
CHAPTER 1

BASIC DEFINITIONS

1.1 Introduction

At the begining of the 19. century, the function 2F1(a; b; c;x) is the �rst Hyper-

geometric function to be studied by Gauss and so is frequently known as Gauss�s

hypergeometric function. Subsequently, most mathematicians had studied about

hypergeometric functions and several dei¤erent forms and applications of them had

been obtained.

Almost all of the elementary functions of mathematics are either hypergeometric

or ratios of hypergeometric functions. This is the importance of hypergeometric

functions.

The aim of this thesis is investigation of basic and elementary properties of hyper-

geometric functions. Anyone, who want to study further and harder properties of

htpergeometric functions, this thesis can be a �rst step of them.

At the �rst chapter, some basic de�nitions and theorems that will be need at the

other chapters are given.

At the second chapter, �rst convegency of the Hypergeometric Series for jxj � 1 is

shown and then the sum of Hypergeometric series which are called Hypergeometric

functions is obtained.

At the third chapter, it will be shown that the solutions of Hypergeometric Di¤er-

ential Equations are given by Hypergeometric Function F (a; b; c;x):

Additional properties of the hypergeometric fumctions are going to be obtained at

the fourth chapter.

Finally, de�nitions and properties of generalized hypergeometric functions that they

can de reduced to the hypergeometric functions by special choice of parameters are

given.
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In this Chapter, the basic de�nitions and theorems about the topics that it will be

needed while obtaining the properties of Hypergeometric functions will be given.

1.2 Series and Power Series

First, start with the basic idea of series. (Adams, R. A. & Essex, C. , 2010)

De�nition 1.1

In mathematics, given an in�nite sequence of numbers { an }, a series is informally

the result of adding all those terms together: a1+ a2+ a3+ :::. These can be written

more compactly using the summation symbol
1P
n=1

an.

De�nition 1.2

A series
P
an is convergent if its sequence of partial sums fSng converges that is, if

lim
n!1

Sn = S for some real number S. The limit S is the sum of the series
P
an and

we write
1X
k=1

ak = S = a1 + a2 + ::::::+ an (1.1)

Thus, if the sequence of partial sums of a series converges then the series converges.

The converse of this implication is true.

Another de�nition about the convergence of a seris by using the absolute value of

series can be given.

De�nition 1.3

A series
1X
n=0

an is said to converge absolutely if the series
1X
n=0

janjconverges, where

janj denotes the absolute value.

It is known that, if a series ia absolutely convergent then it is convergent.

Some in�nite series have positive general terms. These type of series are called

positive series. There is a usefull test for the convergence of positive series. Now, let

de�ne this test which is called ratio test.
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De�nition 1.4

Suppose that an > 0 and that � = lim
n!1

an+1
an

exists or is +1.

a) If 0 � � < 1; then
1P
n=1

an converges.

b) If 1 < � � 1; then limn!1 an =1 and
1P
n=1

an diverges to in�nity.

c) If � = 1; this test gives no information; the series may either converge or diverge

to in�nity. This test is called the ratio test.

There is an alternative test for the convergence and absolute convergence of the series

which is called Gauss Test. (Kosmala, 2004)

De�nition 1.5

If
��� anan+1

��� = 1+ h
n
+ Cn
nr
where r > 1 and Cn is bounded, then the series

P
an convergent

if h > 1 and diverges if h � 1: It is same with
���an+1an

��� = 1� p
n
+B(n)

nr
the series converges

absolutely if and only if p > 1: This test is called Gauss Test.

Some in�nite series consist variable x and so the series can be convergent or divergent

with respect to the values of x. Now, the de�nition of these special kind of in�nite

series which are called power series is given.

De�nition 1.6

A series of the form

1X
n=0

an (x� c)n = a0 + a1 (x� c) + a2 (x� c)2 + a3 (x� c)3 + ::: (1.2)

is called a power series in powers of x � c or a power series about the point x = c.

The constants a0; a1; a2; a3:::are called the coe¢ cients of the power series. The point

c is the centre of covergence of the power series.

The convergence of a power series depends to the values of x. It means there can be
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an interval that the power series is converge.

Theorem 1.1

For any power series
1P
n=0

an (x� c)n one of the following alternatives must hold:

(i) the series may converge only at x = c;

(ii) the series may converge at every real number x, or

(iii) there may exist a positive real number R such that the series converges at every

x satisfying jx� cj < R and diverges at every x satisfying jx� cj > R: In this case

the series may or may not converge at either of the two endpoints x = c � R and

x = c+R:

By Theoem 1.1, the set of values x for which the power series
1P
n=0

an (x� c)n converges

is an interval centered at x = c: This interval is called the interval of convergence of

the power series. It must be of one of the following forms:

(i) the isolated point x = c

(ii) the entire line (�1;1)

(iii) a �nite interval centered at c; [c�R; c+R] ; or [c�R; c+R) ; or (c�R; c+ r] ;

or (c�R; c+ r) :

The number R in (iii) is called the radius of convergence of the power series.

De�nition 1.7

Suppose that L = lim
n!1

���an+1an

��� exist or is1: Then the power series 1P
n=0

an (x� c)n has

radius of convergence R = 1
L
:

For later works, some rules about elementary series manupilations will be needed.

Here are two basic lemmas about rearrangement of terms in iterated series with their

proofs. (Rainville, E. D. (1965))
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Lemma 1.1

1X
n=0

1X
k=0

A(k; n) =

1X
n=0

nX
k=0

A(k; n� k) (1.3)

and
1X
n=0

nX
k=0

B(k; n) =

1X
n=0

1X
k=0

B(k; n+ k) (1.4)

Proof

Let consider the series
1X
n=0

1X
k=0

A(k; n) tn+k (1.5)

If introduce new indices of summation j and m by

k = j ; n = m� j (1.6)

then the exponent (n+ k) in (1.3) becomes m. Because of (1.6), the inequalities

n � 0 ; k � 0

become

m� j � 0 ; j � 0

or 0 � j � m: Thus arrive at

1X
n=0

1X
k=0

A(k; n) tn+k =
1X
m=0

mX
j=0

A(j;m� j) tm

and by putting t = 1 and replacing dummy indices j and m on the right by dummy

indices k and n, (1.3) is obtained. (1.4) can be obtained by writing the (1.3) in

reverse.
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Lemma 1.2
1X
n=0

1X
k=0

A(k; n) =
1X
n=0

[n2 ]X
k=0

A(k; n� 2k) (1.7)

and
1X
n=0

[n2 ]X
k=0

B(k; n) =
1X
n=0

1X
k=0

B(k; n+ 2k) (1.8)

Proof

Consider the seires
1X
n=0

1X
k=0

A(k; n) tn+2k (1.9)

and introduce new indices as

k = j ; n = m� 2j (1.10)

so that n+2k=m. Since

n � 0 ; k � 0 (1.11)

it is concluded that

m� 2j � 0 ; j � 0 (1.12)

from which 0 � 2j � m and m � 0: Since 0 � j � 1
2
m ,

1X
n=0

1X
k=0

A(k; n) tn+2k =
1X
m=0

[ 12m]X
j=0

A(j;m� 2j) tm (1.13)

is obtained. By taking t = 1 and making the proper change of letters for the dummy

indices on the right side in (1.13), (1.7) is obtained. Equation (1.8) is (1,7) in reverse

order.

Note also that a combination of Lemmas 1.1 and Lemma 1.2 gives

1X
n=0

nX
k=0

C(k; n) =

1X
n=0

[n2 ]X
k=0

C(k; n� k):
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Now, de�nition of another important series as binomial series is given.

Theorem 1.2

If jxj < 1; then

(1 + x)r = 1 + r x+
r (r � 1)
2!

x2 +
r (r � 1) (r � 2)

3!
x3 + :::

= 1 +

1X
n=0

r (r � 1) (r � 2) :::(r � n+ 1)
n!

xn ; (�1 < x < 1)

If take x = �z and r = �a, partic¬larly it can be obtain

(1� z)�a =
1X
n=0

(a)n z
n

n!
(1.14)

1.2 Gamma Function

Now, the de�nition of a special function which is de�ned by an improper integral is

going to be given. This function is called Gamma Function and has several applica-

tions in Mathematics and Mathematical Physics.(Marcellan, F. & Van Assche, W.

(2006))

De�nition 1.8

The improper integral
1Z
0

tx�1e�tdt (1.15)

converges for x > 0. The function which gives the value of (1.15)

respect to x is called "Gamma Function" and denoted by �:

�(x) =

1Z
0

tx�1e�tdt (1.16)
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Several properties of the Gamma function can be obtained easily. Now we will give

some basic properties of Gamma function without their proofs.

1.

� (n+ 1) =

1Z
0

tne�tdt = n! (1.17)

where n is a positive integer.

2.

�(x+ 1) = x �(x) (1.18)

where �1 < x:

3.

� (b) :�

�
b+

1

2

�
= 21�2b:

p
�:� (2b) (1.19)

where b is a non-negative integer.

4.

�

�
b+

1

2
n

�
�

�
b+

1

2
n+

1

2

�
= 21�2b�n

p
� � (2b+ n) (1.20)

where Re(b) > 0 and n is a non-negative integer.

5.

� (a) =
(n� 1)! na
(a)n

(1.21)

where Re(a) > 0 and n is a non-negative integer.

In the theory of special functions and applied mathematics, there is a usefull symbol

which is called Pochammer symbol. (Andrews, G. E. & Askey, R. & Roy, R. (1999))
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De�nition 1.9

Let x is a real or complex number and n is a positive number or zero.

(x)n =
�(x+ n)

�(x)
= x(x+ 1):::::(x+ n� 1) (1.22)

(x)0 = 1

is known as "Pochammer Symbol".

Let give some properties of this symbol.

1.
(c)n+k
(c)n

= (c+ n)k

where c is a real or complex number and n and k are natural numbers.

2.
n!

(n� k)! =
(�n)k
(�1)k

where n and k are natural numbers.

3.
(c)2k
22k

=
� c
2

�
k

�
c

2
+
1

2

�
k

where c is a complex number and k is a natural number.

4.
(2k)!

22k k!
=

�
1

2

�
k

where k is a natural number.
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Lemma 1.3

For a non-negative number n

(�)2n = 2
2n
��
2

�
n

�
�+ 1

2

�
n

(1.23)

Proof

(�)2n = � (�+ 1) (�+ 2) ::: (�+ 2n� 1)

= 22n
��
2

� �
�+ 1

2

� ��
2
+ 1
� �

�+ 1

2
+ 1

�
:::
��
2
+ n� 1

� �
�+ 1

2
+ n� 1

�
= 22n

��
2

���
2
+ 1
�
:::
��
2
+ n� 1

� �
�+ 1

2

��
�+ 1

2
+ 1

�
:::

�
�+ 1

2
+ n� 1

�
= 22n

��
2

�
n

�
�+ 1

2

�
n

Lemma 1.4

For 0 � k � n,

(�)n�k =
(�1)k (�)n
(1� �� n)k

(1.24)

Proof

By de�nition (1.20)

(�)n�k = (�) (�+ 1) ::: (�+ n� k � 1)

If multiply and divide the right hand side of above equality with

(�+ n� k) (�+ n� k + 1) ::: (�+ n� 1)
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then

(�)n�k =
(�) (�+ 1) ::: (�+ n� k � 1) (�+ n� k) (�+ n� k + 1) ::: (�+ n� 1)

(�+ n� k) (�+ n� k + 1) ::: (�+ n� 1)

=
(�)n

(�1)k (1� n� �) ::: (1� n� �+ k) (1� n� �+ k � 1)

=
(�1)k (�)n
(1� �� n)k

is obtained.

Particularly, from Lemma 1.4, for � = 1;

(1)n�k =
(�1)k (1)n
(�n)k

and

(n� k)! = (�1)k n!

(�n)k
; 0 � k � n (1.25)

1.3 Di¤erential Equations

In the theory of second order linear di¤erential equation with variable coe¢ cients,

series method solutions are important. For these solutions, let give the de�ni-

tions of critical points of an second order di¤erential equation with variable coef-

�cients.(Agarwa, R. P. & O�Regan, D. (2009))

De�nition 1.10

Consider a second-order ordinary di¤erential equation

P (x)y00 +Q(x)y0 +R(x)y = 0 (1.26)

It will be assumed that xo is a regular singular point for this equation. The de�nition

of regular singular point implies the following three conditions.

1) P (xo) = 0
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2) lim
x!x0

(x�x0):Q(x)
P (x)

exist

3) lim
x!x0

(x�x0)2:R(x)
P (x)

A point x0 is an ordinary point for P (x)y00 +Q(x)y0 +R(x)y = 0 if P (x) 6= 0:

For solving di¤erential equations by series method, there are two types of series..

1. If x0 is an ordinary point for (1.26), then we can �nd a solution in the neighborhood

of x0 for the di¤erential equation (1.26) by using the Taylor Series Method where

y =
1P
n=0

an (x� x0)n :

2. If x0 is a regular singular point for the di¤erential equation (1.26), then we can

�nd a solution in the neighborhood of x0 for the di¤erential equation (1.26) by using

the Frobenius Series Method where y =
1P
n=0

an (x� x0)n :
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CHAPTER 2

HYPERGEOMETRIC SERIES

Before obtaining the Hypergeometric functions, it needs to be shown that the series

which give Hypergeometric functions convergent and have �nite sum. In this chapter,

the convergency of hypergeometric series and then �nd the sum of them will be

investigated. (Kummer, E. E. (1836); Rainville, E. D. (1965))

2.1 De�nition of Hypergeometric Series

De�nition 2.1

A series of the form

1 +
ab

c:1!
x+

a(a+ 1)b(b+ 1)

c(c+ 1)2!
x2 +

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)3!
x3 + :::

=

 1X
m=0

�(a+m)�(b+m)

�(c+m)m!
xm

!
�(c)

�(a)�(b)
(2.1)

is called a hypergeometric series.

This sum can be obtained by using properties of the Gamma function . The series

from the right side of the equation (2.1) is in the form of

1X
m=0

�(a+m)�(b+m)

�(c+m)m!
xm

=
�(a)�(b)

�(c)
+
�(a+ 1)�(b+ 1)

�(c+ 1)1!
x+

�(a+ 2)�(b+ 2)

�(c+ 2)2!
x2 + ::: (2.2)
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If multipling both sides of (2.2) by �(c)
�(a)�(b)

and using the property (1.17), then

 1X
m=0

�(a+m) �(b+m)
�(c+m) m!

xm

!
�(c)

�(a) �(b)
=

�
�(a) �(b)
�(c)

+ �(a+1) �(b+1)
�(c+1) 1!

x+ :::
�
: �(c)
�(a) �(b)

=
�
�(a) �(b)
�(c)

�(c)
�(a) �(b)

�
+
�
a! b!
c!
x
� �

(c�1)!
(a�1)! (b�1)!

�
+

�
(a+1)! (b+1)!
(c+1)! 2!

x2
��

(c�1)!
(a�1)! (b�1)!

�
+ :::

= 1 + a b
c
x+ a (a+1) b (b+1)

c (c+1) 2!
x2 + :::

is obtained which gives (2.1).

2.2 Sum of Hypergeometric Series

Now, �rst let give the de�nition of Hypergeometric function and then show that the

Hypergeometric series converges to this function.

De�nition 2.2

The sum of the hypergeometric series denoted by F (a; b; c;x) is called Hypergeomet-

ric Function

F (a; b; c; z) =
1X
m=0

(a)m (b)m
(c)mm!

xm (2.3)

Now, investigate where the series (2.3) converge. For this, let we use the ratio test.

The ratio of the coe¢ cients of xm+1and xm in the series (2.3) is

(a)m+1 (b)m+1
(c)m+1 (m+ 1)!

(c)m m!

(a)m (b)m
(2.4)

=
(a+m) (b+m)

(c+m) (m+ 1)

which tends to 1 uniformly as m!1, regardless of the values of a, b and c. So by

ratio test, for

um =
(a)m(b)m
(c)mm!

xm
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lim
m!1

����um+1um

���� = lim
m!1

����(a+m)(b+m)(c+m)(m+ 1)
:x

���� = jxj
can be obtained and for jxj < 1 the series (2.3) converges.

Also, (2.4) can be written as in the form of

1� 1 + c� a� b
m

+O(
1

m2
) (2.5)

Really,
(m+a) (m+b)
(m+1) (m+c)

=
��
1 + a

m

� �
1 + b

m

�� ��
1 + 1

m

� �
1 + c

m

���1
=

�
1 + a+b

m
+O

�
1
m2

�� �
1� 1+c

m
+O

�
1
m2

��
= 1 + a+b�c�1

m
+O

�
1
m2

�
Thus, the series (2.3) converges absolutely at x = �1 by the Gauss test if c >

a+ b: Therefore, the series (2.3) is convergent for jxj � 1:
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CHAPTER 3

THE HYPERGEOMETRIC DIFFERENTIAL EQUATION

It is known that, a second order linear di¤erential equation can be solved by series

method. Thus, a convergent series could be a solution of any second order linear

di¤erential equation. In this Chapter, the solutions of the Hypergeometric di¤erential

equations will be obtain as Hypergeometric series.(Rainville, E. D. (1965))

Now, let start to solve the hypergeometric di¤erential equation

x(1� x)y00 + [c� (a+ b+ 1) x] y0 � aby = 0 (3.1)

where a, b, c are parameters. It is clear that x = 0 and x = 1 are regular singular

points of the equation (2.6) whereas all other points are ordinary points.

P (0) = 0 (1� 0) = 0

lim
x!0

(x� 0) [c� (a+ b+ 1) x]
x (1� x) = c

and

lim
x!0

(x� 0)2 (�ab)
x (1� x) = 0

gives that x = 0 is a regular singular point. Similarly, it can be shown that x = 1 is

a regular singular point, too.

The equation (2.6) can be solved by using the Frobenius series method at a neigbor-

hood of regular singular point x = 0: By using the series

y(x) = xr
1X
m=0

cmx
m =

1X
m=0

cmx
r+m (3.2)

then the derivatives
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y0 =
1X
m=0

cm(r +m)x
r+m�1 (3.3)

and

y00 =
1X
m=0

cm(r +m)(r +m� 1)xr+m�2 (3.4)

can be obtained. If (3.2), (3.3) and (3.4) are substituted into the equation (3.1), it

will be obtained that

x
1X
m=0

cm(r +m)(r +m� 1)xr+m�2 � x2
1X
m=0

cm(r +m)(r +m� 1)xr+m�2

+c

1X
m=0

cm(r +m)x
r+m�1 � (a+ b+ 1) x

1X
m=0

cm(r +m)x
r+m�1 � ab

1X
m=0

cmx
r+m

= 0

(3.5)

In the equation (3.5), if the x terms inside the summations are rewritten, then

1X
m=0

cm(r +m)(r +m� 1)xr+m�1 �
1X
m=0

cm(r +m)(r +m� 1)xr+m

+c
1X
m=0

cm(r +m)x
r+m�1 � (a+ b+ 1)

1X
m=0

cm(r +m)x
r+m � ab

1X
m=0

cmx
r+m

= 0

(3.6)

Now, in the equation (3.6), equalize the powers of x to the smallest power r+m�1,

and obtain

1X
m=0

cm(r +m)(r +m� 1)xr+m�1 �
1X
m=1

cm(r +m� 1)(r +m� 2)xr+m�1

+c
1X
m=0

cm(r +m)x
r+m�1 � (a+ b+ 1)

1X
m=1

cm�1(r +m� 1)xr+m�1

�ab
1X
m=1

cm�1x
r+m�1

= 0

(3.7)
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If the series start from m = 1; then (3.7) can be written as

c0(r)(r � 1)xr�1 +
1X
m=1

cm(r +m)(r +m� 1)xr+m�1

�
1X
m=1

cm�1(r +m� 1)(r +m� 2)xr+m�1 + c(c0r)xr�1 + c
1X
m=1

cm(r +m)x
r+m�1

� (a+ b+ 1)
1X
m=1

cm�1(r +m� 1)xr+m�1 � ab
1X
m=1

cm�1x
r+m�1

= c0(r(r � 1) + rc)xr�1 +
1X
m=1

cm(r +m)(r +m� 1)xr+m�1

�
1X
m=1

cm�1(r +m� 1)(r +m� 2)xr+m�1 + c
1X
m=1

cm(r +m)x
r+m�1

�(1 + a+ c)
1X
m=1

cm�1(r +m� 1)xr+m�1 � ab
1X
m=1

cm�1x
r+m�1 = 0

(3.8)

So the indical equation and its roots are obtain as

r(r � 1) + cr = 0 (3.9)

and

r1 = 0 r2 = 1� c (3.10)

Also from the rest of terms in the equation (3.8), we can obtain the recurrence

relation

[(r +m) (r +m� 1) + c (r +m)] cm
+ [� (r +m� 1) (r +m� 2)� (a+ b+ 1) (r +m� 1)� ab] cm�1
= 0

or

[(r +m+ 1) (r +m) + c (r +m+ 1)] cm+1

= [(r +m) (r +m� 1) + (a+ b+ 1) (r +m) + ab] cm
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and so

(r +m+ 1) (r +m+ c) cm+1 = (r+a+m)(r+b+m)cm (for m = 0; 1; :::) (3.11)

Therefore, by taking m = 0; 1; 2; :::,

cm+1 =
(a+m) (b+m)

(c+m) (m+ 1)
cm

and

c1 =
a b

c
c0

c2 =
(a+ 1) (b+ 1)

(c+ 1) 2
c1

:::::

So, for the exponent r1 = 0, the recurrence relation (3.11) leads to the solution

c0F (a; b; c; x): Taking c0 = 1; �rst solution of the di¤erential equation (3.1) can be

found as

y(x) = F (a; b; c; x) (3.12)

The second solution with the exponent r2 = 1 � c; when c is neither zero nor a

negative integer, can be obtained as follows: In the di¤erential equation (3.1), by

using the substitution

y = x1�cw (3.13)

with

y0 = (1� c)x�c:w + x1�c:w

and
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y00 = (1� c)(�c)x�c�1w + (1� c) x�c w0 + (1� c) x�c w0 + x1�c w00

= c(c� 1)x�c�1 w + 2(1� c) w0 + x1�c w00

then

x (1� x) c (c� 1) x�c�1 w + 2 (1� c) x�c x (1� x) w0 + x (1� x) x1�c w00

+ [c� (a+ b+ 1) x] (1� c) x�c w + [c� (a+ b+ 1)x] (1� c) x1�c w0

�a b x1�c w = 0

is obtained. After making some arrangements, we obtain

x (1� x) x1�c w00 + [2 (1� c) x�c x (1� x) + [c� (a+ b+ 1) x] x1�c] w0

+ [x (1� x) c (c� 1) x�c�1 + [c� (a+ b+ 1) x](1� c) x�c � a b x1�c] w

= 0

(3.14)

If divide both sides of the equation (3.14) by x1�c; second order di¤erential equation

can be obtained as

x(1� x):w00 + [1� c� [(a� c+ 1) + (b� c+ 1) + 1]x]w0

�(a� c+ 1)(b� c+ 1)w = 0
(3.15)

If pick

a1 = a� c+ 1 b1 = b� c+ 1 c1 = 2� c

then the equation (3.15) turns in the form of

x(1� x)w00 + [c1 � (a1 + b1 + 1)x]w0 � a1b1w = 0 (3.16)

It is known that the di¤erential equation (3.16) is the Hypergeometric Di¤erential

Equation and has the solution

w(x) = F (a1; b1; c1; x) (3.17)
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If the values of a1; b1; c1 and the substitution (3.13) are written, then the solution of

the Hypergeometric di¤erential equation can be obtained as

y(x) = x1�cF (a� c+ 1; b� c+ 1; 2� c; x) (3.18)

The solutions (3.12) and (3.18) are linearly independent. So, the general solution of

the Hypergeometric Di¤erential Equations about x = 0 is written as

y(x) = c1F (a; b; c;x) + c2x
1�cF (a� c+ 1; b� c+ 1; 2� c; x) (3.19)

For the solution at the singular point x = 1; it is deduced from the preceding solutions

by a change of independent variable t = 1�x:Let try to express the solutions of this

case in terms of the solutions for the point x = 0: Let t = 1� x Then

dy

dx
=
dy

dt

dt

dx
= �dy

dt
d2y

dx2
=
d

dx

dy

dx
=
d

dx
(�dy
dt
) =

d

dt

dt

dx
(�dy
dt
) =

d2y

dt2

So, the equation (3.1) can be written as

t (1� t) d
2y

dt2
� (c1 � (1 + a+ b)(1� t))

dy

dt
� aby = 0 (3.20)

If c1 = a+ b� c+ 1 is taken, it turns the equation (3.1) and has the solutions

y(x) = F (a; b; a+ b� c+ 1; 1� x) (3.21)

and

y(x) = (1� x)c�a�bF (c� b; c� a; c� a� b+ 1; 1� x) (3.22)
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where c�a� b is not a positive integer. So, the general solution

of the Hypergeometric Di¤erential Equations near the regular singular point x = 1

is

y(x) = c3F (a; b; a+b�c+1; 1�x)+c4(1�x)c�a�bF (c�b; c�a; c�a�b+1; 1�x) (3.23)
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CHAPTER 4

ADDITIONAL PROPERTIES OF HYPERGEOMETRIC FUNCTIONS

In the theory of special functions and applied mathematics, some properties of Hy-

pergeometric function make important roles. Sometimes, alternative de�nitions or

new explicit formulas of the Hypergeometric function are usefull. In this chapter,

several properties of the hypergeometric functions are going to be obtained.

For our later works of this chapter, an important terminated value of hypergeometric

functions which can be obtained by changing the values of the variables will be

needed. (Rainville, 1965)

Theorem 4.1

F (�n; c� b; c; 1) = �(c) �(b+ n)

�(c+ n) �(b)
(4.1)

4.1 A Simple Transformation for Hypergeometric Function

In this section, we are going to give a theorem about a transformation between

Hypergeometric functions with di¤erent variables. Then, we are going to obtain an

equality for Hypergeometric functions. (Rainville, 1965)

Theorem 4.2

If jzj < 1 and
�� z
1�z

�� < 1, then
F

24 a; b;
c;
z

35 = (1� z)�a F
24 a; c� b;

c;

�z
1� z

35 (4.2)

Proof

23



It is known that

F

24 a; c� b;
c;

�z
1� z

35 = 1X
k=0

(a)k (c� b)k (�1)k zk
(c)k k! (1� z)k

If both sides multiplied by (1� z)�a, then

(1� z)�a F

24 a; c� b;
c;

�z
1� z

35 = 1X
k=0

(a)k (c� b)k (�1)k zk
(c)k k! (1� z)k+a

(4.3)

is obtained. By (1.14),

(1� z)�a F

24 a; c� b;
c;

�z
1� z

35 = 1X
k=0

1X
n=0

(a)k (c� b)k (a+ k)n (�1)k zn+k
(c)k k! n!

and from the �rst properties of Poachammer symbol, (a)k (a+ k)n = (a)n+k;

(1� z)�a F

24 a; c� b;
c;

�z
1� z

35 = 1X
n=0

1X
k=0

(c� b)k (a)n+k (�1)k zn+k
(c)k k! n!

can be written. By using (1.3) from Lemma 1.1, and the equality (1.24)

(1� z)�a F

24 a; c� b;
c;

�z
1� z

35 =

1X
n=0

nX
k=0

(c� b)k (a)n (�1)k zn
(c)k k! (n� k)!

=
1X
n=0

nX
k=0

(c� b)k (�n)k
(c)k k!

(a)n z
n

n!

can be obtained. The inner sum on the right side of above equality gives a terminating

hypergeometric series. Hence

(1� z)�a F

24 a; c� b;
c;

�z
1� z

35 = 1X
n=0

F

24 �n; c� b;
c;
1

35 (a)n zn
n!

24



By Theorem 4.1,

(1� z)�a F

24 a; c� b;
c;

�z
1� z

35 =

1X
n=0

�(c) �(b+ n) (a)n z
n

�(c+ n) �(b) n!

=

1X
n=0

(b)n (a)n
(c)n n!

zn

= F (a; b; c; z)

which gives the proof.

The roles of a and b may be interchanged in Theorem 4.2.

F

24 a; b;
c;
z

35 = (1� z)�b F
24 c� a; b;

c;

�z
1� z

35 (4.4)

A result of Theorem 4.2 can be given as a new theorem.

Theorem 4.3

If jzj < 1; then

F (a; b; c; z) = (1� z)c�b F (c� a; c� b; c; z) (4.5)

Proof

Let apply the new form of Theorem 4.2 which was given by (4.4) to the Hypergeo-

metric function on the right in (4.2). If put

y =
�z
1� z

then

F

24 a; c� b;
c;
y

35 = (1� y)�c+b F
24 c� a; c� b;

c;

�y
1� y

35
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Because of 1� y = (1� z)�1 and �y=(1� y) = z,

F

24 a; c� b;
c;

�z
1� z

35 = (1� z)c�b F
24 c� a; c� b;

c;
z

35
can be written. If combine this result with Theorem 4.2, then the desired result is

obtained.

4.2 A Quadratic Transformation for Hypergeometric Function

By using a linear fractional transformation on the independent variable, it can be

studied the transformations of equation (3.1) into itself. By using quadratic trans-

formations and relations among a; b and c; several properties of Hypergeometric

functions can be obtained as one of them is given by the following theorem.

Theorem 4.5

If 2b is neither zero nor a negative integer, and if both jxj < 1 and
��4x (1 + x)�2�� < 1;

then

(1 + x)�2a F

24 a; b;
2b;

4x

(1 + x)2

35 = F
24 a; a� b+ 1

2
;

b+ 1
2
;
x2

35 (4.6)

Proof

If put c = 2b in the equation (4.1), then

z(1� z)w00 + [2b� (a+ b+ 1) z]w0 � abw = 0 (4.7)

obtained. It is known that one solution of the equation (4.2) is

w = F (a; b; 2b; z) (4.8)

Now, let take

z =
4x

(1 + x)2
(4.9)
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and apply this subtitution to the equation (4.2).

w0 =
dw

dz
=
(1 + x)3

4� 4x :
dw

dx
(4.10)

and

w00 =

�
8x� 16
(1 + x)4

:
dw

dx
+
4� 4x
(1 + x)3

:
d2w

dx2

� �
(1 + x)3

4� 4x

�
(4.11)

=
8x� 16

(1 + x)(4� 4x)
dw

dx
+
d2w

dx2

are obtained. When put (4.5) and (4.6) in (4.2),

4x

(1 + x)2

�
1� 4x

(1 + x)2

��
8x� 16

(1 + x)(4� 4x)
dw

dx
+
d2w

dx2

�
+

�
2b� (a+ b+ 1) 4x

(1 + x)2

� �
(1 + x)3

4� 4x :
dw

dx

�
� abw

= 0

After some simpli�cations

x

(1 + x)2

"
(x� 1)2

(1 + x)2
:

8x� 16
(1 + x)(1� x)

dw

dx

#
+
4x (x� 1)2

(1 + 4)4
d2w

dx2

+

�
2b� (a+ b+ 1)x:(1 + x)

(1� x)
dw

dx

�
� 4abw

= 0

and

8x(x� 2)
(1 + x)5

dw

dx
+
4x(1� x)
(1 + x)4

d2w

dx2
(4.12)

+

�
2b� (a+ b+ 1)x (1 + x)

(1� x)2
dw

dx

�
� 4ab

(1� x)w

= 0

is obtained. By multiplying both sides of the equation (4.12) with

(1 + x)6

4
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then the di¤erential equation is obtained as

x (1� x) (1 + x)2 d
2w

dx2
+2(1+x)

�
b� 2ax+ bx2 � x2

� dw
dx
� 4ab(1�x)w = 0 (4.13)

which has a solution in the form of

w = F

24 a; b;
2b;

4x

(1 + x)2

35 (4.14)

If making substitution as

w = (1 + x)2ay

in the equation (4.8), by the derivatives

w0 = 2a(1 + x)2a�1y + (1 + x)2ay0

and

w00 = (2a� 1)(2a)(1 + x)2a�1y + 2a(1 + x)2a�1y0 + 2a(1 + x)2a�1y0 + (1 + x)2ay00

= (1 + x)2ay00 + 4a(1 + x)2a�1y0 + (2a� 1)(2a)(1 + x)2a�1y

then

x (1� x) (1 + x)2
�
(1 + x)2ay00 + 4a(1 + x)2a�1y0 + (2a� 1)(2a)(1 + x)2a�1y

�
+2(1 + x)

�
b� 2ax+ bx2 � x2

� �
2a(1 + x)2a�1y + (1 + x)2ay0

�
�4ab(1� x)w

= 0

is obtained which gives

x (1� x) (1 + x)2a+2y00 +
�
4ax (1� x) + 2

�
b� 2ax+ bx2 � x2

��
(1 + x)2a+1y0

+
�
x (1� x) (2a� 1)(2a) + 4a

�
b� 2ax+ bx2 � x2

��
(1 + x)2ay

= 0
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If multipling the last equation by

1

(1 + x)2a+1

then

x (1� x) (1 + x)y00 +
�
4ax� 4ax2 + 2b� 4ax+ 2bx2 � 2x2

�
y0

+
�
4a2x� 2ax� 4a2x2 + 2ax2 + 4ab� 8a2x+ 4abx2 � 4ax2

�
(1 + x)�1 y

= 0

and

x(1� x2)y00 + 2
�
b� (2a� b+ 1)x2

�
y0 � 2ax(1 + 2a� 2b)y = 0 (4.15)

Hypergeometric equation is obtained. (4.5) has a solution

y = (1 + x)�2aF

24 a; b ;
2b;

4a

(1 + x)2

35 (4.16)

If x changed by �x and introduce a new independet variable v = x2 in equation

(4.5), it is easily obtained the equation

v(1� v)d
2y

dv2
+

�
b+

1

2
�
�
2a� b+ 3

2

�
v

�
dy

dv
� a(a� b+ 1

2
)y = 0 (4.17)

which has the general solution

y = AF

24 a; a� b+ 1
2
;

b+ 1
2
;

v

35+B v 12�b F
24 a� b+ 1

2
; a� 2b+ 1;

3
2
� b ;

v

35 (4.18)

with jvj < 1:

The di¤erential equation (4.2) has a solution in (4.4) as 2b is neither zero nor a

negative integer. At same time the di¤erential equation (4.7) has the general solution

in jvj < 1 with v = x2.
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Therefore, if both

jvj < 1 and
���� 4x

(1 + x)2

���� < 1
and if 2b is neither zero nor a negative integer, there exist constants A and B such

that

(1 + x)�2a F

24 a; b;
2b;

4x

(1 + x)2

35

= A F

24 a; a� b+ 1
2
;

b+ 1
2
;
x2

35+B x1�2b F
24 a� b+ 1

2
; a� 2b+ 1;

3
2
� b;

x2

35 (4.19)

In this equation, the term

(1 + x)�2a F

24 a; b;
2b;

4x

(1 + x)2

35
and

A F

24 a; a� b+ 1
2
;

b+ 1
2
;
x2

35
are analytic at x = 0 but the term

B x1�2b F

24 a� b+ 1
2
; a� 2b+ 1;

3
2
� b;

x2

35
is not analytic at x = 0 because it has the factor x1�2b:

Hence B = 0 should be choosen and A is easily determined by using the resultant

identity

(1 + x)�2a F

24 a; b;
2b;

4x

(1 + x)2

35 = A F
24 a; a� b+ 1

2
;

b+ 1
2
;
x2

35
By putting x = 0;

A = 1
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is obtained and the desired result

(1 + x)�2a F

24 a; b;
2b;

4x

(1 + x)2

35 = F
24 a; a� b+ 1

2
;

b+ 1
2
;
x2

35
is found.

4.3 Other Quadratic Transformation for Hypergeometric Function

Now, let give another properties of quadratic transformation.

Theorem 4.6

If 2b is a non-negative integer and if jyj < 1
2
and

��� y
(1�y)

��� < 1;

(1� y)�a F

24 1
2
a; 1

2
a+ 1

2
;

b+ 1
2
;

y2

(1� y)2

35 = F
24 a; b;
2b;

2y

35 (4.20)

Proof

Let 	 denote the left member of (4.20). Then, with the aim of Lemma 1.3,

	 =

1X
k=0

�
1
2
a
�
k

�
1
2
a+ 1

2

�
k
:y2k�

b+ 1
2

�
k
(1� y)2k+a k!

(4.21)

=

1X
k=0

(a)2k :y
2k

22k
�
b+ 1

2

�
k
(1� y)2k+a k!

can be written. Also

(1� y)�2k�a =
1X
n=0

(a+ 2k)n y
n

n!

and

(a)2k (a+ 2k)n = (a)n+2k

Hence

	 =
1X
n=0

1X
k=0

(a)n+2k yn+2k

22k
�
b+ 1

2

�
k
n! k!
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By Lemma 3.2,

	 =

1X
n=0

[n2 ]X
k=0

(a)n+2k�2k :y
n+2k�2k

22k
�
b+ 1

2

�
k
k! (n� 2k)!

=

1X
n=0

[n2 ]X
k=0

(a)n yn

22k
�
b+ 1

2

�
k
k! (n� 2k)!

It is know that

(n� 2k)! = n!

(�n)2k
and that gives

(�n)2k = 22k
�
�n
2

�
k

�
�n
2
+
1

2

�
k

Therefore,

	 =
1X
n=0

[n2 ]X
k=0

�
�n
2

�
k

�
�n
2
+ 1

2

�
k�

b+ 1
2

�
k
k!

:
(a)n y

n

n!

=
1X
n=0

F

24 �1
2
n; � 1

2
n+ 1

2
;

b+ 1
2
;
1

35 (a)n y
n

n!

is written. The value of Hypergeometric function24 �1
2
n; � 1

2
n+ 1

2
;

b+ 1
2
;
1

35 =
2n (b)n
(2b)n

and the desired result is obtained as

	 =
1X
n=0

2n (b)n (a)n y
n

(2b)n n!
= F

�
a; b; 2y

2b;

�

(4.15) can be written as in di¤erent form. Let put

y =
2x

(1 + x)2
(4.22)
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in (4.15). Then

1� y = 1 + x2

(1 + x)2
(4.23)

and
y

1� y =
2x

1 + x2
(4.24)

are obtained. So

�
1 + x2

(1 + x)2

��a
F

24 1
2
a; 1

2
a+ 1

2
;

b+ 1
2
;

�
2x

1 + x2

�2 35 = F
24 a; b;
2b;

�
4x

(1 + x)2

�35 (4.25)

can be written. In the view of Theorem 4.1, right side of the equality below can be

written as

F

24 a; b;
2b;

�
4x

(1 + x)2

�35 = (1 + x)2a F
24 a; a� b+ 1

2
;

b+ 1
2
;
x2

35 (4.26)

and (4.20) can be obtained as

�
1 + x2

��a
(1 + x)2a F

24 1
2
a; 1

2
a+ 1

2
;

b+ 1
2
;

4x2

(1 + x2)2

35 (4.27)

= (1 + x)2a F

24 a; a� b+ 1
2
;

b+ 1
2
;
x2

35 (1)

By putting x2 = z and replace b by
�
1
2
+ a� b

�
,

(1 + z)�a F

24 1
2
a; 1

2
a+ 1

2
;

a� b+ 1;
4z

(1 + z)2

35 = F
24 a; b;

1 + a� b ;
z

35 (4.28)

can be written.
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CHAPTER 5

GENERALIZED HYPERGEOMETRIC FUNCTIONS

In this chapter, generalized hypergeometric functions which are more general types

of hypergeometric functions will be de�ned. Then some main properties of them will

be given.

5.1 De�nition of Generalized Hypergeometric Functions

It is known that, the Hypergeometric function

F

24 a; b;
c;

z

35 = 1X
n=0

(a)n (b)n z
n

(c)n n!

which has two numerator parameters, a and b, and one denominator parameter, c,

and given by (2.3). The generalized Hypergeometric functions are a natural gener-

alization of de�nition (2.3) to a similar function with any number of numerator and

denominator paramters.

De�nition 5.1

The generalized Hypergeometric function is de�ned by

pFq

24 �1; �2; :::; �p;
�1; �2; :::; �q;

z

35 = 1 + 1X
n=1

pY
i=1

(�i)n

qY
j=1

�
�j
�
n

:
zn

n!
(5.1)

where �i (1 � i � p) are numerator parameters and �j (1 � j � q) are denominator

parameters. Here no denominator parameter �, is allowed to be zero or a negative

integer and if any numerator parameter �; is zero or a negative integer, the series

terminates.
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5.2 Convergency of Generalized Hypergeometric Functions

The convergency of the series (5.1) can be shown by using an application of the

elementary ratio test to the power series. By ratio test,

1 +
1X
n=1

pY
i=1

(�i)n

qY
j=1

�
�j
�
n

:
zn

n!

an+1
an

=

pY
i=1

(�i)n+1 z
n+1

qY
j=1

�
�j
�
n+1

(n+ 1)!

:

qY
j=1

�
�j
�
n
n!

pY
i=1

(�i)n z
n

=

qY
j=1

(�j + n) : (n+ 1)

pY
i=1

(�i + n)

and the limit

lim
n!1

����an+1an
���� = lim

n!1

����������

pY
i=1

(�i + n) : (n+ 1)

qY
j=1

(�j + n)

����������
= lim

n!1

���� (�1 + n) (�2 + n) :::(�p + n):

(�1 + n) (�2 + n) ::: (�q + n) :(n+ 1)

����
is obtained. Therefore, the convergency of generalized hypergeometric funcitions

can be explained by

a) convergent for all �nite z; if p � q;

b) converges for jzj < 1 and diverges for jzj > 1; if p = q + 1;
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c) diverges for z 6= 0, if p = q + 1:

5.3 Some Special Generalized Hypergeometric Functions

When indicate the number of numerator parameters and of denominator parame-

ters is wanted but not to specify them, the notation pFq used. For example, the

ordinary Hypergeometric function is a 2F1: There are several examples for speci�c

Hypergeometric function as well-known elementary functions.

If put 0 in p and 1 in q;

0F1(�; b; z) =
1X
n=0

zn

(b)nn!
(5.2)

is obtained and it is called Bessel function.

Another example is the Exponential function. If no numerator or denominator pa-

rameters are present, the result is

0F0 (�;�; z) =
1X
n=0

zn

n!
= exp(z) (5.3)

Let give one more example. For one numerator parameter and no denominator

parameter,

1F0 (a;�; z) =
1X
n=0

(a)n z
n

n!
(5.4)

is obtained. It is known that

1X
n=0

(a)n z
n

n!
= (1� z)�a (5.5)

and by using (5.5),

1F0 (a;�; z) = (1� z)�a (5.6)
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is obtained, which gives the binomial function.

5.4 Di¤erential Equations of Generalized Hypergeometric Functions

Now, let de�ne the di¤erential equation of generalized Hypergeometric functions. It

is known that F (a; b; c; z) satis�es the di¤erential equation (3.1)

z(1� z)d
2w

dw2
+ [c� (a+ b+ 1)z] dw

dz
� abw = 0

By changing the di¤erential operator � = z d
dz
, the di¤erential equation can be ob-

tained in the form of

[� (� + c� 1)� z(� + a) (� + b)]w = 0 (5.7)

First of all, let write

w =p Fq =
1X
k=0

(a1)k (a2)k :::::::::::::::::::: (ap)k
(b1)k (b2)k :::::::::::::::::::: (bq)k

:
zk

k!
(5.8)

Since �zk = kzk, it follows that

�

qY
j=1

(� + bj � 1)w =
1X
k=1

k:�qi=1(k+bj�1):�
p
i=1(ai)k

�qj=1(bj)k

=
1X
k=1

�pi=1(ai)k
�qj=1(bj)k�1

: zk

(k�1)!

(5.9)
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Now replace k by (k + 1) at (5.9) then

�

qY
j=1

(� + bj � 1)w =

1X
k=0

pQ
i=1

(ai)k+1

qQ
i=1

(bj)k

zk+1

(k)!

=

1X
k=0

pQ
i=1

(ai + k)
pQ
i=1

(ai)k

qQ
i=1

(bj)k

= z
pQ
i=1

(� + ai)w

Thus, it was shown that w = pFq is a solution of di¤erential equation"
�

qY
j=1

(� + bj � 1)� z
pY
i=1

(� + ai)

#
w = 0

which is di¤erential equation of generalized hypergeometric function.

5.5 Conclusion

The aim of this thesis is giving a general information about Hypergeometric func-

tions and make a usefull and su¤ucient base for later works about Hypergeometric

functions.

Hypergeometric functions have several applications for di¤erential equations and

mathematical analysis. Moreover, several generalizations of Hypergeometric func-

tions were obtained. Thus, for later works, by adding some parameters for Hypergeo-

metric functions, specially generalized Hypergeometric functions, new generalizations

can be obtained and several properties of these generalizations can be investigated.

Additionally, if there any di¤erential equation exists such that it can be reduced to

the Hypergeometric di¤erential equation, then solutions of these type equations can

be given by these new generalized Hypergeometric functions.
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