DESIGN AND DEVELOPMENT OF A MEDICAL TELEMETRY SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

by

İSMAİL ÇALIKUŞU

In Partial Fulfilment of the Requirements for

the Degree of Master of Science

in

Biomedical Engineering

NICOSIA 2012

ABSTRACT

Medical telemetry is very important because every second is very crucial for a patient's life as the health condition of the patient is required to be sent to a health specialist as soon as possible. For example, if the heart stops, the person doesn't survive for more than a few minutes. Medical telemetry systems are very advanced with developing technologies such as wireless and Ethernet systems. Ethernet and wireless technology play important roles together in the medical telemetry systems because of their continuous high speed and high data transmission rates. Electrocardiogram signal (ECG) and blood oxygen saturation (SpO2) signals are two of the important indicators directly related to heart-pulmonary system. Monitoring and following of ECG and SpO2 offers us a good indication of heart functionality. Therefore, it is crucial to design and develop a homemade inexpensive device for measuring the Heart Rate and SpO2. In addition to this, data is required to be sent instantly so that it can be monitored and analysed remotely by the health specialist.

In the medical telemetry system designed and developed by the author, ECG and SPO2 signals are obtained using instrumentation amplifiers with filters, and are sent with serial Ethernet board to a remote place for analysis. Signals are transmitted in text format using suitable Ethernet boards. The developed system allows a health specialist to send data easily and cheaply to any required place.

Key words: Medical Telemetry, Biotelemetry, ECG, SPO2, Ethernet.

ÖZET

Medikal telemetri sistemlerinin kullanımı hayati bir öneme sahiptir. Çünkü hastanın hayatta kalabilmesi için hastanın durumunun sağlık uzmanına mümkün olabildiğince hızlı bir şekilde yollanması gerekmektedir. Örneğin, kalbin çalışması durursa kişi birkaç dakikadan fazla hayatını devam ettiremez. Medikal telemetri sistemleri gelişen kablosuz ve Ethernet sistemleri teknolojileri ile birlikte önemli bir ilerleme kaydetmiştir. Ethernet ve kablosuz teknolojileri sürekli yüksek hız ve veri iletim hız oranlarıyla medikal telemetri sistemlerinde önemli bir işleve sahiptir. Elektrokardiyogram (EKG) ve kandaki oksijen doyumu (SPO₂) sinyalleri kalbin dolaşım sistemleri hakkında iki önemli gösterge niteliğindedir. EKG ve SPO₂'nin görüntülenmesi ve izlenmesi kalbin çalışma fonksiyonu hakkında bize önemli bilgiler sunacaktır. Bu yüzden, SPO2 ve kalbin atış hızını ölçebilen ve uzak bir yerde bulunan sağlık personeline anlık olarak gönderebilen ev tipi cihazların tasarlanması hasta açısından hayati bir önem arz etmektedir.

Yazarın gerçekleştirmiş olduğu sistemde EKG ve SPO₂ sinyalleri enstrumantasyon yükselteçleri kullanılarak tasarlanmış olup analiz için uzak istasyona gönderilmiştir. Sinyaller text (metin) formatında Ethernet portu kullanılarak iletilmiştir. Sistem sağlık personeline gerekli herhangi bir yere verinin kolayca ve ucuz bir şekilde yollama imkânı sağlamaktadır.

Anahtar Sözcükler: Medikal telemetri, biyotelemetri, EKG, SPO2, Ethernet.

LIST OF CONTENTS

ABSTRACT	.ii
ÖZET	iii
CONTENTS	. <u>iv</u>
ACKNOWLEDGEMENTS	vi
LIST OF FIGURES	vi
LIST OF TABLES	ix
ABBREVIATIONS USED	Х
CHAPTER 1. INTRODUCTION	1
CHAPTER 2. THE HUMAN HEART	4
2.1 Overview	. 4
2.2. Heart Structure	. 4
2.3. Mechanism of Heart Working	. 5
2.4 Heart Conduction System and Electrical Activity of Heart	7
2.5 Placement of ECG Recording Surface Electrodes	. 9
2.5.1 ECG Limb Leads	10
2.5.2 ECG Augmented Limb Leads	11
2.5.3 ECG Chest Leads	12
2.6 Other types of ECG Leads	13
2.6.1 Esophageal ECG Leads	13
2.6.2 Intracardiac ECG	14
2.6.3 Endotracheal ECG	15
2.6.4 Intracoronary ECG	15
2.7 Summary	15
CHAPTER 3, THE ECG MACHINE	16
3.1 Overview	17
3.2.ECG History	18
3.3.ECG Instrumentation	19
3.4.Biopotential Electrodes for ECG	21
3.4.1.Electrode Electrode Interface	21
3.4.2.Polarization	23
3.4.3. Electrical Characteristics	25
3.4.4.Practical Electrodes for Biomedical Mesurements	27
3.4.4.1.Body Surface Biopotential Electrodes	27
3.4.4.2.Metal Plate Electrodes	28
3.4.2.Electrodes for Chronic Patient's Monitoring	29
3.4.3.Intracavitary and Intratissue Electrodes	32
3.4.4.Microelectrodes	35
3.4.5.Summary	36
CHAPTER 4, SPO2	38
4.1 Overview	38
4.2.Principles of Pulse Oximetry	38

4.3. History of Pulse Oximetry	42
4.4.Pulse Oximeter Instrumentation	43
4.5. Summary	45
CHAPTER 5, MEDICAL TELEMETRY SYSTEMS	46
5.1 Overview	46
5.2 General Description of Medical Telemetry	46
5.3 Brief History of Medical Telemetry System	47
5.4. Types of Medical Telemetry Systems	48
5.4.1 Single Channel Medical Telemetry Systems	48
5.4.2 Multi Channel Medical Telemetry Systems	49
5.5 Summary	50
CHAPTER 6, DESIGN OF A TELEMETRY SYSTEM	51
6.1 Overview	52
6.2 Medical Telemetry System	52
6.2.1 The ECG Measurement System	53
6.2.2 Pulse Oximeter System	57
6.2.3 Microcontroller System	61
6.3 Software of Medical Telemetry System	64
6.4 Summary	64
CHAPTER 7, RESULTS AND DISCUSSSION	66
CHAPTER 8, CONCLUSIONS	72
REFERENCES	74
APPENDIX A INA128 Instrumentation Amplifier block diagram	76
APPENDIX B Nellcorr Pulse Oximeter Probe Pinout for disposable	77
APPENDIX C Software of design system	78
APPENDIX D Pulse Oximeter Signal which eliminated DC effect	92

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Prof. Dr. Dogan Ibrahim, who has supported me throughout my thesis with his patience and knowledge. I attribute the level of my Masters Degree to his encouragement and effort and without him this thesis, too, would not have been completed or written. One simplify could not wish for a better or friendlier supervisor. My thanks and appreciation goes to my thesis committee members. I am greatly indebted to my administrator, Ass. Prof. Dr Terin Adalı, for her relationship and guidance. I am also thankful for the contributions and comments of the teaching staff of the Department of Biomedical Engineering, especially Prof.Dr.D.İbrahim for his kind help.

I am especially grateful to Ass.Prof.Dr Uğur Fidan from Turkey for being a constant source of encouragement and helped me gain self confidence. Here also I would like to thank to my colleagues and friends at the Department of Biomedical Engineering who helped me one way the other. In addition to this, I would like to thank my school headmaster Selçuk ATAKAN and my teacher friends for their relationship and friendlier behaviour.

My final words go to my family. I want to thank my family, whose love and guidance is with me in whatever I pursue.

LIST OF FIGURES

Figure 2.1 Place of heart in the chest	4
Figure 2.2 Heart wall layers	5
Figure 2.3 Structure of the heart	7
Figure 2.4 Heart conduction system	8
Figure 2.5 The ECG wave	9
Figure 2.6 Standard ECG limb leads	. 10
Figure 2.7 ECG augmented limb leads	. 11
Figure 2.8 ECG chest leads	. 12
Figure 2.9 Esophageal ECG wave	. 13
Figure 2.10 Intracardiac ECG and electrode	. 14
Figure 3.1 Einthoven ECG machine	. 17
Figure 3.2 Modern ECG machine	. 18
Figure 3.3 Block Diagram of typical single channel ECG circuit	. 19
Figure 3.4 Instrumentation amplifier	. 20
Figure 3.5 Electrode-electrode interface	. 22
Figure 3.6 The equivailent circuit for a biopotential electrode	. 26
Figure 3.7 An exp. of biopotential electrode impedance as a function of frequency	. 26
Figure 3.8 Metal plate electrode	. 28
Figure 3.9 Suction type electrode for ECG	. 29
Figure 3.10 Recessed type electrodes	. 30
Figure 3.11 Examples of Different type electrodes	. 31
Figure 3.12 Examples of different internal electrodes	. 33
Figure 3.13 Microelectrodes	. 35
Figure 4.1 Haemoglobin and Oxygen Transportation	. 39
Figure 4.2 Absorption coefficient two types	. 40
Figure 4.3 Schematic of finger pulse oximeter idea	. 40
Figure 4.4 Normal detected signal in red and infrared for SPO2	. 41
Figure 4.5 Browse hand held Pulse Oximetry	. 43
Figure 4.6 Block diagram of finger tip pulse oximeter	. 43

Figure 4.7 Timing signals for the LED drivers such as red and infrared	44
Figure 5.1 Block diagram of medical telemetry system	46
Figure 5.2 Block Diagram of a Single Channel Telemetry System	48
Figure 5.3 FM-FM modulated radio telemetry transmitter for ECG	49
Figure 6.1 Block diagram of Medical Telemetry design system	51
Figure 6.2 Block diagram of ECG measurement system	52
Figure 6.3 ECG Measurement system circuit	53
Figure 6.4 The output signal ECG signal from INA128KP	54
Figure 6.5 Block diagram of medical telemetry system	46
Figure 2.1 Place of heart in the chest	4
Figure 2.2 Heart wall layers	5
Figure 2.3 Structure of the heart	7
Figure 2.4 Heart conduction system	
Figure 2.5 The ECG wave	9
Figure 2.6 Standard ECG limb leads	10
Figure 2.7 ECG augmented limb leads	11
Figure 2.8 ECG chest leads	12
Figure 2.9 Esophageal ECG wave	13
Figure 2.10 Intracardiac ECG and electrode	14
Figure 3.1 Einthoven ECG machine	17
Figure 3.2 Modern ECG machine	
Figure 3.3 Block Diagram of typical single channel ECG circuit	19
Figure 3.4 Instrumentation amplifier	
Figure 3.5 Electrode-electrode interface	
Figure 3.6 The equivalent circuit for a biopotential electrode	
Figure 3.7 An ex. of biopotential electrode impedance as a function of freq	
Figure 3.8 Metal plate electrode	
Figure 3.9 Suction type electrode for ECG	
Figure 3.10 Recessed type electrodes	
Figure 3.11 Examples of Different type electrodes	
Figure 3.12 Examples of different internal electrodes	
Figure 3.13 Microelectrodes	

Figure 4.1 Haemoglobin and Oxygen Transportation	. 39
Figure 4.2 Absorption coefficient two types	. 40
Figure 4.3 Schematic of finger pulse oximeter idea	. 40
Figure 4.4 Normal detected signal in red and infrared for SPO2	. 41
Figure 4.5 Browse hand held Pulse Oximetry	. 43
Figure 4.6 Block diagram of finger tip pulse oximeter	. 43
Figure 4.7 Timing signals for the LED drivers such as red and infrared	. 44
Figure 5.1 Block diagram of medical telemetry system	. 46
Figure 5.2 Block Diagram of a Single Channel Telemetry System	. 48
Figure 5.3 FM-FM modulated radio telemetry transmitter for ECG	. 49
Figure 6.1 Block diagram of Medical Telemetry design system	. 51
Figure 6.2 Block diagram of ECG measurement system	. 52
Figure 6.3 ECG Measurement system circuit	. 53
Figure 6.4 The output signal ECG signal from INA128KP	. 54
Figure 6.5 Notch filter circuit for ECG	. 55
Figure 6.6 Sallen Key High Pass Filter for ECG	. 56
Figure 6.7 Sallen Key Low Pass Filter for ECG	. 56
Figure 6.8 Output signal of ECG measurement system	. 57
Figure 6.9 Block diagram of finger tip pulse oximeter system	. 57
Figure 6.10 The output signal for red and infra-red light	. 59
Figure 6.11 Bipolar 555 Timer circuit and pulse signal in oscilloscope	. 60
Figure 6.12 Pulse oximeter circuit with nellcor probe connection	. 60
Figure 6.13 The output signal of INA110KP instrumentation amplifier circuit	61
Figure 6.14 The output signal from Pulse Oximeter system	. 62
Figure 6.15 Pin diagram of DSPIC30F6014A	. 63
Figure 6.16 Microcontroller and Serial Ethernet circuit system	. 64
Figure 7.1 The output signal of ECG system	. 68
Figure 7.2 The output signal of pulse oximeter system	. 69
Figure 7.3 ECG and SPO ₂ signal monitoring in GLCD	. 70

ABBREVATIONS

LCD: Liquid Crystal Display

SPO₂: Saturation Peak of Oxygen in blood.

CMRR: Common Mode Rejection Ratio

GLCD: Graphical Liquid Crystal Display

AC: Alternative Current

DC: Direct Current

PC: Personality Computer

PCM: Pulse Code Modulation

FM: Frequency Modulation

FSK: Frequency Shift Key

GPRS: General Packet Radio Service

ARX: Mach like operating system for Acorn Computer

PDA: Personal Digital Assistant

AC: Access Point

AV: Atrioventricular

aVR: Augmented Vector Right

LED: Light Emitting Diode

RA: Right Arm

LA: Left Arm

RL: Right Leg

LL: Left Leg

aVL: Augmented Vector Left

IR: Infrared

LF: Low Frequency

HF: High Frequency

DSP: Digital Signal Processing

SL:Semilunar

aVF: Augmented Vector Foot

RAM: Read Access Memory

EMG: Electromyography

BPF: Band Pass Filter

HR: Heart Rate

LIST OF TABLES