
NEAR EAST

1988

UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

COM 400 Graduation Project

~ OPEN SYSTEMS t

Submitted to : Prof. Dr. Fakhreddin Mamedov

Submit by : Cihat Boyaci 940722

CONTENTS

Chapter 1
Introduction ...
Chapter 2
A Reference Model ••.••••..•••..•••...••.•••.•••••.•••••••..•.•••••..•••••.••..•.•.•••...••....•••.•....••••.•.•••..•••••..••••••.••• 4
1.1 In trod uction .•••••........•..•••••••...•...••..•......•.•.••••......•.•.....•.....•.•.•....•...••..•..•.....•...••••••....•....•. 4
2 .. 1.1 Open Systems••.....•.....•.••....•••...•......•.....•....••....•••.•.•...•..•.•....•.••..•......•..•......•....••.••.....• 4
2.1.2 System Interconn-ection •..••• ,•..•.•••...•.....•••.••.•.•••....•••.•.....•.••.•....•.........•....•.••••..••..•.•• 4
2.1.3 The Reference Model ...••...•....•..•.•...•.•.•.••.•.....••••..•...............•...•.•.•..••.•...••.•••••..••.••.•••.•••... 5
2.2 The Layered Architecture •.••...•....•...•••••••.•..••••••••••••••.•...•••.•.•..••• : .•.•.•••.••..•...••..•.•.•••.••.•• 7
2.2.1 Layers, Services and Functions •.••....••.•......•..•..•.•..•.•.••.•.•.•.•..........•..•.•.•..•••.....••..•.•...•..• 8
2.2.2 Service Access Points•.......•..•.....•....•..••..........•..••.....•..........••.•••..•...•..•••.•..•...•..... 10
2.2.3 Protocols ...•..•••.••.••••.•••.••.•.......••.••.••••••••••.••.•....••.•.••.•..••••.•.•••.•.••.•.••.•.••..•••••••••••.•.••••••••... 11
2.3 ldentifiers•...•........•.•.......................•...................................••...............•...••. 12
2.3.1 Titles, Addresses and Directory•.••..•.......•.••.••••.••.•..•••••..••...•••.••.•..••••.•••••...• , ••.•..•.•.... 12
2.3.2 Address Mapping ••...•...•...••.•••..•..••••.•••...••••.••.•....••....•...••...•..•.......•••.•••.••••.••..••.•••.••.•.... 13
2.3.3 Identifying Connections .•.••..•............•.•..•.........••..•••.•.••..••...•.....•...•..•....•.........•.•..•••....• 14
2.4 The Nature of Data Units•.....•....•.............................•.................•.. -••.......• 15
2.4.1 Data U nits •.••.•••.•.••.•.•.•.•••....••.••...••.••..•.••.••.•.••...••.•..•..•.....•••••••.•.•.•.••••.•••..•.•••.•••••.•...•..•.. 16
2.4.2 Segmentation, Blocking and Concatenation ..••.......••.•.•.....••...••.•...••.•..••..••.•.•..••••..•...• 18
2.5 Connection-Based Data Transfer ...•.•...•.....•..............................••...•..•......•.............•.... 20
2.5.1 Connection Esta blishment •.....•..••..••..••..•.•••••.••...•.••....•••....•..•••...•....•..•.•....•.•...•.•........•• 20
2.5.2 Multiplexing and Splitting ••...••.••..••••••••••.••..••••••.•..•••.•.••••.•••.•.••••••••••••.•.•...••••.•..••..•....•• 22
2.5.3 Connection Release ••.••.••.•.••••.••..•...•••..•... - ..••.•..........•.•.....••..•...•..•...••..••.......•.•••...••.•.... 25
2.5.4 Data Transfer ••......•..•.•••••.•••...•••.•••.•.•...••..•••.•.•..•....•..••.••....•.•••••..••..•..•.••••.•••.••.•••••...•.••.• 25
2.5.5 Flow Control ••••..••.•.........••......••.••.•••.•••••••..•..•••••.••••..•••••••••••••.•.•..••.•.••..•.••••••••••••••.••••.•.•• 26
2.5.6 Sequencing••.....•.......•.•.•..••...•.•....•.....•...•..•••.......•........•.•••.•.•....•..•.....•..•..••.....•••......... 26
2.5. 7 Acknowledgement ...•...•.•..•••.•......•••..••.•...•.••..••..•••••......•••.•.•.....••.......•..•..•..........••....•..••.•• 27
2.5.8 Error Detection and Recovery ••••••••••••..••.••.•...•••.•.•••••.•.••.•.••.•••..••••..•••..•.•.•••.•..•••.•.•..••.• 27
2.6 Connection-less Data Transfer .••••.••.••.••.••••..••••...•..• , .•••.••.•.••...•••....•••..•••.•. - ...•.••••••....•... 28

Chapter 3
3.1 In trod uction•.........•... _••••..•....••......•.............•..•............•.............•.. 31
3.2 Description of Layers•.....•.•......•......................................•...•.......•.•.•..................•.••... 34
3.2.1 The Application Layer •.•.••.......•...•••...•••..•.....•...•.•....•...•.••...•.•.••.•.••••.••.••....•...•.••.••..•.•..•. 34
3.2.2 The Presentation Layer .••.•..•.......•...•.••.•.•.•••...••.......••••......••...............••..•.•••.•.•••••.•••..••.. 35
3.2.3 The Session Layer ••..••..•.••••.•.•...••..••••..•.•••..•••••..•.•..•......••.••••.••....•.•.•.•..•.••.••••..••••...•.......• 35
3.2.4 The Transport Layer•...•.•..•.......••...••.•.•..•......•.•..•••..••.•.•...••.....••.......••...•...•......•.. 36
3.2.5 The Network Layer and Below .•...••••.•....•....••...•.•...•.•....••....•.••.......•..•..•...••.•.•.•.•.•...••.....• 37
3.3 OSI Layer Standards•..........•......•.•................................•....•.................................. 38

Chapter 4
The Network Layer Below .••.••.••.••••.•...••.•.....••••..••...••....••.•.•..••....•....•.••.•....••••••.•••.•.......••...... 41
4.1 The Communication Sub-Network, •..............•................••.............................•..•.•.•...... 41
4.1.1 End Systems •...•.•...•.•.•..•••••••.•••.•.•••..••.•..•.•....••.•••..••.•....•••.•.•••.•..•••••....•.•.....••.•.••••..•.••.•••. 41
4.1.2 Sub-Networks•..•.•••.......•.•.....•....•.•...•..•.•••..•.•••••...•.....•.•....•....•....•.•.•...•..•.•.•••.•.•••...• 42
4.1.3 Inter-working .•.••.....•••••••••.•.•.•••...••.••••.•.•.......••.•.•.•..•....•.•..•.•.•.•.....•••.••••••••...•.•....••....••...• 44
4.2 The Network Layer and Below: A Model .•••......•..•••••.•..•••••..•••..•.....•...•..••.••..•.....•.•...• 45

I

4.2.1 User-Provider Model of Network Service ..•..•...•.•...•..•............................•..........••..•.•... 45
4.2.2 Network Connections .•......•...•...............•.•.........•....•.......•........•...•......................•.......... 46
4.2.3 Data Transfer Characteristics. ••.•••.•.•••.•.•.•.•••.•.....••.••..•...•.•....•.•.•.•...•..•..•••••..•...•.•..•••..• 47
4.2.4 Intermediate Systems: A Model•...•...........•.•.........•........•....•••. : ••.••.••...•.......••.......•. 47
4.2.5
4.2.6
4.3
4.3.i
4.3.2
4.3.3
4.4
4.4.1

Sub-network Access Protocol•.•.•...•..........•....•.•.......•.......................•............•........... 49
Sub-network Addresses ...•.........•..............•........... 50
Physical Layer Services and Below•.....•............•................•....•.........•.......... 51
A Model of the Physical Layer•...••...••...•..•..••..•...•....•.....•......•.................••..•••••..•...... 52
Service Characteristics••..•..............•.....•......•.•................•.•....•.•.....•....•..•......... 53
Physical Layer Protocols ~•.........................•............•........................•.......•.........• 54
Data Link Service .•.•...............•...•...•.•....•.••••..•..•........••.......•.••...•.•.•••.•...•..•.....••..••.......••• 56
A Model of Data Link Layer ..•.•.......•...•...........•.•........•. 56

4.4.2 Data Link Service••................•..•..•..•..•.•.•••........•...••••..........•.•.........•.•...•......•••....•....... 58
4.4.3 Service Primitives and Parameters .••..•.•........•.•••..•.•••••...•..•......•.............•....•..•.•.••....... 58
4.5 Data Link Protocols•..........................•.........•............•.......•....•...•...•.......•... 64
4.5.1 Functions •••.•....•...........•....•.•••.•.........•...•.•.....•...............•...••...••......................•.........•....... 64
4.5.2 Error Detection, Recovery and Sequencing .•..•....•.........................•................•........... 66
4.5.3 Alternating-Bit Protocol•••..•.•... ,•....•.•....••...•....•.................•....•....•... 66
4.6 Local Area N etworks ..•...•....•..•.•...•.....•.....•.......•.••••.•..•••.•...•.•.....••.............••.•••.•••••......•• 68
4.6.1 Media Access Control Sub-Layer•.............•••........•.....................•.......••......... 68
4.6.2 Logical Link Control Sub-Layer Services ..•..•.................•...•....................•..•...•.....•..... 69
4.6.3 Logical Link Control Sub-Layer••..••..........................•................................ 71
4. 7 Network Services ..•....••.•................................•................................•...........•................... 72
4. 7.1 Connection-Oriented Service Elements ••.••.•......••....•.••..•.•..•..•.•.•.•••.•••.••....•.........•••...•. 72
4. 7 .2 Connection-less Service Element•............•...............•..................•..•.....•...•.............• 73
4. 7 .3 Service Primitives and Parameters •..•...••.•...•••••.....•........•............•.......•.........•.....•..•.•.. 7 4
4. 7.4 A Queue Model of Network Service•.•.•.••••....•.•......•.........•.•.•.•.•..•.•..•....•....•...•....• 74
4.8 Network Layer Protocols•............•....•........•......•..•....•....................•...•...•.............•.. 75
4.8.1 X.25 Packet-Level Protocol .•.•••.•......•.....•...••.•.••..............•.......•...•..•.........•............•....... 75
4.8.2 Connection-Oriented Network Service using X.25 Protocol ••..........................••........ 80
4.9
4.9.1
4.9.2 Interconnection of X.25 Networks••....•..•.•.•....•.•••...•.•............•.•.•......••.........•.•.•••...•.• 83
4.9.3 Converge Protocols •.....••.•••..........•••.•.•..•........•............••••.••...••......•...••...••••................•.•. 85
4.9.4 Connection-less Network Protocol •....••.•.•..••....•...•...•.•........••.••.•.•.....•......•..•.••••.•..•...•.. 87

Inter-working Protocols•...........•....................................•....•.................•................ 82
Introduction ..•...•.••••......•..•..••..••...•..•••.•...•..•....•.....•....•......•..•..••....•..•............••..•............. 82

Chapter 5
The Transport Layer•.•.....•.•.•.•..•.•.•..........•... 89
5.1 The Transport Layer•.•.•....... , ...••..•.•......•................•..•.•.•...................•................. 89
5.1.1 Data Transfer Characteristics .•.....•..•.•..•....•••••..••..•.•..........•.....•...••..•...•......•...•.••......... 90
5.1.2 Transport Connections•.........••...................••........•.........•.•...•..............•........•.... 91
5.1.3 Connection-Oriented Services•....................•..•..........................•..... 91
5.1.4 Connection-less Services ..•..•.••.•••.•••..••.....••.•••.•••••..•••.•.•.••.••.•..•••..••.......•......••••.•..••....••. 91
5.1.5 Network Services Assumed ..•.••.•.•...•...••.•.................•....••....•••............•...•.......•.............• 92
5.2 Transport Protocols ...•.........•.........•....•.•...•.•...•....•........•••..•.................•••............••..•....... 92
5.2.1 Network Services•..........•.....•..........................••.•..••...•...•.......•...•............•.....•....•....... 92
5.2.2 Types of Network Connection•.•...........•................•..................•......••.................•. 93
5.2.3 Protocol Classes•••.•.•....•..•••...••...•....................•.....•.••.•...••....•....•......•...•...•..•..•....•.... 94
5.2.4 Connection-less Transfer Protocol••.•.............•.....•.........•..•..•..................•..•....• 94
5.3 Connection-Oriented Protocol•........••.•.................•.......•......•..•.......•.....•....•............ 94

II

5.3.1 Transport-Protocol-Data-U nits ..••.•..•.....•••.•••..•...•..•.•.•....•.•.•..•....•..••.....•.••...•....•.•...•.... 95
5.3.2 Assignment to Network Connection .•••••..•....•.••.•.......•....•....•.••..••••••.........•.•.•.••.•..•••.•.•. 96
5.3.3 Transfer of TPDUs .•.••.••.•••.••.••.••..•••..••••.••••.•••••.•••..••.•••••...•••••.•••.•..••••••.••••••.••••.•••••••..•.• 96
5.3.4 Connection Establishment •..•.•...•.••.....••.•....•••.•..••....•••.•.••.•..••...••.•••.•••...••.•..•.••••..••.•...•• 96
5.3.5 Connection Release •.••••.•••.•..••..•.•••..••...••••.••..••••••.•.••....•..••.....•.•.•••.•.• ~ ••.•.••.•..•.•.•••.•..•.•.• 98
5.3.6 Association of TPDUs with TC••...••.•.••••.........•......•.••...•.•....•.•........••.•••.••.•.•.•.•..•.•.•• 98
5.4 Connection-less Protocol Procedures•.....•.......•.••••...•.•.•••••..........•...•..••.•.•••.•...•..•...• 99
5.4.1 Transport-Protocol-Data-Units ..•.•.•.....•.•.•.••..••..•..•...•...•..••.....•...•.•.•...••••.••.••••••...•..•.••. 99
5.4.2 Transfer of TPDU s•.....................•..•...•....•..•......•.•..•••...................... 99

Chapter6
The Session Layer ...•.....•••.•.•..........•...•.....•..••••.....•..••..••.......•.•.••••.•.•.•..•••....•...•.••..••...••••.•..... 100
6.1 Introduction •••••.•..••••••.••••.•••.•..•...••••.•.•••.•.•...•.•••.••••••••.•...••••.•.•••..•.•.••..•.••••••..•••.•...••••••.• 100
6.1.1 Session Connections •....•••...........•.••....•...•.•..•..•.....•.•.•.....•.••.......•• - ..•...•..........•.••........•.•. 101
6.1.2 Data Transfer Characteristics .•........•.........................•.............•....•.....................•...... 102
6.1.3 Services ...•...••••..•...•..•..•..••.•••...••.•••••••••••.••••••..••.•••....•••.•••...•.......••..•.•.•.....•..•••...•••.•.•..... 102
6.1.4 Session Layer Protocol ...•.....••.....••••.•..•.......•.....••...•.••.....•...••••..•..•..••••.••••.•.••.•..•.••..•...•. 102
6.2 Organised and Synchronised Data Transfer•.•.........•...•....•.......................... 103

Half Duplex Data Transfer ••.•..•....••.••..•..•••.•.••••••••.••••••..•..•.•.•...•.••....•••..•.•••••••.••..••••.•.•. 103
Negotiated Release•..•...•......••...••..••..•..••.•.•....• ~··· I 04
Resynchronisation ...•.....•••.•...•.............•..•...•....•........••.....•....••........•..•.......•••..•.......•.•..•. 105
Session Protocol•....•.......••••.......••....•.•..••.••....•••.•....•...••.•..•.•..•..••...••....••.••.....•. 106

6..3.1 Session Protocol Data U nits ••.•..•.•....•.•••...••.••••..•..•.......•.•......•.•....•••....•..............•.....•.• 107
6.3.2 Connection lnitialisation .•••••••••••••..••.••..•••.••••.•.•••.•.••.•••••••.•••••.••••.•••••.•.•.•.•.••.•••..••...•... 109
6.3.3 Use of Available Transport Service ••......••..•...••..•.•...•..•••...••••••..•..••...•.............•...•..•... 112

Chapter 7
The Presentation Layer .•...•.•...•.......•.•.........•...•••.•..•...••.•.•...••..•.•...•..•..•.•.••••••..•••.....•.•...••••.•• 113
.1 Introduction .. " .•••...•.....••..••.••.......••...••..•••...•...•••••.....•..•.•.•....•..••.•...•..•.•.•...•....••.•......•.•.•• 113
.1.1 Representation of Information ••••••••••...•.•.•••..•.••.•...•••••.•.•........•••...••...•.•......••.•.•..••...•• 113
.1.2 The Abstract Syntax .•.•.•....•.•.•.•.••..•..•....•.....•.•••••.••.•..•....•..•••••....•.•.•...•..••.••........ - .•..•... 114
7.1.3 The Transfer Syntax •..•••••.••.•.•.•.......••....••.••.••..•••....••...••.•••.••••...••••.•••••••••.••.•..•••.••••••..•. 114
7.1.4 Presentation Services Characteristics•..•...........•.............•...................•............•.. 115
7 .1.5 Data Transfer Characteristics•.........•....•....................................•............................ 116
7.2 The Transfer Syntax .•••.•.....•..••.•••••.••••••••••••••.•.•...•..••••••...•.•..••.•..•••.•••.••••••.•••••••••.••••..•• 116
7.2.1 Tag ldentifier•.•.......•..•.. ,•................................. 116
7.2.2 Length of Contents •.....•..•...•.•........•.•...••..•....•••.•..•....•.••••...•...•..•...•.••.•.....••.•...•...•.....•... 117
7.2.3 Encoding of Octets Field ••.•.•...•.......•...•...••.•.•.........•......•......••.•..••..•.•..•..•.•.......•...••.•...• 118
7.3 Presentation Services ••..•..•••..••••....•.•••.........•...........•....•..••...•.•....•.•.••..•.•.....•.•..•.•...••.•.•. 119
7.3.1 Context Establishment ••.....•.••.••..••..•.•..•..•••....•...•.•..•.••..•...•••.•.•.••.•..•••...••••••••.••...••..•.•.• 119
7.3.2 Other Presentation Services•....•..........•.•.......•......•........•...........•..••....•.......•............ 122
7 .4 Presentation Protocol ..•.....•..••.•••••.....••...•••..•••.•.•..•.•.•.•••....•.•.•..•.•.••••••••..•.......••..•..••.•.•• 123
.4.1 Connection Establishment .•.•..•...•••.••••....•.•••••••.••..••..•..•••.•••.•••••..•..••.•..••..........••..•.•.•..• 123

Chapter 8
Common Application Services ...•....•...••••.••.•..•.....•••.•......•.••......•..•.....•.•..•.....•..•...... fJ •••••••••••• 125
8.1 Application Layer Structure•.•................•.....................................•...... 125
8.1.1 Application Processes •.•.•.•••.••.•..•..•.•.••••••••..••••..••....•••....•.•••..•...••.......••.•.....•......•••.••••.• 125
8.1.2 Application Entities ...•..............•••...............•....•.....•...............•............••••...................... 125
8.1.3 Application Association ••••.•.•...••.••...•••..........••..•......•......••......•....•••..•••.•......•..•....•...•...... 126

III

1.4 Application Service Elements .•....•..•..•...••....•.•.•.•.•....•...•..••.............•.•..•..•..........•..••.... 126
Association Control Services ..•..•........•...•..•...••......••......•.•.......••..•......••.•......••....•......• 127

.1 ACSE Services .••.•••••••••••.••••..••..•••.•••.•••.••.•••••.•....••••.••.•..••.•..•....•••••.•.••••••••••....••.•••••..••... 128

Chapter 9
Directory Services• :•....•.••.•..••..•...•..•.•.•....•.....••.•.•••..•.••••••..••....••..•.•...••....•....•.....••••....•..• 129
9.1 Introduction•..................•....................................•.............•................•.................. 129
9.2 Directory Information Base •.•...•..•••...••••.••••.•••••..•••••••.••••••••••.•.•••.••••..•.••..•....•..•••......•. 129
9.3 Directory Information Tree•...•......•..•.••......•.•.....••.•..•.•....•...•...•....••.......•..•.•..•..•...... 130
9.4 Authentication ... , ..•.••.•...•...•.•.••.•...•......•.....•............•...•...•.•..•.....•..•.••••••.•••....••••..•••.•..... 130
9.4.1 Public Key Encryption .•.•.••....•...•.•••.•••..••.••..•••••••.•...••..••.•••.••..•••••••.•..•••...••.•....•.••••.•..•• 131
9.5 Directory Services ...•.......•••..•.......•.....••.•.•..•..•..•.•......•....•...•...•.........••••......•......•....••..•. 132
9.5.1 Directory Operations •.••.....•.•.....•.••....••.••••.•.....•.•••.••.•••••••.••.•.•••••...•••••...•.•.•.••.•.•...••..••• 132
9..5.2 Parameters .•...........•...•••........•••...••....••..•.••...•.......•.......•.•.•..•..•.••..••..•.....•.•.•...•.....•...••..• 133
9.6 Directory Protocols ••..•....•••..•.....•...••......••..•.•....•.........•.........••...•.•.•.•.••.••......•.....•••.••... 134

Chapter 10
_ . fessage Handling System
10.1 Introduction•....•......................•...............•.•.....•..•...•..........•.•.•.•...........•....•...• 136
10.2 MHS Architecture •..••.....•..•.••.•......•.••...••.•.••...•.•.....••...••.•..•••.•••..•.••..••..••..••.••...•..•...... 137
10.2.1 Message Transfer System •..•........••..•.......•.......•..•....••.•..•.••.••.••...........•..•....•..............• 138
10.2.2 Message Store ...•••.•.....•.......•...•.•.•.•.••......•.•...•.•.....••....•..••...•.•....•....•.....•...•..•..•..•••....•• 138
10.3 MTS Services•.......•..............•.•...................•... 138
10.4 MTS Operations ..•.••.••••••......••••.•.•.•.••••••..•.•.••••••••••.••.••...•••••..•••.•..•.•••••••..••••..•••.•..•..... 139
10.4.1 Submit Operations .••••...•...........••..•.....•.•...•.......•.•..•..••.•...•.••...•..•.•••.•.•.••..•.•.....•..•••..•. 139
10.5 MTS Protocols •.......•.•••••.•.....•...•.•..••••••.•••.•....•.••••.•....•••....••.••....••.•.•••.•.•.....••••.....•..•.•. 140
10.5.1 MTS Access Protocols •••••.•••.•••••••..••••••.•.••.•••.•••..•.••.••...••••••••••••.•••••.••••.••.•••••.•••••••••.••• 141

IV

HAPTER1

INTRODUCTION

Introduction has always played a pivotal role in our society. The ability to gather,
ocess, store and distribute information has been a key factor in the growth of most

· ilisations in the history of mankind. During the second half of the twentieth century
e have seen major technological developments which have transformed all our

traditional notions of handling information. Information gathering and distribution has
been supported by communication technology, and distribution processing and storage
i computer technology.

Communication technology, as well as computer technology, have sustained an
exponential growth during the last few decades. Highly reliable, wide bandwidth
communication links have come into existence, providing easy communication over long
distances. Computers have steadily become smaller, cheaper and powerful, to the extent
that a single user workstation on a desk today has more computational capabilities than
that was available to large organisations only a few years ago. The most remarkable
development, however, has been the ability to implement system in which computer and
communication technologies are integrated. Today most large organisations, with many
offices in geographically drive areas, have the capability of routinely obtaining current
information stored in any of their computers. As our ability to gather, process, store and
distribute information improves, our desire the implement more sophisticated
information processing functions and applications involving multiple organisations
grows even more rapidly.

In order to implement large communication systems it is essential that the systems
make use of some information processing capabilities. On the other hand, the computer
systems of today with multiple processing units have to be able to transfer information
from one place the another within the system. The merger of communication technology
and computer technology is proceeding systematically and rapidly.

In Table 1.1 we present a simple classification of the organisation of processors and
the kind of networks. When the distance between processor is small and they are located
on the same board, they require connections with very high bandwidth. Such
connections are found within a computer system and are considered as computer
networks. The communication technique used is tightly integrated into the design of
processors and other components on the board. Even when we consider processors
which are up to a few meters apart, the communication is among processing elements
within a single system. As distances grow from 100 meters to a few kilometres the
communication bandwidth requirements are usually from lOK to lOM bytes Per second.
These types of networks are referred to as Local Area Networks (LANs). The term
Metropolitan Area Network (MAN) is used to refer to networks which interconnect
processor within a metropolitan area. In order to connect processors which are farther
away Wide Area Networks (W ANs) are used. When connecting a group of processors on
a local area network, for example to another similar group, an interconnection between
the two LANs is required. Such connections fall within the domain of internet working.
Internet working has been used to interconnect a large number of networks throughout
the world.

Table 1.1 Classification of Network

1

~ter-processor Processor Location Bandwidth Range Example Network
~nee
j

I
b

Circuit board 1-10 G Bytes/sec Data flow machine I 0.1 m
lm System lOM- lG Bytes/sec System
10m Room 100K - lOM Bytes/sec LAN
100m Building lOK - lOM Bytes/sec LAN
1km Campus lOK- 10M Bytes/sec LAN
10km City lOK - lOM Bytes/sec MAN
100km Country lK - lM Bytes/sec WAN
1000 km Continent lK - lOOK Bytes/sec Internet work
10000 km Planet lK - 100K Bytes/sec Internet work

In the OSI-RM, each system is decomposed functionally into a set of subsystems and is
represented pictorially in a vertical sequence. Vertically adjacent subsystems
communicate through their common interfaces, while peer subsystems collectively from a
layer in the architecture. Each layer provides a set of well-defined services to the layer
above, by adding its own functions to the services provided by the layer below. The
layers of the model are partitioned as follows:

• 1: Physical layer Achieves the transmission of row data bits over a communication
channel (medium).

• 2: Data link layer Converts the row transmission facility into a line that appears free
of frames and delimiting them. This layer may also include access control to the
medium, error detection and correction.

• 3: Network layer Performs the routing and switching of data between any two systems
across multiple data links and sub-nets.

• 4: Transport layer Operates on an end-to-end basis achieving the necessary quality of
service for the exchange of data between two end systems. May include end-to-end
error recovery and flow control.

• 5: Session layer Allows users on different machines to establish sessions between
them, and hence establishes and messages communication dialogue between
processes.

• 6: Presentation layer Manages and transforms the syntax of structured data being
exchanged. Is also concerned with the semantics of the information transmitted.

• 7: Application layer Deals with the information exchange between end-system
application processes and defines the messages that may be exchanged.

The above layering was created according to the original design principles used in the
construction of the ISO model. According to this:

2

Layers
(ES)
Host A

(ES)
HostB

- Application•

- - .. Presentation ..•
- • - Session ...•

- - .. Transport ...•
IS IS

- - ~ - L ...• • Network ..• •..

- - ~ Data link - - f""I(• ...• ..
~ - - - L ...•• •...

Physical Bit

APDU

PPDU

SPDU

TPDU

Packet

Frame

Transmission media

Figure 1.1 The OSI reference model.

1. Different levels of abstraction are placed in separate layers.
2. Similar functions are grouped together within a single layer with each layer

performing a well defined function.
3. The function of each layer is chosen so as to be amenable to the definition of

a standard protocol.
4. Minimization of information flow across interfaces in a primary goal in drawing the

layer boundaries.

Although the majority of network architectures widely in use are based on the principles
of layering, most do not fit the OSI model exactly in their allocation of layers and
protocols used. Examples of these are the IBM's SNA (Meijer 1987), DECnet and
DARPA Internet (Quarterman and Hoskins 1986), to name but a few. Conversely, some

:w network architectures, such as the MAP (General Motors 1988; O'Prey 1986) and
OP (Boeing 1988), have adopted the OSI-RM for their architecture and hence form
open' networks. Open networks use internationally standardized procedures for
communications rather than local or proprietary ones.

CHAPTER2

A REFERENCE MODEL

This chapter is an introduction to Open Systems Interconnection and to its
description at the highest level of abstraction. It includes a detailed discussion of its
layered architecture. In particular we discuss the notations of services offered by
different layers and protocols that govern communication within each layer. Discussion
of services offered by each layer and the supporting protocols required to be
implemented, however, are contained in subsequent chapters. A notation for identifying
different objects, including data units, within the Open Systems Interconnection
environment is given.

2.1 Introduction

In this section we present the distinction between open system and real system, and
emphasize the point that the primary concern of Open System Interconnection is with
the externally visible behavior of systems. It is pointed out that the Reference Model is
simply an abstract model that permits a detailed specifications of interactions between
open systems.

2.1.1 Open Systems

Open Systems Interconnection (OSI) is concerned with exchange of information
between systems, in fact, between open systems. Within OSI, a distinction is made
between real systems and open systems. A real system is a computer system together with
the associated software, peripherals, terminals, human operators, physical processes, and
even sub-systems that are responsible for information transfer. It is assumed that the
components of a computer system listed above form an autonomous whole and are in
themselves capable of processing and transferring information. On the other hand, an
open system is only a representation of a real system that is known to comply with the
architecture and protocols as defined by OSI. In fact, the representation takes into
account only those aspects of a real system that pertain the information exchange
between such open systems and are consistent with OSI. Put differently, an open system
· that portion of a real system which is visible to other open systems in their attempts to
transfer and process information jointly.

2.1.2 Systems Interconnection

Information transfer is not the only concern of OSI. The term systems connection
uggest much more. It also includes aspects that are necessary for systems to work
together co-operatively towards achieving a common, though distributed, goal. These
aspects are:

I. Inter-process communication, which is concerned with information exchange and
synchronisation of various activities undertaken by application processes.
Data representation, which is concerned with representation of information being
exchanged, and with ways the define alternative representations for the variety of
information;
Data storage, where the concern is with storage of data at possibly remote locations,
and access to it;
Process and resource management, which concerns ways by which application
processes are declared, initiated and controlled, and the means by which such
application processes acquire resources available within the OSI environment;
Integrity and security, which concerns correctness and consistency of data and with
access to data either during storage, exchange or processing;

6. Program support, which is concerned with providing an environment for program
development and execution at remote locations.

While all six of the above activities have been identified to be immediate concern to
OSI, the earlier emphasis was largely on information exchange and its representation.
--~ore recently, the concerns of OSI have shifted towards providing an environment
herein application processes co-operate by accessing computing resources and remote

locations.

2.1.3 The Reference Model

Figure 2.1 provides and abstract model of OSI environment as it becomes available
the application processes within open systems.

Aspects of real systems
relevant to OSI

Aspects of application processes
relevant to OSI

Open system Z
Connections'

Figure 2.1 Model of the OSI environment.

5

Note that only open systems are considered within the model of the OSI
mvironment, and within an open system only those portions of application processes
that are relevant to OSI have been included in the model. Interaction between
application processes takes place when they exchange information. The model,
therefore, stipulates the need for a physical communication media of transmission of
data. It is this abstract model which is elaborated upon by the Reference Model. In fact
all of the international standards or recommendations within OSI provide varying
degrees of detail about the functioning of open systems (or sub-systems) in this abstract
model.

The Reference Model itself does not specify the external behaviour of open systems.
It simply lays down the framework for a detailed specification of services and protocols
to be supported by open systems. The major objective of the framework is to describe
and crystallise the concept of layered architecture. Towards that, it is also provides a
definition of certain key elements of OSI. In the light of the architecture developed and
purposed seven layers, the Reference Model clarifies the notion of conformity of OSI
standards. As such, Reference Model may be viewed as the highest level of (abstract)
description of standards developed within OSI. The second level of OSI description is
provided by a specifications of OSI services, and last, by OSI protocol specification. This
relationship is illustrated in Figure 2.2 The Reference Model admits a large class of
rvice specifications, only one which is shown in the figure. Similarly, a service

specifications admits a large class of protocol specifications. Needless to say that a
ification of services and protocols allows a variety of implementations.

Services
Reference Model

an implementation
of a protocol

Protocols

Ytgure 2.2: The relation between Reference Model, service specification and protocol
specification.

6

The Layered Architecture

In this section we discuss the layered architecture of OSI, emphasising the point that
· structure leads to a more modular approach, particularly from the viewpoint of
doping standards and their implementation. The concepts of services, functions and
tocols are discussed in some detail. Connections are also introduced in this section,
a more detailed discussion of connection-oriented data transfers is included in
ion 2.5.
A network of interconnected systems may be viewed as just that. Such a view
itions network vertically into a number of distinct systems that are interconnected

· g a physical transmission media. The view presented earlier in Figure 2.1 is similar,
erpect that open systems are used to model real systems. This model views the network
· its totality, but partitions it as a series of horizontal layers (see Figure 2.3). Here, a
yer cuts across the vertical boundaries of systems. Such a view is helpful in more than
eway:

• It allows for a discussion on exchange of information between peer objects within a
layer, independent of other layers,

• It allows for gradual and modular development of functionally of each layer, and
• It is simultaneously allows open system to be viewed as a succession of sub-systems,

thereby permitting a modular implementation of the open system itself.

process
OSI

environment
Application
process

Application
process

------------------------~----------------------------~-----------------------------~--------------------
Open
System A

Open
System B

Open
System Z

Highest I=
1 1 1 1 1 Sub-system---11---+-. ----+-· ----1.-------1----+-. -

•
Lowest layer

~:........~...L...~~-L~~~~~...L_~~-'-~~~~~-L~~~L---,

Physical Transmission Media

Figure 2.3 Layers and sub-systems in an OSI environment

7

.1 Layers, Services and Functions

For simplicity, a given layer is referred to as an (N) layer, the one below it as (N - 1)
• er and the one above as (N + 1) layer.
The succession of layers not only partitions the whole network, but it also partitions
h system into a succession of sub-systems - a sub-system being identified (or formed)
the intersection of an open system and a layer. Sub-systems within a layer are said to
of the same rank, while sub-systems belonging to adjacent layers within an open

are said to be adjacent. Adjacent sub-systems communicate through their
ammon boundary. Communication between sub-systems of the same rank is more

plex. In fact, a major concern of OSI is to define the means to provide for such
apability. Of course, communication between to adjacent sub-system is also subject to

· ussion and standardisation within OSL
A sub-system is logically viewed as consisting of a number of entities. An entity is a

representation of a process within a computer system. It is a software or hardware
ule which is active, or in some cases, a manual or physical process. It can take many

rms, .and is capable of autonomous actions by itself, or in response to requests or
mmands from other entities. In this regard, the notion of an entity is very similar to
t of a process in a computer system. In OSI environment, however, the entities and
eir inter-relationship are well structured.
Note that only those aspects that · are relevant to interactions within OSI are

represented as part of entity. Thus, a layer may be viewed as consisting of a large
umber of entities that are spread across various open systems. At the highest layer
tities model application processes while those below model software and hardware
odules that are responsible for providing OSI services. At the bottom layer an entity

allows access to the physical transmission media. An entity within an (N) layer is
referred to as an (N) entity.

One concept that is central to the layered architecture of OSI is that of service. Each
yer provides a different set of services to the layer above. As one moves up the layers,

the· set of services provided by a layer is either enhanced or improved in quality. In
er words, a layer provide services to the layer above it, and also uses services

provided by the lower layer, and those below. Basically, the (N) layer adds value to the
~ - 1) services, and thereby enhances the set of services it provides to the layer above or

· proves upon them. This it does by implementing certain (N) functions. Figure 2.4 is an
ustration of the layered architecture of OSI. There the -hierarchy may be looked upon

recursively as: 1

• A layer provides services,
• Part of the services are implemented as functions within the layer, while the rest are

derived from (N -1) services provided by the (N -1) layer and those below;
• The (N - 1) services are partly implemented as (N - 1) functions in the (N - 1) layer,

while others are derived from (N - 2) services, and those below. And so on.

Thus, the concept of layered architecture allows identification of different functions
for implementation within various layers. This is, in fact, the usual top-down approach
to designing systems. The functions to be implemented are specified in the form of
services to be provided by each layer.

8

(N + 1) Layer
and higher

(N + 1) Layer
and higher

.&

(N) I Services (N) I Services

(N) Layer (N) Layer

(N - 1) I Services (N - 1) I Services
(N -1) Layer

•
(N - 2) I Services

'.f

~
(N-1)
Layer
and below

(N-2)
Layer
and below

(a) (b)

(N + 1) Layer
and higher

•••
(N) Services

(N) Layer

•••
N-1) Services

(N -1) Layer

• ••

(N-2) Service!

(N-2) Layer
a

(1) Layer

•••

(0) Services

(0) Layer

(

(c)

Figure 2.4 concept of layering in OSI architecture layers, services and functions.

9

.2 Service Access Points

Services mace available by a layer are implemented in the form of functions in that
:yer and those below. Entities of the layer are responsible for implementing its
ctions, and similarly for the layers below. Thus, it is the entities that are ultimately
providers of services. Furthermore, it is the (N + 1) entities that are the users of (N)
ices. As a consequence, a service provided by an (N) layer may be accessed by an

-• + 1) entity whenever it interacts with an (N) entity. There are however, restrictions
the (N) entities with which an (N + 1) entity may interact. First, the (N) entity and

-• + 1) entity must be within the same open system. Further restrictions are specified in
lffms of service-access points. Formally, an (N) service-access-point, or (N)-SAP, is a
point at which services are provided by an entity to an (N + 1) entity. A service-access­
point is like an interface through which two entities from adjacent layers, but within the

e open system, may interact with each other. In doing so, service is provided or
essed. Figure 2.5 is an illustration of the concept that services are accessible only
ugh service-access points. Note that:

(N + 1) Layer
(N) SAP

(N) Layer

(N-1) SAP

(N -1) Layer

0

(N - 1) entity

Figure 2.5 Layers, entities and SAPs.

• At most one entity is responsible for supporting a SAP;
No more than one (N + 1) entity may access services through an (N) SAP at a time;
An entity may support any number of SAPs; and
An (N + 1) entity may access services available at more than one (N) SAP.

10

_fote that the association between the user (N + 1) entity and an (N) SAP is not
massarily permanent. It could dynamically change. The association between an entity

the SAPs at which it provides services is also not fixed.
The nature of services provided by a layer is specified in terms of the set of

· 'tives (atomic actions) that an (N + 1) entity or an (N) entity may issue at an (N)

.3 Protocols

A major concern of OSI is with communication between peer entities (of the same
). For the case where peer entities reside within the same open system, there may
a direct path or an interface between them, in which case such communication is
idered to be outside the scope of OSI. In the absence of such an interface their
munication is governed by procedures that are identical to those that are applicable
communication between peer entities residing in different open systems. Clearly,

exist no direct communication path between two peer entities when they reside in
erent open systems, except at the lowest layer, the transmission media. Thus, two

- + 1) entities wishing to communicate with each other must rely on communication
ices provided by the (N) layer. This they do by accessing (N) services at their

rapective (N) SAPs, the latter being supported by two corresponding (N) entities.

•• + 1) entity~
Logical

Communication

0 (N + 1) Layer

CEP

(N) Connections

(N) protocol (N - 1) SAP

.~

(N -1) Layer

0 0
Figure 2.6 Connections and connection-endpoints.

11

As shown in Figure 2.6, such connections may be established between the same pair
,APs, or even between different SAPs. All connections established via the same SAP
supported by the corresponding (N) entity. To enable the supporting (N) entity and
attached (N + 1) entity to distinguish between various connections established
ugh the same (N) SAP the notion of connection-endpoints is introduced. For each
ection to connection-endpoints are defined one for each end of the connection. Such

(N) connection-endpoint ((N) CEP) terminates an (N) connection at an (N) SAP.
, an (N) CEP associates three objects, namely, an (N + 1) entity an (N) entity and an

connection. A reference to a CEP by the supporting entity immediately identifies, for
(N +l) entity, the (N) connection and vice-versa .

..... ::.•'

Identifiers

A notation for uniquely identifying objects, including entities, SAPs, and
ections, is considered in this section. We also discuss techniques for maintaining

arrespondences between entities and the SAPs to which they are attached, or between
, . , • 3l'U's from adjacent layers.

To be able to uniquely reference an object anywhere within the network, the OSI
hitecture requires that each object within the OSI have a unique identifier, or a

mme. Identifiers associated with entities are called titles, while service-access points are
tified using addresses. A connection is primarily identified by its endpoints using a
ection-endpoint-identifier (CEP-identifier) for each CEP. To be sure:

• An (N) entity has an (N) title,
• An (N) SAP has an (N) address, and
• An (N) has an (N) CEP identifier.

In the above, the "(N)" suggests that such ideittifiers have a significant that is local to
particular layer, the (N) layer. Also, notice that an (N) entity has simply a title. This
is referred to as a global-title which is unique within the domain of the entire OSI

1vironment. One may instead use a local-title to uniquely refer to an entity. But when
ha reference is made the scope must be clear or obvious. Usually the scope is limited
the layer in question.

2.3.1 Titles, Addresses and Directory

As one consequence of the above, one does not refer to the address of an entity, but
· tead to that of the title of an entity or to the address of a SAP through which the
tity is reachable or to which it is attached. The latter binding between the global-title
an (N + 1) entity and the (N) address is in a directory maintained by the (N + 1) layer
part of its (N + 1) functions. Such a directory referred to as an (N + 1) directory.

Thus, an (N + 1) entity wishing to, for example, establish a connection with another
_i + 1) entity may consult the (N + 1) directory to determine the (N) addresses of a SAP
to which the remote (N + 1) entity is attached. It may then make this address available to
the (N) entity that supports the local SAP.

The purpose of an (N) directory is to maintain a listing of the binding in existence
between the titles of (N) entities and (N - 1) addresses of (N - 1) SAPs. Such a directory

12

',,·4

be consulted by any (N) entity and is treated as a layer wide directory. In a dynamic
mrironment, in which buildings change with time, the directory entries have to be

ted. A number of implementation issues arise when we consider how directories
.• be implemented, managed updated and accesses in an OSI environment.

.2 Address-Mapping

'/ 1! •
Next, we discuss the concept of an (N) address-mapping, and two different ways of

-plementing it. But, we first discuss an application where it is relevant for an (N) entity
identify the (N - 1) SAP that a remote entity uses the support an (N) SAP. Consider
· the process of establishing connections between peer (N + 1) entities. For, this, an

- + 1) entity makes available an address to the entity that supports its local SAP. This
porting entity must now establish a connection, if necessary with the entity that
ports the remote (N) SAP. It is truly not necessary for it the first determine its title
sub-sequentially the (N - 1) address of the (N - 1) SAP to which the remote (N)

tity is attached. Only the latter would suffice. This done using the (N) address­
mapping function.

The (N) address-mapping, a function implemented within an (N) layer, provides the
pping between an (N) address and the (N - 1) address associated with the (N) entity.
ere are two kinds of address-mapping functions that may be defined:

l f ,,, ,.

. :1sri.' ~

;ir

• Hierarchical (N) address-mapping; and
• (N) address-mapping by table.

Hierarchical address-mapping is somewhat simpler to implement, but may only be
in a layer for which every address is mapped onto one (N - 1) address, and where

ch associations are permanent. In hierarchical mapping, a number of addresses are
mapped onto a single (N - 1) address (see Figure 2.7). These restrictions then enable a

'_;:~' • ample mapping function. An (N) address is composed of two parts:
. ' ~ ,. '- '

Ba Bb Be
~ ,,,,---......,. ,,---

. , , Addresses ~" y /~
(N) Layer

~ __y.___~
. , - 1) Addresses

'--
B

+
/:'J ii I (N) Address (N + 1) Suffix

'•

(N - 1) Address I (N) Suffix I

Figure 2. 7 Hierarchical (N) address-mapping.

K M L
(N) Addresses

K K L M
(N) Layer

(N - 1) Addresses

C D E

e 2.8 An example table for (N) address-mapping.

An (N - 1) address of the (N - 1) SAP which supports the (N) entity, which in turn
supports the (N) SAP, and
An (N) suffix which uniquely identifies the particular (N) SAP with in the domain of
all SAPs supported by the (N) entity.

As such, the (N - 1) address of the supporting (N - 1) SAP may be obtained by
· ply stripping of the suffix from the (N) addresses. A table lists, for each (N) address,

collection of all (N - 1) addresses of which it maps. An example of a table of address­
mapping is given in Figure 2.8. Address-mappin? by table permits greater flexibility,

ough its implementation would, in general, be more complex. None of two
restrictlons mentioned in the context of hierarchical mapping are applicable.

In implementing a table-based address-mapping, the mapping within each open
tern may have to be defined using a local table. Such a table may be stored, managed,

pdated and accessed within the open system. A collection of all such tables in a layer
fine the complete address-mapping for the layer. A distributed implementation, such
this, raises many implementation issues that are similar to those encountered in

distributed databases.
It is worth noting that within a layer either of the two address-mapping schemes may

be used irrespective of the scheme used in other layers. In this regards, address-mapping
in each layer is independent.

2.3.3 Identifying Connections

As noted in Section 2.2.4, connections are a common way to transfer information
between peer (N + 1) entities. An (N) connection is established on their behalf between
the corresponding (N) SAPs by the supporting (N) entities. Each (N) connection is
terminated at each end in an (N) connection-endpoint.

An (N) connection-endpoint-identifier ((N) CEP-identifier) uniquely identifies an
endpoint of an (N) connection. It allows the (N + 1) entity, attached to the (N) SAP, and

14

e supporting (N) entity to distinguish a connection from other connections that may
also have an endpoint within the same SAP. Thus, it is sufficient to ensure that a CEP
identifier is unique within the domain of the particular SAP. However, the OSI
Ref ere nee Model insists that a CEP identifier be unique within the scope of the attached

+ 1) entity, instead. It, therefore, views the (N) CEP identifier to be consisting of two
parts:

1. The address of concerned (N) SAP, and
2. An (N) CEP suffix, which is unique within the scope of the SAP.

It is obvious that the CEP identifiers at the two ends of a connection are distinct,
even though the CEP suffix at the two CEPs may be the same. Furthermore, the
association between a CEP identifier and the CEP is meaningful as long as the
corresponding connection exists. The CEP identifier is assigned by the supporting entity
at the time of connection establishment, and loses significance with the release of the
connection.

In the past, we have not referred to identifiers for connections themselves.
Identification of connections is required so that the supporting entities may distinguish
one connection from the others that they support. For such purposes each connection is
said to have an (N) protocol-connection-identifier. This identifier must be unique within
the scope of the pair of supporting (N) entities.

The OSI Reference Model recognises the need for yet another identifier for each
connection. The scope of such an identifier is however, different from that discussed
above. Each connection is additionally identified by an (N) service-connection-identifier.
The latter serves to bind three objects, namely, the two corresponding user (N + 1)
entities and the (N) connection. Thus, communicating (N + 1) entities are able to
distinguish one connection from others, but scope of the identifier is limited to the two
(N + 1) entities.

2.4 The Nature of Data Units

This section introduces a notation for different types of data units exchange between
peer entities or between entities from adjacent layers. The discussion brings out the
distinction between information exchanged only for the purposes of co-ordination and
user-data, the latter being the focus all communication.

Exchange of information may take place either between two peer entities or between
an (N + 1) entity and an (N) entity that are attached to the same SAP. The nature of
information exchanged between a pair of entities may be classified into two types:

• User-data, and
• Control information.

Transfer of data is the prime objective of all communication between entities. But,
entities also need to exchange control information which enables them to co-ordinate
their operations so as to exchange data. Examples of control information include
address of destination, sequence number associated with data being exchanged,
acknowledgement information. More generally, control information provides a
description of the state of the entity participating in information exchange, or
additionally describes user-data being exchanged. ·

15

.4.1 Data Units

Recall that information exchanged between an (N + 1) entity and an (N) entity takes
ce across an interface, while information exchanged between two peer entities is
verned by an (N) protocol. In view of the distinction between control information and
ta, it is pertinent to define four different types of data units:

Protocol-control-information: information exchanged between peer entities to co­
ordinate their joint operation;
User-data: data transferred between (N + 1) entities for whom the (N) entities
provide services;
Interface-control-information: information transferred between an (N + 1) entity
and an entity to co-ordinate their joint operation;
Interface-data: data transferred from an (N + 1) entity to supporting (N) entity for
transmission to a corresponding (N + 1) entity, or vice-versa.

It is often the case that data is transferred along with control information. We,
fore, require two additional definitions:

C') protocol-data-unit ((N)-PDU): information exchanged between peer entities,
hich consist of control information as well as user data;

(;')-interface-data-unit: information exchanged between an (N + 1) entity and an (N)
entity across a SAP, which consists of control information as well as user-data.

An (N) protocol (governing communication between peer entities) specifies the set of
Us. It is from this set that an entity selects a relevant PDU to transfer control
rmation and possibly data. On the other hand, a description of services does not
de specification of the set of interface-data-units. Instead, it is recognised that
ange of information between an (N + 1) entity and an (N) entity is across an
ce within an open system. It is, therefore, not subject to standardisation within

,L The definition of these information types is included within the OSI Reference
el to distinguish these from (N) service-data-units.

An M service-data-unit ((N)-SDU) is interface-data whose identity is preserved
one and of a connection to the other. It is immaterial how an (N)-SDU is exchanged
een a pair of (N + 1) entity and (N) entity, as long as boundaries between SDUs are
rved, In fact, an SDU may well be exchanged in one or more interface-data, or a
her of SDUs may be exchanged within an interface-data. (Also note that SDUs only

amain data.)
There may be occasions when an (N + 1) entity may wish to communicate a small

-t of data on a priority basis. This need is well recognised within OSI. As such a
. provide expedited data transfer service. Such a service accepts an (N)

+-Mp-dit.ed-senice-data-unit (M-expedited-SDU) and transfers it over a connection
:a priority basis. The P.1 layer may not be in a position to guarantee its

pre-sptti:fied time delay. It does, however, ensure that an (N)­
ubsequent SDU or expedited-SOU.

hies communic.ating (N + l)entities to
~ + 1)-PDU to the
nr is ddn-ered to

es. The sending (N) entity treats this as user-data and forms an (N)-PDU by
nding to it the relevant protocol-control-information as dictated by the protocol.

· mapping of (N + 1)-PDU onto an SDU and of an SOU onto a PDU is illustrated in
e 2.9(a). Therein, we have assumed that neither segmentation, blocking, nor

catenation is performed. Other forms of mapping are discussing in the remaining
of this section.

(N + 1)-PDU
A._

1~

(N)-SDU (N)-u
(N)-Layer

(a): Neither segmentation, blocking nor concatenation.

(N)-SDU

(N) Lay er

(N)

(N)-PDU (N)-PDU

(b): Segmentation and reassemble.

Figure 2.9 Mapping between different data units in adjacent layers.

17

4.2 Segmentation, Blocking and Concatenation

The OSI Reference Model does not place any constrains on the size of data units.
is primarily to allow implementations to define their own constraints on
issible size, a decision that may be based on available buffer size. To support
ing length of data units, the OSI Reference Model permits a data unit to be mapped
o a number of data units, or for a number of data units to be mapped onto one data
·· Thus, one may consider the following possibilities:

(N)-SDU (N)-SDU

(N)-Layer

?

(N)-PDU

(c): Blocking and de-blocking.

(N)-PDU (N)-PDU

H ~ ..
V ~ i,

• An (N) - SDU is segmented and subsequently mapped onto a number of (N) -
PD Us;

• A number of (N) - SDUs are blocked together and mapped onto a single (N) -
PD Us;

• An (N) - PDU is broken down into a number of sub-PDUs, each of which is
mapped onto a different (N -1)-SDU;

• A number of (N)-PDUs are concatenated together and mapped onto a single
(N -1)-SDU.

Of the four possibilities listed above, the third is recognised to be meaningless. This is
ince a PDU is composed of two parts, protocol-control-information and user-data.
, if a PDU were to be broken down into a number of sub-PDUs, then, except for the
sub-PDU, none of the other sub-PDUs would have any associated protocol-control-

ormation. The other three forms of mapping between PDUs and SDUs are well
gnised. Further, corresponding to segmenting of SDUs, or mapping them onto a
her of PDUs, there is a reverse mapping, or re assembly, of the corresponding PD Us
an SDU at the other end of the connection. Similarly, mechanisms for de blocking

e reverse of the blocking) of a PDU into the corresponding SDUs, and for separating
e reverse of concatenation) an (N - 1)-SDU into corresponding PDUs need to be
ed. These are illustrated in Figure 2.9 and formally defined below.

1. Segmentation is a function performed by an (N) entity by which it maps one (N)-SDU
into multiple (N)-PDUs.
Re assembly is the reverse function (of segmentation) whereby a corresponding (N)
entity maps corresponding multiple (N)-PDUs into one (N)-SDU.

3. Blocking is a function performed by an entity by which it maps multiple (N)-SDUs
into (N)-PDU .

. De blocking is the reverse function (of blocking) whereby the corresponding multiple
(N)-SDUs.

5. Concatenation is a function which allows an entity to map multiple (N)-PDUs into
one (N -1)-SDU.

6. Separation is the reverse function (of concatenation) performed by a corresponding
entity whereby it maps an (N - 1)-SDU into its corresponding multiple (N)-PDUs.

Within a layer, it is conceivable that all three forms of mapping may be used.
Segmentation is possibly the most important of these, since it allows an SDU of an
arbitrary size to be transferred across a connection as a sequence of multiple PDUs,
each containing a portion of the SDU. The specific mapping used will be a function of
the protocol and the size of the buffers available. Blocking and concatenation permit a
more efficient utilisation of an (N) connection or of an (N - 1) connection, respectively. It
is worth mentioning that in the specification of an (N) protocol there may be constraints
placed on whether any of these functions can be used. Surely, two (N)-SDUs destined for
different (N) entities may not be concatenated. Otherwise, the reverse functions of de
blocking or separation cannot be carried out ! It is, therefore, relevant to constrain the

19

of these functions to map data units that pertain to communication between the
pair of (N) entities.

Connection-Based Data Transfer

In this section we discuss the more common approach to transfer data over an
Iished connection. Here, we describe in some detail the procedures to establish or to
se connections, aside from functions relating to data transfer that are generally
erred to be implemented.
As mentioned earlier in Section 2.2.4, two (N + 1) entities may communicate with
other over an (N) connection established and maintained on their behalf by

mnoorting (N) entities between the corresponding (N)-SAPs. Such a connection is, in
an association (however temporary) between three parties, namely, the two (N + 1)

ities and the (N)-Layer. The establishment of this association enables the two (N + 1)
···es to, firstly, express agreement (or disagreement) on their willingness to

unicate with each other. Further, while agreeing to do so, they also decide upon
syntax and semantics (N + 1)-protocol of all information exchanges that would take
e over the connection. The process of establishing a connection also enables the

ammunicating (N + 1) entities to initialise themselves to a mutually known global state
that subsequent exchanges of information maybe inter-pretend and acted upon an
ordance with the agreed (N + 1)-protocol.
Since the (N)-Layer is actively involved in establishing and maintaining the (N)
ection, the agreement includes a commitment on the part of the layer to support the
ection to the extent it is able to. This particularly so in respect of the nature of the
ection and the quality of services provided. Towards the latter, the relevant entities

ermine for themselves as to how they can best support the connection by selecting an
ropriate (N)-protocol. The supporting entities may themselves need to establish an

- - 1) connection over which all communication pertaining to the particular (N)­
ection takes place. Assignment of such resources, including that of message buffers,
d also be done at the time of establishment of the connection.

Connection-oriented interaction between (N + 1) entities proceeds through three
· ct phases: connection establishment, data transfer, and connection release. Data
sfer may only take place once a connection has been establishment. The connection

• preferably released once data transfer is complete since committed resources can be
allocated for use with other connections .

. 1 Connection Establishment

The manner in which connections are established or released varies from layer to
yer. Similarly, procedures that govern data transfers are dependent upon the nature of
rvice requested or offered over the particular connection and upon the selected

protocol. However, there are certain aspects that are common to all layers. These are
· cussed below.
Before attempting to establish a connection, the (N + 1) entity initiating the

connection must know the title of the (N + 1) entity it wishes to communicate with. With
that title, its (N)-address may be obtained from the corresponding directory. The
connection establishment request is then initiated using the address.

20

+ 1) entity A (N + 1) entity B + 1) protocol

(N) SAP C ~ ~ (N)SAPD

(N) connection

(N) entity E ~a- (N) entity F

(N) protocol

(N)-Layer

~

(N -1) connection

re 2.10 Establishment of an (N) connection.

The connection establishment procedure is illustrated in Figure 2.10, where an
+ 1) entity A initiates the establishment of connection with an (N + 1) entity B. The
nection is established between the corresponding SAPs C and D. It is through the
ched (N) entities E and F that the (N)-Layer provides connection-oriented services at
two SAPs. The establishment procedure, typically, involves the following six steps:

The (N + 1) entity A, while initiating the establishment of an (N)-connection,
specifies, together with the request at its (N)-SAP C, the (N)-address of the (N)-SAP
D to which the responding (N + 1) entity B is attached.
The supporting (N) entity E communicates the request to the (N) entity F at the other
end.
The (N) entity F informs the responding (N + 1) entity B (at the (N)-SAP D) of the
incoming request for connection establishment with the (N)-address of the SAP-C to
which the initiating (N + 1) entity A is attached.
If the establishment of the (N) connection is acceptable to the responding (N + 1)
entity B, it simply informs its supporting (N) entity F at its (N)-SAP D.
The (N) entity F communicates this acceptance by the (N + 1) entity B to the (N)
entity E at the initiator's end.
The (N) entity E conveys to the initiating (N + 1) entity A the acceptance obtained
from the responding (N + 1) entity B.

21

Clearly, the two (N + 1) entities interact with the layer during the process of
nection establishment. As such they may also negotiate between themselves and the
er the optional services (and their quality) to be provided over the established
nection. Furthermore, since the supporting entities themselves communicate with
b other, they may select the appropriate protocol to be used for subsequent data
sfer.

e protocol between the two entities may permit a limited amount of user-data to be
hanged as part of connection establishment. As a consequence, the two (N + 1)
tities may fix the (N + 1) protocol to be associated with subsequent data transfers.
It may be noted that the attempt to establish a connection may fail any reason,
luding

• An unwillingness on the part of the responding (N + 1) entity, either because of
lack available resources, or its inability to work with the type of connection
purposed by the initiating (N + 1) entity or offered by the layer;

• An inability on the part of the layer to allocate required resources, or to provide
the optional services (or their quality) requested by the initiating (N + 1) entity.

In either case, the connection establishment procedure is terminated prematurely,
t not before all parties involved in the establishment process up to that stage have
n informed of the failure of the attempt .

. 5.2 Multiplexing and Splitting

A major requirement of a layer that provides connections is that supporting entities
ould be able to communicate each other. Either they are within the same open system

and a direct (outside the OSI environment) interface exists between them, or they
eemmunicate over an (N -1)-connection. Such an (N - 1)-connection, if does not already
exist, will need to be established before any connection-related communication between
the entities may take place. But, in case the protocol of (N - 1)-layer permits, (N - 1)-
er-data may be exchanged during its establishment. As a consequence, an (N)

eennection could be established simultaneously with that of (N - 1) connection. Of
course, before two (N - 1) entities communicate there must exist an (N - 2) connection,
and so on. A physical transmission media must be available at the bottom-most layer.

Another issue related to the above is that of mapping connections onto (N - 1)
eonnections. It is recognised, within OSI, that PDUs relating a number of (N)
tonnections may be transmitted on the same (N - 1) connection, as long as the (N)
connections are supported by the same pair of entities. This is ref erred to as
multiplexing of (N) connections is done at one end, then surely the reverse operation of
de-multiplexing must be performed at the other end. Multiplexing may be absolutely
essential those cases where only one (N - 1) connection can be established. Further,
multiplexing enables a more efficient and often more economical use of an (N - 1)
connections with the particular (N) connection is called recombining. Figure 2.11
illustrates the concepts of splitting an recombining.

The use of multiplexing or splitting calls for implementation of a number of sub-
functions within the (N)-layer. Some of these are listed below.

22

•;r;

•,

... ,.·,..,

:,··

-a means to identify (N)-PDUs that pertain different (N) connections, but which are
nt as (N - 1) user-data over the same (N - 1) connection. This identification is done

by associating with each POU a protocol-connection-identifier.
Mechanism to schedule the transmission of (N - 1) user-data from different (N)
connections over the same (N - 1) connection. Such a mechanism would also
incorporate the means to control the rate of flow of user-data originating from
different (N) connections.
A means to schedule the transmission of (N - 1) user-data from an (N) connection
over different (N - 1) connections.
A mechanism to re-sequence (N)-PDUs, associated with an (N) connection, in case
they arrive out of sequence. The latter may be the case when they are transmitted
over different (N - 1) connections, and even though each (N - 1) connection may
guarantee in-sequence delivery of (N -1) user-data.

The first two functions are needed only if multiplexing is supported, while the latter
required only to support splitting.

(N)-CEP
I

(N)-SAP

(N) - Connections

(N) ~Layer

(a) The logical view.

23

(N)-Layer

(N) - Connection - end points

t i i

(b) Connections viewed as pipes.

tgure 2.11 The concept of multiplexing and de-multiplexing.

N)-CEP

(N) - Connection

(N)-Layer (N)- entity

(N - 1) - connection

(a) The logical view.

24

Connection Release

noted earlier, a connection establishment attempt may be unsuccessful. In that
e connection is automatically released. Additionally, a connection may be released

·-· er of the communicating (N + 1) entities, or by the supporting (N)-layer. A release
ore may be invoked by either party once the connection has been established.
are a variety of ways in which the connection may be released. The most graceful
is where the communicating (N + 1) entities agree to release the connection by

••• oging information in a manner very similar to the one described in the context of
I ection establishment. As part of that information exchange, the supporting entities

become aware of the connection release. Such a release procedure is termed orderly

other variations of the release procedure are more abrupt and somewhat
teral. As a consequence, there may loss of user-data. Either of the (N + 1) entities
decide to release the connection. Of course, the other parties, namely, the

-•esponding (N + 1) entity and the two supporting entities, do participate in the
.-ess, but have very little say in it. Similarly, either of the supporting entities may
--inate the connection. The latter situation may arise when, for example, an entity

ts a breakdown of the supporting (N - 1) connection breaks down. It is quite
ible that the (N) connection is maintained while an attempt is made to re-establish
- 1) connection.

It is not necessary that the supporting (N - 1) connection be released once the
ported (N) connection is released. The (N - 1) connection may continue to be
· tained to support other connections that currently use it, or to support future

.4 Data Transfer

Once a connection has been established, user-data originating at an (N + 1) entity is
de available to the supporting (N) entity in the form a sequence of SDUs. These data
'ts are then transferred to its corresponding peer entity which subsequently delivers
m to the corresponding (N + 1) entity again in the form of a sequence of SDUs and
edited-SDUs. The only constraint placed thus far is that an expedited-SDU may not
delivered after any subsequent SDU or expedited-SDU. A number of issues
rtaining to the transfer of such a sequence still remain to be discussed. This include:

• Regulating the rate of flow of user-data over a connection.
• Guaranteed delivery of SD Us in the proper sequence.
• Confirming the delivery of user-data to the destined (N + 1) entity.
• Detection of errors and loss of SDUs; and recovery.
• Re-initialising the connection.

25

(N + 1)-Entities

/ ~

i)-Layer

(N)-SAP ~~

(N)-CEP

_i + 1)-Layer (N)-Services

(N) connection

(N) entity

Figure 2.13 An (N)-connection viewed as a path consisting of three elements .

. 5 Flow Control

Our first concern is with limiting the rate at which user-data is made available to
t which can conveniently be supported over a connection. However, communicating

- + 1) entities generate data at a rate dictated by application, as well as the (N + 1)
tocol they use. One scheme is to explicitly limit the rate at which user-data at a rate

· · ated by the application, as well as the (N + 1)-protocol they use. One scheme,
,wever, does not dynamically adjust to changing conditions in terms of availability of
munication and computing resources within the layer and those below. As such, a
eme, ref erred to as flow control, is used which dynamicaJly Jim its the amount of data
is made available or transfer over connection may be viewed as a path consisting of
segments, as indicated in Figure 2.13.

Flow control between peer entities limits the rate at which user-data (within (N)­
Us) is exchanged between them. This peer flow control is defined as part of the
tocol. The protocol may also limit the amount of user-data that may be contained in

a PDU. Similarly, at each SAP, there may exist some form of flow control on user-data
exchanged between a supporting entity and the attached (N + 1) entity. The specification
of the nature of such interface flow control is considered to be outside the scope of OSI,
and as such implementation dependent;

Expedited-SDUs are not subject to the same flow control as are SDUs. Where
necessary, a separate flow control would be applied to the transfer of expedited-SDUs.

2.5.6 Sequencing

Delivery of (N)-SDUs in the proper sequence is an important function of a layer. In
its absence, the sequence of user-data delivered to the receiving (N + 1) entity may be
different from the sequence of user-data obtained from the sending (N + 1) entity. This
may happen for a number of reasons, including loss of user-data followed by the
retransmission, or user-data moving along different physical (or even logical) paths.

26

The mechanism to achieve in-sequence delivery of user-data is specified as part of
protocol, whenever the corresponding function is required to be implemented.

111Iwically, user-data contained within each PDU is uniquely by the sending entity, so
the receiving entity can re-order the received PDUs, as necessary. This ensures that
sequence of user-data within PD Us is preserved across the segment of the connection

Wli6in the layer. But that is not adequate. The sequence must also be preserved at each
o interfaces. The latter aspect is considered to be implementation dependent and
ide the scope of OSI.

. 7 Acknowledgement

An entity sending information may, in certain applications, wish to receive an
owledgement from the receiver. This may be necessary if there is a finite
bability of information being lost or unduly delayed during transfer. In the context
a connection, the source and destination entities are, truly, the (N + 1) entities for
om the supporting entities establish and maintain the connection. OSI, however, is
imarily concerned with acknowledgements to user-data (within PDUs) exchanged
een the supporting entities. The mechanism to transfer acknowledgement

ormation is specified, again, as part of the protocol. Such a specification normally
uires identification of each PDU (only the ones that contain user-data need be

entified).
The OSI does, however, recognise the need for a user (N + 1) entity to exchange
nowledgement information with its peer entity. This may be covered by the (N + 1)­
tocol that operates between the peer entities. However, an additional mechanism is

metimes used to convey acknowledgement information between peer (N + 1) entities
hen they use a connection to transfer data. A receiver (N + 1) entity may request the
pporting entity, at its end, that an indication suggesting confirmation of receipt be

· en at the other end to the sender (N + 1) entity. Such a mechanism is specified as part
>f the services that a layer may off er.

2.5.8 Error Detection and Recovery

Issues relating to preserving the sequence of SDUs across a connection and of
acknowledgements are part of the larger issue of reliable data transfer. Reliability of
data transfer refers to the requirement that SDUs be communicated without any error,
loss of data, or duplication, and (possibly) in the same sequence with an acceptably high
probability. Such reliable transfer must take place against all odds, including noise over
transmission media, lack of computing resources, limited bandwidth, or excessive
delays. Breakdown of transmission media, hardware faults, faults in software design, or
non-conformity to OSI standards are examples of more serious failures. The latter may
prevent communication of data altogether.

The OSI architecture and its protocols are concerned not so much with these
impairments, but with detecting the occurrence of errors and of failures. Generally, if a
layer detects an error, it makes every effort to recover from it using, for example, error
detecting or correcting codes and, possibly a positive acknowledgement with
re-transmission scheme. Normally, such attempts succeed, but when errors persist with
high frequency, a re-initialisation of the connection may be undertaken in the hope that
recovery may still take place. This re-initialisation, called reset, enables the entities to

27

e back a pre-defined global state. There is, however, a finite probability that some
mnn may go unnoticed, in that case data may be lost or duplicated. If, in spite of all .-.U, the layer is unable to recover from errors it simply signals a failure connection to

uer (N + 1) entities. It is then the responsibility of the user (N + 1) entities to attempt
very or to abandon communication altogether.

Procedures to detect errors or failures and to recover from them are specified as
of the protocol. The procedures to reset a connection are also specified. A method
hich a layer signals failure to user entities is specified as part of services. Typically,
layer must also provide a reason for the failure, if it is known, and whether such a
ition is temporary or permanent.

Connection-Less Data Transfer

In this section we discuss an alternative approach to data transfer without first
.-aanishing a connection. It is emphasised that connection. It is emphasised that

ection-less data transfer protocols are relatively simple since each data unit is self
tained and totally unrelated to other data units.
In the previous section we have seen how connection-oriented data transfers between
user (N + 1) entities requires the establishment of an (N)-connection before user­
may be exchanged, and that this is to be followed by a connection release. Thus,
ection-oriented data transfer may be characterised as follows:

Each connection has a clearly distinguishable lifetime as determined by the three
distinct phases of establishment, data transfer, and release.
The successful establishment of an (N)-connection also establishes a three-party
agreement between the two user (N + 1) entities and the layer which provides the
connection-oriented service. This agreement indicates their mutual willingness to
exchange data.
As part of connection establishment procedure, the three parties also negotiate use of
certain optional services and parameter values to be associated with the connection.
This enables each party to allocate resources that are required by particular
connection.
(N)-SAP addresses are exchanged between user (N + 1) entities and the supporting
(N) entities only during connection establishment. Subsequently, requests to transfer
data over an (N)-connection (or to release it) make no reference to these addresses,
but to the (N)-connection-endpoint-identifiers, one for each end.
(N)-service-data-units (as also (N)-expedited-SDUs) transferred over an (N)­
connection are related to each other by virtue of their being transferred over the
same connection. As such, it is relevant to discuss flow-controlled, or reliable
transfer of sequence of (N)-SDUs.

Connection-less data transfer, on the other hand, is the transmission of independent,
elated (N)-SDUs from one (N)-SAP to another in the absence of a connection. To

pport such data transfer an (N)-layer may offer connection-less (N)-service. Figure
14 illustrates how an (N + 1) entity A may transfer data to another (N + 1) entity B.

The transfer is, typically, carried out in three steps:

28

The (N + 1) entity A passes the (N)-SDU across the local (N)-SAP C, to the
supporting (N) entity E, together with the (N)-address of the (N)-SAP to which the
destination (N + 1) entity Bis attached.
The supporting (N) entity E transfers the (N)-user-data to the corresponding an (N)
entity F which supports the (N)-SAP D, together with the addresses of the source of
destination (N)-SAPs.
The (N) entity F passes the (N)-SDU across the (N)-SAP D to the attached (N + 1)
entity B, together with the address of the (N)-SAP C to which the sending (N + 1)
entity A is attached.

(N + 1) entity A (N + 1) entity B

(N) entity F

(N)-SAP C (N)-SAPD

-·• entity E

tgure 2.14 Connection-less data transfer.

The three step procedure ends with the delivery of the SDU to the destination
.i + 1) entity. It is up to receiving (N + 1) entity to act upon the received data or to
· ply ignore it, depending upon a number of considerations. These may include the

· • ntify of the source (N + 1) entity, the nature of the data communicated, and its ability
interpret or process the received data. It is however, expected that each

mmmunicating (N + 1) entity has some prior knowledge of each other, particularly
regarding their ability to interpret (syntactically as well as semantically) the data
received. Any response generated subsequently by the receiving (N + 1) entity is
· ilarly transferred, but as far as (N)-service is concerned, without any reference to a
vious data-unit.
With the request to transfer data-unit, an (N + 1) entity may specify parameter

alues and options, such as transfer delay or acceptable rate of error, that are to be
ociated with the transfer of the particular SDU. Depending upon the manner in

29

the service implemented, the supporting entity may or may not be in a position to
Sa mine whether such a request cannot be met, then it may inform the requesting

1) entity; otherwise it simply goes a head and makes a best effort to transfer the
It may even be the case that data is not delivered to the destination (N + 1) entity,
neither the sending (N + 1) entity nor the supporting (N) entity becomes aware of
fact. The latter again depends upon how the two supporting (N) communicate
een themselves. To be sure, communication between the supporting (N) entities may
nection-less or it may be over an established (N - 1) connection.

To summarise this discussion, connection-less data transfer exhibits the following
cteristics:

• Only a single interaction between a user (N + 1) entity and the supporting (N)
entity is required to initiate transmission of data. Once a request for data
transfer has been made (or an (N)-SDU is delivered to the destination (N + 1)
entity), no further interaction takes place between the user (N + 1) entity and
the supporting (N) entity at its (N)-SAP.

• Since a connection is not established prior data transfer, data transfer is based on
an a priori knowledge shared between the two communicating (N + 1) entities.
Similarly, at each end, there is an a priori agreement between a user (N + 1)
entity and its supporting (N) entity regarding (N)-services available at the (N)­
SAP. Further, since negotiation is not performed, this a priori knowledge or
agreement is not altered.

• Each data-unit is considered to be self-contained, in that the required address
information is communicated together with the data. Independence of data­
units from others implies that a sequence of data-units handed over to the (N)­
layer at one end may not be delivered to the destination (N + 1) entity without
loss or duplication or even in the same sequence.

30

PTER 3

This chapter introduces the basic structure of the OSI architecture in terms of seven
..,·ers. The basic principles used in developing the layers are also introduced. Each layer
the OSI architecture is defined in terms of the services it offers and as a collection of
aired functions. The functions implemented within the layers enhance the services, in
ep-by-step fashion, from those made available by the communication media to those
aired by user applications. This chapter also contains a brief discussion on OSI
dards currently available, and their status regarding adoption by ISO and CCITT.

Introduction

The OSI architecture has been described in general terms in Chapter 2. This
cture is centred around the concept of layers and has been used extensively in
eloping the OSI Reference Model. The model consists of the following seven layers
Figure 3.1):

the Application layer,
the Presentation layer,
the Session layer,
the Transport layer,
the Network layer,
the Data Link layer,

• the Physical layer.

The highest layer is the Application layer. It consists of Application entities that
perate with each other to provide application-related services in an OSI

· onment. The lower layers, Physical through Presentation layers, provide services
"ch make it possible for Application entities to communicate with each other. At the
ttom, the Physical layer uses the communication media to exchange encoded bits of
ormation.
The application entities are the final source and destination of all data. Some of open

• _ ems , however, simply perform the functions of relaying information from one open
• _ tern to anther. Such a system, therefore, implements functions included in the three

er layers only.
In any case, as one goes up the layers one notice a layer-by-layer enhancement of

rvices provided by each layer to entities in the next higher layer. This, as discussed in
apter 2, is made possible by implementing in each layer a set of functions required
e bridge the gap between the services that it provides and the services that it provides

and the services available to it.

11

Application - - Application
Layer ~ -,.. Layer

Presentation - - Presentation
Layer

I..,. ..
Layer

Session
1 ••• - Session

Layer
....• .. Layer

Transport ~ - Transport ~ ..
Layer Layer

Network ~ Network Network •••• Network Layer Layer Layer Layer

Data Link
~

Data Link Data Link
~

Data Link
Layer Layer Layer Layer

Physical
~

Physical Physical
~

Physical
Layer Layer Layer Layer

••• t .~ , ..

re 3.1 The seven layers of OSI.

As can be expected, there are variety of ways in which the OSI environment and its
ability can be provided. Although the OSI Basic Reference Model prescribes the use
seven layers, the same capability can, in principle, be provided by fewer than seven

... ers, or using more than seven layers, or using more than seven layers. Further, the
erence Model defines, for each of the seven layers, the service that it provides to the
t higher layer. In doing so, it implicitly specifies the collection of functions to be
uded in each layer. Here again, one may argue whether this is the most appropriate

ay of enhancing services from one layer to the next. This is equivalent to looking for
emative ways to partition the collection of functions necessary to provide OSI
pabilities, and to assign them to different layers.
The above issues concerning the number of layers, and assignment of functions to

each layer, have been defined and repeatedly used to obtain the seven-layer architecture,
and to define the functionally of each layer. We shall briefly state these principles, and

· cuss how they relate to the design of the seven layers in the architecture. These are:

1. Have a reasonable number of layers to make the engineering task of system
specification and integration no more difficult than necessary;

2. Define interfaces so that the description of services across the interface is simple;
3. Have a separate layer to handle functions which are clearly different in terms of the

required processing or the supporting technology;
4. Include similar functions within the same layer,
5. Use successful experiences of the past in identifying the boundaries;

32

Create layers with well identified functions so that a layer can be modified to take
advantage of technological developments in hardware or software, without
changing the services of the adjacent layers;
Create a layer boundary where it may be useful at a later time to standardise its
corresponding interface;
Ensure that each layer reflects a consistent level of abstraction in handling of data;
Permit changes to be made in the functions and protocols of a layer without
affecting the other layers;
For each layer, have clear and well defined boundaries with only the layer above
and the layer below it;

I. Permit the possibility of having sub-layers within a layer as necessary or
appropriate;
Create, where necessary, two or more sub-layers with a common and minimal
functionally to allow interface operation with the adjacent layers; and
Permit by-passing of sub-layers.

These principles, when applied to the problem of interconnection of open systems,
to an identification of the seven layers. The OSI environment must permit the use of

variety of physical media and of different control procedures. Principles 3, 5 and 8,
fore, suggest the use of a separate Physical layer as the bottom layer in the seven­
r OSI architecture. The Physical layer enables a user entity to transmit or receive a
uence of bits using an encoding scheme that is most suited for the particular

CNUDunication media.
Each physical media, such as telephone lines, offers a different set of data
mission characteristics, for example, channel capacity, bit error rate, and
agation delay. It, therefore, requires special techniques the transmit data between
neighbouring nodes in order to tolerate high error rates, or to take advantage of

:g propagation delays, as in the case of satellite channel. Similarly, reliable media,
as fibre-optic cables, require data link control procedures that are different from
e used over telephone lines or satellite channels. Different techniques for data link
trol have been developed and user over a variety of physical communication media.
plication of principles 3, 5 and 8, above, suggest the use of a separate Data Link layer
top of a Physical layer.
In an open system the topology for system interconnection may be quite different,
may, therefore, require that some systems act as intermediate relay nodes while

ers act as final source and destination of data. As a consequence, and using principles
5 and 7, the use of a Network layer on top of the Data Link layer becomes necessary.
· layer provides and end-to-end communication path between open systems using
propriate routing techniques and relaying.
In order to provide a reliable and efficient data transport service between computer
terns a, Transport layer above the Network layer becomes essential. This is also
nsistent with principles 2, 5 and 6. As a result the higher layers are no longer

concerned with issues relating to transportation of data across the network. Further, as
ggested by principle 7, an interface corresponding to the Transport layered services
y at a later date be subject to standardisation.
Clearly, there is need to organise, manage and synchronise interaction between

•• pplication entities. These functions are all related and quite different from those
encountered earlier in the lower layers. Application of principles 3 and 4 results in the
definition Session layer on top of the Transport layer. Similarly, issues concerning
representation of user information exchanged between Application entities are clearly

33

inct from those addressed by other layers. A Presentation layer is, therefore,
uded in the OSI architecture so that an Application entity in an open system may use
y defined syntax and still be able to communicate with every other peer entity.

The main purpose of the OSI is to permit the users to implement distributed
lications across a network of open systems. The Application layer provide a number
OSI services, for example association control, reliable transfer, message handling.
collection of protocols required to support such services are implemented as sub­

ers of the Application layer.

Description of Layers

Below, we present a brief description of the nature of services provided by each layer
the functions required to be implemented to support the services. We distinguish
e functions that are optional from those that are mandatory .

. 1 The Application Layer

The application layer is the highest layer of the OSI architecture, and permits
lication processes to access OSI capabilities. The purpose of the layer is to serve as a

· dow between correspondent application process so that they may exchange
ormation in the open environment. The description of the Application layer makes
of three definitions.
An Application entity is a model of those aspects of an application process that are

· ificant from the viewpoint of accessing OSI capabilities. Each Application service
ment uses the underlying OSI communication services to provide a specific
Iication-level-service, reliable transfer or message handling, for instance. Unlike
· ces provided by the lower layers, application-related services are not provided to
higher layer and, therefore, do not have access points attached to them. Application
ice elements themselves use services provided by each other and by the lower,
entation layer.
A user element is that part of an application process which models a user's
lication program, but only to extent that it uses services provided by the
entation layer and the required Application service elements.
Application layer services and related protocols are classified into two groups,

Cemmon Application Service Elements (CASE) and Specific Application Service
ments (SASE). CASE elements are commonly required by user elements and by
E elements, whereas a SASE element is included as part of an Application entity
when the application specifically requires the corresponding service. Some

mples of the latter are message handling, file transfer and virtual terminal access. On
other hand, association control, reliable transfer and remote operations are common
lication services which typically used by SASE elements. Association control, for
nee, enables its users to negotiate and establish the communication environment
een Application entities. Once that is done protocol-data-units concerning user

ments and Application service elements may be exchanged.
Functions implemented within the Application layer are very much dependent upon
service provided by each service element. But there are a number of functions that
commonly found in most Application layer protocols. These include:

34

Identification of communicating Application entities,
Determination of their access rights and user authentication,
Negotiation of the "abstract syntax" of Application protocol and use data,
The use of lower layer services, and
Error detection and notification .

. 2 The Presentation Layer

The Presentation layer is responsible for the appropriate representation of all
ormation communicated between Application entities. It covers two aspects, the
cture of user data, and its representation during transfer in the form of a sequence

bits or bytes. Note that the Presentation layer is only concerned with the syntax and
logical structure, not with the meaning given to it by Application entities.
A notation, called Abstract Syntax Notation (ASN), for defining the structure of
lication protocol-data-units and of user information is available. It enables a sending
to represent information using a syntax that is local to the open system. This

tax may differ from the one used to store the information in another system or
· g transfer between the systems. The main functionally the Presentation layer,
fore, is to transform information from its local representation to the one used

· g transfer, or vice versa. It thereby relieves Application entities from issues related
representation of information.
To support the above, the Presentation layer implements the following functions:

Connection establishment, and its termination,
Negotiation and possibly re-negotiation of the abstract syntax of Application
protocol-data-units,
yntax transformation including data compression, if required, and

Data transfer.

A number of services provided by the Session layer are also transparently made
·• hie by the Presentation layer. That is, for such services no additional functionally
built into the Presentation layer itself, except to map the service requests onto

~ponding Session services .

.3 The Session Layer

The main functionally of the Session layer is provide Presentation layer entities with
means to organise exchange of data over a connection either in full-duplex or half­
,Jex mode of communication. That is, depending upon the application, user entities
• decide to take turns to transfer data. It also enables users to realise operation. In
the connection release may even be negotiated, in which case a user entity retains

option to reject a connection release.
,ynchronisation points, when established in stream of data exchange, enable the two
to structure their communication in the form of dialogue units. It thereby enables
to resynchronise data exchange to an earlier synchronisation point.

_.-nchronisation may be useful in case of errors or, more generally, to reset the
ection to an earlier defined environment. The Session layer also allows users to
e an activity. Activities are another way of providing structure to data exchange

een users. Aside from starting or ending an activity, a user may interrupt the
· .ity in the midst of communication and later resume it.
In order to support the above services, the Session layer implements the following
:tions:

Connection establishment and its maintenance,
Orderly connection release, which may optionally be negotiated,
.. ormal data transfer, which may be half-duplex or full-duplex,
Typed data transfer, which is not subject to restrictions imposed by the half-duplex
mode of communication,
Expedited data transfer, which is not subject to flow control restrictions,
Establishment of synchronisation points and resynchronisation,
Activity management, and
Reporting of exceptional conditions

4 The Transport Layer

While the Network layer, and those below, provide a path for data transfer between
computers, the Transport layer provides a facility to transfer data between Session

···es in a transparent, reliable and cost-effective manner. It is the responsibility of
· layer the optimise the use of Network services and ensure that the quality of

sport services is at least as good as that requested by the Session entities.
The Transport layer protocol has end-to-end significance, and is therefore,
emented in host computers only. The protocol makes use of the available Network
,ices and is, therefore, not concerned with issues of routing, etc. In view of the fact
tthe characteristics and performance of the Network service may vary substantially,
ariety of Transport protocols are available to ensure that the service that it provides
brgely independent of the underlying communication network. At one extreme,
never the Network layer provides a reliable service, the functions implemented

·-· in the Transport layer are limited to:

Connection establishment and its maintenance,
ormal and expedited data transfer,

Error detection and reporting.

But, if the Ndwork service is such that user data may be corrupted, lost, duplicated
delivered out of sequence, then the Transport layer protocol must detect errors and
ver from them. Functions that are additionally implemented are:

Error detection and recovery,
End-to-end sequence control of protocol-data-units.

In order to transfer data in a cost-effective manner and to match user requirements
• terms of the quality of Transport service, the Transport layer uses one or more of the

wing functions:

Multiplexing or splitting of Transport connections onto Network connections,
End-to-end flow control,
Segmentation, blocking and/or concatenation.

The Network Layer and Below

The basic purpose of the Network layer, and those below, is to provide data transfer
bility across the communication sub-network. The required functions are, as a

-mLlic:equuence, specific to the communication sub-network and must be implemented by
open system in the sub-network and must be implemented by each open system in
sub-network, including intermediate systems. Intermediate systems are capable of

.-ting and relaying information between possibly dissimilar communication sub­
orks. Thus, the Network layer relieves Transport layer entities from all concerns
ding sub-network topology and their interconnection, and regarding routing and

1ying through one or more sub-networks.
The Network layer provides the means to establish, maintain and terminate Network
ections between open systems. It specifies the functional and procedural means to
fer data between Transport data entities over a Network connection. A Network
ection may involve messages to be stored and later forwarded through several
munication sub-networks. In order the suitably relay user data from the source host
the destination computer through one or more sub-networks, a route must be
mined either centrally or in a distributed manner. Messages must also be routed
in each sub-network through which the connection is established.
The major set of functions required to be implemented by a connection-oriented
ork layer protocol includes:

Connection establishment and its maintenance,
~ .• ultiplexing and possibly splitting,
Re-initialisation, or reset, of connection,
Addressing, routing and relaying,
_ iormal and flow control,
Sequencing and flow control,
Error detection, notification and possibly recovery.

Alternatively, the Network layer may provide connection-less data transfer service,
bich case the only significant set of functions built into the Network layer is data
fer, routing and relaying. Segmentation may also be used to ensure that Network

tocol-data-units can be accommodated within buffers maintained by the Data Link
er. The purpose of the Data Link layer is to provide functional and procedural means
establish, maintain and release connections between Network entities and to transfer
data. This layer is also responsible for detection and possible correction of errors

urring over the Physical . connection. Connection-oriented Data Link services are
ported by the following functions:

Connection establishment and release,
Splitting of Data Link connections,
Delimiting and synchronisation of protocol-data-units,
Error detection and recovery,
Flow control and sequenced delivery.

Alternatively, a Data Link layer may simply support connection-less data transfer
ability. In that case each service-data-unit is transferred independently of all other
ice-data-units. Such a Data Link layer requires a minimal set of functions to be

plemented.

17

The Physical layer provides mechanical, electrical, functional and procedural means
establish, maintain and release physical connections and for bit transmission over a
:ical medium. The services provided to the Data Link entities include connection
lishment and in-sequence transmission of bits over a data circuit. The Physical
r may, alternatively, provide connection-less data transfer capability, as in the case

lacal area networks.

OSI Layer Standards

While the Basic Reference Model discusses the OSI architecture in its totality, the
iled development of each layer in the architecture requires a careful study of
ions to fundamental problem posed for each layer. The outcome of each study takes
form of service and protocol standards for a layer. These standards are previewed in

· section.
A number of organisations, in particular CCITT, ISO, IEEE and ECMA, have been
·doping standards for the six bottom layers, Physical layer through Presentation
r, and for different application of the Application layer. These organisations work
endently, but have co-operated with each other by adopting many of each other's
ards as their own. This has not only cut down the time and cost of development of
standards, but has led to the development of a consistent and compatible set of
ards for the seven layers.

For the layers, Physical layer through Presentation layer, a standard typically
ist of two documents, one of service definition while other covers protocol

mttification. These documents may make references to one or more related documents
ell. Standards for Transport, Session and Presentation layers literately fit into this

tlKoment structure. The situation regarding the lower layers is different since several
· ns are available a designer regarding the choice of communication media, sub­
ork topology and their interconnection, less. Note that, particularly because of
ns concerning Network service and protocol, multiple Transport layer protocols
have to be defined so that the Transport service is uniformly identical across the
network.

Application layer standards are also differently documented. There may be several
ments concerning a single application. Two of these documents, again, relate to

· ce definition and to protocol specification. The other documents discuss related
cepts and the application itself. In some cases, such as message handling, more than
services may be defined to cater to a variety of users or equipment.

38

Layer Service Documents Protocol Documents Other Documents

· Application layer 9545
Association control 8649 8650 -
Reliable transfer 9066-1 9066-2 -
Remote operations 9072-1 9072-2 -
·ccR 9804 9805 -
; Directory services 9594/3 9594/5 9594/1,/2,/4,/6,/7
' Message handling 10021-4, -5 10021-6 10021-1,-2,-3,-7
I File transfer 8571/3 8571/4 8571/1, /2
l Virtual terminal 9040 9041 9646,2022

; Presentation layer 8822 8823 8824.8825 i Session layer 8326 8327 -
: Transport layer 8072 8073,8602 -
; Network layer 8348 8878,8473 8208, 8648, 8880,
! 8881,9068,9542
I Data Link 8886 8802 7776
i Physical layer 10022 - 8802
I

Table 3.1 ISO Documents Pertaining to Each Layer (Documents are Numbered as, for
E..umple, ISO 9545)

Tables 3.1 summarise the related standards documents, for each layer from ISO and
CCITT. For most layers, ISO and CCITT standards are identical except for editorial

ges. Such standards are termed as co-standards. The co-standards, in general,
mit interoperability between implementation conforming to ISO and CCITT
dards.
Similarly, Figure 3.2, describe the constrains on the use of higher layer protocol in

conjunction with a lower layer service [CCITT X.220]. These constraints are, in fact,
of the protocol specification since each protocol must explicitly state the service it

espects of the supporting lower layer.
It may be pointed out that not all the standards documents, referred to above, are

cepted as standards by ISO. Some of the documents may still be at the stage of Draft
ternational Standard (DIS) or even Draft Proposal (DP). These documents are,
erefore, subject to minor changes, if not major ones.

39

40

ication
MHS Director) ROSE Reliable
X.400 X.519 X.229 Transfer
X.419 X.228
X.420

I I
Association Control Service Elements X.227 I

I Connection Oriented Presentation Protocol X.226

I
I

Connection Oriented Session Protocol X.225 I

Connection Oriented Transport Protocol X.224

I X.2231

HDLCLAPB
X.25

ISDN LAN
I

X.21 or
X.21 bits

Figure 3.2 Standards recommended by CCITT.

TER 4

ietwork Layer and Below

· chapter is concerned with a discussion of the three bottom layers of the seven­
OSI architecture, that is the Network, Data Link, and Physical layers. Taken as a
the three layers off er to entities in the Transport layer a service using which they
change user data. The Transport entities, residing in the end systems, are not
ed as to how packets containing user data are routed through the physical
nication network, and how such a network is accessed.
three layers are treated together in one chapter in order to bring out the

ency of the corresponding protocols upon each other. Further, these protocols
vily dependent upon the physical media and switching/routing techniques used
a network. The emphasis here, however, is on network layer services and
Is, and how they relate to protocols used to access a real network. Also contained
is a discussion of local area networks and of internet-working using gateways
it interconnection of two or more networks, and perform protocol conversion,

The Communication Sub-network

us consider the physical structure of the computer communication network in
of its functional components first. Formal definitions of terms used to model real
, including an end system, a communication sub-network and a relay system are

1 End Systems

.• computer communication network is collection of real end systems, that support
application process, and one or more physical communication networks (see Figure

end system Figure 4.1 A computer communication network.

41

real end system transfers data to other real end systems using the data transfer
ility provided by the communication network. This interaction with the
mmunication is governed by a protocol that is specified to the interface between the

end system and the communication network. From the viewpoint of the OSI
hitecture, only those aspects of the real end system that concern communication with
network or with other real end systems are of interest. This abstraction of the real
system will simply be referred to as an end system, or ES. Formally, an end system

an abstraction of a system that hosts user applications. Such a model includes the
tocol that it uses the access the communication network, and protocols that concern
munication with other end systems.

1.2 Sub-networks

The physical communication network is a collection of equipment and physical
ia viewed as one autonomous whole that interconnects two or more real end
ems. Such a network may be a public or a private network. Further, it may be a

· le area or local area network. The term real sub-network is used to denote the
ysical communication network. From the viewpoint of the design of the Network

• er, the internal working of the real sub-network is unimportant. What is of
ificance is the interface that it offers to end systems so that information may be
banged across the network. Using this interface an end system may access sub-
ork resources to establish connections or to simply transfer information to other
systems. Thus, from the viewpoint of OSI architecture, the entire real sub-network
be viewed as one whole without concern for its internal details. In OSI terminology,
real sub-network is simply referred to as a sub-network. Figure 4.2(a) illustrates

· . At the very least, the sub-network enables an end system to transfer data across the
b-network to another end system.

I C) I

Real end system Real sub-network Real end system

End system Intermediate system End system

(a) A network consisting of a single sub-network.

42

Real end Real Internet-working Real Real end
system sub-network unit sub-network system,

r.

YJ
~ ~

End system Intermediate Intermediate Intermediate End system
system system system ·1.f

.';/

A network consisting of two sub-networks connected using a relay system.

Real sub-network Real end
system

end system
Internet-working

End system Intermediate system Intermediate system End system

) A network of sub-networks, each implementing different access protocols at its
interfaces.

43

Real end system Real end system

End system End system

(c) A network where end systems are directly connected .

.3 Inter-working

A communication network may be formed by interconnecting two or more similar,
dissimilar, communication sub-networks. From the viewpoint of OSI architecture, a
,igner may view the interconnected. Two sub-networks are interconnected using an
ipment whose primary function is to relay information from one sub-network to
ther and to perform protocol conversion, where necessary (see Figure 4.2 (b)). A
ork layer gateway is one example. In the world of communication such an

uipment is called an Inter-working Unit (IWU). Obviously, when an IWU
terconnects two sub-networks so that data, received over a sub-network, can be
rwarded to an system connected to the sub-network (or to another IWU). Thus, aside

from relaying, an IWU must perform protocol conversion if its interfaces with the two
b-networks are different. In OSI terminology, the term relay system is used to be

abstract the functions of relaying and of protocol conversion in an IWU.
The function performed by an IWU is similar to that of any real sub-network, except

at the protocols at the two interfaces of the IWU may be different. This aspect is not
fundamental enough to distinguish between real sub-networks and inter-working units.
A sub-network may also offer different interfaces to host or to other sub-networks,
depending their communication requirements (see Figure 5.2 (c)). Thus, from the
riewpoint of OSI architecture, real sub-networks and IWU are treated alike, and are

o referred to as Intermediate Systems. Formally, an Intermediate System (IS) is an
abstraction of equipment and/or communication media which performs the function of
relaying (and routing) of information to end systems or the other intermediate systems.
This abstraction takes the form of an access protocol specified for each interface. From
this perspective, an end system does not perform any relay functions.

Finally, two real end systems may be directly connected using a communication link,
or possibly through a shared media. The network and its model are illustrated in Figure
4.2 (d). The important point to be noted is that a sub-network based on a shared
medium does not perform a relay function within the sub-network.

44

The Network Layer and Below: A Model

this section we discuss a model of the three bottom layers of the OSI architecture.
· model is used to describe the functions of routing and relaying of user data through
_ _.etwork layer (and those below). Characteristics of data transfer, irrespective of

~er it is connection-oriented or connection-less, are discussed. Further, we take a
look at the structure of an Intermediate system to highlight the relationship

een routing and relaying and the three layers of protocols.

NS user Transport layer NS user

~ .. n

Network layer

Data link layer

Physical layer
a ~~

Physical medium
,, ~,

Network Service

Figure 4.3 The Network Service provider and its users .

. 2.1 User-Provider Model of Network Service

A model of the Network layer together with the two bottom layers, the Data Link
and Physical layers, is given in Figure 4.3. The Network layer offers to entities in the
Transport layer a capability by which they may exchange data across the physical sub­
network, without concern for how it is actually routed or relayed through the sub­
network. entities within the Network layer and those below co-ordinate their operations
the provide a service, called Network Service (NS). Together, the Network entities (and
those below the Network layer) are modelled as the Network Service Provider (NS
Provider). Since the next higher layer is the Transport layer, the users of the Network
service are Transport entities residing in end system. As such, a Transport entity is
called a Network Service User (NS User). Transport entities what wish to use the
Network service are bound to one or more NSAPs, as shown in Figure 4.4.

45

Transport entity (NS) user

Transport layer

TEP NSAP

Network layer
'----

Network connections

Network entity

figure 4.4 Network service access points and connection end points.

The network Service may be connection-oriented, in which case two Transport
.tities must establish a connection before data can be transferred. The connection is
ferably released soon after data transfer is complete. Or, the Network service may be
ection-less. In connection-less Network service, a Transport entity simply makes

ailable user data to the NS provider, together with the address of an NSAP to which
destination Transport entity is attached. The NS provider than appropriately routes

ckets through the sub-networks to the destination NSAP. A packet, or more precisely
•. etwork Protocol Data Unit, consists of user data and the addresses of both the source
-~ AP and destination NSAP. The source NSAP address may be used by the destination
ransport entity to determine the identify of the source Transport entity. These
dresses constitute only a part of the packet header, better known as Protocol Control
ormation .

.2.2 Network Connections

A similar approach is used by the Network layer to establish a connection on behalf
f a pair of Transport entities (see Figure 4.4). Such a connection is formally termed
.ietwork Connection (or NC). Once a connection is established, packets containing user
ta do not explicitly carry the address of source and destination NSAPs. Instead, they
rry information that uniquely identifiers the connection to which the data belongs.

from the viewpoint of view of Transport entities, a connection is identified by its end
points, one in each NSAP. These are formally referred to as Network Connection End
Points, or NCEPs, and are identified using, what are formally termed, Network
Connection End Point Identifiers (NCEP Identifiers). Each NCEP identifier has a local
,ignificance, in that it is unique within the domain of the corresponding NSAP. The
.~CEP Identifiers are assigned at the time of connection establishment, and remain

46

anged during the lifetime of the connection. Subsequently, during the data transfer
e, a Transport entity makes available user data to the NS provider, together with
identifier of the local NCEP .
. ,CEP Identifiers also help to distinguish between a number of connections that may
tablished from the same NSAP. This is required since a pair of Transport entities

· establish a number of connections to support transfer of unrelated streams of data.
a Transport entity may establish an independent connection with a number of
sport entities. The NS provider is invariably capable of supporting multiple
ections, subject of course to availability resources, primarily storage related .

. 3 Data Transfer Characteristics

Irrespective of whether data transfer is connection-oriented or connection-less, the
ice offered to a Transport entity is characterised as being end-to-end, transparent,
independent of the underlying communication media.

End-to-end data transfer is made possible through the use of intermediate system,
that is, sub-networks and/or relay systems, which together are responsible for
appropriately relaying and routing user data through the network and delivering it
to the destination end system. The address of destination end system is provided by
the source end system. Addressing is one of the important issues concerning the
Network layer and shall be discussed later in this chapter.
Transparency of data transfer refers to the fact that the Network layer (and those
below) do not place any constraint on the contents of user data, since user data is not
interpreted by the Network layer.

. Independence from the underlying media implies that NS users are neither
concerned with the characteristics of the underlying transmission media, or with the
protocol used to access the sub-networks. It is a different matter that the decision the
provide a Network service, which is connection-oriented or simply connection-less,
may depend upon the communication media and sub-network protocol. Further, the
quality of the Network service is, to large extent, dependent upon the sub-network.

.2.4 Intermediate Systems: A Model

Consider the simpler case where en systems are connected using an Intermediate
ystem which offers identical access to all end systems. This situation, earlier modelled
in Figure 4.2(a), is elaborated in Figure 4.5 to show the three distinct layers, and the
ontext of routing and relay functions. The end systems have entities in the Transport
layer and those above. An Intermediate system, on the other hand, aside from
implementing protocols at the three layers, also implements routing and relay functions.
As is clear from the figure, user data received from an end system over an interface is
processed by the sub-network and relayed another interface. It is subsequently
forwarded to the destination end system.

The upper triangle in the Intermediate system, Routing and Relaying, is more than a
imple software module. It is, in fact, a representation of the entire physical sub-network
consisting of switching nodes, transmission media, and protocols that are totally internal
to the sub-network. From the viewpoint of the OSI architecture, it is adequate to

47

the sub-network as simply implementing a routing and relay function, and
g interfaces to end systems.

Intermediate system End system B

protoco

Transport
Layer

Network layer

Data Link
protoco

Phvsical
protocol

Physical medium

Figure 4.5 Elaboration of the structure of an Intermediate System.

The design of the Intermediate system can be further elaborated, as in Figure 4.6.
two network layer entities within an Intermediate system interface with each other

· g a protocol, the specification of which is outside the scope of the OSI environment.
Note that Network layer entities, within an Intermediate system, there are neither
APs, or Network connection end points. Thus, a Network connection, logically,
ends from an NCEP, in an NSAP in an end system, to an NCEP in another end

_ tern. As discussed earlier in this section, communicating Network entities identify a
nnection using a Network Protocol Connection Identifier which has local significance

. Thus, one of the functions implemented by Networks entities in Intermediate
. terns is to maintain a correspondence between the two identifiers used to identify the

e connection, but over the two interfaces.
A Network entity, whether it is an end system or an Intermediate system, uses Data

Link services made available at a Data Link Service Access Point (or DLSAP). This it
oes to transfer Network Protocol Data Units across the interface to a corresponding

.,etwork entity. Similarly, a pair of Data Link entities, one each in an end system and an
Intermediate system, uses Physical layer services made available at Physical Service
Access Points (or PhSAPs).

48

0 Network
layer
entities

Data link
entities

Physical
layer
entities

To end system Sub-network point of
attachment to end system

tg11re 4.6 Entities within an Intermediate system and their interfaces .

.l.S Sub-network Access Protocol

The protocols at the three bottom layers specify the procedure that should be used
.' entities in end systems to access the routing and relaying capability of sub-network.
· collection of protocols is also called Sub-network Access Protocol or simply SNAcP.

The SNAcP may, of course, vary from one sub-network the another. For example,
CCITT's X.25 protocol specifies the interface a host computer must use to establish a
etwork layer connection with another host. This connection is routed through a packet­
itched sub-network. .Similarly, a local area network provides connection-less or

connection-oriented data transfer between end systems over a shared communication
channel.

49

.6 Sub-network Addresses

Figure 4.6 also brings out the interface between a Physical entity, in an end system,
d the physical medium that it accesses to transmit/receive a stream of encoded bits
'form the sub-network. There is no service access point associated with the physical
ium. Instead, the physical interface between the real end system and the real sub­

·twork is modelled as a Sub-network Point of Attachment (or SNP A). It is the physical
terface at which data transfer capability of the sub-network is available to a real end

• tern. As an example, a host computer may physically interface with a communication
b-network though a modem connected to one of its RS 232C ports. The modem is
elled as a point of attachment.
Sub-network Points of Attachments are identified by an address, termed Sub­
ork Point of Attachment Address, or Sub-network Address simplicity. Sub-network

ddresses are used to route Network layer packets within the sub-network and to
Iiver them to the appropriate end system, relay system or another sub-network. In
e context of public data networks, a DTE Address is used to identify an SNP A. The
b-network Addresses are assigned by the sub-network administration. Their scope,
1wever, is local to sub-network and the outside the OSI environment.
Sub-network addresses must be distinguish from NSAP Addresses. The NSAP
dresses are used to identify Network service access points, whereas a Sub-network
ddresses identifies the physical interconnection between a sub-network and an end
. tern. It is a different matter that there may be a correspondence between the NSAP
ddress and a Sub-network Address. Such a mapping must be flexible enough to
ommodate multiple NSAPs in an end system and attachment of an end system to one
more sub-networks using a number of physical links. Thus, in general, the mapping
tween NSAP addresses and Sub-network Addresses may be many-to-many. In the

· plest of cases an NSAP address may be mapped one-to-one onto a Sub-network
ddress.

IDI format AFI (decimal IDI (no. of DSP (max. length)
value) decimal digits)

X.121 36 14 24 digits
37 14 9 octets

ISO DCC 38 ' 3 35 digits
39 3 14 octets

, Local 48 0 38 digits
I 49 0 15 octets

50 0 19 ISO 646 char.
51 0 7 National char.

Table 4.1 Assignment ofNSAP Addresses

50

While assignment of NSAP addresses may be done in one of several ways, a
hierarchical structure permits interoperability between open systems, while retaining
ontrol over the assignment of addresses by local administrations. This structure is
briefly described below.

The ISO document [ISO 8348 DAD 2] specifies, at the highest level, that an address
may conform to any one of the several available standards, including CCITT's X.121,
ISO DCC and LOCAL. At the next level, X.121 for example, may specify the country
codes and perhaps a network identifier. The latter may be viewed as identifying the
Initial Domain within which the remaining part of the NSAP address the unique. At
lower levels, the assignment of addresses is domain specific, and may be specified in
terms of location, machine etc. Thus, each NSAP address composed of at least three
parts (see also Table 4.1).

1. The Address and Format Identifier (AFI) specifies the structure of the address. More
specifically, the two AFI digits encode the particular standard that is used (X.121,
ISO DCC, local, etc.) and the format (octets, digits, ISO 646 or National characters)
of the domain specific part of the address.

. Initial Domain Identifier, or IDI, specifies the initial domain within which the NSAP
address must be unique. When X.121 is used, for example, the 14 digit IDI field
specifies the country code (3 digits), the network number (1 digit) and the 10 digit
DTE address. If a local addressing scheme is used, the IDI is absent. The 3 digit IDI
in an ISO DCC specification is a country code .

. Assignment of the Domain Specific Part, or DSP, is a local matter, as long as they are
unique. The DSP is sequence of either octets or digits. (see Table 4.1).

We give below two examples, confirming to X.121 and Local:

1. Using X.121 specification

AFI: 36 (X.121, Decimal)
IDI: 310 5 1234567890 (USA, 5th Network, Machine Number)
DSP: 1234567890123456 (Access Point)

Using Local Specification

AFI: 50 (Local, IS0646 Characters)
DSP: EDU&EnR&IITDOOS&abc (Education, Network Name, Location, SAP)

.3 Physical Layer Services and Protocols

In this section we discuss the service offered by the Physical layer to Data Link
titles. Protocols that use an available transmission facility in order to support a
rsical connection covered using example protocols, including RS 232C, X.21, and

802.3.

51

.1 A Model of the Physical Layer

A model of the Physical layer is presented in Figure 4.7. It brings out the fact that
Physical layer service, formally termed Physical service, or PhS, is used by Data
entities, irrespective of whether they reside in end systems or in Intermediate

ems. As such, Data Link entities are also referred to as Physical service users, or PhS

PhS user Data Link layer PhS user

, .. ~-.

Physical layer

Physical medium

Physical
service

(a) Physical service users and providers.

Data link entity

Data Link layer

Ph SAP

•
Physical layer

liysical connections

Physical entities

(b) PhSAPs and Physical layer.

52

~=~ .

(f;s .. f UN I 1: ,~, lf'«,t>- ~1 ·,
l, ~'\1
1."1i. ;,,·H
/..W ,_ ~ : nv "Si~\ l'l"" l ~..:,., ',:.,\!",.,! '•,/ ysical services are provided to its users at service access points, terme.{·p. hys1cal

1i·
rvice Access Points, or PhSAPs. \ ~~

08,f.t The Physical layer provides to its users an ability to send or receive a stre~~oi.~tll-ffl\~:-?
er a physical transmission medium. Physical service users are not concerned wit~o..w~
bit is encoded in the form of electrical (or optical) signal before transmission. As such,
e design of Data Link protocols can be carried out without concern for issues like
dulation, voltage levels, or with pin-level description of a physical attachment to the
smission medium.
The other capability provider by the Physical layer has to do with activating or
ctivating a connection. This is no different from establishing or releasing a

nnection, Activation of connection ensures that if a user initiates the transmission of a
am of bits, the receiver at the other end is ready to receive them. The process of

· ation may require that resources, both processing and transmission related, be
erved for exclusive use by this connection. Deactivation of a connection releases all
ources for use by other Physical connections. Figure 4.8 illustrates how a physical
nnection is mapped onto a communication path or data circuit. In some cases the path
y consist of more than one data circuit, interconnected using a Physical layer relay

• _ tern. The relay system or its operation is not visible to the communicating Physical
ti ties.
A Physical connection is established on behalf of PhS users between two PhSAPs.

· ce multiple connections may be established by a PhS user from the same PhSAP,
ch connection is identified by a Physical Connection End-Point Identifier, or a PhCEP
ntifier. There is one PhCEP for each end of the connection. The PhCEP identifiers
ociated with the two end points of the same connection may be (or may not be)

· tinct. This is so since the significance of a PhCEP identifier is local to a PhS user and
service provider. Within the Physical layer, each connection is mapped onto one

ysical transmission medium. Multiplexing of connections, if any, is done either within
communication sub-network.

,.3.2 Service Characteristics

The data unit whose boundaries are preserved during data transfer is a bit. Such a
ta unit is referred to as Physical Service Data Unit, or PhSDU. Further, bits are
· ered unaltered. Some bits may not be delivered at all, while others may be
plicated. Flow control may be exercised by PhS users over and above the agreed rate
data transmission. Further, synchronisation of transfer of a bit stream, when
uired, is the responsibility of the Physical layer and not that of the users. However,
me-level or character-level synchronisation, where required, is performed by the PhS
rs.
Data transfer over connection may be full-duplex, half-duplex or perhaps simplex.
er a half-duplex connection, which of the two PhS users may transmit a data bit at
rticular time is determined by the users themselves, and not by the Physical layer
to col.

53

PhSAP Ph SAP
Data link layer

Physical layer
entities

Physical layer real system
Physical layer

(a) Logical view of relay operation.

Physical layer relay system

Cable Optical
fibre

1 system Real system

Modems Electro-optic transducers

(b) Real view of relay operation.

tgure 4.8 Physical connection using a data circuit through a Physical layer relay
tern .

.3.3 Physical Layer Protocols

The protocols considered here are EIA's RS 232C and CCITT's Recommendation
x.21. These protocols specify standard interfaces for connecting a host/terminal
equipment, also called DTE, to a communication sub-network. These interfaces provide
for serial base-band communication and do not permit multiplexing. The IEEE 802.3
tandard is also covered briefly.

A comparison of some of the characteristics of the three protocols is given in Table
4.2. These characteristics reflect in some ways the different contexts in which these
protocols are applicable. RS 232C, one of the oldest and most popular interfaces, is

54

icularly suited for connection-oriented, character mode, asynchronous
unication over short distances at relatively low data rates. A data terminal
Hy uses an RS 232C interface with a host computer or to a modem to access a

··ched/leased circuit. The greatest disadvantage of RS 232C interface is its limitation
terms of speed and distances. A subsequent EIA standard RS 449, together with RS

and 423A, has overcome these limitations at the cost of increasing the number of
ector pins or circuits.

The X.21 interface is particularly suited for use over digital switched networks. It
1,ides for connection-oriented, full-duplex, synchronised transfer of a stream of bits.
es a fewer number of circuit (up to 8), but provides extensive control of the physical
ection, including transmission of address information to the DCE so that an end-to­
connection can be established through a switched network. As such, it could be used

interface with a local DCE, remote DCE through a switched network, or to connect
o DTEs. In the latter case, it may be used, in conjunction with a Network layer
tocol, to provide Network layer services to Transport entities in end systems. IEEE
.3 is a standard which covers more than just the Physical layer.

Ph Activate
request

Ph Activate
indication

Ph Data
request

Ph Data
indication

(a) Connection activation. (b) Data transfer.
:;

request
Ph Deactivate
indication

Ph Deactivate
indication

Ph Deactivate
indication

(c) Connection deactivation (user initiated)

(d) Connection deactivation(provider initiated)

55

Table 4.2 Characteristics of Some Physical Layer Protocols

Characteristics RS 232C X.21 IEEE 802.3

Connection oriented Yes Yes No
Date rate Up to 19.2kbps Up to 9600 bps 10 Mbps
Synchronous Asynchronous Synchronous Synchronous

(usually)
Duplex Full-duplex Full-duplex Half-duplex

I (Shared medium)
Encoding scheme NRZ NRZ Manchester
Connector 25 15 15
No. of circuit used 9 to 16 6 to 8 9 or 10

4.4 Data Link Service

Data link services include establishment and maintenance of data link between
.. etwork entities in neigh-boring systems. Over such a link, users can transfer data
reliably and without concern for framing, addressing, and detection and recovery from
transmission errors. Two Data Link protocols, X.25 LAPB and IEEE 802.2 (together
nth IEEE 802.3), are discussed in later sections, with a view to illustrate how a Data
Link can be maintained over a Physical connection.

4.4.1 A Model of Data Link Layer

Figure 4.10 is a model of Data Link layer and the service that it offers to its users.
Users of the Data Link service are Network entities residing in end systems or in
Intermediate systems. They are, as such, referred to as Data Link service users, or DLS
users. The Data Link layer, together with the Physical layer below, is responsible for
providing the service. These layers are thus modelled as the Data Link service is
provided at, what is called, Data Link service access point, or DLSAP. A DLS user is
attached to one or more DLSAPs, and can be identified using the address of a DLSAP to
hich it is attached, or simply DLSAP address.
Data Link service is generally connection-oriented (see [CCITT X.212, ISO 8886.2]).

But in some cases it may simply be connection-less. In either case, data transfer is
transparent to the Data Link layer. That is user data is not constrained in any manner
by the Data Link layer. Further, characteristics of the Physical layer and of the
transmission medium are not visible to the DLS users. A Data Link Connection (or
imply DLC) is established by the Data Link layer between two DL service access points
on behalf of two DLS users. Each connection is identified by a DLC End-Point
Identifier, the significance of which is local to the DLS user and the DLS provider. It
ay, however, be pointed the out that usually there is only one Data Link connection
tablished between a pair of DLS users. This DLC is able to support a number of

. letwork connections.

56

A Data Link Service Data Unit (or simply DLSDU) is a sequence of bits, bytes,
sferred from one DLSAP to another with another with its two boundaries
erved. There may be a constraint on the maximum size of the DLSDU. Thus, one of

e major concerns of the Data Link is to suitably delimit, and perhaps segment,
1LSDUs so that these can be transferred from one DL entity to another. Other major
ctions of the Data Link layer include addressing, error detection and recovery, and

,w control. Error recovery and flow control are meaningful only when the service is
nnection-oriented.

,----
DLS Network layer DLS
user user
A A
I I

Data link layer

Physical layer and below

Data link service

(a) Data Link service users and provider.

Network layer

DL-CEP

___/ DL-SAP

Data link layer
Data link connections

Data link entity

(c) DLSAPs, connections and DLCEPs.

Figure 4.10 A model of the Data Link layer, service access points and connection end
points.

57

Data Link Service

The Data Link layer provides to its users the capability to establish or release a
ection. Once a connection has been established between two DLSAPs, an attached
user may issue a primitive to the Data Link layer to transfer (normal) data, in the
of DLSDU, to the corresponding DLS user.

_formal data transfer may e slowed down due to flow control, exercised either within
Data Link layer or by DLS users. The Data Link layer may provide in additional
hanism by which a user may request urgent transfer of an Expedited DLSDU of a
maximum length. This is useful in case users wish to exchange control information

Ide the flow controlled normal data stream.
A connection may, conceivably, run into difficulties due to frequent transmission
rs or from its inability to interpret an incoming protocol data unit. In that case the
provider simply resets the data link. Similarly, either user may reset the

ection, if it so desires. In any case, all data over the link is discarded. The resulting
tus of the Data Link connection is identical to that which existed soon after
ection establishment.

Over local area networks, particularly, a Data Link layer may only support
ection-less data transfer. There, each DLSDU is considered to be unrelated to all

ers. The Data Link makes every effort to transfer it successfully, but without
ecting errors, or exercising flow control. Such functionally, when required, it

_ .- ically implemented by the Transport layer .

. 4.3 Service Primitives and Parameters

Table 4.3 lists the primitives concerning each service element, together with the
rameters associated with each parameters.

I.Connection establishment: Connection establishment is confirmed service, and is
1,·ailable only when DLS connection-oriented. During establishment, the two DLS users
and the DLS provider negotiate the use of optional service elements, if available (see
Table 4.4). The optional service elements are expedited data transfer and error
reporting. The DLS users and the DLS provider also negotiate the quality service to be
provided over the connection. The quality of service parameters include throughput and
transit delay. Other parameters, not related to performance, are protection and priority.
The above discussion suggests that the requirements specified by the initiating DLS user
may not match those required by the responding user. Or, these may not be supported
by a provider. In either case, connection is not established. This situation results in
primitive sequences shown in Figure 4.11 (b) and (c). Refusal to accept or to support a
connection is indicated by issuing a DL-DIS-connect primitive. Commenting upon other
parameters of DL-CONNECT primitives, the Responding Address is usually the same as
the Called Address. Further, some Data Link protocols may not permit User Data to be
included in DL-CONNECT primitives.

58

able 4.3 Data Link Services and Their Parameters.

Service Primitive Parameters

Connection DL-CONNECT request see Table 4.5
Establishment DL-CONNECT indication see Table 4.4

DL-CONNECT response see Table 4.4
DL-CONNCET confirm see Table 4.4

Connection DL-DISCONNECT request Reason
Release DL-DISCONNECT indication Originator, Reason

Sormal data DL-DAT A request user data
Transfer DL-DATA indication user data

Expedited data DL-EXPEDITED-DAT A request user data
Transfer DL-EXPEDITED-DATA indication user data

Connection DL-RESET request Reason
Reset DL-RESET indication Originator, Reason

DL-RESET response
DL-RESET confirm

iError reporting DL-ERROR-REPORT indication Reason

Data transfer DL-UNIT-DATA request see Table 4.5
(connection-less) DL-UNIT-DATA indication see Table 4.5

Parameter DL-Connect DL-Connect DL-Connect DL-Connect
Request indication response confirm

Called Address X X
Calling Address X X
Responding X X
Address
Expedited Data X X X X (=)
Selection
Quality of X X X X (=)
Service
DLS User Data X X (=) X X (=)

Note: (=): The parameter value is equal to its value in preceding primitive.

Table 4.4 Parameters of the DL-Connect Primitives.

59

Connection release: DL-DISCONNECT service is both unconfirmed as well as
provider-initiated. Further, when a connection is released, all data in transit is
discarded. Preferably, users must ensure that there is no data is transit before issuing a
DL-DISCONNECT request, unless a user or the provider is forced to do so due to
errors. The parameters Originator and Reason obviously specify whether the release is
initiated by a user or the provider, and the reason, if known. The value of the parameter
Originator is one of DLS User, DLS Provider, or Unknown. The value of the parameter
Reason depends upon the value of the Originator. Example values of Reason are
Connection rejection, DLSAP unreachable, permanent condition, Disconnection,
bnormal condition, and Reason unspecified. Figure 4.12(a), (b) and (c) illustrate the
release of a connection by a DLS user, the DLS provider, or by both simultaneously .
. Normal data transfer: Normal data transfer is an unconfirmed service (see Figure
4.12(d)). But, within the layer, Data Link entities may acknowledge the receipt of Data
Link Protocol Data Units that contain user data. In other words, a user can be assured
that its DLSDU will be delivered without errors, unless the connection is reset or
released.

Expedited data transfer: When available, the use of the service is negotiated during
ection establishment. Expedited DLSDUs are sent on an urgent basis, and are

ject to flow control different from that applicable to normal user data. (See Figure
12(e) for an illustration of the use of DL-EXPEDITED DATA primitives.)
Connection reset: The service is a confirmed service. A reset may also be initiated by
DLS provider. The net effect is to discard all data in transit. The parameters

· inator and Reason identify the source and the reason for doing so. If the value of
Originator parameter is DLS Provider, then the value of the Reason parameter is

e of Data Link flow control congestion or Data Link error. If Originator is DLS User,
en the value of Reason parameter is User Synchronisation. Figure 4.12(f) and (g)
trates the sequences of primitives for situations where the two DLS users, or a user

d the DLS provider, issue a DL-RESET primitive at about the same time.

Table 4.5 Parameters of the DL-Unit data Primitives

Parameter DL-Unit data request DL-Unit data indication

Called Address X X(=)
Calling Address X X(=)
Quality of service X
DLS User Data X X(=)

ote: (=): The parameter value is equal to its value in preceding primitive.

6. Error reporting: The optional Error Report service is used by the service provider to
inform a user that an error has occurred. This error may result in the loss of one or
more DLSDUs. Currently, most Data Link protocols simply reset the connection, instead
of reporting the error and proceeding. This service is provider-initiated, and ·
illustrated in Figure 4.12(h).

60

DL-Connect request
~1 1 ••. DL-Connect indication

DL-Connect confirm

DL-Connect response

(a) Successful connection establishment.

DL-Connect request

DL-Disconnect
Indication

(b) Connection rejected by the DLS provider.

DL-Connect request
DL-Connect indication

DL-Disconnect indicatio

DL-Disconnect request

(c) Connection rejected by the other DLS provider.

Figure 4.11 Example use of DL-Connect primitives.

6. Connection-less data transfer: In local area networks, particularly, the Data Link
may simply provide connection-less data transfer. A DLSDU is made available to the
service provider together with a Calling and a Called Address. The quality of service
expected of the Data Link layer also specified. Again, this service is unconfirmed. Within
the layer, Data Link entities may not acknowledge the receipt of a protocol data unit
containing a DLSDU. Figure 4.12(i) illustrates the use of corresponding primitives.
Figures 4.11 and 4.12 give some idea of how the use of Data Link service involves issuing

61

primitives at the two service access points. A formal model which specifies the
raction at the two DLSAPs is given in [ISO 8886.2] (see also [CCITT X.212]). The
el is based on two queues between the two DLSAPs, one for each direction of data
fer. It specifies in an abstract manner the cause-effect relationship between the

ractions at the two service access points. It does not, however, specify the constrains,
any, upon issuing of primitives by a user or the service provider at a given DLSAP.

DL-Disconnect request

DL-Disconnect indication

(a) Connection release by a DLS user.

DL-Disconnect indication

DL-Disconnect indication

(b) Connection release by the DLS provider.

DL-Disconnect request DL-Disconnect indication

(c) Connection release simultaneously by a user and a provider.

62

-Data request

DL-Expedited Data
request

DL-Reset request

DL-Reset confirm

DL-Data indication

(d) Normal transfer data.

DL-Expedited Data indication

(e) Expedited data transfer.

DL-Reset request

DL-Reset confirm

(f) Connection reset by the two users simultaneously.

DL-Reset request

DL-Reset confirm

DL-Reset indication

DL-Reset response

(g) Connection reset by a DLS user and the DLS provider simultaneously.

63

DL-Error Report
indication

DL-Error Report indication

(h) Error reporting.

DL-Unit Data request

DL-Unit Data indication

(i) Connection-less data transfer.

Table 4.12 Use of other DLS primitives: some examples.

4.5 Data Link Protocols

Instead of discussing Data Link protocols in general terms, we concentrate on two
Data Link protocols, CCITT's X.25 LAPB and IEEE's 802.2 and 802.3. The protocols
broadly cover both wide area and local area networks.

4.5.1 Functions

A Data Link protocol is specification of the functions that are implemented to bridge
the gap between the available Physical layer service and the Data Link service. The
functions include:

1. Addressing,
2. Frame delimiting,
3. Error detection, recovery and sequencing,
4. Flow control,
5. Protocol error detection and notification.

64

ide from processing information, Data Link entities exchange DL protocol data
(DLPDU), which contain user data as well as protocol control information. The
r portion of a protocol specification relates to the syntax (format), semantics and

timing of DLPDUs. A DLPDU may be sent by a Data Link entity to its peer entity in

user issuing a service primitive at a DLSAP,
receipt of a DLPDU from its peer entity,
an event occurring within the Data Link entity, or
an event notified by the lower PhS provider in the form of a service primitive.

When one of such events occurs, the Data Link entity may simply issue a service
· itive either at the corresponding DLSAP or PhSAP, or initiate some activity which
local to the entity itself. Figure 4.13 illustrates these cases. Note that "Timer" and its
rations are internal to the Data Link entity, whereas "Physical connection failure" is
event signalled by the lower Physical layer.
Frame-delimiting is a function that enables Data Link entities to delimit the start
end of a DLPU. A portion of the protocol control information, a start delimiter and

end delimiter, is used to enclose the remaining PDU (see Figure 4.14). Since the entire
DU is transferred transparently over the Physical medium, one must ensure that a

rtion of the enclosed POU is not interpreted as a delimiter. In X.25 protocol, the start
d end delimiter is a flag. Transparency of user data is ensured by bit-shifting the
aining POU (see [CCITT X.25]).

DL-Data
request

DL-Data
indication DATAPDU DATAPDU

tart "Timer" ., _ Stop "Timer"----+-------

ACKPDU

(a) User issues a primitive. (b) Receipt of a DL POU.

DATAPDU PhC failure _, _

Timer" elapsed indication

DISC POU

(c) Event occurs within the DL-entity. (d) Event notified by the Physical layer.

Figure 4.13 Occurrence of incoming events and resulting actions: an illustration.

65

Error Detection, Recovery and Sequencing
_,

Error detection, recovery and sequencing functions are all concerned with ensuring
DLSDUs are delivered to the receiver entity without error. Recall that transfer of a
ence of bits over the physical medium is prone to transmission errors. Further,
processing capability and buffer space is always finite, a receiver may not be able

buffer incoming DLPDUs. In spite of these limitations, DLSDUs must be delivered
out alteration in their contents, loss, or duplication, and in the proper sequence.
There are a number of approaches to error detection and recovery, but the one most
uently employed is based upon error detection and re-transmission. If a PDU is
1wn to have been corrupted by noise it is simply discarded. A discarded PDU can now
treated in a manner identical to that when it is lost. Transmission errors can be
ted by computing a checksum on the PDU and transmitting it as part of the PDU

If. Thus, a checksum is considered to be a part of the protocol control information.
choice of checksum algorithm is based upon the characteristics of transmission
r. For example, a Cyclic Redundancy Checksum (or CRC) is considered ideally

··ed for detecting burst errors. Further, the generation of a CRC, or its interpretation,
be conveniently done in hardware.
Lost PDUs can be recovered using one of several protocols, based on
transmissions. Once a PDU is known to have been lost, it is simply re-transmitted.
us detection of loss of PDUs becomes a major concern. In most protocols, the
ponsibility of ensuring that a PDU has been delivered to the corresponding Data Link
tity rests with the sender. The receiving Data Link entity is expected to acknowledge
e receipt by sending an appropriate acknowledgement. Acknowledgement PDUs are
emselves not acknowledged. Thus, if an acknowledgement does not arrive within a
defined interval, the initiator simply re-transmits the original PDU. Of course, this
y result in duplication sometimes. Thus, a protocol is needed that can recover from
t duplicated PDUs.

Flag I Other header information and user data I Flag I Flag

.fote: Flag= '01111110'

Figure 4.14 Frame delimiting in X.25 Data Link protocol.

4.5.4 Alternating-Bit Protocol

Elsewhere in the literature the protocol is also called stop-and-wait protocol. For
implicity, we shall consider reliable transfer of PD Us that carry user data, but only in
one direction. Such a PDU shall be referred to as a Data PDU. A PDU sent as
acknowledgement is called Ack PDU. Further, the Data Link entity which sends Data
PDUs is called the sender, whereas the entity which receives Data PDUs, and sends Ack
PDUs, will be termed the receiver. The Physical layer is assumed to support-full-duplex

66

sfer of PD Us. PDUs are received in the proper sequence, but may be lost. No upper
d is assumed on the delay n transferring a PDU.

Each Data PDU is sequentially numbered modulo-2. Similarly, an Ack PDU carries
sequence number, 0 or 1, of the Data PDU being acknowledged. The sender

· tains a timer, which is started soon after a Data PDU is sent. It is stopped as soon as
/

outstanding Data PDU is acknowledged by the receiver. When the timer runs out, the
.ta PDU is re-transmitted, and the timer restarted. Sample PDU transmissions are
wn in Figure 4.16, covering four different situations,

error-free and timely transfer of Data and Ack PD Us,
the Data PDU is lost,
the Ack PDU is lost,
delay in acknowledging the Data PDU.

Sender Receiver

Ackl

(a) PDUs are transferred error-free and without delay.

Sender Receiver
DataO

"Timer" started

"Timer" runs out -----------

(b) Data PDU is lost.

Figure 4.15 The alternating-bit protocol: an illustration.

67

Local Area Networks

The Data Link layer in local area networks is sub-divided into two sub-layers, called
edia Access Control layer (or MAC) and Logical Link Control layer (or LLC). This is
strated in Figure 4.16. Each Data Link entity has equal access to this medium, and all
smissions are broadcast over the medium. However, only the addressed receiver(s)

.y buffer incoming PDU. The mechanism used to co-ordinate access to the medium by
contending systems on the network is called media access control scheme. Other
ctions implemented within the MAC sub-layer include frame-delimiting, addressing,
d error detection.
Thus, the MAC layer may be viewed as a sub-layer that provides a service using
ich LLC entities may transfer a protocol data unit without being concerned with how
access the broadcast medium, or with frame-delimiting, addressing, and error
tection. The Logical Link Control layer uses this service the provide a connection-less

,r both vice is connection-oriented, flow control, error recovery and re-sequencing
ctions are implemented by LLC entities.

Logical Link Control t
Media Access Control

Data Link layer

•••

Physical layer

Figure 4.16 Sub-layers in local area networks.

4.6.1 Media Access Control Sub-Layer

Depending upon the physical characteristics of medium and the topology of the
network, a number of media access control schemes have been developed and
standardised. Figure 4.17 shows the relation between the three commonly used MAC
layer protocols and the LLC protocol. Notice that the LLC protocol can use any MAC
layer is specification of the media access scheme together with that of physical and
electrical interface with the transmission medium.

Table 4.6 summarises the major differences between the three MAC layer
specifications. Below we consider the contexts in which each protocol is particularly
suited. A network based upon CSMA/CD scheme over a 10 Mbps co-axial cable is
particularly suited in those environments where the volume of traffic is low and
minimum channel access delay is desirable. There is, however, no upper bound on the
access delay, which implies that it may not be suited for real time applications, specially
if the volume of traffic is high.

Applications that require a high throughput, and are not as particular about access
delay, may benefit from the use of a 4 Mbps ring that uses Token-passing channel access
scheme. An upper bound on the delay can be computed and enforced.

68

Table 4.6 A Summary of the Specification of IEEE's MAC and Physical Layer
Standards.

Characteristics IEEE 802.3 IEEE 802.4 IEEE 802.5

Channel Access CSMA/CD bus Token-passing bus Token ring
Data rate 10 Mbps 1, 5, 10 Mbps 1,4 Mbps
Trunk cable 50 ohm-co-axial 75 ohm co-axial twisted pair
Topology omnidirectional bus omnidirectional/ ring

directional bus
Base-band/broadband base-band both base-band
Bit-level encoding Manchester Manchester differential

modulation Manchester

The IEEE 802.4 standard has provrsion for a variety of transmission rates and
media. The most interesting, perhaps, is its implementation over a broadband CATV
cable based bus. It offers multiple high speed channels, some of which may be used to
carry voice or video signals. The channel access scheme is token-passing which, as
before, offers high throughput and bounded delay. It is, therefore, suited for real time
applications, including factory automation.

,-~~~~~~~~---------------~~~~~~~-
LLC LLC LLC LLC

---------------1-------------- t-------;

MAC IEEE
802.3

IEEE
802.4

IEEE
802.5

Physical

Figure 4.17 IEEE 802 standards and their relation to OSI layers.

4.6.2 Logical Link Control Sub-Layer Services

The LLC sub-layer offers to Network entities two classes of service. Class 1 service
is connection-less, and is relevant to those applications that do not require error-free or
flow-controlled transfer of user data. Class 2 service is both connection-oriented and
connection-less. The standard IEEE 802.2, however, defines these classes in terms of
types of operations. Type 1 operation is simply connection-less data transfer, whereas
Type 2 operation a balanced-mode connection is required to be established before data
transfer can take place.

A summary of LLC service primitives and their parameters is given in Table 4.7.
First, note that there is no response primitive at all. That is, any confirmed service,
connection establishment or reset for instance, the responding Network entity does not
issue a primitive in response to an indication primitive. Of course, the responding LLC

69

,ice user is simply informed of the operation. But, a confirm primitive issued to the
···ating LLC service user is based on the acknowledgement received from the remote
C entity. Figure 4.18 illustrates the sequence of primitives that are issued in order to
blish, reset or disconnect a connection, or to transfer data. Note that connection
blishment, reset, disconnection and data transfer are confirmed services. It may be

· ted out that the Status information provided in a confirm primitive has remote
ificance.
The other major difference is that expedited data transfer and error reporting are

,t supported. Instead, user may authorise the LLC layer to receive only a specified
ount of data. There is, however, no correspondence between the Flow-Control
uest and Flow-Control indication primitives. These are independent service

· itives, and have local significance only. Lastly, connection-less data transfer is
confirmed, but a confirm primitive, with local significance, is issued.

LLC Service Primitives and Their Parameters

ervice Primitives Parameters

Connection L-Connect request service class
Establishment L-Connect indication service class, status

L-Connect confirm service class, status
Data transfer L-Data-Connect request user data

L-Data-Connect indication user data
L-Data-Connect confirm status

Release L-Disconnect request -
L-Disconnect indication reason
L-Disconnect confirm status

Reset L-Reset request -
L-Reset indication reason

I

L-Reset confirm status
Flow control L-Flow-Control request amount of data

L-Flow-Control indication amount of data
Connection-less L-Data request user data, service class
Data Transfer L-Data indication user data, service class

Initiator Responder

L.xxx request

L.xxx indication

L.xxx confirm

(a) Connection establishment, reset, disconnection or connection-oriented data transfer.

70

Initiator Responder

L-Connection Flow-Control
request

(b) Flow control.

Initiator Responder

L-Data request

L-Data indication

(c) Connection-less data transfer .

. . ote: Above it is assumed that a service is not initiated simultaneously by two users or a
er and the LLC layer.)

Figure 4.18 Sequence of LLC service primitives .

. 6.3 Logical Link Control Sub-Layer

The functions implemented in Class 2 service, and the corresponding procedures, are
amilar to those of X.25 Data Link layer. A major difference between the two in the
odules used to sequentially number Data PDUs and, as a consequence, in the POU

formats. The Data PDUs are numbered modulo-128, which is basically a recognition of
the fact that the protocol is for use over high speed networks where it is desirable to
have as many outstanding Data PDUs as possible, subject to buffer availability.

An LLC PDU carries addresses of the source and destination LLC service access
points. These are in addition to MAC layer addresses. But, as with X.25 protocol, only
one data link may be established between a pair of LLC entities, unless each entity
upports services at more than one service access point.

71

Table 4.8 Connection-Oriented and Connection-Less Network Service Elements

Connection-oriented NC establishment
Normal data transfer
Receipt Confirmation (optional)

- Expedited data transfer (optional)
NC Reset (optional)
NC release

Connection-less Unit data transfer

.7 Network Services

A formal definition of Network objects, including NSAPs, Network connections,
CEPs, and NCEP identifiers was also given. The discussion in this section is mainly

concerned with Network service primitives and with their parameters .

. 7.1 Connection-Oriented Service Elements

Table 4.8 summarises the service elements available to NS users. Connection­
riented Network service is a collection of service elements that allow its users: (a) to
tablish or release connections, (b) to transfer data transparently (either normally or an

argent basis), (c) to acknowledge the receipt of normal data, or (d) to re-initialise
connection.

I. NC Establishment: An NS user may establish a Network connection (NC) with
another NS user. The address of the NSAP to which the responding NS user is
attached is assumed to be known to the initiating NS user. During NC establishment,
an NS user may request, and negotiate with the other NS user and the NS provider,
the quality of service to be provided over the NC .

. NC Release: Either NS user may unilaterally and unconditionally release the NC
once a connection has been established, or even during the establishment phase. As
one consequence, any user data currently in transit may not be delivered, and
discarded. Alternatively, a connection may be released by the NS provider, if it
determines that it is no longer possible to support the connection, either due to
breakdown or deterioration in the quality of service.
Normal Data Transfer: NS users may exchange data, in the form of Network Service
Data Units (or NSDUs) consisting of an integral number of octets, such that the
boundaries between NSDUs and their contents are preserved at the two ends. A
receiving NS user may control the rate at which an NS user sends data.

. Receipt Confirmation: By itself, when an NSDU is delivered to the destination Ns
user, the NS provider does not confirm its delivery to the initiating NS user. If the
users so desire, and if the Receipt Confirmation service is provided by the Network
layer, an NS user may acknowledge the receipt of an NSDU.

5. Expedited Data Transfer: Transfer of a limited amount of user data on an urgent
basis may be requested by an NS user. But, this service is available only when the NS
users agree to use it and the NS provider agrees to provide it. Further, the transfer of

72

Expedited-NSDUs may be subject a similar, but distinct, flow control by a receiving
NS user.

6. Reset: A reset, or a re-initialisation, of the established connection may be initiated by
either NS user or by the service provider, provided the service is available and its use
has been negotiated at the time of establishing the connection. The net effect is to
restore the connection to a state where there is no data within the network. All data
with Network entities or in transit is discarded. From the NS users viewpoint, the
service may be used to resynchronise their states, in case they detect errors within
the Transport layer .

. 7.2 Connection-less Service Element

Connection-less data transfer, on the other hand, does no require the establishment
of a connection prior to data transfer. Thus, the only available service element relates to
Connection-less Data Transfer. An NS user may transparently transfer an NSDU, of a
fixed maximum length, to another NS user is attached, is provided by the sending NS
er. Each NSDU is sent independent of other NSDUs together with the address of the
urce and destination NSAP. While initiating the transfer, the sending NS user may

request a desired quality of service that the NS provider must associate with the
transfer. The NS provider is expected to make every attempt to deliver the message,
correctly and timely. There is no guarantee, however, that the data would be delivered
correctly, or delivered at all .

. 7.3 Service Primitives and Parameters

Note, that NC Release is unconfirmed as well as provider-initiated, whereas NC
eset is confirmed and provider-initiated normal data transfer is confirmed, but users

may acknowledge receipt of data using the unconfirmed Receipt Confirmation service.

1. The Calling and the Called Addresses of the N-CONNECT primitives refer to the
addresses of the NSAPs to which the initiating and the responding NS users are
attached. More often than not, the Responding Address in the corresponding
response and confirm primitive is identical to the Called Address. However, in case
of re-direction or generic addressing the value of Responding Address may be the
address of the NSAP to which the connection has been established or should be
established by the Calling NS user entity.
N-COONECT parameters, Receipt Confirmation Selection and Expedited Data
Selection parameters enable NS users and the NS provider the negotiate the
availability, and use, of the corresponding optional service elements. The negotiation
procedure, for each selection, is such that if either one of the users or the provider
does not agree' to its availability or its use then the service is not used.
While a number of quality of service parameters have been defined, only
Throughput and Transit Delay are negotiated.

. The parameters, originator and reason, may be used to convey the source (NS user
or NS provider) of disconnection and the reason, if known. The parameter,
Responding Address, relevant only when a connection request is refused by the
corresponding user, conveys the address may be different from the Called Address,
in case of re-direction or generic addressing.

73

User data in N-CONNECT primitives is optional. Further, while it is specified as one
of the parameters in N-DISCONNECT primitives, it may not be available in some
networks. When an implementation supports transfer of user data in N-CONNECT
or N-DISCONNECT primitives, its length is limited.
Once a Network connection has been established, at each end the NS user and the NS
provider refer to its using an NCEP Identifier. This identifier is assigned by the NS
provider at t_he time of connection establishment and make known to the local NS
user. Since it has local significance, the identifier does not appear as a formal
parameter of N-CONNECT primitives .

.• 7.4 A Queue Model of Network Service

From Figure 4.19, when a primitive is issued at an NSAP, for a specific connection, a
rresponding primitives is subsequently issued by the NS provider at the other end of
e connection. A model is, therefore, required to specify such a correspondence between
teractions at two NCEPs. Such a model, based on queues. The application of that
odel to Network service is described here. This model is only an abstraction, and may
y be used to guide an implementation of the Network layer.

N-Connect request

N-Connect response

N-Connect indication

N-Connect confirm

(a) Connection establishment.

N-Disconnect request

N-Disconnect indication

(b) Disconnection.

74

N-Reset request

N-Reset confirm

N-data request

N-Reset indication

N-Reset response

(c) Reset.

N-data indication

(d) Normal data transfer.

Figure 4.19 Typical sequences of primitives.

4.8 Network Layer Protocols

We cover both area and local area networks, but limit ourselves to a network
consisting of one sub-network only.

4.8.1 X.25 Packet-Level Protocol

We have already seen that the Network service may be connection-oriented or
connection-less. Further, the Data Link service may also be connection-oriented or
connection-less. We first discuss a protocol for providing connection-oriented Network
service using a connection-oriented Data Link service. It based on CCITT's
Recommendation X.25 (see Figure 4.20) and is a specification of a sub-network access
protocol that allows Network entities in end systems (also called packet-mode DTEs) to
interface with a packet-switched sub-network. the access protocol at the Network layer
is connection-oriented. That is, using X.25 protocol, Network entities in end systems can
establish connections between themselves. Each connection is end-to-end, although the
exchange of protocol data units is only between an end system entity (or DTE) and the
sub-network to maintain correspondence between the two segments of the connection,
and thereby, relay the semantics of each PDU across the sub-network.

75

X.25PLP X.25 PLP

X.21 X.21

End system Sub-network End system

Note: PLP = Packet - level protocol.

Figure 4.20 Sub-network access protocol: X.25.

Before discussing the details of the X.25 protocol, it is important to point out that in
the case of wide area networks, the Network layer X.25 protocol assumes the availability
of a Data Link connection established in conformity with X.25 link access procedure
(balanced or unbalanced LAP). Therefore, all X.25 Network layer Protocol Data Units
are transferred as user data in Information frames of the link access procedure.

Figure 4.21 illustrates the procedure for establishment, release and re-initialisation
of connections, and for data transfer. Note that these figures do relate sending or
receiving of PDUs to issuing of service primitives, although such a specification is not
part of X.25. This relation can only be established it is clear that X.25 protocol can be
used to provide connection-oriented Network service. Discussion of packet parameters is
also postponed to next sub-section.

~ Sub-network •

DTE DCE DCE DTE
Call request

N-Connect
Request

N-Connect

N-Connect
Response

Call accepted

N-Connect
Confirm Call connected

(a) Connection establishment.

76

~ Sub-network ~

DTE DCE DCE DTE
Clear request

Clear indication

Indication

~I Clear
Confirmation

Confirmation

(b) Connection release.

1g11re 4.21 X.25 protocol procedures.

. X.25 protocol provides a means to simultaneously maintain a number of connections,
called virtual calls or permanent virtual circuits. Each virtual call goes through a call
establishment, data transfer and clearing phase. It may also be reset. Permanent
virtual circuits, on the other hand, are established on a permanent basis without
going through a formal establishment procedure. These may only be reset, but never
cleared. Each virtual call or permanent virtual circuits is identified by a Logical
Channel Number (LCN), which serves the purpose of connection protocol identifier.
The LCN is carried as a parameter in each X.25 PDU. Further, all virtual calls and
permanent virtual circuits are possibly multiplexed onto a single Data Link
connection.
During connection establishment Network entities in the two end sub-network
negotiate, on Per connection basis, the values of a number connection-related
parameters, and the use and availability of certain optional services. The
negotiations can broadly be divided into two categories. Negotiations take place
between Network entities and have significance for sub-network entities as well.
These include end-to-end acknowledgement, reverse charging, flow control
parameters, and fast select facility. The second category includes facilities using
which Network entities in end systems negotiate, or simply convey, the value of
parameters. Use of Expedited data transfer is one such example. Most of these
parameters are passed as optional facility parameters.

3. Acknowledgements in X.25 may have an end-to-end significance (see Figure 4.21 (d))
or, the significance of an acknowledgement may be local to the host-sub-network
interface. The D-bit is used to negotiate this facility during connection establishment,
or to request an end-to-end acknowledgement.

77

+-- Sub-network •
DTE DCE DCE DTE

I I I

.,-Reset
Request

N-Reset
Indication

-Reset -

Confirm I I I -----I N-Reset

·- Response
Reset
Confirmation

Confirmation

.i-Data
Request

(c) Connection reset.

+-- Sub-network ~

DTE DCE DCE DTE

N-Data
~Indication

(d) Data transfer.

78

.__ Sub-network ~

DTE DCE DTE DCE

Expedited
ta request

N-Expedited
Data

indication

Interrupt
Confirmation

(e) Expedited data transfer.

igure 4.21 continued.

. Expedited data transfer is supported by the protocol, and is known as an Interrupt
facility in X.25 terminology. Its use is negotiated between Network entities in end
systems alone.

. X.25 protocol has the added provision for a fast-select facility. This permits a calling
end system to request establishment of a connection with an option to the called end
system entity to reject the connection. But, in doing so, the end systems can exchange
limited amounts of user data in both directions. Of particular interest to us is the fact
that use of fast select service permits inclusion of user data in Call Accepted I
Connected and Clear Request I Indication packets as well.

6. Flow control of user data across an interface can be achieved firstly by negotiating,
on a Per connection basis, an appropriate value for the window size and packet size.
Further, Network entities may also use Receive Ready and Receive Not Ready
packets to limit the number of incoming User-Data packets.

. Segmentation is an important function performed within the Network layer. The
procedure the perform segmentation is specified by the X.25 protocol in terms of an
M-bit of User Data packets. Each packet contains one segment of user data with an
indication of whether the packet is the last packet in the sequence, or not. This
information is carried in the M-bit of User Data packets.

8. The Restart procedure in X.25 protocol may be used by a Network entity in an end
system or the sub-network to initialise or re-initialise an interface. The consequence
of restarting an interface is to clear all existing virtual calls, and to reset all
permanent virtual circuits across the interface. This procedure is invariably used
soon after a data link connection has been established or re-initialised.

9. Finally, there are some differences between the 1980, 1984 and the purposed 1988
versions of CCITT's Recommendation X.25. These differences may be significant

79

from the viewpoint of using the protocol the provide connection-oriented Network
rvice.

Connection-Oriented Network Service using X.25 Protocol

ince X.25 protocol is basically connection-oriented, all aspects concerning
ection management and data transfer over it are supported. What remains to be
is whether X.25 protocol procedures and packet formats are adequate to convey the
ntics of Network service primitives and to support negotiation of optional services.
w, we discuss these issues as also the mapping of Network service primitives onto
mission and reception of X.25 packets.

To provide connection-oriented Network service, the X.25 sub-network must support
select service and the following facilities:

Throughput Class Negotiation,
Minimum Throughput Class Negotiation,
Transit Delay Selection and Indication ,
End-to-End Transit Delay Negotiation,
Calling Address Extension,
Called Address Extension,

• Expedited Data Negotiation.

Table 4.9 Mapping of the Parameters of N-Connect Primitives

Parameters Field or Facility

Called Address Called DTE Address field
Called Address Extension facilitv

Calling Address Calling DTE Address field
Calling Address Extension facility

Responding Address Called DTE Address field
Called Address Extension facility

Receipt Confirmation Selection General Format Identifier

Expedited Data Selection Expedited Data Negotiation facility

QOS Parameter Set Throughput Class Negotiation facility
Minimum Throughput Class Negotiation facility
Transit Delay Selection and Indication facility
End-to-End Transit Delay Nezotiation facility

NS User Data Calling or Called User Data field
(Fast Select facility)

80

Figure 4.21 and 4.22 illustrate the correspondence between issuing service primitives
and exchange packets between Network entities in end systems and the sub-network.
table 4.9 summarises the mapping of parameters of N-CONNECT primitives onto
different fields of the corresponding packets. Note that:

1. maintaining the correspondence between a Network connection and a virtual call is a
local issue. What is significant is that a logical channel number enables the pair of
Network entities at an interface to uniquely identify a virtual call .

.__ Sub-network ~

DTE DCE DCE DTE

N-Data
Request
(D-bit=l) N-Data

indication
(D bit= 1)

~-Data
Acknowledge
indication

N-Data
Acknowledge
Request

Ready, Receive
Not Ready or
Reject packet

Figure 4.22 Receipt Confirmation.

2. The service parameters Calling and Called NSAP addresses are encoded as Calling
and Called DTE Addresses provided the NSAP addresses can be deduced from the
DTE addresses. This is the case when the Domain Specific Part of the NSAP
addresses is absent, or equivalently, when only one NSAP is served by the Sub­
network Point of Attachment (SNP A). In that case, NSAP address is the same as its
DTE address. Otherwise, two or more NSAPs are served by an SNP A, the NSAP
addresses are encoded using Calling and Called DTE Address Extension facilities,
together with Calling and Called DTE Addresses. Further, since we are currently
concerned only with a single sub-network, the DTE addresses are directly obtainable
from the Initial Domain Identifier portion of the NSAP Address.

3. There is no X.25packet which specifically conveys the semantics of N-DATA
ACKNOWLEDGE primitives. A variety of X.25 packets carry acknowledgement
information in the form of a P(R) value. When a sender entity receives P(R) =
(x + 1), it is an acknowledgement to all User Data packets sequentially numbered up
to and including x. Whether this acknowledgement is local or end-to-end depends

81

upon whether the sender had requested an end-to-end acknowledgement with the
User Data packet numbered x. If it is an end-to-end acknowledgement, the Network
entity issues an N-DATA ACKNOWLEDGE indication primitive. At the remote
receiver end, the Network entity delays sending an acknowledgement to a packet
numbered x, until the corresponding NS user issues an N-DATA ACKNOWLEDGE
request primitive. Needless to say, if an NSDU is segmented into a number of User
Data packets, then end-to-end acknowledgement is sent only after the NSDU has
been completely delivered and an N-DATA ACKNOWLEDGE request issued by the
user.

It is not a coincidence that the X.25 packet level protocol (X.25 PLP) can be used
directly to provide a connection-oriented Network service. In fact, the specification of
the Network service and the design of the current version (1984) of X.25 PLP have
considerably influenced each other. The earlier (1980) version of the protocol is
deficient, particularly regarding packet formats. As a consequence, it is unable to
directly provide connection-oriented Network service, unless additional procedures are
defined so that NS primitive parameters can be supported. In other words, a thin layer
of protocol is required to be implemented by each end system that wishes to support
connection-oriented Network service.

4.9 Inter-working Protocols

In this section we re-consider internetworking issues from the viewpoint of Network
layer protocol. The design of a Network layer protocol is complex since the access
protocols used over individual sub-networks may be different or may not fully support
the Network service. As a consequence, an internet-work may require a sub-layer of
converge protocol to be implemented to support end-to-end communication.

4.9.1 Introduction

A communication network may be formed by interconnecting two or more similar,
or perhaps dissimilar, communication sub-networks. Although it is transparent to users,
it is helpful to consider an internet-work as consisting of distinct sub-networks. It,
thereby, enables one to study addressing, sub-network access protocols and their
conversion, where necessary. While it is possible to directly interconnect the networks
with identical sub-network access protocols to form one internet-work, we shall assume
that the two sub-networks are connected using a network layer gateway, or an Inter­
Working Unit (IWU) to be precise.

Figure 4.23 illustrates an internet-work of two sub-networks, connected using an
IWU. The sub-network access protocols for the two sub-networks are not necessarily the
same. It is important, at this stage, to verify whether the access protocols are rich
enough to support all elements of the Network service. Provided, each access protocol is
able to directly support the required Network service, the design of the network layer
protocol may be simplified. Otherwise, additional procedures need to be defined in the
form of a convergence protocol, as was the case with using the 1980 version of X.25
protocol.

82

Network service Network service
••• • •• ,, - •.. - ... u ...• •.. ~/

...• •...

-------- SNAcP SNAcF SNAcP SNAcI -------- ~ . ~ •.. ~ ... ~• •.. ~ •... ...• •... ...• •..

End system Intermediate
system
(sub-network)

Intermediate
system
(IWU)

Intermediate End system
system
(sub-network)

Figure 4.23 lnternetworking of sub-networks using an Internetworking Unit.

4.9.2 Interconnection of X.25 Networks

Below we discuss interconnection of sub-networks whose access protocols, though
not identical, are able to support all elements of the Network service. In particular, we
consider interconnection of X.25 (1984 version), as an access protocol, is capable of
supporting connection-oriented Network service, and that it can be implemented over
local or wide area networks. It is, therefore, to be expected that an interconnection of
X.25 sub-networks using gateways could provide connection-oriented Network service to
users in end systems. Figure 4.24 illustrates, respectively, LAN-LAN, WAN-WAN and
LAN-WAN interconnections. Clearly, the protocol used at the physical and data link
layers on the two sides of the IWU are independent of each other. Further, the operation
of X.25 PLP protocols on the two side is also independent, except that as part of its relay
function the IWU relays the events occurring on the sub-network to the other sub­
network. For example, when a station on sub-network 1 needs to establish a Network
connection with a machine connected to sub-network 2, an X.25 virtual call is
established between a station and the IWU across each sub-network. The IWU
(gateway), on its part, relays each event on a virtual call onto other hand. Thus from the
viewpoint of NS users in end systems, the concatenation of two X.25 virtual calls appears
as one X.25 virtual call which can then effectively support the end-to-end Network
connection.

In the context of wide area public data networks, it is desirable to implement the
IWU as two half-gateways, as illustrated in Figure 4.25. This, to some degree, solves the
problem of distributed ownership and maintenance of gateways. In such cases, one may
use CCITT's X.75 access protocol to link the two gateways. The X.75 protocol is very
similar to X.25 access protocol, except that it is symmetric. Note that X.25 PLP protocol
defines an interface between a DTE and a DCE, which is inherently asymmetric.

83

Host

~-------------111111111111111111111111111-11111111111111

Internetworking Unit

X.25PLP X.25 PLP

LLC LLC

MAC MAC

LAN
LAN

Host

Host

X.25PLP

LLC

MAC

(a) LAN-LAN interconnection.

Internetworking Unit

WAN X.25 WAN
PLP

Host

Host

(b) WAN-WAN interconnection

lnternetworking Unit
WAN

I
X.25 PLP

X.21

LAN

(c) WAN-LAN interconnection.

Figure 4. 24 Interconnection of X.25 based LANs and WANs.

84

Host

WAN WAN

X.25

Figure 4.25 Interconnection of X.25 sub-networks using X. 75 based half-gateways.

4.9.3 Converge Protocols

Hop-by-hop harmonisation. Consider now the case where the internet-work is
formed using two sub-networks, but where the access protocol of at least one sub­
network cannot support the required Network service. Figure 4.26 illustrates situation.
One obvious approach to providing end-to-end Network service is to install a sub-layer
of protocol over each deficient access protocol. Such a sub-layer of protocol, called
convergence protocol. The approach here is similar to the one used to provide
connection-oriented Network service using X.25 (1980 version). The context this time,
however, is internetworking. As such the converge protocol is implemented by end
systems as well as the gateway. The approach is also referred to as hop-by-hop
harmonisation, and may be used irrespective of whether the sub-network access
protocol is connection-oriented or connection-less, and whether the Network service is
connection-oriented or connection-less. Note that the convergence protocols used over
each sub-network are independent. It is the gateway which relays the semantics of
events from sub-network the another .

. . etwork service Network service
a. ,l

SNDCPl SNDCP2
•r . - - ~ , ..

....• ..
~/

....• •.
-------- SNAcPl SNAcP1 SNAcP2 SNAcP: -------- - - ..• ~ - ~ - -••• •.

End system Sub-network 1 IWU Sub-network 2 End system

Figure 4.26 Hop-by-hop harmonisation: use of a convergence protocol across each sub­
network to support Network service.

85

As one application of hop-by-hop harmonisation, consider providing connection­
oriented Network service across an interconnection of twoX.25 based sub-networks, one
of which uses 1980 version of X.25 protocol. Clearly, one may use the converge protocol,
discussed earlier, over this sub-network to provide end-to-end connection-oriented
Network service. No such protocol need be implemented over the sub-network which
uses the 1984 version of X.25 recommendation.

Internet-work protocols. An alternative approach to internetworking requires that a
sub-layer of protocol be defined and implemented across the entire internet-work. The
protocol is called Sub-network Independent Convergence Protocol (or SNCIP), and is
illustrated in Figure 4.27. Obviously, as the name implies, before such a protocol is
defined and implemented, -it must be ensured that the service available to it is
independent of the access protocols of individual sub-networks, and uniform across the
inter-work. In case an individual sub-network is unable to provide the required service
element, then a Sub-network Dependent Convergence Protocol (or SNDCP) is
implemented over and above its access protocol.

Network service Network service

SNICP SNICP

SNDCPl SNDCP2
AcPl SN Ac NAcP2 SN Ac

End system Sub-network 1 IWU Sub-network 2 End system

Figure 4.27 Use of an internet-work protocol to provide Network service.

Clearly, using the inter-work protocol approach, the convergence protocol is
implemented in two sub-layers. The upper sub-layer is concerned with providing the
required Network service, whereas the lower sub-layer tries the iron out the differences
between the access protocol of each sub-networks. This approach also simplifies the
design of gateways. That is, the gateway simply relays (and routes) the semantics across
sub-networks with the sole purpose of supporting the intermediate service required by
the sub-network independent SNICP.

As an example of the application of inter-work protocol, consider the interconnection
two networks, using an X.25 (1984 version) sub-network. figure 4.28 suggests a
tocol stack that may be used to support connection-less Network service across the

ternet-work. The sub-network independent SNICP used across the internet-work is
Internet-work Protocol [ISO 8473], discussed later in this chapter.

86

CLNP CLNP
SNDCP

X.25 PLP

LLC Type 1 X.25LAPB
IEEE 802.x X.21

CLNP CLNP
SNDCP
X.25PLP

LLC Type 1
IEEE 802.x

X.25 LAPB
X.21

LAN Host IWU WAN Host

Figure 4.28 A suggested protocol stack for use over LAN-WAN interconnection.

4.9.4 Connection-less Network Protocol

The connection-less network protocol (or CLNP) is also referred to as an Internet­
work Protocol, and is intended to be implemented by end systems to provide end-to-end
connection-less Network service. It may be used across one sub-network, or an
interconnection of a number of sub-networks. Further, it assumes the availability of
connection-less data transfer service across each sub-network. such a capability is made
available, for instance by the LLC (Class 1) service in local area networks, or by an
SNDCP protocol running over an X.25 network.

Table 4.10 lists the only services it assumes of the underlying sub-networks. Note
that addresses are sub-network points of attachments, whose significance is local the
each sub-network. Therefore, it is the responsibility of intermediate IWUs (network
entities, to be sure) to suitably route information through the inter-work, either based
upon routing information that they generate from the given NSAP addresses, or based
upon routing information already contained within the protocol data units (or PDUs).

Below we discuss some of the more significant functions implemented by the inter­
ork protocol:

I. Lifetime Control of PD Us: This function requires that a CLNP PDU be discarded by
an intermediate Network entity, if it is known that it has been in the internet-work
for a sufficiently long time. This feature helps to simply the design of a Transport
layer protocol that ensures error-free connection-oriented data transfer across
internet-work. The maximum lifetime of CLNP PDUs is determined using an
estimate of the maximum end-to-end transfer delay .

. Segmentation of PDUs: While the maximum size of user data in an N-UNITDATA
request primitive is 64512 octets, it is rarely the case that underlying sub-network
access protocol support such large PDUs. Therefore, the Internet-work protocol
permits an NSDU to be transferred as a sequence of segmented PDUs with the same
sequence number (or Data Unit Identifier). Since the segmented PDUs may be
transferred through a number of intermediate sub-networks, each supporting a
different maximum permissible PDU size, intermediate IWUs may further segment
the received PDU segments. However, re-assembly of PDUs takes place only at the
destination end system.

87

3. Routing of PDUs: Once a CLNP PDU has been composed, the sending Network
entity determines the next Network entity to which the PDU must be sent, as well as
the underlying sub-network to be used.

Primitives Parameters

UNITDATA request/indication Source SNPA
Destination SNP A
Quality of Service
User Data

Table 4.10 Sub-network Service Primitives and Parameters

88

CHAPTER 5

The Transport Layer

While the Network layer, and those below, provide a path for data transfer between
communicating end systems, the Transport layer is primarily responsible for providing
end-to-end services and ensuring that such communication is largely error-free. In this
chapter, we discuss the nature of Transport level services, and the variety of protocols
necessary to bridge the gap between the services provided by the Network layer and
those desired of the Transport layer. Connection-less Transport services and the
required protocol are also discussed.

5.1 The Transport Layer

The section is an overview of the nature of services provided by the Transport layer.
The different classes of protocols are also listed.

The Transport layer is situated between the Network layer and the Session layer (see
Figure 5.1). While the Network layer spans the entire collection of open systems, the
Transport layer, and those above, have components that are implemented only in end
open systems, that is, systems where applications are implemented. This is so since all
interactions within the Transport layer are end-to-end. Exchange of information
between peer Transport entities is made possible by the end-to-end data transfer service
provided by the Network layer. The services provided by the Transport later to user­
entities is the Session layer are called Transport service. These services insure efficient
and reliable data transfer between Session entities, independent of the underlying
communication network or media (see Figure 5.1).

T~ User I Session Layer
J TS;ser

Transport Service

Transport Layer

• • •
Network Service

Network Layer

Figure 5.1 The Transport service, its users and the provider.

89

5.1.1 Data Transfer Characteristics

Elements of the Transport service may be classified into those that are connection­
less services and those that are connection-oriented. In either case, data transfer service
may be characterised as being:

1. end-to-end,
2. transparent,
3. independent of the underlying communication media,
4. varied in quality of service,
5. (possibly) reliable, -
6. efficient or optimised.

Let us consider these characteristics.

1. End-to-end data transfer capability is largely derived from the Network service
characteristics.

2. Transparency of information transfer refers to the fact the Transport layer places no
constrains on the message contents or its coding.

3. Independence from the underlying communication media implies that the users of
the Transport service do not experience a difference in the quality of service (or
QOS) of Transport service as a result of changes in the Network service or its
quality. The QOS of the Network service are substantially dependent on the
transmission media used, as well as upon the networking technique employed.

4. The Transport layer may provide a variety of quality of service. Provision is thus
made for Transport service users (or TS users) to request and negotiate, among
themselves and with the Transport layer, the desired QOS of Transport service. The
QOS may be characterised in terms of throughput, transit delay, residual error-rate,
and failure probabilities.

5. Provision of reliable data transfer facility implies that data will be transferred error­
free, loss-free, duplication-free, and possibly in the proper sequence. This
functionally may sometimes be derived from the Network service. If not, functions
and protocols are defined and implemented as part of the Transport layer achieve
reliability of data transfer. The extent to which reliability is ensured is limited, but is
consistent with the negotiated quality of Transport service.

6. Efficiency of data transfer is another major requirement of the Transport service.
That is, the Transport service required to provide the desired QOS by suitably using
available Network layer services and other resources. For instance, multiplexing and
splitting are particularly relevant in the context of connection-oriented Transport
service.

5.1.2 Transport Connections

In the context of Transport services, Session entities are its users, while the
Transport layer, and those below, are provider of Transport service. These services
made available by the TS provider at Transport-service-access-points (or TSAPs) to the
attached TS users. Transport services may be classified into those that are connection­
oriented or connection-less data transfer services, either or both of which may be offered
by the Transport layer. Connection-oriented services assume that data transfer can

90

· only after a connection has been established between the TSAPs, to which the
esponding TS users are attached. Such a connection is referred to as Transport

nnection, or TC.
A TC is established between two TSAPs on behalf of the attached TS users. Surely,
e may exist a number of TCs at a TSAP. Further, there may even exist more that
TC between the same pair of TSAPs. The use of T-Connection-end-points (or
Ps) allows one to distinguish between the various TCs established at the same

,AP. At a TCEP, the TS user and the supporting Transport entity refer to the
esponding TC using distinct TCEP-identifier. Thus, corresponding to each TC,
re is an associated pair of TCEP-identifiers, one for each end of the TC. Note, these
ntifiers need not be the same, since their significance is only local.

1.3 Connection-Oriented Services

Connection-oriented Transport service includes service-elements to establish or
ase connections, or to transfer data transparently. Data is normally transferred in
form of Transport-data-service-units (or TDUs). These services are summarised

TC Establishment: A TS user may establish a TC with another TS user. The address
of the TSAP to which corresponding TS user is attached is assumed to be known to
the initiating TS user. During TC establishment, a TS user may request, and
negotiate with the other TS user and the TS provider, the quality of service to be
provided over the TC.
TC Release: Either TS user may unilaterally and unconditionally release the TC
during its establishment, or subsequently. As one consequence, any data currently in
transit may not be delivered, and destroyed.
Normal Data Transfer: TS users may exchange data, in the form of TSDUs
consisting of an integral number of octets, such that the boundaries between TSDUs
and their contents are preserved. The Transport layer may controls the rate at which
a TS user sends octets of data sent, rather than the rate of TSDUs.

• Expedited Data Transfer: A limited amount of user data may be transferred by a TS
user in the form of Expedited-TSOU. But, this service being provider-optional, is
available only if the TS users agree to use it and the TS provider agrees to provide it.
Further, the transfer of Expedited-TSOUs may be subject to a similar, but distinct,
flow control by the Transport layer .

. 1.4 Connection-less Services

Connection-less data transfer services, on the other hand, do not require the
tablishment of a connection prior to the data transfer. Thus, the only service-element
vailable relates to Connection-less Data Transfer. A user may transparently transfer a
TSOU, of restricted length, to a TS user. The address of the TSAP, to which the
receiving TS user is attached, is known to the sending TS user. Each TSDU is sent
independent of other TSDUs. While initiating the transfer, the sending TS user may
request the desired quality of service that the TS provider must associate with the
transfer.

91

5.1.5 Network Services Assumed

In order to provide Transport service, the Transport layer uses the available
.,etwork service. The available Network service quality may in some cases be
comparable, or even identical, to the Transport service it provides. In that case, the
design and the implementation of the Transport layer and its protocol is relatively
imple. But when the Network layer provides minimum functionally, or is poor in
quality, the Transport layer is fairly complex. In other words, the Transport layer
implements those Transport functions that are necessary to bridge the gap between the
.. etwork service available to it and the Transport service which it offers .

. 2 Transport Protocols

Since there is a great variability in the Transport service to be provided and the
ietwork service that may be available, a number of classes of Transport protocols are
fined.
The responsibility of providing Transport services, described earlier, lies with the TS
vider. Since its TS users are spread across open systems, implementation of a TS
vider is in the form of a collection of co-operating Transport entities.

Communication between Transport entities residing in different open systems must
conform to a set of rules and procedures, so that there is no ambiguity in interpreting
received messages. These rules are specified as a part of a Transport protocol. Further,
communication between Transport entities requires that there be available some
. ietwork service, using which data units of the Transport protocol may exchanged.

From the viewpoint of standardisation, aspects of communication that are open and
ubject to standardisation are those that are related to services and to protocol only. A
protocol standard specifies in detailed manner the semantics and syntax of all messages
communicated between peer entities. Syntactical issues are important in the context of
protocol specification, since a receiver must decipher from the received bits and bytes
the message being encoded. The mapping of service primitives onto messages
communicated is equally important, but only from the viewpoint of ensuring that a
protocol achieves the goals of providing the defined Transport service(s). Similarly,
pecification of the manner in which a Transport entity uses the available Network
ervice enables a common view of how Transport protocol data units are transferred.

5.2.1 Network Services

1. TC Establishment,
2. TC Release,
3. Normal Data Transfer, and optionally,
4. Expedited Data Transfer.

To provide these services, the Transport layer implements a number of functions that
are necessary to bridge the gap between the Transport service it provides and the
available Network service. Flow control, multiplexing, segmentation, error detection and
recovery, and expedited data transfer are some example functions that may be

lemented by the Transport fayer. The range of functions to be implemented depends

92

only upon whether or not expedited data transfer service is to be provided, but also
the availability of the certain optional Network layer services and their quality.

nnection-oriented NS

C Establishment,
NC Release,
Normal Data Transfer,
NC Reset, and optionally,
Expedited Data Transfer,
Data Acknowledgement.

. Connection-less Data Transfer.

assumed that Expedited Data Transfer and Data Acknowledgement services are
tionally provided, and that their use is negotiated in providing connection-oriented

TS. Further, a protocol for connection-less TS does not make use of NC Reset, Data
_.cknowledgement, and Expedited Data transfer services.

5.2.2 Types of Network Connection

Frequency of signalled failures is similar to resilience. The difference is that only
ignalled NC release or reset are considered while computing the frequency of signalled
failures. Based on this characterisation, an NC may be classified as one of the following
types:

Type A: A network connection with an acceptably low residual error rate and
acceptably low rate of signalled failures.

Type B: A network connection with an acceptably low residual error rate, but which has
an unacceptably high rate of failures.

Type C: A network connection which has an unacceptably high residual error rate.

From the viewpoint of Transport layer protocol design, a high residual error rate is
considered to be considered to be far more serious, thereby requiring a fairly complex
protocol to carry out error detection and recovery. Thus, it is immaterial whether a
Type C network connection has a low frequency of signalled failures or not. Further, the
design of Transport protocol for use over a connection-less NS is likely to be as complex
as the one that uses a Type C network connection, since they both exhibit similar error
characteristics.

93

5.2.3 Protocol Classes

In view of the above classification of Network services, and the fact that Expedited
Data service is optional, a variety of Transport protocols have been defined. These are:

1. protocols for providing connection-oriented Transport service using connection­
oriented NS. Depending upon the type of connections available, either one or more of
the following five classes of protocols may be implemented:
(a) Class 0: Simple Class (TPO),
(b) Class 1: Basic Error Recovery Class (TPl),
(c) Class 2: Multiplexing Class (TP2),
(d) Class 3: Error Recovery and Multiplexing Class (TP3),
(e) Class 4: Error Detection and Recovery Class (TP4).

2. protocol for providing connection-oriented Transport service using a connection-less
Network service.

3. Protocol for providing connection-less Transport service using connection-less or
connection-oriented Network service.

5.2.4 Connection-less Transfer Protocol

This protocol specifies the procedures necessary to provide connection-less data
transfer service between two TS users. The procedures, aimed at moving a user TSOU
from one TSAP to another, are extremely simple, since the supporting Transport entities
do not have to ensure reliable delivery of user data. Further, since connection-less data
transfer service is on a Per TSOU basis, these procures for acknowledgement, flow
control, multiplexing, error recovery, etc. are not relevant.

The connection-less data transfer protocol may either use the available connection­
less Network service or connection-oriented Network service. As such the protocol
defines two variations of a procedure to· transfer Transport layer protocol-data-units,
one for each type of available Network service. Error detection may optionally be
carried out to enable a receiving Transport entity to detect, and thus discard, TPDUs
that contain transmission errors.

5.3 Connection-Oriented Protocol

In the preceding section reference was made to a number of functions, for example,
flow control, multiplexing, etc. But there are many more needed to implement the
different classes of connection-oriented protocols.

With each function, there is an associated procedure which specifies the details of all
communications that take place between peer Transport entities, and how such
communication is affected using an available service. As to when a function is invoked, is
not of particular concern here. There may be correspondence between issuing of TS
primitives and invoking of these procedures. For instance, when a TS user issues a
T-EXPEDITED DATA request primitive, the supporting Transport entity invokes the
expedited data transfer procedure. On the other hand, multiplexing is used within the
Transport layer to provide efficient and cost-effective data transfer service.

94

5.3.1 Transport-Protocol-Data-Units

Each procedure describes communication between Transport entities in terms of
TPDUs exchanged between them. It specifies the contents of each TPDU and the
interpretation that a receiving Transport entity associates with each TPDU and its
parameters.

The collection of TPDUs required to implement each class of connection-oriented
Transport protocols is listed Table 5.1. Note that some of the TPDUs are used only when
certain options are negotiated in protocol Classes 1 and 2.

The following functions are commonly used in all classes of protocols that support
connection-oriented TS and use connection-oriented NS.

1. Assignment to Network Connection,
2. Transfer of TPDUs,
3. Connection Establishment,
4. Connection Refusal,
5. Connection Release,
6. Association of TPDUs with TC,

Treatment of Protocol Errors,
Segmentation and Re-assembly.

Table 5.1 Applicable TPDUs for Each Protocol Class

! TPDUs Protocol Class

,I TPO TPl TP2 TP3 TP4

1 CR: Connection Request * * * * * I CC: Connection Confirm * * * * * I DR: Disconnect Request * * * * * I DC: Disconnect Confirm * * * * i DT: Data * * * * * 1 ED: Expedited Data * NF * *
i AK: Data Acknowledgement NRC NF * * EA: Expedited Data Acknowledgement * NF * * RJ: Reject * * ER: TPDU Error * * * * *

95

iote:
: TPD U is always used,
IF: not available when non-explicit flow control is selected,
iRC: not available when receipt confirmation is selected.

.2 Assignment to Network Connection

Each Transport connection is supported using a Network connection. That is,
UUs concerning a TC are sent over an NC assigned to it. This assignment of a TC is
de at the time of TC establishment. The procedure for Assignment to Network

onnection enables a pair of communicating Transport entities to use the same NC to
pport all communication pertaining to a TC. The Transport entity which initiates te
·c establishment procedure is the one responsible for assigning the TC to an NC. The
ignment can, however, only be made an NC which the initiating Transport entity
s. That is, the NC to which the TC is assigned must have been established upon a
uest from the initiating entity. The responding Transport entity becomes aware of

e assignment when it receives a TPUU requesting the establishment of a TC (that is, a
TPDU) over the assigned NC.

3.3 Transfer of TPDUs

Each TPDU communicated between Transport entities is transferred over an NC, to
hich the TC is assigned, using Normal Data transfer or Expedited Data transfer or
ing N-DATA or N-EXPEDITED DATA primitives. In Class 1 protocol, expedited TS
er data may be sent using the Expedited Data transfer service provided by the

_ (etwork layer. This is, however, subject to availability and negotiation by the
ommunicating Transport entities.

5.3.4 Connection Establishment

This procedures relates to the establishment of a Transport connection between a
pair of supporting Transport entities. The initiating Transport entity sends a CR TPDU,
to which the responding Transport entity responds with a CC TPDU if it accepts the
establishment of the TC (see figure 5.2 (a), (b)). These TPDUs are sent using N-DATA
primitives over the assigned NC. If, however, the responding Transport entity can not
accept the connection, it responds with a DR TPDU, signifying a disconnection request.

A number of parameters are included in each of CR and CC TPDUs. Prominent
among these are:

1. Calling and Called TSAP Addresses (optional, in case the NSAP Addresses uniquely
identify TSAps),

2. Source and destination reference numbers, which are used to identify a Transport
connection,

3. Initial Credit allocation in case flow control is used,
4. Proposed or selected values of negotiable parameters,
5. User data, if any.

Identify TC. A Transport connection is identified using a pair of reference numbers,
one chosen by each communicating Transport entity. This identifier is, in fact, a
Transport protocol-connection-identifier, and has significance which is local the
communicating Transport entities. The initiating Transport entity chooses a source
reference number (called SRC-REF), but assigns a value of Oto DST-REF (a destination

96

ference number) before sending the CR TPDU. The responding Transport entity
ooses a value for the other reference number just before sending the CC TPDU.
ubsequently, whenever a TPDU containing the parameters SRC-REF and/or DST-REF

• sent, SRC-REF has the value of the reference number assigned by the sending
ransport entity at the time of connection establishment. Similarly, DST-REF is
signed the value of the reference number chosen by the receiving (or destination)

Transport entity.
The range of values of reference numbers, and the mechanism for choosing one, is

ot specified by the protocols, except to limit its code to 16 bits. A reference number may
reassigned to another TC, one the TC has been released and it is reasonably clear
at no TPDU concerning the released TC is anywhere in the network.

A B

cc

(a) Successful establishment in
protocols classes O through 3

(b) Successful establishment
in protocol class 4

CR CR

Timers run out ..,..
(Network

connection or

timer run
out

(c) Multiple attempts at establishment
in protocol classes O through 3

(d) Re-transmission of CR TPDU
in protocol class 4

CR

(e) Connection Refusal
Figure 5.2 Connection establishment.

97

egotiation of protocol class and options. During connection establishment a
number of parameters are negotiated, including:

1. protocol class,
2. use of optional functions of their variants, including window size, and use of

expedited data transfer and checksums,
3. maximum TPDU size,
4. quality of service parameters, such 'as throughput and security.

The choice of protocol class is primarily dictated by TS user requirements in terms of
optional services, quality of service, and by the type of available network connection.
The Transport entity proposes a preferred protocol class and possibly some alternatives,
bile the responding Transport entity either totally rejects the connection establishment

or selects a protocol class, depending upon its view of TS user requirements and
available resources.

5.3.5 Connection release

A TC upon establishment may be released, in Class O protocol, by simply
disconnecting the supporting NC. This procedure is referred to as the implicit variant of
connection release. However, in protocol Classes 1 through 4 where either multiplexing
is admissible or where error recovery is feasible, a TC release is initiated by a transport
entity considers the connection as closed once it has responded with a DC TPDU,
ignifying Disconnection Confirmation. The supporting NC may, if necessary, be
disconnected using NS primitives. Additional comments follow:

1. Upon release of a TC, each Transport entity may be required to freeze the reference
number that it had earlier assigned to the TC. In protocol classes O and 2, where it is
not mandatory to do so, an implementation may, in fact, freeze the reference
numbers.

2. Since the TC may be released, either at the request of a TS user or because of failure
of the supporting NC, the reason, if available, is made known to the TS user(s).

5.3.6 Association of TPDUs with TC

Once individual TPDUs have been separated out, their association with a TC is
primarily based on a Transport protocol-connection-identifier. This identifier, as
mentioned earlier in this section, is the paired reference numbers (SRC-REF, DST­
REF). In fact, the DST-REF contained in the received TPDU is used, in most cases, to
associate the TPDU with the TC. There are two additional difficulties in using this
scheme. These relate to the following:

1. The TPDU may be received over an NC to which the corresponding TC is not
currently assigned. In such a case, reassignment of TC onto a different NC is
presumed.

2. At the time the TPDU is received, the TC may have already been released, but only
from the viewpoint of the receiving Transport entity. In that case a TPDU is

98

returned that confirms the release of the corresponding TC, or the received TPDU is
ignored.

Connection-less Protocol Procedures

In this section we discuss procedures that are relevant to this protocol.

.4.1 Transport-Protocol-Data-Units

Only one type of TPDU is defined for connection-less Transport protocol, UD TPDU
for Unit-data). Such a TPDU primarily contains user data provided by a TS user in the
form of the TSDU in a T-UNITDATA request primitive. Aside from the TSOU, the
urce and destination TSAP addresses, and optionally a Checksum parameter, are also

· eluded. The TSAP addresses are also provided as part of T-UNITDATA request
primitive .

. 4.2 Transfer of TPDUs

A UD TPDU is transferred by a Transport entity to the relevant peer Transport
entity using connection-less or connection-oriented data transfer service provided by the
.,etwork layer. This selection of Network service is based upon the availability of these
services, and the quality of service requested by the TS user. Quality of service
parameters include transit delay, protection from unauthorised access, cost, and
residual error rate. A connection-less Network service is likely to offer better delay and
cost characteristics while a connection-oriented Network service offers, in general, a
mailer residual error rate.

In either case, the sending Transport entity uses it address mapping function to
determine the source and destination NSAP addresses from the given TSAP addresses.
Further, depending upon the requested quality of service, a Transport entity may or
may not include a checksum parameter in the UD TPDU. If residual error rate is
particular concern then the checksum parameter may be included. A receiving
Transport entity discards the TPDU if it determines that the TPDU is erroneous. No
positive (or negative) acknowledgement is sent by the receiving Transport entity, nor is
there any confirmation provided by the supporting Network layer.

Using connection-less network service. In case connection-less data transfer
service is used, the UD TPDU is sent as NS user data (or NSDU) using N-UNITDATA
service primitives. If the size of the UD TPDU exceeds the acceptable maximum NSDU
size, the sending Transport entity may abandon transfer of UD TPDU, altogether.

Using connection-oriented network service. A UD TPDU is sent as NS user data
using N-DATA service primitives, but only after a Network connection has been
established. If the attempt to establish a Network connection fails, or if it disconnects
prior to issuing an N-DATA primitive request, then the transfer of UD TPDU is
abandoned by the Transport entity. Once data transfer is complete, the supporting
Network connection may be released by either Transport entity. The Transport entities
communicating a UD TPDU, of course, have to need to reset the Network connection.

99

CHAPTER 6

The Session Layer

The main functionally of the Session layer is to provide Presentation entities with the
means to organise exchange of data over a connection, to negotiate release of the
connection, or to place synchronisation points in the stream of data. The latter enables
users to structure their communication in the form of a serious of dialogue units, and the
subsequently resynchronise data exchange in the event of errors. Synchronisation points
also allow users to define an activity that may be interrupt and later resumed. These
services, and the necessary protocols, are discussed in this chapter.

6.1 Introduction

The Session layer is suited between the Transport layer, and the Presentation layer.
As with the Transport layer, subsystems corresponding to the Session layer are present
only in those open systems where Application entities reside. As such, all interactions
between Session entities are end-to-end, and are possible by the services provided by the
Transport layer (see Figure 6.1).

The Session layer, together with the layers below, provides services, called Session
service (SS), to its user entities in the Presentation layer, and thereby, to the Application
entities. These services are accessible by a Presentation entity at a Session service-access­
point (SSAP), to which it is attached. As such, a Presentation entity attached to an SSAP
is also referred to as an SS user, while the Session layer, together with layers below, is
called the SS provider. Further, the Session service connection-oriented. That is, two
Presentation entities may exchange data only after a connection has been established
between the SSAPs, to which they are, respectively, attached. Such a connection is called
a Session connection.

Presentation layer

'-_ Presentation entity ___/

SSAP SSAP
Session Layer

Transport Layer

Figure 6.1 The Session layer.

100

6.1.1 Session Connections

A Session connection is established by the Session layer between two SSAPs on
behalf on the attached Presentation entities. The Presentation entity requesting the
establishment of a Session connection provides to the Session layer the address of the
SSAP, to which the responding Presentation entity attached. Such an address may have
been obtained using the directory or the address mapping function of the Presentation
layer. Since there may exist a number of connections between an SSAP and other
SSAPs, each Session connection is identified by its and point. Such an identifier is called
Session-connection-end-point identifier (SCEP-identifier).Thus, for each connection
there is an associated pair of SCEP-identifier, one for each connection there is an
associated pair of SCEP-identifier, one for each end of the connection. An SCEP­
identifier allows the Session service provider and the attached Presentation entity to
uniquely identify (or refer to) the connection.(See Figure 6.2).

SCEP

SSAP

Session Connections

TSAP TSAP

Transport Layer

Figure 6.2 Session connections, SSAPs and SCEP identifiers.

101

1.2 Data Transfer Characteristics

Data transfer over a Session connection is end-to-end and reliable, a characteristic
gely derived from the connection-oriented Transport service. Additionally, data is
nsferred transparently and independent of the underlying Transport connection is set
or maintained. However, the quality of data transfer service over a Session

connection, in respect of throughput, delay, is to a great extent dependent upon the
uality of Session service requested by an SS user determines the quality of service

required of the Transport service. Further, a Session connection exhibits the following
dditional characteristics:

1. Interaction between two users over a Session connection may be organised. That is,
the users co-operate between themselves to determine as to who may initiate certain
operations over the connection at any given time. Operations that are subject to such
control are half-duplex data transfer, orderly release, and synchronisation. As to
how such a decision is arrived at is not the concern of the Session layer. The SS
provider simply enables transfer of control over the connection from one to the
other.

2. Synchronised data transfer refers to an ability on the part of users to structure their
exchanges in the form of a series of a dialogue units. All data exchanges within a
dialogue unit are totally separated from those that take place in other dialogue units.
Using services made available unit, and resynchronise their data exchanges, when
necessary.

3. Users may structure their communication in the form of an activity. Many of the
data transfer operations have meaning only within an activity. The most important
characteristic of an activity is that it may be interrupted and resumed subsequently,
either during the life time of the current Session connection or a fresh one.

6.1.3 Services

Services provided by the Session layer may be broken down into a number of
individual service elements. Connection establishment, data transfer, and connection
release are similar to those associated with any connection-oriented service. There are,
however, some differences in connection release and data transfer services, primarily
since both these services are subject to being to organised. Additional service elements
are required to support synchronised data transfer and resynchronisation. It may,
however, be pointed out that provision of service to support organised or synchronised
data transfer is not mandatory on the part of the Session layer, and, even if provided,
the users may or may not negotiate their use.

6.1.4 Session Layer Protocol

The Session layer protocol implements those functions that allow SS user entities to
organise and/or synchronise data transfer. As such, there is only one class of Session
layer protocol, within which a number of options are available. These options pertain to
various functional units, including half-duplex data transfer, synchronisation,
negotiated release.

102

Functions of error detection and recovery, re-sequencing, flow control, are of little
importance in the context of Session layer, since each Session connection is mapped onto
a relatively error-free Transport connection. If Transport connection fails, or if a
protocol is detected then the corresponding Session connection is aborted. It is for the SS
users to re-establish a Session connection and resynchronise exchange of data. The latter
would be feasible, provided an activity is in progress.

6.2 Organised and Synchronised Data Transfer

Organised data transfer refers to service provided by the Session layer, whereby a
pair of SS users, in a co-operate manner, determine who may initiate certain operations
related to a Session connection at a given time. These operations relate to data transfer,
orderly release, synchronisation, and to activity management. These concepts, together
with that of synchronisation, are discussed in this section.

6.2.1 Half Duplex Data Transfer

(Normal) data transfer may either be full duplex (two way simultaneous) or half
duplex (two way alternative). In the latter case, at any time, at most one SS user has
exclusive rights to initiate transfer of data over the connection. To enable SS users to
transfer control over the connection, the notion of a token, or more precisely a data
token, is defined.

1. If, at the time of connection establishment, half duplex data transfer has been
negotiated, then the data token is said to be available.

2. Otherwise the token is not available, in which case there exist no constraint on an SS
user issuing data transfer primitives. But, if the token is available, then, at any time,
it is either.

In the former case, 2(a), only the user whom the data token is assigned, may initiate data
transfer by issuing an S-DATA request primitive. The latter case, 2(b), may arise when
the token is being transferred by a user to other. Figure 6.3 illustrates half duplex data
transfer between SS users. Note that the service element S-DATA is unconfirmed.

Soon after a connection has been established, and if the data token is available, then
it may be assigned by the initiating SS user to itself, or to the other SS user. The
initiating SS user may, if it so chooses, leave it to the responding SS user to assign the
data token. Subsequently, the SS user, to which the data token is currently assigned,
may give the token to the corresponding user using the service element Give Tokens. Or,
an SS user may even request the corresponding SS user to transfer the token to it using
the service element Please Tokens. Exchange of data token between SS users, using the
primitives S-TOKEN-GIVE and S-TOKEN-PLEASE, is shown in Figure 6.3.

103

S-DATA indication

S-TKEN-GIVE indication
(Data token this side)

S-DATA request

S-DATA request

S-DATA request

S-TOKEN-PLEASE indication

S-TOKEN-GIVE request

S-DATA indication

(Data token this side)
S-DATA request

S-TOKEN-GIVE request

S-DATA indication

S-DATA indication
S-TOKEN-PLEASE request

S-DATA-indication

S-TOKEN-GIVE indication
(Data token this side)

S-DAT A request

Figure 6.3 Half duplex data transfer and exchange of data tokens.

6.2.2 Negotiated Release

Yet another operation that is subject to being organised is connection release. These
different connection release procedures are available. These are User Abort, Provider
Abort, and Orderly Release. User Abort and Provider Abort are services elements,
where an SS user or the SS provider may unilaterally abort the connection, respectively.
The other parties involved are at best informed of its release. Note that, as a
consequence, data in transit may be lost or destroyed.

Orderly release, on the other hand, involves a two way interaction between the two
SS users, as well as the SS provider, before the connection is released. This ensures that
data in transit is delivered before the connection is released. See Figure 6.4(a) for an
illustration, where it is assumed that the service Orderly Released is confirmed, and that
the associated service primitive is S-RELEASE. Orderly release has two important
characteristics. These are:

1. either SS user may initiate orderly release of the connection,
2. an SS user responding to the connection release has no option but to accept the

release of the connection.

Instead, the SS users may agree at connection time to alter these characteristics of
orderly release by making available a release token and, thereby, subject orderly release
to be controlled by the current assignment of the release token. This form of connection
release is called negotiated release, wherein the SS user, to which the release token is
currently assigned, has exclusive right to release the connection. The corresponding SS

104

user has, in that case, the right to refuse the release of the connection. See Figure 6.4(b).
The management of release token is similar to that of the data token.

A Session layer is required to provide all three forms of disconnection. It may or may
not implement functions to support negotiated release. Further, selection of half duplex
data transfer and that of negotiated release are totally independent. But, for any given
selection of these services, additional constraints on issuing corresponding service
primitives are implied.

S-RELEASE request

S-DATA indication

S-RELEASE confirm

S-RELEASE request

S-DATA indication

S-RELEASE confirm (negative)

S-DATA indication

(a) Orderly Release.

(b) Negotiated Release

Figure 6.4 Release of a Session connection.

6.2.3 Resynchronisation

S-DATA request
S-RELEASE indication

S-RELEASE response

(Full duplex data transfer)
S-DAT A request
S-RELEASE indication

S-RELEASE response
(negative)

S-DATA request

Although rare, the possibility of occurrence of an error, either within the Session
layer or in logical communication between the two users, cannot be ruled out. Or, users
may wish to restore the environment that may have existed earlier. To handle such
requirements, SS users may initiate a resynchronisation procedure that allows them to
set the state of their communication to a defined state. Such a state may be last
confirmed major synchronisation point, or a subsequent minor synchronisation point.
That is, issuing S-RESYNCHRONISE primitives, SS users may resynchronise to any

105

nchronisation point within the current dialogue unit. In other cases, users may even
define a new state, if the current dialogue units is to be abruptly terminated, and a new
one started. As such, three different forms of resynchronisation are defined. These are
referred to as options, and are discussed below:

1. The Restart Option: The restart option enables SS users to resynchronise
communication to a synchronisation point, previously defined. Such a point may be
the last major synchronisation point or a minor synchronisation point place within
the current dialogue unit. While making the request, the initiating SS user identifies
the serial number, sl, of the synchronisation point to which communication is to be
resynchronised. sl is constrained to be V(R):::: s1:::: V(M). Once resynchronisation is

complete, V(M) ~ sl.
2. The Abandon Set Options: These options also permit SS users to resume

communication from an agreed point, but after the current dialogue unit has been
terminated. In terms of the net effect, once resynchronisation is complete,
V(M) ~ sl, V(R) ~ 0,
where sl is the synchroq_isation point serial number passed by/to the SS user as a
parameter of the corresponding request primitive.

If the abandon option is used, sl is the next available serial number, provided by the SS
provider, while the serial number is provided by an SS user in case of set or restart
options. This state is similar to the one each once a connection has been established. In
such respects, therefore, there does seem to be a similarly between the two options. The
difference between the two is in respect of the serial number to be associated with a
future major or minor synchronisation point.

Whether or not users abandon the current dialogue unit, and thereby disregarded all
communication within it, is a matter of semantics to be determined by the users, by
mutual agreement. One possible use of resynchronisation, with the set option, is for
users to resynchronise to any of the previously established major synchronisation points.

With resynchronisation, data currently in the pipeline may be destroyed, or purged.
In fact, one of the uses to which resynchronisation service may be put is to purge the
Session connection of all data. This is best done using the restart option. Further, with
resynchronisation, the available tokens are reassigned by mutual negotiation between
the users. Also, resynchronisation service may be used by an SS user to destructively

assign tokens to itself.

6.3 Session Protocol

Recall that the Transport layer simply provides services for end-to-end connection
establishment, termination, normal data transfer and optionally expedited data transfer.
Therefore, the Session layer is required to implement a variety of functions in order to
close gap between Transport services and Session services. Aside from using a
Transport connection to establish (or terminate) a Session connection, it must maintain
state information concerning synchronisation points and activities and update the same
each time a minor or major synchronisation point is placed, resynchronisation occurs,
or an activity related service element is initiated. Further, the Session \ayer must ensure
that interaction between SS users and the SS provider is consistent with the current
distribution of available tokens.

106

~ __•••••••••••••••••••••• 111111111-111111111111111

SCEP

SSAP

- Session Connections

Session
Layer

Session
Layer

Supporting
._ Session Entities

_......____ Transport Service
TSAP. TSAP.

Supporting TC

Figure 6.5 Model of the Session layer concerning a single Session connection.

6.3.1 Session Protocol Data Units

Needless to say, that an important function of the Session layer is to convey the
semantics of its interaction with an SS user over the connection to the other user. Figure
6.5 gives a model of the Session layer as it concerns a single Session connection. The
interaction between a Session entity and the corresponding SS user is via service
primitives. The two supporting Session entities interact with each other by exchanging
Session Protocol Data Units (SPDUs) over a logical connection that they establish
between themselves to support the particular connection between the two users.

Exchange of SPDUs between the two entities is governed, both in respect of
semantics and syntax, by the Session protocol. The protocol also specifies the event(s)
that causes an SPDU to be sent, or the actions to be taken by a Session entity when it
receives an SPDU. For instance, when an SS user issues an S-CONNECT request, its
supporting Session entity, sends a CONNECT SPDU to the corresponding remote
Session entity. Further, when the remote Session entity receives a CONNECT SPDU, it
issues an S-CONNECT indication primitive to the corresponding SS user. The
responding SS user's response is conveyed through an ACCEPT or REFUSE SPDU,
depending upon whether the value of the Result parameter in the S-CONNECT
response primitive is "accepted" or "rejected by SS user". Figure 6.6 illustrates the use

107

of CONNECT, ACCEPT and REFUSE SPDUs in connection establishment. The figure
illustrates three different cases corresponding to:

1. successful establishment,
2. rejection by the responding Session entity,
3. rejection by the responding Session user.

Table 6.2 lists the SPDUs that are associated with each Session service primitive. This
association of SPDUs with service primitives immediately suggests the sequence of
events that take place when a Session layer itself. Some of the other procedures are
illustrates in Figure 6.7, including data transfer, resynchronisation, and provider­
initiated abort.

S-CONNECT request

S-CONNECT confirm

S-CONNECT indication

~ S-CONNECT response

(a) Successful connection establishment.

S-CONNECT request ~ONNECT

S-CONNECT confirm
(Result = rejected)

(b) Connection refused by responding Session entity.

S-CONNECT request

S-CONNECT confirm
(Result = rejected)

S-CONNECT indication

S-CONNECT response
(Result = rejected)

(c) Connection refused by responding SS user.

Figure 6.6 Use of CONNECT, ACCEPT, REFUSE SPDUs connection establishment.

108

6.3.2 Connection Initialisation

During connection establishment, several aspects concerning procedures to be used
subsequently are negotiated. Depending upon the procedure, the negotiation may take
place between the two SS users alone, the two supporting Session entities, or between all
four entities. We shall first consider:

1. assignment of Session Connection Identifier,
2. assignment of Activity Identifier, where applicable,
3. initial assignment of available tokens.

As noted earlier, Session Connection and Activity Identifiers are totally transparent to
the SS provider (that is, to Session entities), and are, therefore, negotiated between the
two users alone.

Assignment of available tokens is also negotiated between the two users, but the
Session layer makes a record of the assignment. It does so to later ensure that SS users
issue related primitive in accordance with constrains imposed by the token assignment.

Now, consider those parameters that are negotiated between SS users and the
supporting Session entities. These include:

1. Functionalunffs,
2. Initial Synchronisation Point Serial Number.

User requirements of functional units are purposed by the initiating SS user in
parameter Session Requirements of S-CONNECT request primitive. The Session
protocol assumes that both supporting Session entities are capable of providing the
series implied by the purposed functional units. In other words, the initiating and
responding entities are free to reject the connection establishment, in case either of them
does not implement related functions (see Figure 6.6(b)). The applicable set of functional
units is determined by the intersection of the two proposals.

Synchronisation point serial number, or equivalently the value of variable V(M), has
significance only for when one or more of the following functional units has been
negotiated:

1. Minor and/or Major synchronisation,
2. Resynchronisation,
3. Activity management.

In that case, the Synchronisation Point Serial Number is initialised as follows:

1. If the Activity management functional unit has been selected, the synchronisation
point serial number is not initialised. Instead, it is initialised to 1 whenever an
activity is "started" (see Table 6.1).

2. Otherwise, V(M) is initialised to the value returned in the parameter, Initial
Synchronisation Point Serial Number, of S-CONNECT response primitive, or for the
initiator in the ACCEPT SPDU.

109

Service elements SPDU associated with Associated ACK
request indication or reject SPDU
primitives

S-CONNECT CONNECT ACCEPT or REFUSE
S-RELEASE FINISH DISCONNECT or

NOT FINISHED
S-U-ABORT ABORT -
S-P-ABORT ABORT -
S-TOKEN-GIVE GIVE TOKENS -
S-TOKEN-PLEASE PLESE TOKENS -
S-CONTROL-GIVE GIVE TOKENS -

CONFIRM

S-DATA DATA -
S-EXPEDITED-DATA EXPEDITED DATA -
S-TYPED-DATA TYPED DATA -
S-CAP ABILITY-DAT A CAP ABILITY DAT A CAP ABILITY DATA

ACK

S-SYNC-MINOR MINOR SYNC POINT MINOR SYNC ACK
S-SYNC-MAJOR MAJOR SYNC POINT MAJOR SYNC ACK
S-RESYNCHRONISE RESYNCHRONISE RESYNCHRONISE

ACK

S-U-EXCEPTION-REPORT EXCEPTION DATA -
S-P-EXCEPTION-REPORT EXCEPTION REPORT -

S-ACTIVITY-START ACTIVITY START -
S-ACTIVITY-RESUME ACTIVITY RESUME -
S-ACTIVITY-INTERRUPT ACTIVITY INTERRUPT ACTIVITY

INTERRUPT ACK
S-ACTIVITY-DISCARD ACTIVITY DISCARD ACTIVITY DISCARD

ACK
S-ACTIVITY-END ACTIVITY END ACTIVITY END ACK

Table 6.1 Mapping of Session service Primitives onto SPDUs.

Negotiation of the particular Session protocol to be used is clearly of concern only to the
supporting Session entities. Therefore, each Session entity sends, to its peer entity, a list
of protocol versions that it is capable of supporting. The negotiated version is the one
with the largest version number present n the two lists. Currently versions 1 and 2 of the
Session protocol are available. These versions refer to the 1984 and 1988 versions of
CCITT's Session protocol.

Session entities also determine themselves the manner in which an underlying
Transport connection is used to support the Session connection. At any time, there is a
one-to-one correspondence between the Session connection and supporting Transport

110

connection. In other words, multiplexing or splitting functions are not used by the
Session layer protocol. Instead, a Transport connection may be used to support another
Session connection, but only after the former Session connection has been terminated.
Thus, at the time of Session connection establishment, it is not necessary to establish
afresh a Transport connection if there already exists a connection. Such a connection

1. is between a pair of TSAPs, to which the respective Session entities are attached,
2. the quality of service of the available Transport connection is comparable to those

requested by the initiating SS user.

The Addresses of the Called TSAP is obtained using the address mapping function of the
Session layer. This function also provides a Called Session Selector, used by the
responding Session entity to uniquely identify the particular SSAP within the domain
the Called TSAP. A similar procedure is used to obtain, from the given Calling SSAP
Address, the Calling TSAP Address and the Calling Session Selector. While the Calling
and Called TSAP Addresses are used to establish a supporting Transport connection,
the Calling and Called Session Selectors are communicated as parameters in the
CONCEPT SPDU.

There are other characteristics of the Transport connection that are of particular
relevance to the Session protocol. These include

1. availability of Expedited Data transfer service over the Transport layer,
2. the maximum TSOU size.

S-DATA request

S-DATA indication

(a) User initiated data transfer.

S-RESYNC request

S-RESYNC response

S-RESYNC indication

S-RESYNC confirm
RESYNCACK

(b) Resynchronisation.

111

~-~~

S-P-ABORT indication

S-P-ABORT indication

ABORT ACCEPT

(c) Provider initiated abort.

Figure 6. 7 Sequence of SPDU transmissions: some examples.

6.3.3 Use of Available Transport Service

Since the Transport service is limited to connection establishment, termination, and
normal and expedited data transfer, and since the lifetime of the underlying Transport
connection may be beyond that of the Session connection, it is evident that all SPDUs
concerning the particular Session connection are sent as normal TSDUs. In case of
Expedited Data transfer over the Transport connection is negotiated, then ABORT and
ABORT ACCEPT SPDUs are sent as Expedited TSDUs.

As one consequence of the above, it may be necessary to negotiate an appropriate
value of the maximum size of TSDUs that can be supported. Its negotiation is clearly,
between the two Session entities and the TS provider. The negotiation is done
independently for each direction of data transfer, and follows the procedure laid out by
the Transport service specification. If a maximum TSOU size is negotiated successfully
then, by implication, the two Session entities also agree to segment an SSDU (Session
Service Data Unit), provided the length of its corresponding SPDU exceeds the
negotiated maximum TSOU size. Obviously, each SPDU so constructed after
segmentation must contain an indication of whether it contains the first, last or an
intermediate segment of the corresponding SSDU. SSDUs from S-DATA, S-TYPED
DAT A, and other primitives are all subject to segmentation.

112

CHAPTER 7

The Presentation Layer

The main of functionally of the Presentation layer is to provide for suitable
transformation of the syntax of all data exchange between Application layer entities.
This ensures that the data exchanged can be interpreted appropriately by the two
Application layer entity to represent information using a local syntax.

7.1 Introduction

This section is an introduction to services provided by the Presentation layer. In
particular it covers issues that concern representation of information exchanged
between Application entities. Presentation layer protocol is also briefly discussed.

7.1.1 Representation of Information

Recall from earlier chapters, that issues concerning end-to-end, reliable and cost­
effective data transfer have already been resolved at the Transport layer. The Session
layer ensures that such transfer is organised and/or synchronised. As such, major issues
concerning data transfer have already been taken up and resolved by the Session layer,
and those below. What remains to be discussed is representation of information
exchanged between Application entities.

All along, data exchanged between users of given service has taken the for of a string
of bits (or octets). But, given the fact that the users exchange a variety of information,
the problem of representing user data is non-trivial. Either each Application entity itself
encodes user information in a manner that is well understood by its peer entity, or this
problem is solved by placing a separate layer - the Presentation layer - between the
Session layer and the Application layer. The latter approach is adopted by the
architecture of Open Systems Interconnection.

The Presentation layer, together with the lower layers, provides Presentation Service
(PS). Using this service Application entities may transfer information without concern
for how information is represented. This illustrated in Figure 7.1, where it is shown that
two communicating Application entities, sometimes referred to as PS users, access these
services at Presentation service access points (PSAPs) to which they are attached. The
sending Application entity hands over user information to the Presentation layer using a
representation scheme that is local to its interface with the Presentation layer. (The
Presentation layer, together with the layers below, is referred to as PS provider.) The PS
provider ensures that the user information is made available to the corresponding PS
user using a representation that is also local to its interface, and possibly different from
the former.

113

Application Layer

PSAP PSAP

Presentation Layer

Session Layer

Figure 7.1 The Presentation Service Provider and its users.

7.1.2 The Abstract Syntax

Aside from transferring information from one user to the other, the Presentation
layer carries out translation from one scheme of representation another. To do so, it
must clearly be aware of the structure of user information. Obviously, this structure
must also be known to the two communicating users for them to be able to associate a
definite meaning with the information communicated.

Thus, the structure of user information must be unambiguously defined, and make
known to the two users as well as the PS provider. The structure of user information
may be either simple, for instance, an integer, a character, or an octet. Or, it may be
more complex, in that it is defined in terms of a number of components each of which is
either simple or complex, for example, a string of characters, a record of values, an or a
sequence of records. The structure of user information is known as abstract syntax, and
may be defined using the Abstract Syntax Notation One (ASN.1), which itself is a
standard.

7.1.3 The Transfer Syntax

Above, we have made no mention of how the PS provider encodes user information
and then transfers it from one user to the other. Figure 7.2 is a model of the Presentation
layer, where it is shown that the supporting Presentation entity encodes the information
into a string of bits (octets) using a particular scheme and transfers the coded string of
bits to its peer Presentation entity. The scheme used to encode user information must be
known to its peer Presentation entity as well. The Presentation entity, which receives the
encoded user information, may decode the information content and hand it over to the
corresponding user. The encoding scheme is known as the transfer syntax. Together, the
abstract syntax and the transfer syntax are known as the presentation context.

114

Schemes for encoding user information whose structure is defined using the Abstract
Syntax Notation have been standardised, and are available in reference.

To summarise the discussion thus far, user information that needs to be
communicated must be structured. This structure, or the abstract syntax, must be
known to, or negotiated between, the PS users as well as the PS provider. Further, the
transfer syntax used to encode data consistent with the abstract syntax must be
negotiated between the supporting Presentation entities.

Data Transfer Using Abstract Syntax

Data Transfer using
Local Syntax

Data Transfer using
Local Syntax Application Layer

Data Transfer using Transfer Syntax

Presentation Layer

Presentation entities

Session Layer

Figure 7.2 Data transfer using presentation services.

7.1.4 Presentation Services Characteristics

The Presentation layer provides services by which a presentation context can be
negotiated between the concerned parties. This usually takes place at the time of
connection establishment. In fact, at connection establishment, the concerned parties
negotiate a set of presentation context. Furthermore, using available Presentation
services it is possible for PS users to dynamically change the set of defined presentation
contexts that are currently active. In case the presentation context set is empty, then a
default context is used to encode user information. The default context also be at
negotiated connection establishment. In the absence of any such negotiation, a default
context is always available, which is known a-priori to all communicating Presentation
entities and Presentation service users.

The above implies that the Presentation service is connection oriented. That is,
Application entities may exchange information only after a connection has been
established between PSAPs to which they are respectively attached. Such a connection is

115

called a Presentation connection. Between a given pair of PSAPs, they may exist zero,
one or more Presentation connections any time. Such connections may be distinguished
from each other by associating with each connection a pair of Presentation-connection­
end-point-identifiers (PCEP-identifiers), one for each end of the connection. The
significance of a PCEP-identifier is, as usual, local. As such, the two PCEP-identifiers of
a connection may or may not be distinct.

7.1.5 Data Transfer Characteristics

The majority of characteristics of data transfer over a Presentation connection are
derived from those of the supporting Session connection. Surely, data transfer is end-to­
end, reliable, and possibly organised and/or synchronised. Further, the quality of
Presentation service is closely tied to that of the supporting Session service. The
characteristics of data transfer is specially contributed by the Presentation layer relate
to representation of user information. Once a presentation context has been negotiated,
PS users may transfer data without concern for how such data is represent and
transferred. User data may be transferred as normal data, typed data, expedited data,
capability data or as part of certain operations including abort, release,
resynchronisation, etc. But not all user data is subject to the currently defined
presentation context set. User data contained in expedited data transfers, is always
encoded using a default presentation context.

7.2 The Transfer Syntax

The abstract syntax of information exchanged between two communicating
Application entities must be made known to the Presentation layer, so that supporting
Presentation entities may appropriately determine an encoding scheme to represent it
during transfer. The encoding algorithm, also known the Transfer Syntax, is negotiated
only between the Presentation entities that support the particular connection. One such
transfer syntax is discussed below. It corresponds to the specified by the OSI
architecture for use together with the Abstract Syntax Notation One.

7.2.1 Tag Identifier

The identifier octets encode the tag class and number of the associated data type.
The encoding of the identifier is given Table 7.1

If the tag number is between O and 30, one identifier octet is adequate so encode the
tag. Additional octets are required to specify the tag number in case it is 31 or more. A
data type whose tag is, for example, APPLICATION 180, the three identifier octets
would be 01111111 10000001 00110100, where bit 8 of the second and third octets
indicate whether at least one identifier octet follows the current octet, or not, and x is 0
or 1.

116

Table 7.1 Encoding of a Tag Class and Number: Leading Octet

Bits Value Interpretation

Bits 8 and 7 00 Universal class
01 Application class
10 Context-specific
11 Private class

Bit 6 0 Primitive data type
1 Constructed data type

Bits 5 through 1 11111 Tag number is 31 or more
xxxxx Binary representation of tag number

Note: Bit 8 is most significant bit, and bit 1 is the last significant.

Table 7.2 Encoding of Tags: an Example

Data type Ta2 Identifier octets
Employee Record APPLICATION 0 01100000
Job Title Type UNIVERSAL 22 00010110
(type of) Job Title CONTEXT 1 10100001

7.2.2 Length of Contents

The length octet specifies the number of octets in the contents field. There are three
distinct cases:

1. The data type is primitive, in which case the length specifies the exact number of
octets in the contents field,

2. The data type is constructed, but the encoding of data value is unavailable at the
current time. Here the length field is encoded to suggest that end-of-contents octets
are present and will be used to delimit the contents field,

3. The data type is constructed, and the encoding for contents field is available. Here
the sending Presentation entity has the option to either specify the length explicitly,
or delimit the contents field with end-of-contents octets.

If the number of octets in the contents field is less than or equal to 127, then one octet is
adequate, otherwise 2 or more octets are required to specify the length. The encoding of
leading length octet is given in Table 7.3. In Table 7.4 the examples illustrate the
encoding of the length field.

117

Table 7.3 Encoding of the Length Field: Leading Octet

Bits Value Interpretation

Bits 8 through 1 Oxxxxxxx Number of octet is
less than 128, binary encoded

10000000 End-of-contents octet is present
11111111 Not used
lxxxxxxx Number of subsequent octets in the

length field, binary encoded

Table 7.4 Encoding of the Length Field: Some Examples

Length Encoding

18
180
1048
unknown

00010010
10000001
10000010 00000100 00011000
10000000

The end-of-contents octets, if present, are encoded as two zero octets. The question of
ensuring transparency would be discussed shortly.

7.2.3 Encoding of Octets Field

The contents filed, consisting of zero or more octets, is used to encode the actual data
value. This encoding depends upon its data type. If the type being encoded is primary,
then it directly encodes the data value. Otherwise, if the type is constructed, then each
component is encoded in a manner similar to the being discussed, that is, recursively
using the 4-tuple (identifier, length, contents, end-of-contents).

The OSI standards specify the encoding of the contents field for each of the primary
data types, as well as for those that are constructed. Below we discuss the encoding of
some of these.

1. A value of type BOOLEAN is encoded as (OO)H if the value is FALSE, and as a non­
zero octet, otherwise.

2. An integer is encoded as one or more octets using Two's complement binary
representation using a minimum number of octets. For example, - 25 is encoded as
11100111, or (E7)H, but not as (FF E7)H.

3. Consider now the encoding of a value of type OCTETSTRING. If the entire string of
octets is available, then it may be treated as one long string of octets of whose length
is known and indicated in the length field. The encoding of the octets is
straightforward. But, when it is necessary to encode one part of the string at a time,
then the string is viewed as constructed. The end-of-contents indicator is then used to
delimit the construction. Each sub-string is transferred as a component with its own
identifier, length, contents, and possibly end-of-contents octets.

118

--·----·.- ---.---

4. A similar scheme may be used to encode a BITSTRING. Here, additionally, one
needs to indicate the number of significant bits in the last octet. All data transfers,
however, are of an integral number of octets.

5. A character string of the type IS0646STRING is encoded very much like an octet
string, but after mapping each character onto an octet using the IAS 7-bit character
encoding scheme. Bit 8 is set to zero.

6. A value of a data type that has been tagged is treated as constructed. As such the
contents field consists of encoding of the base encoding.

7. As a last illustration of encoding of the contents field, consider the construction of
the type SET. Its encoding is constructed. The contents field then consists of the
complete encoding of each component of the data value. The detailed example below
illustrates this.

7.3 Presentation Services

In this section we discuss services that the Presentation layer makes available. This
enables Application entities to transfer information using a syntax of their choice. The
applicable collection of abstract syntax may be agreed to at the time of connection
establishment, and perhaps changed subsequently. Service primitives, and their
parameters, are discussed in this section.

7.3.1 Context Establishment

The Presentation layer provides services using which Application entities may
initially define the set of Presentation contexts, and subsequently modify it. The defined
context set, to be initially applicable, is negotiated during connection establishment. The
interface with the PS provider enables the initiating user to identify one or more
abstract syntax to be supported by the PS provider. The connection establishment
procedure is successful provided:

1. The PS provider is capable of supporting the default context and some, if not all, of
the named abstract syntax using an appropriate transfer syntax.

2. The responding service user at the other end agrees to the proposed default context
and, partly or wholly, to the proposed defined context set,

3. Together, the Presentation layer and the supporting Session layer are able to provide
the required services.

If either of these conditions is not satisfied, then the establishment of the connection is
unsuccessful. The three possibilities, indicated in the Figure 7.3, corresponds to:

1. successful Presentation connection establishment,
2. connection establishment refused by the PS provider,
3. connection establishment refused by the responding PS user.

119


~~~~~~~~~~---~ 

The P-CONNECT service is confirmed. We briefly discuss each of these parameters. 

1. The Calling and the Called Presentation Addresses are as usual PSAP addresses. 
The Called Presentation Addresses is mapped by the Presentation layer, using the 
address mapping function, to obtain a Called Session Addresses of a SSAP to which 
the supporting Session connection must be established. The Responding Address is 
present in the response and confirm primitives only if a PSAP address other than the 
Called Presentation Address should be used to re-establish a Presentation 
connection. This is helpful in case of generic addressing or in redirection. 

P-CONNECT Request 

P-CONNECT Confirm 

P-CONNECT Request 

P-CONNECT Confirm 
(result=provider-rejection) 

P-CONNECT Indication 

P-CONNECT Request 

(a) Successful Establishment. 

(b) Establishment rejected by the PS provider. 

P-CONNECT Request 

P-CONNECT Confirm 
(result=user-rejection) 

P-CONNECT Indication 

P-CONNECT Request 
(result=user-rejection) 

(c) Establishment rejected by PS user. 

Figure 7.3 Establishment of a Presentation connection. 

120 



2. Whenever present, Presentation Context Definition List contains one or more items. 
Each item consists of two components, a Presentation context identifier and an 
abstract syntax name. The Presentation context identifier has significance only for 
the local PS user and the PS provider. It is assigned by the initiating PS user and 
interpreted by the PS provider. In all future references to a Presentation context 
only the context identifier is used. 

3. The Presentation Context Definition Result List is again a list of one or more items, 
each of which indicates acceptance or rejection of the corresponding context in the 
proposed Presentation Context Definition List. Each value represents either 
acceptance, user-rejection or provider-rejection. Further, if a proposed context is 
rejected by the PS provider, then the PS user may not accept the particular context. 

4. The Default Context Name, if present, identifies the abstract syntax to be used as the 
default abstract syntax. The Default Context Result is an indication of the 
acceptance or rejection by the responding PS user. If the proposed default context is 
not acceptable to the PS provider, it simply issues a P-CONNECT confirm primitive, 
and terminates the connection (as in Figure 7.3(b)). 

5. The parameter Mode may take the value normal or X.410 (1984). The latter mode is 
highly restrictive in terms of availability of Presentation context, but is adequate to 
support CCITT's X.400 based messaging system through. With this mode of 
operation, there is no need to negotiate a defined context set or a default context. 
User data concerning this application is assumed to be of the type OCTET STRING. 

6. Through Presentation Requirements, a user may specify the list of optional 
functional units of the Presentation service that it requires. Three functional units 
are defined: 

• The Kernel functional unit, which always available. It permits transfer of user 
information consistent with an abstract syntax from the prevailing defined 
context set. 

• The Context Management functional unit, additionally enables a user to add 
or delete a context to/from the defined context set. 

• The Context Restoration functional unit, when used together with Context 
Management, enables a user to request that the defined context set be restored 
to a defined context set prevailing at an earlier time. Restoration is carried out 
as part of session resynchronisation and activity management. 

7. Information exchanged as User Data in P-CONNECT primitives may be expressed 
in any Presentation context listed in the Presentation Context Definition List or, if 
the Definition List is absent, in the default context. If the abstract syntax used is not 
supported by the PS provider, then user data cannot be transferred. In that case, the 
connection establishment attempt is terminated by the service provider. Further, if 
the context used is unacceptable to the responding PS user, it may reject the 
connection. Or, it may simply ignore the user data. 

8. The Result parameter, present only in P-CONNECT response and confirm 
primitive, indicates whether or not the connection has been successfully established. 
It may take one of the three values, acceptable, user-rejection or provider-rejection. 
It, thereby, suggests to the initiating Application entity the cause of rejection. 

9. The parameters, including Session Requirements, Quality of Service, Initial 
Synchronisation Point Number, Initial Assignment of Tokens, and Session 
Connection Identifier, are directly mapped onto parameters supplied within 
corresponding S-CONNECT primitives. Recall, a Presentation connection is 
supported by an underlying Session connection. 

121 



7.3.2 Other Presentation Services 

Data transfer primitives. While user information may be transferred as part of 
almost any Presentation service primitive, the following service elements specifically 
support transfer of user information: 

1. P-DATA, 
2. 'P-TYPED DATA, 
3. P-EXPEDITED DATA, 
4. P-CAPABILITY DATA. 

These are similar to the corresponding Session service elements. The difference, 
however, is that user information is encoded using an applicable context from the 
defined context set. Since segmentation is not permitted, the size of a Presentation 
service data unit is determined solely by the permissible Session SDU size. Needless to 
say, these Presentation services are available subject to the provision of corresponding 
Session services. In particular, P-DATA service is available with or without token 
control depending upon whether data transfer over a Session connection is half duplex 
or not. 

Connection release. A Presentation connection may be terminated by its PS users or 
by the PS provider abruptly, or in an orderly manner. The corresponding Presentation 
service primitives are: 

1. P-U-ABORT, 
2. P-P-ABORT, 
3. P-RELEASE. 

Primitives concerning P-RELEASE service are mapped directly onto the corresponding 
Session service primitives. As such, rules governing P-RELEASE primitives are the 
same as those concerning S-RELEASE primitives. Further, the Presentation connection 
is released simultaneously with release of the supporting Session connection. 

Synchronisation and token management. The remaining Presentation services 
are also derived directly from those made available by the Session service. This allows a 
PS user to effectively access these Session services. The PS provider, on its part, simply 
passes the semantics of the primitives onto corresponding Session primitives. The 
Presentation services that fall in this category include: 

1. P-TOKEN GIVE, P-TOKEN-PLEASE, and P-CONTROL GIVE, 
2. P-SYNC MINOR and P-SYNC MAJOR, 
3. P-U-EXCEPTION REPORT and P-P-EXCEPTION REPORT. 

Further, since most of the Presentation service primitives are directly ( or indirectly) 
mapped onto corresponding Session service primitives, these are more or less identical 
to those specified by the Session service and its protocol. We shall, therefore, limit the 
discussion to P-AL TER CONTEXT primitives for which there are no corresponding 
constraints implied by the Session protocol. 

122 



7.4 Presentation Protocol 

The Presentation protocol specifies the functions required to be implemented by the 
Presentation layer in order to close the gap between Presentation services and those 
available by the Session layer. A quick comparison between the two services 
immediately reveals that these functions are basically related to negotiation of the use of 
one or more Presentation context, and to encoding of user information in an appropriate 
transfer syntax. 

7.4.1 Connection Establishment 

The connection establishment procedure is used to establish a connection between 
two communicating Presentation entities, and as a consequence, between the supported 
PS users. The procedure specifies the use of CP, CPA, and CPR protocol data units. 
Figure 7.4 illustrates the resulting three different possibilities, corresponding to 

1. successful connection establishment, 
2. connection is rejected by the responding Presentation entity, 
3. connection is rejected by the responding PS user. 

A connection is successfully established provided negotiation is respect of each of the 
following is successful : 

1. defined context set, 
2. default context, 
3. Presentation functional units and Session services, 
4. version of the Presentation protocol. 

The negotiation generally take place between the four entities, the two PS users and the 
two supporting and the two supporting Presentation entities. But, clearly the version of 
the Presentation protocol is concern only to the Presentation entities. Further, use and 
availability of Session services is determined by the Session layer as well. The 
negotiation procedure for each of these is necessarily different. 

The negotiation procedure for the defined context set is described below. 

1. For each abstract syntax requested by its PS user, the initiating Presentation entity 
indicates to its peer entity, in a CP PPDU list of transfer syntax's it is capable of 
supporting. 

2. The responding Presentation entity indicates, in the indication primitive it issues to 
the corresponding PS user, those abstract syntax's that it can (or cannot) support. 

3. The responding PS user indicates to its supporting Presentation entity those abstract 
syntax's that it can use. This it does by issuing a P-CONNECT response primitive. 

4. The responding Presentation entity sends out a CPA or a CPR PPDU indicating, 
therein, the selection of a transfer syntax for each accepted abstract syntax. For each 
abstract syntax not accepted, it conveys the source of rejection. A reason is provided 
if the abstract syntax is rejected by the responding Presentation entity itself. 

123 



P-CONNECT Request CP 

(a) Successful establishment 

P-CONNECT Request 

P-CONNECT Confirm 
(result=provider-rejection) 

P-CONNECT Indication 

P-CONNECT Response 

(b) Establishment rejected by the PS provider. 

P-CONNECT Request 

P-CONNECT Confirm 
(result=user-rejection) 

P-CONNECT Indication 

P-CONNECT Response 
(result=user-rejection) 

(c) Establishment rejected by the PS user. 

Figure 7.4 Exchange of CP, CPA, CPR PPDUs in connection establishment. 

124 



CHAPTERS 

Common Application Services 

8.1 Application Layer Structure 

The broad structure of the Application layer is described in this section. Concepts 
that are fundamental to this layer, including those of Application process, Application 
entities and their composition in terms of Application service elements are discussed in 
this section. The manner in which each Application entity is described is also covered in 
some detail. 

8.1.1 Application Processes 

The Presentation layer, provides a capability to users so that information may be 
exchanged between them without concern for its representation, or its transfer. Within 
the Application layer there exist Application Processes that use this capability to process 
information in a distributed manner. Physically, an Application process is a collection of 
one or more user-developed application programs and communication software. It is 
through the communication software that the ultimate user or an application program 
gains access to services offered by the OSI environment. 

An Application process may directly interface with the Presentation layer. In that 
case it must include protocol modules to: 

1. initialise communication with its peer Application processes, 
2. establish an appropriate Presentation context, 
3. transfer files or messages as necessary, etc. 

Alternatively, a user program may include an instance of available modules that support 
commonly required application-related services like those of establishing an application 
association, file transfer, program compilation and execution at a remote site, or 
electronic mail. Such a module is referred to as an Application Service Element (ASE). 

An Application service element is an integrated set of functions which together 
provide one or more application-related communication capabilities. These capabilities 
are available to user-developed programs and to other Application service elements 
included in the same Application process. The capability provided by an Application 
service element is defined in a manner very similar to that used to specify the service 
provided by a layer below. Its realisation is again specified by a protocol. The protocol 
may specify use of Presentation services directly and/or those provided by other 
Application service elements contained within the Application process. 

8.1.2 Application Entities 

Open Systems Interconnection is primarily concerned with aspects that relate to 
interaction between Application processes residing in possibly different systems. The 
notion of an Application entity (AE) is, therefore, defined. An Application entity is a 

1-- 



model of those aspects of an Application processes. Such a model views a user program, 
together with its interface with Application service elements that is uses, as a User 
Element. An Application entity is, therefore, composed of a collection of one or more 
Application service elements that a user element accesses to perform distributed 
processing of information. 

A user element is a model of the particular service that an Application process makes 
available to, for instance, human users, other programs, or devices that are outside the 
OSI environment. As such, the OSI architecture does not address issues relating to the 
design of the user element, except the insist that its interface with the Presentation layer 
conforms to the standards. 

8.1.3 Application Association 

Just an Application process needs to be activated before information processing can 
begin, so must an Application entity be invoked. Each invocation of the Application 
entity represents the use of some capability provided by one of its service elements. 
Necessarily then, an invocation results in some form of interaction between the 
Application entity and its peer entity. There must, therefore, exist an association 
between the pair of Application entities. Such an association is called Application 
association. 

An Application association between two Application entities is a relationship 
between them which not only establishes the common communication environment 
initially, but provides a basis for co-ordinating interactions between them. The 
environment, for instance, defines what capabilities are available in terms of Application 
service elements, and the nature of user data be communicated using these capabilities. 
Thus, the aspects that are negotiated at the time of association establishment are the : 

The Application Context, and the Abstract Syntax. 
The Application Context is the common environment shared by the two 

communicating Application entities. It essentially comprises of the list of Application 
service elements, and the particular capabilities that each service element provides. The 
latter is particularly significant if there are optional facilities provided by an Application 
service element, or if the required protocol permits a choice in using certain procedures. 

The Abstract Syntax is a specification of the syntax of Application PDUs that are 
communicated over a supporting Presentation connection. It consists of the abstract 
syntax of PD Us that relate to the various Application service elements that comprise the 
Application entity, and of information communicated between the user elements. 

8.1.4 Application Service Elements 

As a matter of judgement, Application service elements (ASEs) are subdivided into 
two groups: 
1. common Application service elements (CASE), 
2. specific Application service elements (SASE). 
The common ASEs provide services that may be used by a user to element, a common 
ASE or a specific ASE. Four common ASEs are currently defined. These are: 

126 



1. Association Control service element (ACSE), which enables a user to establish or 
terminate an Association between Application entities, 

2. Reliable Transfer service element (RSTE), which enables reliable transfer of 
information between peer entities. 

3. Remote Operations service element (ROSE), which permits users to initiate 
operations at a remote site, 

4. Commitment, Concurrency and Recovery services (CCR), which enable users to 
recover from a failure during execution of a task using commit or rollback 
procedures. 

The common Application service elements are discussed in the remaining sections of this 
chapter. Other Application service elements also provide services that may be used by a 
variety of Application service elements as well as by a user element. These services are 
not as generic, and are, therefore, useful only in specific instances. 

8.2 Association Control Services 

As discussed in the previous section, a common Application service element (ASE) is 
a collection of modules, which provides a service to a user element or to other ASEs of 
the same Application entity. The Association Control service element (ACSE) is 
discussed in this section. 

The concept of an Application Association is central to the discussion of Application 
layer services. Its main purpose is to establish the correct environment for information 
exchange, negotiation of the Application context, the set of required Presentation 
contexts, and the set of required Presentation layer functional units. The Application 
context is a specification of the set of Application entities, together with related options. 
When used, the Association Control service element is always included in the 
Application context. 

The negotiated Presentation context set includes the abstract syntax required to 
convey protocol data units (PDUs) of all Application service elements specified in the 
Application context, including ACSE, and the user element. Such PDUs are called 
Application PDUs or simply APDUs. 

Yet another purpose of establishing association is to properly identify the source and 
destination Application entities. Application entities are referred to by names. An 
Application entity title (AE title) is composed of an Application process title(AP title) 
and an EA qualifier. The latter uniquely identifies the particular Application entity 
which models only a part of the Application process. Further, since there may be 
multiple invocations of the same process, it is necessary to distinguish one invocation 
from the others. An Application entity is, therefore, identified by: 

1. AP Title, 
2. AE Qualifier, 
3. AP-Invocation-Identifier, 
4. AE-Invocation-Identifier. 

127 



---- 

8.2.1 ACSE Services 

Services included in ACSE are those of: 

1. association establishment, 
2. orderly or negotiated termination of the association, which ensures that there will be 

no loss of information in transit, 
3. user-initiated or provider-initiated abrupt termination of the association, which may 

result in loss of information during transit. 

Negotiated termination permits a responding user to either accept or reject a 
termination of the association. Orderly release, on the other hand is not subject to 
availability of release token. The correspondence between the above service elements 
and ACSE service primitives is given in Table 8.1. With termination of the association, 
the negotiated Application and Presentation contexts are no longer valid. There must be 
re-negotiated if the association is re-established. 

Table 8.1 Association Control Service Primitives 

Service Service Primitives Type of Service 

Association Establishment 
Normal Release 
Abnormal Release 

A-ASOCIATE 
A-RELEASE 
A-ABORT 
A-P-ABORT 

Confirmed 
Confirmed 
Unconfirmed 
Provider-initiated 

128 



CHAPTER 9 

Directory Services 

9.1 Introduction 

A Directory holds information on a collection of objects in the real world. The 
information is structured so as to permit Application processes to read, search or modify 
information concerning one objects. Such a capability to access information can be very 
useful in applications which require, for instance, name-to-address translation, or which 
simply seek related information on people or equipment. In particular, OSI applications 
need to determine the address of the Presentation service access point through which an 
Application entity can be reached, and the title of which is known. OSI network 
management protocols could also use a directory to access information on various 
network resources, including gateways, or other servers. 

More formally, a directory is a collection of open sub-systems which co-operate 
between themselves to hold information about a variety of objects. The users of the 
directory include human users as well as computer programs. A program is an 
embodiment of another Application service element or of a user element of an 
Application entity. Users can read, search, or modify information concerning one or 
more named objects. From the OSI viewpoint, each user is represented as a Directory 
User Agent (DUA), while the directory is itself composed of one or more co-operating 
Directory Service Agents (DSAs). Permissible operations on a directory are modelled as 
directory services, and made available to DUAs at well-defined service access points (see 
Figure 9.1). 

Figure 9.1 Model of directory user and service agents. 

9.2 Directory Information Base 

For the present, we assume that the directory is not distributed. The information 
held in a directory is collectively known as a Directory Information Base (DIB). It is 
composed of a number of directory entries. Each entry stores information about an 
object, and is made up one or more attributes of the object. The collection and type of 

sibutes stored in an entry is dependent upon the object class to which the object 
~ An object class is an identified collection of objects which share certain 

mi characteristics. As such, each object class is described in terms of a common set 
ibutes. Some or all attributes may be optional. 

129 



9.3 Directory Information Tree 

Given the above definition of the DIB and the structure for an entry, one may 
maintain a directory in the form of a flat file containing a list of entries, where each 
entry stores the set of classes to which the corresponding object belongs, and the 
required attributes. Since the number of entries can be very large, such a structure is 
not efficient, both from the viewpoint of storage and access. Fortunately, directory 
information naturally reflects a hierarchical relationship between objects. It is this 
hierarchy that is exploited in maintaining the directory as a tree. 

Thus, a directory is organised in the form a tree, called Directory Information Tree 
(DIT). A Directory Information Tree is illustrated in Figure 9.2, where each vertex, 
other than the root, represents an entry corresponding to an object. It is excepted that 
vertices nearer the root of tree will represent objects belonging to large classes, countries 
or organisations for instance, whereas leaf vertices will represent people, equipment or 
Application entities. 

Root 

R 
D 

Entry 

try 

Figure 9.2 Structure of the Directory Information Tree. 

9.4 Authentication 

One of the uses to which the directory can be put is to authenticate a user's identify. 
Further, since the directory holds information on various objects, it must itself be 
protected from unauthorised access. The extent to which two users make their 
communication secure depends upon the application. This in turn determines the level 
of security one builds into the system. Surely, when a user accesses the directory, both 

130 



131 

the DSA as well as the DUA must be sure of each other's identity. (Authentication is also 
relevant when two DSAs communicate with each other.) 

The approaches are purposed in [CCITT X.509], both of which provide different 
levels of authentication of requester's identity. The second approach also ensures that 
requests can only be interpreted by the intended recipient. The first approach, also 
called simple authentication, requires a user to furnish not only its distinguished name, 
but also a password which may be checked against a value stored in the directory. The 
stored value is an encrypted form of user's password, to prevent users from reading it. 
This scheme, obviously, provides limited security. 

9.4.1 Public Key Encryption 

The second approach, also called strong authentication, is based upon the use of 
public key encryption. It involves the use of a pair of distinct but complementary keys, a 
secret key and a public key. The identify of a user can be authenticated, if it can be 
determined that user A possess its secret key, As. For another user to authenticate the 
identity of user A, it must be posses the public key of user A, Ap. 

A scheme based upon the above is called Digital Signature. Basically, user A sends to 
B a message with its signature appended to the message. The signature consists of a 
message obtained by applying a hashing function, h, to the information, info, and then 
encrypting the hashed information using its secret key, As, to obtain signature= X. Here 
X is the encryption function, where information I is encrypted using the key, k. The 
message that A sends to B then consists of [A, info, signature]. User B decrypts the 
received signature using the same function X, using the key Ap to obtain X. It then 
compares it with h(info) to determine whether the user sending the message is one 
claimed. 

An encrypted message, sent by user A to another user B, is also called token. A token 
consists of the following: 

1. the name of the sender, A, and the encryption algorithm used by A to obtain the 
signature, 

2. information that is subject to user A's signature which may include: 
(a) the time of generation of the token, and the time when its validity expires, 
(b) a random number or a sequence number to prevent replay, 
(c) name of the recipient, B, 
(d) additional information subject to user A's signature, for example, encryption 

algorithm used to encrypt confidential data, 
(e) confidential data obtained using the public-key, Bp; 

3. user A's signature, obtained by encrypting a hashed version of the above 
information using an encryption using an encryption algorithm mentioned in 1. 
Above, and A's secret key, As. 

If confidential data is included, such data can only be interrupted by the intended 
recipient, B. The recipient uses its secret key, Bs to decrypt the confidential data, for 
instance, may be encryption key itself, used to encrypt data in subsequent data transfers. 



9.5 Directory Services 

9.5.1 Directory Operations 

A directory provides three different sets of operations. Read-access, search-access, 
and modify-access. These correspond to three different types of ports, and may be used 
to limit a user's access to only those operations that are permitted by its access rights. As 
a consequence, a DUA may only interact with another DSA. If two DSAs are to interact 
with each other, they may not do so through any of these ports. Further, the operations 
may only be invoked by the DUA, whereas a DSA simply responds to user request for 
operations. These operations and their required arguments are discussed below: 

1. The read operation is used to obtain information concerning a named entry. More 
specifically, the operation causes the values of some or all attributes to be returned. 
The DUA is required to identify the attributes of interest. 

2. A compare request is similarly aimed at a particular entry in the DIT, and can be 
used to verify whether an attribute value supplied by the user matches the one stored 
in the entry. As an example, this facility can be used to check the user's own 
password. The attribute value itself may not be accessible for a read operation. Even 

· if it can be read, it may not be interpretable since the stored value may be in an 
encrypted form. 

3. The operation, list, causes the directory to return a list of immediate child entries of a 
named DIT entry. Specially, the DIT returns the RDN of each child entry. 

4. The operation, search, as it name implies, permits a user to obtain information on 
several entities within a sub-tree of the DIT. Specifically, the attribute values of only 
those entries are returned which satisfy a certain property. The property is specified 
by the user in the form of a filter, discussed below. 

5. An abandon request can only be made when one of the above operations is 
outstanding. It causes the directory to stop processing an earlier request and to 
provide all available results. The DSA is, of course, free to discard the results so far 
available to it. 

6. An add entry operation permits the user, with appropriate access rights, to add a leaf 
entry of named entry. The entry to be added may either be an alias entry or it may 
correspond to a real object. A repeated use of this service will permit addition of an 
entire sub-tree to the DIT. 

7. The remove entry operation causes the directory to delete the named leaf entry from 
the DIT. 

8. One or more attribute values in a named entry can be changed using the modify entry 
operation. Attributes can also be added or deleted. Further, one or more values of an 
attribute may be removed, added or changed. It may also be used to change an alias 
entry, thereby referencing a different object entry in the DIT. Before carrying out 
any change, the directory ensures that the resulting tree remains consistent with the 
scheme used to design the DIT. That is, the resulting attribute types must be 
consistent with the object class, and their values with the attribute data types. 

9. The operation modify RDN causes the RDN of a named leaf entry to be changed. A 
different RDN is provided by the user in the form of changes to the list of attribute 
types that determine the RDN, and/or their distinguish values. It does imply that 
part of the entry information may also change, as a consequence. 



9.5.2 Parameters 

A directory operation is specified in terms of: 

1. the data type of the argument to be conveyed as part of the remote operation request 
to the DSA (Directory Service Agent), 

2. the data type of the result to be conveyed to the DUA which initiated the particular 
directory access, in case the remote operation is performed successfully, 

3. a list of possible error conditions that may be encountered. 

The parameters associated with the read operation, as well as others, are listed in Table 
9.1. 

Table 9.1 Argument and Result Parameters of Directory Operations 

Op_eration Argument parameters Result p_arameters 

read object-name entry-information 
entry-information-selection common-results 
common-arguments 

compare object-name matched 
attribute-value-assertion common-results 
common-arguments object name 

abandon invoke-ID - 

list object-name object-name 
common-arzuments set-of-RDNs 

search base-object-name object-name 
filter set of entry-information 
entry-information-selection 
common arguments 

add entry object-name - 
set of attributes 
common arguments 

remove entry object-name - 
common-arguments 

modify entry object-name - 
set of entry-modifications 
cnmmon-arzuments 

modify RDN object-name - 
RON-changes 
common-arguments 

133 



The parameter common-arguments is a set of parameters commonly used with a 
number of directory operations. It optionally includes: 

1. service-controls, which may be used to indicate 
(a) priority level for the operation, 
(b) a time limit during which the operation must complete, 
(c) a maximum number of entries to be searched or listed, 
( d) the scope of the search, 
(e) whether chaining is allowed, preferred, or prohibited; 

2. security parameters ensure that communication between the requesting DUA and the 
DSA is secure. It includes information which may be used to verify the user's 
identify, the identify of the DSA, and integrity of argument parameters; 

3. the distinguish name of the requesting DUA. 

The parameter, invoke-ID, of the abandon operation, is an identifier associated with an 
earlier operation which is to be abandoned. This parameter is assigned by the directory 
protocol at the time of invoking a remote operation, and made available to the directory 
user, for later reference. 

The parameter, filter, is a logical expression of one or more attribute value 
assertions. It is used in a search operation to specify the entries that are of interest, and 
whose attributes are sought. The search space is relative to the entry whose base-object­ 
name is supplied in a search operation. 

The parameter, set of attributes, of the add-entry operation is the information to be 
stored in the entry to be added. The set of entry-modifications, used in a modify entry 
operation, is a selection of attributes, together with any relevant values, and the nature 
of modifications. 

The parameter common-results includes the security parameters discussed earlier, 
and whether the entry that was finally referenced is an alias entry or the one pointed to 
by an alias. Entry-information is the information returned by the directory in response to 
a read or search operation. The matched parameter with a value true is returned if the 
corresponding attribute-value-assertion, in a compare operation, evaluates to true. 

9.6 Directory Protocols 

There are two protocols, Directory Access Protocol to support access to directory 
services, and Directory Systems Protocol which supports abstract operations at chained 
access points. 

A DUA and a DSA are each Application processes, but modelled as Application 
entities from the viewpoint of the OSI architecture. The Application service elements 
specifically supported by the directory protocol are read-access, search-access, and 
modify-access. Thus any Application process which uses directory operation must 
include these service elements as well as ROSE and ACSE service elements. These 
service elements are used by the directory implemented Directory-Bind, Directory­ 
Unbind, and directory access operations. 

The directory access protocol uses the ACSE services to support Directory-Bind and 
Directory-Unbind operations. The operation, Directory-Bind, is directly mapped onto 
the A-ASSOCIATE primitives, with the following correspondence between the 
parameters of A-ASSOCIATE primitives and the Directory-Bind operation: 

134 



1. The Application Context Includes ACSE, ROSE, Directory-Bind, Directory-Unbind, 
read-access, search-access, and modify-access. 

2. The Presentation context definition list includes the abstract syntax associated with 
ROSE and ACSE protocol and the abstract syntax of attributes stored in various 
entries, and argument/result parameters of directory operations. 

3. The arguments of the Directory-bind operation are mapped onto the user-data 
parameter of A-ASSOCIATE request/indication primitives, whereas result or error 
parameters, depending upon whether or not the bind operation is successful, are 
mapped onto the user-data field of A-ASSOCIATE response/confirm primitives. 

4. The directory access protocol requires only the Kernel and Duplex functional units 
of the Session service. 

The Directory-Unbind operation is mapped onto the A-RELEASE primitives. It is 
expected that the release operation will always succeed. 

135 



CHAPTER 10 

Message Handling System 

10.1 Introduction 

Electronic messaging, is an important application of computer networks. In the 
context of OSI, this application supported by a Message Handling System (MHS). The 
MHS enables users to exchange messages on a store-and-forward basis (see Figure 10.1). 
It also permits messages to be stored within the MHS till such time a user wishes to 
retrieve his/her messages. The MHS system, described in a series of documents, referred '- 
to by--X.400, caters to a wide variety of applications, some of which are discussed below. 

User 

User 

User 

User 

Figure 10.1 The Message Handling System and its users. 

A message may be simultaneously sent for delivery to a number of users who have direct 
access to the MHS. The user originating the message either provides the names ( or 
addresses) of individual users, or a list of user names in the form of a distribution list. 
The MHS architecture also provides sending messages through the network for delivery 
to users who do not have direct access to the MHS, but using other services including 
Telex, FAX and postal services. 

The message content is not limited to a string of bits, bytes or charters. It may even 
be a voice, video or FAX message, but suitably encoded for message transfer and 
delivery. Such messages are called multi-media-messages. In either case, the message is 
transparently delivered by the MHS system to the intended user, except when the user 
originating the message requests format conversion to take into account differences in 
terminal devices. The need for format conversion can, instead, be determined by the 
MHS based upon its knowledge of the recipient's terminal capabilities. 

136 



There is also a provision in MHS for a user to determine, a priori, whether it is 
possible for the MHS to convey a message to a named user, or not. Such a user request is 
called probe. Depending upon the application, a user may request that the delivery of a 
message be confirmed by the MHS. The response of the MHS system to a message 
transfer or probe request is contained in a delivery report. 

10.2 MHS Architecture 

A model of the MHS, together with its major components is shown in Figure 10.2. A 
message submitted by a user, through its User Agent, is transferred transparently 
through Message Transfer System to the named user. The recipient is also connected to 
the MHS through its own User Agent, or through other means. A User Agent (UA) is an 
Application process in an open system which enables a user to access MHS capabilities, 
including submission of messages and reports. From the OSI architecture viewpoint, the 
user is modelled as the User element of the Application entity, and is thus identified by 
the corresponding UA. There is, as a consequence, exactly one UA Per user. 

User User 

Access 
Unit 

User 

User 

MTS 
User 

Figure 10.2 The Message Handling System and its components. 

137 



10.2.1 Message Transfer System 

The Message Transfer System (MTS) is a collection of Application processes 
collectively responsible for conveying messages between UAs, as well as probes and 
reports between UAs and the MTS. The MTS is a store-and-forward communication 
network consisting one or more Message Transfer Agents. Each Message Transfer 
Agent (MTA) is capable of receiving messages from Uas or from other MTAs, and 
storing them. It may subsequently deliver the stored message to connected UA if the 
message is destined to the corresponding user, or forward the message to another MT A 
depending upon the route selected. Within an MTS there may be any number of MT As, 
and each MTA may be connected to none, one or more Uas and MT As. 

10.2.2 Message Store 

An MTA performs a number of other functions, including routing, authentication 
checks, message conversion, etc. But the one function it does not perform is to store 
messages so that users may retrieve messages and process them it their convenience. A 
Message Store is an Application process which provides an alternative method to 
interface a UA with the MTS. Aside from enabling users to submit messages and probes 
to the MTS, the MS takes delivery of messages on behalf of the user from the MTS. 
Further, it permits the user to selectively retrieve messages, store them, and process 
them as and when it is convenient for the user to do so. Conceptually, there is one MS 
PerUA. 

The interface between a UA and its corresponding MS enables a user to submit 
messages to the MTS, and to retrieve messages and reports. The services provided to a 
UA directly connected to the MTS. As one consequence, a user may be identified by the 
UA or the MS through which its UA is connected. 

The functional unit, Access Unit (AU), enables users with access to other forms of 
communication systems, Telex, FAX, or even postal services, to gain access to MHS 
capabilities. The interface between the MTS and an AU is different. Its specification is 
dependent upon the nature of secondary communication network and the services it 
offers to its users. 

10.3 MTS Services 

Before describing the abstract services provided by the MHS. Figure 10.3 illustrates 
the transfer of a message to the next functional unit. When a user wishes to send a 
message from an originating user to a recipient user. Such a transfer requires a number 
of steps, each involving the movement of the message to the next functional unit. When a 
user wishes to send a message to its peer, it makes the message available to its UA. This 
step is called message origination. Subsequently, the UA submits the message to an MTA 
within the MTS. It is the responsibility of the MTS to move the message across the MTS, 
by transferring it from one MT A to the next MT A, depending upon the selected route. 
Ultimately, the MTS delivers the message to a UA. A user is then said to have received 
the message. In case an originating user ( or UA) accesses the MTS capability through an 
MS, submission of a message by the UA to the MS is said to be indirect submission. It is 
the MS that finally submits to message to the MTS. Further, if a recipient UA takes 

138 



--- - -- 

delivery through an MS, the message may be retrieved at any time. If a message is 
submitted though an Access Unit which supports non-MHS systems, the message is said 
to have been imported. 

10.4 MTS Operations 

An MHS operation is specified in terms of: 

1. the data type of the argument to be conveyed as part of the operation request, 
2. the data type of the result to be returned, in case the MHS operation is performed 

successfully, 
3. a list of error conditions together with the type of information returned with each 

error. 

10.4.1 Submit Operations 

Message submission. The operation, Message submission, may be invoked by a user 
to request transfer and delivery of a message to one or more MTS-users. Successful 
completion of the operation only signifies that the message has been accepted by the 
MTS. A successful delivery can only be confirmed by a delivery report from the MTS. 
These are listed in Table 10.1. 

Table 10.1 Argument and Result Parameters of Message Submission 

Argument parameters Result parameters Errors 

originator 
recipient (s) 
priority 
conversion 
delivery time 
delivery method 
physical delivery mode 
report request 
security 
contents 

submission identifier 
submission time 
MT A certificate 
proof of submission 
content identifier 

submission control violated 
service not subscribed 
originator invalid 
recipient improperly specified 
inconsistent request 
security error 
unsupported function 
remote bind error 

1. The parameter, Recipient(s), consists of a list of intended recipients and distribution 
lists. The MTS may additionally specify an alternate recipient for each intended 
recipient. Further, an alternate recipient, itself, or by the MTS. The originating 
MTS-user has the option to allow or prohibit substitution of recipient names. 

2. Conversion-related parameters allow a user to explicitly specify a conversion of the 
message format. Further, it may allow or disallow any implicit conversion is 
necessary for the message to be delivered. 

139 



140 

3. Delivery time arguments allow a user to request the MTS to defer delivery of a 
message to a specified time, or to place a limit on the time before which the message 
must be delivered. 

4. Since a message may be delivered using non-MHS media, the user has the option to 
specify the physical delivery mode to be used to deliver the message, or to prohibit 
physical delivery. 

5. Report request parameter is used to request a delivery report and to specify its 
nature. 

6. Security related parameters include the originator's certificate and a message token. 
The message token is used by the MTS to authenticate the origin of the message. It 
uses the originator's certificate to obtain a verified copy of user's public key. 
Further, the message token can also be used to send confidential information, and 
whose integrity is not compromised. Using other security parameters, an MTS user 
may request a proof-of-submission and proof-of-delivery. 

7. Contents parameters include content identifier, an indication of the content type, the 
type of encoding, and the contents themselves. 

If the operation, message submission, is performed successfully, the MTS returns a 
result reply with the result parameters, listed in table 10.1. 

1. Message submission identifier uniquely identifies the submission when a delivery 
report is given to the MTS-user, or by the MTS-user itself in a subsequent request to 
cancel its delivery. 

2. Content identifier identifies the contents in the corresponding message submission 
request. 

3. Message submission time is the time the message was submitted to the MTS. 
4. Originating MTA certificate contains the MTA's public key, using which the 

originating MTS-user may authenticate the origin of the result reply. The originating 
MT A is the one with which the MTS-user interfaces, and is also the one that acts on 
behalf of the MTS. 

5. Proof of submission parameter provides the MTS-user with a proof that the 
identified message was indeed submitted, and at the stated time. The proof is of the 
form, message submission identifier and time, together with the MT A's signature. 

10.5 MTS Protocols 

Above, we have discussed services and operations concerning three different pair of 
MHS objects, that is: 

1. MT A and an MTS-user, 
2. MS and an MS-user, 
3. two MTAs. 

As a consequence, three different protocols are required. These are: 

1. MTS Access Protocol (P3), 
2. MS Access Protocol (P7), 
3. MTS Transfer Protocol (Pl). 



10.5.1 MTS Access Protocols 

It assumed that Remote Operations Service Elements (ROSE) are available to 
support MTS services. They provide the request/reply paradigm required by the MTS 
operations available at different ports. Mapping functions are used to map MHS 
operations onto services provided by ROSE primitives. The service elements, 
submission, delivery, and administration, are, in fact, the functions that map operations 
of corresponding ports. Mapping functions are used to map MHS operations onto 
services provided by ROSE primitives. The service elements, submission, delivery, and 
administration, are in fact, the functions that map operations of corresponding ports. 

141 



~~-----,---- 

REFERENCES 

Open Systems Interconnection Revised Addition 

Its Architecture & Protocol BiJENDRA N. JAiN ASHOK K. AGRA WALA 

Data Communication Computer Network & Open System ..•....•............ FRED HALSAL 


	Page 1
	Titles
	NEAR 
	EAST 
	UNIVERSITY 
	~ OPEN SYSTEMS t 

	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Images
	Image 1


	Page 3
	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Titles
	HAPTER1 
	INTRODUCTION 

	Images
	Image 1


	Page 7
	Titles
	Table 1.1 Classification of Network 

	Tables
	Table 1


	Page 8
	Images
	Image 1

	Tables
	Table 1


	Page 9
	Titles
	CHAPTER2 
	A REFERENCE MODEL 
	2.1 Introduction 
	2.1.1 Open Systems 
	2.1.2 Systems Interconnection 

	Images
	Image 1


	Page 10
	Titles
	2.1.3 The Reference Model 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 1
	Images
	Image 1
	Image 2


	Page 2
	Titles
	The Layered Architecture 
	Ł 

	Images
	Image 1
	Image 2


	Page 3
	Titles
	.1 Layers, Services and Functions 

	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Titles
	Ł 

	Tables
	Table 1


	Page 5
	Titles
	.2 Service Access Points 
	0 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 6
	Titles
	0 0 
	.3 Protocols 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 7
	Titles
	..... ::.Ł' 
	Identifiers 
	2.3.1 Titles, Addresses and Directory 

	Images
	Image 1
	Image 2


	Page 8
	Titles
	.2 Address-Mapping 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1
	Table 2


	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 10
	Titles
	2.4 The Nature of Data Units 

	Images
	Image 1


	Page 11
	Titles
	.4.1 Data Units 

	Images
	Image 1


	Page 12
	Titles
	(N)-u 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2


	Page 13
	Titles
	4.2 Segmentation, Blocking and Concatenation 

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 14
	Images
	Image 1


	Page 15
	Titles
	Connection-Based Data Transfer 
	. 1 Connection Establishment 

	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 1
	Titles
	. 5.2 Multiplexing and Splitting 

	Images
	Image 1


	Page 2
	Titles
	I 
	Ł, 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 3
	Titles
	t i i 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 4
	Titles
	Connection Release 
	.4 Data Transfer 

	Images
	Image 1


	Page 5
	Titles
	. 5 Flow Control 
	/ ~ 
	2.5.6 Sequencing 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 6
	Titles
	. 7 Acknowledgement 
	2.5.8 Error Detection and Recovery 

	Images
	Image 1


	Page 7
	Titles
	Connection-Less Data Transfer 

	Images
	Image 1


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Images
	Image 1


	Page 10
	Titles
	PTER 3 
	Introduction 

	Images
	Image 1


	Page 11
	Images
	Image 1

	Tables
	Table 1


	Page 12
	Images
	Image 1


	Page 13
	Titles
	Description of Layers 
	. 1 The Application Layer 

	Images
	Image 1


	Page 14
	Titles
	. 2 The Presentation Layer 
	.3 The Session Layer 

	Images
	Image 1


	Page 15
	Titles
	4 The Transport Layer 

	Images
	Image 1
	Image 2


	Page 16
	Titles
	The Network Layer and Below 

	Images
	Image 1


	Page 17
	Titles
	OSI Layer Standards 

	Images
	Image 1


	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 19
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 20
	Titles
	TER 4 
	ietwork Layer and Below 
	The Communication Sub-network 
	1 End Systems 

	Images
	Image 1
	Image 2
	Image 3


	Page 21
	Titles
	1.2 Sub-networks 
	I C ) I 

	Images
	Image 1


	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 1
	Titles
	.3 Inter-working 

	Images
	Image 1


	Page 2
	Titles
	. 2.1 User-Provider Model of Network Service 
	The Network Layer and Below: A Model 

	Images
	Image 1

	Tables
	Table 1


	Page 3
	Titles
	.2.2 Network Connections 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 4
	Titles
	. 3 Data Transfer Characteristics 
	.2.4 Intermediate Systems: A Model 

	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Titles
	0 
	.l.S Sub-network Access Protocol 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 7
	Titles
	.6 Sub-network Addresses 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 8
	Titles
	.3 Physical Layer Services and Protocols 

	Images
	Image 1


	Page 9
	Titles
	Ł 
	.1 A Model of the Physical Layer 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 10
	Titles
	,.3.2 Service Characteristics 
	~=~ . 
	(f;s .. f UN I 1: ,~, 
	lf'«,t>- ~1 ·, 
	l, ~'\1 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 11
	Titles
	.3.3 Physical Layer Protocols 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 13
	Titles
	4.4 Data Link Service 
	4.4.1 A Model of Data Link Layer 

	Images
	Image 1

	Tables
	Table 1


	Page 14
	Titles
	___/ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1


	Page 15
	Titles
	Data Link Service 
	. 4.3 Service Primitives and Parameters 

	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 17
	Images
	Image 1

	Tables
	Table 1


	Page 18
	Titles
	~1 1 ŁŁ. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 20
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 1
	Titles
	4.5.1 Functions 
	4.5 Data Link Protocols 

	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 3
	Titles
	Error Detection, Recovery and Sequencing 
	4.5.4 Alternating-Bit Protocol 

	Images
	Image 1


	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 5
	Titles
	Local Area Networks 
	t 
	ŁŁŁ 
	4.6.1 Media Access Control Sub-Layer 

	Images
	Image 1


	Page 6
	Titles
	---------------1-------------- t-------; 
	,-~~~~~~~~---------------~~~~~~~- 
	4.6.2 Logical Link Control Sub-Layer Services 

	Images
	Image 1

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 8
	Titles
	. 6.3 Logical Link Control Sub-Layer 

	Images
	Image 1
	Image 2


	Page 9
	Titles
	.7 Network Services 
	. 7.1 Connection-Oriented Service Elements 

	Images
	Image 1

	Tables
	Table 1


	Page 10
	Titles
	. 7.2 Connection-less Service Element 
	. 7.3 Service Primitives and Parameters 

	Images
	Image 1


	Page 11
	Titles
	.Ł 7.4 A Queue Model of Network Service 

	Images
	Image 1
	Image 2
	Image 3


	Page 12
	Titles
	4.8 Network Layer Protocols 
	4.8.1 X.25 Packet-Level Protocol 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1


	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 17
	Titles
	Connection-Oriented Network Service using X.25 Protocol 

	Images
	Image 1

	Tables
	Table 1


	Page 18
	Images
	Image 1
	Image 2
	Image 3


	Page 19
	Titles
	4.9 Inter-working Protocols 
	4.9.1 Introduction 

	Images
	Image 1


	Page 20
	Titles
	4.9.2 Interconnection of X.25 Networks 

	Images
	Image 1

	Tables
	Table 1


	Page 1
	Titles
	~-------------111111111111111111111111111-11111111111111 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12


	Page 2
	Titles
	4.9.3 Converge Protocols 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 4
	Titles
	4.9.4 Connection-less Network Protocol 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 5
	Images
	Image 1


	Page 6
	Titles
	5.1 The Transport Layer 
	CHAPTER 5 
	The Transport Layer 
	Ł 
	Ł 
	Ł 

	Images
	Image 1


	Page 7
	Titles
	5.1.1 Data Transfer Characteristics 
	5.1.2 Transport Connections 

	Images
	Image 1


	Page 8
	Titles
	1.3 Connection-Oriented Services 
	. 1.4 Connection-less Services 

	Images
	Image 1


	Page 9
	Titles
	5.1.5 Network Services Assumed 
	. 2 Transport Protocols 
	5.2.1 Network Services 

	Images
	Image 1


	Page 10
	Titles
	nnection-oriented NS 
	5.2.2 Types of Network Connection 

	Images
	Image 1
	Image 2


	Page 11
	Titles
	5.2.3 Protocol Classes 
	5.2.4 Connection-less Transfer Protocol 
	5.3 Connection-Oriented Protocol 

	Images
	Image 1


	Page 12
	Titles
	5.3.1 Transport-Protocol-Data-Units 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 13
	Titles
	.2 Assignment to Network Connection 
	3.3 Transfer of TPDUs 
	5.3.4 Connection Establishment 

	Images
	Image 1


	Page 14
	Titles
	B 
	cc 
	A 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 15
	Titles
	5.3.5 Connection release 
	5.3.6 Association of TPDUs with TC 

	Images
	Image 1


	Page 16
	Titles
	Connection-less Protocol Procedures 
	.4.1 Transport-Protocol-Data-Units 
	. 4.2 Transfer of TPDUs 

	Images
	Image 1


	Page 17
	Titles
	The Session Layer 
	6.1 Introduction 
	CHAPTER 6 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 18
	Titles
	6.1.1 Session Connections 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 19
	Titles
	1.2 Data Transfer Characteristics 
	6.1.3 Services 
	6.1.4 Session Layer Protocol 

	Images
	Image 1


	Page 20
	Titles
	6.2 Organised and Synchronised Data Transfer 
	6.2.1 Half Duplex Data Transfer 

	Images
	Image 1


	Page 21
	Titles
	6.2.2 Negotiated Release 

	Images
	Image 1
	Image 2


	Page 1
	Titles
	6.2.3 Resynchronisation 

	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Titles
	6.3 Session Protocol 

	Images
	Image 1


	Page 3
	Titles
	6.3.1 Session Protocol Data Units 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 5
	Titles
	6.3.2 Connection Initialisation 

	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Titles
	6.3.3 Use of Available Transport Service 

	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Titles
	CHAPTER 7 
	The Presentation Layer 
	7.1 Introduction 
	7.1.1 Representation of Information 

	Images
	Image 1


	Page 10
	Titles
	7.1.3 The Transfer Syntax 
	7.1.2 The Abstract Syntax 

	Images
	Image 1
	Image 2


	Page 11
	Titles
	7.1.4 Presentation Services Characteristics 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 12
	Titles
	7.1.5 Data Transfer Characteristics 
	7.2 The Transfer Syntax 
	7.2.1 Tag Identifier 

	Images
	Image 1
	Image 2


	Page 13
	Titles
	7.2.2 Length of Contents 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 14
	Titles
	7.2.3 Encoding of Octets Field 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 15
	Titles
	7.3 Presentation Services 
	7.3.1 Context Establishment 

	Images
	Image 1


	Page 16
	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Images
	Image 1


	Page 18
	Titles
	7.3.2 Other Presentation Services 

	Images
	Image 1


	Page 19
	Titles
	7.4 Presentation Protocol 
	7.4.1 Connection Establishment 

	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 1
	Titles
	CHAPTERS 
	Common Application Services 
	8.1 Application Layer Structure 
	8.1.1 Application Processes 
	8.1.2 Application Entities 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	8.1.3 Application Association 
	8.1.4 Application Service Elements 

	Images
	Image 1


	Page 3
	Titles
	8.2 Association Control Services 

	Images
	Image 1


	Page 4
	Titles
	8.2.1 ACSE Services 

	Images
	Image 1


	Page 5
	Titles
	CHAPTER 9 
	Directory Services 
	9.1 Introduction 
	9.2 Directory Information Base 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	9.3 Directory Information Tree 
	9.4 Authentication 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 7
	Titles
	9.4.1 Public Key Encryption 

	Images
	Image 1


	Page 8
	Titles
	9.5 Directory Services 
	9.5.1 Directory Operations 

	Images
	Image 1
	Image 2


	Page 9
	Images
	Image 1

	Tables
	Table 1


	Page 10
	Titles
	9.6 Directory Protocols 

	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Titles
	10.1 Introduction 
	Message Handling System 
	CHAPTER 10 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Titles
	10.2 MHS Architecture 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 14
	Titles
	10.2.1 Message Transfer System 
	10.2.2 Message Store 
	10.3 MTS Services 

	Images
	Image 1
	Image 2


	Page 15
	Titles
	10.4 MTS Operations 
	10.4.1 Submit Operations 

	Images
	Image 1


	Page 16
	Titles
	10.5 MTS Protocols 

	Images
	Image 1


	Page 17
	Titles
	10.5.1 MTS Access Protocols 

	Images
	Image 1
	Image 2


	Page 18
	Titles
	REFERENCES 

	Images
	Image 1



