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ABSTRACT
© This tﬁeéis consists of three chapters. In the first chapter, the historical progress of
the subject is considered. Also, some esseintial definitions are given. In the second chapters,
Besgel equation is obtained through the cylindrical coordinates of Laplace equation. In
addition, Bessel functions which are the solutions of Bessel equation and their properties
are studied. In the third chapter, applications of Bessel functions which are vibrations
of circular memb;zme( vibration drum ) and Schrodinger equation are examined. Two-
dimensional wave equation is obtained. So, we tra.ﬁsform the wave eguation into polar
coordinates and Cylindrical functions of first and second kind are ébt&ined by solving radial
eigenvalue problem. At the end Schrédinger equation in spherical coordinates is studied and
Spherical functions of first kind and second kind are obtained by solving spherical Bessel
differential equation which is radial Schréd'inger eguation. |
Key words: Bessellequation, Bessel functions, vibrating membrane, wave equatidm

—

Schrédinger equation.
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O‘ZET ‘
© Bu tez iig bélimden olusmaktadir. Birinci bolimde kommﬁn tarihsel gelisimi ver-
ilmigtir ve bazi temel kavramlar verilmigtir. Ikinel bolimde Laplace denkleminin silindirik
koordinatlardaki ifadesinden yararlanarak Bessel denklemi elde édilmistir. Bessel denklemi-
nin goziimleri olan Bessel fonksiyonlar: ve onlarm Szellilkleri ﬁéerinde durulmustur. Uguncu
holimde Bessel foﬁksiyonlarmm uygulamalari olan dairesel zarm titresimleri ve Schrodinger
denklémi mcelenmisti. f[ki boyutin dalga- &enk]emi elde edilmistir. Dahla soura dalga den-
klemini kutupsal koordinatlar: kullanarak (r, 8) tiirtinden yazcik ve radyal (yarig;apa ait)
eigenvalue problemind ¢tzerek birinci ve ikinei tiir silindirtk Bessel fonksiyonlarin: elde et-
tik, Bu bolumin en sonunda ise kiiresel koordinatlarda Schrodinger denkiemini inceledik
ve radyal Schrodmgar denklemi olan kiiresel Besgel denklemini ¢ozerek birinci ve ikinci tiir
kiiresel Bessel fonksiyonlari elde etiik.
Anahtar si)'zcijlder:. Bessel denlklemi, Besatjl fonksiyonlar:, Titregimli zar, dalga

denklemi, Schradinger denklemi.

1it



CONTENTS

ABSTRACT oo e i

ACKNOWLEDGEMENTS.....
CHAPTER 1, INTRCDUCTION AND DEFINITIONS
CHAPTER 2, BESSEL DIFFERENTIAL EQLATION AND BESSEL FUNCTIONS..7

2.1 Bessel Differential EQUAHOM. ..o s s s e ese e ae s 8

2.2 Applications of Power Series for BDE and Cylindrical Functions ..o, 1l
2.2.1 Solution of Bessel Differental Bquation for vl vrn.n. e 15
2.3 Cylindrical Functions of the Second FInd ..o e 18
2.4 Cylindrical Functions of the Third Kind... oo et 24

2.5 Cylindrical Functions of a Pure Imaginary Argument .o e
2.6 Formulae of Differentiation,Recurrence REIAUOns .. o.ooooee e
2.7 Cylindrical Functions with a Half-integer Indvx
2.8 Wronskian Determinant .o...oeerseersssomressessomsesesss et
2.5 Orthogonality and Nerm of Bessel Functions ..
2.10 Bessel Integral and Jacobi Expangion ...
© 2.11 Differential Equation Reducible to the Bessel bquatmn ...........................................
2.11.1 Soms differential equations reducible to Bessel Bquation
2.12 Asymptotic Expanyon of Bessel Functions...
2.13 Roots of Bessel Function...
CHAPTER 3, A PPLYCATIONS OF BES SFL FUNCTIONS )
VIBRATIONS OF CIRCULAR MEMBRANE AND SCHRODINGER EQUTION....58
3.1 Two Dimensional Wave Eguation.... .
3.2 Vibrating Drum of an Arbitrarily Shaped Membrane
3.3 Vibrations of Cirdular MembBrane. .. 2. . oo s
3.4 Schiddinger Equation in Spherical Coordmatf:s
3.4.1 Free Particle SO0 oo e
CHAPTER 4, CONCLUSIONS........... TR et
REFERENCES...
- Appendix I Gamma Funcnon
Appendix 2 Buler’s Equation....
Appendix 3 The Method of Fr obemus
Appendlx 4 Laplace Transform...

v



ACKNOWLEDGEMENTS

I am very grateful to my supervisor Yrd. Dog. Dr. Evren Mngal for his in-
valuable assistance, guidance, encouragement, and constant support thrdughout my study
and research. It is refreshing and an enjoyable experience working with him. I am eter-
nally grateful for the friendship and the reiationship that we have cultivated ‘and developed
throughout the rgsearch period. The inputes he made th.rough life discussions left a lasting
impression.

I would alsc like to e#press my appreciation and gratitude to ;311 the lecturers of the
Department of Mathematics at NEU and especially those who ﬁandled and helped groom
;me to reach this far. I sincerely th&ﬂ..k Prof. Dr. Kaya Ozkin for his kind helps.’

My sincere thanks go to my ;famﬂy and colleagues especially my mother for her

constant love,.mderstanding and support.



Chapter 1

TNTRODUCTION AND

DEFINITIONS

Bessel functions are named after Wilhelm Bessel (1784 - 1846), however, Daniel Bernoulli
is generally credited with being the first to introduce the concept of Bessels functions
n 1732. He used the function of zero order 2s a solution to the problem of an oscillat-
ing chain suspended at one end. -In 1764 Leonhard Buler employ_ed Bessel functions of
both zero and integral orders in an analysis of vibrations of a stretched mernbrane, an
investigation which was further developed by Lord Rayleigh in 1878, where he demon-
strated that Bessels functions are particular cases of Laplace’s funcmons Bessed, Whﬂe
receiving named crecht for these functions, did not incorporate them into his work as an
astronomer untﬂ 1817. The Bessel functlon was the result of Bessel’s study of a problem
of Kepler for determining the motion of three bodies moving under mutual gravitatio11.
In 1824, he incorporated Bessel functions in a study of plapetary perturbations where
the Bessel functions appear as coefficients in a series expansion of the indirect perturba-
tion of a planet, that is the motion of the Sun caused by the perturbing body. It was
likely Lagrange’s work on elliptical orbits that first suggested to Bessel to work on the

Bessel functions. Subsequent studies of Bessel functions included the works of Mathews



in 1895, “A treatise on Bessel functions and their anplications to physics” wiitten in
collaboration fm th Andrew Gray. It was the first major treatise on Bessel funcuons in
English and covered topics such as applications of Bes sc—f unctions to electricity, hydfo
dynamics and duactloa In 1922, Watson first published his comprehensive examination
of Bessel functions “A Treatise on the TI heory of Bessel Functions”.

The given differential equauon is named after the German mathematician Friediich
Wilhelm Bessel and Astronomer who studied this equation in detail and showed (in 1824)
that its solutions are a special class of functions called through ezpressed cylinder func-
tions or Bessel functions. Frobenius series method soluble Bessel equation of second order
differential equa’vtions with variable coefficients has an important place. Laplace equation
in polar coordinates with the Bessel equation is obt tained using the expression. In mathe—
matical physics, basic sciences and engineering sciences in the field of occupational many

" functions common to solving the problems of this equation. Bessel functions, first defined
by Daniel Bernoulli and generalized by Friedrich Bessel differential equation canonical so-
lutions. In addition, solutions of Bessel functions s separable in polar coordinates with the
Helmholtz equation. As a result associated with a particular wave propagation problems

Applications of Bessel fuﬁ.{;"ai@ng to heat conduction theory, including dynamical and
linked problems are very numeroﬁ,s. In elasticity theery the solutions in Bessel Functions
are effective for all spatial proElems, which are solved in spherical or cylindrical coordi-
nates; also for different problems concerning the oscillations of plates and the equilibrium -
of plaiés on. an elastic foundation; for a series of quegﬁons of theory of shells; for prob-
lems on the concentration of the stresses near cracks and others. Iﬁ each of these areas
there is wide range of different applications of Bessel functions. References where these
functions are present are actually ijiw_mense. Different parts of Bessel famction theory are
widely used when solving problems of acousticé, radio physics, hydrodynamics, atomic
and nuclear physics, Quamtum physics and 50 Or.

Bessel’s differential equation in (2.9) is often encountered when solving boundary

value problems, such as separable solutions to Laplace’s eqﬁation or the Helmholtz equa-



tion, especia]ly,when working in cyﬁndricai or sphericai coordinates. Bessel functions
made their first appearance by relatingrthe angular position of a planet moving along
a Keplerian ellipse to elapsed time. However the integral and power series showé up in
other places, generally concerning the radial variable after Separafing Laplace’s equa-
tion. in polar or spherical polar coordinates. In many problems of mathematical physics,
whose solution is connected with the application of cylindrical and spherical coordinates.
The constant v, determines the order of the Bessel functions found in the solution to
Bessel’s differential equation and can take on any real numbered value. For cylindrical
problems the order of the Bessel function is an integer value (v = n} while for spherical
problems the order is of half integ;‘er' value v = n + 1/2. Bessel functions are therefore
especiaily i}.npdrtant for many problems of wave propagation and static potentials and
its applications are as:

| Flectromagnetic waves in a cylindrica,l waveglide, heat conduction in a cylindrical
object, diffusion problems on lattice, modes of vibration of a £hin circular or annular
artificial membrané and solutions to the radial Schrodinger equation (in.spherical and
cylindrical coordinates for a free particle). We aré going to examine last two applications
in these applications. Fi.rétiy we congider the solution of the two dimensional wave
equation of the circular membrane and examine modeg of vibration of circular membrane.
Secondly; we consider solutions to the radial Schrodinger equation in spherical coordinates
for a free particle. | _

In vibrating 1ﬁe1nb};ane, the problem is that find the frequencies of vibration of a
circudar drum when the ‘modeS of vibration are Iotationallyl invariant. A kettledrum is -
a percussive instrument consisting 'of a circular drumhead (usually plas;tig, but in older
times, an animal skin) thét is tautly stretched over a metal bowl. The vibrations of the
kettledrum’s drumhead can be modelled by the wave equation in (3.13), where a is the
speed of waves travelling on the drumhead. The constant o is directly reiated to the
tension of the drumhead and the corresponding pitch that is generated by hitting the

drumhead with a mallet, and can be adjﬁsted using a foot pedal. The characteristic



sound of the kettledrum is determined by its vibrational modes and their corresponding
frequencies. Any kettledrum player will tell you that the proper place to strike the
drumhead is not the center of the drumhead, but rather a spot somewhere about one-
sixth of the diameter away from the edge of the drumhead. The most common drums
have a diameter between 23 to 29 inches, so that means striking the timpani about 4 to 5
inches in from the edge of the drumhead. Striking the drumhead in the center produces
a sound that is somewhat hollow.(Yong, 2006)

In application of vibration, we will give some mathematical explanations for why this
occurs. We consider the vibrations of a circular membrane of radius ¢ as shown in figure
3.3. Also, this section considers the solution of the two dimensional wave equation of the
circular membrane. Again we are looking for the harmonics of the vibrating membrane,
but with the membrane fixed around the circular boundary. -

To fit the boundary condition of no displacement on other than rectangular bound-
aries requires the use of an appropriate two dimensional orthogonal curvilinear coordinate
system such that the boundary of membrane coincides with coordinate lines in this sys-
tem. Furthermore, it is necessary that the variables of the wave equation be seperable in
the new system. It turns out that the choice of curvilinear coordinate systems is severely
limited, and it is impossible, except in an approximate way, to analyze the vibrations
of a membrane having an arbitrarily shaped boundaty which is circular boundary given
byz?+y2 = It lb more natural to use polar coordinates as indicated in figure 3.3.
The solution of one of the seperated equations consists of Bessel functions. We shall
transform the two dimensional Cartesian wave equation into its polar form in terms of r
and & using the parametric equations. So, fhe boundafy condition is given z (e =0

for all t > 0 and € € [7,—m7].

Definition 1 : (Ordinary Points) If the coefficientsP(z) and Q(z) of equation y" +
Plz)y' + Q(z)y =0 are both analytic at the point zﬁ, then zg 18 called an ordinary point

for the egamtz’on.
Definition 2 : (Wronskian determinant) Let the first derivative of the f(z) and g(z)

4



funtions be defined on the interval |v —x¢| < a . Under this condition Wifg) =

Hz)g(z) — fr{z)g(z) is calléd- the wronskian of f(z) and g(z). (Marchenko, 1986).

Definition 3 : (Orthogonal functions) A function 1s orthogonal if a defmed inner prod-
uct vanishes between two unlike components of a particular inner product space {an :‘
inner prodquct between a function W{a) and W(b) shall be depicted mathematically by
(U{a) | T(b)). It is common to use the following inner product fm.“ two functions [ and

g:

- / F(@)glz)w(z)dn

Here we introduce o nonnegative weight function w(z) in the defi mtwn of this wnner

product. We sa;y that those funclions are orthogonal if that inner product is zero.

/ Fo)g(mywlz)ds = 0

Definition 4 :(Norm of function)- The norm of the function defined || f|| which is equal

/ ).

D
Definition 5 :(The generating function for J,(x) )- F(x,t) be two variables function and

its Taylor expantion for one of its variable could be as follows.

(x,1) = an x)t"

The Flz,t)
Junction with {f.(x)}, n=10,1,2, ... called the generating function for In(z}. This series -
of funtions are not necessarily converge for all z’s and t's . Let I be a closed initerval and

r be o positive constant and let t] <7 and z € [ is enough for convergence. -

5



Definstion 6 :(Frequency) Frequency is the number of wibrations of a repeating event

per unit time.

Definutron 7 :(Vibration mode) A mode of vibration is characterized by @ modal fre-

quency and mode shape and is numbered according to the number of half waves in the

“yibration.

Definition 8 :(Superposition principle) For a linear homogeneous ordinary differential

equation, if y1(z) and ya(z) are solutions, then so is y1(z) + ya(z). .

Definition 9 :(Heisenberg’s Uncertainty Principle) Heisenberg’s Uncerzﬁaéﬁ'ﬁy Principle
is one of the fundamental concepts of Quantum Physics, and is the basis for the initial
realization of ﬁmdament@l uncertainites n the ability of an experimenter to measure more
than one guantum variable ot a time. Attempting to measuﬁ an-elementary ﬁarticie s
position to the highest degree of accuracy, for example, leads to an Increasing uncertainty
in. being able to measure the particle’s momentum to an éqﬂailg high degree of accuracy.

Hewsenberg'’s Principle 1s typically written mathematically in either of twe forms:
AEAt > h/4n and AzAp > h/4n

In essence, the uncertainly in the energy (AE) times the uncertainty in the time (At)
— or alternatively, the uncertainty in the position (Az) multiplied times the uncertainty
in the momentum (Ap) ~ is greater or equal to a caﬁsmnt (h/4m). The constant, h, is

called Planck’s Constant (where h/dr = 0.527z10 — 34 Joule-second)



Chapter 2

 BESSEL DIFFERENTIAL
QUATION AND BESSEL
FUNCTIONS

The given differential equation is named after the German mathematician Friedrich Wil-
helm Bessel and Astronomer who studied this equation in detail and showed (in 1824)

that its sohitions are a special class of functions called through expressed cylz:nder func-

tions or Bessel functions. Frobenius series method Solui;le Bessel equation of second order

differential equations with variable coefficients has an important place. Laplace equation

il pola.i" cocrdinates with the Bessel equation is obtained using the expression. In mathe-

- matical physics, basic sciences and engineering sciences in the field of occupational many

' f_lmctions comamon torsolving the problems of this equation. Bessel functions, first defined

i by Daniel Berneulli and generalized by Friedrich Bessel differential equa.tioﬁ canonical so-
lutions. In addition, solutions of Bessel functions separable in pblar coordinates with the .

Helmholtz equation. As a result associated with a ?articula.r wave propagation problems.




2.1 - Bessel Differential Equation

Bessel equation is ffequently occurrence in physical problems. For example, it arises
in the determination of the solutions of Laplace’s equation associated with the circular
cylinder and so its solutions are called cylinder functions. For suppose we transform

Laplace’s equation

g?gi/ — " .

T = UCOSQ

) y=using , ¥ =

this gives ' _

v 16V 1 6%V 8%V -
i B Jot sy : = X

u? ' wou | uZ 8¢2 ‘0z2 0 (2.2)

A typical technique used to solve many kinds of partial differential equations is a method
known as separation of variables. We use separation of variables to solve this equation.

To illustrate in the case of our example, namely we suppose the solution:

V(u,,2) = U(w)®(4) 2(2)

and talciﬁg derivatives appropriately, the following equations have been obtained:

oV au vV dPU
P Yy Ltz
Ju du(I)Z’ du? du? :
9%V d2® s VA C/A
T = Tlup =2 %ps-
B¢* dFE D R R

substitute these derivatives into (2.2), it has been obtained: |

d?U . 14U _ 1d4% - d*Z
——PZ 4+ DL+ ———UZ+—-—Ud=0
B et adm T dg® t Iz



U(u)‘i’(@ Z(2) 7& 0, and divide the above equation bjr U®Z for the both gides, we

get

132U 114U 11426 1422

Gawt "Ouds V@sgg Tzar = O
K I ¥ O W S
TurTee Tz <0 |
Z_I_Egi_]__l_qi’, = g_}ifi ' ) (23.)
U wl 2@ Z o

Right hand side of the equation (2.3) depends on z and the left hand side depends on-

u and ®. By using these facts the right hand side of the equation could be equalize -

—Xwhich is a constant. From here;

SE U 7O N 2 .
DR ¥ Nl B -2

and since Zzﬁ =42 the following equation is obtained

Z'—XZ =0

Multiply by 42 for the both side of (2.4)

U —[7 + 'U:F + E = A2u2
After some operations‘we find,
- U” U’ ‘ (P” .

o Take the right hand side of the equation and equalize it to V* as a constant. Then the

 equation (2.5) could be written

LA A (2.6)



"

Since -—g =—V? we found

old" + V3p =0

and the equation (2.6) finally becomes in the form

wU" +ul 4+ (W2 —0)U =0 (2.7)

By using Au = z transformation, we obtain U(u). If we take first and second derivatives
of U(u) we found the following equations. Substitute these derivatives into the equation

(2.7) you could found

and finally the following equation found

: mgyfl+$y_r+($2*ﬂ2);:0

which is called the Bessel equation of index v, and its solutions called eylindrical or Bessel

functions.

10



2.2 Applicatiﬂns of Power Series and Laplace trans-
form for the Bessel Differential Equation and

Cylindrical Functions of the First Kind

Consider the Bessel differential equation with index v ‘
2y 4 zy + (£ — v}y =0 (2.9)

Equation (2.9) is a linear differential equation of second order, hence it is general integral

" can be expressed in the form
u(z) = Cipn() + Cayal),

where y1(z) and ys(z) are linearly independent partial solutions of equation (2.9). We
venfy z = 0 18 a regular sing‘ulai point. In some applications of Bessel’s equation the
variable z will be distance of a point from the origin in polar coordinates. It will be very
important to understand how the solution behaves when x is close t.o 0, aﬁd the point is
close origin. So, we shall seek a solution of equation”(2.9) in the form of a géneralized

power series which is Frobenious method in increasing powers of argument .

<]
y = anmm-}-n

n=0Q

where ag 7 0.Differentiating the solution (2.10):

iy = Z(m +- n)anmm“%fl,
n={) '

Y = Z(m +n)(m+n — a,z™ 2
n=0

11



Substituting with the series in equation (2.9):

. g _
2" Z(m +n)(mi+n—1)a,z™" 4z Z(m+ n)a,z™ " + (27 — v Z a,z™" =
n=0 © n=0 2 n=0 .

Shifting the index in the second sum and isolating the first two terms in the first sum,

this becomes

(m* — v¥)agz™ + [(m +1)2 — ’U2:| a1z™ + Z { [(m +n)? — 1)2] On + Gng} T™" =0
n=2

(2.11)

. Setting the coefficients of the first term in (2.11) equal to 0 because of ag # 0, we get

the indicial equation- I(m) = m? — v* = 0. Thus, .the roots are m = +wv. Setting the
coeflicient of the second term in (2.11) equal to 0, we get

[(m+1)? —v*]ar=(m+14+v)(m+1—-2v)a =0

Since coefficient of a; can not be 0, this requires a; = 0.Setting the coefficient. of the

general term in (2.11) equal to 0, the recurrence formula becomes

-

1

R s e

> 2 (2.12)

Since 04 = 0, we immediately conclude that agny1 = 0 for-all n, and for the even-

numbered terms, the even numbered coefficient becomes

1.
(m+2n)% — 2 fan-2

Qan =

(2.13)

We substitute for value 2 to 2p respectively in (2.13), the following equation is ob-

tained _
Bl e : = .
2p [(m+2)2 — 2] [(m 4 4)2 — 07 ... [(m + 2p)? — 7 0 (2.14)

12



has v

Yo we substitute in solution (2.10),

y=a” ”i' C1r .7 (2.15)
Y ‘ P ((m 4+ 2)? — 2] [(m-+-4)? - o3| . [(m+ 2p)2 — 42|
Now we find the solutions for the roots m; = v and my = . In (2.9), equation

? and we assume v > 0. Evaluating at m = v in (2.15), the following is ob-

tained _

.—‘G.I‘U i = (_l)p | - :132;3
v=a {”;[(v+2)2wvﬂ[(v+4>2—v2J...[(v+zp)2—v2] }

or

| _. % = (_l)p 2p
Y= {1 + ; 50 - )0+ Do 1 7)° } (2:16)

Using property of gamma functions in appendix 1, one can rewrite the series obtained in

a more cormpact form. It becomes

e+p+1) = (+p)l{v+p)=(v+p)(v+p—1T(v+p—1)
= (v+p)v+p—1).. T(v+1)
Using gamma fimction property, equation in (2.16) can be written

s o]

v )= SO

2 2%pIl(v + p+ 1)

The coefficient ag can be assigned any non-zero value so it becomes

1

T Tt 1)

to simplify the notation. Then our solution denoted by
_ - (=1)? 7\ vHip ,
ple) = Ju(z) =) ( ) (217)

g pT(v+p+1)\2

13



The first series 11(z) defines a function which is called the Bessel or cylindrical function
of the first kind, of indez v and denoted by J,(z) . For v > 0,(v+p+1)=(v+pl

So, the solution becomes

o8 (__1)P 7\ v+2p
L@ =Y 5 (3) 2.18
@ =2 ey 2 18
Now evaluating at m = —uv in (2.15), it has been obtained |

 .._ — - (“l)p ] 2p
¥ = 0oF {1 t ; (2= )2 — 2] [(d— )2 — .. [(2p— v)? — o7 }

or

| —v - ‘ —L)F 2p
yz(m);agm {1+§122pp!(1_v)((2zv)__(p_y):.s } (2.19)

The coefficient @y can be assigned any nonzero value so it becomes

1

T A o2

to simplify the notation. Then our solution denoted by

_ = (—1)P T\ 2,
Tofw) =2 PT(—v+p+1) (5) \220)

=0

Forv< 0, '(—v+p+1) = (p — v)!. So, the second solution becomes

o= i =5 (2 -

p=0 : »

The second series yo(z) defines a function which is called Bessel or cylindrical function of
the first kind ,of indez —v and denoted by J_,(z). As you can see in (2.17) and (2.20),

14



if v is not an integer and v # 0, the solution becomes

y(z) = C) J(z) + Cy Jy(z) , v Z (2.22)

‘2.2.1 - Solution of Bessel Differential Equation for v = 0:

- We can also use Laplace transform in appendix 4 to solve Bessel equation. Now we . -
© shall solve Bessel differential equation for v = 0 by using Laplace transform. Apply the

Taplace tral_lsfbrm to other sides of the equation. Thus
L{z*y"] + Lizy' ] + L [2*] = L[0]

L We can apply our new formulas for Laplace transform in appendix 4 to the first and third
o+ terms on the left. And of course we apply the usual formula for the Laplace transform
of the derivative to the second term on the left. The result is

d —dY

Sy P 7 ! — "
dS[SY s] 4+ {sY -1} + 7 0

5.; we may simplify this equation to -

ay
ds
-~ This is a new differential equatidn and we may solve it by separation of variables.

Now
ay ads

Y £+

nY = héln(s2+1)+0 '

Exponenting both sides gives

15




We call the Binomial expansion :

alo — 1)Z-2 P ala—1)...(a—n+ 1)2n+

ol E- n A28

(142)°*=1+az+

We apply, this formula to the second term on the right of equation (2.23). Thus

s D 11+1131 1188 % +1.8.5---(27%1)(wl)“Jr
= sl seEtanea T 5rers 2nnl g

|
i s

Z @t =1y
22_7(3 2° S2J+1

The good news is that we can now calculate L™ of Y (thus obtaining y) by just calculating

the inverse Laplace transform of each term of this series. The regult is

e~ I
y(m) = I, Z 27 1)2
240 _
L A e zt z8
S <1 TR T e Pae )

Also, if we use (2.17), the solution becomes

co " s I 28 2 e 4 _13s
(-1) )(5)2 L (-1)

JU(.T): - Slr(5+1 QE+__—_++

2247 224267 (s)2

So, the series we have adjusted derived defines the celebrate and important Bessel function

Jo(z). And also we use again (2.17), it becomes

16



' . — (——1)51_1(2} z 1+23_; T 1 ‘$3 1 $5 (“1)3 m23’{—}. '
Jl(a:) - ; SIF(S +2) (—2—) - E - ”_'__: 1 + IEY ...+ _“——‘iﬁim——l—'_

‘The relation between the above equations eould be summarize as follows,

The roots of these equations Jo(z) = 0 and Ji{z) = 0 could be found by equalizing
them to zero. These aie power series expansion and by using Strum theory. We can
see that each equation involves infinitely many real roots. Since the differénce between
these roats gétting bigger, the rqsui'ts converging to the number 7. For this reason the
functions Jo(z) ve J(z) are called periodic functions. Obviously, for a non-integer index
the functions Jo(z) and J_,J- (z) are linearly independent. If v = n is an integer, then

I'{n) = (n— 1)! and the function J,(z) can be written in the foilow*ing form:

s (n +m)! |

=S B e

vanishes; rewriting (2.20) starting from the (n - 1)th term, the foﬂoﬁng equations are

obtained

) = Yt ()

a=0

=2 s!I‘(—(n— -135+ 1) (g)gs_n

B I

n!F(kﬁ%_—n—%l) (5) , (n+l)!I‘(—n+@+2) (5) ‘
o[ (@2 (2/2)°

= [ Oln! _11(n+1)1+21(n+2)!—"'] |

= (1" Ju(@) o . - (2.25)

+ .

17



As you can see in (2.24); J,(z) and J_,(z) are linearly dependent when n is an integer.

Indeed, 7 |
ylz) = cl‘Jv(:r:) +ey Jp(z ) =[ar + (—1)¢] Ju(z) = Cdy(x)

In case v = n an integer, we need second solution.

Figure 2.1 Bessel function of first kind.

2.3 Cylindrical Functions of the Second Kind (Neu-

mann Functions)

It has been shown that for a non-integer index the general solution of the Bessel equation

can be written in the form

y(z) =1 Jufa) +er Tofe)

Obviously, in this case the function
y(z) = c3 Jo(z) + caZy(z),

18



Zv(m) == BlJv(fL') + By J_v(-r“';))

is éiso asolution of this equation. Here c1, ¢y, €3, ¢4 By and B; do not depend the argument

B; # 0. If we set By = cotvr and By = — csc v, then we obtain a flmctidn which has
been introduced by Weber and is denoted by Y,(z) or N,(z) :

z)cosvr — J_,{x)

M) = Vi) = (2.26)

sin v
In the literature this function is often called the Neumann function and is sometimes
_'(:_ienoted by N,(z). The function N,(z) or Y,(z) is also called the Bessel or cylindrical
i ;'fﬁnction of the second kind of index v of argument z. For an iﬁteger value v = n the
nght hand side of {2.25) is an indeterminacy of the type g. In order to find ¥,(z) we

remove the indeterminacy by the I’"Hospital rule and we define

2 17,(z) cos v — J_()]

Yola) = 51—12 L sinvr
Su

. cos vw—ajgig—m) — 7w sin vy {z) — %‘i(m)

= lim &
V—7l : TCoOsSUT
1. {8J,(z) WO ()

= —lim{—= — (=1)" .
’II'U”—I’%'{ Ou ( )‘“ v } @ 27.)

Denoting the derivative of I I'(Z) by ¥(t) and using by (2.17), the followings are obtained

19



otn) _ 5 I oy @ tesltr+ ) () Tlotpt
o s B Plv+p+1)I(v+p+1)
- i—(ﬂp—“(f)gp+ﬂ [mf_lﬁiﬂ]
T tp+1) N2 2 To+p+1)
S G VN 2.2l PR S
- ;p!F(Herl) (2) _ [lng II’(“TPJrl)].
S S ) G S T |
- ZPEF(n +p+1) (2) [lng ‘I’(”WLPTlﬂ (2.28)
p=0 , |
e S22 %G5 51
I'(v +p+1)‘
Fltp+l) ’
F(U+p+1) (ﬂ+P+ )

When n is positive, we have to consider separately the ﬁrst_; n te;rms of the series for
y(‘alv@ since ['(—v+p+1) and ¥(—v+p+1) have poles at v = n.when p takes the valués
1,2,...,n — 1. This diﬁicultyl does not arise when n is zero when p': 0,1,2,..,n—1,s0
the derivative of this equation becomes

o T —vi2p 1
e (= D P R
Bv[t— g (2) plr(~v+p+1)}

By using (4.12) in appendix 1,

9. (%)WHP sinval(v —p)
T Ov 7pl
—u42p T° st
= (E) p--u[—sinurrhl—gi+7rcosv7r+sinv?r—i—klf(vﬁp)]
2 pl 2
L (TN (n—p— 1)!
- C0r(g)

as v — n. Treating the terms for which p _>_ n in the straight forward way, we see that

20



(e o)

I = SN ME

pl

=0 - 5~

Ya@) = SO {am w1~ wtp 1)} -

=0 ,
n—1
1 ~nt2p (13— p - 1)} .
— (E) (R_?L‘____)_ (2.29)
(s pl _ :

.: :r'."This forrmula also holding when n = 0, the terms in the second line being omitted. Tt is
‘sometimes, useful to modify this formula by writing '
1

‘ 1 . 1
(1) = — D=l+-44% o+
(1) 7, ¥(p+1)= totgt +p g

and also we will use notation

=Z% - . (2.30)

k=1

 where v is Buler’s constant, defined by

y = lim [H(p)~Ing]
P——+DQ
1 1 1
= I 1 oot 21
pgl;o +2+3+ +p ngp
0.5772156

l

-As a result, also we obtain the formula

21



n—1

v = ZmZen@ -2 (5) L
1 S (1P [H(p) + H(p +n)] rz\%tn
2 gl (3) (23

The Neumann function Y,(z) and the function J,(z) form a fundamental system of

solutions to the Bessel equation for any, including integer, value of index. Namely we set

the solutions for all values of v

y@) = Cih(z)+ CoYa(a), (2:32)

where Crand Cy are arbitrary constants.

Let us deduce formula (2.30). It is sufficient to obtain this formula for the special case

n = 0. From (2.27), we have

1 {a;fu(m)_aiT;(m)}

R = Y oo
Y] = l[an(m)} _[aJ;(z)] |

while, because J,(z) is monogenic function of v at v = 0, we have

259, - [

and hence it follows that using by (2.28) , we obtain
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) = 25 () 5]
- % [hlmjo — (-1 (:n:) P‘I’(p-ﬁ—l)
{

2 < pll(p+1)

_ % . }Jo(m)_.wig%(z‘)zp[1+%+%+.;.+%}

Andusmg by (2.3{}), we obtain

i) = 2 {y o }Ju(z—-z%(z) BT

For small z > 0, Y5(z) behaves like lnz: and tends to oo when x- 0. Yo{z) is called the
.B.es‘sel function of the second kind of index 0. Yo(z)(No(z)) is plotted in figure 2.2.

" Figure 2.2 : Bessel fundtions of second kind.
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s Cy’]indrical Functions of the Third Kind (Hankel
functions)

Any linear combination of the solutions obtained in section 2.2 is also an integral of the

Bessel equation. Consider these functions

(1) ;
Hy = Jy(z) +1Yy(z
. () (=) (2.34)
HY = J,(z) — iY,(z)
which are called eylindrical functions of the third kind. They are also called Hankel
functions of the first and second kind, respectively. Since the functions of the third kind

are linear combination of

e "™ Jy(z) — J_o(z)

sin v

HY = J,(2) +iY,(z) =i

(2.35)

Tu(2) - i¥(z) = _ & (w) — Ju(2)

L
o
I

sin v

apparently,

HW = H®

These functions are linearly independent solutions of the Bessel equations: Specially
when (z — oo) and since the simplifications of the definitions of asymtotic behaviours it
can be used in appiied mathematics and most of its related fields. In the above equation
v denotes the degrees of the Ha,nkei functions. Adding 7 and ‘Hqu) side by side, we

found

HY + 5O = 271,(z)

! .
Jo(z) = E[HSHHH] (2.36)



}__ucting (2.35) side by side, we obtain

u

HY L HP = 2J,(z) |
J(z) = S [HO+HP ©(2.37)

'ﬁx}e"ly and then adding them side by sidé,the followings were obtained .

™ HW 4 e O — 2] (z) ' (2.38)

1. . )
J_U(LB) — "i): [eww ff,gl) +em1uﬂH£2)]

Cylindrical Functions of a Pure Imaginary- Ar-
gument

msider the Bessel equéti(:)n'

:Bzyfr + :L‘y’ + (I2 . ,UZ) 1 =

ter chénging the variable by the formula & = iz, we obtain the equation

(iz)? (m%) + @’—) (%) F(? =)y = 0

Z

d? d
—a? (md—m%) +z (E,’%) + (2 )y = 0

oy oy — (9:2 o UE) y = o (2.39)
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:ch is called Modified Bessel Eguation. This equation has regular singular point at

0. o when we sotve this equation by using Frobenious method, we find the solutions

'j:":the roots my = v and mg = —u. Firstly we obtain the solution for my = v,

Lii)==j£:5ﬁﬁﬁﬁigiiﬁﬁ'(g)v+%)

==l

w_e.modiﬁed Ressel Equations as fo]l.ows
t=iz (1=+-1)

bbtain

' d*y | dy

270 b (P -ty =
dt2+dt+( vy =0

ThlS shows us that the Bessel functions and Modifed Bessel functions are the same

dﬁ_at_ions. This could be seen below,

| oo 1 i u+2p
L@)::de)=§:ﬁﬂ%1%175(5>

p=0
-y = 1 <z utlp )
- ;plr(wpﬂ) (5)
= i"I,(z)
L(z) = i Lz o (240)
L(z) = e iz) L (24

Si#tce v can not defined as integer (v ¢ Z) -

) i 1 . N —vt2p
Lo@) =D P (—v +p+ 1) (E) (242)

=0

26



_the second linearly independent solution of the modified Bessel equation. When z =0
.: 15 function becomes infinity. In general the Second kind of Bessel functions could be
fAned as follows: : ,
| K (o) = T @ LB g (243

2 sinovw .

_péxticular as the second integral of equation (2.39), usually, the following function is

K, (:L') me”m/ 2EM i), - {2.44)

Ku(z) = lim K (z), ' neZ | : | (2.45)
Kolw) = (-1 (s n 2 2 Z( 1) ( ) mp(f%—ll +
A (z/:z)ﬂﬂp' er &l
(= 1) Z c— _g}g_k:ﬁ} | | (2.46)- |

ere, as before 7 is Fuler constant. This formula can easily be obtained, if we introduce
(.7;) and Y, (x) into (2.44) with the help of the first of formulae (2.34) and afterwards
(;_i;ailge the argument z by iz in formulae (2.17) and (2.31) and express J,,(iz) via I,(z)

lﬁsl_l_ig formula (2.41). Note that the formulae given above for the modified functions can
be.:"]é)plied, in'this case the modified function I.(z) is defined in the following way: _
. —vaif2 71'.1'/2 - . T
L(z) = e Jo(ze™4), —7 < argzr < §
L_,(.’E) — 837’”2./2‘]1)(33&‘.37&/2), _5 <argr < .
or large values of the argument z the functions I,(z) and K, (z) behave simitarly to the

exponential function of a real positive and real negative argument, respectively. There-

_ql"é, sormetimes the functions eéKﬂ(_x) and e *I,(z) are tabulated. Consequently, the
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general solution of the Modified Bessel equation is become when v is not integer
y(z) = ciLu(z) + calo(z) (2.47)
_.a‘nd the solution is become when v is integer

o) = a1 (3) + caKo(a) - (2.48)

boe 0 bt

modified Hessel functions

I

o b

£

. Figure 2.3 : Modified Bessel functions Io(z) through I3(z), Ko(z) through Ka(z).

2.6 Formulae of Differentiation, Recurrence Relations

Dividing {2.17) by z*, we have

I N G N A
v “§§pzr(v+p+1) (E)
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differentiating this equality with respect to the argument z, we obtain the relation

d Jv(m) . 1 E.i\ (71)? ) (.‘I})zﬁ‘*l . Jﬁ-i—l-(m)
Fia: A ¢ :1(pm1)!T(v+p+1) 2 ¥
which can be rewritten in the following form:
1d L{z) Tz .
S (2.49)
Similarly,
Wé can obtain the formula
4 (2" J,(z)] = 2" T, 1 (=) : | (2 50) :
T dI‘ v -1 . R

he expressions obtained, we have the equalities

d vju (z)

aju(m) = —Jup(z) + Y - (2.51)
d B vJy(z) :
L) = Jeale) - T (2.52)
_ which imply the féllowing’recmence relations: -
. 2vJy
Jor{z) + Jppai{z) = ? $($) _ : _(2.53)
ot (z) — Jopi{z) = 25 Ju(z) - (2.54)

In the equation (2.17) substituting = with mz, we obtain.

NS (—1y T AN
Fuma) = ; pT{u-+p+1) (7)
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Hence multip ly by ="

z¥ Jy(mz)

.= ;Z T('z(J—I-Ig)jJ—l) 7 )Mp &

-y ()% g2
g plv+p+ 1) \2

and then differentiate for the both side,

dz

So, we obtain

2 (@ Jy(ma)) =

= 1 v 2ptv)—1
2
2 !rv+p+1)( ) (p+v)

p:

= (=1)P2(p+v) myTRP P21
Z (v +p)(p+v) (E) i

oo (_1)? mm)ﬂ-}-z-pul .
S — = S T m
; p!T'(v + p) ( 2

= (—1)P mazy -1+2p
; pT((v—1)+p—+1) (T)

¥ Ju(mg)] = mz"Jy_y(mz)

[z7° Ju(mz)] = —maz™"Jyp(mz)

;; [Ju(mz)] = mdy_1(mz) — gjﬂ(msc)
2 pume)] = —mdusa(ma) + 23,6ma)

30
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One can replace J,(z) in all these formulae by any of the flmctlons Ya(z), g (m]
7l ?(z). Repeatedly differentiating formulae {2.49) and (2.50), one can obtain ‘

(%) e I ’@'59) -
| (milm)m[w—vj”(m)] = (fljmmiviﬁ () (260 :

B
Pt

= I(z) = 5 [Laale) + Loa(s)] o (261)

LKfa) = 3 [Kea(e)  Kea(o)] e

La(e) = Fona(a) = L) (2.63)
Kos) ~ Kon@) = —2K(a) (2.64)

2.7 Cylindrical Functions with a Half-integer Index

Setting the index v = 1/2 in the expansion J,(z) in (2.17) we obtain

Jia(z) = Z B;(@% (:_;_) 1+2p

p=0

- Use the property of Gamma ftmctions' we obtain

i 1y /1 1 1

— ) = - — 41 = 2 =+
Plev1eg) =t (1+3) (5+1) (5+2) - (3+)
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gince I' (%) :"’T‘ the above Gamma Function becomes

1\ ~123.02p+1)
t (pHTE) VT 5922

If the numerator and denominator of the above equation multiplied by 2.4.6..(2p) = 27.p!
we found the following equation; |

1 (2p + 1)
L (P +1 2) f 22p+1p1

Tf we substitute the above obtained function to Ji/5(z) we obtain;

l)P:cQT*H 12 . .
Jij2(z) \Fz G —\fﬁ—msmm- (2.65)

Differentiating equation of (2. 61) we obtain

1/2 '\/——CObI*‘\f%alﬂ.’L‘ - (2.66)

The we use formula (2.52); setting v = 1/2, one can easily obtain

e L '
mJ{/z(m) + §J1/2(55) = zd_15(%) (2.67)

then we substitute (2.65) and (2.66) in (2.67), we obtain

(»‘fﬁcosm—a‘/—smm) f(1f—2—sm$) = :I:J,l/z(a:)
TT iy
U}Ecosm—ﬂ—smm—{—2$4‘f——sm$ = J_1/2(?)
J (gg) = wi 08 T (2.68)
—1/2 = WEC ;

Using the recurrence relations one can find the Bessel function for any index of the form

n+1/2, where n is integer, and prove that for any positive integer n the following formulae
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old:

' ~1)* (272 gn sin z '
- — 1y (9 n41/2 m COs T i

In the same way one can obtain formulae similar to (2.65), (2.69) and (2.70) for the
- modified functions; in particular, |

[20 - . [2
Bja{z)y = Esmha:, Kyp(a) = —e (2.71)

;f2.8 Wronskian Determinant

Iy = Ju(z) and yp = J_,(z) are linearly independent solutions of the Bessel equation,

Wronskian determinant must be not zero. Let us find the Wronskian

oY
W(yl 3 ?}2) - , ,
: h ¥

;--;_:Hence the Wronskian for J,(z) and J ,(z) becomes

Wiy, 1a) = Wk(z), Jo(z)]
Jo(z) J_u(z)
To(z) JL(=)

= J(@)Jy(2) = T o(7) T () - (2.72)

"The functions J,(z) ve J_,{z) are the solutions of the Bessel equation so they could
be verified the (2.9) equation. If we substitute the functions J,(z) ve J_,(z) into the

33



-4
B
|3
¥
¥

i

4

oquation (2.9), we obtain
" 1 v
@)+ 2IL(@) (L= f Jwle) = 0 (2.73)
1 v? '
Jo(z) + =J(@) + (1-—5 | hi@) = 0 (2.74)

If (2.73) and (2.74) multiplied by J,(z) and J_,(z) respectively, we obtain

’U2

I () F(m) F %J_’_U(:E)Jv(m) -+ (l — u) J o(z)du(z) = 0

e

1 2
Tie) I} 4 ,EJ:,(:C)J_U(m) + (1 - 2—2) Jo(z)J_u(z) = 0
If the above equations subtructed side by side, we obtain

T (0) = Jole) Fie)+ 7 [T () = Tle) Ty(e)] = 0
& [L@L(@) — Tufe) o)) + 5 (@) = Tle) )] = 0 (279

So we have by substituting .

(@) (2) — J-ol(z) Ji(z)~= w,

dw w
T =
dz T T
Using by separation of variables we get
C
stalyes SN0 (2.76)
i

Suppose that the equation has an non-integer index v and let us find the Wronskian

w(h(@), Jsle)) = L (2.77)

O) = 3 [I(@)Tu(a) - Jule) J1(@)] (2.78)
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The value constant C(v) can easily be determined, if we pass to the limit as z — 0 in
“formula (2.72) and use the expansions of the Bessel functions obtain section 2.2, Noto

hat if vis non-integer, then Ey using equations (2.17) and (2.20) we obtain

1) - émﬁ—%}iﬁ@%
- (a)frliwi;ﬁ%(a)
) = L ()
- &) rem e 6
and also we obtain | |
M) = (g)”ﬁmé(ﬁ) S en
e = (5)7 sy 1+ 06) BeE)
and similarly, we obtain -
To(m) = (g)‘“m<1+o<x2)) - -'('2.81)
L = (3 s 0@ (28

as o 0, where O(2?) denotes a quantity, whose ratio to z? is bounded as z — 0. If we

 substitute (2.79), (2.80), (2.81) and (2.82) in (2.78), we get
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ol = » {(g—) ﬁ (1+ 0(z2) (g)_”_l ?zT}(J)" 1+ 0(9:2))} +
o |- () ey 0+ 0 (5) gy (06|

ast — 0 O(z?) =0, we get

LI LI } (2.83)

Clo) = [P(U )T T(—v+1)T(v)
By using the formula of the Gamma function in (2.83) which is T'(v)['(—v 4+ 1) = ==

/ sin v ?

we get

C('u) _ ;Sinvﬂ' B sin vt _ _2sin UT | (2.84)

m w w

By substituting (2.84) in (2.77), we obtain

Dsin v

W (J,(a), J-ofe)] = -

— (2.85)

Since sin w7 is not zero, because v is not integer. Thérefore, W [Ju(z), J_u(z)] # 0. Since
the functions J,(z) and J_,(z) are linearly independent, the solution is fun'damental sys-
tem. (These functions are linearly independent and hence these can be create a solution
system.) Just in the same way, using relations (2.26) between the Bessel functions of the

first and second kind, cne can obtain

&)Y ) = Yal) Jifw) = —— (2:86)

vige
As we can see above wronskian never becomes zero. In addition the functions J,(x) ve
Y,(z) are always ]inearly-independent. For this reason they create a solution system.

The Wronskian determinant for the functions I,(z) and K,(z) is equal to
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L) KL(#) — Ka(z) (=) = (2.87)
The functions I,(x) ve K, (z) are also linearly independentr and they create the solution

system too. And for J,(z), B (z) and I (z), I (x) we have, respectively,

Jo(x) 4 ) (“7) Hgl)(z)i‘él’;fi)— - 253_3 | (2.88)
HO >"’Hd$(‘”) a4 250)

2.9 Orthogonality and Norm of Bessel Functions

Let e be a real constant and from u = J,{ar) => o' = J{(ez), v = J(az) we obtain

v’ + o + (o2 ”2) u = (ax)?J) (oz) + (az) J) (o)

+ [(ax)® —*] Jy(om) =0

| (2.90)
The function J,(x) is a Bessel function, by using (ax) it satisfies the Bessel differential

equation. Breifly since o be a real constant with the function v = J,(az) together satifies
the equation ' A |

22" - gl (a2m2 - vz) u=0.
Let vy, g, ..., g,

be the positive roots of the equation J,{a) = 0, the following function

ful@) = VE(az) , n=1,2

¥ P

on the interval {0, l)‘represents the perpendicular system. Let us prove that
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1 1

( frny fa) = / fml(z) fn(m)dr = /wju(&mw)Jv(aﬂw)dz Z,U , m#n

T i

Suppose U = Jv(azr) ,w = J,(fz). From the equation (2.90), the following equations
could be obtained -

2

o2’ +ozu’ + (0‘52;':2 — vz) u = 0

g + o’ + (62m2 — ,Uz) w = 0

then divide by z, we will obta in the followings

2
mu”+u’+(a2—%§)u =

I Vf 2 UZ
rw w4+ ——5w=0
x

If the first equation above is multiply by w and the-second one is multiplied by v and
then subtract them from each other we obtain ‘
oluw” —wu") + (v — wu') + (6% — &®)uw =0

or

&% lr(uw’ — wu)] 4 (8%~ o)zuw = 0

by integration on the interval [0, 1}
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1

. _- (52*5’52)/‘331&10(12 — —x(uw,—wulﬂé
0
= st —ww)f

-and making substitution u = J,(az), w = J,(fz), v = oJ/(ar) and w' = BJ] (ﬁ:z:) we

. obtain
1

(5 - %) [0, (05) L (pr)do = @Il (@) I(5) ~ BLBR() (21

0 o
This integral is the so-called Lommel integral. From (2.91) if we choose @ = ay,,, f = @y,

form#n ol — a2 #0and J,(0x) =0, Jo{Bz) = 0 namely, we obtain

T o) o(en) — B (@) o)

2 A2
an am

/Q:Jﬂ,(‘dsc}Ju(ﬁm)dm = -0 (2.92)

Hence by differentiating both side of (2.92) by 3, we obtain

1

29 Uf 23, (a5) T (Ba)da+ (5 aﬂ)%o 2, () J(f)d; 7

= aJ(az) T (Bz) — BT(B)T.(a)

From the last two equations above when we take § = a = a,, and since J,{e,) = 0,

fz[Jv(anz)]Qdm _ 2_;_ {‘n[J;(an)]z_@njéf(aﬂ)Jv(an)—-J:,(.an).ﬁj(aﬂ)}
= Uil o (2.98)

On the other hand if we recall from (2.58)

gm— [Jo(mz)] = —mdya (mm) + %Jv (ma:)
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e e S e

e AT

and by recurrence relation n = 1, z = o, and suppose J,(c,) = 0, we obtain
Jo(om) = —Jisa(om)
If we substitute the final equation into (2.93), the following equation could be found

el ds = 5 ()

From the final equation since f,(z) = /Z Js(c,z) the norm of || f,|| could be found as,

- 1 1 ' 1
1P = (A= [ [Ven(ema)] ds = sl s
0 ; 0 0 )
= %J3+1(aﬂ)
el = = Tors(on)

V2

2.10 Bessel Integral and Jacobi Expansion

zt/2

Now consider the power series expansions of the functions e**/?and e3¢ .Since

‘We obtain
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The product of these expansions gives

) s r+str-—
 Pla,t) =l ZZ Tr312r+s
r==0 s={)
Setting s =m, r = m—{-n and recalhng that '+—+1)
following form
m, nt+2mgn
Pty — dEeDls L)

m=0n=—

(8] .

( l)m n—{—?mtn

-1"

= (} for n < —m, we rewrite in the

11+2mt'n.

N Z Z F(m—l—n-i—l)I‘(m-{—l 2”+2m+?z m+n+1)1‘(m+1)2”+2m

m=0 n=0 -

m=1 n=—m
oo (ul)mmnrHthn

=2 2 T'(m +n+ LI {m + 1)2rt2m

N=——00 fT=~~—7TL

+Z Z (__“l)m. n+2mtn :
' I'(m +n + DI (m + 1)2+2m

n=0m=0

For n > 0, the coefiicients of t*

& (-nm™ n+2m ,
mz:;T‘(ernJrl) (m—i—l)( ) =Jaf@) , n=0,12,..

and also for n € Z~, with location of & = —n we obtain the coefficients of t™

i (=)™ TN nH2m
m;n L(m +n+1)T(m + 1) (E)
_ (-y™ A
” n;g T'(m -+ DT~k ++m -+ 1) (5)
> (_1)m+k N 2k
- g;ﬂ T(m =+ 1(k+m+1) (5)
= (—1)*Ji(x)

1) In(z)

(-
_ _n( )27’1.

(%)
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By substituting (2.95) and (2.96) in {2.94), we obtain

-1 o co
Flz,t) =ef-8 = 3 p@r +3 hl@it® = Y Ju(o)
e n=0 . n=—co )

which is called the generating function of J,(z). Let us study the integral:

1 T 5 ;
An(l') s §,]F]E'L:z: sm(E)—znf)dQ

To evaluate this integral, we use the Taylor expansion of the exponent:

i sin =1 P 1 poye —if\P
gizsin() — Za(m:sm(ﬁ))p Z= ZE’ (—i) (e —e™)
p=0 p=0
Now, notice that the integral:
1 "

/4

0
=
2 2@

7

—e e ™dh=0 if p< 0

(2.97)

(2.98)

Then, we denote p = n + g. The integrand in (2.98) can be presented in the form:

ey

1 (eiﬂ _ e—ie)ﬂ-i-q o—int _ (1 - e-z«;e)ﬂ ( et _ e—w)q

o

Suppose that g is odd (g = 2k +1). All terms in the first paretheses are even powers of

e~ while all terms in the second paretheses are odd powers (positive or negative) on

e™¥. As a result, the integrand is a linear combination of odd powers of e, Thus the

integral is zero, and we can put g = 2k. We obtain the following intermediate result:

= ()" iy ()

(2.99)



Where

o

1

' g g\ Tmtdk ;
Ik,n —_ . (ezﬁ' —e 19) e zng(ja
2r f

To calculate Ty, we use the binomial expansion in the paretheses. In this expansion,
we are interested only in the single term propbrtional to ™. All other terms after
multiplication to (2.99) and integration over § are cancelled. Hence,
B
0 wmize | (2R o . ~1)E(n+2K)
(613 . 6—19) +2k . (’TL + ) ( zmﬁ') +k (___e——?.ﬂ)k — ( ) (ﬂ' +___)__el'ru9
kl(n + k)! El{n+ k)!
and _ 7 :
(—1)%(n -+ 2k

= VTR 2.100
T Fn 4+ E) (2:100)

By plugging {2.100) into (2.98), we get finally:

AN = (ﬁl)l}“ z\k
=(Z (2N
Anl2) (2) g E{n + k) (2) (=)
We obtained the integral representation for J,(z):

"

1 [ . . . o L
Jn(mjw—“% f gwsnl@)—infgg . T - (2.101)

—T

Setting ¢ = b ¥ here, we obtain
e%(t—%) = e%(eie—g_i‘?_) = Z eim’i‘ Jn(ﬂj)
. . =—0C

il 18
21

By using sin 8 = and e ™ = cosnd +isinnd, we obtain
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plrsing  _ Z (cosnf +isin n8) Ju(z)

= Z (cosnd + isinnd) J,(2) + Jo(z) + z (cosnf + isinnb) J,.(z)

n=-—ca n=1
= )+ Z (cosnf — isinnf) J,(z) + 2 (cosnf +isinnb) J,(x)
' n=1 n=1

Using relation J_,(z) = (—=1)"J,(z), we obtain -

gizsing To(z) Z (cogng;( " cosn6+zS1nn49—z( 1)”smnB)J(:c)

n=1

= Jo(z) + Z (2-cos(2nb) Jgﬂ(:r:) + 20 sin((2n + 1)8)) Jont1(z).

n=1

= T) + 2 Z Jon(z) cos(2nf) £ 24 Z Jonia(z sm(Zn +1)8 (2.102)

n=1

This equality implies by using e ® = cosz+ isinz

cos(zsinf) = z) + 2 Z Jon(z) cos 2n8 (2.103)
" n=1
sin(zsinf) = 2 Z Jon+1(z) sin(2n + 1)0 (2.104)
n=0

If we replace 8 by 7/2 — 7 in (2.103) and (2.104), then we obtain

cos(zcos) = Jo(z)+2 Z( 1) Jan(z) cos 2nn (2.105)
n=1 ’
sin(zcosn) = 2 Z (—1)" Jans1 (m) cos(2n + 1)n (2.106)

These expansions have been obtained by Jacobi and are called by his name, Jacobi

ezpansions. Replacing 0 by ¢ in (2.103), multiplying the left- and right-hand sides by
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cosny and integrating with respect to v from 0 to 7, we obtain

f cos(zcos @) cosnpdy = / {Jg (z) + 2 Z Jon{z) cos 27?.(,0] cos npdyp

0 ' o L. =l
= %fj@(ﬂ;) cos nipdip + 2] E-Jgn (z) cos 2np cos npde

0 g n=1 :

kig

= 2/ Z Jon () cos 2np cos ngdyp
0 ==l . ’

nJ.(z) for even n,

_ (2.107)
0 for odd n..

n .
f cos(zcos ) cosnpdy =
S

Similarly, from (2.104) we obtain

T oo

fsin(m sin ) sin ngod:p = 2/ Z J2nt1 () cos(2n 4+ 1) cos npdip

0 n=1
-0 for even n,

o
f sin(z sin ) sin n(pdtp = ' (2.108)
] : wn(z} for odd

Adding (2.107} and (2.108) ;, we obtain that for any integer n

Tz} = / [cos(z sin ) cos ne + sin(z sin @) sin ny| dp
0
= / cos{z sin (¢ — n)dp
i
J.(z) = ;1;/ cos(zsing —np)de ' (2.109)

0

The integral in the left-hand side of (2.109) is called the Bessel integral; Bessel took this
equality (more precisely, slightly different) as a definition of the function. J,(z). Note

45



that for a non-integer index this integral does not give the Bessel function and is denoted

by

Julz) = ;/ cos(T8 — zsin §)df _ (2.110)
0

where J,(z) is a function which is usually called the Anguér function. For n =0 integral
(2.109) is called Parseval integral

ki

Jyle) = %/ cos(z sin 0)do ' (_2.111)

v}

The deduction of the formulae given above illustres in a sense the character of applications

of the Bessel integral. Tt arises naturally in cases when one should pass fror solution of

.the Helmholtz equation in the Cartesian coordinates to a solution in polar coordinates.

Now we shall now that integrals of the Bessel integral tyije can also be obtained when.
passing from other coordinte systems to the polar system. Consider once again the
Parseval integral. Let us take a partial solution of the Helmholtz equation (we shall see

this equation in detail in applications of Bessel functions.)
0w u

in the form u = cos A{ = cos(AR cosf); here R and # are the polar coordinates of the
point with Cartesian coordinates £ and n.Let us form the superposition of such solutions

for 0 < 6 < 27, assuming that the £ — axis rotates around the origin

27 !
u*(R) = /COS(AR cos #)df

0

Obviously, u*(R) is a solution of the axially symmetric problem for the Helmholtz

equation without a singularity at the origin; hence, w*(R) = BJo(AR). Let us set R = 0.
27 . .

Since Jp(0) = 1, we have B = fd@ = 27 and
0

46



2.
‘ 1 - | ~ |
Jo(AR) = -2?/005(/\}2 cos 0)dd (2.112)
J L

Iﬂ_thé case when u = sin A&, we have _
Zm
uw*(R) = /sin()\R cos 6)dd = BJy(AR)
0

Setting here R = 0, we obtain B = 0. Setting u = cosaf cos A7, where o + % = ,\2,‘ we

have

Pr
BJy(AR) = / cos(aR cos 8) cos(BR sin 6)d6
_ / _

Obviously, B = 27. Hence,

: 27 - . ) .
Jo(r/o? + A°R) = 51;/ cos{aF cos §) cos(S R sin 0)d , . (2.113)
| J - |

If we replace the function u(¢,n) by an arbitrary function which is a solution of the
Helmholtz equation and has no singularities in the finite domain under consideration,
thén rotating this fuziction wé also obtain up to a constant factor the Bessel funciion of
zero index. So, if we use an elliptic coordinate system and set u(f ,n) = cepl&)Ces(n),
) ther}, obviously, we have |
. 2 .
BR(OR) = f ceo( F os 6)Ceo (R sin 6)d (2.114)
0

One can continue the generalizations connected with the fact that one can interchange
the aigumenfs of the functions ceg and Ceg as well as introduce other indices different

zero. Thus, the Parseval integral (2.112) can be considered as the superposition of plane
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waves and integrals (2.113) and (2.114) can be considered as the superposition of waves
of a more complicated structure. Iﬁ should be noted that, using the Parseval int(;gral, one
can be expand the Bessel function of zero index into a power series. For this purpose it is .
sufficient to represent the cosine in (2.112) in the form of a power series, denote AR =r

and change the order of the integration and summation.

2.11 Differential Equation Reducible to the Bessel
Equation

" We consider the problem to which differential equations can be reduced to the Bessel
equation and how the necessary transformations should be performed. Many differential
equations can be reduced to the Bessel equation using transformations of dependent

variables. We begin with the simplest special case. Consider the equation.

527? &2 ZP(P‘I‘I)
dz? 3= 2 n

Let us set y = z~1/2y. With respect to this new variable y the equation takes the form

Py d L
:cz—y—}—zﬂ— {c%z-k (p+1) y=0

2

Denoting p + 1/2 = v and icz = z, we reduce this equation to the form

&2 d '
g tag + (@ - )y=0

The z and y variables in the above equation could be defined in terms of the variable of
t and u(?) function ie;
z=~t% and y = t*u(t) (2.115)
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In (2.115) we assume £,y # 0 and o, f and -y are constants. If we redefine the Bessel

equation the following equation would be obtained,

Py 1, sy dy -
Ly _ 1 ap|q g gty
= [(1 Db B (2:16)
From the second transformation of (2.115},
d d -
| d—?; =t et () - (2.117)
d2y d {dy JdudPu , | du |
_— = — a—d . t&* a—]l — -
ot <dt) Ty T el D tult) + ot
- Namely,
dgy ) ad2 a—1 d o 2

If we substitute the the equatlons (2.115) and (2. 116) into the ca,nomcal type of Bessel

Differential Equation and rewrite them we obtain ;

A d? 8 _gd
LB 5 Tt NG b A A
P 1 gyt 77|t 5 o T (7 ghf)y =

d2y dy . : ‘
EHEE - [P — Bty = | (2.119)

The equations {2.117) ve (2.118) substitute into the equation (2.119), we obtain

2 Qd2 cx—-ld a—2
it dt2+2 at® ’ +a(a~—1t +

When we rewite the last equation, we obtain
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o d*u du -, 5 22, 2 22,5
g + Qo+ Dt + (08 = 57" + 57 Ju=0 (2.120)

Let us take a = 2a +1, b= o — A%, ¢ = f*+*, m = 28 we would found,

Jdu  du
U0 4t —

™)y =
s dt+(b+c Yiu=10

In this last equation suposse a # 0,b # 0,c¢ # 0. Finally the general solution of the

canonical type of Bessel equation could be as follows
y[a:) =0 oy (:L') + CQJ,.U(ZIJ)

By using canonical type of Bessel Eqﬁaticm and the transformation that we used in

(3.115) the Bessel Equation in (2.120) could have the following special solution
ut) = t*y(z) = at™J, (v¢%) + ot~ (1) - aan

2.11.1 Some differential equations reducible to Bessel’s Equa-
tion

—~

1. One of the well-known equations tied with the Bessel’s differential equation is the
modified Bessel’s equation in (2.39) that was obtained by replacing = to —iz. This

equation has the form:

" + 3y — (2 + v)y=0 (2.39)

The solution of this equation were expressed through the so-called modified Bessel func-
tions of the first and second kind: '

y(z) = C1J,(—iz) + CyY,(—iz) = C11,(z) + C2Ku(2)
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where [v(z) and Kv(z) are modified Bessel functions of the 1st and 2nd kind, respectively.

2. The Airy differential equation known in astronomy and physics has the form:

y' —zy =0

It can be also reduced to the Bessel equation. Its solution is given by the Bessel functions

of the fractional order 1/3:

o - . ‘
y(.’L’j - Clﬁjl/g (51‘3)3/2) + Cg\/«;u]_l/g (51583/2)
" Also, the one dimensional Schridinger equation for a constant force are Airy functions
which can be transformed into Bessel functions of order 1/3.
3.The differential equation of type
2y + aof + (a%z _ Uz) y =0
differs from the Bessel equation only by a factor a? before 2 and has the general sﬁlution

-~ in the form:

y(z) = Crl(az) + CyYifaz)

2.12 Asymptotic Expansion of Bessel Functions

As a rule, practical calculations connected with the application of Bessel functions are
based on the use of tables of these functions. In some cases, one can perform calculations,
based on using the generalized power series, Which have been given at the beginming of
~the thesis, as well as series containing the factor Inz in some cases; these series .511
increasing powers of the a.rgutqenﬁ are convenient for the calculations only for small values

of the argument. If the arpument is large enbugh, then arquestion arises concer.ﬁing the
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construction of approximate solutions to the Bessel equation, which are available for large

values of the argument. The problem fofmulated' is connected with the constructionvbf

- the asymptotic expansion; when solving it, one should operate with divergent series, for

which, however, the property holds that they are convenien for the calculations in a
certain doma.m of the values and admit a simple estimate of the error.

From the beginning, we should emphasize the difference in the solution to problems

of dlfferent classes here, depending on the behavior of the argurent and the index v of

cylindrical function. To find the asymptotic behavior of the Bessel functions at z — oo,

| we will use the device similar to the one used for the derivation of the Stirling formila

in énplp;hdix‘ 1. We present integral (2.101) in the form: -

T

1 f iet0)
= — [0 g 2.122
1@ = o e | 2122)
®(z,0) = zsinf—nd {2.123)

If © — oo, the integrand is the fast oscillation function everywhere except the two points

where 25 = (0. These points are defined by the equation:

dd
da
zcosd = n at T — 00

= mcosﬁ—ﬁmﬂ--

cosd — 0 I

The contributions of the points 6 = +% give complex conjuated results. Hence, it is
enough to study the neighbourhood of the point # = %. Let us introduced ¢ = 5 -+ 7. For

small 7,

nr 1
&(z, Q)NUJ—-—é—mEm‘T
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Integ‘ral‘ (2.122) can be replaced approximately by the following integral:

Jo{z) = }-Reé (I"_—_)/ -5 dr, Re= Realpar?ﬁ
T

— 00

Let u1s make the change of variables:

_ 21
VY AT
Then,
7z = Y Re (r—ﬂ—i)/ -4 2.124
o) = R y (2124)

Figure 24 : Conlour of Integration. .

Integration is going in the cqrﬁplex plane along the straight line twrned by 45° with

respect to the real axis. This is demonstrated in figure 2.4. However, the contour of
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integration can be turned back and returned'to the real axis. In other words, the integral

in (2.124) can be replaced by the integral / eV = /7. We end up with the following
result: | -
2 T T
To(z) = 4 eos (o= — )
or
J(z) — W%COS (m —(2n+ 1)%) ' (2.125)

We derive this expression only for integral n. In fact, this is correct for all v. In general,
2, (E) : cos (m (2'0 + l)ﬂ) (2.126)
o(z) — 4/ — — — :
T 4

In particular,

2 T 2
= B (e D) 2o
. %(:n)—> —cos (o |-yl sinw
This is the unique Bessel function coinciding with its own asymptotic behavior. Also,

Bessel functions of the second kind are defined as solutions of the Bessel equation with

the following asymptotics:

Y (z) — | % (m —(2u+ 1)%) | (2.127)

e

So recalling (2.34), we get

HY = J,(z)+iY.(z)

U

(2.128)
HY = Jv(m)—ﬂ:},(z)

And substituting (2.126) and (2.127) in (2.34), we get.
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| 2 T 2 ;o ViR

(1) ~ N —) . . ( N —)
H; 1 / - cos (:t:‘ {2v+1) 7)) TH / —sin (@ (2v+1) 1)

‘ 2 o 2 ' 7r»

@ ., : _ Y s . z
H 1/7]_33(:08 (:c (2fu+1)4) . 2\/;81:(1 (sc (21}—{—1)4)

or

g L P D)
v T

7@ _2_ é*i(z#(:Zv—i—l) )
v TT

2.13 - Roots of Bessel Function

The probléms of the determination of the Bessel functions play a very important role in
apphcationé. As an example, we shall consider the displacements of a circular membrane
in next part which performs free axt-asymmetrical oscillations: w = AJg(Ar) sin{wt+,),
where w is the circular frequency of oscillations; A = w\/ﬁf, p is the surface density; T
is the tension. = _ ' ' h

This solution should vanish on the contour of the mersbrane: w(R) = 0. This implies

that for the existence of a non-trivial solution it is necessary that

JG(,\R) =0. | (2.129)

It is well known that equatioﬁ {2.129) has infinitely many simple real roots and has neither
multiple, nor complex roots. From physical reasonings, it is obvious that, for suﬂicieﬁtly
large ﬁumbers of the roots, the problem reduces to the ‘coﬁsideratio'n_of the oscillations of
a _mémbrane which has a rather large number of a nodal curves representing concentric

circamiferences whose center coincides with the center of the contour. Therefore, we
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should expect sorne analogy with the problem of cscillations of a string. Hence, we have
reasons to assume that the large roots of the Bessel function will be distant from one
another by a chstance which tends o a constant equal to 7.

It is ciea:r that from (2. 126) that the Bessel function .J,(z) has an infinite amount
of zeros as af,, where N = 1,2, ...co. From (2.126), one can conclude that the distance

between two neighboring zeros tends to 7 :
a’jw1 —a% —was N - co (2.130)
The first five of each are presented in table 2.'1. Notice that:
al — aj = 3.2377

While: .
ag - ag = 3.1394

Both vaiues are closed to 7. The derivatives of Bessel functions have the following as-
ymptotic behavior:
' ' 2
J,(z) — 4/ —sin (m —(2v + 1)-73)
L ~ 4 7

The derivative of J,{z) also have an infinite amount of zeros by, Again:

el — by = mif N - o0 (2.131)
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Teble 2.1 :

Table 2.2

Roots of the function J.(z)'s are given in the following table.

zero | Jolz) | iz} | Blx) | L) | Jle) | Kl
1 2AS | 38317 F 51336 | 6.3802 | T.E883 | BYFTIA
2 55201 | 7.0186 | 84172 | 97610 | 11.0647 | 12.3386
3 8.6537 | 10,1735 | 11.6198 | 13.01562 | 143725 | 157002
4 117018 1 138257 L 147060 1 16.2235 | 17.64180 | 18.0801
5 149300 | 16,4706 | 17.6508 § 10,4004 | 20,8268 | 22.2178

Roots of the function J,.(z)'s derivatives are given in the following table.
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sewo | i) | A@ | BE) | AE | Aw | AR

-1 | 38317 | 1.8413 | 3.0542 | 42312 | 53175 | 6.4156
2 7.8156 | 53314 | 677061 | R.OI52 | 02824 | 1451490
3 10173k | B.B3B3 | 5.8605 | 11.3450 | 12.6810 | 13.9872
4 13.3237 | 117060 | 13,1704 | 14,5858 | 15.9641 | 17.3128
5 16,4706 | 14.8636 | 16.3475 | 17.7887 | 10.1060 | 20.5755
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- Chapter 3

APPLICATIONS OF BESSEL
FUNCTIONS: VIBRATIONS OF
CIRCULAR MEMBRANE AND
SCHRODINGER EQUATION

Bessel’s differential equation in (2.9) is often encountered when solving boundary value
problems, such as separable solutions to. Lapléce’s equation or the Helmholtz equation,
especially when working in cylindrical or spherical coordinates. Bessel functions made
_ their first appearance by relating the angular position of a planet moving along a Kep-
lerian ellipse té elapsed timé. However the integral and power series shows up in other
places, generally concerning the radial variable after separating Laplace’s equation in
polar or spherical polar coordinates. In many problems of mathematical physics, whose
solution is connected with the application of cylindrical and spherical coordinates. The
constant v, determines the order of the Bessel functions found in the solution to Bessel’s
differential equation and can take on any real numbered value. For cylindrical problems
the order of the Bessel function is an intéger value (v = n) while for spherical problems
the order is of half integer value v = n+-1/2. Bessel functions are therefore especially im-
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portant for rany problems of wave propagation and sbatic potentials and its applications
are as: | ‘

Flectromagnetic Wavés in a cylindrical waveguide, heat conduction in a cy]indiical
object, diffusion problems on lattice, mode;a of vibration of a thin circular or annular
artificial membrane and solutions to the radial thr()'dinger equatioﬁ (in spherical and.
'cylindrical coordinates for a free particle). We are going to examine last two applications
in these applications. Firstly we consider the solution of the two dimensional wave
equatioﬁ of the cirewlar membrane and exarmine modes of vibration of circalar membrane.
Secondly, we consider solutions to the radial Schrédinger equation in Spherical coordinatés

for a free particle.

3.1 Two Dimensional Wave Equation

We shall be concerned with the two dimensional geometry of the membrane in a plane.
We shall be considering a uniformly thin sheet of flexible material. The sheet will be
pulled taut into a state of uniform tension and clamped alogg a given clos.éd curve (a
circle, perhaps) in the zy— plane. When the mexbrane is displaced slightly from its

'equ]ibrium position and then released, the restoring forces created by the deformation

1

caﬁse ii? to vibrate. For instance, this is how a drum work. To simplfy the mathematics,
we shall consider only small oscillations of a freely vibrating meﬁbrane.

Bafore 'preparilng‘ a model for this problem, we desc_ribe a few assurnptions concerning
the material and behavior of the membrane: | .

1. The membrane is homogeneous. The density is constant.

2. The membrane is composed of a perfectly flexible material which offers no resis-
tance to deformation perpendicular to the zy- plane. Motion of each element is perpén—
dicular to the zy- plane. _

3. The membrane is stretched and fixed along a boundary in the zy- plane.
4. The tension per unit length T due to stretching is the same in every direction and
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is constant during the motion. Weight of the membrane is negligible.
5. The deflection z(z, y,t) of the membrane whiles in motion is relatively.

To derive the differential equation which governs the motion of the membrane, we

consider the forces acting on a small portion of the membrane as shown in figure 3.1
below:
An clement of strefched vibrating membrane
4 TAy
Thr 4 Thr
. AR G Y
x 7T/
Av
Thy : _l/
; Ay )
X
Figure 3.1 : An element and projection o f o stretched membrane.

An element of the membrane ABCD in figure 3.1 is projected into a small rectangle
with edges Az and Ay parallel to the z and y axes. Deflections and angles of inclination
are small enough so that the sides of the element are approximated by Az and Ay.
According to the assumption (4), the forces acting on the edges are approximately TAz
and TAy, and acts tangential to the membrane. '

Horizontal components involve cosines of very small angles of inclination. Since these
forces are directed in opposite direction they add to zero approximately. The sum of the

horizontal forces in the z direction ( See fig. 3.2) is
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TAy (cosﬁ wcosa) =0 (3.1)

- And in the y direction the sum is

TAz(cosd —cosy) =0 (3.2)

P
'

TAy

- . Y | ¥ ¥+ Ay
X £+Av .

Figure 3.2 : Cross sections in x and y plane of membrane showing angles of inclination.

From the cross section in the x and y planes, if the horizontal component of TAy is T,
then from equation {3.1)
Ty = TAycos f =TAycoso ‘ " (3.3)

and that of TAy is T}, then from equation (3.2) we have

Thy = TAzcosé = TAycosy ' - (3.4

Equations (3.3) and {3.4) becomes

. Thx . Thm
cos S cosc

TAy = (3.5)
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and

: . Thy _ Thy |
The " cos§  cosvy 6.6)

- If p is constant mass per unit area of the membrane, then the mass of the rectangular

piece is pAzAy. Newton’s second law of motion then tells us that

82z - '

ig the force acting on the mernbrane z-direction. Adding the forces in the vertical direction

and using Newton’s second law of motion, we obtain

TAy(sin 8 — sin @) + TAz (sind — siny) = pAzAyzy (3.8)

If TAz and TAy in equation (3.8) are replaced by equations (3.5) and (3.6) then

Ty [tan 8 — tan o] + Thy [tan § — tany] = pAzAyzy (3.9)
Recognizing that

tan f = 2, (z + Az, y,t) and tano = z(z,y,1)

tand = z,(z,y + Ay,t) and tany= 2(2,9,1)

Therefore equation (3.9) becomes

Th [2 (& + Az, 4, £) — 2a(2, 5, )] +Thy [20(3, 4 + Ay, £) — 2,(3,3,1)] = pAzAyze (3.10)

If the cosine of the inclinations is all approximately, then equation (3.10) yields
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TAy 2 (z 4+ Az, y, 1) — zo(z, y, O+ TAzz, (&, y+ Ay, t)— 2z, 4,1} = pAzAyz, (3.11)

Division of equation (3.11) by pAzAy permits the form

T zz(tc + Az, yt) — z(z, 1) 2z oy -+ Ay, t) — 2z, y, 1) :
7 Az - Ay u (m, w1)

as Az — 0 and Ay — 0 in equation (3.12}

Zﬁ(m: Y, t) = aﬁvZZ(CC, Y, t)

where V? = 2, + 2, and a? = T/p.

5%z 822 5%z ‘
2 _
“ (8m2 ay2> "Gt2 (3.13)

This is the two-dimensional wave equation.

3.2 Vibrating Drum of an Arbitrarily Shaped Mem-
brane |

._Vibrating drums are surfaces which vibrate, like Hat drum-heads in the shape of a circle
or gquare. A _sfring is one-dimensional ‘but'a drum head is two-dimensional. A stﬁng
only has a lez:lgth, but'a drum has a shape. How does the shape influence the sound of
the drum? This is the famous problem, “Can you hear the shape of a drum?"

Let’s consider the PDE (3.13) with initial conditions
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z(z,y,0) = f(z,y) (initial displacement)
i
8_?33; y,0) = g(z,y) (initialvelocity)

We can not specify any boundary conditions at this point since of the domain is not

given. For seperation of variables we start with the Ansatz

2(z,y,t) = w(t)e(z,y) (3.14)

so that the partial derivatives are

8z -
@(E,y,ﬁ) = w'(t)e(z,y)
8z de '
a_:EE(xay':t) = w(t)@(m:y)
82

% B O
a?(zﬂyrt) - w(t)'a_yﬁ(:c:y)

_and the wave equation turns into in (3.13)

W Oplo) = ault) (250 + 550 )

or

22 (z,y) + 2elzy) 1 w'(t)

Gy @) (3.15)

Now our analysis follows familiar lines: Now our analysis follows familiar lines (3.15)
depends on z and y only and the right-hand side depends on ¢ only, we conclude that
both sides are equal to some constant A. In order for the membrane to vibrate, w(t) must
be periodic. Thus the constant mus;t be negative (if it is positive, then the solutions of

w” — 7a*w = 0 will be real exponentials and hence not periodic). We thus equate both
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sides of equation (3.4) with 7 = —A% and obtain

w'(t) = —Na’w(t) l(3.16)

Whic_h has oscillatory solution for A >0, and one PDE for the spétia.l part

O | Oy - 2
8$2(Ily)+ ay_g (“T?y) - _—A (ID(I,:y)
& Vi(n,y) = —Nelzy) (3.17)

This PDE eigénvalue equation is known as the Helmhollz equation.
In order to atternpt a solution of the Helmholtz equation with the help of seperation
of variables we will need to have a "nice" region and appopriate boundary conditions. If

the region is rectangular, then we seperate

el y) = X(@)Y ()

If the region ig circular, then

p(z,y) = ¢~ (r,6) = R(r)O(6)

We will only study circular region because of related of Bessel functions:

3.3 Vibrations of Circular Membrane

In this s'ubsection, the problem is that find the frequencies of vibration of a circular drurﬁ
whern the médes of vibration are rotationally invariant. A kettledrum is a percussive
instrument consisting of a circular armnhead (usually plastic, but in older tirmes, an
animal skin} that is tautly stretched over a metal bowl. The vibrations of the kettledrum’s
drumhead can be modelled by the wave equation in (3.13), where a is the speed of
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waves travelling on the drumhead. The constant a is directly related to the tension of
the drumhead and the corfesponding .‘pitéh that is generated by hitting the drumhead
with a mallet, and can be adjusted using a foot pedal. The characteristic sound of the
kettledrum is determined by its vibrational modes and their C(I)rresponding frequencies.
Any kettledrum plé.yer will tell you that the i)roper place to strike the drumhead is not
the center of the drumhead, but rather a spot somewhere about one-sixth of the diameter
away from the edge of the drumhead. The most common drums have a diameter between

23 to 29 inches, so that means striking the timpani about 4 to 5 inches in from the edge of

the drumhead. Striking the drumhead in the center produces a sound that is somewhat

hollow:(Yong, 2006)

In this subsection, we will give some mathematical explanations for why this occurs.
We consider the vibrations of a circular membrane of radius ¢ as shown in figure 3.3.
Also, this section considers the solution of thé two dimensional wave equation Qf the
circular membrane. Again we are looking for the harmonics of the vibrating membrane,
but with the membrane fixed around the circular boundary.

To fit the boundary condition of no displacement on other than rectangular bound-
aries requires the use of an a;ipropriate two dimensional orthogonal curvilinear coordinate
system such that the boundary of membrane coincides with coordinate lines in this sys-
tem. Furthermore, it is necessary that the variables of the wave equation be seperable in
the new system. It turns out that the choice of curvilinear coordinate systems is severely
limited, and it is impossible, except in an approximate way, to analyze the vibrations
of a membrane having an arbitrarily shaped boundary W}ﬁch is circular boundary given
by z? + % = 2. It is more natural to use polar coordinates as indicated in figure 3.3.
The solution of one of the seperated equations consists of Bessel functions. We shall
transform the two dimensional Cartesian wave equation into its polar form in terms of 7
and 0 ﬁsing the pa:carmetric equations. So, the boundary condition is given 'z‘ (¢,0,t) =0
for all t >0 and 6 € [r, —7]. )

Now we shall consider the displacement of a circular membrane. So our study will be
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the niodel for ‘a drum. Of course we shall use polar coordinates, with the origin at the

center of the drum. The operator V? = 82/5$2 + 84 /8y is called the Laplocian and the

2-dimensional wave equation may then be written in terms of the Laplacian simply as
%2/t = a®V?z

Since the boundary of the circular membrane may be expressed by the simple equation'

r = constant, we first transform the Laplacian into polar coordinates {r,8). Note that
"z = rcos(0) and y = rsin(f) and we dencte partial derivatives by subscripts. By the

“chain rule, we get

Zy = Zg + 29'9_,,:_.
Diiferentiatiﬁg again uging the product rule, we get

Zew = ZpgTo b ZToz zf):rgz + Zﬁ‘gzx- (318)

Zrg = ZreTz+ ZTBHSE and zgs = Zg:Tg + 29965-

Now 7 = (22 + y*)"/? and 8 = tan~Y(y/x)}, so r, = =/ and 8, = —y/r*. Differentiating
again, ro; = (1 — 2%)/r® = ¢?/r% and b, = 2zy/rt. Substituting into {3.18) and -

assuming the continuity of first and second derivatives so that z.4 = zp,, we obtain

e = (02 = 2eyfr e + 6z (a4 Qe (319)
Simﬂarly,
gy = (/72 2er + 2wy 1) 200 + (27 [7%) 200 + (&7 /)2 — 2(wy/r)z  (3.20)

Now add (3.19} and (3.20) to find the Laplacian of z in polar coordinates:
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ng = Zzz + ZyAy = Zpp + (E/T)zﬂ" + (1/?’2)235

Viz = 8%2/0r + (1/7)0z/0r + (1/r*)8%2/ 66

. Using polar coordinates (r,8) where 5 = rcos(4) and y = rsin(6), the wave equation
becomes

B22/08 = (2] 92 + (1/r)9z/0r + (1/r2)8%=/06%) (3.21)
Here, naturally, z{r, 0, t) is a function of the polar coordinates r, # and of time ¢. Since
the drumhead is tautly held down, we impose Dirichlet conditions at the boundary of
- the drumhead:

2(r0,6)=0, 0<r<e¢ —w<O<m t>0 . (3.22)

and the initial conditions are the standard ones

z{r, 8,0) = f(r, )

% (r,6,0) = g(r, )" .29
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" Pigure 3.3 : The circular membrane of radius is given by the distan ce
the center 7, and the angle, 0. There are fized boundary

conditions along the edge at c.

‘We begin with a seperation of variables Ansatz:

2(r, é, £) = olr, Ow(t)

So that we get the ODE

w'(t) = —Natw(t)

and the-H.e}mholtz PDE in polar coordinates

Vieg+ M = 0
. with BC ¢(c,§) = 0

* 'We can write the PDE eigenvalue problem as
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18 [ 80\ 18% o
e — =+ AN =0, G} =1
ror (T c’ir) +"r2 a6* # #(e,0)
Now we again apply seperation of variables for this polar coordinate problem using Ansatz

@(r, 8) = R(r)©(f). This gives us

12 (r2 1meo1) + 5 2 RO+ ¥ [B)E()] =0

ror

or

6(9) d 1 R(T) " 2
it T8 8) =
r @ (rR'(r)) + 3 0"(8) + N*R(r)©(8) =0
Multiplication by Wi}(a) and a little rearranging gives
T i (TR’(T)) _[_)\2 2 _ —6"’(9) =pu - (3 25)
R(r) dr o) S

which results in two additional Sturm-Liouville ODE eigenvalue problems. We can de-
termine the hidden boundary conditions by making some observation. Let’s consider the
solution corresponding to the endpoints § = &, noting that at these values .for anyr < c
we are at the same physical point. So, we would expect the solution to have the same
value at § = —r as it has at § = 7. Namely, the solutitln is continuous at fhese physical

points. Similarly, we expect the slope of the solution to be the same at these points. This

tells us
O(-7) =0(r), ©(—m)=6'(x)
Such boundary conditions are called periodic boundary conditions. So, we get

©"(6) = —16(6)

(3.26)
with periodic BC ©(—r) =06(7), 6'(—=)=06'(r)

and

70



r (rRI(7)) + (0 — ) R(r) = 0

(3.27)
with singularity BC R(c) =0, [R(0}] < 0o

The equation in (327) should be solved over the interval 0 < r < ¢ subject to the
conditions that R(0) be finite and R(c) = 0. Because we are solving this equation on
the interval 0 < r < ¢ and the.functions r and v~ are not positive at the end points
of this interval, this boundary-value problem is not a regular Sturm-Liouville eigenvalue
problem but rather a siﬁgular Sturm-Liouville eigenvalue problem. Furthermore, Bessel’s
equation is linear and has. a regular point at r = 0, so we expect that at least one of the
- linearly independent solutions to this equation has a singularity at r ={).

| Nevertheless, this eigenvalue problem still has a complete set of orthogonal eigen—'
functions. From (3.27), we see that the weight function is 7, so inner products should be
cornputed as integrals over the interval 0 < r < ¢ with an extra factor of r. (This exfra
factor accounts for the fact that the area of a circle is proportional to the square of its
radius.)

The angular eigenvalue problem in (3.27) has eiéenvalues and eigenfunctions

g, =n%,  O,(0) =cicosn +cysinnd, n=20123 ..

Also, the radial eigenvalue problem in (3.27) becomes by using the product rule

0=r (R + (V= ) ) = PRG)+ RO) + (P =) RG) (829

We know that A > 0 and so we can do a variable substitution u = Ar. Note that, by the

chain rule, we then have
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dR  dRdz dR

il T ek R
d&’R ddR d [dR o
gy = —_—— == —— ——A - -7}\ 3.

. dr? dr dr  dr [d’u } du? 52

Therefore, if we apply the substitutions (3.29) and (3.30) and eigenvalues p,, = n? to the
equation (3.27) we get

2

9 ;
%)\R”(ﬁ) Gt %\/XR'(U) + (Az% - nQ) R(w) = 0
U2R.'.'(u) 4+ uR’(u) 4 (u2 _ nz) R(‘U.) = 0, n=0 1,2, Bpues (331)

This is known as Bessel’s equation of indez n. The general solution to (3.31) is

R(u) = CJ.(u) + DY, (u)
where J,(u) and ¥, (u) are Bessel’s functions of first and second kind, respectively. Since

we substituted u = Ar in Bessel’s equation, the solution becomes

R(r) = CL,(\) + DY, (dr) . (3.32)

Bessel’s functions of the second kind have singularities at r = 0, so for R(0) to remain
finite we must choose D = 0. Now we are left with
R(r) = J(Ar)

We have set C' = 1 for simplicity. We.can apply the vanishing condition at r = . We will
have the trivial solution and the boundary conditions tell us that the eigenvalues A, .,

are such that
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Rol) = Ty (M) = 0

where A, ,,.c is the mn-th zero of the Bessel function J, or,

un,m
)‘n i1 =
! C

wheren =0,1,2,3, ... and m=1,2,3, ... and Up,m 15 the m-th zero of the Bessel function

of order n.

I (thnm) =0

Table 3.1 : The zeros of Bessel functions J,(tpm) = 0.

n=01 n=1{ n=2| n=3| n=4 == §
2405 | 3832 | 5136 | 4380 | 7.588 | 771
| 7.016 | 8417 | 9761 | 11065 | 12.339
8654 | 20473 | 11620 | 13015 | 14373 | 15700
TL7U2 | Th3%s | 14996 L6y | ppbab | 1880
14431 | 16471 | 17660 | 19.400 | 20827 | 22218 |
18071 | 16.616 | 21117 | 22583 | 24014 | 25430
21212 | 22960 | 24270 | 25748 | 27.1099 | 28627
25904 | 27.421 | 28.008 | 30371 | 31.812
27.493 | 29047 | 30569 | 32065 | 33537 | 34989

(SR R
s
2

wEoaE Wy
el
ke

Moreover time equation becomes
w'(t) = —AL,a*w(t)
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has general solution

Wnm () = €1 €08 (Anmat) + cysin (Apmat) (3.33)

The product solutions that describe the vibrational modes of the circular drumhead and

therefore

Znm (7, 0,8) = Jn amT) [An i cOS 8 + By S0 18] [0t m €08 (@Anmt) + By, 1m i1 (@i ) |

To solve explicitly for z, one needs to create a proper superposition of product solutions
and determine constants from initial conditions using orthogonality conditions. There-

fore, superposition requires the solution to be of the form

o0 (o o}
= E g I (D) [Apis c08MB 4 By 5in ) [aﬂjm €08 aAn,mi + B, S0 a)\n:mt]
=0 m=0 , . ‘

(3.34)
and the Fourier éoeﬂicients can be found by using initial conditions. For example, let

g(r,6) = 0'in (3.23), we find G pm = B,,,, = 0. Then _

n=0 \m=1"

(r,8)= z (Z A | ) cos(nd) + Z (Z L - (/\n,mr)> sin(nd)

where
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¢ 2o

/;/h(T’ 6 (/\namﬂ.”) Costnﬁ)r dr do

g 0
An,m - -

c_27r

fﬁ (Anmr) cos?(nd)r dr db

i

0 0
c 27

[fh 7, 8) 0 (AnmT) sm(nf))r dr do

¢ 2

//ﬁ romT) SiD? (n8)T dr dé

Because of the trigonometric identitiy

ccosg+ Bein o= CM2+,62COS(¢+¢5U)

where ¢, 1s phase shift, we recognize that the product solution Znm above can be written
in a more compact form. If we are only after the qualitative behavior of each vibrational
mode, we can ignore the a.nghlar and temporal phase shift by defining

‘ zn’m(r? 0,t) = J, (Anmr) cos nf cos (adn mt) ‘ (3.35)

forn=0,1,2,3,...and m = 1,23, ... Plots of these vibrational modes ‘appear at the
end O_f this handout. Fach of these vibrational modes has a frequency of 27c/aun, m:
When the drum is fstruck, it is the combination of all of fhe vibrational modes and their

corresponding frequencies that contributes to its characteristic sound (timbre).'_
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Figure 3.4 : The first few modes of the vibrating circular membrane.

The dashed lines show the nodal lines indicating the points that do not move for the
particular mode. Compare these nodal lines with the three dimensional images in figure
3.5. We are interested in the shapes of the harmonics. So, we consider the spatial solution

(t = 0).

é(r, 8) = cosnf (jnu”’m,r)

c

Including the solutions involving sinm@ will only rotate these modes. The nodal curves

are given. by ¢ (r,0). This can be satisfied if

cosnd =0 or J, (utmv") =0

The various nodal curves which result are shown in figure 3.4. For the angular part,
we easily see that the nodal curves are radial lines, § = const. For n = 0, there are no

solutions, since cosnf = 1 n = 0. In figure 3.4 this is seen by the absence of radial lines
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in the first Colum.

For n = 1, we have cosd = 0. This imi)lies'that ¢ = £% . These values give the
vertical line as shown in the second éolumn in figure 3.4. For n = 2, cos 20 = 0 fmplies
that § =7, 5%, chﬁs- results in the two lines shown in the last column of figure 3.4.

We can also conéider the nodal curves defined by the Bessel functions. We seek values
of r for which =% 7 ig a zero of the Bessel function and Kes in the interval {0, ¢]. Thus,

we have,

. un,m

c

T = Upu

These will give circles of this radius with wu,, < t%,m or ¥ < m. The zeros can be
found in Table 3.1. For n = 0 and m = 1, there is only one zero and r = ¢. In fact, for
-all m = 1 modes, there is only one zero and r = ¢. Thus, the first row in figure 3.4 shows

no interior nodal circles.
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Figure 3.5 : A three dimensional view of the vibrating circular membrane for the lowest mode;

Compare these images with the nodal line plots in figure 3.4.

Drums resonate in various ways, creating différent vibrational patterns. A mathe-
- matical language has been developed to define the different resonant vibrational mode
patterns in a circular membrane. For the modes (n, m) where n is the number of nodal

diameters(0 means it goes in all directions) and m is the number of nodal circle.

U, ' ‘
7o —2E p=12..,m—-1 '
Un,m

For m = 2 modes, we have two nodal circles,

Un 1
r=cand r = ——

un,Q
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~ as shown in the second row of figure 3.5. For n = 0,

2.405

— 5.5206 ~ 0.4365
for the in_nef circle. For n ="1;" -
3.832
= ~ (0.546¢.
7-0186 0.546¢
and for n = 2,
i 5.135
7o 8.'1476 ~ 0.630c

where Vi’il)rationéi modes has a frequency of 2me/av, m.

(0,1) Iﬁode,is the first or the fundamental mode of vibration of a circular membrane.
This is the mode that is excited when the drum is struck in the center of the membrane.
It sounds like a deep "thump". The vibrations occur at the lowest frequency of all of the
drum vibrational modes. The lowest frequecy being 2.405 (c/a) .

The second mode of vibration of a crcular membrane is the (1,1) mode. This is the
most important vibrational xﬁode in terms of the musical quality of the drum.-The (1,1)
mode vibrates at a frequency 1.593 times the frequency of the (0, 1) mode, and the nodal
point runs the diameter of the drum. |

The third main mode of vibration of a circular membrane is the {2,1) mode. This is
the second most important vibrational mode in terms of the musical quality of the drum.

The (2, I) mode vibrates at a frequency 2.135 times the frequency of the (0,1) mode. o
The nomdal point run the'diameter of the drum at right angies to each other, making a

lé.rge .
| The (0, 2) mode, shown in figure 3.5 does not have aﬁy diameter nodes, but has two
circular nodes - one at the outside edge and one at a- distance of 0.436¢ (cris the radius
of the ‘circulér membrane) from the center of the membrane. The frequency of the (0,2)

mode is 2.296 times the frequency of the (0,1) mode and decays faster than the (1,1)
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mode, so it does not contribute to the musical quality of the drum, but to the thump.
The (1, 2) mode vibrates at 2.917 times the frequency of the (0, 1) mode and does not
contribute to the musical quality of a drum, even though it takes a relaﬁvely long time
to decay. |
The (2, 2) mode vibrates in a complex pattern that acts somewhat like two opposing
4 pole sound sources. It is the combination of a circular node intersecting two radial

nodes which form a large z.

Now we will examine vibration of a circularly symmetric or radially symmetric drum
with zero initial Vel_ocity. We will only try to examine the ﬁ‘eqpen_cies and modes,of
vibration for “radial mode i.e. mode which are only functions of the c]iétancé r from
the center. They vibrate only in the radial direction from the center of the drum to the
boundary circle. We are not going to consider modes of vibration which travel along the
boundary. Therefore, because of circular symmetry there is 116 cheinge in the angl_llar

variable and the wave equation (3.10) becomes

8%z ol B f A2° -
‘é}‘—z“ = U. -rar (‘T"é;‘) - 5 (336)

z2am(nt) = Jo(Aomr) cos{adgmt)- (3.37) |

The frequencies A, are determined by Dirichlet’s boundary condition that the drum is
still at r = 1(the circle) so Jy(A) = 0. Thus, the zeros of the Bessel fullcmon Jo give the
frequencies of radial vibration of a cucular drum. The base note of a drum is a radial
mode. The associated frequency of vibration is the smallest zero Mgy of the Jy Bessel

function. Thus the vibration of the drum is described by

Jo(Aom) cos(Agat)

This is what you hear most when you play the drum. Jy(Ag1r) has one hump. Jg()\pg?‘j

has two ‘humps’, one up and one down as seen in figure 3.5. In this second mode, the.
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inner part of the drum moves up while thé outer part moves down. The frequencieé
with which a drum vibrates radial are the zeros {ug,m} of the Bessel function Jy. For a
drum, the frequencies {up,,} are far from being an arithmetic progression. The radial
_frequencies { Ao}, 1(—3 the zeros of Jy are not an éﬁth;ﬁetic progression. The totality of
frequencies behaves like ‘réndom murnbers’, i.e. numbers put out by a random.num_ber
generator. We hear the bass note of a drum; .the drum’s muffled sound is due to the

randomness ‘of the higher frequencies.

VRS

3.4 - Schrédinger Equat'idn in Spherical Coordinates

The fufure state of a particle in classical mechanics the initial position and momen-
tum of a particle is completely determined by forces acting on the guantum mechanics
finds cérrelations between observable quantities, but the current position of a particle in
the Heisenberg uncertainty principle, how well you know the loca.fioxi and therefore the
degree of subsequent ﬁlomentum obscured. Ervin Schrodinger, de Broglie wave on the
basis of the accompanying article? adapted to different physical problems mathematically.
Classical physics, according to a particle mass 1 aud space in three dimension, e, z,y, z |
locations of potential energy V, the poi:enﬁal and ldl;:etic energies {p?/2u), the sum of
~ particle its energy gives: Eygm = V + p?/2p. Schrodinger advantage of this, the particle
or particles system, showing to what extent in different places has created a wave func-
ti;jn W, Thus, the time—dependént Schradinger equation was born in 1926. This equation
is written so that the material carries all fhe characteristics of a wave equation that de-
‘scribes the motion of the object. Then the equation, the equation of quantum mechanics,
" has been widely accepted. In short, the problem of quantum mechanics, the free maove-
ment of an object is to find the wave function of the object are limited by external forces.
Bessel’s equation is due to review the application areas of the global coordinates {r, 4, )

is the radial part of the solution of time-independent Schrodinger equation. Namely,
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Spherical Bessel functions are found to be the solution to the Schrodinger equation with
spherical symmetry in a situation. Three are important postulates of quantum mechanics
(Schiff, 1968)

(i) A system is cﬁmpletely specified by a state function, or wave function, ¥(r,t),
with (I, ) = '1. For example, if the system consists of a particle moving in an external
potential, then |T(r, t)|2 d*r is the prcbabiiﬁty of finding the particle in.a small volume

dr that surrounds the point r, and hence we need

// [T () d*r = (T, ) = 1.

®r3

(ii) For every system there exist a certain Hermitian operator, H, called the Hamiltonian

. operator, such that

ifiaa;f = HW, _ (3.38)
where 27h = 6.62 z 1073% Js! is Planck’s constant.

(iii) To each obsevable property of the system there corresponds a linear, Hermitian
operator, and any measuremént of the property gives one of the eigenvalues. For example,
the operators that correspond to momentum and energy are —iAV (—ihd/Or) and %8 /ot

The form of the Schridinger equation depends on the physical situation. The most
general form is the time-dependent Schrédinger equation, which gives a description of a

system evolving with time:

ov : _ ‘
— = HW .
if o ; (3.39)
where ¥ is the wave function of the quantum system, i is the imaginary umnit, A.is
the reduced Planck constant, and H is the Hamiltonian operator, which characterizes

the total energy of any given wavefunction and takes different forms depending on the

situation. For a single particle of mass p , we get
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oy
H=21v
2p

where p is momentum of the particle. Using by momentum operator we get

hZ
H = ==+ V(r1)
2 -

where V(r,t) is potential energy

Schrodinger equation becomes

LoU(rt) B2 o
e () V()W
% at 2# 67__2 (T! ) (TJ ) (Ti )

(3.40)

(3.41) .

~ This is Schrodinger’s equation, which governs the evolution of the wave function.

Equation, ¥(r,t) is the wave function of the particle at time ¢, the probability amplitude

to make the point 7. Amplitude, the ripple of events is a concept born in the directory.

Possibility is the two-time (past and future) can be explained as a confrontation between.

¥{r,t), any boundary conditions and is known at the time o instant ¥(r,t) , at any

time in the past and future ¥(r, ) to calculate.

—

Let’s look for a separable solution of (3.41) when V' is independent of time. We write

o x-u(r)T(t), and find that
5 ﬁ2 . o
B = —V* =
o quv u-+ V(r) ,E!

where F is the separation constant. Since th1” = ET,

a7

?ah‘é? = E\II,

and hence I is the energy of the particle. The equation for u is then the time-independent

Schr'ddinger’ equation,
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B2 ) '
— Vu+{V(r)— E)u=0
24

0T

(%%v? + V(fr)) = BV o B

In spherical coordinates, the Laplacian takes the form:

" 10 /,00\ 1[1 8 ouN. 1 8w
oy — 9 [ 20Y I D Sl il 4
V= i ("" 57") e [sin@@@ (Smgaa) T e 3‘@52] (343)
| 1o (,0\ 1[1 8 9 1 &
IO 0N L O (ane ) e | V() ) (8
2% (7.2 or (”" a»;»-) T Lmaag (Sm ae)ﬂm?aa(ga‘" " (r)) (r.0,¢)
= E%{(r,0,¢) | (3.44)
Z,is_
3
~ o F
p,«(
(C [ ' % s
"}r«"_{_‘ % 1/— %
i

Figure 3.6 : Spherical Coordinates

. Quantum nuribers describe values of conserved quantities in the dynamics of the quantum
system. The principal quantum number (n ='1,2,3,4;...) denotes the eigenvalue of

Hamiltonjan (H}, i.e. the erergy. The azimuthal quantum number (I = 0,1,...,n — 1)
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(also knowm as the a,ngular quantur munber or orbital quantum number) gives the orbital
angular momentum through the relation L2 = FAl(1+1). The magnetic quantum number

(m==—l,~1+1,...,0,...,1—1,1) yields the projection of the orbital angular momentum
along a specified axis. {Altin, 2006) '

If the potential enefgy and the boundary conditions ai'e.‘spheric_a]ly sﬁnmetric, it
i8 useful to transform H into spherical coordinates and seek solutions to Schrodinger’s
eguation which can be written as the product of a radial portion and anAangular- portion:
U (r,8,¢) = R(r)Y(6,¢), or even R{r)Q(0)®(4). This type of solution is known as
‘sepaa:afion of variables’. After separating the variables of (3.44), Wé then multiply by
r?/ (RO®) which gives

‘ B2/ d [r*dR 1 /4 /. ld@ &2 )
[——5; (d"" (EE;) T osmd (Eé (Smgﬁ) * E?F)) fE%"V(T)] =0 {(345)

After some manipulation into (3.45), the equations for the factors become:

# |
. Cdgt
,d (. dO Caae g ,
sin QEZE (sm(?gg) +1(1 + l}sin® 90 = m“® (3.47}
d [ ,dRY  2my? o
E;(T E)‘ YV~ EIR = 1~ DR (3.48)

where m? and I(I + 1} are constants on separation. After some operations, the solution

of {3.46) is

B(p) = (27) " e"me o (3.49)

Equation (3.47) is the Associated Legendre equation, so the solution is
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e(0) = Py, (cos ) | (3.50)

and normalization constant becomes

m/2 O™ Py(cos )

Pin(c0s0) = [1 = cos?]™* =22

(3.51)

If we substitute cosd = £, we get

1. & .
A0 = 55 € 1)

where the By,(cosf) are Assoclated Legendre Polynomlals The Fimckions & and & ave
often combined into a spherical harmonic Y;,,(0, ¢), where
Yin(8, 8) = CPy(cos B)Eim‘f’
If we rearranging equation (3.48), we get
£ 2d i1 +1) EpE
T —| R, —0R 0 3.52
(d?"2 - *rdr) Rulr) - {V( )+ 2pr? ] l( )+ ﬂl( )= i)

and also R,;(r) becomes

Ry(r) = ’“’”‘;(T) - - (353)
and
d? 2 d uﬁg(?") 1d - ’
(a;z‘ # ;5) ;= rgatnl®) P
By using equations (3.53) and (3.54), we get equation (3.52) of the form
d? ung( ) 2 (14 1)K? '
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Following is exa;nple where exact solution is known. For no potential, V = 0, so the

particle is free. Now we will examine this special case:

'3.41  Free particle solution

In classical mechanics, a free particle of mass p moves along a uniform linear trajectory.
Its momentum p, its energjr E = p*/2; and its angular momenturn I = r p relative
to the origin of coordinate system are constants of motion. In quantum physics, the

observables p and L = 7 = p do not commute. Hence, they represent incompatible

quantities: Tt is not possible to measure the momentwm and the angular mormentum of -

a particle simultanecusly.

Conceptually, the simplest scattering state is the free-particle where potential is zero
everywhere. We now look for solutions of the free particle radial Schrédinger equémtion
(3.54). The radial Schrodinger equation for éu free particle is not under any influence of
potential V(r) and freely travels from —oo to 4+o0. The radial Schridinger equation:

(ji+2 j) ru)+ [P R0 s

where k% = 2"“‘E . The energy can only be positive in the case of free motlon It we “change
variables in equation 3.56 to p = kT and write Ry = R;(p) , we obtain for Ry(p) the

equation:

CRED T R

Which is called spherical Bessel differential equation whose particular solutions are ji1/2(p)

and ny41/2 {p). It is possible to write them in terms of the Spherics,l Bessel functions:

-\ /2 ' .
jI(P)Z(%)' Juga(p) S (3.55)

~ and spherical Neumann functions

87



’ , 1/2 -
'mw:FWH@Q it 12p) (3.59)

where J, 15 an ordinary Bessel function of order v.

The géﬁéral form of the functions j;(p) and n;(p) are given by

i) = (=p) (li)l =2f (3.60)

pdp/ p
m(p) = —(—p) (%%) Cosp (361)

The asymptotic values of the spherical Bessel function for small and large p have the
following forms

s
1.35..(2+1)
%cos[ —Z(1+1)] forp>1

for pl

jz(;ﬂ) = (3.62)

The asymptotic values of the spherical Neumann function for small and large p alre

Lt ) for p <1

o= (3.63)

%srin [p—Z(1+1)] “forp>>1

The general solution of equation (3.57) corresponding to a well-defined energy (E = h*k?/211)

and a well-defined orbital angular momentum ! is of the form

Ru(r) = Aji(kr) 4+ Bry(kr) : (3.64)

Here the constant B must be zero because of the finiteness of the wave function in the
origin since the spherical Neumann function n;(p) has é-pole of order [+1 at origin and is
therefore an ix;egular solution of (3.57) " On the other hand, the spherical Bessel function
ji(p) is finite at the origin and is thus a regular solution. Therefore, the radial and total
wave functions of the Schridinger equation (3.57) for a free particle are
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Ry(r) = Ajz(k?") (3.65)
V(. 0,8) = Rul(r)¥imf, ¢) -

(3.66)

S =

Figure 3.7 Spheq"'icaeress‘el function for dif ferent values of 1.
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Figure 3.8 : Spherical Neumann function for dif ferent values of 1.

Remarks:

1. The eigenvalues k? can take

energy F = BE can assume any value in this interval and the spectrum is continuous.

2p

2. Every free particle eigenfunction can thus be labelled by the two discrete indeces |
and m and by continuous index. F (or k). So each energy eigenvalue is infinitely degen-
erate, since for a fixed value of E, the eigenfunctions are labelled by the two quantum

i

i
:

f
|
|

on any value in the interval of (0, co) so that the

numbers [ and m such that [ =0,1,2,... and m = —[, -l +1, ..., L.
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Chapmfé
CONCLUSIONS

In this thesis, we obtained Bessel differential equation of second order differential equa-
tions with variable coefficients by using cylindrical coordinates of Laplace equation.

Bessel. differential equation scluble by using E:ob.enious method and cylindrical func;

tion of the first kind and second kind, of index v J,{z) and N,(z) were obtained; respec-

tively. If v is not an integer, the solution of this eqﬁation becomes linear combination
of J.(x) .a,nd J_ (). If v is an integer, the solution of this equation becomes linear com-
bination of J,{x) and Nv(z); So, modified bessel equation was discussed which can be
obtained by changing variable by the formula z = iz, Many useful formulas for Bessel
equation were obtained. Also, cylindrical functions with a half-integer index which are
Ji1j2{z) and J,_q5(z) have been shown. Moreover, we analyzed wronskian deterfniﬁant
which has given us linear. cémb_ination of J,(z) and J_,(z) is linearly independent where
v is noninteger and linear combination of .L,(sc)l and No{(z) is also linearly independent
where v is integer. Bessel integral and Jacobi expansion were observed in this thesis and
sigxﬁﬁcanf funtions and integrals which are Bessel integral, Anguer function, Parseval
integral, Jacobi expansion, generating function were obtained in this part. Also, many
differential equations like modified bessel equation and schrisdinger equation ﬁere shown.
_ that can be reduced to the Bessel equation using transformations of dependent variables.

This thesis has also given us applications of Bessel functions which are vibrations of
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circular membrane and Schrédinger equation. Bessel’s differential equation is often en-
countered when solving boundary value problems, such as separable solutions to Laplace’s |

equation or the Helmholtz equation, especiaﬂy when working in cylindrical or spherical

coordinates. The solution of the two dimensional wave equation of the circular membrane L

were discussed which involves Helmholiz eguation and examined modes of vibration of -
circular membrane. Also, we discussed the famous problem, “Can you hear the shape of
a drum?". Bessel functions are found to be the solution to the 'Schrfjding;ar equation in a
situation with spherical coordinates. Finally, solutions to the radial Schr('jdinger‘ equation
in spherical ééordinates for a free particle were considered. The Bessel functions appear
in many diverse Scena;ios, particularly situations involving cylindrical symmetry. The
most difficult, aspect of working with the Bessel function is determining that they can
Be applied through reduction of the system equation to Bessel’s differential or modified
equation, and then manipulating boundary conditions with appropriate application of

zeroes, and the coefficient values on the argument of the Bessel function.
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Conjectures and further comments

- The function z— Jp(+/Z) is convex in domain if and only if
p# ~1and p > —1.875.

- The function z — sz(ﬁ) iz starlike in domain if and only if
p = —0.875.

- The function z — zJp(ﬁ} is starlike of order 1/2 in domain if and only if
p = —0.875.

- Question: What happens if p is complex?

- Radius of convexity of z — zJp(y/z)7?

. Radius of starlikeness of z — zJ,(/2)7

-~ Todd E.Q.A, Kreyszig and J. Todd[KT], 1958.

- R.K. Brown [Br], 1960—by usiog the infinite product

representation of Bessel functions.
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 APPENDICES

Appendix 1: Gamma Function

tamma function I'(v) is defined as foliows:

Fv) = /e*ft"-ﬁdt (4.1)
o - .
As far as:
1a
= =¥ 4.2
v ot (4.2)
By plugging (4.2) into (4.1), we get
O?—tdv —t;JO b—tv -r
UI‘(U):/e Etdtze t|m—l—/e 1 dt (4.3)
0 0
or
oI (v) = T ('+ 1) (4.4)

Then ['(1) = 1 and ['(2) = 1. By induction if n is a natural number, we obtain:

T(nt1) = nl (45)
P(n+é) — lg/—f(zn.q)z (4.6)

where (2n — 1)! = 1.3.5...(2n — 1). Then
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Plu) = =D(v+1)

‘ 1
1

T(v—mn) = (%n)(vgnﬁ)mvr(vﬂ) (4.7)

T'(v) has holes at all negative integral values of v. To find asymptotic behavior of

Gamma-function as v - 0, we use 50 called “Laplace Method."

oo

Pot1) = [etrd= [t ‘ (4.8)
[eean]
o(t,v) = t—vin(t)

Function ¢{¢,v) has a minimum at t = v. Indeed:

d '
d—fxl—-%:ﬁﬁtfv (4.9)
Near this minimum
b = o) 58 WP T
do(vy = v— 'Ul.n(v)
" _ 1
$) = =

Now we will replace in (4.2) ¢ (t,v) to its approximate value (4.9) and go from integration

by t to intrgration 7. Without loss of accuracy we can consider that —oc < 7 < cc. Then
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vt = o0 et e

)

Now we replace 7 = /2vy and remember that f eV dy = /7. We end up with the

—o0
following answer:

Tlo < 1)~ v/ G’i)n | @i,
ot VR ()’ |

This is the Stirling approximation for n = 5, where n! = 120. The Stirling approximation
gives 51 = 118.045. The accuracy of the Stirling approximation is reasonable. We accept

without proof:

P(z)l(1 — z) =

T
4.12
{ —
where T2(1/2) = m so I'(1/2) = ﬁ
For the logarithmic derivative of the gamma function
b ('U) :
1 .
$(o) = S MTOT = 5 | (413)
the following expansion holds
| 1 =71 1 i
- (- — R 4.14
9 =05 = |5 ) (414

where C’ is the Euler constant its approximate value is equal to 0.57722157.

If n is a positive integer, then
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Bn+l)=—-C+1+1/24 .. +1/n (4.15)

Appeﬁdi}{ 2

FEuler’s Equation

The equation in the form

ziy" +pay' +qy=0 (4.16)

with a regular singular point at zp is when both functions p and ¢ are constants. Without
loss of generality o = 0.This equation is called Euler's equation. In thinking about
possible solutions for Fuler’s equation ,we are led to consider power functions, since if
y(z) = x* , then differentiating y reduces the power by one while multiplying by z restores

the power. More precisely, we have

gy (z) = sx° and  2%y'(z) = s(s — 1)2° S (4.17)

so all of the terms in Euler’s equation are multiples of z° .Making the substitutions, we

get

oy +pzy' +qy = [s(s—1)+ps+g|z°

D¢
[$* 4 (p+1)s+ q} % (4.18)
Thus y(z) = z* is a solution provided that
I(s)=s+(p—1)s+g=0 (4.19)
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The polynomial /{s) is called the indicial polynomial, and equation (4.18) is called the
indicial _equation. Since it is a quadratic equation, it generally has two roots, s; and 53,
and I(s) factors into. I{s) = (s — §1}{s — s2). The roots could be complex, but here we
will Only_tréat the case when s; and sp are real. Each real root leads to a solution of

Euler’s equation. Thus

yi(z) =z and yo(z) =1 - (4.20)

are both solutions for z > 0. Notice that z* is not defined for 2 < 0 unless s is ﬁﬂ:eger
or s = p/q where ¢ is odd. Therefore, we limit the domain of the solution to @ > 0.
Tor z < 0, the solution is {x*|. So, if the Toots are real and different, then we have two
solutions which are linearly independent since they are not constant multiples of each

other. Therefore, the general solution is

y(z) = cayr (@) + caalz) = ra”™ + cpu” (4.21)

where s; and s, are real ; ¢; and ¢y are constants. When the indicial equation has a

~ double root, solutions g (a:)'and yo(z) becomes

=

N loji
n(e) =z and ya(z) = 5‘;(513 r) = —&"}5;51 =z ing (4.22)

which are linearly independent.

The general result

We are ready to summarize our results about Euler’s equation. However, there is one
point to clear up. In the preceding discussion we have tacitly assumed that > 0 and
have found the solutions accordingly. But what about negative values of z7 Our theorem

will include the results for negative &.

Theorem 10 (1.1) Consider the Euler equation
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(& — o)’ ¢+ plz — o)y +ay =0 (4.23)

and the associoted indicial equation I(s)=s(s —s1)+ps+q=8+(p—1)s+g=0.
1.1f the indicial equation has two distinct real roots 51 and sg, then a Jundamental set
of solulions defined for = # xq is
I

yi(z) =z — 2o and  ya(z) = |z — o[ .

niz) =z —ml™ ond  ya(z) =l — zol* lnjz — |

is a fundamental set of solutions defined for x # .

Appendix 3

The Method of Frobenius

We will find solutions of Bessel equation using the method of Frobenious. Tt is motivated

by Euler equation and power series. We will be solvingféquation

2ty + ap(a)y + g(z)y =0 (4.24)

Notice the coefficients p(x) and g{z) are analytic at o,they have power series expansions '

at that point. Instead of looking for a solution which is just-a power series, as we do at

an ordinary point, or just a power function, as we did for Euler’s equation. We look for

a solution which is the product.of a power series and power function. A solution type

y(s,z) = Zakzk-l-s (4.25)
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will be called ‘@ Frobenius solution. 'The frobenius method tells us that we can seek a
power series solution of the form equation (4.25). By differentiating equatibn (4.25), we

get:

Y(s2) = i(k + s)apz T (4.26)
k=0 : .

y'(s,z) = i(k‘ +5 = D)k + s)apz™ (4.27)
. k=0 ‘ '

and where the coefficients p(x) and g{z) are analytic at 0 and have power serles expansion

plz)=> ma® and g(z)= S s (4.28)
k=0 k=0

which converge in an interval containing x = 0, We will use operator notation L and

write equation Cl as

Ly =2y +ap(z)y +q(z)y =0 (4.29)

Substituting equations {4.26), (4;27) and (4.28} into equation (4.24), we get

Ly(s,z) = o*y" +zp(z)y +q(z)y

=203 Au(s)at " (4.30)
k=0

where the coeflicients are

| Apls) = (s + k)(s+ k — L)ag(s) + Z [Pr—n(s +n) + @i ai(s) . (4.31)

. =0
We get a solution to equation (4.24) provided that Ay(s) = 0 for n > 0. For n = 0,

equation (4.31) become
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Ag(s) = [s(s—1)+pos+ q0) ag
= [$*+ (po—1)s+q0] a0
= i (4.32)
where
I(s)=s"+(po— s+ (4.33)

is the indicial polynomial. Since we are assuming ag # 0, the coefficient Ay(s) = 0 only
is I(s) = 0. This is the indicial equation, ant its roots are the only powers s for which
there can be solutions. We will only consider the case when the indical equation has two

real roots s; and s5, and we will assume that they are ordered by s; < s1. Then

Ag(s) = aol(s) = aols — s1)(s e, (4.34)

Since A4(s) = 0, equation (4.30) becomes

-

Ly(s,x) = Ag(8)z° = agI(s)z® = ag(s — s1)(s - 52) (4.35)

The right-hand side of equation (4.35) vanishes for s = 5, and s = 53, so y(s1,z) and

y(s2,7) are solutions. The solution for the larger root s = s; becomes

p(z) = y(o1,7) =52 3 anlor)eh = Y an(sa)a - (4.36)
E=0 k=0 ‘

which is a Frobenius solution corresponding to the root s;. The second solution when

51 — 89 is Tiot a nonnegative integer becomes

va(z) = y(s2,2) = 22 ) ax(sg)z* = Z ax(s9) 2"t . (437)
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If the roots are equal, the second solution becomes

yalz) = ‘5‘(51:55)

[v.0]

= zlinz Zak(sl)mk + ™ Z al(s1)a® (4.38}

k=0 k=0

= yz)nz+ 2™ Z@%(sl)mk {4.39)
1

ko=

Notice that the sum in the last expréssion starts at n = 1 instead of at n- = 0. This is

because ag is a constant, so aj = 0.
Appendix 4

Laplace Transform

The Laplace transform is an integral tramsform perhaps second only to the Fourler trans-
form in its utility in solvif;g physical problems. The Laplace transform is particularly
useful in solving linear ordinary differential equationg Such“‘:as those arising in the analysis
of electronic circuits.

The (unilateral) Laplace transform of a function f (t), defined for all real numbers

¢t > 0 is the function F(s), defined by:

P = LU0 = [f0eTe - (4.40)

where the parameter s is a complex number where 5 = a + i with real number o and £
(Abramowitz and Stegun 1972).
The unilateral Laplace transform is almost alwayé what is meant by "the" Laplace

transform, although a bilateral Laplace transform is sometimes also defined as

105



F(s) = L{f(#)} = /lf(t)e‘“dt (4.41)

The inverse Laplace transform is given by the following complex integral, which is known

by various names (the Bromwich integral, the Fourier-Mellin integral, and Mellin’s inverse

formula):
F+iT
' 1
_ p—1 =1 S = W st q
50 = L7 (F )} = 5 i, [ P (4.42)
y—il

where « is a real number so that the contour path of integration is in the fegibn of
convergence of F(s). An alternative formula for the inverse Laplace transform is given

by Post’s inversion formula.

Proof of the Laplace transform of a function’s derivative

It is often convenient to use the differentiation property of the Laplace transform to find

the transform of a function’s derivative. This can be derived from the basic expression

for a Laplace transform as follows:

Lif) = [ feae (4.43)
1O N Gl
— - :f (t)dt (by parts) (4.44)
[ =5 ]0* 0[ _
- [H2 L] (4.45)
yielding
L{FO)} =s.L{F()} — F(0) (4.46)
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and in the bildteral case,
L), = s / e~ F(1)dt
= SL{®) (4.47)

The general result

L{ @} =s"L{fO)} =" (0) — .~ £ (0)

where f™ is the n-th derivative of f, can then be established with an inductive argument.
The Laplace transform is a powerful integral transform used to switch a function from
* the time domain to the S-domain. The use of Laplace tfaﬂsform makes it much easier to

solve linear differential equations with given initial conditions

L{F™) =L () =3 s FE0 ) (£.48)

Consider the following differential equation:

i

n

2_ufO) = 40 | (4.49)
Sar {90} = L) (£50)

which is equivalent to

VOIS D IR0

L)) = — (4.51)

E a;st

=0
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Note that f)(0) are initial conditions. The solution for f(t) will be given by applying

the inverse Laplace transform to £ {f(%)} -

Laplace transform of Differential Equations with Polyno-
| ' mial Coeflicients

The equation for Laplace transform is

L P(s) = (-1 L F () (s>a) (452)

for f(t) piecewise continuous on [0, oo] and F(s) = L{f(t)}. Hence forn =1,

LG} =—F'(s) L (453)

Then

LEF@Y = —L )
d

= —{eP(s) — O

— —sF(s)—F(s) (4.54)

Similarly for f(t)

L{fW) = —LL U0}

= —L(2F(5) - 5£(0) - 1/(0))
— _2P(s) — 2sF(s) + f(0) (4.55)
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