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1.1 SOME GRAPH THEORY CONCEPTS 

A graph G = ( V, E) consists of a finite nonempty set V and a collection 
<, 

E of unordered pairs from V (i.e. two-element subsets of V). Every element 

in V ist two paths from u to i. If one and each unordered pair in E is called 

an edge of the graph. The edge -e = {x, y} is an edge between the two vertices 

x and y which is incident to both x and y. Two vertices are adjacent to e 

deletion of this arc will not affect the quasi-strong connectise is said to join 

the two vertices. Two or more edges that join the same pair of vertices are 

called parallel edges. A graph n that a weighted digraph has ansimple graph, 

in which case the collection Eis a set. Otherwise G is multigraph. A graph 

G' is a subgraph of the graph G if every vertex of G' is a vertex of G and 

every edge of G' is an edge of G. 
A directed graph or digraph consists of a finite set V of vertices and a 

collection A of ordered pairs from V called the arcs of the digraph. The t the 

greedy procedure and choos is a set. If a = (x, y) is an ated to each vertex 
? 

other than thrtex x to the vertex y and is incident (adjacent) from x and 

incident (adjacent) toy. Two vertices are nonadjacent if there is no arc from 

one to the other. The underlying graph G of a digraph D is the graph G 

obtained from D by replacing each arc (x, y) by an edge {x, y}. 

In this book, unless otherwise mentioned, all graphs are simple graphs 

and all digraphs are simple digraphs. If we associate one or more real 

numbers with each edge ( or arc) of a graph ( or a digraph), the resulting 

structure is known as a weighted graph or a longer acyclic. Thus the problem 

is to obtain a procedure to obtain a minimum weights arboresch is a 

sequence xl, el, x2, e2, he subgraph obtained by the greel, x2, x3, . . are 
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vertices and ek is the edge between xk- I and xk for k =I, 2, ... , r. This path 

is represented as ( x I, x2, x3, ... , x, ) or as xl-x2-x3-···-x, without 

mentioning the edges explicitly. If xi = xr it is a closed path. It is a simple 

path between xi and xr if xl ,x2, ... , xr are distinct. A circuit in a graph is a 
'-- 

closed path in which the edges are all distinct. A cycle is a circuit in which 

the vertices are all distevery cycle C in H. 

Proof 

Obvio circuit. A cycle with k vertices (k 2 3) has k edges and is calcycle 

C in H.Let e' = ( p, q) and/= (r, s). In T* there i Two vertices x and yin a 

graph are connected to each other if there is a path between them. A graph is 

a connected graph if there is a path between every pair of vertices in it. 

Otherwise it is a disconnected graph. A connected subgraph H of the graph 

G is called a component of G if there is no connected subgraph H' ( other 

than H) such that His a subgraph of H'. 

If G = (v, E) and E = E' u {e}, then G' = ( Vet of arcs obtained from 

A* by med from G by deleting the edge e from G. An edge e in a connected 

graph G is a bridge if its deletion from G yields a disconnected subgraph. A 

directed path from a vertex xl to a vertex x, in a digraph is a sequence xi, ai, 

x2, a2, ... , ar- I, xr in which the xi are vertices and ai is the arc from xi to 

xi+ I, where i =1, 2, ... , r -1. This path may be represented as xl -+x2-+ · 

· ·-+ xr . This is a closed directed path if xi= xr. A simple directed path 

from x toy is a directed path in which all the vertices are distinct. A directed 

circuit is a closed directed path with distinct arcs, and a directed cycle is a 

closed directed path with distinct vertices. Two vertices x and y in a digraph 

form a strongly connected pair if there is a directed path from x to y and a 
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directed path from y to x. A digraph is a strongly connected digraph if every 

pair of vertices in the digraph is a strongly connected pair. A digraph is 

weakly connected if its underlying graph (multigraph) is connected. 

A simple path in a graph is called a Hamiltonian path if it passes 

through every vertex of the graph. A closed Hamiltonian path is a 

Hamiltonian cycle. An Eulerian circuit in a graph is a circuit which contains 

every edge of the graph. The definitions in the case of digraphs are 

analogous. 

Bipartite graphs and complete graphs 

If the set V of vertices of a graph G = (V, E) is partitioned into two 

subsets X and Y such that every edge in E is between some vertex in X and 

some vertex in Y, then the graph is called a bipartite graph and is denoted by 

G = (X, Y, E). 

Theorem 1.1 
A graph with three or more vertices is bipartite if and only if it has no 

odd cycles. 

7 

Proof 
If G = (X, Y, E) is a bipartite graph and if C is a cycle in G, obviously 

it should have an even number of vertices since the vertices in C are 

alternately from X and Y 

On the other hand, suppose G = (V, E) has no odd cycles. 

Observe that a graph G is bipartite if and only if every component of G is 

bipartite. So we assume without loss of generality that G is connected. The 

number of edges in a simple path P between two vertices u and v is the 
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length of P. A path P of minimum length between u and vis a shortest path 

and the number of edges in such a path is denoted d (u, v). 

Let u be any vertex in G. Define X = {x EV: d (u, x) is even} and Y= 

V - X We now show that whenever v and w are any two vertices in X ( or in 

Y), there is no edge in E joining v and w. 

Case I. Let v be any vertex in X other than u. Since there is a path of 

even length between u and v, there cannot be an edge between u and v since 

there is no odd cycle in G. 

Case 2. Let v and w be two vertices in X other than u. Assume there 

is an edge e joining v and w. Let P be a shortest path of length 2m between u 

and v and Q be a shortest path of length 2n between u and w. If P and Q 
have no common vertices other than u, then these two paths and the edge e 

will constitute an odd cycle. If P and Q have common vertices, let u be the 

common vertex such that the subpath P' and uand v and the subpath Q' 

between u' and w have no vertex in common. Since P and Q are shortest 

paths, the subpath of P between u and u 'is a shortest u-u' path. The subpath 

of Q between u and u' is also a shortest u- u' path. So both these shortest u­ 
u' paths are of equallength k. Thus the length of P' is 2m - k and the length of 

7 

Q' is 2n - k. In this case P', Q' and the edge e together constitute a cycle of 
length (2m - k) + (2n - k) + I which is an odd integer. 

Case 3. Suppose v and w are in Y. Then the length of a shortest path 

P between u and u is odd. As in case 2, the subpath P' from u' to u of length 

(2m -1) - k, the subpath Q' from u' tow of length (2n -1) - k and the edge will 

form an odd cycle. 

Case 4. Suppose u is the only vertex in X Then every edge is 

een u and some vertex in Y. 
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A graph G = (V, E) is said to be complete if there is an edge between 

every pair of vertices in the graph. A bipartite graph G = (V, W, E) is 

omplete if there is an edge between every vertex v in V and every vertex w 

in WA complete graph with n vertices is denoted by Kn. If G = (v, W, E) is 

a complete bipartite graph with m vertices in V and n vertices in W, then G is 

denoted by Km, n. 

Degrees, indegrees and outdegrees 

The number of edges incident at the vertex of a graph or a multigraph 

G is the degree of the vertex. A vertex of G is odd if its degree is odd. 

Otherwise it is an even vertex. In computing the degrees of the vertices, each 

edge is considered twice. Thus the sum of the degrees of all the vertices of G 

is equal to twice the number of edges in G and consequently the number of 

odd vertices of G is even. 

The number of arcs incident to a vertex in a digraph is the indegree 

of the vertex, and its outdegree is the number of arcs incident from that 

vertex. The degree of a vertex in a digraph is the sum of its indegree and 

outdegree. In any digraph, the sum of the indegrees of all the vertices and the 

sum of the outdegrees of all the vertices are both equal to the total number of 

arcs in the digraph since each arc is incident from one vertex and incident to 

another vertex. As in the case of graphs, the sum of the degrees of all the 

vertices in a digraph is twice the number of arcs in it. 

Incidence matrices and totally unimodular matrices 

Suppose G = (v, E) is a graph where V = {xl, x2, x3, ... , xm} and E 

= {e 1, e2,e3, ... , en}. Then the incidence matrix of the graph G is them x 

n matrix A = [aik], where each row corresponds to a vertex and each column 
;, 
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corresponds to an edge such that if ek is an edge between xi and xj then aik = 

ajk = 1 and all the other elements in column k are 0. The incidence matrix of 

a digraph D=[V,E] where V={vl, v2z, ... , vm} and E={al,a2, ... ,an} is the mxn 

matrix [aik] such that each row corresponds to a vertex and each column 

corresponds to an arc with the following property: if ak is the arc from 

vertex vi to vertex vj then aik = -1, ajk = 1 and all other elements in column k 

which correspond to the arc ak are 0. 

A matrix A with integer entries is called a totally unimodular (TU) 

matrix if the determinant of every (square) submatrix B of A is O or 1 or -1. 

The determinant of a square matrix B is denoted as det B. Obviously in a TU 

matrix every element is either O or 1 or -1. 

Notice that if A is a TU matrix and if B is any nonsingular submatrix , 

of A, the unique solution of the linear system BX = C, whenever C is an 

integer vector, is also an integer vector since each component of the solution 

vector is of the form p/q, where p is the determinant of an integer matrix and 

therefore an integer and q is the determinant of B which is either 1 or -1. TU 

matrices play an important role in network and combinatorial optimization 

problems in which we seek solution vectors with integer components. 

Theorem 1.2 

The matrix A = [ aij], in which every element is O or 1 'or - 1, is totally 

unimodular if it satisfies the following two properties: 

1. No column can have more than two nonzero elements. 

2. It is possible to partition the set I of rows of A into sets Il and I 2 

such that if aij and akj are the two nonzero elements in columnj, then row i 

and row k belong to the same subset of the partition if and only if they are 

of opposite sign. 
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Proof 
Let C be any k x k submatrix of A. The proof is by induction on k. If k 

"' 
= 1, then the theorem is true. Suppose it is true for k - 1. We have to prove it 

is true for k. Let C' be any (k -1) x (k -1) submatrix of C. By induction 

hypothesis, det C' is O or 1 or -1. So we have to establish that the det C is 0 

or 1 or -1. 

There are three different possibilities: (i) Chas a column such that all 

the elements in that column are zero and this implies det C = 0. (ii) C has a 

column with exactly one nonzero entry which could be either 1 or -1. Then 

expanding along this column, det C is either det C' or - det C'. Thus det C is 

0 or 1 or - 1. (iii) Every column of Chas exactly two elements. 

Suppose E = {r 1, r2, ... , rk} is the set of the rows of C. By 

hypothesis, this set of k rows is partitioned into two subsets II and 12. 

Without loss of generality, let us assume that J1 is the set of the first p rows 

and I2 is the set of the remaining k - p rows. (It is possible that p = 0.) By 

the way these two sets are constructed, it is easy to see that r 1 + r 2 + · · · + 

rp = rp+ 1 + rp+ 2 + · · · + rk. So C is linearly dependent and thus det C = 

0. 

Corollary 1.3 
A matrix in which each element is O or 1 or -1 is totally unimodular if 

in each column there is at most one+ 1 and at most one - 1. In particular, the 

incidence matrices of digraphs and bipartite graphs are totally unimodular. 

Theorem 1.4 

The following properties are equivalent in a graph: (i) G is bipartite; 

(ii) G has no odd cycle; and (iii) the incidence matrix of G is totally 

unimodular. 
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Proof 

The equivalence of (i) and (u) has been already established by 
-<, 

Theorem 1.1. If G is bipartite, its incidence matrix is a TU matrix by 

Corollary 1.3. 

Suppose the incidence matrix of an arbitrary graph G = ( V, E) is a 

TU matrix. If the graph G is not bipartite, there should be at least one odd 

cycle in the graph. Let V = 1, 2, 3, ... , n}. Assume the first 2k + 1 vertices 

in V constitute an odd cycle:1-2-3-· · ·- k + 1-l, Let A be the incidence matrix 

of the graph in which the first 2k + 1 rows correspond to the first 2k + 1 

vertices and the first 2k + 1 columns correspond to the edges { 1, 2}, {2, 3}, 

{3, 4}, ... , {2k, 2k + l}, {2k + 1,1 }, respectively. Let C be a submatrix 

formed by the first 2k + 1 rows and the first 2k + 1 columns of the incidence 

matrix. Then the determinant of C is 2. (In fact, the determinant of the 

incidence matrix of an odd cycle is always 2 or -2.) This contradicts the fact 

that A is totally unimodular. 
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1.2 SPANNING TREES 

Forests and trees 
A graph in which no subgraph is a cycle is called an acyclic graph or a 

orest. A connected acyclic graph is a tree. 

Theorem 1.5 
A graph is a tree if and only if there is a unique simple path between 

every pair of vertices in the graph. 

Proof 
Let G be a graph such that between every pair of vertices there is a 

unique simple path. So G is connected. If G is not a tree, then there is at least 

one cycle in G creating two simple paths between every pair of vertices in 

this cycle. So G is a tree. On the other hand, suppose G is a tree and x and y 

are two vertices in G. Since G is connected there is a simple path P between 

x and y. Suppose P' is another simple path between x and y. If the two paths 

are not the same, then let e = {vi, vi+ 1} be the first edge in P that is not in 

P' as we go from x toy in the graph along the edges. Let Wand W' be the set 

of intermediate vertices between vi and yin P and P', respectively. If Wand 

W' have no vertices in common, there is a cycle consisting of all the vertices 

in Wand W' and the 
vertices vi and y. If Wand W' have common vertices, then let w be the 

first common vertex as we go from vi to y along either P or P'. Then we 

have a cycle in G using the vertices in P between vi and w and the vertices in 

P' between w and vi. Thus in any case G has a cycle, which is a contradiction 
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Theorem 1.6 

A graph is a tree if and only if every edge in it is a bridge. 

Proof 

Suppose e = {x, y} is any edge in a graph G. Then (x, e, y) is a path 

between x and y in G. If G is a tree, this is the only path between x and y, and 
/" 

if this path is deleted then the vertices x and y will not be connected. Thus in 

a tree every edge is a bridge. On the other hand, suppose G is a graph in 

which every edge is a bridge. So G is connected. Suppose G is not a tree. 

Then there is at least one cycle C in G. Let x and y be adjacent vertices in C. 

Then the edge e = {x, y} cannot be a bridge in G since there is another path 

between x and y using the other vertices of the cycle. This contradicts the 

hypothesis that every edge is a bridge. Thus G is a tree. 

Theorem 1.7 

(i) A connected graph with n vertices is a tree if and only if it has n -1 

edges. 

(ii) An acyclic graph with n vertices is a tree if and only if it has n -1 

edges. 

Proof 

(i) Suppose G is a tree with n vertices. We prove by induction on n 

that G has n -1 edges. 

This is true when n = 1. Suppose it is true for all m, where 1 < m < n. 

Ifwe delete an edge e = {x, y} from G, we get two subgraphs H = (v, E) and 

H' = ( V', E'), with k and k' vertices, respectively, such that there is no vertex 

common to V and V'. Since both k and k' are less than n H has k -1 edges and 
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'has k' -1 edges. So bothH and H' together have k +,k' - 2 = n - 2 edges. If 

e combine Hand H' by using the edge e, we get the graph G. So G has (n - 

-1 T 1= n -1 edges. 
On the other hand, let G = ( V, E ) be a connected graph with n 

ertices and n -1 edges. Suppose G is not a tree. Then there is an edge in G 

rhich is not a bridge. If we delete this edge we have a connected subgraph 
........ _ _......, 

G' = (V, E'). Continue this process till we get a connected subgraph H = (V, 

F) in which every edge is a bridge. So H is a tree with n vertices. So H has n 

-1 edges leading to a contradiction, since G has n -1 edges. 

(ii) If an acyclic graph with n vertices is a tree, then it has n -1 edges 

by (i) above. 

On the other hand, let G = ( V, E) be an acyclic graph with n vertices 

and n -1 edges. Suppose G is not connected. Then there are r connected 

subgraphs GI, G2, · · ·, Gr where Gi = (Vi, Ei), the cardinality of Vi is ni for 

each i and ( VJ, V2, · · · , Vr) is a partition of V. Each Gi is a connected 

component of G. Since G is acyclic, each Gi is acyclic and therefore a tree 

with ni -1 edges. Thus the total number of edges in G is (nl -1) + (n2 -1) + · 
· · + (ni-1) = n - r. But the number of edges in G is n - l. Thus r = 1, which 

implies that G is connected and hence a tree. 

Spanning trees 

If G = ( V, E) is a graph and T = ( V, F) is a subgraph which is also a 

tree, then T is a spanning tree in the graph. An edge in E which is not in F is 

called a chord of T. The following two theorems are immediate 

consequences of Theorems 1.5-1.7. 
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Theorem 1.8 

A graph is connected if and only if it has a spanning tree. 

Theorem 1.9 

Suppose G = (V, E) is a simple graph with n vertices and H = (V, E) is 

a subgraph. If H satisfies any two of the following three properties then it 

satisfies the third property also: 

(i) His connected. 

(ii) His acyclic. 

(iii) H has n - l edges. 

If a graph G = (V, E) is connected, starting from any vertex it is 

possible to visit all the other vertices by searching these vertices. There are 

two ways of accomplishing this: the breadth-first search (BFS) and the 

depth-first search (DFS). 

The BFS method proceeds as follows. Starting from any vertex v, 

visit all the vertices which are adjacent to v using the edges whichjoin v and 

these adjacent vertices. Suppose these vertices are vl, v2, ... , vk. Now start 

from vi and visit all the unvisited vertices which are adjacent to vi using the 

edges joining vi and these adjacent vertices. Suppose these vertices are vii 

vi 2 · · · , vi k Then we start from v 2 and continue this process. Proceed 

likewise till we visit all the vertices (as yet unvisited) adjacent to vk. Now 

start from vll and visit all the unvisited vertices adjacent to ull. Then from 

v 12 and so on. Continue this process till all vertices of G are visited. If F is 

the set of the edges used to visit all the vertices of G, then (V, F) is a 

spanning tree in G known as the BFS spanning tree rooted at vl . 
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In the DFS method, start from any vertex vo and use an edge eol to 

visit an adjacent vertex vl . Then use an edge el 2to visit the vertex v2 which 

is adjacent to vi In general, when we ate at a vertex vi we use an edge vi} to 

visit an adjacent vertex vj if vj has not been visited. If vi has no unvisited 

adjacent vertex, we backtrack to vi-I and explore further. Eventually this 

backtracking takes us back to the vertex v from which we started. If F is the 

set of the edges used in this procedure, then (V,F) is a spanning tree known 

as the DFS spanning tree rooted at vO. 

Disconnecting sets and cutsets 

If G = (V, E) is a connected graph, then any subset D of E ts a 

disconnecting setif he deletion of all the edges in D from the graph makes it 

disconnected. A disconnecting set D is a cutset if no proper subset of D is a 

disconnecting set. Suppose the set Vis partitioned into two subsets X and Y 

If D = (X, lJ is the set of all edges in E of the form { x, y} where x EX and y E 

Y, then D must be a disconnecting set. But D need not be a cutset. 

When will a partition of the set of vertices of a connected graph 

define a cutset? We have the following theorem in this context. 

Theorem 1.10 

A disconnecting set D = (X, lJ in a graph G = (V, E) will be a cutset 

in G if G' = ( V, E - D) has exactly two connected components. 

Proof 

If D is not a cutset, then there is a proper subset D' of D which is a 

cutset. Suppose e = {x, y}, where x EX and y E Y is an edge in D but not in 

D '. If v is any vertex in X and w any vertex in Y, by hypothesis there is a path 

between v and x passing through vertices exclusively from X and there is a 
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path between y and w passing through vertices exclusively from Y 

Consequently the vertex v in X and the vertex w in Y are connected as long 

as the edge e remains undeleted. In other words, D' is not a disconnecting set 

and so it cannot be a cutset. 

Corollary 1.11 

If e is any edge of a spanning tree Tin a connected graph G, the 

deletion of e from the tree defines a partition of the set of vertices of T ( and 

therefore of G) into two subsets X and Y such that D = (X, }? is a cutset of 
the graph G. 

Observe that even though an arbitrary partition of the set V of the 

connected graph G = (V, E) into two subsets need not define a cutset, a 

cutset D in G always defines a partition of the set of vertices into two sets. 

Specifically, if the deletion of the edges of a cutset D from the graph creates 

two connected subgraphs G' = (V', E') and G" = (V': E'') then {V", V''} is a 

partition of Vand Dis the disconnecting set (V', V';. 

Theorem 1.12 

Suppose C is a cycle, D is a cutset and T is a spanning tree in a graph 

G. Then: (i) the number of edges common to C and Dis even; (ii) at least 

one edge of C is a chord of T; and (iii) at least one edge of D is an edge of T. 

Proof 

(i) Let D = (X, JJ If all the vertices of C are exclusively in X ( or 
exclusively in Y) then C and D cannot have any edges in common. Suppose 

this is not the case. Then C has two vertices x and y where x EX and y E Y. 

Then the cycle C which starts from x and ends at x will have to use the 

edges from D an even number of times. (ii) A chord of T is by definition 
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an edge of the graph G which is not an edge T. If no edge of C is a chord of 

T, then C is a subgraph of T. But C is a cycle. This is a contradiction. (iii) 

If no edge of D is an edge of T, the deletion of all the edges belonging to D 

will not disconnect T. So Twill continue as a spanning tree of G, implying 

that D is not a cutset. 

If e = {x, y} is a chord of T, the unique cycle in G consisting of the 

edge e and the edges of the unique path in T between x and y is called the 

fundamental cycle of G relative to T with respect to e and is denoted by 

CT(e), or by C(e) if the tree Tis fixed beforehand. 

It follows from Corollary 1.11 that corresponding to each edge e of 

a spanning tree T of a connected graph G there is a unique cutset called the 

fundamental cutset of T with respect to the edge e which is denoted by DT 

(e), or by D(e) if the tree is fixed beforehand. 

Thus every spanning tree of a connected graph G with n vertices and 

m edges defines a set of n -1 fu ndamental cutsets and a set of m - n + 1 
fundamental cycles. 

There are two theorems relating the concepts of fundamental cycles 

and fundamental cutsets of a spanning tree. 

Theorem 1.13 

Let e be an edge of a spanning tree T in a graph and f be any edge 
(other thane) in the fundamental cutset D(e) defined by e. Then: (i) f is a 

chord of Tande is an edge of the fundamental cycle C( f) defined by f; and 

(ii) e is not an edge of the fundamental cycle C(e') defined by any chord e' 

which is not inD(e). 
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Proof 

(i) If/is not a chord of T, then it is an edge of the spanning tree. In 

that case T cannot be acyclic, which is a contradiction. So f is a chord of T 
defining a fundamental cycle C( f ). Now D(e) is the union of {e, f} and a 

set A of chords of T, and C ( f) is the union of { f} and a set B of edges of T. 

The intersection of A and B is empty. By the previous theorem the 

intersection of D (e) and C ( f) should have an even number of edges. So e is 

in B and therefore in C (I). 

(ii) Now C(e') is the union of {e'} and a set X of edges of T. The set 

D(e) is the union of {e} and the set A as in (i) above. Suppose e is in C(e'). 

This implies that e is in X Since C(e') and D(e) have an even number of 

edges in common and since the intersection of A and Xis empty, the edge e' 

is in D(e), contradicting the hypothesis that e' is not in D(e). 

Theorem 1.14 

Let e be a chord of a spanning tree T in a graph, and f be any edge 
(other thane) in the fundamental cycle. C(e) defined bye. Then: (i)f is an 

edge of Tande is an edge of the fundamental cutset D ( f) defined by f; and 

(ii) e is not an edge of the fundamental cutsetD(e; defined by any edge e' of 

Twhich is not in C(e). 

Proof 

The proof is similar to that of Theorem 1.13. 
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1.3 MINIMUM WEIGHT SPANNING TREES 

Three basic theorems 

If w is a mapping from the set of edges of a graph G = ( V, E) to the 

set of real numbers, the graph equipped with the mapping ( the weight 

function) is known as a weighted graph or a network. The number w(e) is 

called the weight of the edge e. An edge e in a set F of edges in the graph is 

a minimum weight edge in the set F if w (e) s w( f) ( or a maximum weight 

edge if w (e)> w ( f )) for every fin F. If H is a subgraph of a weighted 
graph, the weight of H is the sum of the weights of all the edges of H and is 

denoted by w (H). A spanning tree Tin a connected network is a minimum 

weight spanning tree or a minimal spanning tree (MST) if there is no other 

spanning tree T' such that wiI") is less than w(T). 

Under what conditions will a spanning tree be a minimum spanning 

tree? We have two theorems in this context - one involving fundamental 

cutsets and the other involving fundamental cycles. Loosely speaking, 

these theorems assert that from the perspective of a minimal spanning tree, 

every edge in the tree is an edge worthy of inclusion in the tree ( cutset 

optimality condition) whereas every edge not the tree is an edge that can be 

ignored ( cycle optimality condition). 

Theorem 1.15 

A spanning tree T in a weighted graph is a minimum weight spanning 

tree if and only if every edge in the tree is a minimum weight edge in the 

fundamental cutset defined by that edge. 
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Proof 

Let e be an edge of an MST. Suppose w(e) > w( f) for some edge fin 

the cutset D(e). Consider the spanning tree T' obtained by deleting e from T 

and adjoining/ to it. Then w(T') < w(T), contradicting the fact that Tis an 

MST. Thus the condition is necessary for a spanning tree to be a minimal 

spanning tree. 

On the other hand, suppose T is a spanning tree which satisfies the 

given condition. Let T' be any minimum weight spanning tree in the graph. 

If T' and Tare not the same, there will be an edge e ={ i, j} in T which is not 

an edge in T'. Let the fundamental cutset D(e) with respect to T be the set of 

all edges (in the graph) between the vertices in X and the vertices in Y, where 

i EX and} EY. Ir-we adjoin the edge e to the tree T', a unique cycle C(e) is 

created which contains an edge f ( other than e) joining a vertex in X and a 
vertex in Y. 

Now w(e) s; w( f) by our hypothesis. If w(e) < w( f ), we can 

construct a spanning tree T" by adjoining e to T' and deleting f from it; the 

weight of T" is less than the weight of the minimal spanning tree T'. Thus 

w(e) = w(f). Now ifwe adjoin the edge fto Tand delete e from Twe obtain 

a new spanning tree Tl such that w(T) = w(Tl). If Tl= T', then w(T) = w(T'), 

showing that Tis an MST. Otherwise we consider an edge in Tl which is not 

in T' and repeat the process till we construct a spanning tree Tk such that the 

weights of T, Tk and T are all equal. 

Corollary 1.16 

Jf e is an edge of any cycle in a connected graph G such that w(e) ~ w( 

f) for every edge fin that cycle, then there is an MST in G which does not 
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contain the edge e. In particular, if w(e) > w( f), no MST in G can have e as 

an edge. 

Proof 

Suppose e is an edge in every MST in G and let Tbe an MST. Since e 

is an edge in T, according to Theorem 1.15, w(e)> w(e'.) for every edge e' in 

the cutset D(e). Now if we adjoin an edge e' (other thane) from D (e) to T, 

we obtain a cycle C(e'.) which contains the edge e. 

So according to the hypothesis, w(e) ~ w(e'.). Thus w(e) = w(e'.). Now 

if we adjoin e' to T and delete e from T, we obtain a spanning tree T' such 

that w(T') = w(T) + w(e') - w(e) = w(T). In other words, T' is an MST which 

does not contain-the edge, contradicting the assumption that e is an edge in 

every MST. So there is at least one MST which does not contain e. 

Suppose the hypothesis is the strict inequality w(e1 < w(e). Suppose 

there exists a minimal spanning tree T which contains e. As above, we can 

construct a spanning tree T' such that w(T') = w(T) + w(e1 - w(e) < w(T), 
implying that Tis not an MST. 

Theorem 1.17 

A spanning tree T in a graph G is a minimal spanning tree if and only 

if every chord of the tree is a maximum weight edge in the unique 

fundamental cycle defined by that edge. 

Proof 

Let T be a minimal spanning tree in G. Suppose there is a chord e of T 

such that w(e) < w( f) for some edge fin the cycle C(e). Then the tree T' 

obtained by adjoining e and deleting f is indeed a spanning tree such 
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that w(T') = w(T) + w(e) - w( f) < w(T), violating the assumption that Tis an 

MST. Thus the condition is necessary. 

Let T be a spanning tree in G satisfying the given condition and let f 
be any edge in this tree TNow any edge e (other thanf) in the fundamental 

cutset D( f) is a chord of T defining the fundamental cycle C(e), and hence 

by the hypothesis w(e) .,? w( f ). This inequality should hold for every e in the 
cutset D( f ). In other words, w( f) s w(e) for every e in D( f ). This is 
precisely the optimality condition established in Theorem 1.15 and hence T 

is an MST. Thus the condition is a sufhcient condition. 

Corollary 1.18 

Let e be an edge incident at a vertex x of a connected graph. If w(e) ~ 

w(f) for every other edge f incident at x, then there exists a minimal spanning 

tree in the graph in which e is an edge. In particular, if w(e) < w( f ), every 
MST in G has e as an edge. 

Proof 

Suppose e ={x, y} is not an edge in any MST. Let Tbe an MST. Since 

e is not in T, e is a chord of T Let e' = {x, z} be the other edge in the 

fundamental cycle C(e) which is incident at the vertex x. In the fundamental 

cycle C(e), the edge e is a chord and all the other edges are edges in the tree. 

So by the cycle optimality criterion, w(e).,? w( f) for every fin the cycle 

C(e). In particular, w(e) .,? w(e;. But w(e; .,? w(e) by our hypothesis. Thus 

w(e)- = w(e'). Now the weight of the spanning tree T' obtained by adjoining e 
'l 

to1Tand deleting e' is w(T; = w(T) + w(e) - w(e; = w(T). Thus there exists a 
spanning tree T' which contains e, contradicting the assumption. 
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Suppose w(e) < w( f) and e is not an edge in any MST. Let T be any 

MST. As before we have the spanning tree T' such that w(T') = w(T) + w(e) 
- w( f) < w(T), which is a contradiction since Tis an MST. Thus e is an edge 

in every MST. 

The following theorem gives us a procedure for constructing a 

minimal spanning tree in a connected graph G from a subgraph of a known 

minimal spanning tree in G. 

Theorem 1.19 

If V' is the set of vertices of a component of any subgraph H of a 

minimal spanning tree Tin G = (V, E) and if e is an edge of minimum 

weight in the disconnecting set D = (V', V- V'), then there exists an MST in 

G which contains e as an edge and Has a subgraph. 

Proof 

If e is an edge in T, then the result is obvious. So let us assume that e 

is a chord in T. In that case Tu {e} has a unique cycle C. The edge e is 

common to both C and D. So there should be an edgef(other thane) in (C n 

DJ since IC riD /is even. 
Now e is a minimum weight edge in D and/is an edge in D. So w(e) 

s: w(f )- Every edge in C other than e is an edge in T. In particular, f is an 
edge in T defining the fundamental cutset D ( f ). Since f E(C n D ( f )) and I 
(C n D( f )JI is even there should be at least one more edge common to both 

C and D( f). No edge in D( f) other than f can be an edge in T. The only 

edge in C which is not in T is the edge e. Thus e is necessarily an edge in D( 

f). 

Submitted by : GULSER DEMiR 
- 21 - 



NEAR EAST UNIVERSITY COMPUTER ENGINEERING 

Since Tis an MST, by Theorem 1.15, w( f)sw(e). Thus w(e) = w( f). 

If T* = T- { f} + {e}, then T* is a spanning tree with weight w(T*) = w(T). 
In other words, T* is an MST in G which contains e as an edge and Has a 

subgraph. 

Two MST algorithms 

Using Theorems 1.15,1.17 and 1.19, we can derive two methods of 

obtaining an MST in a connected graph. Both procedures are 'greedy' in the 

sense that at every stage a decision is made to make the best possible choice 

of an edge for inclusion in the MST without violating any rules. In the 

course of obtaining a tree the only rule is that at no stage in the decision­ 

making process should the choice of the best possible edge (the 'choicest 

morsel') for inclusion in an MST produce a cycle. 

One greedy procedure (known as Kruskal's greedy algorithm) is as 

follows. The set of edges of the connected graph G with n vertices is listed 

in nondecreasing weight order. We construct an acylic subgraph T, 

examining these edges one at a time in the order they are arranged. An edge 

will be added to T if its inclusion does not yield a cycle. The construction 

terminates when T has n-I edges. There are four steps in the algorithm: 

Step l Arrange the edges in nondecreasing order in a list L and set T 

to be the empty set. (Tis the set of edges in an MST.) 

Step 2. Add the first edge in L to T. 

Step 3. If every edge in L is examined, stop and report that G is not 

connected. Otherwise take the first unexamined edge in Land include 

it in T if it does not form a cycle with the edges already in T. If the 

edge is added to T, go to step 4. Otherwise repeat step 3. 
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Step 4. Stop if T has n -1 edges. Otherwise go to step 3. o'), / 
<~~Kosf>./ 

The resulting subgraph T must be a spanning tree in G. The fact th --~--'l 
T is indeed an MST can be established using Theorem 1.17. Observe that in 

Kruskal's procedure, an edge e was discarded (in favor of an edge of larger 

weight) with respect to the tree T because it created a cycle C with some or 

all of the-edges already included in the list L. At the same time, the weight of 

the discarded edge is greater than or equal to the weight of any other edge in 

the cycle C because the edges are examined one at a time according to their 

weights in nondecreasing order. Thus the spanning tree T satisfies the 

optimality condition as stated in Theorem 1.1 7. 

Another procedure (known as Prim's greedy algorithm) to construct 

an MST is as follows. We start from an arbitrary vertex and add edges one at 

a time by maintaining a spanning tree T on a subset W of the set of vertices 

of the graph such that the edge adjoined to T is a minimum weight edge in 

the cutset (W, V - W ). The correctness of this procedure follows directly 

from the sufficient condition established in Theorem 1.19. There are three 

steps in this procedure: 

Step l. Select an arbitrary vertex of G and include it in the tree T. 

Step 2. Let W be the set of vertices in T. Find an edge of minimum 

weight in the disconnecting set (W, V - W) and add it to T. If an edge 

cannot be added, report that G is not connected. 

Step 3. Stop if T has n -1 edges. Otherwise repeat step 2. 

Notice that the procedures described above are applicable even when 

the graph is not connected. If the input is an arbitrary network G with n 

vertices, the output will be either an MST with n -1 edges or a message that 

G is not connected. 
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Prim's algorithim (matrix method) 

Since a spanning tree in a connected graph passes though every vertex 

of the graph, we can construct an MST by applying Prim's algorithm starting 

from any vertex. 

In particular if V= {1,2, ... ,n} is the set of vertices of a connected graph 

G we can start from vertex 1. And create a subtre of the MST by adjoining 

one edge at a time till we use exactly n-1 edges of the graph. We now outline 

a matrix formulation of this procedure. 

Let JY- [d(I,j)] be the nxm matrix where n is the number of vertices of 

the graph G=(V,E) and d=(I,j) is the weght of the edge {I,j} if there is an 

edge between i and j. Otherwise d(i, j) is plus infinity. Initially delete all 

elements of column 1 and check row 1 with a check mark v, All elements 

are uncircled initially. Each iteration has two steps as follows. 

Step I. Select a smallest element (ties are broken arbitrarily) from the 

uncircled entries in the rows which are checked. Stop if no such 

element exists. The edges which correspond to the circled entries 

constitute an MST. 

Step 2. If d(i, j) is selected in step 1, circle that entry and check row j 

with a check mark. Delete the remaining elements in column j. Go to 

step 1. 
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1.4 THE TRA VELiNG SALESMAN PROBLEM 

Optimal Hamiltonian cycles 

In general, it is not asy to determine whether an arbitrary graph or 

digraph is Hamiltonian since there is no known practical characterization of 

such graph and digraphs. If a network is Hamiltonian, a problem of interest 

is to obtain a Hamiltonian cycle of minimum weight, known as an optimal 

Hamiltonian cycle, in the network. Unfortunately there is no efficient 

procedure to obtain such an optimal Hamiltonian cycle. Finding an optimal 

Hamiltonian cycle in G by a process of enumeration is a hopelessly 

inefficient task since the number of Hamiltonian cycles could be very large 

even when the number of vertices is small. In the parlance of theoretical 

computer science, we say that the time complexity of (any known procedure 

to solve every instance of) the problem of finding an optimal Hamiltonian 

cycle in a network is exponential in the worst case. 

The celebrated traveling salesman problem (TSP) is the problem of 

obtaining an optimal Hamiltonian cycle in a connected network if the 

network is Hamiltonian. A problem of practical importance, however, is the 

problem of finding a closed path (not necessarily simple) of minimum 

weight which passes through every vertex at least once in a connected 

network. Many practical problems in network optimization can be 

formulated as salesman problems. The real significance of the TSP is not 

that it has a wealth of applications but that it is a generic problem which 

captures the essence of several problems in combinatorial optimization. 

Even though it is not easy to find an optimal Hamiltonian cycle in a 

connected graph, we can use the minimal spanning tree algorithm to obtain a 

lower bound for the weight of such a cycle provided the cycle exists. In this 
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section we assume that the weight w( e) is nonnegative for every edge e in 

the network under consideration. 

Suppose T' is any MST in a network G and Tis the spanning tree 

obtained by deleting an edge from an arbitrary Hamiltonian cycle C. 

Then w(T')s w(T) s w(C). So the weight of an MST in the graph is a lower 

bound for the weight of an optimal Hamiltonian cycle. 

In fact we can obtain a better lower bound using the rmmmum 

spanning trees of certain subgraphs of the graph. Suppose C is an optimal 

Hamiltonian cycle in a graph G = ( V, E) with n vertices. If we delete a 

vertex v and the two edges e and f incident to v in the cycle C, we obtain a 
spanning tree in the subgraph G' = (V', E') where V' = V- {v} and E' = E - 

{e,f}. 

Suppose T' is an MST in G' with weight w(T'). If p and q are two 

edges incident at the vertex v, of smallest possible weights, then w(T') + 
w(p) + w(q) is a lower bound for w(C), the weight of the optimal 

Hamiltonian cycle. Since the graph has n vertices, there will be at most n 

such (not necessarily distinct) lower bounds. The largest of these lower 

bounds is a lower bound for the weight of the optimal Hamiltonian cycle if 

such a cycle exists. 

A quick method to obtain an approximate solution 

We now turn our attention to the following question. Suppose it is 

knowpn that a Hamiltonian cycle exists in a given network G and thus an 

optimal Hamiltonian cycle C* with weight w(C*) exists in G. Is it possible 

(without too much computational work) to obtain a Hamiltonian cycle C in 

G such that the gap w(C) - w(C* ) is not too wide? Since an optimal 

Hamiltonian cycle is a 'lowest weigth ' Hamiltonian cycle any Hamiltonian 
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cycle whose weight does not exceed the lowest weight by too much may be 

called a low weight Hamiltonian cycle. For this purpose we restrict our 

attention to the class of complete graphs with additional property known as 

the triangle property: if i, j and k are any three vertices in a complete graph 

and if the weights of the edges [i, j}, { i. k} and {k, i} are a, band c, then a+ 
b cannot be less than c. We then have a theorem which gives an upper bound 

for this gap. 

Theorem 1.20 

If complete network satisfies the triangle property, there exists a 

Hamiltonian cycle such that its weight is less than twice the weight of the 

optimal Hamiltonian cycle. 

Proof 

We prove this by actually constructing a Hamiltonian cycle C in the 

network with the desired property. 

Step I. Choose any vertex as the initial cycle CJ with one vertex. 

Step 2. Let Ck be a cycle with k vertices. Find the vertex wk which is 

not in Ck that is closest to a vertex vk in Ck. 

Step 3. Let Ck+ 1 be the new cycle obtained by inserting wk just prior 

to vk in Ck. 

Step 4. Repeat steps 2 and 3 till a Hamiltonian cycle C is found. 

We now prove w(C) s 2w(C*), where C* is any optimal Hamiltonian 

cycle in G. Suppose the vertices are J, 2, 3, ... , n. Assume without loss of 

generality the cycle consisting of the edges {l, 2}, {2, 3}, ... , {n-1, n}, {n,1} 

is an optimal Hamiltonian cycle C*. Then the path 1-2-3- · -n rs a 

Hamiltonian path P with weight w(P) which is at most equal to w(C*). 
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Our initial cycle CJ consists of vertex 1 and no edges. With this 

cycle we associate the set El of all the edges in the Hamiltonian path P. 

The weight of the edge {i, j} is denoted by wti, j) or w(j, i), 

To construct C2, with two vertices, we choose the vertex (denoted i) 

which is closest to vertex 1 in the network. C2 thus has path l -i-1, with 

weight 2w(J, i) s 2w(l, 2). Since we selected the edge {1, i} and did not 
select { 1, 2}, we delete the edge { 1, 2} from the path P. Thus with cycle C2 

we associate S2 = {{2, 3), {3, 4), ... , {n -1, n} }· 

Let j be the vertex not on C2 closest to a vertex in C2. If the edge of 

smallest weight incident at vertex 1 is e = { 1, p} and the edge of smallest 

weight incident at i is f = {i, q} and if w(e) < w(f), we take p =j, C3 is given 
by l-i-j-1. If w(e) > w( f), we take q = j so that C3 has path l-j-i-1. (In the 

case of equality we take either p or q.) 

Now 

w(C3) - w(C2) = [w (i, j) + w (1, j) + w(l, i)J - [2w (1, i)J 
=w(i,j) +w(l,j)-w(l, i) 

But w(J, j) sw(i, j) + w(J, i) because of the triangle property. Thus 
w(l,j)-w(l, i) s w(i,j) 

Hence 

w(C3) - w(C2) s 2w(i, j) 
We choose the edge {i, j} for inclusion in the updated cycle C3. At 

this stage we locate the first edge in the path P from i (the new vertex in C2) 

to j (the new vertex in C3) and delete this edge from the set S2 to obtain S3 

which is associated with C3. This deleted edge is of the form {i, i + 1 } or {i, 
i -1 }. Since w(i, j) cannot exceed the weight of the deleted edge, w(C3) - 

w(C2) is less than or equal to twice the weight of the edge deleted from P. 
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Proceeding like this, we have w(Ck) - w(Ck-1) less than or equal to twice the 

weight of a unique edge from P. Let Cn be denoted by C. Hence 

w (CJ - W (Cn-1) s 2wn-l 
w(Cn-l)-w(Cn-2)s 2wn-2 

w(C3) - w(C2) s 2w2 
w(C2) <Zwl 

where wl, w2, ... , wn-Jare the wei hts of then -1 ed es of the path P. 

Addition yields 

w(C) s2(wl + wz + ... + wn-I ) = 2w(P) s2w(C*) 
Thus we obtain a Hamiltonian cycle such that w(C) s 2w(C*) and so 

the gap w(C) - w(C*) cannot exceed w(C*). Incidentally, we also obtain 
l/2w(C) as a lower bound for w(C*). 

Another lower bound for an optimal Hamiltonian cycle 

We now describe another algorithm for obtaining a low weight 

Hamiltonian cycle C in a complete graph G = (V, E) which satisfies the 

triangle property, using an MST in the graph. Suppose T = (V, E') is an MST 

in G. Let H = (V, F) to be the multigraph obtained by duplicating all the 

edges of T. Then it can be proved that H has an Eulerian circuit and so it is 

possible to start from any vertex and return to that vertex by using each edge 
of H exactly once 

We start from any arbitrary vertex in T and conduct the following 

DFS of the vertices of the tree which is a systematic method of visiting all 

the vertices of the graph. We move along the edges of H ( using each edge 

exactly once) from vertex to vertex, assigning labels to each vertex, without 
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revisiting any vertex as long as possible. When a vertex is reached, each of 

whose adjacent vertices had been already visited, the search revisits the 

vertex v that was visited immediately before the previous visit to v. This 

procedure creates a circuit C' in H which uses each edge of H exactly once. 

Thus w(C) = w(H) = 2w(T). Suppose the vertices in C' appear in the order v 

1, v 2, ... , vn, which is a permutation of the n vertices of the graph. 

Now consider the cycle C" given by vl-v2-v3-···-vn -vl. This 

Hamiltonian cycle may have edges which are not edges in the circuit C'. But 

by the triangle property, w(C'; sw(C;. Thus w(C'; s 2w(T) s 2w(C), where 

C is any Hamiltonian cycle in the graph. Thus we are able to construct a 

Hamiltonian cycle C" in the graph, the weight of which does not exceed 

twice the weight of any optimal Hamiltonian cycle in the graph. 

The algorithm has three steps: 

Step I. Find a minimal spanning tree in the graph. 

Step 2. Conduct a depth-first search of the vertices of T 

Step 3. If the order in which the vertices appear in the search is 

vl, v2, ... , vn, then the Hamiltonian cycle vl-v2-v3-···-vn-vl is a low 

weight Hamiltonian cycle. 

(Since we can start the DFS (in a fixed MST) from any vertex, it may 

happen that the same tree T may yield more than one low weight 

Hamiltonian cycle. It is also possible that there will be more than one MST 

in a given graph.) 
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1.5 MINIMUM WEIGHT ARBORESCENCES 

A digraph is a directed forest if its underlying graph is a forest. A 

branching is a directed forest in which the indegree of each vertex is at most 

1. A vertex in a branching is a root if its indegree is 0. An arborescence is a 

branching which has exactly one root. If a subgraph T = (V, A') of a digraph 

G = ( V, A) is an arborescence with its root at the vertex r, then Tis an 

arborescence rooted at r in the digraph G. 

A subdigraph H of a digraph G is a directed spanning tree rooted at u 

if H is an arborescence in G with root at vertex v. If a directed spanning tree 

rooted at v is obtained as a result of a breadth-first search (depth-first 

search), then it is a BFS (DFS) directed spanning tree rooted at v. If a 

digraph is not strongly connected, a BFS or DFS starting from an arbitrary 

vertex v may not result in an arborescence rooted at that vertex. 

Obviously, if a digraph is strongly connected it has an arborescence 

rooted at every vertex. But strong connectivity is not a necessary condition 

for the existence of an arborescence in a digraph. For example, the digraph 

G = (V, A), where V= {l, 2, 3} and A = {(], 2), (2, 3), (2,1)}, has an 

arborescence rooted at vertex 1 even though the graph is not strongly 

connected. We now seek to obtain a suff cient condition to be satisfied by a 

digraph so that it will have an arborescence. 

A digraph is quasi-strongly connected if for every pair of vertices u 

and v in the digraph, there exists a vertex w such that there are directed paths 

from w to u and from w to v. (The vertex w could be u or v.) Strong 

connectivity obviously implies quasi-strong connectivity. But the converse is 

not true, as can be seen from the example given above. If a digraph has an 

arborescence, then it is obviously quasi-strongly connected. It turns out that 
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quasi-strong connectivity is also a sufbcient condition for the existence of a 

spanning arborescence in a digraph. 

Theorem 1.21 
A digraph has an arborescence if and only if it is quasi-strongly 

connected. 

Proof 

If there is an arborescence in G, then G is quasi-strongly connected. 

So it is a necessary condition. 

On the other hand, suppose G = (V, A) is a quasi-strongly connected 

digraph, where V = { 1, 2, 3, ... , n}. Let H = ( V, A') be a maximal quasi­ 

strongly connected subgraph of G so that the deletion of one more arc from 

A will destroy the quasi-strong connectivity of H. 

There exists a vertex xi in V such that there are paths (in H) from xi 

to the vertices 1 and 2. 

There exists a vertex x2 such that there are paths (in H) from x2 to the 

vertices 3 and xl. 

Finally, there exists a vertex xn-I such that there are paths (in H) 

from xn-1 to vertices n and xn-2. In other words, there exists a vertex v such 

that there are paths in H from v to every vertex. 

Let i be any other vertex in H. Since there is a directed path from v to 

i, the indegree of i is at least 1. Suppose the indegree of i is more than 1. 

Then there are at least two distinct vertices j and k such that both ( j, i) and 

(k, i) are arcs in H. So there are at least two paths from u to i. If one of the 

arcs ( j, i) or (k, i) is deleted, then the quasi-strong connectivity of H is not 

affected. This contradic tion shows that the indegree of i is 1. 
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If there is an arc directed to v, the deletion of this arc will not affect 

the quasi-strong connectivity of H. Thus the indegree of vis 0. So His an 

arborescence in G rooted at v. This completes the proof 

Suppose it is known that a weighted digraph has an arborescence 

rooted at a vertex r of the digraph. The minimum weight arborescence 

problem is that of finding an arborescence of minimum weight rooted at r. In 

the remaining part of this section we consider weighted digraphs. We 

assume that all arcs in a digraph have different weights. 

Suppose G = (V. A) has an arborescence rooted at r. If we adopt the 

greedy procedure and choose an arc of minimum weight directed to each 

vertex other than the root. and if the resulting subgraph H is acyclic, then H 

is indeed an arborescence rooted at r. For example, in the digraph G = (V, E) 

where V= { 1, 2, 3, 4} and A = { ( 1, 2), ( 1, 3), (2, 4), (3, 2), (4, 3) } with 

weights 3, 5, 4, 6, 7~ Respectively, this greedy procedure to obtain a 

minimum weight arborescence rooted at vertex 1 chooses the arcs (J, 2), 

(2,4) and (J, 3), giving a minimum weight arborescence in G with a total 

weight of 3 + 4 + 5 =12. Bur if the arc weights are 6, 7, 4, 3, 5, respectively, 

the resulting subgraph is no longer acyclic. 

Thus the problem is to obtain a procedure to obtain a minimum 

weight arborescence rooted at a vertex r when the subgraph obtained by the 

greedy method is not acyclic. The procedure described here is based on the 

treatment of the same tooic by Gondran and Minoux (1984). 

Theorem 1.22 

Let T* = (J~ A 

weighted digraph G = 

the subgraph obtained 

a minimum weight arborescence rooted at v in the 

rith distinct arc weights, and let H = (V, A') be 

G by choosing the arc of minimum weight 
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directed to each vertex other than the root v. Then the set C - A* has exactly 

one arc for every cycle C in H. 

Proof 

Obviously, C - A* is not empty. Suppose (C - A*) = {e', f} for some 

cycle C inH. Let e' = ( p, 9) andf = (r, s). 

In T * there is a unique directed path from the root v to q in which the 

last arc is not ( p, q). Let this arc bee = ( p', 9). Similarly, there is a unique 

directed path in T * from the root v to the vertex s the last arc of which is not 

(r, s) but the arc f = (r', s). The weight of any arc e is w(e). Since the arcs 
have distinct weights, by our construction of the subgraph H, w(e'.) < w(e) 
and w( f) < w( f). Let A" be the set of arcs obtained from A* by replacing e 

by e '. Then T' = (V, A''.) is an arborescence rooted at v the weight of which is 

less than the weight of T*. But T * is an arborescence with minimum weight. 

If more than two arcs of C are not in A* we arrive at the same contradiction. 

Thus exactly one arc of C is in A*. 

Construction of a condensed digraph from G 

Suppose G = (V, A) has an arborescence rooted at v. Let H = (V, A'.) 
be the subgraph obtained by the greedy method. Suppose C is a cycle in H. 

Let T* = (V, A*) be a minimum weight arborescence rooted at r. Let C - A* 

be the arc e' = (k, j) as in Theorem 1.22. So there is a unique arc e = (i, j) in 

A*, where i is not a vertex in the cycle C. 

Let GI= G/C = (VJ, Al) be the graph obtained by shrinking all the 

vertices of C into a single vertex. Each arc in Al corresponds to a unique arc 

in A. So Al can be considered as a subset of A. Then T* 1 = (VJ, A* nAJ) is 

an arborescence in GI. We have w(T*J) = w(T *) + w(C) - w(e'.). 
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We now define a weight function w 1 on the set Al. If e is an arc 

which is not incident to a vertex in C, we define wl(e) = w(e). Otherwise 

wl(e) = w(e) - w(e;. Thus wl is fixed once C is fixed. Moreover, wl(T* 1) = 

w(T* 1) - w(e;. Thus w(T*)-wl (T* l)=w(C). Hence T* is a minimum weight 

arborescence in G if and only if T* is a minimum weight arborescence in a 

condensed graph G 1. 

Thus we have the following algorithm to obtain a minimum weight 

arborescence. 

(a) Step i = 0. Go = G, wo(e) = w(e) for each e in the graph G. 

(b) At step i, using the weight function wi , construct the subgraph 

Hi of Gi by selecting the arc of smallest weight directed to every 

vertex ( other than the root) of Gi. 

( c) If there is no directed circuit in Hi, then Hi is an arborescence in 

Gi from which a minimum weight arborescence of Go can be 

derived. Otherwise go to (d). 

( d) If Hi has a directed circuit C, then define Gi+ 1 = Gi/C and 

wi+ 1 (e) = wi(e) for e = (i, j) where j r,! C, and wi+ 1 (e) = wi(e) - 

wite') fore = (i, j) where j EC and i r,!C and e' = (k, j) is an arc in C. 

(If Hi contains cycles Cl, C2, .... , Ct, first condense Gi with respect 

to CJ to obtain Gi/CJ, then condense Gi /CJ with respect to C2, and 

so on.) Set i = i + 1 and return to (b ). 
If we assume at each step of the algorithm that all arcs of the current 

digraph have different weights, then the minimum weight arborescence is 

unique. When there are some arcs with equal weights, the algorithm remains 

valid since the difference w(T*) - w 1 (T* 1) is still equal to the weight of the 

condensed cycle. If Chas two arcs e' = (p, q) andf = (r, s) which are not in 
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A*, then there are arcs e and f in A* directed to q and s, respectively. 
Then wl (e) = w(e) - w(e; and w 1 (f) = w(f) - w(f)· 

1.6 MAXIMUM WEIGHT BRANCHINGS 

An acyclic subgraph B of a digraph G is a branching in G if the 

indegree (in B) of each vertex is at most 1. If w is a real-valued weight 

function defined on the set of arcs of the digraph, an optimization problem 

of interest is that of finding a branching Bin G such that the sum w(B) of the 

weights of all the arcs in Bis as large as possible. This problem is known as 

the maximum weight branching problem. 

An attempt to solve the maximum weight branching problem by the 

greedy method need not be successful, as can be seen from the following 

example. Consider G = ( V, A), where V = { 1, 2, 3, 4} and A is the set { ( 1, 

2), (2, 3), (3, 4), (4, 3)} with weights 9, 8, 5 and 10, respectively. The greedy 

method will give a branching with weight 10 + 9 = 19. But the weight of the 

maximum weight branching is 9 + 8 + 5 = 22. 
In this section we obtain a procedure for solving the maximum 

weight branching problem. The algorithm is known as Edmonds branching 

algorithm. The discussion here is based on a combinatorial proof of this 

algorithm by Karp (1971). 

If e= (i, j) is.an arc in the digraph G = (V, A), th en the vertex i 

which is the source of e is denoted by s(e). Likewise the vertex j which is 

the terminal of e is denoted by t(e). Thus both sand tare mappings from A 
- to V. An arc e from , vertex p to vertex q in a digraph G= (v, A) with weight 

function w is a critecal arc if w(e)> Oand w(e;.s'w(e) for every arc e' where 

t(e;=t(e). A spanning subgraph H =(V,A; of G is a critical graph if each arc 
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in A' is critical and the indegree of each vertex is at most 1. No two cycles in 

a critical graph can have and edge or a vertex in common. 

If a critical graph H= (V' A;in a graph G is acyclic, then obviously H 

is in a maximum weight branching. For example, consider the digraph with 

V={l,2,3,4) and arcs (l,2),(l,4),(2,3),(3,4)and (4,2), with weights 6,5,3,2 

and 4, respectively. The critical graph is H=; (V ,A ;where the arcs in A' are 

(1,2), (1, 4) and (2, 3). His acyclic and is a maximum weight branching. On 
----- 

the other hand if the arc weights are respectvely 3, 2, 9, 6 and 8, the the 

critical graph His (V, A'), where the arcs in A are (2, 3), (3, 4) and (4, 2). In 

this case H is not acyclic. 

Thus the crux of the problem is to obtain an algorithm to solve the 
maximum weight branching problem when the critical subgraph is not 
acyclic. The procedure is as follows. Each cycle in the critical graph is 
replaced by a single vertex and the weight function is appropriately 
redefined. We continue this process till we get an acyclic critical graph in 
which a maximum weight branching is easily discernible. Once we obtain a 
maximum weight branching in this acyclic graph, we unravel the cycles and 
revert to the original problem and obtain a maximum weight branching in 
the given digraph. 

Construction of a condensed digraph 
Let G = (V, A) be a digraph with weight function w, and H be a 

critical graph in G. Suppose the cycles in H are Ci (i = l, 2, ... , k). Let W = 
{v E V: v is not a vertex in any of these k cycles}. Replace each cycle Ci by 
a vertex Xi. Let Vl={X 1, X 2, ... , Xk}u W. If e is an arc of the digraph G 
which is not an arc of Ci, and if t(e) is a vertex of Ci, then we define 
wl(e)=O w(e) - w(f) + w(ei), where/is the unique arc in Ci with t(f)=t(e) 
and ei is an arc of minimum weight in the cycle Ci. If t( e) is not a vertex in 
any of these k cycles, then w 1 (e) =w(e). the multidigraph G 1 thus obtained 
from H with VJ as the set of vertices is called the condensed graph of the 
weighted graph. A critical graph in Gl is denoted by HJ. Thus from the pair 
(G,H) we move to the pair (Gl,Hl). We continue this process till we reach 
the pair (Gm,Hm), where Hm is acyclic. 
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Theorem 1.23 

An arc e in a digraph is B-eligible if and only if there is no directed 

path in the branching B from t(e) to s(e). 

Proof 

Let B = (V', A; be a branching in G = (V, A). The set 

A" =A' EV {e}- {f EA': t(e) = t(f)} 

will form a branching if and only if it does not contain a cycle since B 

is a branching. Since B is acyclic, any cycle in A" should contain the arc e. 

In other words, C is a cycle in A" if and only if C - { e} is a directed path in B 

from t(i) to s(i). Thus e is B-eligible if and only if there is no directed path in 

B from t(e) to s (e). 

Suppose B = A') is a branching in G = (V, A). Let C be the set of 

arcs in a cycle in G. Since C cannot be a subset of A', the set C - A' is 

nonempty. If C - A' consists of one arc e, then e is not B-eligible. The 

converse also is true, and this is the content of the next theorem. 

Theorem 1.24 

If B = (V', A; is a branching in G = (V, A) and if C is the set of arcs in 

a cycle such that no arc in C - A' is B-eligible, then C-A' contains exactly one 

arc. 

Proof 

Suppose C - A'= {ei: i = l, 2, ... , k}. Assume that these arcs appear 

clockwise in the cycle such that ei+ I follows immediately after ei for i = 1, 

2, ... , k -1. Hence t(ei-1) = s(ei) or there is a path in Cr: A' from t(ei-1) to 
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s(ei) for i =2, 3, ... , k. Also, either t(ek) = s(el) or there is a path in Cn A' 

from t(ek) to s(el}. 

Suppose no arc in C - A' is B-eligible. Then there exists a path in B 

from t(ei) to s(ei) for each i. Now there is a path in C n A' from t(ei-1) to 

s(ei). There is also a path in A' from t(ei) to s(ei). So there is a path in A' 

from t(ei-1) to t(ei) or there is a path in A' from t(ei) to t(ei-1). In the former 

__ case, there is a path t(ei-1) t(ei) s(ei) in the branching A'. But the unique 

path in A' from t(ei-1) to s (ei) is in Cn A'. So the path from t(ei-1 ) to t(ei) is 

also in C n A'. So there should be an arc in C n A' directed to t(ei). But there 

is already the arc ei directed to t(ei) in the cycle. This arc ei is not B-eligible 

and therefore it is not in A'. Thus we have two arcs in the cycle - one in A' 

and one in its complement - such that both are directed to the vertex t(ei). So 

there is no path in A' from t(ei-1) to t(ei) for each i. Hence there is a path in 

A' from t(ei) to t(ei-1) for i =1, 2, ... , k and there is a path in A' from t(el) 

to t(ek). This situation creates the following cycle C' in A': 

t(ek) t(ek -1 ) ... t(el) t(ek) 

leading to a contradiction since A' is acyclic. 

In the figure below, the arcs in the branching Bare thick lines and the 

arcs not in B are dotted lines. The arc (8, 1) is eligible and there is no path 

from 1 to 8 in B. By adjoining this arc to B, the cardinality of the set A' of 

arcs in the branching is increased by one. Likewise, the arc (2, 9) is eligible 

and there is no path from 9 to 2. The arc (1, 6) is B-eligible and if it enters B, 

the arc (5, 6) has to leave B. The arc (4,1) is not eligible and there is a path 

from 1 to 4 inB. The cycle 1 ~ 2 ~ 9 ~ 8 ~ 1 has ( 1, 2) in the branching 
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and the three remaining arcs are B-eligible. In the cycle 1 -) 2 -) 4-) 1, the 

only arc not in the branching is(4,1) which is not B-eligible . 

... /i)······-··--··--······················ 

GS.------ 
·••· ..... 

f 
.. l 

·· .. 
•.,. 

Theorem 1.25 

If H is a critical subgraph of a digraph G = (V, A), there exists a 

maximum weight branching B = (V, A; in G such that, for every cycle C in 

H, the set C - A' has exactly one arc. 

Proof 

Let H = (V, Al) be a critical graph. From the collection of all 

maximum weight branchings, choose that branching B = (V, A; which has 

the maximum number of arcs in common with the critical graph H. Let e = 

(i, j) be any arc in A, but not in A'. Suppose e is B-eligible. Then the arcs in 
- 

A"= A'u{e} - { f:f EA' and t(e) = t(f)} 

form a maximum weight branching which has more arcs from the critical 

graph than A' has. So no arc in His B-eligible. In particular, no arc in a cycle 

C inH is B-eligible. Hence by Theorem 1.24, the cardinality of the set C -A' 

is 1. 
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Theorem 1.26 
Suppose the cycles in a critical subgraph Hof a digraph G are Cl, 

C2, ... , Ck . Then there exists a maximum weight branching B = (V, A') in 

G such that (i) Ci - A has exactly one arc for each i, and (ii) if arc e is not 

directed to a vertex in the cycle Ci for every arc e in the set A' - Ci, then Ci - 

A' is an arc of minimum weight in Ci for every i. 

Proof 
Observe that these cycles are disjoint in the sense that no two cycles 

have a vertex or an arc in common. 

Let ei be an arc ofminimum weight in the cycle Ci. Let S = {el, e2, ... 

, ek}. By Theorem 1.25, there exists (not uniquely) a maximum weight 

branching (which depends on H but not on the individual cycles) such that 

every arc except one of each Ci is an arc of this branching. Choose a 

maximum spanning branch B = (V, A ) of this kind which contains the 

minimum number of arcs from the set S. This branching B satisfies (i). 

Suppose this branching B does not satisfy property (ii). So there exists 

a cycle CJ (1 ~ j < k) where this property does not hold. No arc of A' - C is 
directed to a vertex in VJ and ej is not the arc CJ - B. So the arc ej is an arc in 
the branching B. Let e be the arc Ci - B. So w(e)~w(ei). Then A' - (ej) u {e} 

is a maximum weight branching which satisfies property (i) and has fewer 

edges than A' from the set S. This is a contradiction. So B satisfies property 

(ii). Thus B is the desired maximum weight branching in the digraph. 

Theorem 1.27 
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There is a one-to-one correspondence between the set of maximum 

weight branchings in a weighted digraph G satisfying properties (i) and (ii) 

of Theorem 1.26 and the set of maximum weight branchings in a condensed 

digraph in G. 

Proof 

Let G = (V, A) be a digraph with a weight function w. Let H be a 

critical graph in G with cycles Ci (i =1, 2, ... , k) and let Gl=(Vl, Al) be the 

corresponding condensed graph. 

We can define a weight function w 1 on this condensed graph by the 

way the arcs in Al are classified. The set Al consists of two categories of 

arc: an arc e is in the first category when t(e) is not a vertex in any of the 

cycles of H, in which case wl(e) = w(e). Otherwise the arc e is in the second 

category in which case wl (e) = w(e) - w( f) + wtei), where f is the unique 
arc in the cycle Ci which is directed to t(e) and ei is an arc of minimum 

weight in Ci. 

Let B = (V, A') be any branching in G satisfying properties (i) and (ii) 

of Theorem 1.26 using these cycles Ci. 

An arc e in A' such that both s (e) and t( e) are not in the same cycle in 

H defines a unique arc in Al; let DJ be the set of arcs thus defined. Then 

Bl=(Vl, DJ) is a branching in GI. (We may say that DJ is the 'intersection' 

of A' and Al.) Thus once a critical graph is fixed in G, a branching in G 

defines a unique branching in the condensed graph G 1 defined by the critical 

graph. 

Now consider the condensed graph GI= (VJ, Al) defined by a critical 

graph Hin a digraph G. Let the cycles in H be Ci (i =1, 2, ... , k). Let Bl= 

(VJ, Al) be a branching in GI. 
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If the indegree in Bl of the condensed vertex corresponding to the 

cycle Ci is 0, let Ci = Ci - {ei}. 

If this indegree is 1, there is a unique arc f (belonging to G) in Ci 
which is responsible for this. In this case let Ci = Ci - { j}. Thus from each 

cycle in H, we take all the arcs except one. Let X be the set of all arcs thus 

obtained from the k cycles. 

Now consider arcs in B, which are directed to vertices which are not 

condensed vertices. Each such arc corresponds to a unique arc in G. Let Ybe 

the set of arcs in G thus obtained. Then the union of X and Y constitutes a 

branching B in G. 

Now we turn our attention to optimality. Let Band Bl be as described 

above. Let P be the sum of the weights of the k cycles in H. Let Y be the sum 

of the weights of the minimum weight arcs in these k cycles, taking exactly 

one arc from each cycle. It is a simple exercise to verify that w(B) - wl (Bl) 

=P-Q. 

Thus there is a one-to-one correspondence between the set of 

maximum weight branchings in a digraph G and the set of maximum weight 

branchings in a condensed digraph obtained by condensing each cycle in a 

critical graph H in G into a vertex. 

Observe that Theorem 1.27 gives us a procedure for obtaining a 

maximum weight branching in G. First construct a critical subgraph H. If H 

is acyclic, then H is a maximum weight branching and we are done. 

Otherwise, we shrink each cycle into a vertex and readjust the weight 

function to obtain a condensed graph G 1. We continue this process till we 

reach an acyclic critical raph H of G. first construct a critical subgarph H. if 

H is acyclic, then h is a maximum weight branching and we are done. 

Otherwise, we shrink each cycle into a vertex and readjust the weight 
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function to obtain a consensed graph G 1. We continue this process till we 

reach an acyclic critical graph Hm of the condensed graph Gm. Thus we moe 

from (G,H) to (Gm,Hm). Now the unraveling starts. Hm gives a maximum 

weight brancing in Gm. We expand the consensed vertices in Hm-1 and 

obtain a maximum weight branching in Gm-1. We continue this process of 

expanding consensed cycles till we get a maximum weight brancing in the 

digraph G. 

We can summarize the of maximum weight branching algorithm as 

follows: 

Step J(the condensation process). The input is G=GO. Construct Gi 

from Gi-1 by consending cycles of a critical subgraph Hi-1 of Gi-1 

and by modifiying the weight of the arcs. Gk is the first digraph in the 

sequence with a critical acyclic subgraph Hk. 

Step 2(the unraveling process). The graph Hk is a maximum weight 

brancing in Gk. Let Bk =Hk. Construct Bi-1 from Bi by expanding the 

condensed cycles. Bi is a maximum weight branching in Gi for i =k, k­ 

l, .... ,0. B=BO is the output. 
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