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Abstract 

The project attempts to put together the theories, techniques, and procedures 

which can be used to design infinite impulse response filters. Thie mathematical 

tools for the designing of digital filters are introduced briefly, and then the designs 

are carried out using matlab. It's divided into four sections. 

Sections 1 gives a brief introduction of filtering operation, the ideal models 

that can be used to design any type of filter depending on the speciifications of the 

application. At the end designing method for IIR filters is briefly explained, which 

is firstly to design the analog filter then transform to digital filter iusing analog to 

digital filter transformations, and then transform it to other frequency selective 

filters by using frequency transformations 

Sections 2 describe the designing equations for analog prototype filters 

(chebyshev, butterworth 1 & 2 and elliptic). Then these prototypees are designed 

using matlab techniques. At the end a comparison is given to choose the best 

.suitable.filter under the specifications required. 

Sections 3 deals with the transformation of filters from arnalog to digital 

domain, two techniques are explained, which are bilinear tran.sformation and 

impulse invariance transformation. Both are then are then demonstrated by using 

matlab techniques. At the end lowpass digital filters are designeed using matlab 

techniques. 

Sections 4 explain the frequency band transformation, zmapping is explained for 

this purpose, and at the end matlab is used to design other freqiuency selective 

filters. 
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1. INTRODUCTION 

1.1 Filtering Process: 

Filtering is a process by which the frequency spectrum of signal can be 

modified, reshaped, or manipulated according to some desired specification. It may entail 

amplifying or attenuating a range of frequency components, rejecting or isolating one 

specific or attenuating a range of frequency component, etc. The uses <Of filtering are 

manifold, e.g., to eliminate signal contamination such as noise to remove signal distortion 

brought about by an imperfect transmission channel or by inaccuracies in measurement, to 

separate two or more distinct signals which were purposely mixed in order to maximize 

channel utilization, to resolve signals into their frequency components, to demodulate 

signals, to convert discrete-time signals into continuous-time signals, and to band-limited 

signals. 

The digital filter is a digital system that can be used to filter discrete-time signals. It can be 

implemented by mean of software ( computer programs) or by means of dedicated 

hardware, and in either case it can be used to filter real-time signals or non-real-time 

(recorded) signals. 

Software digital filters made their appearance along with the first digital computer in the 

late forties, although the name digital filter did not emerge until the rnidsixtiies. Early in the 

history of the digital computer many of the classical numerical analysis formulas of 

Newton, Starling, Everett, and others were used to carry out interpolation, differentiation, 

and integration of function (signals) represented by mean of sequences of numbers 

( discrete-time ~ignals ). Since interpolation, differentiation, or integration of a signal 

represents a manipulation of the frequency spectrum of the signal, the subroutines or 



programs constructed to cany out these operations were essentially digital filters. In 

subsequent years, many complex and highly sophisticated algorithms and programs were 

developed to perform a variety of filtering tasks in numerous applicatiions, e.g., data 

smoothing and prediction, pattern recognition, electrocardiogram processing, and spectrum 

analysis. In fact, as time goes on, interest in the software digital filter is becoming 

progressively more intense while its applications are increasing at an exponential rate. 

band-limited continuous-time signals can be transformed into a discrete-nime signals by 

means of sampling. Conversely, the discrete-time signals so generated can be used to 

regenerate the original continuous-time signals by means of interpolation, b:Y virtue of 

Shannon's sampling theorem. As a consequence, hardware Digital' s filters can be used to 

perform real-time filtering tasks, which in the not too distant past were performed almost 

exclusively by analog filters. The advantages to be gained are the traditional advantages 

associated with digital systems in general: 

1. Component tolerances are uncritical. 

2. Component drift and spurious environmental signals have no influence on the system 

performance. 

3. Accuracy is high. 

4. Physical size is small. 

5. Reliability is high. 

A very important additional advantage of digital filters is the ease with which filter 

parameters can be changed in order to change the filter characteristics. This feature 

allows one to design programmable filters, which can be used to perform a multiplicity of 

filtering tasks. Also one can design new types of filters such as adaptive fiilters. The main 
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disadvantage of hardware Digital's at present is their relatively high cost. However, with 

the tremendous advancements in the domain of large-scale integration, the cost of 

hardware digital filters is likely to drop drastically in the not too distant fuiture, When this 

happens, hardware Digital' s filters will replace analog filters in many more applications. [ 1] 

1.2 Applications of Digital Filters: 

Digital filters in the form of the form of software have been used extensively in the 

past and will no doubt continue to be used in the future at a progressively in.creasing rate. 

Typical applications are: 

1. Data smoothing and prediction 

2. Image enhancement 

3. Pattern recognition 

4. Speech processing 

5. Processing of telemetry signals 

6. Processing of biomedical signals 

7. Simulation of analog systems 

Programmable hardware digital filters have already made their appearance in the form of 

digital-signal processors such as FFT processors, frequency synthesizers, arud wave 

analyzers. Many other applications are anticipated for the future, especially in the domain 

of instrumentation. 

Nonprogrammable digital filters are currently considers as possible replacement of analog 

filters in any communication subsystems (2,3] with present-day technology, digital filters 

are still more expenses than analog filters except for some low-frequency, where extensive 

multiplexing of hardware is possible. Never the less, the gains in accuracy amd stability of 
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operation may some times justify the extra expanse. With the present trends in the 

fabrication of LSI circuit continuing, the cost of digital hardware is bound to drop 

drastically in the not too distant future. At that time digital filters will beconne more 

attractive than analog filters in many more application. It is nit expected filters will replace 

analog filter altogether, e.g., microwave filters! Instead, like LC, crystal, mechanical, 

monolithic, and active filters, digital filters will become and invaluable addition to the gab 

' of tricks available to the filter designer. 

1.3 Ideal Designing Models: 

The ideal designing models represent the designing of lowpass, high-pass, band-pass, 

band-stop, and all-pass filters. These are graphically interpreted in Figure 1--1. Their shape 

represents the steady-state magnitude-frequency response of a filter with a transfer 

function of H ( ro) = H( s) I s= i c where ro denote frequency measured in radians pe,r ~- 

The mathematical specification of each ideal filter is summarized as, 

Ideal Low-pass jH(w)j = {1 if co E [-B,B] 
0 otherwise 

€Il-Il)) 

Ideal High-pass jH(w )I= {o if ca E [-B,B] 
} otherwise 

«n-Z)l 

Ideal Band-stop «114)) 

All-pass jH(w )j = 1 for all ca E [-oo, oo] 
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Low-pass 

IH( (J) )I 

-B O B 

All-pass 

IH( (J) )I 

0 

High-pass 

IH( (J) )I 

-B 0 B 

Band-pass 

IH( (J) )I 

0 

Band-stop 

IH( (J) )I 

0 

Figure 1-1 Basic ideal filter types. 
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Filter design is often based on the use of several well-known models called Butterworth, 

Chebyshev, and elliptic (Cauer) filters. To standardize the design procedure, a set of 

normalized analog prototype filter models was agreed upon and reduced to tables, charts, 

and graphs. These models, called prototypes, were all developed as low-pass systems 

having a known gain (typically -1 dB or -3 dB pass-band attenuation) at at known critical 

cut-off frequency (typically l radian/second). The transfer function of an analog prototype 

filter, denoted Hp(s), would be encapsulated in a standard table as a function of filter type 

and order. The prototype filter HP (s) would then be mapped into a final filu 1Elf{$)) ~ 

critical frequencies specified by the designer [2]. The mapping rule is known as, 

frequency- frequency transform, as shown in figure. 

(/.() L____ ' :::---... !1~-· 
0.0 !!, 

I - o.o0_0 n, 
(ul (b) 

1.0 Lowpass f'r<>10lypc 

IH(rl>l2 0.5 1------+-- 

,~ o.o I ! . "'::::::---. n(_...,, 1111.c, W' UO I.U ••• 

r.11 ,I m Lowpass-to- ~.v,•·1·. \ r.o,.,p..ss-1o- B.,,... -., 

.... ,.~1 J_ :_. I.I ,,..,,.~, 
.. ····· . . . n,,""'""' 0.0 : _. . , u.v , 

o.o i 1,. si,. n,., o.o n,, n, lllr,, 

Figure 1-2. Frequency Band Transformation 
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1.4 IIR Filter Design: 

IIR filters has infinite duration impulse response, hence they can 

be matched to analog filters, all of which have generally infinitely long imjpulse response. 

Therefore the basic technique of IIR filter design is to transform well known analog filters 

to digital filters using complex valued mapping [ 4]. The advantage of this technique lies in 

the fact that both analog filter designs tables and mappings are extensively available. This 

basic technique is known as analog to digital filter transformation. Howevier analog filter 

tables are available only for low pass filters. When the requirement is to design other 

frequency selective filters (high pass, band pass, band stop etc.), the band trtansformation is 

applied to low pass filters. The transformations are also complex valued mapping, and they 

are available in literature. There are two approaches to design IIR filters. 

Approach 1: 

Design 
analog low 
pass filter 

Apply frequency 
transformation 

Apply filter 
transformation 

Approach 2: 

Design 
analog low 
pass fi\ter 

Apply filter 
--•~11 tran"&formation 

Apply frequency 
~ tran"&formation D~Dll 

filne!! 
1li 
Ii 

The first approach is used in matlab [5,6, 7,8] to design IIR filters. A 

straightforward use of matlab functions does not provide an insight into the design 

methodology. The 2nd approach is used in following chapters to give mathematics behind 

their design. Hence IIR filter design will follow the following steps. 

• Design analog low pass filter. 
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• Apply filter transformation to obtain digital low pass filter. 

• Apply frequency band transformation to obtain other filters from digital low pass filter. 

The main problem with these approaches is that we have no control over the phase 

characteristics of the IIR filter. Hence IIR filter is treated only as magnituide-only design. 

More sophisticated techniques, which can be used simultaneously to achieve magnitude 

and phase response. This requires advance optimization tools. 
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2. ANALOG PROTOTYPES 

2.1 Overview: 
IIR filter design techniques rely on existing analog filters to obtain digital 

filters. We designate these filters as analog prototype filters. Three prototypes are widely 

used in practice. In this chapter a brief summary of the low pass versions of these 

prototypes: Butterworth low pass, Chebyshev low pass (type I II), and Elliptic low pass is 

given. Then matlab functions are used for the designing of these filters. The phase 

response of all above filters is nonlinear. Bessel filter is implemented for linear phase 

response, so this filter is also introduced. [3,5,6,8] 

2.2 Butterworth Approximation: 

The magnitude-squared response of an analog low-pass Butterworth filter H. (s) of Nth 

order is given by, 

1 
)H. Gnf = l +(n; nc)2N (2-1) 

It can be easily shown that the first 2N-l derivatives of \Ha (jnf at n. = 0 are eqµa1 to 

zero, and as a result, the Butterworth filter is said to have a maximally-flat magnitude at n 
= 0. The gain of the Butterworth filter in dB is given by, 

g(O)= 10 log., IHa Gnf dB. 
A de i.e., at n = 0, the gain in dB is equal to zero, and at n = nc, the gain is, 

g(Oc) = 10 log., (1/2) = -3.0103 = -3 dB 
and therefore, it is often called the 3-dB cutoff frequency. Since the derivative of the 
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squared-magnitude response, or equivalently, of the magnitude response is always nega- 

tive for positive values of Q, the magnitude response, is monotonically decreasing with 

increasing Q. For Q >> Qc, the squared-magnitude function can be approximated by: 

1 IH. (jQf = I +(QI Qc)2N 

The gain g(Q2) in dB at Q2 = 2Q1 with Q1>> Qc is given by, 

g(!1J=-20log,{ ~'. r = g(n,)-6N dB, 
where g(Q 1) is the gain in dB at Q 1 . As a result, the gain roll-off per octave in the 

stop-band decreases by 6 dB, or equivalently, by 20 dB per decade for an increase of the 

filter order by one. In other words, the pass-band and the stop-band behaviors of the 

magnitude response improve with a corresponding decrease in the transition band as the 

fitter order N increases .. 

The two parameters completely characterizing a Butterworth filter are therefore the 3-dB 

cut-off frequency Qc and the order N. These are determined from the specified 

pass-band edge Q P, the minimum pass-band magnitude I/ '11 + & 2 , the stop--fuwnxdl 

edgeQs, and the maximum stop-band ripple 1/A. From Eq. (2-1) we get, 

(2'-Za) 

By solving the above we get the expression for the order N as, 

10 

l[f 



N _ 1 log10 KA 2 -1 )h·2 j _ log10 (11 kJ 
1 

- 2 log., (ns I Qp) - log., (Ilk) (2-3) 

Since the order N of the filter must be an integer, the value ofN computed using the 

above expression is rounded up to the next higher integer. This value of N cam be used 

next in either Eq. (2-2a) or (2-2b) to solve for the 3-dB cutoff frequency nc. If it is used 

in Eq. (2-2a), the pass-band specification is met exactly, whereas the stop-barnd 

specification is exceeded. On the Other hand, if it is used in Eq. (2-2b ), the stop-band 

specification is met exactly, whereas the pass-band specification is exceeded. 

The expression for the transfer function of the Butterworth low-pass filter is given by, 

("'\N QN C .l..!.c = c 

Ha(s)= DN(s) =SN+ L:~d)cs'" n:l(s-pJ (2-4) 

Where, 

(2-5) 

The denominator Dj.rs) ofEq. (2-4) is known as the Butterworth polynomial of order 

N and is easy to compute. 

2.3 Chebyshev Approximation: 

The approximation error is defined as the difference between the ideal brickwall 

characteristic and the actual response, is minimized over a prescribed band of 

frequencies. In fact, the magnitude error is equiripple in the band. There are two types 

of Chebyshev transfer functions. In the approximation 1, the magnitude characteristic 

rs equiripple in the pass-band and monotonic in the stop-band, whereas in type 2 
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approximatioruthe magnitude response is monotonic in the pass-band and eqjuiripple in the 

stop-band. 

2.3.1 Type 1 Chebyshev Approximation: 

The type 1 Chebyshev transfer function H. (s) has a magnitude response given by, 

Where TN (Q) is the Chebyshev polynomial of order N: 

rn.1 < 1, 
/!1/> I, 

(2-7i)) 

The above polynomial can also be derived by recurrence relation given by, 

r ~ 2, (2-$)) 

with TO (Q) = 1 and T 1 (Q) = Q 

The zeros are on the j!1-axis and are given by, 

A.= 1,2, ..... ,N. 

IfN is odd, then for )., = (N + 1 )/2, the zero is at s = co, The poles are located at, 

A= 1,2, ..... ,N, (2-10) 

Where: 
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n O.J3,. 
1'. - 2 /32' a,.+ ,. 

a =-Q r;sin[(211.-l}n-J f3 =Q J:co{(211.-l}n-J 
,. p 2N ' ,. P'=' 2N ' 

r = (A+"' A2 -1 JIN. 

(2-lla) 

(2-llb) 

(2- llc) 

The order N of the Type 2 Chebyshev low-pass filter is determined from given E, n s , and 

A using Eq. (2- 11). 

2.3.2 Type 2 Chebyshev Approximation: 

The Type 2 Chebyshev magnitude response, also known as the inverse Chebyshev 

response, exhibits a monotonic behavior in the pass-band with a maximally fl.at response at 

Q = 0 and an equiripple behavior in the stop-band. The square-magnitude response 

expression here is given by, 

(2-12) 

The transfer function of a Type 2 Chebyshev low-pass filter is no longer an all-pole 

function and has both poles and zeros. If we write, 

H.(s)= Co n:1 (s-zJ 
rr:l(s-pJ qZ-B)l 
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2.4 Elliptic Approximation: 

An elliptic filter, also known as a Cauer filter, has an equiripple pass-band and an 

equiripple stop-band magnitude response. The transfer function of an elliptic filter meets a 

given set of filter specifications, pass-band edge frequency QP , stop-band edge frequency , 

pass-band ripple Qs , and minimum stop-band attenuation A, with the lowest filter order 

N. The theory of elliptic filter approximation is mathematically quite involved. The square- 

magnitude response of an elliptic low-pass filter is given by, 

(2-Il41)J 

where RN(O.) is a rational function of order N satisfying the property RN(l/ !Q)= 

1 !RN ( 0.) , with the roots of its numerator lying within the interval O < Q < 1 and the 

roots of its denominator lying in the interval 1 < Q < cc For most applications, the filter 

order meeting a given set of specifications of pass-band edge frequency O.P , pass-band 

ripple ~' stop-band edge frequency Qs , and the minimum stop-band ripple A can be, 

estimated by using the approximate formula: 

N = 2 logrn (4/Jci) 
log., (1/ p) (2-15) 

where k 1 is the discrimination parameter and p is computed as follows : 

k'=~ 

1-Jk' 
Po = 2(1 + Jk') 
P =Po+ 2(p0)5 + 15(p0)9 + 150(p0)13. 

(2-16a) 

(2-16b) 

(2-16c) 
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in Eq.(2-16a), k is the selective parameter. 

2.5 Linear-Phase Approximation: 

In previous three approximations the techniques are for developing analog low-pass 

transfer functions meeting specified magnitude or gain response specifications without any 

concern for their phase responses. In a number of applications it is desirable that the analog 

low-pass, filter being designed have a linear-phase characteristic in the pass-band, in 

addition to approximating the magnitude specifications. One way to achieve this goal is to 

cascade an analog all-pass filter with the filter designed to meet tlne magnitude 

specifications, so that the phase response of the overall cascade realization approximates 

linear-phase response in the pass-band. This approach increases the overall hardware 

complexity of the analog filter and may not be desirable for designing an analog anti- 

aliasing filter in some AID conversion or designing an analog reconstruction filter in D/ A 

conversion applications. It is possible to design a low-pass filter that approximates a linear- 

phase characteristic in the pass-band but with a poorer magnitude response than that can be 

achieved by the previous three techniques. Such a filter has an all-pole transfer function of 

the form: 

(2-11) 

and provides a maximally flat approximation to the linear-phase characteristic: at Q = 0, 

I.e., has a maximally flat constant group delay at de (Q = 0). For a normalized group 
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delay of unity at de, the denominator polynomial fiBN(s) of the transfer function, called 

the Bessel polynomial, can be derived via the recursion relation: 

(2-18) 

starting with B 
1 
(s) = s + 1 and B 2 (s) = s 

2 + 3s + 3. Alternatively, the coefficients of the 

Bessel polynomial BN(s) can be found from: 

t.= 0,1, .... ,N-l (2-19) 

These filters are often referred to as Bessel filters. [2] 

2.6 Analog filter design using matlab: 

Butterworth filter: 

The M-file functions for butterworth analog filters are 

[z,p,k]=buttap (N) 

[num,den]=butter (N,Wn,'s') 

[ num,den ]=butter (N, W n,filtr type,' s') 

[N,Wn]=buttord (Wp,Ws,Rp,Rs,'s') 

The buttap(N) determines the pole zero and gain factor of transfer function. Alternatively 

we can use butter (N,Wn,'s') to design an order N transfer function with prescribed cut-off 

frequency of 3-dB at Wn rad/sec, the outputs are numerator and denominator polynomials 

coefficient vectors in descending order or s. If we wish to design a filter other than lowpass 

we can use the function butter(N,.Wn,filter type,'s') .The function buttord 

(Wp,Ws,Rp,Rs,'s') computes the lowest order of the filter under given specifications. 
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Type 1 Chebyshev Filter: 

The matlab function for the designing of chebyshev type 1 filters are: 

[ z, p,k ]=cheb 1 ap(N,Rp) 

[num,den]=chebyl(N,Rp,Wn,'s') 

[num,den]=chebyl (N,Rp,Wn,filtertype, 's') 

[N,Wn]=cheblord(Wp,Ws,Rp,Rs, 's') 

The cheby 1 (N,Rp) determines the pole zero and gain factor of transfer function with order 

N and passband ripples Rp dB. Alternatively we can use chebyl (N, Wn,'s') to design an 

order N transfer function with prescribed cut-off frequency of 3-dB at Wn rad/sec, the 

outputs are numerator and denominator polynomials coefficient vectors in descending 

order or s. If we wish to design a filter other than lowpass we can use the function cheby 1 

(N,Wn,filter type,'s') .The function chebl(Wp,Ws,Rp,Rs,'s') computes the lowest order of 

the filter under given specifications. 

Chebyshev type2 filters: 

The matlab functions type2 chebyshev filters are: 

[ z, p,k ]=cheby2ap(N ,Rs) 

[ num, den ]=cheby2( n,Rs, W n,' s ') 

[num,den]=cheby2(n,Rs, Wn,filtertype, 's') 

[N, Wn ]=cheb2ord(Wp, W s,Rp,Rs, 's') 

The cheby2ap (N,Rs) determines the pole zero and gain factor of transfer function with 

order N and stopband ripples Rs. Alternatively we can use butter (N,Wn,'s')i to design an 

order N transfer function with prescribed cut-off frequency of 3-dB at Wn rad/sec, the 

outputs are numerator and denominator polynomials coefficient vectors in descending 
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order or s. If we wish to design a filter other than lowpass we can use tlhe function 

cheby2(N,.Wn,filter type,'s') .The function cheb2ord(Wp,Ws,Rp,Rs,'s') computes 

the lowest order of the filter under given specifications. 

Elliptic ( causer) filters: 

The matlab functions for the implementation elliptic filters are: 

[ z,p,k ]=ellipap(N,Rp,Rs) 

[ num,den ]=ellip(n,Rp,Rs, Wn, 's ') 

[num,den]=ellip(n,Rp,Rs, Wn,filtertype, 's') 

[N,Wn]=ellip(Wp,Ws,Rp,Rs,'s') 

The ellipap (N) determines the pole zero and gain factor of transfer function with 

order N passband ripples Rp and stopband ripples Rs dB. Alternatively we can use 

ellip (N,Wn,'s') to design an order N transfer function with prescribed cut-off 

frequency of 3-dB at Wn rad/sec, the outputs are numerator and deenorninator 

polynomials coefficient vectors in descending order or s. If we wish to design a 

filter other than lowpass we can use the function ellip(N,.Wn,filter typie.ts') .The 

function ellipord (Wp, Ws,Rp,Rs,' s') computes the lowest order of the filter under 

given specifications. 

2.6.1 Matlab implementation: 

Here is the design of analog lowpass filters (butterworth, chebyshev, elliptic) using 

matlab under the following specification. 

Passband edge frequency is I kHz, stopband edge frequency is 5kHz, ripples in 

passband are I dB and stopband attenuation is 40dB. 

» %Designing specifications 

» Wp=I000*2*pi; 
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» Ws=5000*2*pi; 

» Rp=l; 

» Rs=40; 

» % A matlab program to design butterworth lowpass filter 

» [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s'); 

» disp('The order of butterworth filter'); disp(N); 

The order ofbutterworth filter 

4 

.» disp('Wn=');disp(Wn); 

Wn= 

9.9347e+003 

» % Determine transfer function 

» [num,den]=butter(N,Wn,'s'); 

» disp('numerator polynomial is'); disp(num); 

Numerator polynomial is 

1.0e+015 * 

0 0 0.0000 0.0000 9.7414 

» disp('denominator polynomial is'); <lisp( den); 

denominator polynomial is 

1.0e+015 * 

0.0000 0.0000 0.0000 0.0026 9.7414 

» % Plot of frequency response 

» omega=0:200: 12000*pi; 
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» h=freqs(num,den,omega); 

» gain=20*logl0(abs(h)); 

» plot( omega/(2*pi),gain, 'r'); grid 

»xlabel(' Frequency,Hz') 

»ylabel(' Gain,dB') 
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Chebyshev type- I filter design: 

» [N, Wn ]=cheb I ord(Wp, W s,Rp,Rs, 's'); 

» [num,den]=chebyl(N,Rp,Wn,'s'); 

» omega=0:200: 12000*pi; 

» h=freqs(num,den,omega); 

» gain=20*logl0(abs(h)); 

» plot( omega/(2 *pi),gain, 'r'); grid 

»xlabel(' Frequency,Hz') 
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»ylabel(' Gain,dB') 
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Chebyshev-11 filter design: 

» [N,Wn]=cheb2ord(Wp,Ws,Rp,Rs,'s'); 

» [N,Wn]=cheb2ord(Wp,Ws,Rp,Rs,'s') 

N= 3 

Wn = 2.344le+004 

» [den,num]=cheby2(N,Rs,Wn,'s'); 

» omega= [0:200: 12000*pi;]; 

» h = freqs(num,den,omega); 

» plot ( omega/(2*pi),gain, 'r') 

» grid 

» xlabel('Frequency,Hz') 

» ylabel('Gain,dB') 
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Elliptic filter design: 

» [N,Wn]=ellipord(Wp,Ws,Rp,Rs,'s'); 

» [N,Wn]=ellipord(Wp,Ws,Rp,Rs,1s1) 

N= 3 

Wn = 6.2832e+003 

» [num,den]=ellip(N,Rp,Rs,Wn,'s') 

» omega= [0:200: 12000*pi;]; 

» h = freqs(num,den,omega); 

» plot ( omega/(2 *pi),gain,'r') 

» xlabel('Frequency,Hz') 

» ylabel('Gain,dB') 
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2. 7 A Comparison of the Filter Types: 

We have discussed four types of analog low-pass fitter approximations, three of which 

have been developed primarily to meet the magnitude response specifications while the 

fourth has been developed primarily to provide a linear-phase approximation. In order to 

determine which filter type to choose to meet a given magnitude response specification, we 

need to compare the performances of the four types of approximations. To this end, we 

compare here the frequency responses of the normalized Butterworth, Chebyshev, and 

elliptic analog low-pass filters of same order. The pass-band ripple of the Type 1 

Chebyshev and the equiripple filters are assumed to be the same, while the minimum stop- 

band attenuation of the Type 2 Chebyshev and the equiripple filters are assumed to be the 

same. 

The Butterworth filter has the widest transition band, with a monotonically decreasing gain 

response. Both types of Chebyshev filters have a transition band of equal -width that is 

smaller than that of the Butterworth filter but greater than that of the elliptic filter. The 

Type 1 Chebyshev filter provides a slightly faster roll-off in the transition band than the 
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Type 2 Chebyshev filter. The magnitude response of the Type 2 Chebyshew filter in the 

pass-band is nearly identical to that of the Butterworth filter. The elliptic filter has the 

narrowest transition band, with an equiripple pass-band and an equiripplle stop band 

response. 

The Butterworth and Chebyshev fillers have a nearly linear-phase response over about 

three-fourths of the pass-band, whereas the elliptic filter has a nearly linear-phase 

response over about one-half of the pass-band. One the other hand, the Bessel filter may be 

more attractive if the linearity of the phase response over a larger portion of tlhe pass-band 

is desired at the expense of a poorer gain response. However, the Bessel filter provides a 

minimum attenuation at the largest transition band as compared other three typies, [2] 
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3. ANALOG-TO-DIGITAL FILTER 

TRANSFORMATIONS 

3.1 Overview: 
After discussing different approaches to the design of analog filters, 

we are now ready to transform them into digital filters. These transsformations are 

complex-valued mappings that are extensively studied in the literature. These 

transformations are derived by preserving different aspects of anallog and digital 

filters. If we want to preserve the shape of the impulse response from analog to 

digital filter, then we obtain a techniqne called impulse invariance tramsformation. If 

we want to convert a differential eqnation representation into a corresponding 

difference equation representation, then we obtain a finite difference· approximation 

technique. Numerous other techniques are also possible. One techniqne called step 

invanance, preserves the shape of the step response. The most pojpular technique 

used in practice is called a Bilinear transformation, which preserves the system 

function representation from analog to digital domain.Here is a sturdy of impulse 

invariance and bilinear transformations, both of which can be easily implemented in 

MATLAB. [3,5,6, 7] 

3.2 Impulse Invariance Transform: 

In this design method we want the digital filter impulse response to look "similar" to 

that of a frequency-selective analog filter. Hence we sample ha(t) at some sampling 

interval T 

to obtain h(n) ,· that is: 
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h(n) = ha(nT) 

The parameter Tis chosen so that the shape of ha(t) is "captured" by the samples. 

Since this is a sampling operation, the analog and digital frequencies aire related by 

(J) = 0.T or e = efwT 

Since z=e/\OOJ) on the unit circle and s=j.Q on the imaginary axis, we have the 

following transformation from the s-plane to the z-plane. 

(3.1) 

The system functions H(z) and Ha(s) are related through the frequency domain 

aliasing formula 

1 00 211 
H(z)=- LHa(s- j-k) 

T k=-oo T 

The complex plane transformation under the mapping under (3 .1) is shown in Figure 

3. 1 from which we have the following observations 

I.Using /5 = Re(s), we note that 

/5 < 0 maps into I z I < 1 (inside of the UC) 

/5 = 0 niaps onto I z I = 1 (ott the UC) 

/5 > 0 maps into I z I > 1 ( outside of the UC) 

2.AII semi-infinite strips (shown above) of width 2l1/T map into z< 1. Thus this 

mapping is not unique but a many-to-one mapping. 

3. Since the entire left half of the s-plane maps into the unit circle, a causal and stable 

analog fiter maps into a causal and stable digital filter. 
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4. If Ha(jco )=Ha(jco/T)=O for fQ/2:AIT, then 

jw Im{z} 

o 

unit:mde 

s-plane 

FIGURE 3.1 CompLex-plane mapping in imulse invariance transfonruation 

and there will be no aliasing. However, no analog filter of finite order can be exactly 

band-limited. Therefore Some aliasing error will occur in this design proceduire and 

hence the sampling interval T plays a minor role in this design method. 

3.2.1 Design procedure: 

Given the digital lowpass filter specifications cop, cos, Rp and As, and we want to 

determine H (z) by firs\ designing an equivalent analog filter and then mappimg it into 

the desired digital filter. The steps required for this procedure are 

1. Choose T and determine the analog frequencies 



np=rop/Tp and Os=ros/T 

2.Design an analog filter Ha(s) using the specifications op.os.Rpand As. This can be 

done using any one of the three (Butterworth, Chebyshev or elliptic) jprototypes . 

3.Using partial fraction expansion, expand Ha (s) into 

N R, 
Ha(s) =Ls-pk 

k=l 

4.Now transform analog poles { pk }into digital poles {e Pkr} to ollroamrm ire ~ 

filter 

N R, 
H(z) = L 1-epkT z " 

k=l 

(3.2) 

3.2.2 Matlab implemantation: 

Matlab provide fuction "irnpinvar" to transform analog prototype transfer function 

to a digital filter. 

Here is implementation of above function in order to transform analog prototypes 

to a digital filter .The specification are: 

Fp=lOOOKHz Fs=5000.KHz Rp=ldB Rs=40dB 

Butterworth filter: 

» Wp=l000*2*pi; 

28 



» Ws=S000*2*pi; Rp=I; Rs=40; 

» [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s'); 

» [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s') 

N= 

4 

Wn= 

9.9347e+003 

» [ num,den ]=butter(N,Wn,'s'); 

» %Digital transform using impulse invariance method 

» Fp=8000; 

» [b,a ]=impinvar(num,den,Fp ); 

» freqz(b,a,512) 

Normalized frequency (NyqList == 1) 

Normalized frequency (NyqList == 1) 

"" 



Chebyshev type 1 filter: 

» [N,Wn]=cheblord(Wp,Ws,Rp,Rs,1s1) 

N= 

3 

Wn= 

6.2832e+003 

» [num,den]=chebyl(N,Rp,Wn,'s'); 

» %Digital transform using impulse invariance method 

» Fp=8000; 

» [b,a ]=impinvar( num,den,Fp ); 

» freqz(b,a,512) 

» 

0.2 0.4 0.6 0.8 
Normalized frequency (Nyquist== 1) 

0 

gf 
~-100 

~ 
al -200 
~ 
0... 

-300 
0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist= 1) 
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Elliptic filter: 

» [N,Wn]=ellipord(Wp,Ws,Rp,Rs,'s') 

N= 

3 

Wn= 

6.2832e+003 

» [num,den]=ellip(N,Rp,Rs,Wn,'s'); 

» %Digital transform using impulse invariance method 

» Fp=8000; 

» [b,a ]=impinvar(num,den,Fp ); 

» freqz(b,a,512) 

» 

-· """'·~-----... _ __....._.--,-; r. -. 
I', ------ 

02 OA OB OB 
Normalized frequency (N~uist == 1) 

1 

0 

'ii, 
Q) -100 
~ 
0) 
~-200 ..._, 
~ ~ -300 
(L 

-400 
0 02 0.4 0.6 0.8 

Normalized frequency (N~uist == 1) 



The advantages of the impulse invariance mapping are that it is a stable design 

and that 

frequencies CD and .Q are linearly related.And the disadvantage is that we should 

expect some aliasing of the analog frequency response, and in ssome cases this 

aliasing is intolerable. Consequently, this design method is useful only when the 

analog filter is essentially band-limited to a lowpass or bandpass filter in which there 

are no scillations in the stopband. 

3.3 Bilinear transform: 

This mapping is the best transformation method; it involves a well-known function 

2 21-z-1 l+sTI 
s = => z = /2 

T Tl+z-1 1-sVi 
(3.3) 

where T isa parameter. Another name for this transformation is the llinear frectional 

transformation because when cleared of fractions, we obtain 

T T - sz + - s - z - 1 = 0 
2 2 

which is linear in each variable if the other is fixed, or bilinear iin s and z. The 

complex plane mapping under (3.3) is shown in Figure, from which we have the 

following observations: [3] 

I. Using s= 8 +j.Q in (3.3), we obtain 
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(J..4) 

Hence 

c T . OT 1+--+J-2- 
1 2 I< 1 o < 0 => Jz J = o T . n T 
1--2--J-2- 

0T 
l+ J- 

o- = 0 => Jzl = I n2r I= l 
1-j- 

2 

a- > 1 => lzl = 
1 o T . n T + -+ J-- 

2 2 I> o 
l _ a-T _ j n T 

2 2 

2. The entire left half-plane maps into the inside of the unit circle. Hence this is a 

stable transformation. 

3. The imaginary axis maps onto the unit circle in a on-to-one fashion. Hence there is 

no aliasing in the frequency domain. 

substituting a = 0 in equation (3 .4) we obtain 

Q.T 
l+ }2 =e;m 

z= Q.T 
1-- . 

2 

since the magnitude is 1. Solving for co as a function of n, we obtain 

-(nr, 2 (w' 
OJ= 2 tan \ 2 j ' n, = T tan T j «].5); 
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This shows that Q is nonlinearly related to ( or warped into) co but that there is no 

aliasing. Hence in (3. 5) we will say that co is prewarped into n. 

j(J) Im{z} 

One-to-one 
transformation 
1 +(sT /2) 
----=z 
1- (sT I 2) 

Re{z 
} 

unit circle 

s-plane z-plane 

FIGURE 3.2 Complex plane mapping using bilinear transform 

3.3.1 Design procedure: 

Given the digital filter specification Wp, Ws, Rp and Rs we want to determine H(z). 

The design steps in the procedure are following. 

1. Choose a value of T. This is arbitrary, and we may set T=l. 

2. Prewarp the cutoff frequencies Wp and Ws; that is, calculated! as Qp and Os 

using (3.5): 

Q = 2tan((JJS) 
s T 2 (3.6) 

34 



3. Design an analog filter Ha(s) to meet the specifications .Op, .Os, Rp and Rs. 

4. Finally, set 

( 
-]J 21-z 

H(z) = Ha Tl+ z-1 

3.3.2 Matlab implementation: 

MATLAB provides a function called bilinear to implement this mapping. Its 

invocation is similar to the impinvr function, but it also takes several forms for 

different in-put out-put quantities. 

Here is the design procedure of digital IIR filters(butterworth, chebyshevand elliptic) 

under the following specifications: 

Wp=0.21t, Ws=0.31t, Rp=ldB and Rs=l5dB. 

»%DIGITAL FILTER SPECIFICATIONS 

» Wp=0.2*pi; Ws=0.3*pi; Rp=l; Rs=l5; 

» % inverse mapping for freq: 

» T=l; Fs=l/T; 

» Op=(2/T)*tan(Wp/2); % prewrwap prototype passband freq 

» Os=(2/T)*tan(Ws/2); % prewrwap prototype stopband freq 

» %Butterworth filter order calculation: 

» [N,Wn]=buttord(Op,Os,Rp,Rs,'s'); 

» [num,den]=butter(N,Wn,'s'); 

» %bilinear transformation 

» [b,a ]=bilinear(num,den,Fs ); 

» %magnitude and phase response 
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» freqz(b,a,512); 

~ 200.---.---...----.-----...----, 
(l) 

~ 
8. 01 I =-==L 1 . I I 
~-200 1- --i---,-,~ 
·c 
g,_400~--~--~--~--~--~ 
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Normalized frequency (Nyquist== 1) 
0 

en 
(l) 

~ o,-200 
(l) :2. 
5l -400 
~ a. 
-600 

0 0.2 0.4 0.6 0.8 
Normalized frequency (Nyquist== 1) 

»% Chebyshevl filter order calculation: 

» [N,Wn]=cheblord(Op,Os,Rp,Rs,'s'); 

» [nurn,den]=chebyl(N,Rp,Wn,'s'); 

» %bilinear transformation 

» [b,a]=bilinear(nurn,den,Fs); 

» %magnitude and phase response 

» freqz(b,a,512); 

0 

Q) 

~ -100 
0 c.. 
gJ 
a:: -200 
Q) 

~ 
"E; 
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~ 
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]-300 
Q. 
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»%Chebyshev type 2 order calculation: 

» [N,Wn]=cheb2ord(Op,Os,Rp,Rs,'s'); 

» [num,den]=cheby2(N,Rs,Wn,'s'); 

» [b,a]=bilinear(num,den,Fs); 

» freqz(b,a,512); 

» 

1n 50 
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r ---\( ~ ---·-·--- 

V 

0.2 0.4 0.6 0.8 
Normalized frequercy (~uist == 1) 

100 I 

-.... __ ......• r~ L l 

...... 
----- --- 

'-- ~. I"--~ I --------- 

\/ - 
I 

---1 - 

' 

I - I I 
- 

_J 
0.2 0.4 0.6 0.8 
Normalized frequercy (~uist == 1) 

<ii' 0) 0 
~ 
i-100 - $ 
~-200 
o, 
-300 

0 

»%Elliptic filter order calculation: 

» [N, Wn ]=ellipord( Op, Os,Rp,Rs, 's'); 

» [ num,den ]=ellip(N,Rp,Rs, Wn, 's'); 

» [b,a]=bilinear(num,den,Fs); 

» freqz(b,a,512); 



» 

ro 50 ~ l 0l~ ------·· ~~-1~---r-+~l 
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~ 0 0.2 0.4 0.6 0.8 
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3.4 Lowpass filter design: 

In this section demonstrates the use of matlab filter design routines to design 

digital lowpass filters. These functions use the bilinear transformation because 

of its desirable advantages as discussed in the previous section. These functions 

are as follows: 

1. [b,a]=bntter(N,wn) 

This function designs an Nth-order lowpass digital Butterworth filter and 

returns the filter coefficients in length N+ 1 vectors band a. In MATLAB all 

digital frequencies are given in unit of A . Hence wn is computed by using the 

following relation: 

OJ = ~tan-1(0J) 
11 IT 2 

2. [b,a]=chebyl(N.Rp,wn) 

..,0 



This function designs an Nth-order lowpass digital Chebyshev-I filter with Rp 

decibels of ripple in the passband. It returns the filter coefficients in length N + 1 

vectors b and a. The cutoff frequency wn is the digital pasaband frequency in 

units of 11.; that is, 

3. [b,a]=cheby2[N,As, Wn) 

This function designs an Nth-order lowpass digital Chebyshev-II filter with the 

stopband attenuation As decibels. It returns the filter coefficients; in length N + 1 

vectors b and a. The cutoff frequency wn is the digital stop band frequency in units 

of 11.; that is, 

4. [b,al=ellip[N,Rp,As, Wn) 

This function designs an Nth-order lawpass digital elliptic alter with the passband 

ripple of Ap decibels and a stopbsnd attenuation of As dccibelts. It returns the 

filter coefficients in length N + 1 vectors b and a. The cutoff frequency wn is the 

digital pass band frequency in units of 11.; that is, 

Here is matlab implementation of above functions for the designiing of lowpass 

Butterworth, Chebyshev and Elliptic filters under the following 

specifications.Passband normalized edde frequency Wp=0.2*pi ,stopband edge 
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frequency Wp=0.2*pi ,stopband edge frequency Ws=0.3*pi ,passbancd ripples 

Rp=ldB and stopband attanuation Rs=lSdB. 

At the end a comperison is given to choose a best one, in terms of the , order of 

the filter and stop band attanuation. 

Butterworth lowpass filter: 

» Wp=0.2*pi; Ws=0.3*pi; Rp=I; Rs=l5; 

% analog prototype specification 

» T=l; 

» Op=(2/T)*tan(Wp/2); 

freq. 

» Os=(2/T)*tan(Ws/2); 

freq. 

» % Analog butterworth prototype order calculation 

%preWIWap prototype passband 

%ptewrap prototype stopband 

» N=ceil((logl 0((101"'(Rp/10)-1)/(1OA(Rs/10)- 1 )))/(2*logl O(Op/Os)));; 

» fprintf"{'**Butterworth filter order=O/o2.0f\n',N); 

* *Butterworth filter order= 6 

» % analog Butterworth prototype cuttoff frequency 

» Oc=Op/( (1OA(Rp/10 )-1 )A( 1/(2 *N)) ); %analog cuttoff freq. 

» Wn=2*atan((Oc*T)/2); %digital cuttoff freq. 

» %Digital filter design 

»Wn=Wn/pi; %cuttofffreq. In pi unit 

» [b,a ]=butter(N, Wn); 

» disp(a); 

AA 



1.0000 2.3505 2.8579 2.0069 0.8539 0.2034 0.0211 

» disp(b); 

0.1452 0.8713 2.1782 2.9043 2.1782 0.8713 0.1452 

» 

Here is the design of chebyshev type 2 digital filter under the specifications 

mentioned above. 

Chebyshev -1 lowpass filter : 

» % Analog chebyshev-1 prototype order calculation 

» ep=sqrt( 10/\(Rp/l 0)-1 ); %passband ripple factor 

» Oc=Op; %analog cutoff freq. 

» Or=Os/Op; %Transition ratio 

» A= 1 O/\(Rs/20); %stopbanb attenuation 

» g=sqrt(A * A-1 )/ep; %Intermediate cal. 

» N=ceil(logl O(g+sqrt(g*g-1 ))/logl O(Op+sqrt(Or*Or-1 ))); 

» fprintf('chebyshev-1 filter order =%2.0f\n',N); 

chebyshev-1 filter order = 4 

» % digital chebyshev-1 filter design 

» Wn=Wp/pi; %passband freq. In unit of pi. 

» [b,a]=chebyl(N,Rp,Wn); 

» disp(a); 

1.0000 -3.9634 6.6990 -5.9815 2.8111 -0.5558 

A 1 



» disp(b); 

0.0003 0.0015 0.0029 0.0029 0.0015 0.0003 

)) 

Chebyshev-2 lowpass filter design: 

» % analog chebyshev-2 order calculation 

» ep=sqrt(l O"(Rp/10)-1); 

» A=lO"(Rs/20); 

» g=sqrt(A*A-1)/ep; 

» Oc=Op; 

» Or=Os/Op; 

» N=ceil(logl O(g+sqrt(g*g-1 ))/logl O(Or+sqrt(Or*Or-1 ))); 

» fprintf('***chebyshev-2 filter order is=%2.0f,N); 

***chebyshev-2 filter order is= 4 

» % digital chebyshev-2 filter design 

» Wn=Ws/pi; 

» [b,a]=cheby2(N,Rs, Wn); 

» disp(a); 

1. 0000 -1.5508 1.3423 -0.4707 0.1079 

» disp(b ); 

0.1797 -0.0916 0.2525 -0.0916 0.1797 

Elliptic lowpass filter: 
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» % analog ellip prototype order calculation 

» ep=sqrt(l OA(Rp/10)-1 ); 

» A=lOA(Rs/20); 

» g=sqrt(A * A-1 )/ep; 

» k=Op/Os; 

» kl =ep/sqrt(A * A-1 ); 

» capk=ellipketjk.oz 1-k.t\2]); 

» capkl=ellipke([(kl .t\2) 1-(kl .t\2)]); 

» N=ceil( capk(l )*capkl(2)/( capk(2)*capkl(l ))); 

» fprintf('***\n ellip filter order=%2.0f,N); 

*** ellip filter order= 3 

» % Digital Elliptic filter design 

» Wn=Wp\pi; 

» [b,a]=ellip(N,Rp,Rs,Wn); 

» disp(a); 

1.0000 3.0000 3.0000 1.0000 

» disp(b ); 

1. 0000 3. 0000 3. 0000 1. 00 
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3. 4 Comparison of three filters: 

The filters compared in terms of order N and stopband attenuation Rs under the 

specification they were designed, the comparison is shown in table beloiw 

Prototype OrderN Stojpband Attan. 

Butterworth 

Chebyshev-1 

Elliptic 

6 

4 

3 

15 

25 

27 

Clearly the Elliptic prototype gives the best design.However, if we 

compere their phase response ,elliptic design has the most non linear plnase 

response in the passband. 

44 



4. FREQUENCY-BAND TRANSFORMATIONS 

4.1 Overview: 
So far we designed digital lowpass filters from their correspondhig 

analog filters. Here we are designing other types of freqnency-selective filters, such 

as higlipass, bandpass, and band-stop. This is accomplished by transforming the 

frequency axis ( or band) of a lowpass filter so that it behaves as amother frequency- 

selective filter. These transformations on the complex variable z are very similar to 

bilinear transformations, and the design equations are algebraic. [3] 

4.2 Design procedure: 

The procedure to design a general frequency-selective filter is to first design a digital 

prototype ( of fixed bandwidth, say unit bandwidth) lowpass filter and then to apply 

algebraic transforniations. MATLAB provides fnctions that incorporate frequency- 

band transformation in the s-plane. We will first demonstrate the ruse of the z-plane 

mapping and then illustrate tlie use of MATLAB functions. Typical specifications 

for most commonly used types of frequency-selective digital filtters are shown in 

Figure 4.1. 

Let Hlp(Z) be the given prototype lowpass digital filter, and let H (z) be the desired 

frequency-selective digital filter. We are using two different frequiency variables, Z 

and z, with Hip and H, respectively. Define a mapping of the form: 

Such that 
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To do this, we simply replace z' everywhere in Hip by the function G((z-1). Given that 

Hlp(Z) is a stable and causal filter, we also wantH(z) to be stable and cauisal This imposes 

the following requirements: 

fH (e1m )/ fH (e1m )/ 

~ 

Lowpass t Highpass 

l 

~~t 
/ 

I I 
F 

I 
A 

(J) p (J) s Jr ••. (J) 
1/ 
A 

u (J) (J) s p Jr (J) 

1/ 
)1 + &2 

~I 1 1 I I I ••• 
...!... / 0 (J) pl (J) sl (J) s2 (J) p2 Jr (J) 
A 

- Bandstop - 

- 
FIGURE 4.1 Specifications of 'frequency-selective fl/tiers 

1. G (.) must be a rational function in z-1 so that H (z) is implementable. 

2. The unit circle of the Z-plane must map onto the unit circle of the z-plane 
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3. For stable filters, the inside of the unit circle of the Z-plane musst also map onto 

the inside of the unit circle of the z-plane. 

Let w' and w be the frequency variables of Z and z, respectively that is Z = 

z =e1m on their respective unit circles. Then requirement 2 above implies that 

And 

The general form of the function C (.) that satisfies the aboive requirements 

is a rational function of the all pass type given by 

Where I a I< 1 for stability and to satisfy requirement 3. 

Now by choosing an appropriate order n and the coefficients { ak}, We can obtain a 

variety of mappings, (3] the most widely used transformations are giwen in Table 4.2 

I Typeof 
Tranefer function 

Transformation Parameters 

m c = cutoff frequency of new 
filter 

Highpass 
-] 

z-1 ~ z +a 
I +az-1 

ca c = cutoff frequency of new filter 
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a= 
co{ (w:· + 0c) /z] 
co{(w; -mJ h] 

Bandpass 

@u = upper cutoff :&~y 

a1 =-2kp Ak+i) 

(k+%1 a2 = (k-1) 

cos[ (w" + WzYz] 
/3 = --=------= 

[
(rnu -@1 /] cos /2 

/' (0 - (0 ill! k = COt " I tan-c 
2 2 

-2 -I 
_1 z -a1z +a7 :z ~ - 

-2 -] 1 a2z -a1z + 
w,, = upper cutoff frequency 

a1 = -2kf3 J1k + 1) 
(k+%) a2 = (k-1) 

i(wu +w1)/J cosl ;2 
P= L 

co{ (wu - w;{J 
,, 

;k = 11m (Ou - Wz 11m W',;; 

2 2 

TABLE 4.2-:frequency transformation for digital filters 

4.3 Matlab Implementation: 

Here is the design of Chebyshev type 1 high-pass filter under the following 

specifications. 
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Wp=0.6pi, Ws=0.4586, Rp=ldB and Rs=15dB. The plots of phase response and 

magnitude response (in dB) are also sketched. 

Matlab script: 

» [N,Wn]=buttord(0.6,0.4586, 1, 15) 

N= 

6 

Wn= 

0.5491 

» [b,a]=butter(N,Wn,'high') 

b= 

0.0182 -0.1091 0.2728 -0.3637 0.2728 -0.1091 0.0182 

a= 

1.0000 0.5822 0.9043 0.2882 0.1477 0.0200 0.0024 

» freqz(b,a, 128) 

» 
co 
~ 200 a, 
~ 
0 g- 0 
a, 
a:: 
i-200 .a 
·1: 
~ -400 
~ 0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist== 1) 
200 

ui' a, a, c, 0 
a, 
~ 
~ -200 
1 
a.. 

-400 
0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist== 1) 

AC\ 



Design of Chebyshev type 1 high pass filter under following specification: 

Wp=0.6pi, Ws=0.4586, Rp=ldB and Rs=15dB. The plots of phase response and 

magnitude response (in dB) are also sketched. 

Matlab script 

» [N,Wn]=cheblord(0.6,0.4586, 1, 15) 

N=4 

Wn=0.6000 

» [b,a]=chebyl(N,1,Wn,'high') 

b = 0.0243 -0.0970 0.1456 -0.0970 0.0243 

a= 1.0000 1.5977 1.7459 1.0200 0.3074 

» freqz(b,a, 128) 

» freqz(b,a,512) 

iD 
~ 0 - 
i-100L-------J~----~I- ~ 

(/) 

~ -200 ,---+-- 
~ -300 
·c 
~-400 
~ 0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist== 1) 
0 

ui' 
~ -100 
O> 
Cl) 
~-200 
Cl) 
(/) 

~ -300 
a. 
-400 

0 0.2 0.4 0.6 0.8 
Normalized frequency (Nyquist== 1) 

Here is the design of elliptic high pass filter under the following specifications: 



» Ws=[0.3pi 0.75pi] Wp=[0.4pi 0.6pi] Rp=l Rs=40 

The phase response and the magnitude response are also sketched. 

Matlab script: 

» Ws=[0.3*pi 0.75*pi]; Wp=[0.4*pi 0.6*pi]; 

» Rp=l; Rs=40; 

» [N,Wn]=ellipord(Wp/pi,Ws/pi,Rp,Rs) 

N= 

4 

Wn= 

0.4000 0.6000 

» [b,a]=ellip(N, 1,40,Wn,'pass') 

b= 

Columns 1 through 7 

0.4093 0.0000 1.5594 0.0000 2.3024 0.0000 1.5594 

Columns 8 through 9 

0.0000 0.4093 

a= 

Columns 1 through 7 

1.0000 0.0000 2.2509 0.0000 2.3194 0.0000 1.1417 

Columns 8 through 9 

0.0000 0.2893 

» freqz(b,a, 128) 

"1 



)) 

en 
~ 0 
Q) 

~ 
8.-20 
fil a:: 
~ -40 
.a ·c 
g> _50 
~ 0 

-- 

I 
- - 

\ 
\ I 
r{~ 

0.2 0.4 0.6 0.8 
Normalized frequency (Nyquist== 1) 

400 
w 
~ 200 Ol 
~ 0 
Q) 

~ -200 s: 
CL 

-400 
0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist== 1) 

Design of Chebyshev type-2 band stops filter under following specifications: 

Ws=[0.4pi 0.7pi] Wp=[0.25pi 0.8pi] Rp=l Rs=40 

The phase and magnitude responses are also sketched. 

Matlab script: 

» Ws=[0.4*pi 0.7*pi]; Wp=[0.25*pi 0.8*pi]; 

» Rp=l ; Rs=40; 

» [N,Wn ]=cheb2ord(Wp/pi,W s/pi,Rp,Rs) 

N= 

5 

Wn= 

0.3490 0.7157 

» [b,a]=cheby2(N,40,Wn,'stop') 



b= 

Columns 1 through 7 

0.1068 0.1082 0.4074 0.3325 0.7243 0.4611 0.7243 

Columns 8 through 11 

0.3325 0.4074 0.1082 0.1068 

a= 

Columns 1 through 7 

1.0000 0.6233 0.3254 0.2841 0.8480 0.3345 0.1859 

Columns 8 through 11 

0.0832 0.1087 0.0175 0.0090 

» freqz(a,b,1278) 

)) 

m100~~~~~~~~~~~~~~~~~ 
:s, 
(I) 

i 50 t ~ i -"\" 
gi O ···-- 
:i: 0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist== 1) 
400 

gi 200 
~ 
Ol 
~ 0 
(I) 
fl) 
~ -200 
0.. 

-400 
0 0.2 0.4 0.6 0.8 

Normalized frequency (Nyquist == 1) 



CONCLUSION 

The digital filter design problem is concerned with the 

development of suitable transfer function meeting the freqjuency response 

specifications. The specifications are usually given in the term 01f pass band and 

stopband edge frequencies and allowable deviations from passbamd and stopband 

magnitude level. In this project the main objective was to obtain llinear magnitude 

response. The IIR filters are best for this purpose. 

IIR filter design is usually carried out by transforming a prototype analog filter 

function by means of a suitable mapping of complex frequenccy variable s to 

complex variable z. The impulse invariance method and bilinear transform are 

discussed. Of these two the later is less restricted and is more wideely used than the 

former. 

Here is a comparison of the IIR filters, designed in the project using matlab 

techniques. 

Elliptic filters provide optimal performance in the magnitude-squared respouse 

but have highly nonline& phase response in the psssband (which is undesirable in 

many applications). Even though we are not concerened about plhase response in 

our designs, phase is still an important issue in the overall system. At the other end 

of the performance scale are the Butter-worth filters, which have maximally flat 

magnitude response and reqnire a higher-order N (more poles) to eachieve the same 

stophand specification. However, they exhibit a fairly linear phase response in their 

passband. The Chebyshev filters have phase characteristics that Hie somewhere in 

between. Therefore in practical applications we do consider Butterworth as well as 
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Cbebyshev filters, in addition to elliptic filters. The choice depends on both the 

filter order (which influences processing speed and implementation complexity) 

and the phase characteristics (which control the distortion). 

The advantage of IIR filters over the FIR filters is their order is less, so they 

require least implementation size. But their phase response is not linear, where as 

FIR filters shows linear phase response, but they require high order, and as a result 

theirimplementation require big size. 
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MATLAB COMMANDS FOR IIR FILTER DESIGN: 

Filter type Desisgn Function 

Butterworth [b,a] = butter(n,Wn,option) 

[z,p,k] = butter(n,Wn,<option) 

[A,B,C,D] = butterm, 'Wn.option) 

Chebyshev Type 1 [b,a] = chebyl(n,Rp, \Wn,option) 

[z,p,k] = cheby ltn.Rp, Wn,option) 

[A,B,C,D] = cheby ltn.Rcp, Wn,option) 

Chebyshev Type 2 [b,a] = cheby2(n,Rs, Wn.option) 

[z,p,k] = chebyzm.Rss.Wn.option) 

[A,B,C,D] = cheby2(n,Rs,Wn,option). 

Elliptic [b,a] = ellip(n,Rp,Rs, \Wn,option) 

[z,p,k] = ellipm.Rp.Rs.Wn.option) 

[A,B,C,D] =ellipm.RpxRs, Wn,option) 

By default each of these function return lowpass filters, we only neeed to specify the 

value of Wn in normalized frequency. For highpass, bandpass and !bandstop filters 
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we have to add high, pass and stop at the place of option respective.ly, and also to 

specify the value of Wn accordingly. 

IIR Filter Order Calculation: 

Filter Type Order Estimatiion Function 

Butterworth [n,Wn] = butter(Wp,Ws,Rp,Rs) 

Chebyshev type 1 [n,Wn] = cheblord(Wlp,Ws,Rp,Rs) 

Chebyshev type 2 [n,Wn] = cheb2ord(Wip,Ws,Rp,Rs) 

Elliptic [n,Wn] = ellipord(Wp;,Ws,Rp,Rs) 

Analog to Digital Transformation: 

Bilinear Transformation: 

Impulse Invariance Transformation: 

[b,a] = bilinear((num,den,Fs) 

[b,a] = impinvaumum.den.Fs) 

Where num and den are the polynomials of transfer function of amalog filter, Fs is 

the sampling frequency. b And a are the polynomials of digital filteer. 
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