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Abstract 

The project attempts to put together the theories, techniques, and procedures 

which can be used to design infinite impulse response filters. Thie mathematical 

tools for the designing of digital filters are introduced briefly, and then the designs 

are carried out using matlab. It's divided into four sections. 

Sections 1 gives a brief introduction of filtering operation, the ideal models 

that can be used to design any type of filter depending on the speciifications of the 

application. At the end designing method for IIR filters is briefly explained, which 

is firstly to design the analog filter then transform to digital filter iusing analog to 

digital filter transformations, and then transform it to other frequency selective 

filters by using frequency transformations 

Sections 2 describe the designing equations for analog prototype filters 

(chebyshev, butterworth 1 & 2 and elliptic). Then these prototypees are designed 

using matlab techniques. At the end a comparison is given to choose the best 

.suitable.filter under the specifications required. 

Sections 3 deals with the transformation of filters from arnalog to digital 

domain, two techniques are explained, which are bilinear tran.sformation and 

impulse invariance transformation. Both are then are then demonstrated by using 

matlab techniques. At the end lowpass digital filters are designeed using matlab 

techniques. 

Sections 4 explain the frequency band transformation, zmapping is explained for 

this purpose, and at the end matlab is used to design other freqiuency selective 

filters. 
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1. INTRODUCTION 

1.1 Filtering Process: 

Filtering is a process by which the frequency spectrum of signal can be 

modified, reshaped, or manipulated according to some desired specification. It may entail 

amplifying or attenuating a range of frequency components, rejecting or isolating one 

specific or attenuating a range of frequency component, etc. The uses <Of filtering are 

manifold, e.g., to eliminate signal contamination such as noise to remove signal distortion 

brought about by an imperfect transmission channel or by inaccuracies in measurement, to 

separate two or more distinct signals which were purposely mixed in order to maximize 

channel utilization, to resolve signals into their frequency components, to demodulate 

signals, to convert discrete-time signals into continuous-time signals, and to band-limited 

signals. 

The digital filter is a digital system that can be used to filter discrete-time signals. It can be 

implemented by mean of software ( computer programs) or by means of dedicated 

hardware, and in either case it can be used to filter real-time signals or non-real-time 

(recorded) signals. 

Software digital filters made their appearance along with the first digital computer in the 

late forties, although the name digital filter did not emerge until the rnidsixtiies. Early in the 

history of the digital computer many of the classical numerical analysis formulas of 

Newton, Starling, Everett, and others were used to carry out interpolation, differentiation, 

and integration of function (signals) represented by mean of sequences of numbers 

( discrete-time ~ignals ). Since interpolation, differentiation, or integration of a signal 

represents a manipulation of the frequency spectrum of the signal, the subroutines or 



programs constructed to cany out these operations were essentially digital filters. In 

subsequent years, many complex and highly sophisticated algorithms and programs were 

developed to perform a variety of filtering tasks in numerous applicatiions, e.g., data 

smoothing and prediction, pattern recognition, electrocardiogram processing, and spectrum 

analysis. In fact, as time goes on, interest in the software digital filter is becoming 

progressively more intense while its applications are increasing at an exponential rate. 

band-limited continuous-time signals can be transformed into a discrete-nime signals by 

means of sampling. Conversely, the discrete-time signals so generated can be used to 

regenerate the original continuous-time signals by means of interpolation, b:Y virtue of 

Shannon's sampling theorem. As a consequence, hardware Digital' s filters can be used to 

perform real-time filtering tasks, which in the not too distant past were performed almost 

exclusively by analog filters. The advantages to be gained are the traditional advantages 

associated with digital systems in general: 

1. Component tolerances are uncritical. 

2. Component drift and spurious environmental signals have no influence on the system 

performance. 

3. Accuracy is high. 

4. Physical size is small. 

5. Reliability is high. 

A very important additional advantage of digital filters is the ease with which filter 

parameters can be changed in order to change the filter characteristics. This feature 

allows one to design programmable filters, which can be used to perform a multiplicity of 

filtering tasks. Also one can design new types of filters such as adaptive fiilters. The main 
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disadvantage of hardware Digital's at present is their relatively high cost. However, with 

the tremendous advancements in the domain of large-scale integration, the cost of 

hardware digital filters is likely to drop drastically in the not too distant fuiture, When this 

happens, hardware Digital' s filters will replace analog filters in many more applications. [ 1] 

1.2 Applications of Digital Filters: 

Digital filters in the form of the form of software have been used extensively in the 

past and will no doubt continue to be used in the future at a progressively in.creasing rate. 

Typical applications are: 

1. Data smoothing and prediction 

2. Image enhancement 

3. Pattern recognition 

4. Speech processing 

5. Processing of telemetry signals 

6. Processing of biomedical signals 

7. Simulation of analog systems 

Programmable hardware digital filters have already made their appearance in the form of 

digital-signal processors such as FFT processors, frequency synthesizers, arud wave 

analyzers. Many other applications are anticipated for the future, especially in the domain 

of instrumentation. 

Nonprogrammable digital filters are currently considers as possible replacement of analog 

filters in any communication subsystems (2,3] with present-day technology, digital filters 

are still more expenses than analog filters except for some low-frequency, where extensive 

multiplexing of hardware is possible. Never the less, the gains in accuracy amd stability of 
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operation may some times justify the extra expanse. With the present trends in the 

fabrication of LSI circuit continuing, the cost of digital hardware is bound to drop 

drastically in the not too distant future. At that time digital filters will beconne more 

attractive than analog filters in many more application. It is nit expected filters will replace 

analog filter altogether, e.g., microwave filters! Instead, like LC, crystal, mechanical, 

monolithic, and active filters, digital filters will become and invaluable addition to the gab 

' of tricks available to the filter designer. 

1.3 Ideal Designing Models: 

The ideal designing models represent the designing of lowpass, high-pass, band-pass, 

band-stop, and all-pass filters. These are graphically interpreted in Figure 1--1. Their shape 

represents the steady-state magnitude-frequency response of a filter with a transfer 

function of H ( ro) = H( s) I s= i c where ro denote frequency measured in radians pe,r ~- 

The mathematical specification of each ideal filter is summarized as, 

Ideal Low-pass jH(w)j = {1 if co E [-B,B] 
0 otherwise 

€Il-Il)) 

Ideal High-pass jH(w )I= {o if ca E [-B,B] 
} otherwise 

«n-Z)l 

Ideal Band-stop «114)) 

All-pass jH(w )j = 1 for all ca E [-oo, oo] 
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Low-pass 

IH( (J) )I 

-B O B 

All-pass 

IH( (J) )I 

0 

High-pass 

IH( (J) )I 

-B 0 B 

Band-pass 

IH( (J) )I 

0 

Band-stop 

IH( (J) )I 

0 

Figure 1-1 Basic ideal filter types. 
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Filter design is often based on the use of several well-known models called Butterworth, 

Chebyshev, and elliptic (Cauer) filters. To standardize the design procedure, a set of 

normalized analog prototype filter models was agreed upon and reduced to tables, charts, 

and graphs. These models, called prototypes, were all developed as low-pass systems 

having a known gain (typically -1 dB or -3 dB pass-band attenuation) at at known critical 

cut-off frequency (typically l radian/second). The transfer function of an analog prototype 

filter, denoted Hp(s), would be encapsulated in a standard table as a function of filter type 

and order. The prototype filter HP (s) would then be mapped into a final filu 1Elf{$)) ~ 

critical frequencies specified by the designer [2]. The mapping rule is known as, 

frequency- frequency transform, as shown in figure. 

(/.() L____ ' :::---... !1~-· 
0.0 !!, 

I - o.o0_0 n, 
(ul (b) 

1.0 Lowpass f'r<>10lypc 

IH(rl>l2 0.5 1------+-- 

,~ o.o I ! . "'::::::---. n(_...,, 1111.c, W' UO I.U ••• 

r.11 ,I m Lowpass-to- ~.v,•·1·. \ r.o,.,p..ss-1o- B.,,... -., 

.... ,.~1 J_ :_. I.I ,,..,,.~, 
.. ····· . . . n,,""'""' 0.0 : _. . , u.v , 

o.o i 1,. si,. n,., o.o n,, n, lllr,, 

Figure 1-2. Frequency Band Transformation 
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1.4 IIR Filter Design: 

IIR filters has infinite duration impulse response, hence they can 

be matched to analog filters, all of which have generally infinitely long imjpulse response. 

Therefore the basic technique of IIR filter design is to transform well known analog filters 

to digital filters using complex valued mapping [ 4]. The advantage of this technique lies in 

the fact that both analog filter designs tables and mappings are extensively available. This 

basic technique is known as analog to digital filter transformation. Howevier analog filter 

tables are available only for low pass filters. When the requirement is to design other 

frequency selective filters (high pass, band pass, band stop etc.), the band trtansformation is 

applied to low pass filters. The transformations are also complex valued mapping, and they 

are available in literature. There are two approaches to design IIR filters. 

Approach 1: 

Design 
analog low 
pass filter 

Apply frequency 
transformation 

Apply filter 
transformation 

Approach 2: 

Design 
analog low 
pass fi\ter 

Apply filter 
--•~11 tran"&formation 

Apply frequency 
~ tran"&formation D~Dll 

filne!! 
1li 
Ii 

The first approach is used in matlab [5,6, 7,8] to design IIR filters. A 

straightforward use of matlab functions does not provide an insight into the design 

methodology. The 2nd approach is used in following chapters to give mathematics behind 

their design. Hence IIR filter design will follow the following steps. 

• Design analog low pass filter. 
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• Apply filter transformation to obtain digital low pass filter. 

• Apply frequency band transformation to obtain other filters from digital low pass filter. 

The main problem with these approaches is that we have no control over the phase 

characteristics of the IIR filter. Hence IIR filter is treated only as magnituide-only design. 

More sophisticated techniques, which can be used simultaneously to achieve magnitude 

and phase response. This requires advance optimization tools. 
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2. ANALOG PROTOTYPES 

2.1 Overview: 
IIR filter design techniques rely on existing analog filters to obtain digital 

filters. We designate these filters as analog prototype filters. Three prototypes are widely 

used in practice. In this chapter a brief summary of the low pass versions of these 

prototypes: Butterworth low pass, Chebyshev low pass (type I II), and Elliptic low pass is 

given. Then matlab functions are used for the designing of these filters. The phase 

response of all above filters is nonlinear. Bessel filter is implemented for linear phase 

response, so this filter is also introduced. [3,5,6,8] 

2.2 Butterworth Approximation: 

The magnitude-squared response of an analog low-pass Butterworth filter H. (s) of Nth 

order is given by, 

1 
)H. Gnf = l +(n; nc)2N (2-1) 

It can be easily shown that the first 2N-l derivatives of \Ha (jnf at n. = 0 are eqµa1 to 

zero, and as a result, the Butterworth filter is said to have a maximally-flat magnitude at n 
= 0. The gain of the Butterworth filter in dB is given by, 

g(O)= 10 log., IHa Gnf dB. 
A de i.e., at n = 0, the gain in dB is equal to zero, and at n = nc, the gain is, 

g(Oc) = 10 log., (1/2) = -3.0103 = -3 dB 
and therefore, it is often called the 3-dB cutoff frequency. Since the derivative of the 
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squared-magnitude response, or equivalently, of the magnitude response is always nega- 

tive for positive values of Q, the magnitude response, is monotonically decreasing with 

increasing Q. For Q >> Qc, the squared-magnitude function can be approximated by: 

1 IH. (jQf = I +(QI Qc)2N 

The gain g(Q2) in dB at Q2 = 2Q1 with Q1>> Qc is given by, 

g(!1J=-20log,{ ~'. r = g(n,)-6N dB, 
where g(Q 1) is the gain in dB at Q 1 . As a result, the gain roll-off per octave in the 

stop-band decreases by 6 dB, or equivalently, by 20 dB per decade for an increase of the 

filter order by one. In other words, the pass-band and the stop-band behaviors of the 

magnitude response improve with a corresponding decrease in the transition band as the 

fitter order N increases .. 

The two parameters completely characterizing a Butterworth filter are therefore the 3-dB 

cut-off frequency Qc and the order N. These are determined from the specified 

pass-band edge Q P, the minimum pass-band magnitude I/ '11 + & 2 , the stop--fuwnxdl 

edgeQs, and the maximum stop-band ripple 1/A. From Eq. (2-1) we get, 

(2'-Za) 

By solving the above we get the expression for the order N as, 
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N _ 1 log10 KA 2 -1 )h·2 j _ log10 (11 kJ 
1 

- 2 log., (ns I Qp) - log., (Ilk) (2-3) 

Since the order N of the filter must be an integer, the value ofN computed using the 

above expression is rounded up to the next higher integer. This value of N cam be used 

next in either Eq. (2-2a) or (2-2b) to solve for the 3-dB cutoff frequency nc. If it is used 

in Eq. (2-2a), the pass-band specification is met exactly, whereas the stop-barnd 

specification is exceeded. On the Other hand, if it is used in Eq. (2-2b ), the stop-band 

specification is met exactly, whereas the pass-band specification is exceeded. 

The expression for the transfer function of the Butterworth low-pass filter is given by, 

("'\N QN C .l..!.c = c 

Ha(s)= DN(s) =SN+ L:~d)cs'" n:l(s-pJ (2-4) 

Where, 

(2-5) 

The denominator Dj.rs) ofEq. (2-4) is known as the Butterworth polynomial of order 

N and is easy to compute. 

2.3 Chebyshev Approximation: 

The approximation error is defined as the difference between the ideal brickwall 

characteristic and the actual response, is minimized over a prescribed band of 

frequencies. In fact, the magnitude error is equiripple in the band. There are two types 

of Chebyshev transfer functions. In the approximation 1, the magnitude characteristic 

rs equiripple in the pass-band and monotonic in the stop-band, whereas in type 2 

11 



approximatioruthe magnitude response is monotonic in the pass-band and eqjuiripple in the 

stop-band. 

2.3.1 Type 1 Chebyshev Approximation: 

The type 1 Chebyshev transfer function H. (s) has a magnitude response given by, 

Where TN (Q) is the Chebyshev polynomial of order N: 

rn.1 < 1, 
/!1/> I, 

(2-7i)) 

The above polynomial can also be derived by recurrence relation given by, 

r ~ 2, (2-$)) 

with TO (Q) = 1 and T 1 (Q) = Q 

The zeros are on the j!1-axis and are given by, 

A.= 1,2, ..... ,N. 

IfN is odd, then for )., = (N + 1 )/2, the zero is at s = co, The poles are located at, 

A= 1,2, ..... ,N, (2-10) 

Where: 
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n O.J3,. 
1'. - 2 /32' a,.+ ,. 

a =-Q r;sin[(211.-l}n-J f3 =Q J:co{(211.-l}n-J 
,. p 2N ' ,. P'=' 2N ' 

r = (A+"' A2 -1 JIN. 

(2-lla) 

(2-llb) 

(2- llc) 

The order N of the Type 2 Chebyshev low-pass filter is determined from given E, n s , and 

A using Eq. (2- 11). 

2.3.2 Type 2 Chebyshev Approximation: 

The Type 2 Chebyshev magnitude response, also known as the inverse Chebyshev 

response, exhibits a monotonic behavior in the pass-band with a maximally fl.at response at 

Q = 0 and an equiripple behavior in the stop-band. The square-magnitude response 

expression here is given by, 

(2-12) 

The transfer function of a Type 2 Chebyshev low-pass filter is no longer an all-pole 

function and has both poles and zeros. If we write, 

H.(s)= Co n:1 (s-zJ 
rr:l(s-pJ qZ-B)l 

13 



2.4 Elliptic Approximation: 

An elliptic filter, also known as a Cauer filter, has an equiripple pass-band and an 

equiripple stop-band magnitude response. The transfer function of an elliptic filter meets a 

given set of filter specifications, pass-band edge frequency QP , stop-band edge frequency , 

pass-band ripple Qs , and minimum stop-band attenuation A, with the lowest filter order 

N. The theory of elliptic filter approximation is mathematically quite involved. The square- 

magnitude response of an elliptic low-pass filter is given by, 

(2-Il41)J 

where RN(O.) is a rational function of order N satisfying the property RN(l/ !Q)= 

1 !RN ( 0.) , with the roots of its numerator lying within the interval O < Q < 1 and the 

roots of its denominator lying in the interval 1 < Q < cc For most applications, the filter 

order meeting a given set of specifications of pass-band edge frequency O.P , pass-band 

ripple ~' stop-band edge frequency Qs , and the minimum stop-band ripple A can be, 

estimated by using the approximate formula: 

N = 2 logrn (4/Jci) 
log., (1/ p) (2-15) 

where k 1 is the discrimination parameter and p is computed as follows : 

k'=~ 

1-Jk' 
Po = 2(1 + Jk') 
P =Po+ 2(p0)5 + 15(p0)9 + 150(p0)13. 

(2-16a) 

(2-16b) 

(2-16c) 
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