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ABSTRACT 

The design of a Wiener filter requires a priori information about the statistics of 

the data to be processed. When this information is not known completely, however, it 

may not be possible to design the Wiener filter or else the design may no longer be 

optimum. A straightforward approach that used in such situations is the "estimate and 

plug" procedure. For real-time operation, this procedure has the disadvantage of 

requiring excessively elaborate and costly hardware. 

A more efficient method is to use an adaptive filter. By such a device we mean one that 

is self-designing in that the adaptive filter relies for its operation on a recursive 

algorithm, which makes it possible for the filter to perform satisfactorily in an 

environment where complete knowledge of the input signal characteristics is not 

available. 

Introducing the least-mean-square LMS algorithm. Is important because of its 

simplicity, ease of computation, and because it does not require off-line gradient 

estimations or repetitions of data. 

In this thesis, design adaptive filters based on Least Mean Square Algorithm are 

discussed. 

The first chapter represents classification of filters, approximation of the 

frequency response characteristics using Butterworth, Chebyshev, and Elliptic Filters. 

Chapter provides comparison of analog and digital filters and different frequency 

response Characteristic. 

Chapter two is devoted to the adaptive filter that provides real time operation in 

unknown input signal characteristic. General properties, Open loop, closed-loop 

adaptation are examined. 

End sections of the chapter consider application of adaptive filter in identification, noise 

cancellation. 

Chapter Three presents analysis of LMS algorithm and their software and 

hardware implementation. Basic limitations related with the effect of nonstationarity of 

input signals, computer worldlength requirement, driftt of coefficients are considered. 

Chapter Four treats Finite Precision Effect, stalling phenomenon, and parameter 

drifts of the precision of filtering using LMS. 
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Overview of Filters 

CHAPTER ONE 

OVERVIEW OF FILTERS 

Filtering is a process by which the frequency spectrum of signal can be modified, reshaped, 

or manipulated according to some desired specification. It may entail amplifying or 

attenuating a range of frequency components, rejecting or isolating one specific or 

attenuating a range of frequency component, etc. The uses of filtering are manifold, e.g., to 

eliminate signal contamination such as noise to remove signal distortion brought about by 

an imperfect transmission channel or by inaccuracies in measurement, to separate two or · 

more distinct signals which were purposely mixed in order to maximize channel utilization, 

to demodulate signals, to convert discrete-time signals into continuous-time signals. 

The digital filter is a digital system that can be used to filter discrete-time signals. It can 

Be implemented by mean of software ( computer programs) or by means of dedicated 

Hardware, and in either case it can be used to filter real-time signals or non-real-time 

(Recorded) signals. 

Software digital filters made their appearance along with the first digital computer 

in the late forties, although the name digital filter did not emerge until the midsixties. Early 

in the history of the digital computer many of the classical numerical analysis formulas of 

NEWTON, STARLING, etc,. and others were used to carry out interpolation, 

differentiation, and integration of function (signals) represented by mean of sequences of 

numbers (discrete-time signals). Since interpolation, differentiation, or integration of a 

signal represents a manipulation of the frequency spectrum of the signal, the subroutines or 

programs constructed to carry out these operations were essentially digital filters. In 

subsequent years, many complex and highly sophisticated algorithms and programs were 

developed to perform a variety of filtering tasks in numerous application, e.g., data 

smoothing and prediction, pattern recognition, electrocardiogram processing, and spectrum 

analysis. In fact, as time goes on, interest in the software digital filter is becoming 

progressively more intense while its applications are increasing at an exponential rate. 

Band-limited continuous-time signals can be transformed into discrete-time signals 

By means of sampling. Conversely, the discrete-time signals so generated can be used to 
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regenerate the original continuous-time signals by means of interpolation, by virtue of 

Shannon's sampling theorem. As a consequence, hardware Digital's filters can be used to 

perform real-time filtering tasks, which in the not too distant past were performed almost 

Exclusively by analog filters. The advantages to be gained are the traditional advantages 

Associated with digital systems in general: 

1. Component tolerances are uncritical. 

2. Component drift and spurious environmental signals have no influence on the system 

Performance. 

3. Accuracy is high. 

4. Physical size is small. 

5. Reliability is high. 

A very important additional advantage of digital filters is the ease with which filter 

Parameters can be changed in order to change the filters characteristics. This feature 

Allows one to design programmable filters which can be used to perform a multiplicity of 

Filtering tasks. Also one can design new types of filters such as adaptive filters. The main 

disadvantage of hardware digital filters at present is their relatively high cost. However, 

with the tremendous advancements in the domain of large-scale integration, the cost of 

hardware digital filters is likely to drop drastically in the not too distant future. 

1.1 Classic Analog Filters 
While the importance of analog filters is continuously being reduced by their 

digital counterparts, they remain an important study, if for no other reason than they 

provide a gateway to the study of digital filters. The design of a contemporary analog filter, 

in many cases, remains today as it was during the early days ofradio. The design objective 

Of the radio engineers was to shape the frequent-spectrum of a received or transmitted 

Signal using modulators, demodulators, and frequency-selective filters. The frequency­ 

Selective filters were defined in terms of a mathematical ideal. The ideal models represent 

Low-pass, high-pass, band-pass, band-stop, and all-pass filters. These are graphically 

Interpreted in Figure 1.1. Their shape represents the steady-state magnitude-frequency 

Response of a filter with a transfer function ofH(Q) = H(s) I s=iO where Q denotes an 
analog frequency measured in radians per second. The mathematical specification of 

2 
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each ideal filter is summarized as, 

Ideal Low-pass JH(O)J = {1 if OE [-B,B] 
0 otherwise 

(1.1) 

Ideal High-pass jH(O)J = {O if Q E [-B,B] 
1 otherwise 

(1.2) 

Ideal Band-stop 

Ideal Band-pass IH(O)I = {1 if Q E [-B2,-B1] orQ E [Bi,B2] 
0 otherwise 

JH(O)i={o ifOE[-B2,-B1]orOE[B1,B2] 
1 otherwise 

(1.3) 

(1.4) 

All-pass IH(O)J = 1 for all Q E [-oo, =l (1.5) 

Low-Pass 

JH~O)J 

~ •.. ... 

High-Pass 

JH~O)J 

-BO B JI"' 
-B O B 

All-Pass 
JH,(O)J 

~ ~ ....• - 

Band-Pass 
JH,(O)J 

0 0 

F 

~ ~ 

Band-Stop 
JH,(O)J 

- B2 - B1 0 B2 B1 

Figure 1.1 Basic Ideal Filter Types 
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Overview of Filters 

Analog filter design is often based on the use of several well-known models called 

Butterworth, Chebyshev, and elliptic (Cauer) filters. To standardize the design procedure, 

a set of normalized analog prototype filter models was agreed upon and reduced to 

tables, charts, and graphs. These models, called prototypes, were all developed as 

low-pass systems having a known gain (typically-I dB or -3 dB pass-band attenuation) at 

a known critical cut-off frequency (typically 1 radian/second). The transfer function of an 

analog prototype filter, denoted Hp(s), would be encapsulated in a standard table as a 

function of filter type and order. The prototype filter Hp(s) would then be mapped into a 

final filter H(s) having critical frequencies specified by the designer. The mapping rules, 

'""''::~ Rt,:::::,·::.«~·lO_·_ 
O.UL.__. !IP 

o.o 

LO Low pass-to­ 
highpa.ss 

IH(f!Jl2 0.5 t------- 

(b) 

I c:nn 
0.00.0 11, 

(<1) 

1.0 Lowpass Prosotype 

" 001 i '"'-- ~\TN"JC(:) " 0.0 1.0 

1.0 I m Lowpass-ro- LOI \ Lowpess-to- 
Bandpass Bontlstop 

,,,,,,,,,.,0, 
I [ 

IH(ll)!'o, 

n<,adlcc) 
0.0 , 

dP1 
o.o--, n,, 0.0 ~ 2i,, o,, 0.0 f2P1 n, 

Figure 1.2 Frequency Transform 

called frequency - frequency transforms, as shown in figure above. 
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1.2 Polynomial Approximations of the Frequency 

1.2.1 Butterworth Approximation 

The magnitude-squared response of an analog low-pass Butterworth filter Ha (s) of Nth 

order is given by [13], 

1 
)12 )2N !Ha (jn)l = I+ (n I QC (1.1) 

It can be easily shown that the first 2N-1 derivatives of !Ha (jnf at n = 0 are equal to 

zero, and as a result, the Butterworth filter is said to have a maximally-flat magnitude at 

n = 0. The gain of the Butterworth filter in dB is given by, 

A de i.e., at n = 0, the gain in dB is equal to zero, and at n = nc, the gain is, 

g(Qc) = 10 log, (1/2) = -3.0103 = -3 dB 
and therefore, He is often called the 3-dB cutoff frequency. Since the derivative of the 

squared-magnitude response, or equivalently, of the magnitude response is always negative 

for positive values of o, the magnitude response, is monotonically decreasing with 

increasing n. For n >> n c > the squared-magnitude function can be approximated by, 

1 
!Ha (jnf = I +-(n I QC )2N 

The gain g(Q2) in dB at 02 = 201 with 01>> Qc is given by, 

g(Q,) = -20log,{ ~: r = g(n,)-6N dB, 

where g(Q 1) is the gain in dB at n 1• As a result, the gain roll-off per octave in the 

stop-band decreases by 6 dB, or equivalently, by 20 dB per decade for an increase of the 

filter order by one. In other words, the pass-band and the stop-band behaviors of the 

magnitude response improve with a corresponding decrease in the transition band as the 

5 



Overview of Filters 

fitter order N increases. A plot of the magnitude response of the normalized Butterworth 

low-pass filter with n c = 1 for some typical values ofN is shown in figure. 

0.8 

~ . ,0.6 
~0.4 

.......... -~\/\·~·--:" . .: . 

. . ' :1 .,N•2 
' 

0.2~ .. \ ~114 
---: •... ........ --- ....: --- 

' 0 
0 0.5 I 15 2 2.5 3 

Nonnaliud fttQucncy 

Figure 1.1 Typical Butterworth low-pass filter response. 

The two parameters completely characterizing a Butterworth filter are therefore the 3-dB 

cutoff frequency nc and the order N. These are determined from the specified 

pass-band edge n P, the minimum pass-band magnitude 1 I~, the stop-band 

edgens, and the maximum stop-band ripple 1/A. From Eq. (I.I) we get, 

(1.2a) 

1 2 1 -- 
iHJjns~ = 1 + (ns I nJ2N - A 2 (1.2b) 

By solving the above we get the expression for the order N as, 

N _ ..!_ log10 [(A 2 -1 ); &2] _ log10 (II ki} 
- 2 log10(ns/nP) - log10(I!k) 

(1.3) 

Since the order N of the filter must be an integer, the value ofN computed using the 

6 
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above expression is rounded up to the next higher integer. This value ofN can be used 

next in either Eq. (1.2a) or (1.2b) to solve for the 3-dB cutoff frequencyf'L. If it is used 

in Eq. (1.2a), the pass-band specification is met exactly, whereas the stop-band 

specification is exceeded. On the Other hand, if it is used in Eq. (1.2b), the stop-band 

specification is met exactly, whereas the pass-band specification is exceeded. 

The expression for the transfer function of the Butterworth low-pass filter is given by, 

(1.4) 

Where, 

(1.5) 

The denominator D N (s) ofEq. (1.4) is known as the Butterworth polynomial of order N 

and is easy to compute. 

1.2.2 Chebyshev Approximation 

In this case, the approximation error, defined as the difference between the ideal 

brick wall characteristic and the actual response, is minimized over a prescribed band of 

frequencies. In fact, the magnitude error is equiripple in the band. There are two types of 

Chebyshev transfer functions [2]. In the Type 1 approximation, the magnitude 

characteristic is equiripple in the pass-band and monotonic in the stop-band, whereas in the 

Type 2 approximation, the magnitude response is monotonic in the pass-band and 

equiripple in the stop-band. 

1.2.3 Type 1 Chebyshev Approximation 

The type 1 Chebyshev transfer function Ha (s) has a magnitude response given by, 

(1.7) 

7 
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Where TN (Q) is the Chebyshev polynomial of order N: 

1n1~1. 

/nl>l, 

The above polynomial can also be derived by recurrence relation given by, 

r ~ 2, 

with TO ( n) = 1 and TI en) = n 
Typical plots of the magnitude responses of the Type 1 Chebyshev low-pass filter are 

shown in Figure 1.2 for three different values of filter order N with the same pass-band 

ripple E. From these plots it is seen that the square-magnitude response is equiripple 

between n = 0 and n = 1, and it decreases monotonically for all n > 1. 

The zeros are on the jQ-axis and are given by, 

ns 
z e = j [ (21! -1 )Jr J ' 

cos 2N 

f = 1,2, ..... ,N. 

IfN is odd, then for f = (N + 1 )/2, the zero is at s = co, The poles are located at, 

f = 1,2, ..... ,N, 

Where, 

8 

(1.8) 

(1.9) 

(1.16) 

(1.17) 
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(1.18) 

The order N of the Type 2 Chebyshev low-pass filter is determined from given s, Q s e and 

A using Eq. (1.11). 

1.2.4 Elliptic Approximation: 
An elliptic filter [8], also known as a Cauer filter, has an equiripple pass-band and 

an equiripple stop-band magnitude response, as indicated in Figure 1.3 for typical elliptic 

low-pass filters. The transfer function of an elliptic filter meets a given set of filter 

specifications, pass-band edge frequency QP , stop-band edge frequency "; pass-band 

ripple Qs, and minimum stop-band attenuation A, with the lowest filter order N. The 

theory of elliptic filter approximation is mathematically quite involved. The square­ 

magnitude response of an elliptic low-pass filter is given by, 

(1.20) 

where RN(Q) is a rational function of order N satisfying the property RN(l/Q)= 

1/RN(Q), with the roots of its numerator lying within the interval O < Q < 1 and the 

roots of its denominator lying in the interval 1 < Q < co, For most applications, the filter 

order meeting a given set of specifications of pass-band edge frequency QP , pass-band 

ripple i::, stop-band edge frequency O, , and the minimum stop-band ripple A can be, 

estimated by using the approximate formula, 

N ~ 2log10(41ki} 
log10(llp) 

(1.21) 

9 
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where k , is the discrimination parameter and pis computed as follows: 

k'=~ 
1-Jk' 

Po = 2(1 + Jk') 
p=p0 +2(p0)5 +15(p0)9 +150(p0)13• 

(1.22) 

in Eq.(1.22a), k is the selective parameter. 

0.8 

-8 
.~0.6 
C 

:f 
~0.4 

0.2 

0 I 

0 0.5 I 1.5 2 2.5 
Normalized frequency 

J 

Figure 1.3 Typical elliptic low-pass filter responses with 1 dB pass-band ripple and 10 dB 

minimum stop-band attenuation. 

1.2.5 Linear-Phase Approximation 
The previous three approximation techniques are for developing analog low-pass 

transfer functions meeting specified magnitude or gain response specifications without any 

concern for their phase responses. In a number of applications it is desirable that the analog 

low-pass, filter being designed have a linear-phase characteristic in the pass-band, in 

addition to approximating the magnitude specifications. One way to achieve this goal is to 

cascade an analog all-pass filter with the filter designed to meet the magnitude 

specifications, so that the phase response of the overall cascade realization approximates 

linear-phase response in the pass-band. This approach increases the overall hardware 

complexity of the analog filter and may not be desirable for designing an analog anti­ 

aliasing filter in some AID conversion or designing an analog reconstruction filter in DI A 

10 
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conversion applications. It is possible to design a low-pass filter that approximates a linear­ 

phase characteristic in the pass-band but with a poorer magnitude response than that can be 

achieved by the previous three techniques. Such a filter has an all-pole transfer function of 

the form, 

(1.24) 

and provides a maximally flat approximation to the linear-phase characteristic at Q = 0, i.e., 

has a maximally flat constant group delay at de (Q = 0). For a normalized group delay of 

unity at de, the denominator polynomial fiBN(s) of the transfer function, called the Bessel 

polynomial[2,8], can be derived via the recursion relation, 

(1.25) 

starting with B 1 (s) = s + 1 and B 2 (s) = s 
2 + 3s + 3. Alternatively, the coefficients of the 

Bessel polynomial BN(s) can be found from, 

(2N -£)! , 
de= 2N-f£!(n-£)! 

£ = 0,1, .... ,N -1 (1.26) 

These filters are often referred to as Bessel filters. 

1.3 A Comparison of the Filter Types 

In the previous sections we have discussed four types of analog low-pass fitter 

approximations, three of which have been developed primarily to meet the magnitude 

response specifications while the fourth has been developed primarily to provide a linear­ 

phase approximation. In order to determine which filter type to choose to meet a given 

magnitude response specification, we need to compare the performances of the four types 

of approximations. To this end, we compare here the frequency responses of the normalized 

Butterworth, Chebyshev, and elliptic analog low-pass filters of same order. The pass-band 

11 
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ripple of the Type 1 Chebyshev and the equiripple filters are assumed to be the same, while 

the minimum stop-band attenuation of the Type 2 Chebyshev and the 

equiripple filters are assumed to be the same. The filter Specifications used for 

comparison are as follows: filter order of 6, pass-band edge at n = 1, maximum pass­ 

band deviation of 1 dB, and minimum stop-band attenuation of 40 dB. The frequency 

responses computed using MATLAB are plotted in Figure 1.5. 

As can be seen from Figure 1.5, the Butterworth filter has the widest transition band, with 

a monotonically decreasing gain response. Both types of Chebyshev filters have a 

transition band of equal width that is smaller than that of the Butterworth filter but greater 

Figure 1.5 A comparison of the frequency response of the four types of analog low-pass. 

0, -··7 ' I\~ I I ."< 

I I I ' I I I . 'I 
Ill \ \ I \ I ~ 
~.(Jj 

I 
I . 1 I fl .5 I , . . . llonernid! I • 0 , .1 • ·Ckbyshl• I 11 

I' -~~U 11 
·\ ~ . - Ellip6c ' 

0 0.2 0.4 0.6 0.1 
NomllliUd mque1ey 

(b) {ct 

than that of the elliptic filter. The Type 1 Chebyshev filter provides a slightly faster roll­ 

Off in the transition band than the Type 2 Chebyshev filter. The magnitude response of 

The Type 2 Chebyshev filter in the pass-band is nearly identical to that of the Butterworth 

Filter. The elliptic filter has the narrowest transition band, with an equiripple pass-band 

And an equiripple stop band response. 

The Butterworth and Chebyshev fillers have a nearly linear-phase response over about 

Three-fourths of the pass-band, whereas the elliptic filter has a nearly linear-phase 

Response over about one-half of the pass-band. One the other hand, the Bessel filter may 

Be more attractive if the linearity of the phase response over a larger portion of the pass- 

12 
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Band is desired at the expense of a poorer gain response. Figure 1.6 shows the gain and 

Phase responses of a sixth order Bessel filter frequency scaled to have a pass-band edge 

At n = 1 with a maximum pass-band deviation of 1 dB. However, the Bessel filter 

Provides a minimum of 40 dB attenuation at approximately n = 9.4 and as a result, has 
The largest transition band compared to the other three types. 

13 
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CHAPTER TWO 

ADAPTIVE FILTERS 

2.1 Overview 
The design of a Wiener filter requires a priori information about the statistics 

of the data to be processed. The filter is optimum only when the statistical 

characteristics of the input data match the priori information on which the design of the 

filter is based. When this information is not known completely, however, it may not be 

possible to design the Wiener filter or else the design may no longer be optimum. 

A straightforward approach that we may use in such situations is the "estimate 

and plug" procedure. This is a two-stage process whereby the filter first "estimates" the 

statistical parameters of the relevant signals and then "plugs" the results so obtained into 

a non-recursive formula for computing the filter parameters. For real-time operation, 

this procedure has the disadvantage of requiring excessively elaborate and costly 

hardware. A more efficient method is to use an adaptive filter. By such a device we 

mean one that is self-designing in that the adaptive filter relies for its operation on a 

recursive algorithm, which makes it possible for the filter to perform satisfactorily in an 

environment where complete knowledge of the relevant signal characteristics is not 

available. The algorithm starts from some predetermined set of initial conditions, 

representing whatever we know about the environment. Yet, in a stationary 

environment, we find that after successive iterations of the algorithm it converges to the 

optimum Wiener solution in some statistical sense. 

In a non-stationary environment, the algorithm offers a tracking capability , in that it 

can track time variations in the statistics of the input data, provided that the variations 

are sufficiently slow . 

As a direct consequence of the application of a recursive algorithm whereby 

the parameters of an adaptive filter are updated from one iteration to the next, the 

parameters become data dependent. This, therefore, means that an adaptive filter is in 

reality a nonlinear device, in the sense that it does not obey the principle of 

superposition. The adaptive filters are commonly classified as linear or nonlinear. An 

adaptive filter is said to be linear if the estimate of a quantity of interest is computed 

adaptively (at the output of the filter) as a linear combination of the available set of 

14 
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observations applied to the filter input. Otherwise, the adaptive filter is said to be 

nonlinear. 

A wide variety of recursive algorithms have been developed in the literature for the 

operation oflinear adaptive filters [13]. In the final analysis, the choice of one algorithm 

over another is determined by one or more of the following factors: 

• Rate of convergence. This is defined as the number of iterations required for the 

algorithm, in response to stationary inputs, to converge "close enough" to the optimum 

Wiener solution in the mean-square sense. A fast rate of convergence allows the 

algorithm to adapt rapidly to a stationary environment of unknown statistics. 

• Misadjustment. For an algorithm of interest, this parameter provides a quantitative 

measure of the amount by which the final value of the mean-squared error, aver- aged 

over an ensemble of adaptive filters, deviates from the minimum mean- squared error 

that is produced by the Wiener filter. 

• Tracking. When an adaptive filtering algorithm operates in a non-stationary 

environment, the algorithm is required to track statistical variations in the environment. 

The tracking performance of the algorithm, however, is influenced by two 

contradictory features: (1) rate of convergence, and (b) steady-state fluctuation due to 

algorithm noise. 

• Robustness. For an adaptive filter to be robust, small disturbances (i.e., disturbances 

with small energy) can only result in small estimation errors. The disturbances may 

arise from a variety of factors, internal or external to the filter. 

• Computational requirements. Here the issues of concern include (a) the number of 

operations (i.e., multiplications, divisions, and additions/subtractions) required to make 

one complete iteration of the algorithm, (b) the size of memory locations required to 

store the data and the program, and (c) the investment required to program the algorithm 

on a computer. 

• Structure. This refers to the structure of information flow in the algorithm, deter­ 

mining the manner in which it is implemented in hardware form. For example, an 

algorithm whose structure exhibits high modularity, parallelism, or concurrency is well 

suited for implementation using very large-scale integration (VLSI).! 

• Numerical properties. When an algorithm is implemented numerically, inaccuracies 

are produced due to quantization errors. The quantization errors are due to analog-to­ 

digital conversion of the input data and digital representation of internal calculations. 

15 
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Ordinarily, it is the latter source of quantization errors that poses a serious design 

problem. In particular, there are two basic issues of concern: numerical stability and 

numerical accuracy. Numerical stability is an inherent characteristic of an adaptive 

filtering algorithm. Numerical accuracy, on the other hand, is determined by the number 

of bits (i.e., binary digits) used in the numerical representation of data samples and filter 

coefficients. An adaptive filtering algorithm is said to be numerically robust when it is 

insensitive to variations in the word-length used in its digital implementation. 

These factors, in their own ways, also enter into the design of nonlinear adaptive filters, 

except for the fact that we now no longer have a well-defined frame of reference in the 

form of a Wiener filter. Rather, we speak of a nonlinear filtering algorithm that may 

converge to a local minimum or, hopefully, a global minimum on the error-performance 

surface. 

In recent years, growing field of research in "adaptive systems" has resulted in 

a variety of adaptive automatos whose characterestics in limited ways resemble certain 

characterestics ofliving systems and biological adaptive processes. 

Some meanings of"adaptation" can be applied in industrial, biological, social and etc. 

An adaptive automation is asystem whose structure is alterable or adjustable in such a 

way that its behavior or performance (according to some desired criterion) improves 

throug contact with its environment. A simple example of an automaton or automatic 

adaptive system is the automatic gain control (AGC) used in radio and television 

receivers. The function of this circuit is to adjust the sensitivity of the receiver inversely 

as the average incoming signal strength. The receiver is thus able to adapt a wide range 

of input levels and to produce a much narrower range of output signals. 

The purpose of this work is to present certain basic principles of adaptation; to 

explain the design, operating characteristics, and applications of the simpler forms of 

adaptive systems; and to describe means for their physical realization. The types of 

systems discussed include those designed primarily for the purposes of adaptive control 

and adaptive signal processing. Such systems usually have some or all of the following 

characteristics: 

I.They can automatically adapt (self-optimize) in the face of changing 

(nonstationary) environments and changing system requirements. 

2.They can be trained to perform specific filtering and decision-making tasks. 

Synthesis of systems having these capabilities can be accoplished automatically through 
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traming. In a sense, adaptive systems can be "programmed" by atrain process. 

1. Because of the above, adaptive systems do not require the elaborate 

synthesis procedures usually needed for nonadaptive systems. Instead, they tend to be 
"self-designing." 

2. They can be extrapolate a model of behavior to deal with new situations after 

having been trained on a finite and often small number of training signals or patterns. 

3. To alimited extent, they can. repair themselves; that is, they can. adapt around 
certain kinds of internal defects. 

4. They can usually be described as nonlinear systems with time-varying 
parameters. 

5. Usually; they are more complex and difficult to analyze than nonadaptive 

systems, but they offer the possibility of substantially increased system performance 
when input signal characteristics are unknown or time varying. 

2.2 General Properties 

The essential and principal property of the adaptive system is its time-varying, 

self-adjusting performance. The need for such performance may readily be seen by 

realizing that if a designer develops a system of fixed design which he or she considers 

optimal, the implications are that the designer has foreseen all possible input conditions, 

at least statistically, and knows what he or she would like the system to do under each 

of these conditions. The designer has then chosen a specific criterion whereby 

performance is to be judged, such as the amount of error between the output of the 

actual system and that of some selected model or "ideal"system. 

Finally, the designer has chosen the system that appears best according to the 

performance criterion selected, generally choosing this system from an a priorirestricted 
class of designs (such as linear systems). 

In many instances, however, the complete range of input conditions may not be known 

exactly, or even statistically; or the conditions may change from time to time. In such 

circumstances,an adaptive system that continually seeks the optimum within an allowed 

class of possibilities, using an ordinarly search process, would give superior 
performance compared with a system of fixed design. 

By their very nature, adaptive systems must be time varying and nonlinear. 

Their characteristics depend, among other things, on their input signals. If an input 

signals x1 is applied, an adaptive system will adapt to it and produce an output y1• If 
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another input signal, x2, is applied, the system will adapt to this second signal and will 

again produce an output Y2- 

Generally, the form or the structure or the adjustments of the adaptive system will be 

different for the two different inputs. If the sum of the two inputs is applied to the 

adaptive system, the latter will adapt to this new input-but it will produce an output that 

wi11 generally not be the same as y1+y2, the sum of the outputs that would have 

corresponded to inputs x, and x2• In such a case, as illustrated in Figure 1.1, the 

principle of superposition does not work as it does with linear systems. If a signal is 

applied to the input of an adaptive system to test its response characteristics, the systems 

adapts to this specific input and thereby changes its own form. Thus the adaptive system 

is inherently difficult to characterize in conventional terms. 

Whithin the realm of nonlinear systems, adaptive systems cannot be distinguished as 

belonging to an absolutely clear subset. However, they have two features that generally 

distinguish them from other forms of nonlinear systems. 

H 

X2--G 
Xr--1 ---------. 

X, f ·~Y, 

Figure 2.1 The lower output Y3 if H is a linear system, ifH is adaptive Y3 is generally 

different from Yl+Y2 

First, adaptive systems are adjustable, and their adjustments usually depend on finite­ 

term average signal characteristics rather than on instantaneous values of signals or 

instantaneous values of the internal system state. Second, the adjustments of the 

adaptive systems are changed purposefully in order to optimize specified performance 

measures. 

Certain forms of adaptive systems become linear systems when their adjustments are 

held constant after adaptation. These may be called "linear adaptive systems." They are 
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very useful; they tend to be mathematically tractable; and they are generally easier to 

design than other forms of adaptive systems. 

2.3 Open-And Closed-Loop Adaptation 

Several ways to classify adaptive schemes have been proposed in the literature 

[ 4]. It is most convenient here to begin by thinking in terms of open-loop and closed­ 

loop adaptation. The open-loop adaptive process involves making measurements of 

input or environmental characteristics, applying this information to a formula or to a 

computational algorithm, and using the results to set the adjustments of the adaptive 

system. 

Closed-loop adaptation, on the other hand, involves automatic experimentation 

with these adjustments and knowledge of their outcome in order to optimize a measured 

system performance. The latter process called adaptation by "performance feedback." 

The principles of open- and closed-loop adaptation are illustrated in figures 1.2 

and 1.3. The "other data" in these figures may be data about the environment of the 

adaptive system, or in the closed-loop case, it may be a desired version of the output 

signal. 

Input 
Signal--••--~•~, Processor Output ,,__ _ __,•-signal 

Other ~, 
Data 

Adaptive 
Algorithm 

Figure 2.2 Open loop adaptations 

Input • •1 
data 

Output 
!1------ .....• •----• data Processor 

Adaptation 
algorithm 

Performance 
Calculations Other ,..,,. d 

ata 
Figure 2.3 Closed loop adaptation 
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When designing an adaptive process, many factors determine the chpice of clsed-loop 

versus open-loop adaptation. The availability of input signals and performance­ 

indicating signals is a major consideration. Also, the amount of computing capacity and 

the type of computer required to implement the open-loop and closed-loop adaptation 

algorithms will generally differ. Certain algorithms require the use of a general-purpose 

digital computer, whereas other algorithms could be implemented far more 

economically with special-purpose chips or other apparatus. 

It is difficult to develop general principles to guide all choices, but several advantages 

and a few disadvatntages of closed-loop adaptation, which is the main subject can be 

pointed out here. 

Closed-loop adaptation has the advantages of being workable in many 

applications where no analytic synthesis procedure either exists or is known, for 

example, where error criteria other than mean-square are used, where systems are 

nonlinear or time variable, where signals are nonsattionary, and so on. 

Closed-loop can also be used effectively in situations where physical system component 

values are variable or inaccurately known. Closed-loop adaptation will find the best 

choice of component values. In the event of partial system failure, an adaptation 

mechanism that continually monitors performance will optimize this performance by 

adjusting and reoptimizing the intact parts. As a result, system reliability can often be 

improved by the use of performance feedback. 

The closed-loop adaptation process is not always free of difficulties, however. 

In certain situations, performance functions do not have unique optima. Automatic 

optimization is an uncertain process in such situations. In othersituations, the closed­ 

loop adaptation process, like a closed-loop control system, could be unstable. The 

adaptation process could diverge rather than converge. In spiteof these possibilities, 

performance feedback is a powerful, widely applicable technique for implementing 

adaptation. 

2.4 Applications 
The ability of an adaptive filter to operate satisfactorily in an unknown 

environment and track time variations of input statistics make the adaptive filter a 

powerful device for signal-processing and control applications. Indeed, [4] adaptive 

filters have been successfully applied in such diverse fields as communications, radar, 
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sonar, seismology, and biomedical engineering. Although these applications are indeed 

quite different in nature, nevertheless, they have one basic common feature: an input 

vector and a desired response are used to compute an estimation error, which is in tum 

used to control the values of a set of adjustable filter coefficients. The adjustable 

coefficients may take the form of tap weights, reflection coefficients, rotation 

parameters, or synaptic weights, depending on the filter structure employed. However, 

the essential difference between the various applications of adaptive filtering arises in 

the manner in which the desired response is extracted. In this context, we may 

distinguish four basic classes of adaptive filtering applications, as depicted in Fig. 2.4. 

For convenience of presentation, the following notations are used in this figure: 
u = input applied to the adaptive filter 

Y = output of the adaptive filter 
d = desired response 
e = d -y = estimation error . 

The functions of the four basic classes of adaptive filtering applications depicted herein 
are as follows: 

I. Identification Fig. 2.4(a). The notion of a mathematical model is fundamental to 

sciences and engineering. In the class of applications dealing with identification, an 

adaptive filter is used to provide a linear model that represents the best fit (in some 

sense) to an unknown plant. The plant and the adaptive filter are driven by the same 

input. The plant output supplies the desired response of the adaptive filter. If the plant is 
dynamic in nature, the model will be time varying. 

u Adaptive Filter 

System 
Output 

Input 
Sys~te-m~~--.~~·~~~~~~~ Plant 

(a) 
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Adaptive Filter 
System Output System 

Input 
Plant u 

e 

Delay 
(b) 

d System ............. · +l· · ···· .,..Output 1 

Random 
Signa-l-~---•-i Delay u Adaptive 

Filter 
y 

(c) 
Primary 
Signal 

Reference U 
Signal 

Adaptive 
Filter 

System l-J--- .....• ~~ 
Output 

e 

(d) ..• 

Fig. 2.4 Four Basic Classes of Adaptive Filtering Applications 

(a) Identification (b) Inverse Modeling (c) Prediction (d) Interference Canceling 

II. Inverse modeling Fig.2.4(b ). In this second class of applications, the function of the 
adaptive filter is to provide an inverse model that represents the best fit (in some sense) 

to an unknown noisy plant. Ideally, in the case of a linear sys- tern, the inverse model 

has a transfer function equal to the reciprocal (inverse) of the plant' s transfer function, 

such that the combination of the two constitutes an ideal transmission medium. A 

delayed version of the plant (system) input constitutes the desired response for the 

adaptive filter. In some applications, the plant input is used without delay as the desired 

response. 

III. Prediction Fig.2.4(c). Here the function of the adaptive filter is to provide the best 

prediction (in some sense) of the present value of a random signal. The present value of 

the signal thus serves the purpose of a desired response for the adaptive filter. Past 
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values of the signal supply the input applied to the adaptive filter. Depending on the 

application of interest, the adaptive filter output or the estimation (prediction) error may 

serve as the system output. In the first case, the system operates as a prediaor: in the 

latter case, it operates as a prediction- error filter. 
IV. Noise Cancellation Fig.2.4( d). In this final class of applications, the adaptive filter 

is used to cancel unknown interference contained (alongside an information-bearing 

signal component) in a primary signal, with the cancellation being optimized in some 

sense. The primary signal serves as the desired response for the adaptive filter. A 

reference (auxiliary) signal is employed as the input to the adaptive filter. The reference 

signal is derived from a sensor or set of sensors located in relation to the sensor(s) 

supplying the primary signal in such a way that the information-bearing signal 

component is weak or essentially undetectable. 

2.5 When to use adaptive Filters and where they have been used 
The contamination of a signal of interest by other unwanted, often larger, 

signals or noise is a problem often encountered in many applications. Where the signal 

and noise occupy fixed and separate frequency bands, conventional linear filters with 

fixed coefficients are normally used to extract the signal. [4]. However, there are many 

instances when it is necessary for the filter characteristics to be variable, adapted to 

changing signal characteristics, or to be altered intelligently. In such cases, the 

coefficients of the filter must vary and cannot be specified in advance. Such is the case 

where there is a spectral overlap between the signal and noise, see Figure \.S. or if the 

band occupied by the noise is unknown or varies with time. 

Interference Spectrum 

/ 
Desired Signal Spectrum 

/ 
~ > =----+- 

Figure 2.5 An illustration of spectral overlap between a signal and a strong 

interference 
Typical applications where fixed coefficient filters are inappropriate are the following. 

23 



Adaptive Filters 

• Electroencephalography (EEG), where artefacts or signal contamination 

produced by eye movements or blinks is much larger than the genuine electrical activity 

of the brain and shares the same frequency band with signals of clinical interest. It is 

not possible to use conventional linear filters to remove the artefacts while preserving 

the signals of clinical interest. 

• Digital communication using a spread spectrum, where a large jamming signal, 

possibly intended to disrupt communication, could interfere with the desired signal. The 

interference often occupies a narrow but unknown band within the wideband spectrum, 

and can only be effectively dealt with adaptively. 

• In digital data communication over the telephone channel at a high rate. Signal 

distortions caused by the poor amplitude and phase response characteristics of the 

channel lead to pulses representing different digital codes to interfere with each other 

(intersymbol interference), making it difficult to detect the codes reliably at the 

receiving end. To compensate for the channel distortions which may be varying with 

time or of unknown characteristics at the receiving end, adaptive equalization is used. 

An adaptive filter has the property that its frequency response is adjustable or 

modifiable automatically to improve its performance in accordance with some criterion, 

allowing the tilter to adapt to changes in the input signal characteristics. Because of 

tlreir self-adjusting performance and in-bai/t flexibility, adaptive filters /rave /band use 

in many diverse applications such as telephone echo canceling, radar signal processing, 

navigational systems, equalization of communication channels, and biomedical signal 

enhancement. 

In summary we use adaptive filters 

• When it is necessary for the filter characteristics to be variable, adapted to changing 

conditions, 

• When there is spectral overlap between the signal and noise, or 

• If the band occupied by the noise is unknown or varies with time. 

2.6 Main Components of the Adaptive Filter 
In most adaptive systems, the digital filter in figure 2.6. Is realized using a 

transversal or finite impulse response (FIR) structure figure 2.6.1. Other forms are 

sometimes used, for example the infinite impulse response (IIR) or the lattice structures, 
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but the FIR structure is the most widely used because of its simplicity and guaranteed 

stability. For the N-point filter depicted in figure 2.6.1, the output is given by 
N-1 

nk = L wk(i)xk-i 
i=O 

(2.1) 

where wk(i), i=0,1, ... , are the adjustable filter coefficients (or weights) and Xk(i) and xk 

are the input and output of the filter. Figure 2.6.1. Illustrates the single-input, single­ 

output system. In a multiple-input single-output system, the Xk may be simultaneous 

inputs from N different signal sources. 

Yk = sk +nk ~~~~~~~~~~~~~·-----+- 
(signal+noise) 

A 

nk - 
....::...--+ 

(noise estimate) 

+ 
Digital Filter 

Signal estimate 

Adaptive 
Algorithm -+-------' 

Figure 2.6. Block Diagram of an Adaptive Filter as a Noise Canceller 

2. 7 Other Applications 

2. 7.1 Loud speaking telephones 
• The hybrid network is used to separate the transmit and receive paths (that is, the 

loudspeaker from the microphone), but there is a significant acoustic coupling between 

the loudspeaker and the microphone because of their proximity as well as a leakage 

across the imperfectly matched hybrid network (South et al., 1979). 

• The difficulty then is how to provide adequate gain for the receive and transmit 

directions without causing instability. 

• The conventional solution to the problems is to use a voice-activated switch to select 

the transmit and receive paths, but this is not satisfactory because it does not allow full 

duplex communication. 

• A better solution is to use adaptive filtering techniques to estimate and control the 

acoustic and hybrid echoes Figure 2.7(b). The number of filter coefficients here can be 

quite large, for example 512, making the use of a fast algorithm attractive. 

• In teleconferencing networks (or public address systems) acoustic feedback leads to 

problems similar to those described above. Adaptive filters used for these may require 
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large numbers of coefficients (250 to 1000), especially in rooms with long 

reverberation times, and must converge rapidly. 

Loudspeaker 

Acoustic 
coupling Hybrid Hybrid 

echo 

Microphone (al 

,------, 

Loudspeaker I 
I 
I 
I 
I 
I 

Microphone I 
I 

H}t)rid 

~ ._ J 

Acoustic echo canceller 
L...-----.l 

Hybid echo canceller 
(bl 

Figure 2.7. (a) Loud Speaking Telephone (b) Acoustic and Hybrid Echo Cance1lation in 

Loud speaking Telephone 

2. 7 .2 Radar Signal Processing 
Adaptive signal processing techniques are widely used to solve a number of 

problems associated with radar. For example, adaptive filters are used in monostatic 

radar systems to remove or cancel clutter components from the desired target signals. In 

HF ground wave radar, adaptive filters are used to reduce co-channel interference, 

which is a major problem in the HF band. 

2. 7 .3 Separation of Speech signals from background noise 
Acoustic background noise is a serious problem in speech processing. An 

adaptive filter may be used to enhance the performance of speech systems in noisy 

environments (for example in fighter aircrafts, tanks, cars) to improve both 
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intelligibility and recognition of speech. 

Xk-1 z-1 

'v,\(O) ~(1) ~(2) 

z-1 ~-/N-l\ 

~(N-1) 

N-1 

nk = L, wk (i)xk-i 
i,.O 

Figure 2. 7 .3. Finite Impulse Response Filter Structure 
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CHAPTER THREE 

THE LMS ALGORITHM 

3.1 Overview, Derivation 
In this chapter we introduce the Least-Mean-Square Algorithm, or LMS 

algorithm. The LMS algorithm is important because of its simplicity and ease of 

computation, and because it does not require off-line gradient estimations or repetitions 

of data. If the adaptive system is an adaptive linear combiner, and if the input vextor Xie 

and the desired response dk are available at each iteration, the LMS algorithm is 

generally the best choice for many different applications of adaptive signal procesing. 

We recall that the adaptive linear combiner was applied in two basic ways, depending 

on whether the input is available in parallel (multiple inputs) or series (single input) 

form. These two ways are shown in figure 3 .1. 

In both cases we have the combiner output, Yk, as a linear combination of the input 

samples. We have 
(3.1) 

Where Xk is the vector of the input samples in either of the two configurations in figure 

3.1. 

Input 0 Wok 
Xok• •• 

D,sir,d 

"' 
r1Jpcm, 

dk 

Xjk• 0 "'a +~ +l 
• •• 

Output 
brcr 

• 
• yk 

• 
• • 

• rJ! W1 
• 

X1k , 

(o.) 
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I,q,111 

+ 
+ 

Figure 3 .1 the adaptive Linear Combiner: ( a) in general form; (b) as a transversal. 

To develop an adaptive algorithm using the previous methods, we would estimate the 

gradient of .; = El&; J by taking differencies between short-term averages of &; . Instead, to 

develop the LMS algorithm, we take &; . itself as an estimate of .;k. 
Then, at each iteration in the adaptive process, we have a gradient estimate of the form 

0£2 oek k 
awo awo 

~\ =I : = 2&k I= -u,x, (3.2) 
o&; oek 
awL awL 

The derivatives of .; k : with respect to the weights follow derictly from (3 .1 ). 

With simple estimate of the gradient, we can now specify a steepest-descent type of adaptive 
algorithm. We have 

wk+I = wk -µVk 
= Wk +2µ&kXk 

(3.3) 

As before, µ is the gain constant that regulates the speed and stability of adaptation. Since the 

weight changes at each iteration are based on imperfect gradient estimates, we would expect the 

adaptive process to be noisy, that is, it would not follow the true line of steepest descent on the 
performance surface, [6]. 

From its form in (3.3), we can see that the LMS algorithm can be implemented in a practical 

system without squaring, averaging, or differentiation and is elegant in its simplicity and 

efficiency. As noted above, each component of the gradient vector is obtained from a single data 

sample without pertubing the weight vector. 

Without averaging, the gradient components do contain a large component of noise, but the 

noise is attenuated with time by the adaptive process, which acts as a low-pass filter in this 
respect. 
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3.2 Convergence of the Weight Vector 
As with all adaptive algorithms, a primary concern with the LMS algorithm is 

its convergence to the optimum weight vector solution, where El&; J is minimized. To 

examine LMS convergence, we first note that the gradient estimate in (3.2) can readily 

be shown to be unbiased when the weight vector is held constant. The expected value of 

(3.2) with Wk held equal to Wis 

El(\ J= -2E[&kXk] 
= -2E[dkxk -xkx[w] 
= 2(RW-P) = V 

(3.4) 

The second line of (3. 4) follows from (3 .1) plus the fact that e k is a scalar and can thus 

be commuted. Since the mean value of V k is equal to the true gradient V, V k must be an 

unbiased estimate. 

Seeing that the gradient estimate is unbiased, we could make the LMS algorithm into a 

true steepest-descent algorithm, at least in limiting case, by estimating Vat each step as 

in (3.2) but not adapting the weights until many steps have occurred, in this way 

V k could be made to approach V k . With the weight vector changing at each iteration, 

we need to examine the weight vector convergence in a different manner, as follows. 

From (3.3) we can see that the weight vector Wk is a function only of the past 

input vectors X k-i, X k-2 , ..... .X0 . If we assume that successive input vectors are 

independent over time Wk is independent of Xk. For stationary input processes meeting 

this condition, the expected value of the weight vector E [ Wk ] after a sufficient number 

of iterations can be shown as follow to converge to the Wiener optimal solution , that is, 

tow* =R-1P 

Taking the expected value of both sides of (3.3) yields the difference equation 

E[Wk+1l= E[wk]+ 2µE[&kxk] 

(3.5) 

Using the foregoing assumption that Xk and Wk are independent, we have the 

expected products as in (3.5). Also, we have the optimum weight vector given as 

w· = R-1p. Thus (3.5) becomes 
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E[Wk+i] = E[Wk ]+ 2µ(P-RE[Wk]) 

=(I-2µR)E[ Wk ]+2µRW* (3.6) 

Using expected values, the solution is 

E[V~ ]= (I -2µRAtV'o (3.7) 

Where V' is the weight vector, W, in the principal-axis system A is the diagonal 

eigeanvalue matrix of R, and V~ the initial weight vector in the principal-axis system. 

Thus, as k increases without bound, we see that expected weight vector in (3.7) 

reaches the optimum solution (i.e., zero in the principal-axis system) only if the right 

side of the optimum convergence to zero. 

1 
~>µ>0 

max 

(3.8) 

Where Amax is the largest eigenvalue, that is, the largest diagonal element in A. So in 

(3.8), we have bounds onµ for convergence of the weight vector mean to the optimum 

weight vector. Within these bounds, the speed of adaptation and also the noise in the 

weight vector solution are determined by the size ofµ We also note that Amax cannot be 

greater than the trace of R, which is the sum of the diagonal elements of R, that is, 

Amax ~ tr[A] = I (diagonal.elements.of A) 

= L (diagonal.elements.of.R) = tr[R] (3.9) 

Furthermore, With a transversal adaptive filter gives tr[R] as just (L + l)Elx; J or L+ I 
times the input signal power. Thus convergence of the weight vector mean is assured 

by: 

In general: 0<µ<1/tr[R] 

TransversaljilterO<µ<Jl(l+ J) (3.10) 

But is much easier to apply, because the elements R and the signal power can generally 

be estimated more easily eigenvalues ofR. 

The assumption of deceleration and stationary of input vector used to drive the 

result in this section are not necessary condition for convergence of the LMS algorithm 

but have been adopted in this chapter for analytic convergence. 

Convergence with certain correlated and non-stationary inputs is demonstrated in the 

literature on the LMS algorithm [4]. 
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Under these conditions the analysis becomes much more complex. We know of no 

unconditional proof of convergence of the LMS algorithm. 

3.3 Noise In The Weight-Vector Solution 
With the LMS algorithm, the gradient estimate as given by (3.2) is not based 

on weight perturbation, so we must reexamine its variance. 

Let us define Nk as a vector of noise in the gradient estimate at the kth iteration. Thus 

(3.11) 

If we assume that the LMS process, using a small value of the adaptive gain constantµ, 

has converged to a steady-state weight vector solution near w·, then V k in (3.11) will 

be close to zero. Then, in accordance with (3.2), the gradient noise is close to 
A 

Nk=Vk=-2&kXk 
The covariance of the noise is thus given by 

cov[Nk] = ElNkN[ J= 4EleJxkx[ J 

(3.12) 

(3.13) 

If we assume that the weight vector, Wk, remains near its optimum, w·, we conclude 
that e } is approximately uncorrelated with the signal vector, so that (3 .14) becomes 

cov[Nk] ~ 4Ele; JElxkx[ J 
~ 4;: . R '=>mm 

(3.14) 

We need to transform (3.14) into the principal-axis coordinate system, as follows: 

cov[N;] = covlQ-1 n, J 
= E[Q-1Nk(Q-1Nkf] 
=Q-1E[NkN[Q 
= Q-1 cov[Nk k2 ~ 4;minA 

(3.15) 

The weight vector covariance in the principal-axis coordinate system. The result is 

cov[v;]= µ (A-µA2r1 cov[N;] 
4 

~ µ;min (A - µA2 r1 A 
(3.16) 

In practical situations the elements of µAtend to be considerably less than 1, so we 

simplify the expression in (3 .16) by neglecting the term µA2 to obtain 

32 



The IMS Algorithm 

cov[v;] ~ µ!;mmK1 A 
~ µ!;nun.I 

Thus, transforming back to unprimed coordinates, we have the steady-state noise in the 

(3.17) 

weight vector solution given approximately by 

cov[vk] = Q cov[v;]Q-1 

~ µ!;mmQIQ-1 

~ µ!;min] 

(3.18) 

A further development of covjvi] under less restrictive (non-stationary) conditions than 

those imposed to obtain (3.18) may be found in [6]. 

3.4 The basic LMS adaptive algorithm 
One of the most successful adaptive algorithms is the LMS algorithm 

developed by Windrows and his coworkers (Windrow et al., 1975a). Instead of 

computing W0n in one go as suggested by equation 4.18, in the LMS the coefficients 

are adjusted from sample to sample in such a way as to minimize the MSE. This 

amounts to descending along the surface of Figure 3.6 towards its bottom. 

The LMS is based on the steepest descent algorithm where the weight vector is 

updated from sample to sample as follows: 
(3.19) 

Where Wk and V k are the weight and the true gradient vectors, respectively, at the kth 

sampling instant. µ Controls the stability and rate of convergence. 

The steepest descent algorithm in Equation 3 .18 still requires knowledge of R and 

P, since V k is obtained by evaluating Equation 3.16. The LMS algorithm is a practical 

method of obtaining estimates of the filter weights Wk in real time without the matrix 

inversion in Equation 3 .1 7 or the direct computation of the auto correlation and cross­ 

correlation. The Widrow-Hopf LMS algorithm for updating the weights from sample to 

is given by 
(3.20a) 

Where: 
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(3.20b) 

Clearly, the LMS algorithm above does not require prior knowledge of the signal 

statistics (that is the correlation's R and P), but instead uses their instantaneous 

estimates. The weights obtained by the LMS algorithm are only estimates, but these 

estimates improve gradually with time as the weights are adjusted and the filter learns 

the characteristics of the signals. Eventually, the weights converge. The condition for 

convergence is 

1 O(µ)-- 
Jmax 

Where Wk is the maximum eigenvalue of the input data covariance matrix. In practice, 

(3.21) 

Wk never reaches the theoretical optimum (the Wiener solution), but fluctuates about it 

see figure (3.7). 

Figure 3. 7 An illustration of the variations in the filter weights. 

3.5 Implementation of the basic LMS algorithm 
The computational procedure for the LMS algorithm is summarized below. 

(1) Initially, set each weight Wk (i) I= 0,1, ,N-1, to an arbitrary fixed 

value, such as 0. 
For each subsequent sampling instants, k=l,2,3 .. , carry out steps (2) to (4) below: 

(2) Compute filter output. 
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N-1 

nk = Lwk(i)xk-i 
i=O 

(3) compute the error estimate 

ek = Yk -nk 
update the next filter weights 

wk+i (i) = wk (i) + 2µekxk-i 
The simplicity of the LMS algorithm and ease of implementation, evident from above, 

make it the algorithm of first choice in many real-time systems. The LMS algorithm 

(4) 

requires approximately 2N+ 1 multiplications and 2N+ 1 additions for each new set of 

input and output samples. Most signals processors are suited to the mainly multiply­ 

accumulate arithmetic operations involved, making a direct implementation of the LMS 

algorithm attractive. 

The flowchart for the LMS algorithm is given in Figure 3.8 figure 3.9 

lnilitllis, 
W,l;(i) Q,td X,l;.i 

I 

had.ll;a"dl?k 
frtJm MJC 

I 
Ftit,r..n 

n,. = LW,.(i)X.1--i 

•• I 
Comput, ln'f17 

!Si= Yi -n1 

I 
Comput, /(JctDr 

2J.M,. 

I 
r.Jpdau oo~di,,u 

W.1.1,1 = W,. + 2JJ1J-.Xi,4 
I 

Figure 3. 8 Flowchart for the LMS adaptive filter. 
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Inputs: xk(i) vector of the latest input samples 

yk current contaminated signal sample 
wk(i) vector of filter coefficients 

Outputs: ek current desired output (or error) sample 
Wk(i) vector of updated filter coefficients 

/* compute the current error estimate * I 

ek=yk 
for i = 1 to N do 

ek = ek - xk(i)*wk(i) 
end 

/* update filter coefficients */ 

gk= 2u*ek 
for i =l to N do 

wk(i) = wk(i) + xk(i)*gk 
end 
return 

Figure 3.9 Coding of the LMS adaptive filter. 

Data 
YMmory 

Filter J-11,,-l ADC i----..i Digital ~ DAC i---.-, FilUJr 

processor 
such as 

Filter ~ ADC ~TM320 DAC Filter 1~ 

Coefficient 
memory 

Figur 3.10 Hardware implementation for real-time LMS adaptive filtering. 

And 3.10, respectively, show a pseudo-code for the software and hardware 

implementations. 
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3.6 Practical limitations of the basic LMS algorithm 
In practice, several practical problems are encountered when using the basic 

LMS algorithm, leading to a lowering of performance. Some of the more important 

problems are discussed here. 

3.6.1 Effect of non-stationarity 
In a stationary environment, the error performance surface of the filter has a 

constant shape and orientation, and the adaptive filter merely converges to and operates 

at or near the optimum point. If the signal statistics change after the weights have 

converged, the filter responds to the change by re-adjusting its Weights to anew set of 

optimal values, provided that the change in signal statistics is sufficiently slow for the 

filter to converge between change. In a nonstationary environment, however, the bottom 

or minimum point continually moves, and its orientation and curvature may also be 

changing (see Figure 3 .11) thus the algorithm in this case has the task not only of 

seeking the minimum point of the surface but also of tracking the changing position, 

leading to significant lowering of performance. (Such as mean, variance, 

autocorrelation) change with time. Such change can result from, for example, sudden 

changes due to sporadic interference of short duration (Figure 3 .12) 

or bad data, and often upset the filter weights). 

A number of schemes have been developed to overcome this problem but these 

m general tend to increase the complexity of the basic LMS algorithm. One such 

scheme is the time- sequenced adaptive (Ferrari and Windrow, 1981). 

(a) 
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Changes due to sporadic interf12r12nc12 

X(t) I ~ 

I I I M:___. 
t1 t2 

t 

{b) 

Figure 3.12 an illustration ofnonstationary processes 

(a) modulated waveform; (b) sporadic interference. 

3.6.2 Effects of signals component on the interference input channel 
The performance of the algorithm relies on the measured interference signal, 

Xk(i) being highly correlated with the actual interference, but weakly correlated 

( theoretically zero) with the desired signal. In most cases, this condition is not met. In 

some applications, the contaminating input may contain both the undesired interference 

as well as low-level signal components. Such a situation is illustrated in Figure (3 .13). It 

is shown in Windrow et al. (1975a) that the adaptive noise canceling process still leads 

to a significant improvement in the desired signal-to-noise ratio in these cases but only 

at the expense of a small signal 
r----- -----------1 
I + I ek 

~ --t,. 
S'lgnal I I output 

+ I I 
I I 
I I 
I I 
I .~ i 

---llillo.,._.~ Xk-H1 Adaptive l 
-~ I filter I 

ivoise 1 
I I 
I I 
L-------------------' 

Adaptive noi~ canceller 

~gnal 
source 

noisia 

Noise 
source 

+ signal 

Figure 3 .13 Adaptive noise canceling with some signal components in both the desired 

signal and interference input channels. 

Distortion. However, if x, contains only signals and no noise component what so ever, 

the desired signal in Y k may be completely obliterated. Our work in biomedical signal 

processing confirms their results (lfeachor et al.1986). 

38 



The IMS Algorithm 

3.6.3 Computer worldlength requirements 
The LMS-based FIR adaptive filter is characterized by the following equations: 

For the digital filter, 
N-1 

n = I.wk(i)xk-1 
i=O 

(3.22a) 

For the adaptive algorithm, 

wk+I =wk+ ue,«, 
(3.22b) 
When adaptive filters are implemented in the real world, the filter weights, Wk, and the 

input variable, Xk and Yk,, are of necessity represented by a finite number of bits. 

Similarly, the numerical operations involved are carried out using a finite precision 

arithmetic. The recessive nature of the LMS algorithm means that the word-length will 

grow without limit and so some of the bits must be discarded before each updated 

weight is stored. Thus the Yk, ek and Wk (i) may differ significantly from their true 

values. The use of filter weights and results of arithmetic operations with limited 

accuracy may include (i) possible non-convergence of the adaptive filter whose effects 

may include (i) possible non-convergence of the adaptive filter to the optimal solution, 

leading to an inferior performance. For example, if the filter is used as an interference 

chancellor some residual interference may remain, (ii) the filter outputs may contain 

noise, which will cause it to fluctuate randomly, and (iii) aperture termination of the 

algorithm may occur. Thus sufficient number of bits should be used to keep these errors 

at tolerable levels. Most adaptive system described in the open literature represent the 

digital signals, xk-i and yk, as fixed point numbers of between 8 and 16 bits, with the 

coefficients quantized to between 16 and 24 bits. The multipliers used range from 8x8 

to 24*16bits, and accumulators of between 16 and 40 bits are used. It appears that for 

low order filters ( up to about 100 coefficient) it is sufficient to store the coefficient to no 

more than 16-bit accuracy and to use a 16*16 bit multiplier with an accumulator of 

length 32 bits. 
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3.6.4 Coefficient drift 
In the presence of certain types of inputs (for example narrowband signals), the 

flirter coefficient may drift from the optimum values and grow slowly, eventually 

exceeding the permissible wordlength. This is an inherent problem in the LMS 

algorithm and leads to a long-term degradation in performance. In practice, introducing 

a leakage factor, which gently nudges the coefficients towards zero, counteracts 

coefficient drift. Two such schemes are given in Equations 3.27: 

wk+I (i) = 5wk + 2µekxk-i 
(3.27a) 

(3.27b) 
small o, the leakage factor, ensures that drift is contained, but introduce bias in the error 

The usefulness of the basic LMS algorithm has been extended by more sophisticated 

LMS-based algorithm as mentioned before. These include 

(1) The complex LMS algorithm which allows the handling of complex data, 

(2) The block LMS algorithm which offers substantial computational advantages in 

some cases faster convergence, and 
(3) Time-sequenced LMS algorithm to deal with particular types of non-stationary. 

3. 7 Fast LMS algorithm 
A number of blocks LMS algorithms have been proposed which offer 

substantial computational saving especially when the number of filter coefficients is 

large. The computational is saving result from processing the data in blocks instead of 

one sample at a time. Frequency domain implementations of the block LMS exploit the 

computational advantage of the fast Fourier transforms (FFT) in performing 

convolutions (Mansour and Gray, 1982). An efficient frequency domain filter is 

depicted in Figure 3.14. 

3.8 Recursive least squares algorithm 
The RLS algorithm is based on the well known least square method (Figure 

3.15). An output signal, Yk, is measured at the discrete time, k, in response to a set of 
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input signals, Xk (i), i= 1,2,3, n. The input and output signals are related by the 

simple regression model 
n-1 

Yk = I w(i)xk (i) + ek 
i=O 

(3.29) 

Where ek represents measurements errors or other effects that cannot be accounted for, 

and w(i) represents the proportion of the it input that is contained in the primary signal, 

Yk. The problem in the LS method is, given the Xk(i) and Yk above, to obtain estimates 

of 

w(O) to wtn-I). 

l'k(signal + noise) 

LS 
triter 

Figure 3.15 An illustration of the basic idea of the least-squares method. 

Optimum estimates (in the least square sense) of the filter weights, w(i),are given by 

(3.30) 

yO 

yl 

·Y ='y2 
m 

XT (0) 

XT (1) 

x =1xr(2) 
m 

w(O) 
w(l) 

w =' w(2) 
m 

Ym-1 XT(m-1) w(n-1) 

k=0,1,2,3, m-I 

The suffix m indicates that each matrix above is obtained using all m data points and T 

indicates transposition. Equation 3.30 gives the OLS estimates of Wm which can be 
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obtained using any suitable matrix inversion technique. The filter output is then 

obtained as 
n-1 

». = I w(i)kH, 
i=O 

k=l,2,3, ,m (3.31) 

The computation of Wm. in Equation 3.30 requires the time-consuming 

computation of the inverse matrix. Clearly, the LS method above is not suitable for real­ 

time or on- line filtering. In practice, when continuous data is being acquired and we 

wish to improve our estimate of Wm. using the new data, recursive methods are 

preferred. With the recursive least squares algorithm the estimates of Wm and to allow 

the tracking of slowly varying signal characteristics. Thus 

(3.32a) 

(3.32b) 

where 

Gk= pk_1x(k) 
ak 

ek = Yk -Xr (k)Wk-1 

a, = y + X" (k)Pk_1X(k) 

Pk is essentially a recursive way of computing the inverse matrix [x[ X k t1 . 
The argument k emphasizes the fact that the quantities are obtained at each sample 

point. y is referred to as the forgetting factor . This weighting scheme reduces to that of 

the LS when y = 1. Typically, y is between 0.98 and 1. Smaller values assign too much 

weight to the more recent data, which leads to wildly fluctuating estimates. The number 

of previous samples that significantly contribute to the value of Wk at each sample point 

is called the asymptotic sample length (ASL) given by 
00 k 1 Ir=- 
k=l 1-y 

This effectively defines the memory of the RLS filter. When y=l, that is when it 

(3.33) 

corresponds to the LS, the filter has an infinite memory. 
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Figure 3 .14 Simplified block diagram of a frequency domain LMS filter 

3.8.1 Limitations of the recursive least squares algorithm 
The RLS method is very efficient and involves exactly the same number of 

arithmetic operations between samples as Wk and A in Equations 3.32 a and b; have 

fixed dimensions. This is an important requirement for efficient real-time filtering. 

There are, however, two main problems that may be encountered when the RLS 

algorithm is implemented directly. The first, referred to as blow-up', results if the signal 

Xk (i) is zero for a long time, when the matrix Pk will grow exponentially as a result of 

division by y (which is less than unity) at each sample point: 

lim pk = lim(pk-l) 
k~oo k~oo r k-1 

(3.34) 

The second problem with the RLS is its sensitivity to computer round off errors, which 

results in a negative definite P matrix and eventually to instability. For successful 

estimation of W, it is necessary that the P be positive semi definite which is equivalent 

to requiring in the LS method that the matrix x' X be inevitable, but, because of 

differencing of terms in Equation 4.32b, positive definiteness of P cannot be guaranteed. 

This problem can be worse in multi parameter models, especially if the variables are 

linearly dependent and when the algorithm is implemented on a small system with a 

finite word length, when the algorithm has iterated for a long time the two terms in the 
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parentheses in Equation 4.32b are very nearly equal and subtraction of such terms in a 

finite word length system may lead to errors and a negative definite Pk matrix. 

The problem of numerical instability may be solved by suitably factorizing the 

matrix P such that the differencing of terms in Equation 3.32b is avoided. 

Such factorization algorithms are numerically better conditioned and have accuracies 

that are comparable with the RLS algorithm that uses double precision. Two such 

algorithms are the square root and the UD factorization algorithms. In terms of storage 

and computation the UD algorithm is more efficient, and is thus preferred. In fact, the 

UD algorithm is a square-root-free formulation of the square root algorithm and thus 

shares the same properties as the latter. 
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CHAPTER FOUR 

FINITE-PRECISION EFFECTS 

4.1 Overview 
In order to simplify the discussion of finite-precision effects on the performance of 

the LMS algorithm. we will depart from the practice followed in previous chapters, and 

assume that the input data and therefore the filter coefficients are all real valued. This 

~ 

-1)_ - Q 
•... Wq(n) --- Q ... .. Ocil\__ 

+ 
U(r) Control 

Yq(n) - 
•... ~ - •.. mechanism ....- 

eq(n) 

Figure 4.1 Block diagram representation of the finite-precision form ofLMS algorithm 

Assumption, made merely for convenience of presentation, will in no way affect the 

validity of the findings presented in this section. 
A block diagram of the finite-precision least-'meant-square (LMS) algorithm depicted in 

Fig 4 .1. Each of the blocks (operators) labeled Q represents a quentizer. Each one 

introduces a quantization, or round-off error of its own. Specifically, we ma the input­ 

output relations of the quantizers operating in Fig. 4 .1 as follows: 

1. For the input quantizer connected to u(n) we have 
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U q (n) = Q[U(n)] 
= U(n) + n, (n) 

(4.1) 

Where riu(n) is the input quentization error vector. 

2. For the quantizer connected to the desired response d(n), we have 

dq (n) = Q[d(n)] 
= d(n) + 'Ila (n) 

(4.2) 

Where lld(n) is the desired response quentization error. 

3. For the quantized tap-weight vector w q (n), we write 

w q (n) = Q[w(n)] 
= w(n) + Aw(n) 

(4.3) 

where w(n) is the tap-weight vector in the infinite-precision LMS algorithm ,and A w(n) 

is the tap-weight error vector resulting from quantization. 

4. For the quantizer connected to the output of the transversal filter represented by the 

quantized tap-weight vector w q ( n), we write 

y q (n) = Q[u! (n)w q (n)] 
= u! (n)w q (n) + 'lly(n) 

(4.4) 

Where riy(n) is the.filtered output quantizotion error. 
The finite-precision LMS algorithm is described by the following pair of relations: 

eq (n) = d, (n)- y q (n) (4.5) 

w q(n + 1) = w q (n) + Q~eq (nju , (n)j (4.6) 

where yq(n) is itself defined in Equation (4.4). The quantizing operation indicated on the 

right-hand side of Equation ( 4. 6) is not shown explicitly in Fig. 4 .1; nevertheless. It is basic 

to the operation of the finite-precision LMS algorithm. The use of Equation ( 4.6) has the 

following practical implication. The product µeq(n)uq(n), representing a scaled version of 

the gradient vector estimate, is quantized before addition to the contents of the tap-weight 

accumulator. Because of hardware constraints, this form of digital implementation is 

preferred to the alternative method of operating the tap-weight accumulator in double 

precision and then quantizing the tap weight to single precision at the accumulator output. 

In a statistical analysis of the finite-precision LMS algorithm, it is customary to make the 
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following assumptions: 
1. The input data are properly scaled so as to prevent overflow of the elements of 

the quantized tap-weight vector w q (n) and the quantized output yq(n) during the filtering 

operation. 
2. Each data sample is represented by BD bits plus sign, and each tap weight is 

represented by Bw bits plus sign. Thus, the quantization error associated with a Bo-plus­ 

sign bit number (i.e .. data sample) has the variance 
2-ZBo 

crz =-- 
0 12 

Similarly, the quantization error associated with a B; plus-sign hit number (i.e .. tap weight) 

(4.7) 

has the variance 

(4.8) 

3. The elements of the input quantization error vector IJu(n) and the desired 

response quantization error IJd(n) are white-noise sequences. independent of the signals and 

from each other. Moreover, they have zero mean and variance cr~. 

4. The output quantization error IJy(n) is a white-noise sequence, independent of 

the input signals and other quantization errors. It has a mean of zero and a variance equal to 

ccr~, where c is a constant that depends on the way in which the inner product 

u! (n)w q (n) is computed. If the individual scalar products in u! (n)w q(n) are all computed 

without quantization, then summed, and the final result is quentized in BD bits plus sign, the 

constant c is unity and the variance of riy(n) is cr~ as defined in Eq. (4.7). If, on the other 

hand, the individual scalar products in u T (n)w q (n) are quantized and then summed, the 

constant c is M and the variance of riy(n) is Mcr~ where Mis the number of taps in the 

transversal filter implementation of the LMS algorithm. 
5. The independence theory dealing with the infinite- precision LMS algorithm, 

is invoked. 
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4.2 Total Output Mean-squared Error 
The filtered output yq(n), produced by the finite-precision LMS algorithm, presents 

a quentized estimate of the desired response. The total Output error is therefore equal to 

the difference d(n) - yq(n). Using Equation (4.4), we may therefore express this error as 

etotal (n) = d(n)- Y q (n) 
= d(n)- u! (n)w q (n)-11y(n) 

(4.9) 

Substituting Equation (4.1) and (4.3) in Equation (4.9), and ignoring all quantization error 

terms higher than first order, we get 

etotal (n) = ld(n)- UT (n)w(n)J- ~WT (n)u(n) + 11! (n)w(n) + 11/n)J (4.10) 

The term inside the first set of square brackets on the right-hand side of Equation ( 4 .10) is 

the estimation error e(n) in the infinite-precision LMS algorithm. The term inside the 

second set of square brackets is entirely due to quantization errors in the finite-precision 

algorithm. Because of assumptions 3 and 4 (i.e., the quantization errors T]u and T]y are 

independent of the input signals and of each other), the quantization error-related terms 

f.,,w T (n)u(n) ,and TJy are uncorrelated with each other. Basically, for the same reason, the 

infinite-precision estimation error e(n) is uncorrelated with both 11! (n)w(n) and 11/n). 

Ele(n)AwT (n)u(n)J= ElAwT (n)jE[e(n)u(n)] 

Moreover, by invoking this same independence assumption. We may show that the 

expectation E[t,,,w(n)]is zero. Hence. e(n) and AwT (n)u(n) are also uncorrelated. 

In other words, the infinite-precision estimation error e(n) is uncorrelated with all 

quantization-error-related terms AwT (n)u(n), 11! (n)w(n),and 11/n) in Equation (4.10). 

Using these observations, and assuming that the step-size parameter µ is small, shown in 

Caraiscos and Liu (1984) that the total output mean-squared error produced the finite- 

precision algorithm has the following steady-state structure: 
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Ele;01a, (n) J= J min (1 + M) + ~1 (a~,µ)+ ~2 (a~) (4.11) 

The first term Jmm(l + M) on the right-hand side of Equation (4.11) is the mean-squared 

error of the infinite-precision LMS algorithm. In particular, Jmin is the minimum mean 

squared 

Error of the optimum Wiener filters, and M is the misadjustment of the infinite-precision 

LMS algorithm. The second term ~1(cr~,µ)arises because of the error ~w(n)in the 

quantized tap-weight vector w q (n). This contribution to the total output mean-squared error 

is inversely proportional to the step-size parameter µ. The third termz, 2 (a~) arises because 

of two quantization errors: the error llu(n) in the quantized input vector uq(n) and the error 

T}y(n) in the quantized filter output yq(n). However, unlike ~i(cr~,µ), this final contribution 

to the total output mean-squared error is, to a first order of approximation, independent of 

the step-size parameter µ. 

We know that decreasing µ reduces the misadjustment M and thus leads to an improved 

performance of the algorithm. In contrast, the inverse dependence of the contribution 

~ 
1 
(a~,µ) on µ in Equation ( 4 .11) indicates that decreasing µ has the effect of increasing the 

deviation from infinite-precision performance. In practice, therefore. The step-size 

parameterµ may only be decreased to a level at which the degrading effects of quantization 

errors in the tap weights of the finite-precision LMS algorithm become significant. 

Since the misadjustmentM decreases withµ and the contribution ~1 (a~,µ) 

Increases with reduced µ we may (in theory) find an optimum value ofµ for which the 

total output mean-squared error in Equation (4.11) is minimized. However, it turns out that 

this minimization results in an optimum value µo for the step-size parameter µ that is too 

small to be of practical value. In other words, it does not permit the LMS algorithm to 

converge completely. Indeed. Equation (4.11) for calculating the total output mean-squared 

error is valid only for a µ that is well in excess of µo. Such a choice ofµ is necessary so as 

to prevent the occurrence of a phenomenon known as stalling, described later in the section. 
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4.3 Leaky LMS Algorithm 
To further stabilize the digital implementation of the LMS algorithm, we may use 

a technique known as leakage. Basically, leakage prevents the occurrence of overflow in a 

limited-precision environment by providing a compromise between minimizing the mean 

squared error and containing the energy in the impulse response of the adaptive filter. 

However, the prevention of overflow is attained at the expense of an increase in hardware 

cost and at the expense of degradation in performance compared to the infinite- precision 

form of the conventional LMS algorithm. 

In the leaky LMS algorithm, the cost function 

J(n) = e2(n) + allw(n)ll2 (4.12) 

Is minimized with respect to the tap-weight vector w(n), where a. is a positive control 

parameter. The first term on the right-hand side of Equation (4.12) is the squared estimation 

error, and the second term is the energy in the tap-weight vector w(n). The minimization 

described herein (for real data) yields the following time update for the tap-weight vector 

w(n + 1) = (1- µa)w(n) + µe(n)u(n) (4.13) 

Where q is a constant that satisfies the condition 

1 
O::;a<­ 

µ 

Except for the leakage factor (1 - µa.) associated with the first term on the right-hand side of 

Equation ( 4 .13 ), the algorithm is of the same mathematical form as the conventional LMS 

algorithm. 

Note that the inclusion of the leakage factor (1 - µa.) in Equation. (4.13) has the 

equivalent effect of adding a white-noise sequence of zero mean and variance a. to the input 

process 

u(n). This suggests another method for stabilizing a digital implementation of the LMS 

algorithm. Specifically. A relatively weak white-noise sequence ( of variance a.). Known as 

dither, is added to the input process u(n). And samples of the combination are then used as 

tap inputs (Werner. 1983). 
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4.4 Stalling Phenomenon 
There is another phenomenon. Known as the stalling or lock-up phenomenon, not 

evident from Equation ( 4 .11 ), which may arise in a digital implementation of the LMS 

algorithm. This phenomenon occurs when the gradient estimate is not sufficiently noisy. To 

be specific. A digital implementation of the LMS algorithm stops adapting or stalls, 

whenever the correction term µeq(n)uq(n-i) for the ith tap weight in the update equation is 

smaller in magnitude than the least significant bit (LSB) of the tap weight. As shown by 

(Gitlin et al .. 1973) 
(4.14) 

Here, n o is the time at which the ith tap weights stops adapting. Suppose that the condition 

of Equation (4.14) is first satisfied for the ith tap eight. To a first order of approximation. 

We may replace uq(no - i) by its root -mean-square (rms) value. Arms. Accordingly, using 

this value in Equation (4.14), we get the following relation for the rms value of the 

quantized estimation error when adaptation in the digitally implemented LMS algorithm 

stops: 
LSB 

\eq(n)\ s; µAnm = eo(µ) (4.15) 

The quantity eo(µ), defined on the right-hand side of ( 4 .15). is called the digital residual 

error. 
To prevent the algorithm-stalling phenomenon due to digital effects, the digital residual 

error eo(µ) must be made as small as possible. According to the definition of 

Equation ( 4 .15), this requirement may be satisfied in one of two ways: 
1. The least significant bit (LSB)is reduced by picking a sufficiently large number of 

bits for the digital representation of each tap weight reduces 
2. The step-size parameter µ is made as large as possible, while still guaranteeing 

convergence of the algorithm. 
Another method of preventing the stalling phenomenon is to insert dither at the input of the 

quantizer that feeds the tap-weight accumulator (Sherwood and Bershad, 1987). Dither is a 
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random sequence that essentially "linearizes" the quantizer. In order word, the addition of 

dither guarantees that the quantizer input is noisy enough for the gradient quentization error 

vector 11w, to be again modeled as white noise (i.e .. the element of Tlw are uncorrelated in 

time and with each other, and have a common variance cr~). When dither is used in the 

manner described here, it is desirable to minimize its effect on the overall operation of the 

LMS algorithm. This is commonly achieved by shaping the power spectrum of the dither so 

that the algorithm at its output effectively rejects it. 

4.5 Parameter Drift 
In addition to the numerical problems associated with the LMS algorithm. There is 

one other rather subtle problem that is encountered in practical applications of the 

algorithm Specifically. Certain classes of input excitation can lead to parameter drift, that is 

parameter estimates or tap weights in the LMS algorithm attain arbitrarily large values 

despite bounded inputs. Bounded disturbances. And hounded estimation errors (sethares et 

al., 1986). Although such an unbounded behavior may he unexpected, it is possible for the 

parameter estimates to drift to infinity while all the signals observable in the algorithm 

converge to zero. Parameter drift in the LMS algorithm may be viewed as a hidden form of 

instability, since the tap weights represent internal" variables of the algorithm it may result 

in new numerical problems, increased sensitivity to unmodeled disturbances, and degraded 

long-term performance. 

In order to appreciate the subtleties of the parameter drift problem. We need to 

introduce some new concepts relating to the parameter space. We therefore digress briefly 

from the issue at hand to do so. 

A sequence of information-bearing tap-input vectors u(n) for varying time n may 

be used-to partition the real M-dimensional parameter space R'1 into orthogonal subspace 

where Mis the number of tap weights (i.e .. the available number of degrees of freedom). 

The aim of this partitioning is to convert the stability analysis of an adaptive filtering 

algorithm. 
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Parameter Space RM 

Excited Subspace 

Unexded 
Persistently Decreasingly Otherwise Subspace excited excited excited 
Subspace Subspace Subspace 

Figure 4.2 Decomposition of parameter space Jt1, based on excitation. 

(e.g .. the LMS algorithm) into simpler subsystems and thereby provide a closer linkage 

between the transient behavior of the parameter estimates and the filter excitations. The 

partitioning we have in mind is depicted in Fig. 4.2. In particular, we may identify the 

following subspaces of Jt1 

1. on-excited subspace. Let theM-by- 1 vector z be any element of the 

parameter space R\1, which satisfies two conditions: 

• The Euclidean norm of the vector z is 1; that is, 

JJzJJ = 1 

• The vector z is orthogonal to the tap-input vector u(n) for all but a finite number of n; 

that is, 

z Tu( n) 'F 0, only finitely often (4.16) 

Let fu denote the subspace of Jt1 that is spanned by the set of all such vectors z. The 

subspace fu is called the unexcited subspace in the sense that it spans those directions in the 

parameter space Jt1 that are excited only finitely often. 

2. The excited subspace. Let fe denote the orthogonal complement of the unexcited 

Subspace fu . Clearly, fe is also a subspace of the parameter space Jt1. It contains those 

directions in the parameter space Jt1 that are excited infinity often. Thus, except for the null 

vector, every element z belonging to the subspace fe satisfies the condition 

Infinitely often (f 17) 
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The subspace fe, is called the excited subspace. 

The subspace fe may itself be decomposed into three orthogonal subspaces of its own, 

depending on the effects of different types of excitation on the behavior of the adaptive 

filtering algorithm. Specifically, three subspaces of fe may be identified as follows (Sethares 

et al.. 1986): 

• The persistently excited subspace. Let z be any vector of unit norm that 

lies in the excited subspace fe. For any positive integer m and any a> 0, choose the vector z 

such that we have 

zTu(i) > a for n ~ i ~ n + m and for all but a finite number of n 
d- 

(4.18) 

Given the integer m and the constant a, let fp(m,a) be the subspace spanned by 

all such vectors z that satisfy the condition of ( 4.18). There exist a finite mo and a positive 

co for which the subspace fe(mo,ao) is maximal. In other words fp(mo,ao) contains fp(m,a) 

for all m > 0 and for all a> 0. The subspace fp = fp(mo,ao) is called the persistently excited 

subspace; and mo is called the interval of excitation. For every direction z that lies in the 

persistently excite subspace fp there is an excitation of level co at least once in all but a 

finite number of intervals of length mo. In the persistently excited subspace, we are 

therefore able to find a tap-input vector u(n) rich enough to excite all the internal modes 

that govern the transient behavior of the adaptive filtering algorithm being probed 

(Narendra and Annaswamy, 1989). 

• The subspace of decreasing excitation. Consider a sequence u(i) for which 

we have 

( 

00 Jx ~iu(if <OO (4.19) 

Such a sequence is said to be an element of the normed linear space f for 1 < p <~. The 
norm of this new space is defined by 

llull, = (t,1u(iJI' f (4.20) 

Note that if the sequence u(i) is an element of the normed linear space f for 1 < p-;::oo, then 
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lim (n) = 0 
n-oo 

(4.21) 

Let z be any unit-norm vector z that lies in the excited subspace re such that for 
1 < p<cothe sequence zTu(n) lies in the normed linear space f . Let rd be the subspace that 
is spanned by all such vectors z. The subspace rd is called the subspace of decreasing 
excitation in the sense that each direction of rd is decreasingly excited, for any vector z;:/::. 0, 
the two conditions 

infinitely often 

and 

lim ZT u(n) = 0 
n-->OO 

Cannot be satisfied simultaneously. In actual fact, we find that the subspace of decreasing 

excitation rd is orthogonal to the subspace of persistent excitation rv 
The otherwise excited subspace. Let rvurd denote the union of the persistently excited 
subspace rv and the subspace of decreasing excitation rd. Let ro denote the orthogonal 
complement of rvurd that lies in the excited subspace re. The subspace ro is called the 
otherwise excited subspace. Any vector that lies in the subspace ro is not unexciting, not 
persistently exciting, and not in the normal linear space LP for any finite p. An example of 

such a signal is the sequence 

T 1 z u(n) = n= 1,2,3, . 
ln(l + n) 

(4.22) 

Returning to our discussion of the parameter drift problem in the LMS algorithm. We find 

that for bounded excitations and bounded disturbances. In the case of unexcited and 

persistently exciting subspaces the parameter estimates resulting from the application of the 

LMS algorithm are indeed bounded. It however, in the decreasing and otherwise excited 

cases, parameter drift may occur (Sethares et al., 1986). A common method of 

counteracting the parameter drift problem in the LMS algorithm is to introduce leakage into 

the tap-weight update equation of the algorithm. Here is another reason for using the leaky 

LMS algorithm that was described previously. 
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4.6 Recursive Least-Squares Algorithm 

The recursive least-squares (RLS) algorithm offers an alternative to the LMS 

algorithm as a tool for the solution of adaptive filtering problems. We know that the RLS 

algorithm is characterized by a fast rate of convergence that is relatively insensitive to the 

eigenvalue spread of the underlying correlation matrix of the input data, and a negligible 

misadjusiment (zero for a stationary environment without disturbances). Moreover, 

although it is computationally demanding (in the sense that its computational complexity is 

on the order of M2. where Mis the dimension of the tap-weight vector), the mathematical 

formulation and therefore implementation of the RLS algorithm is relatively simple. 

However, there is a numerical instability problem to be considered when the RLS algorithm 

is implemented in finite-precision arithmetic. 

Basically, numerical instability or explosive divergence of the RLS algorithm is of a similar 

nature to that experienced in Kalman filtering, of which the RLS algorithm is a special 

case. Indeed, the problem may be traced to the fact that the time-updated matrix P(n) in the 

Riccati equation is computed as the difference between two nonnegative definite matrices. 

Accordingly, explosive divergence of the algorithm occurs when the matrix P(n) loses the 

property of positive definiteness or Hermitian symmetry. 

Table 4.1. Summary Of A Computationally Efficient Symmetry-Preserving Version 

Of The RLS Algorithm 

Initialize the algorithm by setting 
P(O) = 8-11. 
w(O) = 0 

8 = small positive constant 

For each instant of time, n = 1,2, , compute 
n(n) = P(n - l)u(n) 

1 r(n)=---- 
A + u H ( n )n( n) 

K(n) = r(n)n(n) 
~(n) = d(n)- WH (n - l)u(n) 
w(n) = w(n-1) + K(n)~(n) 
P(n) = Tri[A-1 [P(n -1)- K(n)nH(n)]] 
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This is precisely what happens in the usual formulation of the RLS algorithm 

Described in Table 4 .1 (Verhaegen. 1989). 

How then can the RLS algorithm be formulated so that the Hermitian symmetry of the 

matrix P(n) is preserved despite the presence of numerical errors? For obvious practical 

reasons, it would also be satisfying if the solution to this fundamental question can be 

attained in a computationally efficient manner. With these issues in mind, we present in 

Table 4 .1 a particular version of the RLS algorithm from Yang (1994 ), which describes a 

computationally efficient procedure for preserving the Hermitian symmetry of P(n) by 

design. The improved computational efficiency of this algorithm is achieved because it 

computes simply the upper I lower triangular part of the matrix P(n), as signified by the 

operator Tri { } , and then fills in the rest of the matrix to preserve Hermitian symmetry 

Moreover. Division by '): is replaced by multiplication with the precompuled value of '): -l 

4.7Error Propagation Model 
According to the algorithm of Table 4.1. The recursions involved in the 

computation of 

P(n) proceed as follows: 

n(n) = P(n - l)u(n) (4.23) 

1 r(n)=---- 
11, + u H (n)n(n) 

k(n) = r(n)n(n) 
P(n) = Tril11,-1 lP(n -1)-k(n)nH(n)Jj 

(4.24) 

(4.25) 

(4.26) 

Where A is the exponential weighting factor. Consider the propagation of a single 

quantization error at time n-1 to subsequent recursions. Under the assumption that no 

other quantization errors are made. In particular, let 

Pq (n -1) = Pn -1) + llp (n -1) (4.27) 

Where the error matrix 11P(n-l) arises from the quantization of P(n - 1 ). The corresponding 

quantized value of n(n) is 

57 



Finite-Precision Effects 

rcq (n) = rc(n) + 'llp (n - l)u(n) (4.28) 

Let rq(n) denote the quantized value of r(n) Using the defining equation (4.28), we may 

write 

1 
rq(n)= A-+uH(n)rc/n) 

1 
A.+ uH (n)rc(n) + uH (n)11P (n - l)u(n) 

I ( uH(n)11P (n- l)u(n)J-i 
- ----- 1+------ 
- A.+ u H (n)rc(n) A.+ u H (n)rc(n) 

I uH (n)11P (n - l)u(n) 2 
= - 2 + 0(11p ) 

A.+ u" (n)rc(n) (A.+ u H (n)rc(n)) 

uH(n)11P(n-l)u(n) 2 = r(n)- 2 + 0(11P ) 
(A.+ u H (n)rc(n)) 

(4.29) 

Where 0( 11!) denotes the order of magnitude 1111P 112. 

In an ideal situation. The infinite-precision scalar quantity r(n) is nonnegative, 

taking on values between zero and 1/i.. On the other hand. if u\n)rc(n) is small compared to 

A. and ')... itself is small enough compared to 1. Then according to Equation ( 4 .29), in a finite­ 

precision environment it is possible for the quantized quality rq(n) to take on a negative 

value large in magnitude than lit.. When this happens. The RLS algorithm exhibits 

explosive divergence (Bottomley and Alexander. I 989). 

The quantized value of the gain vector k(n) is written as 

kq (n) = rq (n)rcq (n) 

= k(n)+11k(n) 
(4.30) 

Where llk(n)is the gain vector quentization error, defined by 

'Ilk (n) = r(n)(I- k(n)uH(n))'llp (n - l)u(n) + 0(11P 
2) (4.31) 

Finally, using Equation (4.26), we find that the quantization error incurred in computing in 

updated inverse-correlation matrix P(n) is 
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(4.32) 

where the term 0(11!) has been ignored. 

On the basis of Equation (4.32), it would be tempting to conclude that 11:(n) = llp (n) and 

therefore the RLS algorithm of Table 4.1 is Hermitian-symmetry preserving, if we can 

assume that the condition 11: (n -1) = llp (n -1) holds at the previous iteration. We are 

justified in making this assertion by virtue of the fact there is no blow-up in this 

formulation of the RLS algorithm, as demonstrated in what follows (it is also assumed that 

there is no stalling). 
Equation (4.32) defines the error propagation mechanism for the RLS algorithm 

summarized in Table 4 .1 on the basis of a single quantization error in P(n-1 ). 

The matrix I- k(n) if (n) plays a crucial role in the way in which the single quantization 

error llr(n-1) propagates through the algorithm. 

k(n) = o:' (n)u(n) (4.33) 

We may write 
(4.34) 

Next, we have 

<l>(n) = 11,<l>(n-l) +u(n)uH(n) (4.35) 

Multiplying both sides of Equation (4.35) by the inverse matrix <l>-1(n) and rearranging 

terms, we get 

I- o:' (njumju" (n) = 11,<l>-1 (n)<l>(n -1) 
Comparing Equations (4.34) and (4.36), we readily deduce that 

I - k(n)u H (n) = 11,<l>-1 (n)<l>(n -1) 

(4.36) 

Suppose now we consider the effect of the quantization error 11p(no ) induced at time 

no :S n. When the RLS algorithm of Table 4.1 is used and the matrix P(n) remains 

Hermitian, then according to the error propagation model of Equation ( 4.32). The 

quantization error 11r(no )becomes modified at time n as follows: 
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11/n) = A-(n-no)cp(n,n0)11p(n0)cpH(n,n0), n 2': n , 

Where <p(n, no) is a transition matrix defined by 

cp(n,n0)=(l-k(n)uH(n))···(I-k(n0 +l)uH(n0 +1)) 

(4.38) 

(4.39) 

The repeated use of Equation (4.37) in (4.39) leads us to express the transition matrix in the 

equivalent form 
(4.40) 

The correlation matrix <l>(n) is defined by 
n 

<I>(n) = LAn-iu(i)uH(i) 
i=l 

(4.41) 

On the basis of this definition, the tap-input vector u(n) is said to be uniformly persistently 

exciting for sufficiently large n if there exist some a> 0 and it n > 0 such that the following 

condition is satisfied (Ljung and Ljung. 1985): 

<I>( n) 2': al for n 2': N (4.42) 

The notation used in Equation ( 4.42) is shorthand for saying that the matrix <l>(n) is positive 

definite. The condition for persistent excitation not only guarantees the positive 

definiteness of <I>(n ), but also guarantees its matrix norm to be uniformly bounded 

for n ?: N, as shown by 

for n 2': N (4.43) 

Returning to the transition matrix <p(n,no) of Equation ( 4.40) and invoking the mutual 

consistency property of a matrix norm. We may write 
(4.44) 

Next. Invoking the inequality of (4.43). We may rewrite that of Equation (4.44) as 

(4.45) 

finally. We may use the error propagation equation (4.38) to express the vector norm of 

llp(n) as 
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Which, in light of ( 4 .48), may be rewritten as 

(4.46) 

Where Mis a positive number defined by 

Equation (4.47) states that the RLS algorithm of Table 4.1 is exponentially stable in the 

sense that a single quantization error llp(no) occurring in the inverse correlation matrix 

P(no) at time no decays exponentially provided that A<l (i.e., the algorithm has finite 

memory). In other words, the propagation of a single error through this formulation of the 

standard RLS algorithm with finite memory is contractive. Computer simulations validating 

this result are presented in Verhaegen (1989). 

However, the single-error propagation for the case of growing memory,(i.e .. A=l) is not 

contractive. The reason for saying so is that when A = 1, neither <p(n, no)~ I nor 

jjcp(n, n0 )jj ~ 1 holds, even if the input vector u(n) is persistently exciting. Consequently, the 

accumulation of numerical errors may cause the algorithm to be divergent (Yang 1994). In 

an independent study, Slock and Kai lath (1991) also point out that the error propagation 

mechanism in the RLS algorithm with A = 1 is unstable and of a random walk type. 

Moreover, there is experimental evidence for this numerical divergence. Which reported in 

(Ardalan and Alexander, 1987). 

4.8 Stalling Phenomenon 
As with the LMS algorithm, a second form of divergence. Referred to as the 

stalling phenomenon, occurs when the tap weights in the RLS algorithm stop adapting. In 

particular this phenomenon occurs when the quantized elements of the matrix P(n) become 

very small, such that multiplication by P(n) is equivalent to multiplication by a zero matrix 

(Bottomley and Alexander. 1989). Clearly. The stalling phenomenon may arise no matte 

how the RLS algorithm is implemented. 

The stalling phenomenon is directly linked to the exponential weighting factor A and the 

vanance cr~ of the input data u(n). Assuming that is A close to unity, we find from the 

61 



Finite-Precision Effects 

definition of the correlation matrix <l>(n) that the expectation of <l>(n) is given by . 

R 
E[<l>(n)] ~ 1- A Largen (4.48) 

For X close to unity, we have 

E[P(n)]= E[<l>-1(n)]~ (E[<l>(n)D-1 (4.49) 

Hence, using Equation (4.48) in Equation (4.49), we get 

E[P(n)] ~ (1-1v)R -i Largen (4.50) 

Where K1 is the inverse of matrix R. Assuming that the tap-input vector u(n) is drawn from 

a wide-sense stationary process with zero mean, we may write 

iR=-1 R o 2 
u 

(4.51) 

Where iR is a normalized correlation matrix with diagonal elements equal to 1 and off­ 

diagonal elements less than or equal to 1 in magnitude, and cr!. is the variance of an input 
data sample u(n). We may therefore rewrite Equation (4.50) as 

E[P(n)] ~ (1 ~/}-• (4.52) For large n 

Equation ( 4.52) reveals that the RLS algorithm may stall if the exponential weighting factor 

"A, is close to 1 and/or the input data variance cr! is large. Accordingly, we may prevent 

stalling of the standard RLS algorithm by using a sufficiently large number of accumulator 

bits in the computation of the inverse correlation matrix P(n). 
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CONCLUSION 

The digital filter is a digital system that can be used to filter discrete-time signals. It can 

Be implemented by mean of software (computer programs) or by means of dedicated 

Hardware, and in either case it can be used to filter real-time signals or non-real-time 

(Recorded) signals. 

By adaptive filter we mean one that is self-designing in that the adaptive filter 

relies for its operation on a recursive algorithm, which makes it possible for the filter to 

perform satisfactorily in an environment where complete knowledge of the relevant 

signal characteristics is not available. 

The LMS algorithm is important because of its simplicity and ease of 

computation, and because it does not require off-line gradient estimations or repetitions 

of data. If the adaptive system is an adaptive linear combiner, and if the input vextor X, 

and the desired response d, are available at each iteration, the LMS algorithm is generally 

the best choice for many different applications of adaptive signal procesing. 
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