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CHAPTER 1 

 

INTRODUCTION 

 

From time immemorial, wind has been harnessed to move ships and large boats, till the 

introduction of steam engines. Initially, wind was used to drive sails so that the vehicles move 

forward. In several countries of the world, using sails and capturing wind energy for moving 

over water still persists, but is mostly used for leisurely activities such as windsurfing, yachting, 

sailing ships and boats. However, today with so much pollution and the problem of global 

warming facing us, scientists have thought of and devised ways of developing a wind car. It 

hasn't grown to that big an industry like thermal or hydroelectricity generation, but has still been 

able to create a niche for itself. 

The wind car is the kind of car powered by natural wind energy. The main objective is to convert 

the wind energy to mechanical energy to rotate the main shaft. The basic task is conversion and 

storage of wind energy. There are many way to convert and store wind energy to mechanical 

energy. This involves: 

 Use generator: the turbine will rotate the rotor connected to the windings of the generator, 

thereby creating a magnetic flux which in turn produces an induced current that help 

charges the battery that supplies the main power to be used. 

 Use hydraulic compressors: here, the turbine will rotate and hydraulically compress a 

working fluid (generally gas) which helps store the energy and later expands to rotate the 

turbine when needed. 

 Direct use of fly wheel: a fly wheel is a disk of mass that helps store the energy from a 

rotating torque at constant rate. 

 Direct connection to the wheel: in this complex method the turbine is directly connected 

to the wheels by the use of various kinds of links and gear. 

Calculations are very important and sensitive to this project referred to chapter 2. The purpose of 

this project is to calculate and analyze pressure and velocity distribution around an airfoil, to 
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calculate lift and drag. For this reason computer programming (matlab) has been written and 

used for most of the calculation.  

The remaining chapters of this thesis are organized, as follows; Chapter two reviews the 

complete mathematical modeling to calculate the design parameters of airfoil is presented. The 

model is based on the aerofoil theory. The third chapter reviews and describes the methodology 

of some numerical solutions examined and applied to calculate the parameter of the airfoils. 

The forth chapter presents the results of the thesis. And the fifth chapter concludes the thesis and 

presents the probable future development of this work. 
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CHAPTER 2 

 

AIRFOIL THEORY 

 

The airfoil shape is expressed analytically as a function of some design parameters. The NACA 

four and five digits is used with design parameters that control the camber and the thickness of 

the airfoil. The inviscid flow is computed with a linear vortex panel method, which provides the 

lift and moment coefficients. The boundary layer is computed using an integral formulation. In 

this chapter, a complete mathematical modeling to calculate the design parameters of the airfoil 

is presented.  

2.1 Airfoil Geometry Parameters 

If a horizontal wing is cut by a vertical plane parallel to the centerline of the vehicle, the resultant 

section is called the airfoil section. The generated lift and the stall characteristics of the wing 

depend strongly on the geometry of airfoil section that make up the wing. Geometric parameters 

that have an important effect on the aerodynamic characteristic of an airfoil section include 

1) The leading-edge radius.  

2) The mean camber line.  

3) The maximum thickness and the thickness distribution of the profile.  

4) The trailing-edge angle. 

The effect of these parameters, which are illustrated in figure 2.1 will be discussed after a brief 

introduction to airfoil-section nomenclature. [1] 

2.1.1 Airfoil-Section Nomenclature 

The geometry of many airfoil sections is uniquely defined by the NACA designation for the 

airfoil. There are a variety of classifications, including NACA four digit wing sections, NACA 

five digit wing sections, and NACA six digit wing sections. 
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As an example, consider the four- digit wing section. The first integer indicates the maximum 

value of the mean camber-line ordinate (see figure 2.1) in percent of the chord. The second 

integer indicates the distance from the leading edge to the maximum camber in tenth of the 

chord. The last two integers indicate the maximum section thickness in percent of the chord. 

Thus the NACA 0012 is a symmetric airfoil section whose maximum thickness is 12 percent of 

the chord. The NACA 4412 airfoil section is a 12 percent thick airfoil which has 4 percent 

maximum camber located at 40 percent of the chord. [1] 

 

Figure 2.1 Airfoil-section geometry and it is nomenclature. [2] 

 

2.1.2 Leading-Edge (LE) and Chord Line 

The chord of an airfoil is an imaginary straight line drawn through the airfoil from its leading 

edge to its trailing edge. We might think of this chord line as the starting point for drawing or 

designing an airfoil in cross section. It is from this baseline that we determine how much upper 

or lower camber there is and how wide the wing is at any point along the wingspan. The leading 

edge of an airfoil is the portion that meets the air first. The shape of the leading edge depends 

upon the function of the airfoil. If the airfoil is designed to operate at high speed, its leading edge 
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will be very sharp, as on most current fighter aircraft, if the airfoil is designed to produce a 

greater amount of lift at a relatively low rate of speed. [3] 

2.1.3 Mean Camber Line 

The mean camber line of an airfoil is the line from the leading edge to the trailing edge, of which 

each point lies exactly halfway between the upper and lower surfaces. For an airfoil with zero 

camber (i.e., the wing is symmetric about the chord line), the mean camber line is straight and 

corresponds to the chord line. In other cases, the mean camber line is curved. [4] 

2.1.4 Maximum Thickness and Thickness Distribution  

The maximum thickness and thickness distribution strongly influence the aerodynamic 

characteristic of the airfoil section as well. The maximum local velocity to which a fluid particle 

accelerates as it flows around an airfoil section increases as the maximum thickness increases. 

Thus the minimum pressure value is smallest for the thickest airfoil section. As the result, the 

adverse pressure gradient associated with the deceleration on the flow from the location of this 

pressure minimum to the trailing edge is greatest for the thickest airfoil. As the adverse pressure 

gradient becomes larger, the boundary layer becomes thicker (and is more likely to separate 

producing relatively large values for the form drag). Thus, the beneficial effects of increasing the 

maximum thickness are limited. 

For a very thin airfoil section (which has relatively small leading edge radius), boundary layer 

separation occurs early, not far from the leading edge of the upper surface. As result, the 

maximum section lift coefficient for a very thin airfoil section is relatively small.  

The thickness distribution for airfoil affects the pressure distribution and the character of the 

boundary layer. As the location of the maximum thickness moves aft, the velocity gradient (and 

hence pressure gradient) in the mid chord region decreases. 

The resultant favorable pressure gradient in the mid chord region promotes boundary layer 

stability and increases the possibility that the boundary layer remains laminar. Laminar boundary 

layers produce less skin friction drag than turbulent boundary layer but are also more likely to 

separate under the influence of an adverse pressure gradient. 
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In addition, the thicker airfoils benefit more from the use of high lift devices but have lower 

critical Mach number. [3]  

2.1.5 Trailing-Edge Angle (TE) 

The trailing edge is the back of the airfoil, the portion at which the airflow over the upper surface 

joins the airflow over the lower surface. The design of this portion of the airfoil is just as 

important as the design of the leading edge. This is because the air flowing over the upper and 

lower surfaces of the airfoil must be directed to meet with as little turbulence as possible, 

regardless of the position of the airfoil in the air. [3] 

2.2 NACA Airfoil 

The NACA airfoils are airfoil shapes for aircraft wings developed by the National Advisory 

Committee for Aeronautics (NACA). The shape of the NACA airfoils is described using a series 

of digits following the word "NACA." The parameters in the numerical code can be entered into 

equations to precisely generate the cross-section of the airfoil and calculate its properties as 

shown in figure2.2. 

2.2.1Four-digit Series 

The NACA four-digit wing sections define the profile by: 

1. One digit describing maximum camber as percentage of the chord. 

2. One digit describing the distance of maximum camber from the airfoil leading edge in 

tens of percents of the chord. 

3. Two digits describing maximum thickness of the airfoil as percent of the chord. 

The formula for the shape of a NACA 00XX foil, with "XX" being replaced by the percentage of 

thickness to chord, is: 

z =
t c⁄
0.2 c ቈaට

x
c − b ቀ

x
c
ቁ − c ቀ

x
c
ቁ
ଶ

+ d ቀ
x
c
ቁ
ଷ
− e ቀ

x
c
ቁ
ସ
቉                                                                         2.1a 

where  
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 a = 0.2969 

 b = 0.126 

 c = 0.3516 

 d = 0.2843 

 e = 0.1015 

 z is the half thickness at a given value of x, and 

 t c⁄  is relative thickness (thickness ratio) 

and also the eq.2.1a can be in dimensionless form  

z =
t c⁄
0.2 cൣa√X− b(X)− c(X)ଶ + d(X)ଷ − b(X)ସ൧                                                                              2.1b 

Where: 

 X = ୶
ୡ
 

 c is the chord length, 

 x is the position along the chord from 0 to c, 

Now the coordinates (xU,zU) of the upper airfoil surface, and (xL,zL) of the lower airfoil surface 

are: 

xu=xL=x,     zu=+z, and zL=-z 

The simplest asymmetric foils are the NACA 4-digit series foils, which use the same formula as 

that used to generate the 00XX symmetric foils, but with the line of mean camber bent. The 

formula used to calculate the mean camber line is: 

zୡ = ൞ 
h

x
x୦ଶ

ቀ2x୦ −
x
c
ቁ                      , from x = 0 to x = x୦c

h
c − x

(1− x୦)ଶ
ቀ1 +

x
c − 2x୦ቁ , from x = x୦c to x = c

                                                            2.2 
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Where: 

 h is the maximum camber, 

 x୦  is the location of maximum camber. 

2.2.2 Five-digit Series 

The NACA five-digit series describes more complex airfoil shapes: 

1. The first digit, when multiplied by 0.15, gives the designed coefficient of lift (CL). 

2. Second and third digits, when divided by 2, give p, the distance of maximum camber 

from the leading edge (as per cent of chord). 

3. Fourth and fifth digits give the maximum thickness of the airfoil (as per cent of the 

chord). 

For example, the NACA 12018 airfoil would give an airfoil with maximum thickness of 18% 

chord, maximum camber located at 10% chord, with a lift coefficient of 0.15 

The camber-line is defined in two sections: 

zୡ = ൞

kଵ
6

(xଷ − 3hxଶ + hଶ(3− h)x)  ,     0 < ݔ < x୦
kଵh

6
(1 − x)                                      ,       x୦ < ݔ < 1

                                                                    2.3 

Where the chord wise location x and the ordinate y have been normalized by the chord. The 

constant h is chosen so that the maximum camber occurs at x = x୦; for example, the NACA 

13012 has camber-line 230, x୦ = 0.3 / 2 = 0.15 and h = 0.2025. Finally, constant k1 is determined 

to give the desired lift coefficient; for camber-line 230 again, k1 = 15.957 is used. [5] 
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Figure 2.2 Geometric terminology of lifting wing profiles, (a) Total profile, (b) Profile teardrop 
(thickness distribution). (c) Mean camber (skeleton) line (camber height distribution). [6] 

t/c relative thickness (thickness ratio) 
h/c relative camber (camber ratio) 
xt/c relative thickness position 
xh/c relative camber position 
rN/c relative nose radius 
2߬ trailing edge angle 
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2.3 Vortex Filament 

Consider 2-D/point vortices of same strength duplicated in every plane parallel to the z-x plane 

along the y-axis from -∞ to ∞. The flow is 2-D and is irrotational everywhere except the y-axis. 

y-axis is the straight vortex filament and may be defined as a line. 

Vortex filament is a straight or curved line in a fluid which coincides with the axis of rotation of 

successive fluid elements. [7] 

2.4 Helmholt's Vortex Theorems 

The strength of a vortex filament is constant along its length. A vortex filament induces a 

velocity field that is irrotational at every point excluding the filament. If we enclose a vortex 

filament with a sheath from which a slit has been removed, the vorticity at every point on the 

surface until be zero. If we evaluate the circulation for the sheath. as 

Γ = −රVሬሬ⃗
ୡ

 ds⃗ = −ඵ൫∇× Vሬሬ⃗ ൯dA
୅

                                                                                                          2.4 

where 

∇ × Vሬሬ⃗ = 0, −  රVሬሬ⃗
ୡ

 ds⃗ = 0                                                                                                                   2.5 

න Vሬሬ⃗  ds⃗
ୠ

ୟ
+ න Vሬሬ⃗  ds⃗ + න Vሬሬ⃗  ds⃗ + න Vሬሬ⃗  ds⃗ = 0

ୟ

ୢ

ୢ

ୡ

ୡ

ୠ
                                                                                        2.6 

However, 

න Vሬሬ⃗  ds⃗ + න Vሬሬ⃗  ds⃗ = 0                                                                                                                                 2.7
ୟ

ୢ

ୡ

ୠ
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As it constitutes the integral across the slit. Thus, 

න Vሬሬ⃗  ds⃗
ୡ

ୠ
= −න Vሬሬ⃗  ds⃗ = න Vሬሬ⃗  ds⃗ = Γ                                                                                                      2.8

ୡ

ୢ

ୟ

ୢ
 

A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a 

closed path. In the absence of rotational external force, if the circulation around a path enclosing 

a definite group of particles is initially zero, it will remain zero and in the absence of rotational 

external force, the circulation around a path that encloses a tagged group of elements is invariant. 

[7] 

 

2.5 Vortex Sheet or vortex surface 

An infinite number of straight vortex filaments placed side by side form a vortex sheet. Each 

vortex filament has an infinitesimal strength k(s). 
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Where  

k(s): is the strength of vortex sheet per unit length along s. And  

V஘ =
Γ

2πr   for 2− D (point Vortex)                                                                                                2.9 

A small portion of the vortex sheet of strength k ds induces an infinitesimally small velocity dV 

at a field point P(r; θ). So 

V஘(vortex ilament) = −
k ds
2πr                                                                                                                2.10 

∴ dV୮ = −
k ds
2πr                                                                                                                                           2.11 

Circulation Γ around a point vortex is equal to the strength of the vortex. Similarly, the 

circulation around the vortex sheet is the sum of the strengths of the elemental vortices. 

Therefore, the circulation Γ for a finite length from point 'a' to point 'b' on the vortex sheet is 

given by: 

Γ = න k(s )ds
ୠ

ୟ
                                                                                                                                          2.12 

Across a vortex sheet, there is a discontinuous change in the tangential component of velocity 

and the normal component of velocity is preserved. 

Here is diagram of an airfoil moving through a fluid at speed U. if we look at the rectangular 

path around this foil which is ‘’∆n’’ units high and ‘’∆S’’ units long. By multiplying the speed of 

particles at each point around the rectangle and adding this up as shown in Eq. 2.13. 
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∆Γ = −නVሬሬ⃗ dl⃗ = −න Vሬሬ⃗ dl⃗
୆୓ଡ଼

= −[wଶ∆n− uଵ∆s− wଵ∆n + uଶ∆s]                                            2.13 

k∆s = (uଵ − uଶ)∆s + (wଵ − w2)∆n                                                                                                  2.14 

As ∆n→0 we get  

k∆s = (uଵ − uଶ)∆s or   γ = (uଵ − uଶ)                                                                                               2.15 

k = (uଵ − uଶ) states that the local jump in tangential velocity across the vortex sheet is equal to 

the local sheet strength. [7] 

 

2.5.1 Kutta Condition 

The Kutta condition is a principle in steady flow fluid dynamics, especially aerodynamics, which 

is applicable to solid bodies which have sharp corners such as the trailing edges of airfoils. A 

body with a sharp trailing edge which is moving through a fluid will create about itself a 

circulation of sufficient strength to hold the rear stagnation point at the trailing edge. In fluid 

flow around a body with a sharp corner the Kutta condition refers to the flow pattern in which 

fluid approaches the corner from both directions, meets at the corner, and then flows away from 

the body. None of the fluid flows around the corner and remains attached to the body. 

When a smooth symmetric body, such as a cylinder with oval cross-section, moves with zero 

angle of attack through a fluid it generates no lift. There are two stagnation points on the body 

one at the front and the other at the back. If the oval cylinder moves with a non-zero angle of 

attack through the fluid there are still two stagnation points on the body - one on the underside of 

the cylinder, near the front edge; and the other on the topside of the cylinder, near the back edge. 

The circulation around this smooth cylinder is zero and no lift is generated, despite the positive 

angle of attack. If an airfoil with a sharp trailing edge as shown in figure 2.3 begins to move with 

a positive angle of attack through air, the two stagnation points are initially located on the 

underside near the leading edge and on the topside near the trailing edge, just as with the 

cylinder. As the air passing the underside of the airfoil reaches the trailing edge it must flow 

around the trailing edge and along the topside of the airfoil toward the stagnation point on the 

topside of the airfoil. Vortex flow occurs at the trailing edge and, because the radius of the sharp 

trailing edge is zero, the speed of the air around the trailing edge should be infinitely fast! Real 
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fluids cannot move at infinite speed but they can move very fast. The very fast airspeed around 

the trailing edge causes strong viscous forces to act on the air adjacent to the trailing edge of the 

airfoil and the result is that a strong vortex accumulates on the topside of the airfoil, near the 

trailing edge. As the airfoil begins to move it carries this vortex, known as the starting vortex, 

along with it. The vorticity in the starting vortex is matched by the vorticity in the bound vortex 

in the airfoil. As the vorticity in the starting vortex progressively increases the vorticity in the 

bound vortex also progressively increases and causes the flow over the topside of the airfoil to 

increase in speed. The stagnation point on the topside of the airfoil moves progressively towards 

the trailing edge. After the airfoil has moved only a short distance through the air the stagnation 

point on the topside reaches the trailing edge and the starting vortex is cast off the airfoil and is 

left behind, spinning in the air where the airfoil left it. The starting vortex quickly dissipates due 

to viscous forces. As the airfoil continues on its way, there is a stagnation point at the trailing 

edge. The flow over the topside conforms to the upper surface of the airfoil. The flow over both 

the topside and the underside join up at the trailing edge and leave the airfoil travelling parallel 

to one another. This is known as the Kutta condition. When an airfoil is moving with a positive 

angle of attack, the starting vortex has been cast off and the Kutta condition has become 

established, there is a finite circulation of the air around the airfoil. The airfoil is generating lift, 

and the magnitude of the lift is given by the Kutta–Joukowski theorem. Whenever the speed or 

angle of attack of an airfoil changes there is a weak starting vortex which begins to form, either 

above or below the trailing edge. This a weak starting vortex causes the Kutta condition to be re-

established for the new speed or angle of attack. As a result, the circulation around the airfoil 

changes and so too does the lift in response to the changed speed or angle of attack. [8] 

For a given airfoil at a given angle of attack, the value of Γ around the airfoil is such that the 

flow leaves the trailing edge smoothly. 

The Kutta condition tells us how to find Γ; it is based on experimental observation. A body with 

finite angle trailing edge (TE) in relative motion through a fluid will create about itself a 

circulation of sufficient strength to hold the rear stagnation point at the TE. If the TE has a zero 

angle, the Kutta Condition requires that the velocity of fluid leaving upper and lower surfaces at 

the TE be equal and non-zero. A body with a finite TE angle will have crossing streamlines at 
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the TE unless the TE is a stagnation point. The Kutta Condition eliminates the crossing 

streamlines. Consider the TE as a vortex sheet: 

k(TE) = V୳ − V୪                                                                                                                                      2.16 

If the TE has a finite angle V୙ = V୪ = 0 because TE is a stagnation point. [6] 

 

Figure 2.3 Flow around an airfoil for various values of circulation, (a) Circulation r=0 : rear 

stagnation point on upper surface. (b) Very large circulation: rear stagnation point on lower sur-

face. (c) Circulation just sufficient to put rear stagnation point on trailing edge. Smooth flow- 

off: Kutta condition satisfied [6] 

 

2.5.2 Inclined Flat Plate 

The simplest case of a lifting-airfoil profile is the inclined flat plate. The angle between the 

direction of the incident flow and the direction of the plate is called angle of attack of the plate. 

The flow about the inclined flat plate is obtained as shown in figure 2.4 by superposition of the 

plate in parallel flow (a) and the plate in normal flow (b). The resulting flow 

(c)= (a ) + (b)                                                                                          2 .17                   

does not yet produce lift on the plate because identical flow conditions exist at the leading and 

trailing edges. The front stagnation point is located on the lower surface and the rear stagnation 

point on the upper surface of the plate. [6] 
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Figure 2.4 Flow about an inclined flat plate, (a) Flat plate in parallel flow, (b) Flat plate in 

normal (stagnation) flow, (c) Inclined flat plate without lift, (c ) = (a) + (b). (d) Pure circulation 

flow. (e) Inclined flat plate with lift (Kutta condition), (e) = (c) + (d ). [6] 
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To establish a plate flow with lift, a circulation Γ according to Fig. 2.4d must be superimposed 

on (c). The resulting flow 

(e) = (c) + (d) = (a) + (b) + (d)                                                                                                     2.18 

is the plate flow with lift. The magnitude of the circulation is determined by the condition of 

smooth flow-off at the plate trailing edge; for example, the rear stagnation point lies on the plate 

trailing edge (Kutta condition). By superposition of the three flow fields, a flow is obtained 

around the circle of radius a with its center at z  = 0. It is approached by the flow under the 

angle ߙ  with the x axis, ߙ  being arctan (v∞/u∞). The complex stream function of this flow 

F(z) = u∞ ቆZ +
aଶ

Z ቇ        and Z = x + yi                                                                                          2.19 

Where, 

Z: complex argument  

a: Radius of circular cylinder. 

For an irrorotational flow around the coordinate origin, that is, for a plane potential vortex, the 

stream function is  

F(z) =
iΓ
2π lnZ                                                                                                                                        2.20 

Where Γ is a clockwise-turning circulation. 

The complex stream function of this flow 

F(z) = (u∞ − iv∞)z + (u∞ + iv∞)
aଶ

z +
iΓ
2π lnZ                                                                               2.21 

For the mapping, the Joukowsky transformation function 

ζ = f(z) = Z +
aଶ

Z                                                                                                                                   2.22 

This function transforms the circle of radius a in the z plane into the plate of length c=4a in the 

ζ plane.  
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wഥ (ζ) =
dF
dζ =

dF
dz

dZ
dζ = wഥ(z)

dZ
dζ                                                                                                            2.23 

Where  

wഥ(z): Stream function  

 The velocity distribution about the plate is obtained with the help of Eq. 2.23 of the velocity 

filed of the body after some auxiliary calculations as 

wഥ(ζ) = u∞ ∓ i
v∞ζ −

Γ
2π

ඥζଶ − 4aଶ
                                                                                                                       2.24 

The magnitude of the circulation Γ  is now to be determined from the Kutta condition. Smooth 

flow-off (outflow) at the trailing edge requires that is, at ζ = +2a - the velocity remains finite. 

Therefore, the nominator of the fraction in Eq. 2.24 must vanish for ζ = 2a. Hence, because of 

4a = c, 

Γ = 4πav∞ = πcv∞                                                                                                                                             2 .25 

and the velocity distribution on the plate itself becomes, with ζ = ξ and |ξ|<c/2, 

u = w∞ ቌcosα± sinαඨ
c− 2ξ
c + 2ξ

ቍ                                                                                                        2.26 

The + sign applies to the upper surface, the - sign to the lower surface. With w∞ the resultant of 

the incident flow, and α, the angle of attack between plate and incident flow resultant, the flow 

components are given by u∞ = w∞ cos α and u∞ = w∞ sin α. 

At the plate leading edge, i ξ = - c /2, the velocity is infinitely high. The flow around the plate 

comes from below, as seen from figure 2.4e. On the plate trailing edge, ξ = +c/2, the tangential 

velocity has the value u  = v∞ cos ߙ . At an arbitrary station of the plate, the tangential 

velocities on the lower and upper surfaces have a difference in magnitude ∆ u  = u u - u h At the 

trailing edge, ∆ u  = 0 (smooth flow-off). [6] 
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2.6 Flat Plate at an Angle of Attack 

 

Velocity induced by a 2-D vortex as shown in figure 2.5 is Vሬሬ⃗ = vθeθෝ = − Γ
ଶπ୰

 where Γ is the 

strength of the 2-D vortex. Similarly the velocity induced by the vortex sheet of infinitesimal 

length ds is given by 

 

dv୮ሬሬሬሬ⃗ = −
k(s)ds

2πr eθෝ                                                                                                                                       2.27 

 

 
Figure 2.5 Velocity induced by a 2-D vortex [7] 

 

To force the mean camber line to be a streamline, the sum of all velocity components normal to 

the mean camber line must be equal to zero. Consider the flow induced by elemental vortex sheet 

ds at a point P on the vortex sheet. It is perpendicular to the line connecting the center of ds to 

the point P see figure 2.6 given by 

 

dv୮ሬሬሬሬ⃗ = −
k(s)ds

2πr eθෝ                                                                                                                                       2.28 
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Figure 2.6 Forces in vortex sheet [7] 

 

Thus dw′୮the velocity normal to the mean camber line is: 

dw′୮ = dv୮cosβ == −
k(s)cosβ

2πr  ds                                                                                                  2.29 

 

Where β is the angle made by dv୮ to the normal at P, and r is the distance from the center of ds 

to the point P. 

The induced velocity due to the vortex sheet representing the entire mean camber line is given 

by; 

dw′୮ = −
1

2πr න k(s)cosβds
୘୉

୐୉
                                                                                                           2.30 

 

Now determine the component of the free stream velocity normal to the mean camber line. 

 

V∞,୬ = V∞ sin(α + ϵ)                                                                                                                                2.31 

 

Where α is the angle of attack and ϵ is the angle made by the tangent at point P to the x-axis. 

The slope of the tangent line at point P is given by: 
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dz
dx = tan(π − ϵ) = −tanε                                                                                                                       2.32 

ε =  tanିଵ ൬−
dz
dx൰                                                                                                                                     2.33 

V∞,୬ = V∞ sin൭α + tanିଵ ൬−
dz
dx൰

൱                                                                                                       2.34 

In order that the mean camber line is a streamline 

w ′
୮(s) + V∞,୬ = 0 or     −

1
2πr න k(s)cosβds

୘୉

୐୉
+ V∞ sin൭α + tanିଵ ൬−

dz
dx൰

൱ = 0                2.35 

Within thin airfoil theory approximation s→x, ds →dx, cos β = 1 and r → (x0 - x), where x 

varies from 0 to c, and x0 refers to the point P. 

After changing these variables and making the small angle approximation for sin and tan, and 

upon rearrangement we get: 

1
2πන

γ(X)
(X଴ − X) dX

େ

଴
= Vஶ ൬α  −   

dz
dx൰                                                                                                2.36 

 
The following analysis is an exact solution to the flat plate or an approximate solution to the 

symmetric airfoil. The mean camber line becomes the chord and hence: 

dZ
dX = 0                                                                                                                                                       2.37 

1
2πන

γ(X)
(X଴ − X) dX

େ

଴
= Vஶα                                                                                                                    2.38 

In order to facilitate analytic solution, we do a variable transformation such that: 

X =
c
2

(1− cosθ)                                                                                                                                   2.39 

And  

X଴ =
c
2

(1− cosθ଴)                                                                                                                                 2.40 

θ = 0 at Leading edge (LE) and θ =π at TE and θ increases in clock wise (CW),  

dx = (c/2) sin θdθ 

1
2πන

k(X)൫c
2ൗ ൯sinθ

c
2 ൬(1− cosθ଴)− c

2 (1− cosθ)൰
dθ

େ

଴
= Vஶα                                                                            2.41 
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1
2πන

k(X)sinθ
(cosθ− cosθ଴) dθ

஠

଴
= Vஶα                                                                                                          2.42 

Here we simply state a rigorous solution for k(θ) as: 

γ(θ) = 2αVஶ
1 + cosθ

sinθ                                                                                                                            2.43 

We can verify this solution by substitution as follows: 

1
2πන

k(X)sinθ
(cosθ − cosθ଴) dθ

஠

଴
=

Vஶα
π න

1 + cosθ
(cosθ − cosθ଴) dθ                                                                2.44 

஠

଴
 

We now use the following result to evaluate the above integral. 

Vஶα
π න

1 + cosθ
(cosθ− cosθ଴) dθ

஠

଴

=
Vஶα
π

න
1

(cosθ− cosθ଴) dθ
஠

଴
+

Vஶα
π

න
cosθ

(cosθ− cosθ଴) dθ
஠

଴
        2.45 

Vஶα
π

(0 + π) = Vஶα                                                                                                                                  2.46 

Thus, it satisfies the equation: 

1
2πන

k(X)sinθ
(cosθ− cosθ଴) dθ

஠

଴
= Vஶα                                                                                                        2.47 

In addition, the solution for γ also satisfies the Kutta condition. 

When θ = π, 

k(π) = 2Vஶα
1− 1

0                                                                                                                                  2.48 

By using L'Hospital' rule, we get 

k(π) = 2Vஶα
−sinπ
cosπ = 0                                                                                                                       2.49 

Thus it satisfies the Kutta condition. [7] 

2.7 Aerodynamic Force 

 Aerodynamic force as shown in figure 2.7 is the resultant force exerted on a body by the air (or 

some other gas) in which the body is immersed, and is due to the relative motion between the 

body and the fluid. An aerodynamic force arises from two causes: The force due to the pressure 

on the surface of the body and the force due to viscosity, also known as skin friction. When a 

body is exposed to the wind it experiences a force in the direction in which the wind is moving. 
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This is an aerodynamic force. When a body is moving in air or some other gas the aerodynamic 

force is usually called drag. 

When an airfoil or a wing or a glider is moving relative to the air it generates an aerodynamic 

force that is partly parallel to the direction of relative motion, and partly perpendicular to the 

direction of relative motion. This aerodynamic force is commonly resolved into two components: 

Drag is the component parallel to the direction of relative motion, and lift is the component 

perpendicular to the direction of relative motion. The force created by a propeller or a jet engine 

is called thrust and it is also an aerodynamic force. The aerodynamic force on a powered airplane 

is commonly resolved into three components thrust, lift and drag, the only other force acting on a 

glider or powered airplane is its weight (Weight is a body force, not an aerodynamic force). 

 

Figure 2.7 Forces on airfoil. [9] 

2.7.1 Lift and Drag Force on Airfoil 

A fluid flowing past the surface of a body exerts a surface force on it. Lift is defined to be the 

component of this force that is perpendicular to the oncoming flow direction. It contrasts with the 

drag force, which is defined to be the component of the surface force parallel to the flow 

direction. 

The equations for calculating lift and drag are very similar. The lift that an airfoil generates 

depends on the density of the air, the velocity of the airflow, the viscosity and compressibility of 

the air, the surface area of the airfoil, the shape of the airfoil, and the angle of the airfoil's angle 

of attack. However, dependence on the airfoil's shape, the angle of attack, air viscosity and 

compressibility are very complex. Thus, they are characterized by a single variable in the lift 
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equation, called the lift coefficient. Due to the complexities of the lift coefficient, it is generally 

found via experimentation in a wind tunnel where the remaining variables can be controlled. 

Therefore, the lift equation is given by: 

L =
1
2 Uஶ

ଶ ρC୐A                                                                                                                                     2.50 
Where L is the lifting force, ρ is the density of air, U∞is the relative velocity of the airflow A is 

the area of the airfoil as viewed from an overhead perspective, and C୐ is the lift Coefficient. 

As with lift, the drag of an airfoil depends on the density of the air, the velocity of the airflow, 

the viscosity and compressibility of the air, the surface area of the airfoil, the shape of the airfoil, 

and the angle of attack. 

The complexities associated with drag and the airfoil's shape, angle of attack, the air's viscosity, 

and air's compressibility are simplified in the drag equation by use of the drag coefficient. The 

drag coefficient is generally found through testing in a wind tunnel, where the drag can be 

measured, and the drag coefficient is calculated by rearranging the drag equation 

D =
1
2 U∞

ଶρCୈA                                                                                                                                     2.51  

In the drag equation, D is the drag force, ρ is the density of the air, U∞ is the velocity of the air, 

A is a reference area, and CD is the drag Coefficient. [10] 

The drag force is the net exerted by a fluid on a body in the direction of flow due to the 

combined effects of wall shear and pressure forces. 

The part of drag that is due directly to wall shear stress is called the skin friction drag or just 

friction drag since it is caused by frictional effects, and the part that is due directly to pressure is 

called the pressure drag or called the form drag because of its strong dependence on the form or 

shape of the body. 

 

2.7.2 Drag Coefficient 

In fluid dynamics, the drag coefficient (commonly denoted as: CୈorC୵) is a dimensionless 

quantity that is used to quantify the drag or resistance of an object in a fluid environment such as 

air or water. It is used in the drag equation, where a lower drag coefficient indicates the object 

will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with 

a particular surface area. The drag coefficient of any object comprises the effects of the two basic 
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contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting 

airfoil or hydrofoil also includes the effects of lift-induced drag. The drag coefficient of a 

complete structure such as an aircraft also includes the effects of interference drag 

The drag coefficient Cୈis defined as: 

Cୈ =
2D

ρUஶ
ଶ A                                                                                                                                  2.53a 

Where, 

D is the drag force, which is by definition the force component in the direction of the 

flow velocity,   

ρ  is the mass density of the fluid, 

V∞ is the speed of the object relative to the fluid, and 

A is the reference area. [11] 

Drag on airfoils arises from viscous and pressure forces. Viscous drag or Skin friction changes 

with Reynolds number and arises from the interaction between the fluid and the skin of the body 

but only slightly with angle of attack. These relationships and some commonly used terminology 

are illustrated in figure2.8. 

A useful approximation to drag polar for complete aircraft may be obtained by adding the 

induced drag or vortex drag, or sometimes drag due to lift, is a drag force that occurs whenever a 

moving object redirects the airflow coming at it to the drag at zero lift. The drag at any lift 

coefficient is obtained from 

Cୈ = Cୈ,଴ + Cୈ,୧ = Cୈ,଴ +
C୐ଶ

πar         ,     ar =
bଶ

A୮
                                                                              2.53b 

Where, 

Cୈ,଴: drag coefficient at zero lift 
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Cୈ,୧: induced drag coefficient 

ar: Aspect ratio 

b: wingspan or is the distance from one wingtip to the other wingtip of the airplane 

A୮: Planform area 

c: chord length. [12] 

 

Figure 2.8 Drag breakdowns on nonlifting and lifting bodies [12] 

The drag coefficient for all objects with sharp edge is essentially independent of Reynolds 

number (for Re≥10000) because the separation points and therefore the size of the wake are 

fixed by geometry of the object. Drag coefficients for selected objects are given in table 2.1 

The friction coefficient for laminar flow over a flat plate can be determined theoretically by 

solving the conservation of mass and momentum equations numerically. For turbulent flow, 

however, it must be determined experimentally and expressed by empirical correlation. The local 

friction coefficient varies along the surface of the flat plate as a result of the changes in the 

velocity boundary layer in flow direction. We are usually interested in drag force on the entire 

surface, which can be determined using average friction coefficient.  The average friction 

coefficient over the entire plate is determined by  

,ܚ܉ܖܑܕ܉ۺ  C୤ =
1.33

Re୐
ଵ ଶ⁄     Re < 5 × 10ହ   ,

C୤   ,ܜܖ܍ܔܝ܊ܚܝܜ  =
0.074
Re୐

ଵ ହ⁄    5 × 10ହ  < ܴ݁ <  10଻                                                2.53c 
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Table 2.1 Drag coefficient data for selected objects (Re≥104). [13] 

 

2.7.3 Lift Coefficient 

The lift coefficient (C୐ , Cୟ) is a dimensionless coefficient that relates the lift generated by an 

aerodynamic body such as a wing or complete aircraft, the dynamic pressure of the fluid flow 

around the body, and a reference area associated with the body. It is also used to refer to the 

aerodynamic lift characteristics of a 2D airfoil section. Lift coefficient may be used to relate the 

total lift generated by an aircraft to the total area of the wing of the aircraft. In this application it 

is called the aircraft or plan form lift coefficient  

The lift coefficient C୐is equal to:  

C୐ =
L

1
2 ρUஶ

ଶ A
=

2L
ρUஶ

ଶ A =
L

qA                                                                                                                  2.54 

Where 

 Lis the lift force, 

 ρ is fluid density, 
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 q is dynamic pressure, and 

 A is plan form area. 

Lift coefficient may also be used as a characteristic of a particular shape (or cross-section) of an 

airfoil. In this application it is called the section lift coefficientC୐. It is common to show, for a 

particular airfoil section, the relationship between section lift coefficient and angle of attack. It is 

also useful to show the relationship between section lift coefficients and drag coefficient. 

The section lift coefficient is based on the concept of an infinite wing of non-varying cross-

section, the lift of which is bereft of any three-dimensional effects - in other words the lift on a 

2D section. It is not relevant to define the section lift coefficient in terms of total lift and total 

area because they are infinitely large. Rather, the lift is defined per unit span of the wing L In 

such a situation, the above formula becomes: 

C୐ =
L

1
2 ρUஶ

ଶ c
                                                                                                                                      2.55 

Where c is the chord length of the airfoil. The section lift coefficient for a given angle of attack 

can be approximated using, for example, the Theory, or determined from wind tunnel tests on a 

finite-length test piece, with end-plates designed to ameliorate the 3D effects associated with the 

trailing vortex wake structure. 

Note that the lift equation does not include terms for angle of attack that is because the 

mathematical relationship between lift and angle of attack varies greatly between airfoils and is, 

therefore, not constant. (In contrast, there is a straight-line relationship between lift and dynamic 

pressure; and between lift and area.) The relationship between the lift coefficient and angle of 

attack is complex and can only be determined by experimentation or complex analysis. See the 

accompanying graph. The graph for section lift coefficient vs. angle of attack follows the same 

general shape for all airfoils, but the particular numbers will vary. The graph shows an almost 

linear increase in lift coefficient with increasing angle of attack, up to a maximum point, after 

which the lift coefficient reduces. The angle at which maximum lift coefficient occurs is the stall 

angle of the airfoil. [14] 
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2.7.4 Kutta-Joukowsky Lift Theorem 

Treatment of the theory of lift of a body in a fluid flow is considerably less difficult than that of 

drag because the theory of drag requires incorporation of the viscosity of the fluid. The lift, 

however, can be obtained in very good approximation from the theory of inviscid flow. The 

following discussions may be based, therefore, on in viscid, incompressible flow. For treatment 

of the problem of plane (two-dimensional) flow about an airfoil, it is assumed that the lift-

producing body is a very long cylinder (theoretically of infinite length) that lies normal to the 

flow direction. Then, all flow processes are equal in every cross section normal to the generatrix 

of the cylinder; that is, flow about an airfoil of infinite length is two-dimensional. Particular flow 

processes that have a marked effect on both lift and drag take place at the wing tips of finite-span 

wings.  

Lift production on an airfoil is closely related to the circulation of its velocity near-field. Let us 

explain this interrelationship qualitatively. The flow about an airfoil profile with lift is shown in 

Fig. 2.10. The lift L is the resultant of the pressure forces on the lower and upper surfaces of tire 

contour. Relative to the pressure at large distance from the profile, there is higher pressure on 

the lower surface, lower pressure on the upper surface. It follows, then , from the Bernoulli 

equation, that the velocities on the lower and upper surfaces are lower or higher, respectively, 

than the velocity W∞ of the incident flow. With these facts in mind, it is easily seen from figure 

2.9 that the circulation, taken as the line integral of the velocity along the closed curve K, differs 

from zero. But also for a curve lying very close to the profile, the circulation is unequal to zero 

if lift is produced. The velocity field ambient to the profile can be thought to have been 

produced by a clockwise-turning vortex Γ that is located in the airfoil. This vortex, which 

apparently is of basic importance for the creation of lift, is called the bound vo rtex of the 

wing. 

In plane flow, the quantitative interrelation of lift L, incident flow velocity W∞, and circulation 

Γ is given by the Kutta-Joukowsky equation. Its simplified derivation, which will now be given, 

is not quite correct but has the virtue of being particularly plain. Let us cut out of the infinitely 

long airfoil a section of width b (Figure 2.10), and of this a strip of depth dx parallel to the 

leading edge. This strip of plan form area d A = b d x  is subject to a lift 
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d L =  ( p L - p u )  d A  because of the pressure difference between the lower and upper surfaces 

of the airfoil. The vector dL can be assumed to be normal to the direction of incident flow if the 

small angles are neglected that are formed between the surface elements and the incident flow 

direction. 

The pressure difference between the lower and upper surfaces of the airfoil can be expressed 

through the velocities on the lower and upper surfaces by applying the Bernoulli equation. [6] 

 

Figure 2.9 Flow around an airfoil profile with lift L, Γ = circulation of the airfoil. [6] 

 

Figure 2.10 Notations for the computation of lift from the pressure distribution on the airfoil. [6] 
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From Figure 2.8, the velocities on the upper and lower surfaces of the airfoil are (W∞+∆W) and 

(W∞-∆W), respectively. The Bernoulli equation then furnishes for the pressure difference 

P୐ − P୳ =
ρ
2 (W∞ + ∆W)ଶ −

ρ
2 (W∞ −∆W)ଶ = 2ρW∞∆W                                                               2.56 

Where the assumption has been made that the magnitudes of the circulatory velocities on the 

lower and upper surfaces are equal,  

|∆W|୐ = |∆W|୙ୀ|∆W|                                                                                                                      2.57 

By integration, the total lift of the airfoil is consequently obtained as 

L = න ∆PdA = bන ∆Pdx
େ

୆
= 2ρW∞ න ∆Wdx                                                                         2.58

େ

୆(୅)
 

The integration has been carried from the leading to the trailing edge (length of airfoil chord c ). 

The circulation along any line l⃗ around the wing surface is 

Γ = ර Wሬሬሬ⃗ dl
(୪)

                                                                                                                                       2.59 

Γ = න ∆Wdx −න ∆Wdx
୆

େ,୪

େ

୆,୳
= 2න ∆Wdx

େ

୆
                                                                                 2.60 

The first integral in the first equation is to be taken along the upper surface, the second along the 

lower surface of the wing. From Eq. 2.58 the lift is then given by  

L=ρW∞ Γ                                                                                                                               2.61 

This equation was found first by Kutta in 1902 and independently by. Joukowsky in 1906 and is 

the exact relation, as can be shown, between lift and circulation. Furthermore, it can be shown 

that the lift acts normal to the direction of the incident flow. [6] 
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2.7.5 Magnitude and Formation of Circulation 

If the magnitude of the circulation is known, the Kutta-Joukowsky formula, Eq. 2.61, is of 

practical value for the calculation of lift. However, it must be clarified as to what way the 

circulation is related to the geometry of the wing profile, to the velocity of the incident flow, 

and to the angle of attack. This interrelation cannot be determined uniquely from theoretical 

considerations, so it is necessary to look for empirical results. 

The technically most important wing profiles have, in general, a more or less sharp trailing 

edge. Then the magnitude of the circulation can be derived from experience, namely, that there 

is no flow around the trailing edge, but that the fluid flows off the trailing edge smoothly. This 

is the important Kutta flow-off condition, often just called the Kutta condition. 

For a wing with angle of attack, yet without circulation (see Figure 2-3a), the rear stagnation 

point, that is, the point at which the streamlines from the upper and lower sides recoalesce, 

would lie on the upper surface. Such a flow pattern would be possible only if there were flow 

around the trailing edge from the lower to the upper surface and, therefore, theoretically (in 

inviscid flow) an infinitely high velocity at the trailing edge with an infinitely high negative 

pressure. On the other hand, in the case of a very large circulation (see Fig. 2-10b) the rear 

stagnation point would be on the lower surface of the wing with flow around the trailing edge 

from above. Again velocity and negative pressure would be infinitely high. 

Experience shows that neither case can be realized; rather, as shown in Figure 2-3c, a 

circulation forms of the magnitude that is necessary to place the rear stagnation point exactly on 

the sharp trailing edge. Therefore, no flow around the trailing edge occurs, either from above or 

from below, and smooth flow-off is established. The condition of smooth flow-off allows 

unique determination of the magnitude of the circulation for bodies with a sharp trailing edge 

from the body shape and the inclination of the body relative to the incident flow direction. This 

statement is valid for the inviscid potential flow. In flow with friction, a certain reduction of the 

circulation from the value determined for frictionless flow is observed as a result of viscosity 

effects. 

For the formation of circulation around a wing, information is obtained from the conservation 

law of circulation in frictionless flow (Thomson theorem). This states that the circulation of a 

fluid-bound line is constant with time. This behavior will be demonstrated on a wing set in 
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motion from rest, Figure 2-11. Each fluid-bound line enclosing the wing at rest (Figure 2-11a )  

has a circulation Γ=  0 and retains, therefore, Γ= 0 at all later times. Immediately after the 

beginning of motion, frictionless flow without circulation is established on the wing (as shown 

in Fig. 2-11a), which passes the sharp trailing edge from below (Figure 2-11 b). Now, because of 

friction, a left-turning vortex is formed with a certain circulation - Γ. This vortex quickly drifts 

away from the wing and represents the so-called starting or initial vortex - Γ (Figure 2-11c). 

For the originally observed fluid-bound line, the circulation remains zero, even though the line 

may become longer with the subsequent fluid motion. It continues, however, to encircle the 

wing and starting vortex. Since the total circulation of this fluid-bound line remains zero for all 

times according to the Thomson theorem, somewhere within this fluid-bound line a circulation 

must exist equal in magnitude to the circulation of the starting vortex but of reversed sign. This 

is the circulation +Γ of the wing. The starting vortex remains at the starting location of the wing 

and is, therefore, sometime after the beginning of the motion sufficiently far away from the wing 

to be of negligible influence on the further development of the flow field. The circulation 

established around the wing, which produces the lift, can be replaced by one or several vortices 

within the wing of total circulation +Γ as far as the influence on the ambient flow field is 

concerned. They are called the bound vortices. From the above discussions it is seen that the 

viscosity of the fluid, after all, causes the formation of circulation and, therefore, the 

establishment of lift. In an inviscid fluid, the original flow without circulation and, therefore, 

with flow around the trailing edge, would continue indefinitely. No starting vortex would form 

and, consequently, there would be no circulation about the wing and no lift. 

Viscosity of the fluid must therefore be taken into consideration temporarily to explain the 

evolution of lift, that is, the formation of the starting vortex. After establishment of the starting 

vortex and the circulation about the wing, the calculation of lift can be done from the laws of 

frictionless flow using the Kutta-Joukowsky equation and observing the Kutta condition. 

 



34 
 

 

Figure 2.11 Development of circulation during setting in motion of a wing, (a) Wing in stagnant 

fluid. (b) Wing shortly after beginning of motion; for the liquid line chosen in (a ) ,  the 

circulation ડ = 0; because of flow around the trailing edge, a vortex forms at this station, (c) 

This vortex formed by flow around the trailing edge is the so-called starting vortex -ડ; a 

circulation +ડ develops consequently around the wing. [6] 

2.8 Pitching moment 

The pitching moment on a wing may be estimated experimentally by two principal methods: 

direct measurement on a balance, or by pressure plotting, In either case, the pitching moment 

coefficient is measured about some definite point on the aerofoil chord, while for some 

particular purpose it may be desirable to know the pitching moment coefficient about some 

other point on the chord. To convert from one reference point to the other is a simple application 

of statics. 
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Suppose, for example, the lift and drag are known, as also is the pitching moment Ma about a 

point distance a from the leading edge, and it is desired to find the pitching moment Mx about a 

different point, distance x behind the leading edge. The situation is then as shown in Figure. 

2.12. Figure 2.12a represents the known conditions, and Figure 2.12b the unknown conditions. 

These represent two alternative ways of looking at the same physical system, and must therefore 

give identical effects on the aerofoil. Obviously, then, L = L and D = D. Taking moments in 

each case about the leading edge: 

M୐୉ = Mୟ − Lacosα− Dasinα = M୶ − Lxcosα − Dxsinα                                                            2.62 

 
Figure 2.12 pitching moment on a wing [1] 

Then 

M୶ = Mୟ − (Lcosα+ Dsinα)(a − x)                                                                                                    2.63 

Converting to coefficient form by dividing by ଵ
ଶ
ρVଶA gives 

C୑ଡ଼ = C୑ୟ − (C୐cosα+ Cୈsinα) ቀ
a
c −

x
c
ቁ                                                                                         2.64 

With this equation it is easy to calculate CMX, for any value of x/c. As a particular case, if the 

known pitching moment coefficient is that about the leading edge, CMLE, then a = 0, and 

Eqn.2.64 becomes 

C୑ଡ଼ = C୑୐୉ +
x
c

(C୐cosα+ Cୈsinα)                                                                                                 2.66 
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2.8.1 Aerodynamic centre 

If the pitching moment coefficient at each point along the chord is calculated for each of several 

values of CL ,  one very special point is found for which CM is virtually constant, independent of 

the lift coefficient. This point is the aerodynamic centre. For incidences up to 10 degrees or so it 

is a fixed point close to, but not in general on, the chord line, between 23% and 25% of the 

chord behind the leading edge. 

For a flat or curved plate in inviscid, incompressible flow the aerodynamic centre is 

theoretically exactly one quarter of the chord behind the leading edge; but thicknesses of the 

section, and viscosity of the fluid, tend to place it a few per cent further forward as indicated 

above, while compressibility tends to move it backwards. For a thin aerofoil of infinite aspect 

ratio in supersonic flow the aerodynamic centre is theoretically at 50% chord. 

Knowledge of how the pitching moment coefficient about a point distance a behind the leading 

edge varies with CL may be used to find the position of the aerodynamic centre behind the 

leading edge, and also the value of the pitching moment coefficient there, CMAC let the position 

of the aerodynamic centre be a distance Xac behind the leading edge. Then, with Eqn. 2.64 

slightly rearranged, 

C୑ୟ = C୑୅େ − (C୐cosα+ Cୈsinα) ቀ
x୅େ

c −
a
c
ቁ                                                                                    2.67 

Now at moderate incidences, between say 3° and 7°: 

C୐ = O[20Cୈ]      and  cosα = O[10 sinα] 

Where the symbol O[] means of the order of, i.e. CL is of the order of 20 times CD.  

Then 

C୐cosα = O[200Cୈsinα]       

and therefore CD sin ߙ can be neglected compared with CL cos α. With this approximation and 

the further approximation cos α = 1, 

C୑ୟ = C୑୅େ − C୐ ቀ
x୅େ

c
−

a
c
ቁ                                                                                                                  2.68 

Differentiating Eqn. 2.68 with respect to C୐ gives 
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d
dC୐

(C୑ୟ) =
d

dC୐
(C୑୅େ) − ቀ

x୅େ
c −

a
c
ቁ                                                                                                  2.69 

But the aerodynamic centre is, by definition, that point about which CM is independent of CL, and 

therefore the first term on the right-hand side is identically zero, so that 

d
dC୐

(C୑ୟ) = 0 − ቀ
x୅େ

c −
a
c
ቁ =

a
c −

x୅େ
c                                                                                               2.70 

x୅େ
c =

a
c −

d
dC୐

(C୑ୟ)                                                                                                                                2.71 

If, then, CM A  is plotted against CL, and the slope of the resulting line is measured, subtracting 

this value from a/c gives the aerodynamic centre position Xac/c. In addition if, in Eqn. 2.64, CL is 

made zero, that equation becomes 

C୑ୟ = C୑୅େ                                                                                                                                                 2.72 

i.e. the pitching moment coefficient about an axis at zero lift is equal to the constant pitching 

moment coefficient about the aerodynamic centre. Because of this association with zero lift, 

CMAC is often denoted by CM0. [1] 

 

2.8.2 Centre of Pressure 

The aerodynamic forces on an aerofoil section may be represented by a lift, a drag, and a 

pitching moment. At each value of the lift coefficient there will be found to be one particular 

point about which the pitching moment coefficient is zero, and the aerodynamic effects on the 

aerofoil section may be represented by the lift and the drag alone acting at that point. This 

special point is termed the centre of pressure. 

Whereas the aerodynamic centre is a fixed point that always lies within the profile of a normal 

aerofoil section, the centre of pressure moves with change of lift coefficient and is not 

necessarily within the aerofoil profile. Figure 1.13 shows the forces on the aerofoil regarded as 

either 

(a) lift, drag and moment acting at the aerodynamic centre; or 
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(b) Lift and drag only acting at the centre of pressure, a fraction kCp of the chord behind the 

leading edge. 

 

Then, taking moments about the leading edge: 

M୐୉ = M୅େ − (Lcosα + Dsinα)X୅େ = −(Lcosα + Dsinα)Kେ୔c                                                 2.73 

Dividing this by  ଵ
ଶ

ρU∞
ଶA , it becomes 

M୅େ − (C୐cosα + Cୈsinα)
X୅େ

C = −(C୐cosα + Cୈsinα)Kେ୔c                                                      2.74 

Kେ୔ =
X୅େ

C =
M୅େ

C୐cosα + Cୈsinα
                                                                                                          2.75 

 

Figure 2.13 Forces on the aerofoil [1] 
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2.8 Profile theory for Very Thin Profiles (Skeleton Theory) 

Fundamentals of skeleton theory the very thin profile (skeleton profile) is obtained by 

superposition of a translational flow with that of a distribution of plane potential vortices. This 

theory has therefore been termed the theory of the lifting vortex sheet. It was first developed by 

Birnbaum and Ackermann [15] and by Glauert [16], and later expanded in several treatises, 

particularly by Helmbold and Keune [1 7 ,  1 8 ] ,  Allen [19], and Riegels [20]. 

For the following discussion a coordinate system as shown in Figure 2-14a is used. Accordingly, 

the profile chord coincides with the x  axis. The coordinate system origin lies on the profile 

leading edge. The mean camber line is given by From Figure 2-14a, the mean camber line is 

seen to be covered with a continuous vortex distribution. With the assumption that the skeleton 

profile has only a slight camber and, therefore, rises only a little above the profile chord (x axis), 

the vortex distribution can be arranged on the chord instead of the mean camber line (Fig. 

2.14b). The mathematical treatment of the problem is considerably simplified in this way. 

 

Figure 2-14 The skeleton theory. (a) Arrangement of the vortex distribution on the skeleton 

line. (b) Arrangement of the vortex distribution on the chord (slightly cambered profile), (c) 

Circulation distribution along the chord (schematic). [6] 
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The vortex strength of a strip of width d x  of the vortex sheet is, from figure 2-14 b ,  

dΓ = k(x)dx                                                                                                                                           2.77 

Here, k  is the vortex density (vortex strength per unit length) or the circulation distribution. By 

applying the law of Biot-Savart, the velocity components in the x  and z directions, respectively, 

that are induced by the vortex distribution at station x ,  z  are 

 

u(x, z) =
1

2πන k(x′)
ୡ

଴

z
(x − x ′)ଶ + zଶ dx ′                                                                                            2.78 

 

w(x, z) = −
1

2πන k(x′)
ୡ

଴

x − x′
(x − x ′)ଶ + zଶ dx ′                                                                                       2.79 

Where 

x': Location of vortex strength at any point on chord 

For slightly cambered profiles, the velocity components on the skeleton line are approximately 

equal to the values on the profile chord (z = 0). The velocity components on the chord are 

obtained through limit operations as z  → 0 of Eqs. 2.78 and 2.79 

u(X) = ±
1
2 k(X)                                                                                                                               2.80 

w(X) = −
1

2π
න k(Xᇱ)

dX′
X − X′

                                                                                                     2.81
ଵ

଴
 

 

The dimensionless quantities 

 

X =
x
c         and             X′ =

x′
c                                                                                                                  2.82 
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The velocity component u  is proportional to the vortex density. The upper sign is valid for the 

profile upper surface, the lower sign for the lower surface. When crossing the vortex sheet, the 

velocity component u  changes abruptly by an amount 

∆u = u୳ − u୪ = k                                                                                                                           2.83 

The distribution of the vortex density on the chord is determined by the kinematic flow 

condition, which requires that the skeleton line is a streamline. Specifically, a translational 

velocity U∞ is superimposed on the vortex distribution that forms the angle of attack with the 

chord (Figure 2-14). 

The kinematic flow condition can also be formulated by the requirement that the velocity 

components normal to the mean camber line must disappear. Within the framework of the above 

approximation, it is sufficient to satisfy this condition on the chord instead of the mean camber 

line, resulting in 

U∞ ቈα −
dZୗ(X)

dX ቉+ w(X) = 0                                                                                                 2.84 

Whe  Zୱ = ୸౩

ୡ
.  

This equation relates the angle of attack α and the ordinates of the camber Zs to the induced 

normal velocities w. The velocity distribution on the profile surface and the vortex density are 

related by 

U(X) = U∞ + u(X) = U∞ ±
1
2 k(X)                                                                                          2.85 

This relationship is valid for small angles of attack according to Eq. 2.81. 

The Kutta condition,  

k=0 for X=1                                                                                                                         2.86 

The total circulation around the profile is determined from the distribution of the vortex density 

as 

Γ = න k(x)dx = න k(X)dX                                                                                                    2.87
ଵ

଴

ୡ

଴
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The pressure difference between the lower and upper surface is obtained by means of the 

Bernoulli equation: 

P୙ − P୪ = ρU∞∆u = ρU∞k                                                                                                              2.88 

With Eq. 2.48 the dimensionless pressure coefficient takes the form 

∆C୮(X) =
P୙ − P୪

q∞
= 2

k(X)
U∞

                                                                                                         2.89 

With  

q∞ =
ρU∞

ଶ

2                                                                                                                                            2.90 

Where  

q∞: Dynamic pressure of undisturbed flow   

being the dynamic pressure of the incident flow. Consequently, the distribution of the vortex 

density produces directly the load distribution over the profile chord, and the lift and moment 

coefficient ar defined as follows:  

C୐ = න ∆C୔(X)dX =
2

U∞

ଵ

଴
න k(X)dX                                                                                        2.91
ଵ

଴
 

C୑ = −න ∆C୔(X)XdX = −
2

U∞

ଵ

଴
න k(X)XdX                                                                         2.92
ଵ

଴
 

 

2.9 Computation of the mean camber line from the distribution of circulation 

Computation of the mean camber line from the distribution of circulation determining the shape 

of the mean camber line and the angle of attack from a given distribution of circulation k(X) 

requires two steps. First, from  

w(X) = −
1

2π
න k(Xᇱ)

dX′
X − X′

                                                                                                     2.93
ଵ

଴
 

WhereX′ = ୶ᇱ
ୡ

, the distribution of the induced downwash velocity w(X) is obtained along the 

profile chord. Then, this distribution is introduced into the kinematic flow condition, 
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U∞ ቈα −
dZୗ(X)

dX
቉ + w(X) = 0                                                                                                      2.94 

And the following expression for the shape of the mean camber line is obtained by integration 

over X: 

 

Zୗ(X) = αX +න
w(X)

U∞

ଡ଼

଴
dX + C                                                                                                   2.95 

These two steps may be combined into one equation by introducing Eq. 2.93into Eq. 2.95and 

integrating over X. The angle of attack and the integration constant C is determined in such a 

way that the ordinates of the mean camber line disappear on the leading and trailing edges, 

resulting in 

Zୗ(X) = αX−
1

2π
න

K(X′)
U∞

ଵ

଴
ln ฬ

X − X′
X′

ฬ   dX′                                                                          2.96  

for the mean camber line and  

α =
1

2π
න

K(X′)
U∞

ଵ

଴
ln ฬ

X − X′
X′

ฬ   dX′                                                                                                2.98 

for the angle of attack as measured from the chord. 

In the case of a constant distribution of circulation along the profile chord, K = 2U∞C,  Eqs. 2.96 

and 2.97yield, for the mean camber line and the angle of attack, 

Zୱ(X) = −
C
π

[(1 − X) ln(1 − X) + XlnX]      with α = 0                                                                 2.99 

Where 

C: is constant obtained by the integration of mean camber line 

The maximum camber height is  
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h/c =  (In 2/π) =  0.221 C and lies at 50% chord                                                                     2.100 

Following up on the investigations of Birnbaum and Ackermann, Glauert [18] proposed the 

following Fourier series expansion for the circulation distribution in the two-dimensional airfoil 

problem: 

k(φ) = 2U∞൭A଴tan
φ
2 + ෍A୬ sin nφ

୒

୬ୀଵ

൱                                                                               2.101 

X =
1
2

(1 + cosφ)                                                                                                                         2.102 

Where  

φ: is the angle from the trailing edge to the location of the velocity distribution on upper or lower 

surface of airfoil 

A଴ , A୬: are Fourier series coefficient 

So that on the leading edge X=0 and φ=π, and on the trailing edge X=1and φ=0. Each term in 

Eq.2.101 satisfies the Kutta condition. 

By introducing the expression for distribution of the circulation Eq.2.101 into equation for the 

induced downwash velocity Eq. 2.93 the simple relationship 

w(φ)
U∞

= −൭A଴ + ෍ A୬ cos nφ
୒

୬ୀଵ

൱                                                                                                2.103 

is found after the integration.The interrelation of the Fourier coefficient of Eq.2.103, the shape of 

the mean line, and the angle of attack are obtained with the help of Eq. 2.94 as  

A଴ + ෍ A୬ cos nφ
୒

୬ୀଵ

= α −
dZୱ(X)

dX                                                                                           2.104 

With a given distribution of the circulation, this is a differential equation for the mean camber 

line Zs (X). 
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The first two terms in Eq. 2.101 represent particularly simple mean camber lines: The 

distribution of circulation of the first standard distribution becomes 

k = kଵA଴ = 2U∞A଴tan
φ
2 = 2U∞A଴ඨ

1− X
 X                                                                                    2.105 

Where kଵis first standard distribution of the circulation. The distribution k is shown in Figure 2-

15 a. The induced downwash velocity is determined from Eq. 2.83 to be w/U∞= - A0 ,  leading to 

wଵ

U∞
= −1                                                                                                                                                2.106 

Further, from the kinematic flow condition, Eq. 2-100, it follows that the profile inclination 

dZs/dX must be constant. This is possible only when Zs = 0, and, therefore, 

A଴ = α                                                                                                                                                   2.107 

It has thus been shown that the first normal distribution represents flow about the inclined flat 

plate. The second normal distribution is given by 

k = kଵଵAଵ = 2U∞Aଵsinφ = 4U∞AଵඥX(1− X)                                                                               2.108 

Where kଵଵ is the first normal distribution of the circulation and Aଵ is Fourier series coefficient. 

 

Figure 2.15 The first and the second normal distributions; circulation distribution by Eq. 2.101 

(a) the inclined flat plate. (b) The parabolic skeleton at zero angle of incidence. [6] 
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This is an elliptic distribution (Fig. 2.15b). The induced downwash velocity is obtained from Eq. 

2.103 as 

wଵଵ

U∞
= −cosφ = −(2X− 1)                                                                                                          2.109 

Where wଵଵ  is the downwash velocity for the elliptic distribution, and with Eq. 2.95, the shape of 

the mean camber line is given by 

Zୱ = AଵX(1− X) = 4
h
c X(1− X)    with α = 0                                                                       2.110 

This is a parabolic mean camber line with camber height h/c = A 1 / A 0 .   

2.10 Computation of the aerodynamic coefficients 

Computation of the aerodynamic coefficients equations will now be presented that allow one to 

compute the aerodynamic coefficients directly from a given mean camber line. The lift 

coefficient is obtained from Eq. 2.91 after integration with the help of Eqs. 2.101 and 2.102 for 

the distribution of circulation as  

C୐ = π(2A଴ + Aଵ)                                                                                                                       2.111 

In the same way, the pitching-moment coefficient relative to the leading edge is obtained from 

Eq.2.92 as 

C୑ = −
π
4

(2A଴ + 2Aଵ + Aଶ)                                                                                                            2.112 

Where A଴ , Aଵ , Aଶ is Fourier series coefficient. This equation was first presented by Munk [21]. 

The angle of attack for zero lift (CL = 0) is obtained by setting 2 A 0  =  — A 1  and the zero-lift 

moment coefficient becomes c M 0  =  - ߨ)  /4 )  ( A 1  + A 2 ) .  Consequently, the pitching-moment 

coefficient can also be written as 
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C୑ = C୑଴ −
1
4 C୐                                                                                                                                  2.113 

From Eq. (1-29), the neutral-point location is given by —d c M /d c L  =  x N / c .  Consequently, 

the distance of the neutral point from the leading edge becomes 

x୒
c =

1
4                                                                                                                                                  2.114 

Which is independent of the shape of the mean camber line. The Fourier coefficients are found 

through Fourier analysis: 

A଴ = α −
1
πන

dZୱ

dX

஠

଴
dφ          Aଵ = α −

2
πන

dZୱ

dX

஠

଴
cosnφ dφ     (n ≥ 1)                               2.115 

The integrals can be transformed through integration by parts into terms in which the camber 

line coordinates Zୱ replace the camber line inclination dZୱ/dX. By introducing the coefficients 

A0  and A1 into Eq. 2.113 the relation 

dC୐
dα

= 2π                                                                                                                                              2.116 

is obtained for the lift slope, independent of the camber line shape, and the lift coefficient  

C୐ =
dC୐
dα

(α − α଴) = 2π(α− α଴)                                                                                                   2.117 

The equations for α0 , li ft  coefficient and zero moment are given in Table 2-2. 
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Table 2-2 Compilation of formulas for the aerodynamic coefficients of cambered profiles of 
finite thickness. [6] 

Lift slope dC୐
dα

 2π ቆ1 +
2
π
න

Z୲

sinφ

π

଴
dφቇ 2π൭1 + 2 ෍ A୫Z୫୲

୒ିଵ

ଵ

൱ 

Zero-lift angle α଴ −2
π
න

Zୱ

1 − cosφ

π

଴
dφ 2 ෍ B୫Z୫ୱ

୒ିଵ

ଵ

 

Neutral-point 
location 

x୒
c  1

4
ቆ1 +

2
π
න

1 + 2cosφ− 2cos2φ
sinφ

π

଴
Z୲dφቇ 1

4
൭1 + 2 ෍ C୫Z୫୲

୒ିଵ

ଵ

൱ 

Zero moment C୑଴ −න
2cosφ− cos2φ

1 − cosφ

π

଴
Zୱdφ 2 ෍ D୫Z୫ୱ

୒ିଵ

ଵ

 

In the integral formulas of Table 2-2 for the computation of the various coefficients, only the 

distribution of the mean camber coordinates zୱ(φ) appear besides certain trigonometric functions 

(also called circular functions are functions of an angle. They are used to relate the angles of a 

triangle to the lengths of the sides of a triangle. Trigonometric) of φ. In addition, simple 

quadrature formulas are given for the numerical evaluation of the integrals. Accordingly, the 

profile coordinates Z m = Z(Xm),  at the stations Xm are multiplied with once-for-all-computed 

coefficients A m , , . .  ,  F m,  and the sums are then formed of these products (see Table 2-3). [6] 

Where Zm is dimensionless and Z coordinates of the upper or lower of airfoil surface at location 

Xm.  
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Table 2-3 Coefficient A, B, C, D, E, F for the computation of the aerodynamic coefficient of 

table 2-2 for N=12 (after Riegels [22, 23]) [6] 

m X୫ A୫ B୫ C୫ D୫ E୫ F୫ 
1 0.9830 0.6440 -4.8919 0.6864 -7.9370 -2.4032 15.6333 
2 0.9330 0 0 0.1667 -0.2267 0 0 
3 0.8536 0.2357 -0.5690 0.3333 -1.0790 -0.2357 2.0944 
4 0.7500 0 0 0.2887 -0.1309 0 0 
5 0.6294 0.1726 -0.2249 0.2387 -0.4210 -0.0462 1.1224 
6 0.5000 0 0 0.3333 0 0 0 
7 0.3706 0.1726 -0.1324 0.0601 -0.1402 0.0462 1.1224 
8 0.2500 0 0 0.2887 0.1309 0 0 
9 0.1465 0.2357 -0.0976 0.3333 0.0318 0.2357 2.0944 
10 0.0670 0 0 0.1667 0.2267 0 0 
11 0.0170 0.6439 -0.0848 -1.8017 0.1197 2.4032 15.6333 

 

2.11 Velocity distribution and Pressure distribution 

2.11.1 Computation the velocity distribution on the skeleton line 

The problem of computing the distribution of the circulation and consequently the velocity 

distribution will now be treated for a given skeleton line shape at a given angle attack. By 

introducing  

Uஶ ቈα −
dZୗ(X)

dX ቉ + w(X) = 0                                                                                                2.122 

Into  

w(X) = −
1

2πන k(X′)
dX′

X− X′

ଵ

଴
                                                                                                      2.123 

The equation defining the circulation distribution becomes  

Uஶ ቈα −
dZୗ(X)

dX ቉ =
1

2πන k(X ′)
dX′

X− X′

ଵ

଴
                                                                                  2.124 

This is an integral equation for the vortex density K with given values of  α − dZୗ(X) dX⁄ . It was 

first solve by Betz. By taking into account the Kutta condition: 
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k = 0          for X = 0                                                                                                                      2.125  

And  

U(X) = U∞ + u(X) = U∞ ±
1
2 k(X)                                                                                                 2.126 

The velocity distribution about the skeleton profile is given by  

U(X)
U∞

= 1 ± ඨ1 − X
X ቌα +

1
πන

dZୗ

dX′
ඨ1 − X′

X′
  

dX′
X − X′

ଵ

଴
ቍ                                                        2.127 

To evaluate the quadrature formula for the velocity distribution, Riegels makes the Fourier 

substitution  

Zୗ =
1
2
෍ a୴cosvφ                                                                                                                       2.128
୬

୴ିଵ

 

X =
1
2

(1 + cosφ)                                                                                                                           2.129 

Where a୴ is Fourier series coefficient. Introducing these expressions into Eqs. 2.127 makes 

elementary evaluation of the integrals possible. The velocity distribution of the skeleton profile is 

then  

U(φ)
U∞

= 1 ± ൭αtan
φ
2 + ෍ va୴

cosvφ− 1
sinφ

୬

୴ିଵ

൱                                                                       2.130 

Where the upper sign is valid for the upper side, the lower sign for lower side of the skeleton 

profile. [6]  

Eqs. 2.127 give the velocity distribution for skeleton profile, but the whole velocity distribution 

over any profile is consisting of 

1. Symmetrical profile without angle of attack. 

2. Symmetrical profile with angle of attack. 

3. Skeleton profile without angle of attack, and 
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4. Plate with angle of attack. 

The derivation of the other three velocity distribution are not derived here, it derives on 

Aerodynamic of the Airplane book [6]. 

The velocity distribution over any profile given as  

                 2.131 

  

2.11.2 Pressure distribution for given lift coefficient and moment coefficient 

Pressure distribution for given lift coefficient and moment coefficient the problem of 

approximating a given skeleton line by superposition of an inclined flat plate and a parabolic 

skeleton in such a way that lift and zero-moment coefficients of approximation and given 

skeleton are equal can be solved with the help of the above-introduced Fourier series expansion. 

In this case the Fourier coefficients from Eqs. 2.95 and 2.96 become 

A଴ =
1

2πC୐ +
2
πC୑଴       and      Aଵ = −

4
π C୑଴                                                                              2.132 

WhereA଴, Aଵ are Fourier series coefficients, and by using table 2.2 to calculate lift coefficient 

(C୐) and zero moment (C୑଴). These coefficients are introduced into Eq. 2.101 and the resultant 

pressure distribution, taking into account Eq. 2. 2.89 is obtained as 

∆C୔(X) = C୐h଴(X) + C୑଴4hଵ(X)                                                                                                       2.133 

With 
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h଴(X) =
2
π
ඨ1 − X

X          and   hଵ(X) =
2
π

(1− 4X)ඨ
1− X

X                                                             2.134 

Whereh଴, hଵ are Fourier series coefficients. The distributions h0(X) and h l(X) are shown in 

Figure 2.16 

. 

Figure 2.16 The function h0 and h1 for pressure distribution on the chord at given lift and 
moment coefficient [Eqs.2.111 and 2.112].  [6] 
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CHAPTER 3 

 

 

NUMERICAL ANALYSIS OF PROFIL THEORY 

 

 

In the previous chapters the solution to the parameter of the airfoils was obtained by analytical 

techniques. The application of numerical techniques allows the treatment of more realistic 

geometries. In this chapter the methodology of some numerical solutions will be examined and 

applied to calculate the parameter of the airfoils.  

3.1 Estimation coefficient lift and drag from pressure coefficient  

 

Let Figure 3.1 represent an aerofoil at an angle of incidence .α to a fluid flow travelling from left 

to right at speed V. The axes Ox and Oz are respectively aligned along and perpendicular to the 

chord line. The chord length is denoted by c. 

Taking the aerofoil to be a wing section of constant chord and unit spanwise length, let us 

consider the forces acting on a small element of the upper aerofoil surface having length δs. The 

inward force perpendicular to the surface is given byP୙δs. This force may be resolved into 

components ߜX and ߜZ in the x and z directions. It can be seen that 

δZ୳ = −P୳ cos ϵ                                                                                                                                           3.1 

and from the geometry 

δs cosϵ = δx                                                                                                                                                3.2 
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Figure 3.1 Normal pressure force on an element of aerofoil surface [24] 

 

so that 

 

δZ୳ = −P୳δx                  per unit span                                                                                                    3.3 

Similarly, for the lower surface 

δZ୪ = −P୪δx                  per unit span                                                                                                     3.4 

We now add these two contributions and integrate with respect to x between x = 0 and x = c to 

get 

Z = −න P୳dx +
ୡ

଴
න P୪dx                                                                                                                   
ୡ

଴
3.5  

But we can always subtract a constant pressure from both Pu and Pl without altering the value of 

Z, so we can write 

Z = −න (P୳ − Pஶ)dx +
ୡ

଴
න (P୪ − Pஶ)dx    
ୡ

଴
                                                                                         3.6  

 

Where P∞ is the pressure in the free stream (we could equally well use any other constant 

pressure, e.g. the stagnation pressure in the free stream). 

Equation 3.6 can readily be converted into coefficient form. Recalling that the aerofoil section is 

of unit span, the area A = 1 x c = c so we obtain 
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C୞ =
Z

1
2 ρUஶ

ଶ c
=

1
1
2 ρUஶ

ଶ c
ቈ−න (P୳ − Pஶ)dx +

ୡ

଴
න (P୪ − Pஶ)dx
ୡ

଴
቉

=
−1

1
2 ρUஶ

ଶ c
න [(P୳ − Pஶ) − (P୪ − Pஶ)]dx
ୡ

଴
                                                                   3.7 

Remembering that (l/c)dx = d(x/c) and that the definition of pressure coefficient is 

C୮ =
P − Pஶ
1
2 ρUஶ

ଶ c
                                                                                                                                                 3.8 

We see that 

C୞ = −න (P୳ − P୪)d ቀ
x
c
ቁ

ଵ

଴
                                                                                                                         3.9 

Similar arguments lead to the following relations for X. 

δX୳ = P୳δs sin ϵ        δX୪ = P୪δs sin ϵ       δs sinϵ = δz 

Giving 

Cଡ଼ = ර C୔dቀ
z
c
ቁ

ୡ
= න ∆

୞ౣ౫

୞ౣౢ

C୔dቀ
z
c
ቁ                                                                                                  3.10 

Where Zmu and Zml are respectively the maximum and minimum values of z, and ∆CP, is the 

difference between the values of CP acting on the fore and rear points of an aerofoil for a fixed 

value of z. [11] 

 

CZ and CX are the force coefficients in the Z and X directions, CPl and CPu are the pressure 

coefficients on the lower and upper surface, and CPF and CPA are the pressure coefficients 

forward and aft of the point of maximum thickness on the airfoil. The force coefficients were 

found by numerically integrating using the trapezoidal rule. 
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Once the force coefficients were calculated, the lift and drag coefficients were found by using 

Eq. 3.13 and Eq. 3.14. 

C୐ = C୞cosα − Cଡ଼sinα                                                                                                                             3.13 

Cୈ = C୞sinα+ Cଡ଼cosα                                                                                                                           3.14 

CL and CD are the force coefficients in the lift and drag directions as seen in Figure 3.1. 

Furthermore, α is the angle of attack or the angle between the chord and the direction of airflow 

in the wind tunnel. All equations were obtained from Clancy [25] with the exception of Eq. 3.11 

and 3.12 which were obtained from Aerodynamic Forces on Airfoils [26]. 

 

3.2 Numerical Evaluation of the Profile Theory 

 

The calculations of the velocity distribution and the aerodynamic coefficient have been derived 

through the singularity method in the previous chapters. Now, these parameters can be evaluated 

in a convenient way through the numerical summation formulas. The details of the calculation 

are referred to the work of F.Riegels and E. Truckenbrodt. [6] 

For the numerical quadrature the coordinates of the profile at the N-discrete nodes is determined 

as;  

X୫ =
1
2
ቀ1 + cos

πm
N
ቁ , m = 0,1, … . , N                                                                                        3.15 

And denoted with Z(Xm)=Zm. 

If m=0, it means the profile at trail edge whereas if m=N, it means the profile front, see table 3.1. 

In the table 3.1 n and m are running from 0 to 12, where the node 0 (φ=0°) means the first node 

at profile trailing edge, and the node 12 (φ=180°) is lying at the front leading edge of the profile. 

Xn and Xm are denoted the locations of the nodes, an, bn, and cn are served to calculate the 

velocity distribution of the profile. 

The velocity distribution on the profile contour at discrete points Xn is obtained through the 

following summation formula;  

W୩(X୬)
Uஶ

=
1

X୬
∗ ൥a୬ + 2 ෍ A୬୫Z୫୲

୒ିଵ

୫ୀଵ

± 2 ෍ C୬୫Z୫ୱ
୒ିଵ

୫ୀଵ

± α൭b୬ + 2 ෍ H୬୫Z୫୲
୒ିଵ

୫ୀଵ

൱൩                                       3.16 

 

Where 
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X୬
∗ = ඨC୬ + ቆ

dZ୲

dφ
ቇ
୬

ଶ

                                                                                                                                              3.17 

Coefficient an ,bn , cn which appear in the equation 3.16 and 3.17 are summarized in table 3.1. 

The coefficient with double subscripts Anm, Cnm and Hnm which serve to determine the velocity 

distribution are given in table 3.2. 

The aerodynamic parameters which are given in table 2.1 can also be calculated with the 

summation formulas.[26] 

The in the summation formulas appearing coefficient are obtained from table 2.2. 

 

Table 3.1 Coefficients an ,bn , cn  to calculate the velocity distribution on the contour profile 

according to Eq. 3.15 for N = 12 (after [27]) 

n,m ૎ Xn, Xm a୬ b୬ c୬ 

0 0° 1.0000 0 0 0 

1 15° 0.9830 0.1294 0.0170 0.0168 

2 30° 0.9330 0.2500 0.0670 0.0625 

3 45° 0.8536 0.3536 0.1464 0.1250 

4 60° 0.7500 0.4330 0.2500 0.1875 

5 75° 0.6294 0.4830 0.3706 0.2333 

6 90° 0.5000 0.5000 0.5000 0.2500 

7 105° 0.3706 0.4830 0.6294 0.2333 

8 120° 0.2500 0.4330 0.7500 0.1875 

9 135° 0.1465 0.3536 0.8536 0.1250 

10 150° 0.0670 0.2500 0.9330 0.0625 

11 165° 0.0170 0.1294 0.9830 0.0168 

12 180° 0 0 1.0000 0 
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Table 3.2 CoefficientsA୬୫ ,C୬୫ ,H୬୫ to calculate the velocity distribution on the profile contour 

of Eq. 3.15  for N = 12 (after [27]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
   n     
m  1 2  3  4  5  6  

 A୬୫  1 3 -1.0806 0 -0.086 0 -0.0231 
   2 -1.0806 3 -1.1666 0 -0.1092 0 
   3 0 -1.1666 3 -1.1897 0 -0.1179 
   4 -0.086 0 -1.1897 3 -1.1984 0 
   5 0 -0.1092 0 -1.1984 3 -1.2016 
   6 -0.0231 0 -0.1179 0 -1.2016 3 
   7 0 -0.0318 0 -0.1211 0 -1.2016 
   8 -0.0087 0 -0.035 0 -0.1211 0 
   9 0 -0.0119 0 -0.035 0 -0.1179 
   10 -0.0032 0 -0.0119 0 -0.0318 0 
   11 0 -0.0032 0 -0.0087 0 -0.0231 
   1 5.4454 -1.3651 0.2845 -0.1985 0.1124 -0.0893 
 C୬୫  2 1.0806 3 -0.9945 0 -0.0629 0 
   3 2.4457 -1.279 3.2845 -1.2559 0.1124 -0.1667 
   4 2.2475 0 -0.9714 3 -1.1348 0 
   5 2.4457 -0.1754 0.2845 -1.2472 3.1124 -1.244 
   6 2.3563 0 0.1179 0 -1.1316 3 
   7 2.4457 -0.0806 0.2845 -0.1635 0.1124 -1.244 
   8 2.3882 0 0.2071 0 -0.051 0 
   9 2.4457 -0.0543 0.2845 -0.0774 0.1124 -0.1667 
   10 2.4001 0 0.2302 0 0.0318 0 
   11 2.4457 -0.0456 0.2845 -0.0575 0.1124 -0.0893 
   1 0.7113 -0.3544 0.1003 -0.091 0.0538 -0.0469 
 H୬୫  2 0.1422 0.8039 -0.4119 0 -0.0483 0 
   3 0.3155 -0.3296 1.3403 -0.6969 0.0488 -0.1178 
   4 0.2958 0 -0.4024 1.7321 -0.8708 0 
   5 0.3133 -0.0293 0.0904 -0.682 2.3375 -1.1778 
   6 0.3102 0 0.0488 0 -0.8683 3 
   7 0.3072 0.0085 0.0713 -0.0295 0 -1.1316 
   8 0.3144 0 0.0858 0 -0.0392 0 
   9 0.2845 0.0617 0 0.1196 -0.132 0.1178 
   10 0.316 0 0.0954 0 0.0244 0 
   11 0 0.6431 -0.8952 1.3788 -1.7903 2.3563 
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   n     
m 7  8  9  10  11  

 A୬୫  1 0 -0.0087 0 -0.0032 0 
   2 -0.0318 0 -0.0119 0 -0.0032 
   3 0 -0.035 0 -0.0119 0 
   4 -0.1211 0 -0.035 0 -0.0087 
   5 0 -0.1211 0 -0.0318 0 
   6 -1.2016 0 -0.1179 0 -0.0231 
   7 3 -1.1984 0 -0.1092 0 
   8 -1.1984 3 -1.1807 0 -0.086 
   9 0 -1.1897 3 -1.1666 0 
   10 -0.1092 0 -1.1666 3 -1.0806 
   11 0 -0.086 0 -1.0806 3 
   1 0.0662 -0.0575 0.0488 -0.0456 0.0424 
 C୬୫  2 -0.0144 0 -0.0055 0 -0.0032 
   3 0.0662 -0.0774 0.0488 -0.0543 0.0424 
   4 -0.0973 0 -0.0286 0 -0.0151 
   5 0.0662 -0.1635 0.0488 -0.0806 0.0424 
   6 -1.1778 0 -0.1179 0 -0.0469 
   7 3.0662 -1.2472 0.0488 -0.1754 0.0424 
   8 -1.181 3 -1.2071 0 -0.1561 
   9 0.0662 -1.2559 3.0488 -1.279 0.0424 
   10 -0.1092 0 -1.2302 3 -1.3227 
   11 0.0662 -0.1985 0.0488 -1.3651 3.0424 
   1 0.0301 -0.0262 0.0155 -0.012 0 
 H୬୫  2 -0.0188 0 -0.0132 0 -0.0244 
   3 0.0227 -0.0495 0 -0.0204 -0.0488 
   4 -0.1267 0 -0.069 0 -0.1148 
   5 0 -0.1685 -0.042 -0.0539 -0.1808 
   6 -1.535 0 -0.2845 0 -0.3565 
   7 3.8495 -1.1966 -0.1535 -0.2349 -0.5319 
   8 -1.5392 5.1962 -2.9142 0 -1.1865 
   9 -0.2845 -1.6826 6.6737 -3.7117 -1.839 

   10 -0.1423 0 -2.97 11.1962 
-

10.0469 
   11 -3.1009 3.8922 -5.7864 4.0326 4.5328 
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS  

 

The design of an airfoil usually starts with the definition of the desired or required characteristics. The 

selection of an airfoil for a wind car depends mainly on the lift and drag characteristics of the airfoil. 

During this work, we can calculate; 

 Velocity and pressure distribution  

 Lift and drag coefficient  

 Lift and drag forces and 

 Total torque for various airfoil sections. 

The purpose of this work is to study the aerodynamic characteristics. Several different airfoil 

profiles are available for study. 

4.1 General Design Layout 

Wind car is the kind of car power by natural wind energy. The main objective is to convert the 

wind energy to mechanical energy to overcome load that rotates the main shaft. 

The basic task is conversion and storage of wind energy. There are many ways to convert and 

store wind energy to mechanical energy. 

In this project, the three blade wind car is shown in figure 4. 1and the direct connection is used 

via various links and gear is shown in figure 4.1. A vertical wind turbine is mounted on the 

chassis. The turbine captures wind and moves due to the present of lift forces, which cause it to 

rotate about it fix axis.  

As shown in figure 4.2 the axial rotation from the turbine is brought down by a vertical shaft 

hold and branched by a bearing. Double and single row deep groove ball bearings are selected 

because the feature higher load rating than single row bearings, but are very sensitive. The 
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rotation is then changed at 90° using a bevel gear. Figure 4.4 shown Bevel gears are gears where 

the axes of the two shafts intersect and the tooth-bearing faces of the gears themselves are 

conically shaped. Bevel gears are most often mounted on shafts that are 90 degrees apart, but can 

be designed to work at other angles as well. The pitch surface of bevel gears is a cone. It used to 

transmit motion between the shafts with intersection center lines. The intersection angle is 

normally 90° but may be as high as 180°. To control the direction of the car direct steering types 

see figure 4.3 is used. It makes use of the face gears which are a circular disc with a ring of teeth 

cut on one side. The gear teeth are tapered toward the center of the tooth. These gears typically 

mate with a spur gear. A special kind of scooter tires is used as our rotating wheels. 

 

Figure 4.1 Three dimension of wind car 

 

Figure 4.2  Rotaion of the blade 
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Figure 4.3 Steering 

 

Figure 4.4 Bevel gear 

4.2 Forces analysis during the rotation of the blades 

For the following explanations, it is assumed, that a stream of air is directed against an airfoil, 

which is fixed in space. This is equivalent to an airfoil moving through the air just a question of 

the reference system. A typical wind tunnel works in the same way. The air was assumed to be 

incompressible. The viscous effects due to the surface of the airfoil at the test velocity were 

neglected because the surface of the airfoil was smooth.  
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Figure 4.5 Schematic diagram of three-blade rotor  

 

Figure 4.6 Forces anlaysis for the blades during the rotation  
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Figure 4.5 shows the free stream velocity U∞, the direction of speed of the blades (ωR), the 

position of the blades with angle γ, and the direction of rotation of the blades. 

During the rotation, the free stream velocity has two components. The direction of the 

components changes as shown in figure 4.6. We can describe it as: 

 First component, it is parallel to the chord line. We used it to calculate the skin friction 

drag force. 

 Second component, it is perpendicular to the first one. We used it to calculate the 

pressure drag force. 

Since the speed of the blades affects on both surfaces of the profile, and at the same time we 

have free stream velocity effect on the upper or lower surface which depends on the location of 

the profile. Sometimes, we subtract or add the free stream velocity to the speed of the blade, 

which depends on the direction of the velocity as shown in figure 4.7.  

We can analysis the forces as follow: 

1. From 0° to 90° 

At 0° we have maximum pressure drag force on the upper surface of the profile. It can be 

calculated by using Eq. 2.51. In this case, the drag coefficient is equal to 2 (from table 2.1). 

At 90° we have maximum skin friction drag in both surfaces of the profile. It can be calculated 

by using Eq. 2.51. In this case we replace Cୈ by ܥ௙. The skin friction coefficient is 0.1 (from 

table 2.1). 

2. From 90° to 180° 

The free stream velocity has an effect on the lower surface of the profile.  At 180° we have 

maximum pressure force on the lower surface.  

3. From 180° to 270° 

We can divide into two regions as: 
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 from 180° to 254° 

In this region, the free stream velocity has an effect on the lower surface of the profile. And we 

have skin friction and pressure forces on the lower surface of the profile. 

 from 254° to 270° 

In this region, we have lift and drag forces. The lift and drag forces depend on the lift coefficient 

and drag coefficient respectively which depends on the angle of attack (α). Drag coefficient can 

be calculated using Eq. 2.53b and we took Cୈ,଴ as 0.004 [28].  At 254° (α=16°) we have 

maximum lift and drag forces. At 270° lift force is equal to zero, but at the same time we have 

skin drag coefficient.  

4. From 270° to 360° 

In this case, the free stream velocity has an effect on the upper surface of the profile.  At 360° we 

have maximum pressure force on the upper surface. 

The same procedure is applied on the second and third blades. The blades are decaled by 120° 

between each other as shown in figure 4.5.  

After analysis, the forces and the calculations of the forces for each location or position for the 

blade in both directions x and y axis are shown in figure 4.7. we can calculate the tourqe using 

equation 4.1. 

Tሬሬ⃗ = ∑ Fሬ⃗ r ሬሬ⃗                                                                                                                                                     4.1                      

Where,  

Tሬሬ⃗ : is the torque vector and T is the magnitude of the torque, [N.m] 

r⃗: is the displacement vector (a vector from the point from which torque is measured to the point 

where force is applied), [m] 

F: is the force vector, and F is the magnitude of the force, [N] 

For the reason of simplification, pressure forces through the rod are negligible.  
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Figure 4.7 Relation between the angle of rotation (γ) and the forces of the profiles  
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4.3 Flowchart for the calculation of the Forces and Torques of Wind Car 

A flowchart is a type of diagram that represents an algorithm or process, showing the steps as 

boxes of various kinds, and their order by connecting them with arrows. This diagrammatic 

representation can give a step-by-step solution to a given problem. Process operations are 

represented in these boxes, and arrows connecting them represent flow of control. 
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As given in NACA profile we can indetify the geometric parameters of the airfoil  

 t/c: relative thickness (thickness ratio) 

 h/c: relative camber (camber ratio) 

 xt/c: relative thickness position 

 xh/c: relative camber position 

 

then Eq.2.la or 2.1b  are used to calculate symmetrical 4-digit NACA airfoil and Eq.2.2 is used to 

calculate the mean camber line.  Figure 4.8 represents the coordinates Zu of the upper airfoil 

surface and ZL of the lower airfoil surface for four different types of airfoils. The equations used 

to calculate Zu and ZL are given by formula 4.2. 

z୳ = zୡ + z୲       and   z୐ = zୡ − z୲                                                                                                        4.2   

Where, 

zୡ: coordinates of mean camber line 

z୲: coordinates of the symmetrical 4-digit NACA airfoil 

z୳: coordinates of the upper airfoil surface 

z୐: coordinates of the lower airfoil surface 

After the calculation of the upper and lower surfaces we can sketch the airfoil as shown in figure 

4.18. Then using Eq. 3.16 we can calaulate the velocity distribution. The pressure coefficient of 

the profile is given by: 

C୮ = 1− ൬
W୩

U∞
൰
ଶ

                                                                                                                                         4.3 

After that using Eqs. 3.13 and 3.14 we can calculate the lift and drag coefficients respectively. 

Further more, we can calculate the lift and drag by using Eqs. 2.50 and 2.51 respectively for one 

blade and then for three blades at the same time; where  the first, second and third blades are 
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between 254° and 270°. We can calculate the total lift and drag forces for all the blades at the 

same positions using Eqs. 4.4 and 4.5.  At the end, we  calculate the total torque for the blades 

from 0° to be 360°.  More explanations are given in the flow chart of NACA airfoils. 

F୐ (୲୭୲ୟ୪) = F୐ (ϐ୧୰ୱ୲ ୠ୪ୟୢୣ) + F୐ (ୱୣୡ୭୬ୢ ୠ୪ୟୢୣ) + F୐ (୲୦୧୰ୢ ୠ୪ୟୢୣ)                                                             4.4  

Fୈ (୲୭୲ୟ୪) = Fୈ (ϐ୧୰ୱ୲ ୠ୪ୟୢୣ) + Fୈ (ୱୣୡ୭୬ୢ  ୠ୪ୟୢୣ) + Fୈ (୲୦୧୰ୢ ୠ୪ୟୢୣ)                                                           4.5  

 

 

Figure 4.8 The coordinate of upper and lower surfaces for different types of airfoils 

Using the flow chart of four digit NACA airfoils we can calculate the velocity distribution, 

pressure, lift and drag coefficient. The total forces and the torque for different NACA profiles 

also can be calculated using the same flowchart. The lift and drag forces acting on each one of 

the airfoils were successfully calculated with an airflow velocity of 4 m/s and speed of the blade 
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of 13.056m/s  [29]. The NACA 0012 is a symmetrical airfoil with a 12% thickness to chord ratio.  

When the airfoil is located in a stream of air of velocityUஶ, the flow has to pass near the leading 

edge and along the upper and the lower airfoil surface. At the location where the flow is splitting 

up, the flow velocity is reduced to zero. This point is called stagnation point. It is located close to 

the leading edge of the airfoil, but its position moves with the angle of attack. Table 4.3 

represents the lift coefficient and the relative error in percentage (R.E) between the theoretical 

and calculated values for NACA 0012. Figures 4.11-4.16 show the change in lift, drag forces and 

the torque for NACA 0012 profiles with angle of rotation (γ). 

Table 4.1 Velocity distribution data for both surfaces of the NACA 0012 airfoil at 2°angle of 

attack 

X ܟ
ஶൗ܃ ܟ ܚ܍ܘܘܝ 

ஶൗ܃  ܚ܍ܟܗܔ 
0.983 0.919 0.9116 
0.933 0.9697 0.9533 

0.8536 1.0174 0.9907 
0.75 1.0585 1.0196 

0.6294 1.0988 1.0451 
0.5 1.1415 1.0691 

0.3706 1.1941 1.0834 
0.25 1.2372 1.104 

0.1464 1.2818 1.0929 
0.067 1.3249 1.0351 
0.017 1.3293 0.7992 

 

 

Figure 4.9 Velocity distribution plot for both surfaces of the NACA 0012 airfoil at 2°angle of 
attack. 
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Table 4.2 Pressure coefficient data for both surfaces of the NACA 0012 airfoil at 2°angle of 
attack 

X -Cp upper -Cp lower 
0.983 -0.1554 -0.169 
0.933 -0.0596 -0.0911 

0.8536 0.0352 -0.0186 
0.75 0.1205 0.0395 

0.6294 0.2074 0.0922 
0.5 0.3031 0.1429 

0.3706 0.4259 0.1737 
0.25 0.5308 0.2188 

0.1464 0.643 0.1944 
0.067 0.7554 0.0714 
0.017 0.7669 -0.3613 

 

 

Figure 4.10 Pressure coefficient plot for both surfaces of the NACA 0012 airfoil at 2°angle of 
attack 
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Table 4.3 Lift coefficient (CL) of NACA 0012 airfoil at varying angle of attack  

Angle of attack (α) 
[°] 

CL 
(Theoretical) 

CL 
(Calculated) 

Relative Error in Percentage 
 

R. E = ฬ
theoritical− calculated 

theoritical ฬ× 100 

2° 0.237 0.2302 2.869% 
4° 0.473 0.4574 3.298% 
6° 0.708 0.6808 3.841% 
8° 0.942 0.8994 4.522% 
10° 1.175 1.1125 5.319% 
12° 1.404 1.3193 6.032% 
14° 1.632 1.5190 6.924% 

 

 

Figure 4.11 Skin friction drag force for one blade plot of the NACA 0012 airfoil. 

 

Figure 4.12 Pressure drag force for one blade plot of the NACA 0012 airfoil. 
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Figure 4.13 Drag force for one blade plot of the NACA 0012 airfoil. 

 

Figure 4.14 lift force for one blade plot of the NACA 0012 airfoil. 

 

Figure 4.15 total skin friction forces for one blade plot of the NACA 0012 airfoil. 
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Figure 4.16 Torque plot of the NACA 0012 airfoil. 

Using the same procedure (Flow chart) to calculate the velocity distribution, pressure, lift and 

drag coefficient, the forces and the torque for different NACA profiles. NACA 2412 airfoil has a 

maximum thickness of 12% with a camber of 2% located 40% back from the airfoil leading 

edge. NACA 4415 airfoil has a maximum thickness of 15% with a camber of 4% located 40% 

back from the airfoil leading edge. NACA 9608 airfoil has a maximum thickness of 8% with a 

camber of 9% located 60% back from the airfoil leading edge. Table 4.4 shows the lift 

coefficient for three types of airfoils. 

Table 4.4 Lift coefficient for three types of airfoils 

NACA profile Lift coefficient 
NACA 2412 0.4932 
NACA 4415 0.7618 
NACA 9608 1.6 
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Table 4.5 Velocity distribution data for both surfaces of the NACA 4415 airfoil at 2°angle of 
attack 

X ܟ
ஶൗ܃ ܟ ܚ܍ܘܘܝ 

ஶൗ܃  ܚ܍ܟܗܔ 
0.983 0.9276 0.8569 
0.933 1.0191 0.8801 

0.8536 1.1046 0.9012 
0.75 1.1771 0.917 

0.6294 1.2439 0.9333 
0.5 1.3089 0.9528 

0.3706 1.3929 0.9537 
0.25 1.4378 0.9885 

0.1464 1.4523 1.0112 
0.067 1.4297 0.9968 
0.017 1.2876 0.7954 

 

 

Figure 4.17 Velocity distribution plot for both surfaces of the NACA 4415 airfoil at 2°angle of 

attack. 
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Table 4.6 Pressure coefficient data for both surfaces of the NACA 4415 airfoil at 2°angle of 
attack 

X -Cp upper -Cp lower 
0.983 -0.1396 -0.2657 
0.933 0.0386 -0.2255 

0.8536 0.2201 -0.1878 
0.75 0.3855 -0.1592 

0.6294 0.5474 -0.129 
0.5 0.7132 -0.0921 

0.3706 0.94 -0.0905 
0.25 1.0672 -0.0229 

0.1464 1.1091 0.0225 
0.067 1.044 -0.0064 
0.017 0.6579 -0.3673 

 

 

Figure 4.18 Pressure distribution plot for both surfaces of the NACA 4415 airfoil at 2°angle of 

attack. 
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Table 4.7 Velocity distribution data for both surfaces of the NACA 2412 airfoil at 2°angle of 
attack 

X ܟ
ஶൗ܃ ܟ ܚ܍ܘܘܝ 

ஶൗ܃  ܚ܍ܟܗܔ 
0.983 0.935 0.8956 
0.933 1.0007 0.9224 

0.8536 1.0619 0.9462 
0.75 1.1141 0.964 

0.6294 1.1632 0.9807 
0.5 1.2124 0.9982 

0.3706 1.275 1.0025 
0.25 1.3155 1.0257 

0.1464 1.3439 1.0308 
0.067 1.3601 0.9999 
0.017 1.3239 0.8046 

 

 

Figure 4.19 Velocity distribution plot for both surfaces of the NACA 2412 airfoil at 2°angle of 

attack 
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Table 4.8 Pressure coefficient data for both surfaces of the NACA 2412 airfoil at 2°angle of 
attack 

X -Cp upper -Cp lower 
0.983 -0.1257 -0.1979 
0.933 0.0014 -0.1492 

0.8536 0.1276 -0.1047 
0.75 0.2412 -0.0707 

0.6294 0.353 -0.0382 
0.5 0.4698 -0.0035 

0.3706 0.6256 0.0049 
0.25 0.7305 0.0521 

0.1464 0.806 0.0626 
0.067 0.8498 -0.0001 
0.017 0.7526 -0.3526 

 

 

Figure 4.20 Pressure distribution plot for both surfaces of the NACA 2412 airfoil at 2°angle of 

attack 
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Table 4.9 Velocity distribution data for both surfaces of the NACA 9608 airfoil at 2°angle of 
attack 

X ܟ
ஶൗ܃ ܟ ܚ܍ܘܘܝ 

ஶൗ܃  ܚ܍ܟܗܔ 
0.983 1.0759 0.8137 
0.933 1.2275 0.7247 

0.8536 1.355 0.6536 
0.75 1.445 0.6096 

0.6294 1.4811 0.6167 
0.5 1.466 0.6755 

0.3706 1.4773 0.7079 
0.25 1.4764 0.7512 

0.1464 1.4757 0.7774 
0.067 1.4876 0.7687 
0.017 1.5627 0.5915 

 

 

Figure 4.21 Velocity distribution plot for both surfaces of the NACA 9608 airfoil at 2°angle of 

attack 
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Table 4.11 Pressure coefficient data for both surfaces of the NACA 9608 airfoil at 2°angle of 
attack 

X -Cp upper -Cp lower 
0.983 0.1575 -0.3379 
0.933 0.5067 -0.4748 

0.8536 0.836 -0.5728 
0.75 1.0879 -0.6283 

0.6294 1.1937 -0.6197 
0.5 1.1491 -0.5438 

0.3706 1.1823 -0.4989 
0.25 1.1798 -0.4357 

0.1464 1.1778 -0.3957 
0.067 1.2131 -0.4091 
0.017 1.442 -0.6501 

 

 

Figure 4.22 Pressure distribution plot for both surfaces of the NACA 9608 airfoil at 2°angle of 

attack 

The lift coefficient of an airfoil depends not only on the angle of attack, but also on the shape of 
the airfoil, the plan area of the airfoil (or wing area), the square of the velocity, and the density of 
the air. 

Table 4.11 shows a typical comparison between both theoretical analysis method and calculated 
results at low-speed and the relative error in percentage. 
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Table 4.11 Lift coefficient (CL) of NACA airfoils at 2° angle of attack 

NACA Profiles CL 
(Theoretical) 

CL  
(Calculated value) 

Relative Error in Percentage 

NACA 0012 0.237 0.2302 2.86% 
NACA 2412 0.479 0.4932 2.96% 
NACA 4415 0.729 0.7618 4.49% 
NACA 9608 1.31 1.6 22.13% 

 

 

Figure 4.23 Torque plot of the NACA 2412 airfoil.  
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CHAPTER 5  

 

CONCLUSIONS AND FUTURE WORK 

 

The airfoils chosen for this work were the NACA 0012, NACA 2412, NACA 4415, and NACA 

9608. In this work, airfoils are characterized under the low-speed operation conditions. The data 

obtained from this work was then analyzed in order to obtain values for the coefficient CL, CD, to 

calculate the lift and drag forces and to calculate the torque. 

In this work, the lift coefficient of NACA airfoils was analyzed using numerical integration of 

the pressure distribution. The relationship between the lift coefficient and the angle of attack is 

complex and can only be determined by experimentation or complicated analysis. The lift 

coefficient calculated using this method agreed very closely with the theoretical values created 

by Aerofoil.  

In our work, we calculated the velocity distribution, pressure, lift coefficient, forces and the 

torque for NACA 2412. And we compared the results of with NACA 0012 airfoil, we found that 

NACA 2412 has a maximum torque but with maximum error in lift coefficient compared to 

NACA 0012.  

Through the calculation for lift coefficient for different NACA airfoils, we found the maximum 

lift coefficient at 2° angle of attack for NACA9608. Also we found the maximum error for 

NACA 9608 because it has maximum camber line.  

We found some error between the theoretical and calculated values. This error occurs during the 

calculation because we used eleventh node (depend on the theory). If more nodes will be used, 

the error can be reduced. Also to reduce the error in our work; we can use thin airfoil for 

example NACA 0012. 

In order to prove the validity of our results, experimentation is indispensable. The work of this 

thesis offers more opportunities to expand this work and study more complicated profiles, or 

even in courage the researches for new profiles which ameliorate the flow condition. The use 

wind tunnel can give better results for the forces. Wind tunnel is used to simulate airflow over a 

model of airplane or a wing section so it can be studied. The wind tunnel can produce air flow at 

the desired speed and condition. 
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APPENDICES 

MATLAB (matrix laboratory) is a numerical computing environment. MATLAB allows matrix 

manipulations, plotting of functions and data, implementation of algorithms. We use it to draw 

the velocity, pressure distribution, lift coefficient and force as shown below.  

clc; 
clear all; 
L=30; 
% free stream velocity  
U_infin=10; 
density=1.23; 
R=1; 
aera=(L*R)/100; 
% alpha: angle of attack  
alpha=(2*pi)/180; 
% d_L: maximum thickness  
d_L=0.12; 
% Xf_L: location of maximum camber 
Xf_L=0.4; 
% f_L: maximum camber 
f_L=0.02; 
N=12; 
angle_rad=([ 15 30 45 60 75 90 105 120 135 150 165 ]*pi)/180; 
Xm=0.5*(1+cos(angle_rad)); 
a0=1.4845; 
a1=-0.6300; 
a2=-1.7580; 
a3=1.4215; 
a4=-0.5075; 
gumaa=30; 
  
%  Zmt : Equation for a symmetrical 
Zmt=(d_L)*((a0.*(Xm).^0.5)+(a1.*Xm)+(a2.*Xm.^2)+(a3.*Xm.^3)+(a4.*Xm.^4)); 
  
% Zms: mean camber line  
% Zms for symmetrical 
% Zms=0; 
% Zms for unsymmetrical 
for i=1:11 
  if Xm(i)<=Xf_L, 
    Zms(i)=f_L/Xf_L^2*(2*Xf_L*Xm(i)-Xm(i)^2); 
  else 
    Zms(i)=(f_L/(1-Xf_L)^2)*(1-2*Xf_L+2*Xf_L*Xm(i)-Xm(i)^2); 
  end; 
end; 
% Z_up :upper surface 
% Z_lower: lower surface  
Z_up=(Zmt+Zms); 
Z_lower=(-Zmt+Zms); 
figure (1) 
 plot(Xm,Zms); xlabel('Xm'); ylabel('Zms'); 
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cn=[ 0.0168 0.0625 0.125 0.1875 0.2333 0.25 0.2333 0.1875 0.125 0.0625 0.0168 
]; 
an=[ 0.1294 0.25 0.3536 0.433 0.483 0.5 0.483 0.433 0.3536 0.25 0.1294 ]; 
bn=[ 0.017 0.067 0.1464 0.25 0.3706 0.5 0.6294 0.75 0.8536 0.933 0.983 ]; 
der_xm=-0.5.*sin(angle_rad); 
  
 Zmt_angle=(d_L)*(a0*0.5*Xm.^-0.5.*der_xm +  a1.*der_xm   +  a2*2.*Xm.*der_xm   
+  a3*3.*Xm.^2.*der_xm  +  a4*4.*Xm.^3.*der_xm); 
  
A=[ 3 -1.0806 0 -0.086 0 -0.0231 0 -0.0087 0 -0.0032 0 ; -1.0806 3 -1.1666 0 
-0.1092 0 -0.0318 0 -0.0119 0 -0.0032 ;... 
 0 -1.1666 3 -1.1897 0 -0.1179 0 -0.035 0 -0.0119 0 ; -0.086 0 -1.1897 3 -
1.1984 0 -0.1211 0 -0.035 0 -0.0087 ;...  
 0 -0.1092 0 -1.1984 3 -1.2016 0 -0.1211 0 -0.0318 0 ; -0.0231 0 -0.1179 0 -
1.2016 3 -1.2016 0 -0.1179 0 -0.0231 ;... 
 0 -0.0318 0 -0.1211 0 -1.2016 3 -1.1984 0 -0.1092 0 ; -0.0087 0 -0.035 0 -
0.1211 0 -1.1984 3 -1.1807 0 -0.086 ;... 
 0 -0.0119 0 -0.035 0 -0.1179 0 -1.1897 3 -1.1666 0 ; -0.0032 0 -0.0119 0 -
0.0318 0 -0.1092 0 -1.1666 3 -1.0806 ;... 
 0 -0.0032 0 -0.0087 0 -0.0231 0 -0.086 0 -1.0806 3 ];  
  
  
C=[ 5.4454 -1.3651 0.2845 -0.1985 0.1124 -0.0893 0.0662 -0.0575 0.0488 -
0.0456 0.0424 ;... 
 1.0806 3 -0.9945 0 -0.0629 0 -0.0144 0 -0.0055 0 -0.0032 ;... 
 2.4457 -1.279 3.2845 -1.2559 0.1124 -0.1667 0.0662 -0.0774 0.0488 -0.0543 
0.0424 ;... 
 2.2475 0 -0.9714 3 -1.1348 0 -0.0973 0 -0.0286 0 -0.0151 ;... 
 2.4457 -0.1754 0.2845 -1.2472 3.1124 -1.244 0.0662 -0.1635 0.0488 -0.0806 
0.0424 ;... 
 2.3563 0 0.1179 0 -1.1316 3 -1.1778 0 -0.1179 0 -0.0469 ;... 
 2.4457 -0.0806 0.2845 -0.1635 0.1124 -1.244 3.0662 -1.2472 0.0488 -0.1754 
0.0424 ;... 
 2.3882 0 0.2071 0 -0.051 0 -1.181 3 -1.2071 0 -0.1561 ;... 
 2.4457 -0.0543 0.2845 -0.0774 0.1124 -0.1667 0.0662 -1.2559 3.0488 -1.2790 
0.0424 ;... 
 2.4001 0 0.2302 0 0.0318 0 -0.1092 0 -1.2302 3 -1.3227 ;... 
 2.4457 -0.0456 0.2845 -0.0575 0.1124 -0.0893 0.0662 -0.1985 0.0488 -1.3651 
3.0424 ]; 
  
  
  
H=[ 0.7113 -0.3544 0.1003 -0.0910 0.0538 -0.0469 0.0301 -0.0262 0.0155 -
0.0120 0 ;... 
 0.1422 0.8039 -0.4119 0 -0.0483 0 -0.0188 0 -0.0132 0 -0.0244  ;... 
 0.3155 -0.3296 1.3403 -0.6969 0.0488 -0.1178 0.0227 -0.0495 0 -0.0204 -
0.0488 ;... 
 0.2958 0 -0.4024 1.7321 -0.8708 0 -0.1267 0 -0.069 0 -0.1148 ;... 
 0.3133 -0.0293 0.0904 -0.6820 2.3375 -1.1778 0 -0.1685 -0.042 -0.0539 -
0.1808 ;... 
 0.3102 0 0.0488 0 -0.8683 3 -1.535 0 -0.2845 0 -0.3565 ;... 
 0.3072 0.0085 0.0713 -0.0295 0 -1.1316 3.8495 -1.19656 -0.1535 -0.2349 -
0.5319 ;... 
 0.3144 0 0.0858 0 -0.0392 0 -1.5392 5.1962 -2.9142 0 -1.1865 ;... 
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 0.2845 0.0617 0 0.1196 -0.1320 0.1178 -0.2845 -1.6826 6.6737 -3.7117 -1.839 
;... 
 0.316 0 0.0954 0 0.0244 0 -0.1423 0 -2.97 11.1962 -10.0469 ;... 
 0 0.6431 -0.8952 1.3788 -1.7903 2.3563 -3.1009 3.8922 -5.7864 4.0326 4.5328 
]; 
m=1:11; 
n=1:11; 
sumA_zt=A(:,m)* Zmt';   
  
sumC_zs=C(:,m)* Zms';  
  
  
sumH_zt=H(:,m)* Zmt'; 
  
  
for n=1:11 
  
    xn_star(n) =(cn(n)+Zmt_angle(n).^2).^0.5; 
    velocity_des_upper(n)=(1/xn_star(n))*   (an(n)+ 2* (sumA_zt(n)) + 
2*(sumC_zs(n)) +  alpha*(bn(n) + 2* (sumH_zt(n)))   ); 
    velocity_des_lower(n)=(1/xn_star(n))*   (an(n)+ 2* sumA_zt(n) - 
2*sumC_zs(n) -  alpha*(bn(n) + 2* sumH_zt(n))   ); 
end; 
  
    cp_upper=1-velocity_des_upper.^2; 
  cp_upper=-cp_upper; 
    cp_lower=1-velocity_des_lower.^2; 
  cp_lower=-cp_lower;   
   
 Am=[0.644 0 0.2357 0 0.1726 0 0.1726 0 0.2357 0 0.6439]; 
 Bm=[-4.8919 0 -0.5690 0 -0.2249 0 -0.1324 0 -0.0976 0 -0.0848]; 
  
  
 %  zero lift angle 
 sumBm_zs=Bm(:,m)*Zms'; 
  
 alpha_zero=2*sumBm_zs; 
 sumAm_zt=Am(:,m)*Zmt'; 
%  from table  
dca_d_alpha=2*pi*(1+2*sumAm_zt); 
dd=poly2sym(dca_d_alpha); 
dddd=int(dd); 
ddd=sym2poly(dddd); 
Ca=polyval(ddd,alpha)-polyval(ddd,alpha_zero); 
Ca; 
  
F_a=0.5*U_infin^2*density*aera*Ca; 
% by formula  
% CP_UP_y: pressure coefficient upper in y or z direction 
% CP_LO_y: pressure coefficient  lowerin y or z direction 
% CP_UP_x: pressure coefficient upper in x direction 
% CP_LO_x: pressure coefficient  lower in x direction 
 CP_UP_y=0;    CP_LO_y=0;     CP_UP_x=0;  CP_LO_x=0; 
 for i=1:10 



89 
 

 CP_UP_y=CP_UP_y+(((cp_upper(i)+cp_upper(i+1))/2)*abs(Xm(i)-Xm(i+1))); 
 CP_LO_y=CP_LO_y+(((cp_lower(i)+cp_lower(i+1))/2)*abs(Xm(i)-Xm(i+1))); 
  
 CP_UP_x=CP_UP_x+(((cp_upper(i)+cp_upper(i+1))/2)*abs(Z_up(i)-Z_up(i+1))); 
 CP_LO_x=CP_LO_x+(((cp_lower(i)+cp_lower(i+1))/2)*abs(Z_lower(i)-
Z_lower(i+1))); 
  
 end; 
%  C_L_Y: lift coefficient in y or z direction 
%  C_L_X: lift coefficient in x direction 
 C_L_Y=CP_UP_y-CP_LO_y; 
 C_L_X=CP_UP_x-CP_LO_x; 
%  CL: lift coefficient 
 CL=C_L_Y*cos(alpha)-C_L_X*sin(alpha) 
%  F_L: lift force 
  F_L=0.5*U_infin^2*density*aera*CL 
   
 figure(2); 
plot(Xm(:,1:11),velocity_des_upper,':'); 
hold all; 
plot(Xm(:,1:11),velocity_des_lower,'ro'); hold all; 
legend('velocity.des.upper','velocity.des.lower') 
xlabel('Xm') 
ylabel('velocity des.') 
figure(3); 
plot(Xm(:,1:11),cp_upper); hold all; 
plot(Xm(:,1:11),cp_lower); hold all; 
legend('cp.upper','cp.lower') 
xlabel('Xm') 
ylabel('-Cp') 
  
d_inter=3; 
  
x=Xm(:,1:11); 
up=polyfit(x,velocity_des_upper,d_inter); 
low=polyfit(x,velocity_des_lower,d_inter); 
upval=polyval(up,x); 
lowval=polyval(low,x); 
  
error_v_up=velocity_des_upper-upval; 
error_v_low=velocity_des_lower-lowval; 
  
figure(4); 
plot(x,upval,x,velocity_des_upper,'ro',x,error_v_up,':',x,lowval,x,velocity_d
es_lower,'mo',x,error_v_low,':'); 
  
  
legend('velocity.des.upper.int','velocity.des.upper','error_v_upper','velocit
y.des.lower.int','velocity.des.lower','error_v_low') 
xlabel('Xm') 
ylabel('velocity des.') 
axis([0 1 -0.2 2.2]); 
  
cp_up=polyfit(x,cp_upper,d_inter); 
cp_low=polyfit(x,cp_lower,d_inter); 
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cp_upval=polyval(cp_up,x); 
cp_lowval=polyval(cp_low,x); 
  
error_cp_up=cp_upper-cp_upval; 
error_cp_low=cp_lower-cp_lowval; 
  
figure(5); 
plot(x,cp_upval,x,cp_upper,'ro',x,error_cp_up,':',x,cp_lowval,x,cp_lower,'mo'
,x,error_cp_low,':'); 
legend('cp.upper.int','cp.upper','error_cp_up','cp.lower.int','cp.lower','err
or_cp_low') 
xlabel('Xm') 
ylabel('-Cp') 
 
 

 

 


