations are less formidable than they appear because every element equals either 0 or 1 .
The matrix representation of a block code provides a compact analytical vehicle and, moreover, leads to hardware implementations of the encoder and decoder. But t does not tell us how to pick the elements of the P submatrix to achieve specified code parameters such as $d_{\text {min }}$ and R_{c}. Consequently, good codes are discovered wth the help of considerable inspiration and perspiration, guided by mathematical analysis. In fact, Hamming(1950) devised the first popular block codes several years belore the underlying theory was formalized by Slepian(1956).

Example 13.2-1 Hamming code: A hamming code is an (n, k) linear block code with $q \geq 3$ check bits and

$$
\begin{equation*}
n=2^{q}-1 \quad k=n+q \tag{7a}
\end{equation*}
$$

The code rate is

$$
\begin{equation*}
R_{c}=\frac{k}{n}=\frac{1-q}{2^{q}-1} \tag{7b}
\end{equation*}
$$

and thus $R_{c} \approx 1$ if $q \gg 1$. Independent of q, the minimum distance is fixed at

$$
\begin{equation*}
\alpha_{\min }=3 \tag{7c}
\end{equation*}
$$

So a Hamming code can be used for single-error correction or double defection. To construct a systematic Hamming code, you simply let the k Dws of the P submatrix consist of q-bit words with two or more is, arranged n eny order.

For example, consider systematic Hamming code with $q=3$, so $n=2^{3}-1=7$ and $=7-3=4$. According to the previously stated rule, an appropriate generator matrix is

G=
$\left[\begin{array}{llll|lll}1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$

The last three columns constitute the P submatrix whose rows inculude all 3 -bit words that have two or more is. Given a block of message bits $M=$

Figure 13.2-1 Encoder for (7,4) Hamming code.
($m_{1} m_{2} m_{3} m_{4}$), the check bits are determined from the set of equations

$$
\begin{aligned}
& c_{1}=m_{1} \oplus m_{2} \oplus m_{3} \quad 8_{0}^{0} \\
& c_{2}=0 \oplus \oplus m_{2} \oplus m_{3} \\
& c_{3}=m_{1} \oplus m_{2} \oplus 0
\end{aligned} \odot m_{4}
$$

These check-bit equations are obtained by substituting the elements of P into Eq(6).

Figure 13.2-1 depicts an encoder that carries out the check-bit calculations for this $(7,4)$ Hamming code. Each block of message bits going to the transmitter is also loaded into a message register. The cells of the -essage register are connected to exclusive-OR gates whose outputs
sna the check bits. The check bits are stored in another register and sneed out to the transmitter after the message bits. An input buffer hoids ta ted block of message bits while the check bits are shifted out. The $\geqslant>e$ then repeats with the next blocks of message bits.

Table 13.2-1 lists the resulting $2^{4}=16$ codewords and their weights . Te smallest nonzero weight equals 3 , confirming that $\leq=3$.

Table 13.2-1 Codewords for the (7,4) Hamming code

M	c	$w(x)$
2000	000	0
2001	011	3
2010	110	3
2011	101	4
0100	111	4
$=101$	100	3
$=110$	001	3
2111	010	4

m	c	$w(x)$
1000	101	3
1001	110	3
1010	011	3
1011	000	3
1100	010	3
1101	001	4
1110	100	4
1111	111	7

write the check-bit equations and tabulate the codewords and their weights Lshow that $\mathrm{d}_{\text {min }}=3$.

Syndrome Decoding

Now let Y stand for the received vector when a particular code vector X has been transmitted. Any transmission errors will result in $Y \neq X$. The decoder detects or sorrects errors in Y using stored information about the code.

A direct way of performing error detection would be to compare Y with every vector in the code. This method requires storing all 2^{k} code vectors at the receiver and performing up to 2^{k} comparison. But efficient codes generally have large values of k , which implies rather extensive and expensive decoding hardware. As an example, you need $q \geq 5$ to get $R_{c} \geq$ 0.8 with a Hamming code; then $n \geq 31, k \geq 26$, and the receiver must store a total of $n \times 2^{k}>10^{9}$ bits 1 !.
More practical decoding methods for codes with large k involve paritycheck information derived from the code's P submatrix. Associated with any systematic linear (n, k) block code is a $\mathrm{q} \times \mathrm{n}$ matrix H called the paritycheck matrix. This matrix is defined by

$$
H^{t \Delta}=\left[\begin{array}{l}
P \tag{8}\\
I_{q}
\end{array}\right]
$$

Where H^{\top} denotes the transpose of H and I_{q} is the $q \times q$ identity matrix. Relative to error detection, the parity-check matrix has the crucial propety.

$$
X H^{\top}=\left(\begin{array}{llll}
0 & 0 & \ldots . .0 \tag{9}
\end{array}\right)
$$

rovided that X belongs to the set of code vectors. However, when Y is not a code vector, the product YH^{\top} contains at least one nonzero element.

Therefore, given H^{\top} and a received vector Y, error detection can be based on

$$
\begin{equation*}
S=Y H^{\top} \tag{10}
\end{equation*}
$$

a 2 -bit vector called the syndrome. If all elements of S equal zero, then ater equals the transmitted vector X and there are no transmission errors, Tr equal some other code vector and the transmission errors are andetectable. Otherwise errors are indicated by the presence of nonzero sements in S. Thus, a decoder for error detection simply takes the form of a syndrome calculator. A comparison of Eqs. (10) and (6) shows that the tertware needed is essentially the same as the encoding circuit.

Error correction necessarily entails more circuitry but it, too, can be sased on the syndrome. We develop the decoding method by introducing an n-bit error vector E whose nonzero elements mark the positions of zansmission errors in Y. For instance, if $X=\left(\begin{array}{llll}1 & 0 & 1 & 10\end{array}\right)$ and $Y=\left(\begin{array}{lll}1 & 0 & 0\end{array} 11\right)$ ten $E=(0010101)$. In general

$$
\begin{equation*}
Y=X+E \tag{11a}
\end{equation*}
$$

and conversely,

$$
\begin{equation*}
X=Y+E \tag{11b}
\end{equation*}
$$

since a second error in the same bit location would cancel the original error. substituting $Y=X+E$ into $S=Y H^{\top}$ and invoking Eq(9), we obtain

$$
\begin{equation*}
\mathrm{S}=(\mathrm{X}+\mathrm{E}) \mathrm{H}^{\top}=X \mathrm{H}^{\top}+E H^{\top}=E H^{\top} \tag{12}
\end{equation*}
$$

arich reveals that the syndrome depends entirely on the pattern, not the specific tansmitted vector.

However, there are only 2^{q} different syndromes generated by the 2^{n} sossible n-bit error vectors, including the no-error case. Consequently, a given sindrome does not 2^{9} uniquely determine by the E. Or, putting this another way, E can correct just patterns with one or more errors, and the remaining patterns are -ncorrecttable. We should therefore design the decoder to correct the most likely =ror patterns-namely those patterns with the fewest errors, since single errors are nore probable than double errors, and so forth. This strategy, known as maximumteihood decoding, is optimum in the sense that it minimize the word error robability. Maximum-likelihood decoding corresponds to choosing the code vector $t \geq$ has the smallest Hamming distance from the received vector.

To carry out maximum-likelihood decoding, you must first compute the m-mes generated by the $2^{\mathrm{q}}-1$ most probable error vectors. The table-lookup $2=$ dagrammed in Fig $13.2-2$ then operates as follows. The decoder calculates On te received vector Y and looks up the assumed error vector E stored in acoe The sum $\mathrm{Y}+\mathrm{E}$ generated by exclusive-OR gates finally constitutes the ade word. If there are no errors, or if the errors are uncorrectable, then $S=(00$ so $Y+E=Y$. The check bits in the last q elements of $Y+E$ may be omitted if they $Z=$ no lurther interset.

The relationship between syndromes and error patterns also sheds some light te design of error-correcting codes, since each of the $2^{9}-1$ nonzero syndromes s represent a specific error pattern. Now there are single-error patterns for an t word double-error patterns, and so forth. Hence, if a code is to correct up to t ers per word, q and must satsify

$$
2^{9}-1 \geq n+\left|\begin{array}{l}
n \tag{13}\\
2
\end{array}\right|+\ldots \ldots \ldots+\left|\begin{array}{l}
n \\
t
\end{array}\right|
$$

particular case of a single-error-correcting code, Eq(13) reduces to $2^{9}-1 \geq n$. ithermore, when E corresponds to a single error in the jth bit of a codeword, we c tom Eq(12) that S is identical to the jth row of H^{t}. Therefore, to provide a stret syndromes for each single-error pattern and for the no error pattern, the rows (or columns of H) must all be different and each must contain at least one - cero clement. The generator matrix of a Hamming code is designed to satisfy es requirements on H , while q and n satisfy $2^{\mathrm{q}}-1=\mathrm{n}$.

Smple 13.2-2 Let's apply table-lookup decoding to a $(7,4)$ Hamming code used \% single-error correction. From Eq.(8) and the P submatrix given in Example I2-1, we obtain the 3×7 parity-check matrix.

$$
H=\left[P^{\prime} \mid I_{q}\right]=\left[\begin{array}{llll|lll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

There are $2^{3}-1=7$ correctable single-error patterns, and the corresponding si-stomes listed in table $13.2-2$ follow directly from the columns of H . To accommodate He table the decoder needs to store only $(q+n) \times 2^{q}=80$ bits

Table 13.2-2 Syndromes for the (7,4) Hamming code

8	E
000	0000000
101	1000000
111	0100000
101	0010000
011	0001000
100	0000100
010	0000010
001	0000001

But suppose a received word happens to have two errors, such
$E=(1000010)$. The decoder calculates $S=Y H^{\top}=E H^{\top}=\left(\begin{array}{ll}11 & 1\end{array}\right)$
ear te spdromes table gives the assumed single-error pattern
$E=(0100000)$. The decoded output word $Y+E$ therefore contains three I-s te two transmission errors plus the erroneous correction added by the
\# muttiple transmission errors per word are sufficiently infrequent, we need - ze concerned about the occasional extra errors committed by the decoder. If - Entors are frequent, a more powerful code would be required. For -rice, an extended Hamming code has an additional check bit that provides zeeerror detection along with single-error correction; see Prob13.2-12.

Sancises 13.2-2 Use EqS. (8) and (10) to show that the jth bit of S given by

$$
s=y_{1} p_{11} \oplus \theta_{2} p_{2 j}+0 \ldots \ldots \odot y_{1 k} p_{k j} \ominus_{k+j}
$$

Ten degram the syndrome-calculation circuit for a $(7,4)$ Hamming code, and = pere it with Fig.13.2-4.

Cyclic Codes

The code for a forward-error-correction system must be capable of =l peting $t \geq 1$ errors per word. It should also have a reasonably efficient code rate z=kh. These two parameters are related by the inequality

$$
1-R_{c} \geq \frac{1}{n} \log _{2}\left[\sum\left(i_{i}\right)\right]
$$

$\rightarrow \rightarrow$ follows from Eq. (13) with $q=n-k=n\left(1-R_{c}\right)$. This inequality underscores the net hat if we want $R_{c} \approx 1$, we must use codewords with $n \gg 1$ and $k \gg 1$. However, \#e tardware requirements for encoding and decoding long codewords may be ehbitive unless we impose further structural conditions on the code. Cylic codes ere subclass of linear block codes with a cyclic structure that leads to more zactical implementation. Thus, block codes used in FEC systems are almost meys cyclic codes.

To describe a cyclic code, we will find it helpful to change our indexing sheme and express an arbitrary n-bit code vector in the form

$$
\begin{equation*}
x=\left(x_{n-1} \quad x_{n-2} \ldots \ldots . . x_{1} x_{0}\right) \tag{15}
\end{equation*}
$$

Now suppose that X has been loaded into a shift register with feedback Prnection from the first to last stage. Shifting all bits one position to the left yields fe cyclic shift of X, written as

$$
\begin{equation*}
x^{\prime} \stackrel{\Delta}{=}\left(x_{n-2} x_{n-3} \ldots \ldots . . x_{1} x_{0} x_{n-1}\right) \tag{16}
\end{equation*}
$$

- second shift produces $X^{\sharp}=\left(x_{n-3} \ldots \ldots . x_{1} x_{0} x_{n-1} x_{n-2}\right)$ and so forth. A linear code is ardic if every cyclic shift of a code vector X is another vector in the code. This zicts property can be treated mathematically by associating a code vector X with he polynomial

$$
\begin{equation*}
X(p)=x_{n-1} p^{n-1}+x_{1-2} p^{n-2}+\ldots \ldots \ldots x_{1} p+x_{0} \tag{17}
\end{equation*}
$$

ate the sydromes table gives the assumed single-error pattern
$E=(0100000$). The decoded output word $Y+E$ therefore contains three thes The two transmission errors plus the erroneous correction added by the menoer

* muttiple transmission errors per word are sufficiently infrequent, we need - be concerned about the occasional extra errors committed by the decoder. If - tole errors are frequent, a more powerful code would be required. For esce, an extended Hamming code has an additional check bit that provides = De-error detection along with single-error correction; see Prob13.2-12.

Erencises 13.2-2 Use Eqs. (8) and (10) to show that the jth bit of S given by

$$
s=y_{1} p_{1 j} \oplus y_{2} p_{2 j}+0 \ldots \ldots . \Theta y_{k} p_{k j} \ominus y_{k+j}
$$

Ten dlagram the syndrome-calculation circuit for a $(7,4)$ Hamming code, and =mpare it with fig.13.2-1.

Cyclic Codes

The code for a forward-error-correction system must be capable of $=$ recting $t \geq 1$ errors per word. It should also have a reasonably efficient code rate z =kin. These two parameters are related by the inequality

$$
1-R_{0} \geq \frac{1}{n} \log _{2}\left[\sum_{i=0}(0)\right]
$$

Nich follows from Eq. (13) with $q=n-k=n\left(1-R_{c}\right)$. This inequality underscores the lect that if we want $R_{c} \approx 1$, we must use codewords with $n \gg 1$ and $k \gg 1$. However, the hardware requirements for encoding and decoding long codewords may be prohibitive unless we impose further structural conditions on the code. Cylic codes are a subclass of linear block codes with a cyclic structure that leads to more oractical implementation. Thus, block codes used in FEC systems are almost tways cyclic codes.

To describe a cyclic code, we will find it helpful to change our indexing scheme and express an arbitrary n-bit code vector in the form

$$
\begin{equation*}
x=\left(x_{n-1} \quad x_{n-2} \ldots \ldots . . x_{1} x_{0}\right) \tag{15}
\end{equation*}
$$

Now suppose that X has been loaded into a shift register with feedback connection from the first to last stage. Shifting all bits one position to the left yields The cyclic shift of X, written as

$$
\begin{equation*}
x^{\dagger} \stackrel{\Delta}{=}\left(x_{n-2} x_{n-3} \ldots \ldots . . x_{1} x_{0} x_{n-1}\right) \tag{16}
\end{equation*}
$$

A second shift produces $X^{n}=\left(x_{n-3} \ldots \ldots . x_{1} x_{0} x_{n-1} x_{n-2}\right)$ and so forth. A linear code is cyclic if every cyclic shift of a code vector X is another vector in the code. This cyclic property can be treated mathematically by associating a code vector X with the polynomial

$$
\begin{equation*}
X(p)=x_{n-1} p^{n-1}+x_{r-2} p^{n-2}+\ldots \ldots . x_{1} p+x_{0} \tag{17}
\end{equation*}
$$

-rme p is an arbitrary real variable. The powers of p denote the positions of the =cewcrd bits represented by the corresponding coefficients of p. Formally, binary =oe polynomials are defined in conjunction with Galois fields, a branch of modern mexa that provides the theory needed for a complete treatment of cyclic codes.
our informal overview of cyclic codes we will manipulate code polynomials srg ordinary algebra modified in two respects. First, to be in agreement with our - ier definition for the sum of two code vectors, the sum of two polynomials is zered by mod-2 addition of their respective coefficients. Second, since all eficients are either 0 or 1 , and since $1 \propto 1=0$, the subtraction operation is the -te as mod-2 addition. Consequently, if $X(p)+Z(p)=0$ then $X(p)=Z(p)$.

We develop the polynomial interpretation of cyclic shifting by comparing

$$
p X(p)=x_{n-1} p^{n}+x_{n-2} p^{n-1}+\ldots \ldots . . x_{1} p^{2}+x_{0} p
$$

-th the shifted polynomiai

$$
x^{\prime}(p)=x_{n-2} p^{n-1}+\ldots \ldots \ldots x_{1} p^{2}+x_{0} p+x_{n-1}
$$

I ve sum these polynomials, noting that $\left(x_{1}+x \varphi p^{2}=0\right.$, etc., we get

$$
p X(p)+X^{\prime}(p)=x_{n-1} p^{n}+x_{n-1}
$$

me nence

$$
X^{\prime}(p)=p X(p)+X_{n-1}(p+1)
$$

ervon yields similar expressions for multiple shifts.
The polynomial p^{n+1} and its factors play major roles in cyclic codes. seofically, an (n, k) cyclic code is defined by a generator polynomial of the form

$$
\begin{equation*}
G(p)=p^{q}+g_{q-1} p^{q-1}+\ldots+g_{1} p+1 \tag{19}
\end{equation*}
$$

be= $q=n-k$ and the coefficients are such that $G(p)$ is a factor of $p^{n}+1$. Each =oeword then corresponds to the polynomial product

$$
X(p)=Q_{M}(p) G(p)
$$

a which $Q_{M}(p)$ represent a block of k message bits. All such codeword satisfy the zecondition in Eq.(18) since $G(p)$ is a factor of both $X(p)$ and $p^{n}+1$. Any factor of [2*1 lhat has degree q may serve as the generator polynomial for a cyclic code, but z thes not necessarily generate a good code. Tabie $13.2-3$ lists the generator momomiais of selected cyclic codes that have been demonstrated to posses zrable parameters for FEC systems. The table includes some cyclic Hamming ises, the famous Golay code, and a few members of the important family of BCH wes discovered by Bose, Chaudhuri, and Hocquenghem. The entries under azi denote the polynomial's coefficients; thus, for instance, 1011 means that $\Rightarrow \quad=p+0+p+1$

- $=$	0		k		R_{c}	$d_{\text {min }}$			$G(p)$
-mam		$\begin{gathered} 4 \\ \frac{11}{25} \end{gathered}$		$\begin{aligned} & 0.57 \\ & 0.73 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$			$\begin{gathered} 1 \\ 10 \\ 100 \end{gathered}$	011 011 101
$\square=$		$\begin{gathered} 21 \\ 45 \end{gathered}$	$\begin{aligned} & 0.46 \\ & 0.68 \\ & 0.71 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 7 \end{aligned}$		$01 \quad 10$ 00001	$\begin{gathered} 111 \\ 1001 \\ 011 \end{gathered}$	01000 001111	
$\square=$	23	12		0.52	7		101	011100	0011

Lec =oses may be systematic or nonsystematic, depending on the term $Q_{M}(p)$ in =ri- For a systematic code, we define the message-bit and check-bit -iriontits

$$
\begin{aligned}
& M(p)=m_{k-1} p^{k-1}+\ldots \ldots .+m_{1} p+m_{0} \\
& C(p)=c_{q-1} p^{0-1}+\ldots \ldots+c_{1} p+c_{0}
\end{aligned}
$$

ant we want the codeword polynomials to be

$$
\begin{equation*}
X(p)=p^{4} M(p)+C(p) \tag{21}
\end{equation*}
$$

E-rtions (20) and (21) therefore require $p^{9} M(p)+C(p)=Q_{M}(p) G(p)$, or

$$
\begin{equation*}
\frac{-M(p)}{G(p)}=Q_{M}(p)+\frac{C(p)}{G(p)} \tag{22a}
\end{equation*}
$$

- expression says that $C(p)$ equals the remainder left over after dividing $p^{9} M(p)$ just as 14 divided by 3 leaves a remainder of 2 since $14 / 3=4+2 / 3$.
z-scically, we write

$$
C(p)=\operatorname{rem}\left[\frac{\left.p^{9} M(p)\right]}{G(p)}\right.
$$

-rere rem []stands for the remainder of the division within the brackets.
Tre divion operation needed to generate a systematic cyclic code is easily and ficently performed by the shift-register encoder diagrammed in Flg.13.23

Flgure 13.2-3 Shit-register encoder

Encoding starts with the feedback switch closed, the output switch in the -essage-bit position, and the register initialized to the aill-zero state. The k message bits are shifted into the register and simultaneously delivered to the tansmilter. After k shift cycles, the register contains the q check bits. The feedback suntch is now opened and the output switch is moved to deliver the check bits to She transmitter 1.

Syndrome calculation at the receiver is equally simple. Given a received vector Y, the syndrome is determined from

$$
\begin{equation*}
S(p)=\operatorname{rem}\left[\frac{Y(p)}{G(p)}\right] \tag{23}
\end{equation*}
$$

if $Y(p)$ is a valid code polynomial, then $G(p)$ will be factor of $Y(p)$ and $Y(p) / G(p)$ has zero remainder. Otherwise we get a nonzero syndrome polynomial indicating detected errors.

Besides simplified encoding and syndrome calculation, cyclic codes have other advantages over noncyclic block codes. The foremost advantage comes from the ingenious error-correcting decoding methods that have been devised for specific cyclic codes. These methods eliminate the storage needed for table lookup decoding and thus make it practical to use powerful and efficient codes with $n \gg 1$. Another advantage is the ability of cyclic codes to detect error bursts that span many successive bits. Detailed exposition of these properties are presented in texts such es Lin and Costello(1983).

Example 13.2-3 Consider the cyclic (7,4) Hamming code generated by $G(p)=p^{3}+0+p+1$. We will use long division to calculate the check-bit polynomial $C(p)$ when $M=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$. We first write the message-bit polynomiai $M(p)=p^{3}+p^{2}+0+0$ so $p^{9} M(p)=p^{6}+p^{5}+0+0+0+0+0$. Next, we divide $G(p)$ into $p^{9} M(p)$, keeping in mind that subtraction is the same as addition in mod-2 arithmetic. Thus,

$$
\begin{gathered}
p^{3}+0+p+1 \left\lvert\, \frac{Q_{m}(p)=p^{3}+p^{2}+p+0}{p^{6}+p^{5}+0+0+0+0+0}\right. \\
\frac{p^{6}+0+p^{4}+p^{3}}{p^{5}+p^{4}+p^{3}+0} \\
\frac{p^{5}+0+p^{3}+p^{2}}{p^{4}+0+p^{2}+0} \\
\frac{p^{4}+0+p^{2}+p}{0+0+p+0} \\
\frac{0+0+0+0}{c(p)=0+p+0}
\end{gathered}
$$

so the complete code polynomial is

$$
X(p)=p^{3} M(p)+C(p)=p^{6}+p^{5}+0+0+0+p+0
$$

(a)

$\begin{aligned} & \text { lout } \\ & \text { nit } \\ & \mathrm{m} \end{aligned}$	Reguster bits before shift $r_{2} \quad r_{1} \quad r_{0}$	Register bits after shift$\begin{array}{ll} r_{2}^{L}= & r_{1}= \\ r_{1} & r_{0}+r_{2} O_{0} \mathrm{O} O+\mathrm{mO} \end{array}$		
1	000	0	1	1
1	011	1	0	1
0	101	0	0	1
0	001	0	1	0

(b)

Tyure 13.2-4 \{a) Shiff-register encoder for (7.") "amming code; (b) register bite when $\mathrm{M}=\left(\begin{array}{ll}1 & 100\end{array}\right)$.
Which corresponds to the codeword

$$
x=\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 10 & 1
\end{array}\right) .
$$

You will find this codeword back in Table 13.2-1, where you will also find the cyclic shift $X=\left(\left.\begin{array}{lll}1 & 0 & 0\end{array} 0 \right\rvert\, 101\right)$ and all multiples shifts.
Finally, Fig 13.24 shows the shift-register encoder and the register bits for each cycle of the encoding process when the input is $M=(1100)$. After four shift cycles, the register holds $C=\left(\begin{array}{ll}0 & 1\end{array}\right)$---- in agreement with our manual division.
Exercises 13.2-3 Let $Y(p)=X(p)+E(p)$ where $E(p)$ is the error polynomial. Use Eqs.(20) and (23) to show that the syndrome polynomial $S(p)$ depends on $E(p)$ but not on $X(p)$.

CONVOLUTIONAL CODES

Convolutional codes have a structure that efficiently extends over the entire transmitted bit stream, rather than being limited to codeword blocks. The convolutional structure is especially well suited to space and satellite communication systems that require simple encoders and achieve high performance by sophisticated decoding methods. Our treatment of this important family of codes consists of selected examples that introduce the salient features of convolutional encoding and decoding..

Convolutional Encoding

The fundamental hardware unit for convolutional encoding is a tapped shift register with $L+1$ stages, as diagrammed in Flg.13.3-1. Each tap gain g is binary digit
zpresenting a shor-circuit connection or an open circuit. The message bits in the egister are combined by mod-2 additional to form the encoding bit.

$$
\begin{aligned}
X_{j}= & X_{j+L} g_{L} \oplus \cdots \cdots X_{i+1} g_{i} \Theta X_{j} g_{0} \\
& =\sum_{i=0}^{L} m_{i+1} g_{i} \quad(m o d-2)
\end{aligned}
$$

The name convolutional encoding comes from the fact that Eq(1) has the form a anary convolutional, analogous to the convolutional integral

$$
x(t)=\int m(t-\lambda) g(\lambda) d \lambda
$$

Notice that x_{j} depends on the current input m_{i} and on the state of the register defined by the previous L message bits. Also notice that a particular bit message nfluences a span of $L+1$ successive encoded bits as it shifts through the register.

To provide the extra bits needed for error control, a complete convolutional sncoder must generate output bits at a rate greater than the message bit rate r_{b}. This is achieved by connecting two or more mod-2 summers to the register nterleaving the encoded bits via a commutator switch. For example, the encoder a Fig.13.3-2 generates $n=2$ encoded bits

$$
x_{j}^{\prime}=m_{i-2}{ }^{\circ} m_{j-1} \bigcirc m_{j} \quad x_{i}^{\prime}=m_{i-2} Q m_{j}
$$

which are interleaved by the switch to produce the output steam

$$
x=x_{1}^{\prime} x^{\prime}+x_{2} x^{\prime}+x_{2}^{\prime} x_{3}^{\prime} x_{3}^{\prime \prime}
$$

The output bit rate is therefore $2 \mathrm{r}_{\mathrm{b}}$ and the code rate is $\mathrm{R}_{\mathrm{c}}=1 / 2$ -
ke an (n, k) block code with $R_{c}=k / n=1 / 2$.
However, unlike a block code, the input bits have not been grouped into words. Instead, each message bit influences a span of $n(L+1)=6$ successive output bits. The quantity $n(L+1)$ is called the constraint length measured in terms

of encoded output bits, whereas L is the encode's memory measured in terms of input message bits. We say that this encoder produces an (n, k, L) convolutional code with $n=2, k=1$, and $L=2$.

Three different but related graphical representation have been devised for the study of convolutional encoding: the code tree, the code trellis, and the state diagram. We will present each of these for our $(2,1,2)$ encoder in Fig $13.3-2$, starting with the code tree. In accordance with normal operating procedure, we presume that the register has been cleared to contain all Os when the first message bit m_{1} arrives. Hence, the initial state is $m_{-1} m_{0}=00$ and Eq(2) gives the output $x_{1} x_{1}^{1}=00$ if $m_{1}=0$ or $x_{1}^{\prime} x_{1}^{\prime \prime}=11$ if $m_{1}=1$. The code tree drawn in Fig. 13.33 begins at a branch point
$=$ node labeled a representing the initial state. If $m_{1}=0$, you take the upper branch tiom node a to find the output 00 and the output 00 and the next state, which is Lo labeled a since $m_{0} m_{1}=00$ in this case. If $m_{1}=1$, you take the lower branch from a - fnd the output 11 and the next state $m_{0} m_{1}=01$ signified by the label b. The code zee progressively evolves in this fashion for each new input bit. Nodes are labeled wh letters denoting the current state $m_{-2} m_{j-1}$; you go up down from a node, epending on the value of m_{j}; each branch shows the resulting encoded output x_{j} 2. calculated from Eq(2), and it terminates at another node labeled with the next scte. There are 2^{j} possible branches for the jth message bit, but the branch settern begins to repeat at $j=3$ since the register length is $L+1=3$. Having abserved repetition in the code tree, we can construct a more compact picture called Te code trellis and shown in Fig.13.3-4a. Here, the nodes on the left denote the four sossible current states, while those on the right are the resulting next states. A solid the represent the state transition or branch for $m_{i}=0$, and a broken line represents tee branch for $m=1$. Each branch is labeled with the resulting output bits $x_{j}^{\prime}, x_{j}^{\prime}$. Soing one step further, we coalesce the left and right sides of the trellis to obtain -e state diagram in fig.13.3-ab. The self-loops at nodes a and d represent the state tansitions $\mathrm{a}-\mathrm{a}$ and $\mathrm{d}-\mathrm{d}$.

Given a sequence of message bits and the initial state, you can use either the sode trellis or state diagram to find the resulting state sequence and output bits. The procedure is illustrated in Fig.13.3-4c. starting at initial state a. States

Figure 13.3-3 Code tree for $(2,1,2)$ encoder.

(b)

Namerous other convolutional codes are obtained by modifying the encoder in Fald.3-2 . If we just change the connections to the mod- 2 summers, then the code tse, trellis, and state diagram retain the same structure since the state and sranching pattern reflect only the register contents. The output bits would be afferent. of course, since they depend specifically on the summer connections.

II we extend the shift register to an arbitrary length $L+1$ and connect it to $n \geq 2$ mod2 summers, we get an (n, k, L) convolutional code with $k=1$ and code rate
$R_{c}=1 / n \leq 1 / 2$. The state of the encoder is defined by L previous input bits, so the code rellis and state diagram have 2^{L} dififerent states, and the code-tree pattern repeats = L+1 branches. Connecting one comutator terminal directly to the first stage of the register yields the encoded bit stream

$$
x=m_{1} x_{1}^{\prime{ }_{1}} x_{1}^{\prime \prime} \quad m_{2} x_{2}^{\beta_{2}} x_{2}^{n_{2}} \ldots m_{3} x_{3}^{\|_{3}} x_{3}^{\prime \prime}
$$

which defines a systematic convalutional code with $R_{c}=1 / n$.
Code rates higher than $1 / n$ require $k \geq 2$ shift registers and an input distributor switch. This scheme is illustrated by the ($3,2,1$) encoder in Fig.13.3--6. The message bits are distributed alternately between $k=2$ registers, each of length $L+1=2$. We regard the pair of bits $m_{j-1} m_{j}$ as the current input, while the pair $m_{j-3} m_{j-2}$ constitute the state of the encoder. For each input pair, the mod-2 summers generate $n=3$ encoded output bits given by

$$
\begin{gather*}
x_{j}^{\prime}=m_{i} \circlearrowleft m_{j-2} O m_{j} \quad x_{j}^{\prime \prime}=m_{i,} O m_{i-1} O m_{i} \\
x_{j}^{\prime \prime}=m_{-2} O m_{i} \tag{4}
\end{gather*}
$$

Thus, the output bit rate is $3 r_{b} / 2$ corresponding to the code rate $R_{c}=k / n=2 / 3$. The constraint length is $n(L+1)=6$ since a particular input bit influences a span of $n=3$ output bits from each of its $L+1=2$ register positions.

Graphical representation becomes more cumbersome for convolutional codes with $\mathrm{k}>1$ because we must deal with input bits in groups of 2^{k}. Consequently, 2^{2} branches emanate and terminate at each node, and there are $2^{\text {kL }}$ different states. As an example, Flg $13.3-5$ shows the state diagram for the $(3,2,1)$ encoder in $\mathrm{F}_{0} .13 .3 .6$. The branches are labeled with the $\mathrm{k}=2$ input bits followed by the resulting $n=3$ output bits.

The convolutional codes employed for FEC systems usually have small values of n and k, while the constraint length typically falls in the range of 10 to 30 . All convolutional encoders require a comutator switch at the output, as shown in Figs.18.31 and 13.3 . For codes with $k>1$, the input distributor switch can be eliminated by using a single register of length KL and shifting the bits in groups of K . In any case, convolutional encoding hardware is simpler than the hardware for block encoding since message bits enter the register unit at a steady rate r_{b} and an input buffer is not needed.

Exerclses 13.3-1 Conider a systematic $(3,1,3)$ conolutional code. List the possible state and determine the state transition produced by $m_{j}=0$ and $m_{i}=1$. Then construct and label the state diagram taking the encoded output bits to be $m_{i}, m_{i-2} \odot_{m_{i}}$, and $\mathrm{m}_{73} \mathrm{Om}_{\mathrm{j}-1}$. (See Fig P13.3-4 for a convolutional eight-state pattern.)

Free Distance and Coding Galn

We previously found that the error-control power of a block code depends upon its minimum distance, determined from the weights of the codewords. A convolutional code does not subdivide into codewords, so we consider instead the weight $w(X)$ of an entire transmitted sequence X generated by some message sequence.

The free distance of a convolutional code is then defined to be

$$
d f=[w(x)]_{\text {min }} \quad X \neq 000 \ldots
$$

Ine value or af serves as a measure or error-control power. It woula de nexceedingly dull and tiresome task to try to evaluate $d f$ by listing ail possible ransmitted sequences. Fortunately there's better way based on the normal Iperating produces of appending a"tailor" of Os at the end of a message to clear the register unit and return the encoder to its initial state. This procedural eliminates $=\tan$ branches from the code trellis for the last L transitions.

Take the code trellis in fig. 13.3-a, for example. To end up at state a, the nextSlast state must be either a or c so the last few branches of any transmitted sequence X must follow one of the paths shown in Flg.13.3-7. Here the final state is ienoted by e , and each branch has been labeled with the number of is in the enooded bits-- which equals the weight associated with that branch. The total eaght of a transmitted sequence X equais the sum of the branch weights along the ath of X. In accordance with Eq.(5), we seek the path that has the smallest branchreight sum, other than the trivial all-zero path.

Looking backwords $L+1=3$ branches from e, we locate the last path that manates from state a before terminating at e. Now suppose all earlier transitions Howed the all-zero path along the top line, giving the state sequence aa....abce. Since an a-a branch hac weight 0 , this state sequence corresponds to a minimum waght nontrivial path. We therefore conclude that $\mathrm{d} /=0+0+\ldots \ldots .0+2+1+2=5$. There re other minimum-weights paths, such as aa....abcae and aa...abcbce, but not nortrivial path has less weight than $d f=5$.

Another approach to the calculation of free distance involves the generating tnstion of a convolutional code. The generating function may be viewed as the rasfier function of the encoder with respect to state transitions. Thus, instead of blating the initial and final states by multiplication. Generating functions provide mportant information about code performance, including the free distance and secoding error probability.

We will develop the generating function for our $(2,1,2)$ encoder using the modified state diagram in Fig.13.3-8a. This diagram has been derived from Figi3.3-4b. ath four modifications.

(a)

Figure $13.3-8$ (a) Modified state diagram for $(2,1,2)$ encoder;(b) wquivalent block diagram

First, we have eliminated the a-a loop which contributes nothing to the weight of a sequence X. Second, we have drawn the c-a branch as the final c-e transition. Third, we have assigned a state variable W_{a} at node $a_{\text {, }}$ and likewise at all other nodes. Fourth we have labeled each branch with two 'gain' variables. D and I such zhat the exponent of D equals the branch weight (as in Fig 13.3-7), while the exponent of equals the corresponding number of nonzero message bits (as signilied by the solid or dashed branch line). For instance since the c-e branch represents $x_{1}^{\prime} x_{j}^{\prime}=11$ and $m_{j}=0$, it is labeled with $D^{2} 1^{0}=D^{2}$. This exponential trick allows us to perform sums by multiplying the D and I terms, which will become the independent variables of the generating function.

Our modified state diagram now looks like a signal-flow graph of the type sometimes used to analyze feedback systems. Specifically, if we treat the nodes as summing junctions and the DI terms as branch gains, then Fig.13.3-8a represents he set of algebraic state equation

$$
\begin{gathered}
W_{b}=D^{2} \mid W_{\mathrm{a}}+I W_{c} \quad W_{c}=D W_{b}+D W_{d} \\
W_{d}=\text { DiW }_{\mathrm{b}}+\mathrm{DiW}_{\mathrm{d}} \quad \mathrm{~W}_{\mathrm{c}}=\mathrm{D}^{2} \mathrm{~W}_{\mathrm{c}}
\end{gathered}
$$

The encoder's generating function $T(D, I)$ can now be defined by the input-output equation

$$
T(D, 1) \xlongequal{=} W_{0} W_{a}
$$

These equations are also equivalent to the block diagram in Fig. 13.3 .8b, which urther emphasizes the relationship between the state variables, the branch gains, and the generating function. Note that minus signs have been introduces here so that the two feedback paths $c-b$ and $d-d$ corresponds to negative feedbackç

Next, the expression for $T(D, 1)$ is obtained by algebraic solution of Eq(6), or by block-diagram reduction of fig.13.3-8b. using the transfer-function relations for parallel, cascade, and feedback connections in Fig.3.1-8. (If you know Mason's rule fou could also apply it to Fig.13.3-8a). Any of these methods produces the final result

$$
\begin{aligned}
T(D, I) & =\frac{D^{5} \mid}{1-2 D \mid} \\
& =D^{5}\left|+2 D^{6}\right|^{2}+\left.4 D^{7}\right|^{3}+.
\end{aligned}
$$

$$
=\left.\sum_{d=5}^{\infty} 2^{d-6} D^{d}\right|^{d-4}
$$

nere we have $1 /(1-2 D I)^{-1}$ to get the series in Eq(7b). Keeping in mind that $T(D, I)$ soresent all possible transmitted sequences that terminate with a c-e transition Sq, (7b) has the following interpretation: for any $\mathrm{d} \geq 5$, there are exactly $2^{d .5}$ valid ths are generated by message containing $d-4$ nonzero bits. The smallest value $I r(X)$ is the free distance, so we again conclude that $d f=5$.

As a generalization of Eq.(7), the generating function for an arbitrary =-volutional code takes the form

$$
\begin{equation*}
T(d, l)=\sum_{d=d j}^{\infty} \sum_{i=0}^{\infty} \sum A(d, l) D D^{\prime} \tag{8}
\end{equation*}
$$

tere, $A(d, i)$ denotes the number of different input-output paths through the modified sete diagram that have weight d and are weight d and are generated by messages entainig/ nonzero bits.

Now consider a received sequence $Y=X+E$, where E represents ransmission errors. The path of Y then diverges from the path of X and may or -ay not be a valid path for the code in question. When Y does not correspond to a eld path, a maximum-likelihood decoder should seek out the valid path that has the smallest Hamming distance from Y. Before describing how such a decoder might se implemented, we will state the relationship between generating functions, free Ustance, and error probability in maximum-likelihood decoding of convolutional oodes.

If transmission errors occur with equal and independent probability α per bit, ben the probability of a decoded message-bit error is upper-bounded by

$$
P_{b o} \leq 1 \frac{\partial T}{k} \frac{(D, 1)}{\partial i}{ }_{D}=2 V_{\infty}(1-\infty) \cdot l=1
$$

The derivation of this bound is given in Lin and Costelio (1983, chap. 11) or Viterbi and Omura (1979,chap.4). When α is sufficiently small, series expansion of T(D,I) ridds the approximation

$$
P_{b \mathrm{a}} \approx \frac{M(d f) 2^{d f}}{k} c^{d f / 2} \quad V_{\text {cocs }}
$$

where
∞

$$
M(d f)=\sum_{i=1} \mathrm{i} \mathbf{A}(\mathrm{~d} f, i)
$$

The quantity $\mathrm{M}(\mathrm{d} / \sqrt{ })$ simply equals the total number of nonzero message bits over all minimum-weight input-output paths in the modified state diagram.

Equation (10) supports our earlier assertion that the error-control power of a convolutional code depends upon its free distance. For a performance comparison with uncoded transmission we will make the usual assumption of

Fussian white noise and $(S / N)_{R}=2 R_{c} y_{b} \geq 10$ so $\mathrm{Eq}(10)$, Sect.13.1, gives the Tensmission error probability

$$
\propto \approx\left(4 \pi R_{c} y_{b}\right)^{-1 / 2} e^{-R c \gamma_{b}}
$$

The decoded error probability then becomes

$$
\begin{equation*}
P_{b e} \approx \frac{M(d f) 2^{d f} e^{-(R c d f / 2) y_{b}}}{K\left(4 \pi R_{c} Y_{b}\right)^{d / 1 / 4}} \tag{11}
\end{equation*}
$$

thereas uncoded transmission would yield

$$
\begin{equation*}
P_{b o} \approx \frac{1}{\left(4 \pi y_{b}\right)^{1 / 2}} \tag{11}
\end{equation*}
$$

Since the exponential terms dominate in these expression, we see that anvolutional coding improves reliability when $\mathrm{R}_{\mathrm{c}} \mathrm{d} / \Omega>1$. Accordingly, the quantity R $d / / 2$ is known as the coding gain, usually expressed in dB .

Explicit design formulas for $d f$ do not exists, unfortunately, so good onvolutional codes must be discovered by computer search and simulation. Table 221. lists the maximum free distance and coding gain of convolutional codes for selected values of n, k, and L .. Observe that the free distance and coding gain ncrease with increasing memory L when the code rate R_{c} is held fixed. All isted sodes are nonsystematic ; a systematic convolutional code has a smaller $\mathrm{d} f$ than ostimum nonsystematic code with the same rate and memory.

Table 13.3-1 Maximum free distance and coding gain of selected convolutional codes

n	k	R_{c}	1	$d f$	$R_{\text {d }} d f D$
4	1	$1 / 4$	3	13	1.63
3	1	$1 / 3$	3	10	1.68
2	1	$1 / 2$	3	6	1.50
			6	10	2.50
3	2	$2 / 3$	9	12	3.00
4	3	$3 / 4$	3	7	2.33
				8	3.00

Example 13.3-1 The $(2,1,2)$ encoder back in Fig 13.3-2 has $T(D, I)=D^{5} / /(1-2 D I)$, so дT(D,I)/2i= $D^{5} /(1-2 D I)^{2}$. Equation (9) therefore gives

$$
\mathrm{P}_{\mathrm{b}} \leq \frac{2^{5}[\alpha(1-\alpha))^{5 / 2}}{\left[1-4 \sqrt{ } \alpha(1-\alpha) 2^{5} \alpha^{2 / 2}\right.}
$$

and the small-aapproximation agrees with Eq.(10). Specifically, in fig 13.3-\&a we find st one minimum-weight nontriviai path abce, which has $w(X)=5=\mathrm{d} f$ and is generated by a message containing one nonzero bit, so $M(d f)=1$. If $y_{b}=10$, then R_{c}
$=5, \propto \approx 8.5 \times 10^{-4}$, and maximum-likelihood decoding yields $P_{b s}=6.7 \times 10^{-7}$, as mompared with $P_{\text {uba }}=4.1 \times 10^{-6}$. This rether small reliability improvement agrees with Tes small coding gain $R_{c} d f / 2=5 / 4$.

Exercises 13.3-2 Let the connections to the mod-2 summers in fig13.3-2 be changed Ech that $x_{i}^{\prime}=m_{i}$ and $x_{j}^{\prime \prime}=m_{r 2} O^{m_{i-1}} O^{m_{i}}$
7) Construct the code trellis and modified state diagram for this systematic code. Show that there are two minimum-weight paths in the state diagram, and that $d f=4$ and $M(d f)=3$. It is not necessary to find $T(D, 1)$.
b) Now assume $y_{b}=10$. Calculate $\alpha, P_{b e r}$ and $P_{\text {whe }}$. What do you conclude about the performance of a conolutional code when $\mathrm{R}_{\mathrm{c}} \mathrm{d} f / 2=1$?

Decoding Methods

There are three generic methods for decoding convolutional codes. At ne extreme, the Veterbi aigorithm executes maximum-likelihood decoding and achieves optimum performance but requires extensive hardware for computation Ind storage. At the other extreme, feedback decoding sacrifices performance in aichange for simplified hardware. Between these extremes, sequential decoding soproaches optimum performance to a degree that depends upon the decoder's somplexity. We will describe how these methods work with a $(2,1, L)$ code. The adension to other codes is conceptually straight forward, but becomes messy to portray for $k>1$.

Recall that a maximum-likelihood decoder must examine an entire received sequence Y and find a valid path that has the smallest Hamming distance from Y. However, there are 2^{N} possible paths for an arbitrary message sequence of N dets (or Nn/k bits in Y), so an exhaustive comparison to $2^{\text {kl }}$ surviving paths, idependent of N , thereby bringing maximum-likelihood decoding into the realm of zeasibility.

A Viterbi decoder assigns to each branch of each surviving path a metric that equals its Hamming distance from the corresponding branch of Y. (we assume here that $0 s$ and is have the same transmission-error probability; if not, the branch netric must be redefined to account for the diflering probabilities). Summing the oranch metrics yields the path metric, and Y is finally decoded as the surviving path with smallest metric. To illustrate the metric calculations and explain how surviving paths are selected, we will walk through an example of Viterbi decoding

Suppose that our $(2,1,2)$ encoder is used at the transmitter, and the Transmitter, and the received sequence starts with $Y=110111$. Figura 13.3-9 shows The first three branches of the valid paths emanating from the initial node a_{0} in the sode trellis. The number in parentheses beneath each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in Y . The circled number at the right-hand end of each branch is the running path metric, obtained by summing branch metrics from a_{0}. For instance, the metric of the path $a_{0} b_{1} c_{2} b_{3}$ is $0+2+2=4$.

Now observe that another path $a_{0} a_{1} a_{2} a_{3}$ also arrives at node b_{3} and has a smaller metric $2+1+0=3$. Regardiess of what happens subsequently, this path will

Tit a smaller Hamming distance from Y than the other path arriving at b_{3} and is Ferelore more likely to represent a the actual transmitied sequence. Hence, we fecard the larger-metric path, marked by an X, and we declare the path with the -hller metric to be the sunvivor at this node. Likewise, we discard the larger metric 2als arriving at nodes a_{3}, c_{3} and d_{3}, leaving to total of $2^{k l}=4$ surviving paths. He fact that none of the surviving path metrics equals zero indlcated the presence \rightarrow setectable errors in Y. Fig13.3-10 depicts the continuation of FIg.13.3-9 for a omplete message of $\mathrm{N}=12$ bits, including tail Ds . All discarded branches and ail bels expects the running path metrics have been omitted for the sake of clarity. - latter T under a node indicates that the two arriving paths had equal running - atix, in which case we just flip a coin to choose the survivor (why?). The -simum-likelihood path follows the heavy line from a_{0} to a_{12} and the final value of te path metric signifies at least two transmission sequence $Y+E$ and message equence M written below the trellis.

A Viterbi decoder must calculate two metrics for each node and store 2^{kL} - viving paths, each consisting of N branches. Hence, decoding complexity screases exponentially with L and linearly with N. The exponentially factor limils ractical applications of the Viterbi algorithm to codes with small values of L.

When $N \gg 1$, storage requirements can be reduced by a truncation process sed on the following metric-divergence effect: if two surviving paths emanated -n the same node at some point, then the running metric of the less likely path ands to increase more rapidly than the metric of the other survivor within about 5L. =tanches from the common node. This effect appears several times in fig.13.3-10; ansider, for instance, the two paths emanating from node b_{9}. Hence, decoding aed not be delayed until the end of the transmitted sequence. Instead, the first k essage bits can be decoded and the first set of branches can be deleted from -amory after the first 5 Ln received bits have been processed. Successive groups 3 inessage bits are then decoded for each additional n bits received thereafter.

Sequential decoding, which was invented before the Viterbi algorithm, also cies on the metric-divergence effect. A simplified version of the sequential -gorithm is illustrated in Fig.13.3-41a, using the same trellis, received sequence, and

(a)

Running metric
(b)

Figure 19.3-11 Illustration of sequential decoding
metrics as in Fig 13.3-10 .. Starting at an the sequential decoder purpose a single path by taking the branch with the smallest branch metric at each successive node. If two or more branches form one node have the same metric, such as at node b_{2}, the decoder selects one at random and continues on. Whenever the current path happens to be unlikely, the running metric rapidly increases and the decoder eventually decides to go back to a lower-metric node and try +another path. There are three of these abandoned paths in our
example. Even so, a comparison with Fig. $19 \cdot 3 \cdot 10$ shows that sequential decoding involves less computation than Viterbi decoding.

The decision to backtrack and try again is based on the expected value of the running metric at a given node. Specifically, if α is the transmission error probabilities per bit, then the expected running metric at the j th node of the correct path equals $j n \alpha$, the expected number of bits errors in \vee at that point. The sequential decoder abandons a path when its metric exceeds some specified threshold Δ above jno. If no path survives the threshold test, the value of Δ is increased and the decoder backtracks again. Figure 13.3-11b plots the running metrics versus j, aiong with $\mathrm{jn} \alpha$ and the threshold line $\mathrm{jn} \alpha,+\Delta$ for $\alpha=1 / 16$ and $\Delta=2$.

Sequential decoding approaches the performance of maximum-likelihood decoding when the threshold is loose enough to permit exploration of all probable paths. However, the frequent backtracking requires more computations
and results in a decoding delay significantly greater than Viterbi decoding. A tighter threshoids reduces computations and decoding delay but may actually eliminate the most probable path, thereby increasing the output error probability compared to that of maximum-likelihood decoding with the same coding gain. As sompensation, sequential decoding permits practical application of convolutional codes with large L and large coding gain since the decoder's complexity is issentially independent of L .

We have described sequential decoding and Vitebi decoding in terms of algorithm rather than block diagrams of hardware. Indeed, these methods are usually implemented as soltware for a computer or microprocessor that performs the metric calculations and stores the path data. When circumstances preclude algorithmic decoding, and a higher error probability is tolerable, feedback decoding may be the appropriate method. A feedback decoder actsin general like a "sliding block decoder' that decodes message bits one by one based on a block of L or more successive tree branches. We will focus on the special class of feedback decoding that employs majority logic to achieve the simplest hardware realization of a convolutional decoder.

Consider a message sequence $M=m_{1} m_{2}$ and the systematic $(2,1, L)$ encoded sequence

$$
\begin{equation*}
x=x_{1} x_{1}^{3}+x_{2} x_{1}^{2} \tag{13a}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{1}^{\prime}=m_{i} \quad x_{1}^{\prime \prime}=\sum_{i=0} m_{1-1} g_{i} \quad(\bmod -2) \tag{13b}
\end{equation*}
$$

We will view the entire sequence X as codeword of indefinite length. Then, norrowing from the matrix representation used for block codes, we will define a generator matrix G and a parity-check matrix H such that

$$
X=M G \quad X H^{\top}=0 \quad 0 \quad \ldots .
$$

To represent Eq.(13), must be a semi-infinite matrix with a diegonal structure given by

$$
G=\left[\begin{array}{ccccccccc}
1 & g_{0} & 0 & g_{1} & 0 & \ldots & 0 & g_{1} & \tag{14a}\\
& 1 & g_{0} & 0 & g_{1} & 0 & \ldots & \ldots & 0
\end{array} g_{i} .\right.
$$

This matrix extends indefinitely to the right and down, and the triangular blank spaces denote elements that equal zero. The parity-check matrix is

$$
H=\left|\begin{array}{llllllll}
g_{0} & 1 & & & & & \\
g_{1} & 0 & g_{0} & 1 & & & \\
\cdot & & g_{1} & 0 & g_{0} & 1 & \\
\cdot & \cdot & \cdot & \cdots & & \cdots \\
i_{L} & 0 & \cdot & \cdots & & & \cdots \\
& & g_{L} & 0 & & & & \\
& & & & \cdots & & \\
& & & & & \cdots
\end{array}\right|
$$

Thich also extended indefinitely to the right and down.
Next, let E be the transmission error pattern in a received sequence $Y=X+E$. Ne will write these sequences as

$$
Y=y_{1} y_{1}^{\prime \prime} y_{2} y_{2} \ldots \ldots . E E=e_{1} e_{1} e_{2} e_{2 \ldots \ldots \ldots}{ }_{2}
$$

so that $y_{j}=m_{j}+Q_{j}$. Hence, given the error bit e_{j}^{\prime}, the j th message bit is

$$
m_{j}=y_{f}^{\prime}+\theta
$$

- feedback decoder estimates errors from the syndrome sequence

$$
S=Y H^{\top}=(X+E) H^{\top}=E H^{\top}
$$

Using Eq. (14b) for H, the jth bit of S is

$$
s_{j}=\sum_{j=0}^{L}=y_{j-1}^{\prime} g_{i} \odot y_{j}^{\prime}=\sum_{i=0}^{L} e_{j-1}^{\prime} g_{i} \quad \text { ©e }
$$

where the sums are mod-2 and it is understand that $y_{j+1}=e_{j-1}^{i}=0$ for Hiso. As a specific example, take a $(2,1,6)$ encoder with $g_{0}=g_{2}=g_{5}=g_{6}=1$ and $g_{1}=$ $g_{n}=g_{4}=0$, so

$$
\begin{align*}
s_{j} & =y_{j-6}^{\prime}+y_{j-5}^{\prime}+y_{j-2}+y_{j}^{\prime}+y_{j}^{f} \tag{17a}\\
& =e_{j-6}^{\prime}+e_{j-5}^{\prime}+e_{j-2}^{\prime}+e_{j}^{\prime}+e_{j}^{\prime} \tag{17b}
\end{align*}
$$

Equation (17a) leads directly to the shift-register circuit for syndrome calculation diagrammed an Fig. 13.3-12. Equation (17b) is called a parity-check sum and will leads us eventually to the remaining portion of the feedback decoder.

To that end, consider the parity-check table Fig.13.3-13a. where checks rocated which error bits appear in the sums $\mathrm{S}_{1}, \mathrm{~S}_{-4}, \mathrm{~S}_{-1}$, and S_{1}. This table brings at the fact that $e_{j 6}^{\prime}$ is checked by all four of the listed sums, while no other bit is tecked by more than one. Accordingly, this set of check sums is said to be -hogonal on $e_{j 6}$. The tap gains of the encoder were carefully chosen to obtain =trogonal check sums.

=gire 13.3-13 Parity-check table for a systomatic $(2,1,6)$ code.
When the transmission error probability is reasonably small, we expect to and at most one or two errors in the 17 transmitted bits represented by the paritytheck table. If one of the errors corresponds to $e_{i-6}=1$, then the four check sums 7 contain three 1 s . Otherwise, the check sums contain less than three 1 s . Hance, we can apply these four check sums to a majority-logic gate to generate the most likely estimate of $\mathrm{e}_{j-6}^{\prime}$

Figure 13.3-14 Majority-logic feedback decoder for a systematic $(2,1,6)$ code.

Figure 13.3-14 diagrams a complete majority-logic feedback decoder for our s)stematic $(2,1,6)$ code. The syndrome calculator from Fig 13.3-12 has two outputs $y=$ and s. The syndrome bit goes into another shift register with taps that connect the check sums to the majority-logic gate, whose output equals the estimated error e_{1-6}. The mod-2 addition $y_{j-6} \mathrm{Q}_{\mathrm{e}_{j-6}}$ carries out error correction based on Eq(15). The error is also feedback to the syndrome register to improve the reliability of subsequent check sums. This feedback path accounts for the name feedback decoding.

Uur exampie decoder can correct any singie-error or aoupie-error pamern in consecutive message bits. However, more than two transmission errors coduces erroneous corrections and error propagation via the feedback path. These -acts result in a higher output error than that of maximum-likelihood decoding. -ajority-loglc-decoding.

ERROR DETECTION, CORRECTION AND CONTROL

A major design criterion for all telecommunication systems is to achieve error free transmission. Errors, unfortunately, do occur. There are many types and causes onginating from various sources ranging from I-gntring strikes to dirty switch contacts at the central office. A method of detecting and in some cases correcting for their occurrence, is a necessity. To achieve this, two basic techniques are employed. One is to detect the error and request a retransmission of the corrupted message. The second echnique is to correct the error at the error at the receiving end without aving to retransmit the message. The trade-off for either technique is the Fsdundancy that must be built into the transmitted bit stream. This redundancy decreases system throughput

Many of today's communication systems empioy elaborate errorFontrol protocols. Some of these protocols are software packages designed Tacilitate file transfers between personal computers and mainframes. Fore recent error controllers are completely self-contained within a ardware module, thus relieving the CPU of the burden of error control. The atire process is transparent to the user.

In this chapter we consider some of the most common methods sed for error detection and correction, including error-controlling protocols specifically designed for data-communications equipment.

12.1-Parity

Parity is the most simplest and oldest method of error detection. authough it is not very effecfive in data fransmission, it is still widely used tue to its simplicity. A single bit called the parity bit is added to a group of bits -presenting a letter, number, or symbol. ASCll characters on a keyboard, for skample, are typically encoded into seven bits with an eight bit acting as parity. The parity bit is computed by the transmitting device based on the number of 1 -bits set in the character. Parity can be either odd or even. If Jod parity is selected, the parity bit is set to a 1 or 0 to make the total number of 1 -bits in the character, including the parity bit itself, equal to an odd value. If even parity is select, the opposite is true; the parity bit is set to a 1 or 0 to make the total number of 1 -bits, including the parity bit itself, equal to an even number. The receiving device performs the same computation on the received number of 1 -bits for each character and checks the computed aarity against what was receivect. If they do not match, an error has been detected. Table1 lists examples of even and odd parity.

The selection of even or odd parity is generally arbitrary. In most cases it is a matter of custom or preference. The transmitting and receiving stations, owever, must be set to same mode. Some system designers prefer odd parity over even. The advantages is that when a string of several data tiaracters are anticipated to be all zeros the parity bit would be set to 1 for sach character, thus allowing for ease of character identification and synchronization.

Data character Odd parity bit	Data character	Even parity bit
11010000	1011101	1
0010111	1110111	0
1010110 1	0011010	1
10100010	1010111	1

12. 2-Parity Generating and Checking

Parity generating circuits can easily be implemented with a combination of exclusive-bit data word. Odd parity can be obtained by simple adding an inverter at the output of the given circuit. Additional gates can be included in the circuit for extended word lengths. The same circuits can be used for parity checking by adding another exclusive-OR gate to accommodate the received parity bit. The received data word and parity bit are applied at the circuits input. For even parity, the output should always be low unless an arror occurs. Conversely, for odd parity checking, the output should always be high unless an error occurs.

Even parity bit,D7
 Inverted at the output.

Agure $12-2$ depicts another design that can be used for parity generation and checking.

12.3 THE DISADVANTAGE WITH PARITY

A major shortcoming with parity is that it is only applicable for detecting when one bit or an odd number of bits have been changed in a character. Parity checking does not detected when an even number of bits have changed. For example, suppose that bit D2 in Example 1 were to change during the course of a transmission for an odd parity system. Example 1 shows how the bit errors is detected.

Example1	Parity (odd)	D7	D6	D5	D4	D3	D2	D1	D0
Transmitted	0	0	1	1	0	1	1	0	1
Received	0	0	1	1	0	1	0	0	1

The receive parity bit, a zero is in conflict with the computed number of 1 -bits at was received; in this case four, an even number of 1-bits. The parity

Figure 12-2 Even or odd perity generation in achieved in this circuit by setting the appropriate level et the parity set input.

Ot should have been equal to a value making the total number of 1 -bits odd. An تror has been properly detected. If, on the other hand, bit D2 and bit D1 were soth altered during the transmission, the computed parity bit would still be in agreement with the received parity bit. This err would go undetected, as shown n Example2. A little through will reveal that an even number of errors in a character, for odd or even parily, wili go undetected.

Example

	Parity (odd)	D7	D6	D5	D4	D3	D2	D1	DO
Transmitthed	0	0	1	1	0	1	1	0	1
Received	0	0	1	1	0	1	0	1	1

Parily, being a single-bit error-detection scheme, presents another problem in accommodating today's high-speed transmission rates. Many errors are a result of impulse noise, which tends to be bursty in nature. Noise impulses may last several milliseconds, consequenty destroying several bits. The higher the tansmission rate, teh greater teh effect. Figure 12.3 depicts a $2-\mathrm{ms}$ noise burst imposed on a $4800-\mathrm{bps}$ signal is $208 \mathrm{~ms}(1 / 4800)$. As many as 10 bits are affected. At least two characters are destroyed here, with the possibility of both character errors going undetected.

12.4 VERTICAL AND LONGITUDINAL REDUNDANCY CHECK (VRC AND LRC)

Thus far, the discussion of parity has been on a per character basis. This is often referred to as a vertical redundancy check (vic). Parity can also be computed based on an accumulation of the value of each character's LSB through MSB, including the vrc bit, as shown in mgure 12-4. This method of parity checking is referred to as a longitudinal redundancy check(LRC). The resuiting word is callad the block check character (BCC).

Additional parity bits in LRC used to produce the BCC provide extra arror detection capabilities. Single-bit errors can now be detected and corrected. For example, suppose that the LSB of the letter y in the message 4 Figure $12 \leftrightarrow$ Was received as a 0 instead of a 1 . The computed parity bit for the LRC would indicate that a bit was received in error. By itself, the detected LRC error does not specify which bit in the row of LSB bit received is in error. The same is true for the vrc. The computed parity bit in the column of the character of errory.

Figure 12.3 Effoctod of $8 \mathbf{2 - m s}$ nolse burat on a 4 tio0-bpss signal.
Would be a 1 irstead of a 0 . By itself, the detected vrc error does not specify which bit in the y column has been received in error. A cross-check, however will reveal that the intersection of the detected parity error, for the vrc and Irc check identifies the exact bit was received in error. By inverting this bit, the error can be corrected.

Unfortunately, an even number of bit errors is not detected by either the hc or vrc check. Cross-checks cannot be performed; consequently bit errors cannot be corrected.

12.1CYCLIC REDUNDANCY CHECKING (CRC)

Parity checking has major shortcomings. It is much efficient to eliminate the parity bit of each character in the block entirely and utilize the redundant bils at the end of block.

A more powerful method than the combination of LRC and VRC for error detection in biocks is cyclic redundancy checking (CRC). CRC is the most commonly used method

H	a	e	$s p$	a	$s p$	n	i	c	e	$s p$	d	a	y		BBC(LRC)	
LSB	0	1	0	0	1	0	0	1	1	1	0	0	1	1	1	0
	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	
1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	
0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	
MSB	1	1	1	0	1	0	1	1	1	1	0	1	1	1	0	1
VRC	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1

Figure 12.4Computing the block check character (BCC) for a message block with vrc and Irc odd parity chocking.

* arror detection in block transmission. A minimal amount of hardware is raquired (slightly more than Irc/vrc systems), and its effectiveness in cting arors is greater than 99.9%.

CRC involves a division of the transmitted message block, by a constant called the generator polynomial. The quotient is discarded and the temainder is transmitted as the block check character (BCC). This is shown in trure 12-6. Some protocols refer to the BCC as the frame check sequence FCS). The receiving station performs the same computation on the received fom the transmitter. If the two match, then no errors have been detected in he message block. If the two match, either a request for retransmission is nade by the receiver or the errors are corrected through the use of special coding techniques.

Cyclic codes contain a specific number of bits, governed by the size of he character within the message block. There of the most commonly used cyclic codes are CRC-12, CRC-16, and CRC-CCITT. Blocks containing characters that are six bits in length typically use CRC-12, a 12-bit CRC. Blocks formatted with eight-bit characters typically use CRC-16 or CRCCCITT, both of which are 16 -bit codes. The BCC for these three cyclic codes s deried from the following generator polynomials, $\mathbf{G}(\mathrm{x})$:

CRC-12 generator polynomial:
CRC-16 generator polynomial:
CRC-CCITT generator polynomial:

$$
\begin{aligned}
& G(x)=x^{12}+x^{11}+x^{3}+x^{2}+x+1 \\
& G(x)=x^{16}+x^{15}+x^{2}+1 \\
& G(x)=x^{16}+x^{12}+x^{5}+1
\end{aligned}
$$

A combination of multistage shift registers employing feedback through exclusive-OR gates is used to implement the mathematical function performed on the message block to obtain the BCC, Figure 12-6 depicts three CRC generating circuits for CRC-12, CRC-16, and CRC-CCITT. The BCC is accumulated by shifting the data stream into the data input of the register. When the final bit of the message biock is shifted in, the register contains the BCC. The BCC is transmitted at the end of the message block, LSB first.

Generator polynomial, $G(x)$

$$
\begin{aligned}
& \text { Constant Mesage biock } \\
& \frac{\text { Quotient discarded }}{} \begin{array}{l}
\text { Constant } \\
\frac{\text { Next character }}{\text { Constant character }} \\
\frac{\text { Constant }}{\text { Next character }} \\
\frac{\text { Constant }}{\text { Nextcharacter }} \\
\frac{\text { Constant }}{\text { Remainder }} \quad \text { BCC }
\end{array}
\end{aligned}
$$

Fiaure12-5 combuona the block check character IBCCI of a messaeso block uaina CRC.

(a)

CRC-16 polynomial, $G(x)=x^{\dagger 6}+x^{15}+x^{2}+1$

CRC-CCITT polynomial, $G(x)=x^{16}+x^{12}+x^{5}+1$

Figure 12-6 (a)CRC generating cireuit for CRC-12; (b) CRC generating circuit forCRC-18;(c)CRC-CCITT

12.5.1 Computing the Block Check Character

The generating polynomial, $G(x)$, and message polynomial, $M(x)$, used computing the BCC include degree terms that represent positions is a roup of bits that are a binary 1 : For example, given the polynomial

$$
x^{5}+x^{2}+x+1
$$

its binary representation is

$$
100111
$$

fissing terms are represented by a 0 . The highest degree in the polynomial s one less than the number of bits in the binary code. The following discussion ustrates how the BCC can be computed using long division.
Eterring to Figure 12-7, if we tet n equal the total number of bits in transmitted -ock and k equal the number of bits, then $n-k$ equais the number

The number of bits
in the BCC is equai
to $n-k$
Tyure 12-7 Format of a mesnage block for computing the BCC in CRC
bits in the BCC. The message polynomial $M(x)$, is multiplied by X^{n-k} to ichieved the correct number of bits for the BCC. The resulting moduct is then divided by the generator polynomial, $G(x)$. The quotient is fiscarded and the end of the message block. The long-division process. zather, an exclusive-OR operation is performed. As we will see in the bowing examples, this will yield a BCC having a total number of bits one ess equal to the highest degree of the generator polynomial. The entire ransmitted

$$
T(x)=X^{n-k}[M(x)+B(x)]
$$

there $T(x)=$ total transmitted message block

$$
\begin{aligned}
& X^{n \cdot k}=\text { multiplication factor } \\
& B(x)=B C C
\end{aligned}
$$

Example 3 in this example, the transmitted message block will include a total number of bits, n, equal to 14 . Nine of the 14 bits are data k. Therefore the BCC consist of five bits $(n-k=5)$.

Given:

$$
\text { Generator polynomial, } \begin{aligned}
& G(x)=x^{5}+x^{2}+x+1 \\
&=100111 \\
& \text { Message polynomial, } \begin{aligned}
M(x) & =x^{8}+x^{6}+x^{3}+x^{2}+1 \\
& =101001101
\end{aligned} \$=\text {, }
\end{aligned}
$$

The number of bits in the BCC, $n-k=5$ (the highest degree of the generator polynomial). Compute the value of the BCC.

Solution:

1. Muitiply the message poiynomial, $M(x)$, by x^{n-k};

$$
\begin{array}{rl}
x^{n-k} & M(x)=x^{5}\left(x^{8}+x^{6}+x^{3}+x^{2}+1\right) \\
& =x^{13}+x^{11}+x^{3}+x^{7}+x^{5} \\
& =1010110100000
\end{array}
$$

2.Divided $x^{n-K} M(x)$ by the generator polynomial and discard the quotient. The remainder is the $B B C, B(x)$.

1001111 | $\frac{101111110}{10100110100000}$ |
| :---: |
| $\frac{100111}{111010}$ |
| $\frac{100111}{111011}$ |
| $\frac{100111}{111000}$ |
| $\frac{100111}{111110}$ |
| $\frac{100111}{110010}$ |
| $\frac{100111}{101010}$ |
| $\frac{100111}{11010}$ |$+$ BBC

3. To determine the total transmitted message biock, $T(x)$, add the BBC, $B(x)$, ta $x^{n-k} M(x)$

$$
\begin{aligned}
& T(x)= x^{n-k} M(x)+B(x) \\
&= 10100111000000 \\
&+\quad 11010 \\
&+\quad \text { BBC, } B(x) \\
&+100110111010 \\
& \text { transmitted block } T(x)
\end{aligned}
$$

At the receiving end, the transmitted message biock, $T(x)$, is divided by the same generating polynomial, $G(x)$. If the remainder is zero, the block was received without errors.

100111 | $\frac{101111110}{10110111010}$ |
| :--- |
| $\frac{100111}{111010}$ |
| $\frac{100111}{111011}$ |
| $\frac{100111}{111001}$ |
| $\frac{100111}{111101}$ |
| $\frac{100111}{110100}$ |
| $\frac{100111}{100111}$ |
| $\frac{100111}{0}$ |\quad Remainder equals

zero (no errors)

Example : For simplicity, a 16 -bit message ($\mathrm{k}=16$) using CRC $=16$ will be used. The total number of bits in the transmitted message biock, n, is therefore 32.

Given:
Generator polynomial for CRC-16, $G(x)=x^{16}+x^{15}+x^{2}+1$
Message Polynomial, $M(x)=x^{15}+x^{13}+x^{11}+x^{10}+x^{7}+x^{5}+x^{4}+1$
The number of bits in the BCC, $n-k=16$ (the highest degree of the generator polynomial).

Solution:

1. Multiply the message polynomial, $M(x)$ by x^{n-k},

$$
\begin{aligned}
x^{1+6} M(x) & =x^{16}\left(x^{15}+x^{13}+x^{11}+x^{10}+x^{7}+x^{5}+x^{4}+1\right) \\
& =x^{31}+x^{29}+x^{27}+x^{26}+x^{23}+x^{21}+x^{20}+x^{16} \\
& =10101100101100010000000000000000
\end{aligned}
$$

Pgure12-8 . singie-precision checksum is generated and transmitted as = BCC at the and of four-byto block. The recelvitr verifles the block by reganerating the checkium and comparing it in against the original.

1. Single-precision
2. Double-precision
3. Honeywell
4. Residue

1- Single-Precision Checksum

The most fundamental checksum computation is the single-precision checksum. Here, the checksum is derived simply the periorming a binary addition of each n-bit data word in the message block. Any carry or overflow during the addition process is ignore thus the resultant checksum is also bit in length. Figure 12.0 lliustrates how the single -precision checksum is derived transmitted as the BCC, and used to verify the integred of the received data for simplicity a four data block is used. Note that the sum of the data exceeds $2^{n}-1$ and there for all carry occurs out of the MSB. This carry is ignore and only the eight-bit (n-bit) checksum is send as the BCC.

An inhernet probiem with the singie-precision checksum is if the MSB of the n-bit data word becomes iogically stuck at (SAl), the checksum becomes SAl as well. A little through will reveal that the regenerated checksum on the received data will equal the original checksum and the SAt fault will go undetected. A more elaborate scheme may be necessary.

2-Double-Precision Checksum

As its name implies, the double-precision checksum extends the computed checksum to $2 n$ bits in length, where n is the size of the data word in the message block. For example, the eight-bit data words used in the singieprecislon checksum example above would have a 16 -bit checksum. Message blocks with 16 -bit data words would have a 32 -bit checksum, and so forth. Summation of data words in the message block can now extend up to modulo $2^{2 \pi}$, there by decreasing the probability of an erroneous checksum. In addition, the SAI (stuck at 1) error discussed earlier would be detected as a checksum error at the received, Figure $12-\rightarrow$ depicts how the double-precision checksum is derived, transmited as the BCC, and used to verify the integrity of the pocaived data. For simplicity a four byte data block is used again. Hexadecimal notation bis also Used. Note that the carrvout of the Misa position
of the low-order checksum byte is not ignored instead, it becomes part of the 16 -bit checksum result. Any carryout of the MSB of the 16 -bit checksum is ignored.

3- Honeywell Checksum

The Honeywell checksum is an alternative from of the double-length. Its length is also $2 n$ bits, where π is again the size of the data word in the message block. The difference is that the Honeywell checksum is based on interleaving consecutive data words to from double-length words. The doublelength words are then summed together two from a double-precision checksum. This is shown in Figure 12-10. The advantage of the Honeywell checksum is that stuck at 1 (SAl) and stuck at o ($S A=$) bit errors occurring in the same bit positions of all words can be detected during the error in the upper and lower words of the checksum. At least two bit positions in the checksum are affected.

4-Residue Checksum

The last from of checksum in our discussion is the residue checksum. The residue checksum is identical to the single-precision checksum, except that any carryout of the MSB position of the checksum word is "wrapped around' and added to the LSB position. This added complexity permits the detection of SA1 errors that go undetected. This is illustrated in figura 12-11

Transmitted Data Transmitted Block

Figurai2-9 A doubie-precision checksum is generated and trunsmitted as BCC at the end of a four-byte biock. The recelver verifies the biock by regenerating the checksum and comparing it against the original

Figure 12-10 Structure of the Honoywall chacksum. The checksum is generated and transmitted as the BCC at the end of हour-byte biock. The receiver verifies the biock by regenerating the checkaum and comparing it againnt the original.

12-7 Error Correction

Two basic techniques are used by communication systems to ensure the reliable transmission of data.

They are shown Figure 12-12. One technique is to request the retransmission of the data block received in error. This technique, the more popular of the two, is known as automatic repeat request(ARQ). When a data block is received without error, a positive acknowledgment is sent back to the transmitter via the reverse channel. ACK alternating in BISYNC is an example of a protocol that uses ARQ for error correction. A second technique is called

Figure12-10 Structure of the Residue checksum. The checksum is generated and transmitted as the BCC at the end of a four-byte block. The receiver verifies the biock by regenerating the checksum and comparing it against the originat.

Forward channel

Transmitting station	Reverse channe!
Receiver station	

Message block1
Message block 2
Message block 3
Message block 3

Acknowledge
\uparrow
Acknowledge
${ }_{4}$ Negative acknowledge Automatic repeat request($A R Q$) Acknowiedge
(a)

Forward channel

Transmitting station	Finc rearse channai)	FEC	Receivel circuil

Figure12-12 (e)Error correction using the automntic the repeat request(ARC) technique; error correction using forward error correction (FEC).
forward error correction (FEC), FEC is used in simplex communications or applications where it is impractical or impossible to request a retransmission of the corrupted message biock. An example might be the telemetry signals transmitted to an Earth station from a satellite on a deep space mission. A garbled message could take several minutes or even hours to travel the distance between the two stations. Redundant error-correction coding is include in the transmitted data stream. If an error is detected by the receiver, the redundant code is extracted from the message block and used to predict and possibly correct the discrepancy.

12.7.1 Hamming code

In FEC a retum path is not used for requesting the retransmission of a message block in error, hence the name forward error correction. Several codes have been developed to suit applications requiring FEC. Those most commonly recognized have been based on the research of mathematician Trichard W. Hamming. These codes are referred to as Hamming codes. Hamming codes employ the use of redundant bits that are inserted into the message stream for error correction. The positions of these bits are established and known by the transmitter and received before hand. If the receiver detects an error in the message block, the Hamming bits are used to identify the position of the error. This position, known as the syndrome ,is the underlying principle of the Hamming code.

12.7.1.1 Developing a Hamming code

We will now develop a Hamming code for single-bit FEC. For simplicity, 10 data bits will be used. The number of Hamming bits depends on the number of data bits $m_{0}, m_{1} \ldots \ldots$...transmitted in the message stream, including the Hamming bits. If n is equai to the real number of bits transmitted in a message stream and m is equal to the number of Hamming bits, then m is the smallest number governed by the equation.

$$
2^{m}>n+1
$$

For a message of 10 data bits, m is equal to 4 and n is equal 14 bits $(10+4)$

$$
2^{4}>(10+4)+1
$$

If the syndrome is to indicate the position of the bit error, check bits, or Hamming bits $c_{0}, c_{1} \ldots \ldots$. serving as parity can be inserted into the message stream to perform a parity check based on the binary representation of each bit position. How is this possible? Note in Tuble 122 z that the binary representation of each bit position forms an alfernating bit pattern in the vertical direction.. Each column proceeding from the LSB to the MSB alternates at one-haif the rate of the

TABLE 12-2 Check Bits Can Be Used As Parity on Binary Weighted Pasitions in a Message Stream

Sit position In message	Binary representation	Check bit	Position set
1	0001	c_{0}	$1,3,5,7,9,11,13$
2	0010	c_{1}	$2,3,6,7,10,11,14$
3	0011	c_{2}	$4,5,6,7,12,13,14$
4	0100		$8,9,10,11,12,13,14$,
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
10	1010		
11	1011		
12	1100		
13	1101		
14	1110		

previous column. The LSB alternates with every positions. The next bit alternates every two bit positions, and so forth.
To illustrate how the check bits are encoded, the 10 -bit message 1101001110 is labeled m_{9} trough m_{0}, as illustrates in figure12-13 By inserting the check bits into the message length n is extended to 14 bits. For simplicity, bit positions $1,2,4,8$ will be used for the check bits. Even or odd parity generation can be performed own the bit positions associated with each can be performed by exclusive -ORing individual bits an a group of the bit. For even parity, PEO through PE3 can serve as weight parity checks over the bit positions listed in Table 12-2 Exclusive-ORing these bit positions together with the data corresponding to the 14 bit
message stream shown in Figure12-13, we the following:

$\begin{array}{lllllll}14 & 11 & 10 & 7 & 6 & 3 & 2\end{array}$ - bit position $P E 1=0=m_{9} O m_{6} O m_{5} O m_{3} O m_{2} O m \varnothing c_{1}$ $\begin{array}{llllllll}14 & 13 & 12 & 7 & 6 & 5 & 4 & 4\end{array}$ PE2 $=0=m_{9} \circ \mathrm{mO} \mathrm{m}_{7} \bigcirc \mathrm{~m}_{3} \bigcirc \mathrm{~m}_{2} \bigcirc \mathrm{~m}_{1} O \mathrm{c}_{2}$
$\begin{array}{lllllllll}14 & 13 & 12 & 11 & 10 & 9 & 8 & \leftarrow & \text { bit position }\end{array}$ $P E 3=0=m_{9} \oplus m_{\Phi} m_{7} \odot m_{6} Q m_{5} Q m_{4} Q c_{3}$

To determine the value of the check bits c_{0} through c_{3} the equations above can be rearranged as follows:

Original bit stream, 10 bits

1413121110987654321 Bit position Transmitted bit stream, 14 bits

Figure 12-13 Check bits are inserted into a messnge stream for FEC.
$c_{0}=m_{8} \mathrm{O}_{\mathrm{m}}^{8} \mathrm{~m}_{4}^{\mathrm{O}} \mathrm{m}_{3} \mathrm{Om}_{\mathrm{m}^{\prime}}^{\mathrm{O}} \mathrm{mm}_{0}$
$=1 \oplus 10+0 \oplus 191 \oplus 0=0$
$c_{1}=m_{9} O m_{0} O m_{5} O \mathrm{mO} \mathrm{m}_{2} O \mathrm{~m}_{0}$
$=1+1+0+1+1+0=0$
even parity
$c_{2}=m_{9} O m_{8} O m_{7} \circ m_{3} \circlearrowleft m_{2} \circlearrowleft m_{1}$
$=1 \oplus 1 \oplus 001 \oplus 1 \oplus 1=1$
$c_{3}=m_{9} O m_{8} \odot m_{7} \bigcirc m_{6} \quad \mathrm{Om}_{9} O \mathrm{~m}_{4}$
$=1$ © 1 100 © $1 \oplus 000=1$

Thus the check bits inserted into the message stream in positions 8,4,2,and1 are

$$
\begin{aligned}
& c_{3}=1 \\
& c_{2}=1 \\
& c_{1}=0 \\
& c_{0}=0
\end{aligned}
$$

Let us now look at how a bit error can be identified and corrected by the weighted parity checks. Suppose that an error has been detected in the transmitted message stream. Bit positions 7 has been lost in the transmission $11010011111000 \longleftarrow t r a n s m i t t e d$ bit stream

The receiver performs an even parity check over the same bit positions discussed above. Even parity should result for each parity check if there are no errors. Since a bit error has occurred, however, the syndrome(location of the error) will be identified by the binary number produced by the parity checks PEO through PE3, as follows:

$$
\begin{array}{cccccccccccccc}
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}
$$

Check 0:131197531 bit position $P E 0=1+1+0+0+1+0+0=1$ (even parity failure) 1 Check 1: $141110 \quad 7 \quad 6 \quad 32$ bit position
PE1 $=1+1+0+0+1+0+0=1$ (even parity failure) 1
Check 2:14 $13 \begin{array}{lllll}12 & 7 & 6 & 5 & 4 \\ \text { bit position }\end{array}$
syndrome
PE1 $=1+1+0+0+1+1+1=1$ (even parity failure) 1
$=0111$
Check 3:14 $1312 \quad 1110 \quad 98$ bit position
PE3 $=1+1+0+1+0+0+1=0($ correct $) 0$

The resulting syndrome is 0111, or bit position 7. This bit is simply inverted and the parity checks will result in 000 (corrected). The check bits are removed from positions $1,2,4$ and 8 , there by resulting in the original message. One nice feature of this Hamming code is that once the message is encoded there is ne differences between the check bits and the original message bits; that is. The syndrome can just as well identify a check bit in error.

17.2.1.2An alternative method.

Now we have established the principle behind a Hamming code, an altemative method for correcting a single-bit error will be given here. The disadvantage with this method, however, is that it 10 -bit message stream, 1101001110 will be used. Therefore, the number of Hamming bits, four, remains the same. The Hamming bits can actually be placed anywhere in the transmitted message stream as their positions are known by the transmitter and received. The procedure is outined as follows:

1- Compute the number of Hamming bits m required for a message of n bits.
Original message stream:: 1101001110 (10bits)

$$
\begin{aligned}
& 2^{m}>n+1 \\
& 2^{4}>(10+4)+1 \quad m=4, \\
& n=14
\end{aligned}
$$

2 Insert the Hamming bits H irts the original message stream.
Transmitted message stream:

14	13	12	11	10	9	6	7	6	5	4	3	2	1
1	H	1	0	H	1	0	0	1	H	1	H	1	0

3 - Express each bit positons contaning as 1 as a four-bit binary number and exclusive-Or each of these numbers together. Starting from the left, bit positions 14, 12, 9, 6, 4, and 2 are exclusive-ORed together. This will b result in the value of the Hamming bits.

```
                1110=14
    + 1100=12
    0010
    + 1001=3
    1011
    + 0110=6
        1101
    + 0100-4
    T00%
    + 0010=2
        T01] & Hamnning bits
```

4-Places the value of the Haming bits into the H transmitted message stream shown in stap 2

14	13	12	11	10	9	8	7	6	5	4	3	2	1	bit position
1	1	1	0	0	1	0	0	1	1	1	1	1	0	transmited bit stream
1	1	1	0	0	1	0	0	0	1	1	1	1	0	received bit stream

Let us now assume that bt postion is was received in error.

5- The Hamming bits are extracted from the received message stream and exclusive-Ored with the binary representation of the bit positions containing a 1. This will detect the bit positions in error, or the syndrome,

To detect multiple bit errors, more elaborate FEC techniques are necessary. Additional redundancy must be built into the message stream. This further reduces the efficiency of the channel and lowers the transmission system's throughput. Unlike $A R Q$, which is extremely reliable, the best FEC techniques are not particularly in cases where multiple bits are destroyed due to noise bursts. Generally, FEC is employed only in applications where ARQ is not feasible. The detection of multiple-bit errors is beyond the scope of this book.

CONCLUSION

This graduation project taing was the point where theoretic came together. The trining gave a lot me. I discovered the comptter Tork There were leam the error correction, detection and contsol. Also I having great knowledge in computers. 12 helped me. You allows to project. Thank you for Prot Dr. Fahrettin

